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OPTIMA L REPLACEMENT OF PARTS HAVIN G OBSERVABLE

CORRELATED STAGES OF DETERIORATION~
by

L. Shawt C -I.. Hsu *, S. G. Tyan t

A B S T R A C T

A single component system is assumed to progress through a

finite number of increasingly bad leveLs of deterioration. The system

with level i (0 < I ~ n) starts In state 0 when new, and is deftnLtely re-

placed upon reaching the worthless stats ri. It is assumed that the

transition times are directly monitored and the admissible class of

strategies allows substitution of a new component only at such trans i-

tioct times. The du r ations in var tous deter iorat ion levels are depen-

• dent rando m variables wit h exponential marginal distributions and a

particularly convenient joint distribution. Strategies are chosen to 
p

maximize the average rewards per unit time. For some reward func-

tions (with the reward rats depending on the state and the duration in

• this state) the knowledge of previous state duration provides useful

information about the rate of deterioration.
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Many authors hav e studied opt imal rep lacement rules for parts

characterized by Markov ian deteriorat ion, for example Kao [6]  and

Lus s [9] and the many references found in those papers . Kao mini-

mized the expected average cost per unit time for semi-Markov la.n

deteriorating system, and considered various combinations of state and

age -depe ndent replacement rules.

Lus s examined inspection and repair models, wher e he assumed

that the operating costs occurring during the system’s Lif e increase with

• the increas ing deterioration. The holding times in the various states

were independently, identic ally, and exponentially distributed. The

policies examined include the scheduling of the next inspections (when an

inspection reveals that the state of the system is better than certain

critical state k) and preventive repairs (when an inspection reveals the

stat e of the system being worse than or equal to k). The convenience of

a Poisson-type structure for the number of events-per-unit-time made r
it r elatively easy to allow general freedom in the selection of observ a-

tion times.

The work studied here is based on a modification of the model

used by Luss. Our model for deterioration Is more general, but the

admissible strategies used here are more restricted. Here we allow

the exponentially distribut ed durations to have d ifferent mean values ,

and to be positively correlated.

The introduction here of correlation between interval durations

permits the modeling of a r ate of deterioration which can be estimated

from a particular realization of the past durations. However , the lack

of a Poisson -typ e of structure for the events-per-unit -time makes it
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much more difficult here to allow general freedom in the selection of

observation times. At present, only the simple case of direct and

Instantaneous observation of deterio r ation jumps has been cons idered.

This model would be appropriate, for example, in a subsystem

• which functions , but with reduced efficiency, when some redundant

• components have failed; and for which failure of one component might

Indicate environmental stresses which increase the probability of fail-

ure for other components. Zn addition, deterioration in correlated

stages might be used as a simple approximation for a continuously

varying degradation which does not exhibit discrete stages.

Figure 1 shows a typical time history of deterio ration and replace-

ment. The duration in state (i-I ), prio r to reaching state (t), is

• The intervals d1 in FIgure 1 represent the time required to replace a

component when it has entered state i. The sequence { r~} will be Markov,

characterized by a multi-variate exponential distribut ion. Reward func-

tions will be related to the deterioration state and the time spent in each

state. The decision rule specifies whether or not to replac e when enter-

ing each stat e I, on the basis of the history of r
~ ..1, r i r  ... . The

Markov property simplifies the decision rule to be a collection of

sets such that we replace on entering state I if and only if r~~1 e e1.
The objective is to maximize th. average reward per u~nit time:

L * Urn 4 (Total reward in (0 , T)) ( 1)

El Reward per renewal]
* (2 )
EJDurat~on between renewal3J ~

(See Ross (ii] page 160 for equivalence of (1) and (2).) The mean

L ._
~~~~~~~~~~~~~ ~~~~~~

• 
• 

-

—~ A - ~~~~~~~~~~~
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• reward per renewal is defined here as:

N-I  r 1
a E 

~~ 
f  c1(t)dt - 

~N •taO 0

in wblch

N ~ state at which replacement occurs (possibly random)..

replacement cost if replaced on entering state N
(possibly r andom).

• c~
(t ) a reward rate when in state I.

Figure 2 shows several reward rate time functions c(t)  which

• hav e been cons idered. When one of these c(t)  functions is specified

for a given problem, the c~(t) in (3 ) ar e assigned values 
~t c(t ) with:

~~~~~~~ ~~~~~~~~~~ ~~~~n-t  
>~~3 * 0 , (4)

• t to assure greater reward rates in less deteriorated states. State a

corresponds to a completely failed ~r worthless component.

The mean duration in (2) is defined as:

N— i
9~ E Z rL +dN •:~~~ 1*0

to include a pcssibly random time dN for carrying out a replacement at

state N.

While the ultimate objective is to choose C. to maximize the L de-

fi ned In ( 1), It is well known that a related problem of maximizing:

~O (
~~) *  ~~~~ ~

, (6)

i. simpler [ 1] .  Indeed, the C
~ 

which maximize L will be identical to
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thos. which maximize £o(a) for the a* such that:

• 4(a*) a 0, where 4(a) ~ max
{e 1}

Section 1 cons iders a case in which It is found that deterioration

r ate Information Is not useful (e. g. • the optimal policy 1. indepe ndent of

the amount of correlation between successive state durations ).

Sections 2 and 3 cons Ider other reward rate structures , e. g. . as-

suming that more deteriorated parts are rustier , hotter, or more brittle,

and therefore more costly to replace. In such cases the optimal policies

do make use of estimates of the deteriorat ion rates as well as of obser-

vations of th. deterioration level.
• The appendix describes useful properties of the mult ivariate ex-

• ponential {r 1} sequence which is used to model the correlated residence

• times in a sequence of deterioration states.

1. Constant Reward Rate - State Independent Replacement Penalties

The constant reward rate case with c1(t)  = and with state-

Independent replacement penalties 
~~ 

= p. d1 = d) is particularly simple

to ana lyse. We will see that as tong as E(r~I r 1_ 1, r j _ 2  • . . I > 0 for all

I , even if the r~ are not exponentially distributed, the optimal rule will

be to replace the deteriorat ing part upon entering some critical stat e k*,

independent of the observed durations r 1.
Based on the problem statement, the optima l decision on entering

state j must maximize the mean future reward until the next renewal.

£.j (a). for a suitable a .  Here:

_ _  
_ _ _  -j

- -- • -~~~~~~~ •.~ --



£ (a)a E Z ~1r 1j r .  -aE 
~ 

r1(r. 
~ 

-p-ad. (8)
i j— 1 3 —

Immediat ely after a renewal, when j a 0, the expectations defining .C~ (a)

are unconditional. The optimal decisions for each state will be found in

terms of a, and then the proper a* (for producing decisions which rnaxi-

miss L) is the one for which the maximum:

max .e&a*) = a (9)

Optimization by dynamic programming begins by considering the

decisions at the last step, I. e. • on entering state (n -I ). There are two

choices, to r eplace (R ) or not to replace (
~~~), with corresponding values:

ea_ i R~~ -p-ad, ( 10)

and:

.~~_~(a;~~)= E(~ n.i ra_j jr n.21 - aE( r~~~1 I r ~~_ 2 1 -p-ad

• = E((
~n_i -a)rn i Ir n_2l -p-ad.

Clearly, the best decision is not to replace if and only if the difference

A 
~~~~~~~~~~~~ 

;r ~~_ 2 ) 
~ 

£.~~~~(0 ;r) Cn_ 1

~ n-t~~ 
E[r~~1 r~~2] 

) 0. (1 2)

is rton-negativ.. The sign of ( 1 2) will be the sign of (~~~~~ j -a) due to the

non-negativity of all Interval durations. Thus the best decision depend s

on a and the reward parameter 
~~~ 

but not on the previously observed

duration. Two cases will be considered separately. 

.~. i ~~~~~~~~~~~~~~~~~~~~~~~ ~~~
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u > a then the best decision at state (n-I ) Is not to replace.

We will now explain why, under this condition , It Is best not to replace

at any state less than a. Consider the s ituation on entering (n-2) . We

have alread y shown that it is better not to replace on entering (n-i).

Thus the choice will be based on a A~~.2 of the form:

A n-2~ 
;r~ _3 ) a E((8n _ 2 -a)r n ~ 

+ rn n-i 0)1n_ I  I r~~3). ( 13)

Here we have:

~~n-2~~~
> 

~~n-1 °~ 
> o~ ( 14)

by assumption, and:

E[r~~.1 I r~ _ 3 ] ) 0 and E(r .2 1 r~ _ 3 ] ‘ 0, ( 15)

because all r 1 > 0 with probability one. Thus A n-2~~ 
;r n_ 3 ) > 0 for all

> 0, and it Is also better not to replace here. This argument can

be repeated for states (n-3), (n -4 ) , . . . ,  1, 0.

The other case to consider is < a, whi ch requires replace-

meat on entering state (n-I ), if the system ever reaches that state.

When we consider the decision on enterin g (n-2) , the A n -2 is:

A~_ 2 (a :r~ _ 3 ) a E((
~ a 2

_ a)m n 2~ 
r n 3 ], (t o)

which has the s ign of (
~n.2~

a). ~ (~~4-a) < 0, then replacement is

• opt imal on entering (n -2) and (a-3) Is cons idered next. This Iteration

may eventually reach a state (k- i)  where (~~~~.j -a ) >  0 and It is better

not to replace. Arguments similar to those for the -a > 0 case

show that non-replacemen t is the optimal decision at all state precedin g

the one which first arises as a non-replacement state in this backward

_ _ _  •~_T
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it eration.

In summary, in the constant rewa rd rate-constant replacement

penalty case £.~(a) is maximized by a decision rule which says replace

on entering some state k < n which depends on the reward parameters

and the a:

k = rnin{ i: ( a—j 3 .)  > O} . ~t 7 )

Finally, we must .hoo se a~ so that 4(a *)  0, where:

k-I
= -p-ad ‘s~ 2 (~ . -a)E( r~ ] (1 8)

0 ~ - •

Figure 3 shows a typical plot of 4(a) as a continuous , piecewise

linear curve whose zero crossing (4(a*) = 0) defines a* and the opti-

mal replacement state k* for maximizing L’

Example: Figure 3 shows that the optimal average reward per unit time

is L 2~~ when k*2  3, where 
~O = ~ = ~ 3, z 34

_ 1,

$5 = 0, p = 5, d = 1, i,. = 2 (I = 0, 1,2, 3, 4) and n = 5. From Equation

( 1 8), the optimal k is a function of a, which remains constant when a

varies over each interval 
~~~ 

< a < as shown in the figure.

___________________________________________________________________________________________ 

‘12. Increasing Replacement Penalties-Constant Reward Rate

Here we generalize the model of the previous section by allowing

the replacement cost p
~ 
and replacement duration d

~ 
to be functions

of the replacement state (I ), and to be random. These parameters are

assumed to have mean vaLues E(p.j and E(d.J which are convex non-

decreasing sequences in i, corresponding to the increased difficulty

in replacing more deteriorated parts which may be e. g., rustier,

•
_ _  

__ Lj
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___

hotter or more brittle. We also assume that the mean durations are

ordered: ~~ 
~~ 

> ... > i~~~~~• corresponding to faster transitions of

• more deteriorated parts.

The foregoing assumptions, together with properties of the as-

sumed mult tvariat e expo nential dens ity for stage-durations (see Appen-

dix), lead to an optimal decision policy with a nice structure. That

optima l policy prescribes replacement when entering state j ,  I.E and

only if r~_ 1 < y r_ i . where the decision thresholds are ordered:
* * * 4

0 <  r0/%~.r1/T71 ... 
~~
rn_t /fln..t = 00 .

The optimal decision on entering state j must maximize the mean

future reward until the next renewal, I. e., L(a). For a suitable a, we

have: •

L(a ) = £ $~ 
r.~ r. 1 

} 
-aE[ Z r~I r.

i} ~E(p~ + adN ] (19)

For notational simplicity we define e
~ 

= E[ p1 + ad1] and note that e1 is

also convex and non-decreasing since we are only interested in a > 0.

The optimal decis ions for each state will be found in terms of a, and

then the proper a* (for producing decisions which maximize L) is the

one for which the maximum C. vanishes:

• 0 N-I N-I

• £~ (a *) = eN (a *) + E ~ $. r. - a~ Z r . 0 . (20)
• 1=0 ~ 1=0 ~

Optimization by dynamic programming begins by cons idering the

decision at the last step. Since state a represents a failed component,

we definitely replace the component when it enters state a. Next, we

consider the decision to be made on entering state n-I .  There are two

_ _  

__ _ _ _ _  -

- ~~4
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choices: to replace (R)  or not to replace (f), with corresponding

v*lues

Ln_ t (a
~

R ) a  
n —i ’ (2 1)

£~~~1
(a:~~ ) a  E(~~~~1r 1 - ar ~~_ 1 t r ~~_ 2 1 - e~ (22 )

for C~~1(a). Clearly, the best decision is not to replace If and only if

A~~ 1 (r n .2 ) ~ (a j ) - e~ 1 (a , R)

Is non-negative , I. e . , .

A~~t
(r n 2 )a 

~~n-t °~ 
E ( r ~~ j I r n _ 2 ] + (e~~~1

_e~~)~~ 0. t 2 3 )

Referring to (A-o~, A~_ 1 (r~ _ 2) Is a linear function of with

~~~~~~~~~~ 

(0) 
~~~~ ~~~~n~~_ 1 (I -p ) + ( en j  ~~~~ 

j
Figure 4 shows th. possible shapes for this function. There can be no

downward zero-crossing at an r~~•2
> 0.

t Thus, depending on the numerical values of the parameters , there

are three possible kinds of optimal decision rules when entering state ~ I

(n—I):

I) replace for any rn ., If 
~~~~~~~ 

~ 0 for all ~~~~ ~ 0

IL) replace for no If < 0 for all 
— 

0

iii) replace if and only If  r~~~2 ~~~~~~~~~ where ~~ _ 1~ r~~~2 ) 0.

• In other words ,

~
‘n —L ~”~’ 

( r~ _ 2 : r n_ .) < r~~ 2) , (24)

-

~~~~~~~~~~~~~~

—

_________________ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
4 _ ~~~~~~~ . ~~~.—--•..-

~~-—
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where r~~~2 could be zero (case 11) or infinite (case I).

Next we consider the optimal decisio n when entering stat e (n-2),

and as suming that the opt imal decision will be made at the subsequent

stage. We cons ider cases of < a )  and 
~~n I  ~ a ) separately.

a) rnn_ i <a) implies replacement on entering (n-I ), so

~~_2
(mn_3) a 

~~~~~~~ 
E( r~~2I rn..3] + (e~ _ 2 - e~ _ 1 ).

resulting in the same three possibilities listed above for state (n-I) .

b) for > a) :

~~_2
(mn_3 ) a e~ _ 2 + n-2~~~ 

£(r~~~2 I r ~ _ 3 J

+ 7 ( (
~~-~ 

-a) E( r~~_ 1 r n 2 l ~e~] f(r ~~2 I r 3)dr n 2

+ 
r~~~2 (-e~~~~ ) f(r n .2 I r n_ 3 )dr n_ 2  (25 )

Equation (25 ) can be simplified, with the aid of the notation (x)~ a ma.z(x, 0),

to the form

* 
~~~~~~~~~~ 

+ (~~~ 2 -a) E( r~~ 9I r~~ 3 ]

+ E ( (~~ _ 1 (r~ _ 2 ))~ I r ~ _ 3 ]. (26 )

Usef ul compar isons can be formed LI normalized variables are Intro-

duced namely

5 =  r 1/y)1; 6t(s i_ j )a A 1(r 1 1 )
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I
We now prov e

A) 6 fl. 2(s fl_ 3 ) 
~ 

6 n-i  ~~n-3~

B) 6 n ~~~ 3 ) Is convex with at most one upward zero crossing
at an s >0 .

There Is no harm In writing 
~~~~~~~~~~ 

or instead of 6
fl ~~~~ 

for

purposes of comparing functions.

To prove A). consider

- 6~~~ (s) = 2~~~~ I~ 
- (S j e ) ]  + E[ (6

~~~i ( s)
~~I s )

+ -a) 
~n-2 - 

~~n-t  ~a)~~~11 E( s/ s ) . (27)

where s represents the normalized duration prec eding s.

The terms on the right side of (27) are non-negative due to the

convexity of the e1, ( )
+ ) 0, (A-6 ), and the assumed orderings of the

and n
~
.

This completes the proof that A) is true. It follows immediately

that if I) applies for state ( n - I ) ,  then it Is also optimal not to replace in

state (n-2) or any earlier state. (Recall t3~~1 < 
~n-2  < ..., and we

are now considering a <

To prove B), which is only of interest when an r _ 2 >0 exIsts, 
t

we refer to the theorem In the appendix. The test difference

can be written as

o n_ 2 ( 5 ) *  E(e~ _ 2 - e
~~~ 

+ ~~~ 2
..a )i~~ 2~ 

+ (6~~~~ (s))~ I s ]  (28)

In which the Lntegrand has the properties required by h ( s)  in the t h-eo-

rem. To see this, we note that r~~2 
>0 ImplIes that (6 n_ i (0 )) ’ a 0, so

_ _ _  L
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the integraz~ is non-positive at S = 0. Thus, 
~~~~~~ 

has the shape

stated in B). implying that

= {1•~~_ 3~ r 3 < r _ 3} (29 )

where r~~ 3 may be zero, infinity, or the non-negative value defined

by 6 n_ 3 (r _3 /v?fl.. 3) = 0.

The foregoing arguments can be repeated for r~ _4. r~~5.. . r 0to

prove that the optimal replacement policy has the form:

Replace on entering state 1 if and only if r~ ~ r~

where

* * *0 <  r / y ~ < r 1/ ip 1 ...  ~~ r~~~1/T7~~_ 1 = 00

When repeating the proof for earlier stages, the ( )+ term in (28) is modi-

fied to the form, e. g., ( ( 6 f l_ 2 ( s )) + 
~
6 n-I (

~ )) +]• This term is ze ro for

x = 0, and generally non-ne gative, due to A), so the bas ic theorem is

still applicable.

3. Computational Procedure

The preceding section derived the structure of the optimal decision

rule for the cas e where replacement is more difficult and more expensive

when the part is more deteriorated. The corresponding optimal decision

thresholds can be formed as follows:

a) choose an initial a.

b) Find the r~ (a) (I = n-2, n-I, ...,  0) recursively, via nu.meri-

cal integrisitton of expressions like (26) (where r _3(a) Is defined by the

condition A~_2(r~~3) a 0). j

Iii ~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ •
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c) Compute

e0-e1 + f [ ( ~ 0
_ a)  r 0 + (A j (r 0 )) + ] f(r 0 )dr 0.

0 4
d) U 14(a)I < € ,  for sufficiently small c, say Imax a a* . a:

otherwise repeat the computational cyc le starting with a new a.

The following properties of 4(a ) can be used to generate an a-

sequence which converges to a*.

1. 4(a) is monotone decreas ing, sinc e ~~~(O) has this property

for a fixed policy (see Eq. (19));  and if 4~°2~> 4(a 1
) for a 2 

> a1, then

the policy used to achiev e 4(a 2) could be used to achieve an

- -a  contradiction.

2. When p = 0, all r~
’ are zero or infinite : replacement always

occurs on arrival at a cr itical state l~. Use of that policy wilL achieve

the same average reward for durations having any value of p. Thus , a

* • * *useful bound o na  (p ) t s a  ( 0 ) < a  (p) ; O < p < I.

3. When p a ~, future r1 are completely predictable

( V a r ( r l r 1) a  0 in (A-7). so a*( 1) > a*(p ). In this case there is es-

sentially a single random variable r0, and the r~
’ can be calculated

without the need for numerical integration of Bessel functions.

4. NumerIcal Example

Table I lists parameter values for a replacement problem which

falls under the assumptions of Section 2.

I 0 _ 1 2 3 4 5

5 4 3 2 1
1 0. 9 0. 8 0. 7 0. 6

E( p11 2 2. 2 2. 4 2. 6 2. 8
E(~ I I I. I 1 .2 1.3 1.4

TABLE I

— -—__~~~~~~~~~~~~
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Ca s el  ( p a  0)

Since future durations are independ ent of past ones, the optimal
• 

- 
policy replace. when a critical state Is reached. The general opt i-

mal reward expression

CN .. I

a (p)a
rN - I

• E~~~~~
r
~~~~dN

becomes, in this case

j—1
Z~~~~i~ -E ( p.J

a (0) a max j -t  2 rnax A(J )
+ E(d1]0

Direct evaluation shows

1 2 3 4 5

A(j ) 1.5 2.13 2. 205 2. 085 1.89

with j * a 3 and *(0) * 2. 205.

Case 2 ( p a j )

Since r 1 * r 0 ~~~ La this case, the optimal rule specifies a re-

placement state j(r 0 ) as a function for r 0.

For any such policy

£~
(a. j ( r 0

)) a E
r [ ~ Pi 

- ad~ + 
~~ ~~~

Th is expectation will be maximized if j (r 0) maximizes the bracketed

—- - •  •—
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term for each r0. Making the necessary comparisons for a squenc. of

a -values leads to the policy

j
5

a 1. L f r0~~ 0. 2698

a 2. if 0. 2698 ‘C r0 < 0 .  7083

a 3, K0 . 7083 < r0.

for which I.e0 1 < 0. 003 and *( )  ~ 2. 25.

Case 3 ( p a 4 )

We know that 2. 205 < a *(4) < 2. 25. A pilot calculation along the

lines indicated in the previous section shows that r~ (4 )  = 0, r (4 )  =

f o r j >  2, and

* 9( * 2)r 1 8(3_a *)

where a* is chosen to make the following L0(a) vanish.

6 . 4 -  3a + 
[~~ [(~ 

_

~
.

I )

-(2r +
-~‘r0r1 

)dr
1
dr0

While the method for finding a*( 4) 15 clear, fur ther numerical work

seems unwarranted. The precision needed to get a meaningful answer

Is not j ustified by the minimal Improvement that the optimal policy will •

hav, over the suboptimal use, for all p of the optimal p ~ 0 policy (xe-

place when reaching state 3). j

__________ _________________ ________________________ 
______ 
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• ~~. Conclusions

A mult ivar lat. exponential distribution has been used to describe

successive stages of deterioration. Opt imal replacement strategies

have been found for the clas s of decision rules whIch can continuously

observe the 4ete rior atto n state , and which may make replacem ent s only

at the times of state transitions. Similar results have been found for the

other reward rates shown in FIgure 2 (linear : and constant after an m i -

tial set-up interval for readjustment to the new state) ( 5] .

The optimal rep lacement po licy derived in Section 2 makes use of

observations which allow estimation of the current rate of deterioration

for the correlated stages of deterioration. The numerical example

demonstrated a situation where a much simpler policy, which ignores

the correlation, can be almost as good. The relatively easy calculation

of th. optimal rewards for p : 0 and p :  I provides Information about

the necessity for use of th. more complex optimal solution. It is worth
r

noting that we have been unable to find other combinations of values for

the parameters in Table I such that there Is a substantiaL relative In-

crease in the maximum reward as p increases from zero to infinity.

The ordering of state dependent rewards, mean durations, etc.

assumed here are physically reasonable, and lead to nice ordering of

the decision reg ions. However , other n~, p1. d~ 
ord erings might

be more appropriate La other situations , The model introduced here for

dependent stage durations could be used in those cases, tog ether with

dynamic programming optimization, although the solutions may not

have comparably neat structures.

On. reasonable generalization would allow transitions from state i

to any state j > I. This would not change the form of the solution in the

______  _____  

:~~~- ~~~~~~~~~~~~~~~~~
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case of constant replacement penalt ies. However , the possibility of

these additional transitions does ruin the stru cture when replacement

penalt ies increase with the deterioration state. (The 6n 2 ~’~ 
> 6~ _~ (s)

argument is no longer valid. )
I
I
‘l

I

• 
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Figure 1:

History o~ Deterio r ation and Rep lacement ~n:5~

c ( t )
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linear

c) constant-after set up

Figure Z~
Reward Rate Time Functions
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I

A~~~1 ~~n-&

Figure 4:

Possible Shapes for A~~~1 (r~~_ 2 ) .
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APPENDIX

Dependence Relat ionships Among Multivaniate Exponent ial Variables

Many multivariate distributions have been described and applied

to reliability problems ( 4 . 8, 10] . In each case the marginal uni-

variat e distributions are of the negat lye exponential form. Properties

of the distribution used here are moat eas ily derived by exploiting Its

relationship to multivariate normal distributions (3 , 5].

The mu ltivaniat e exponential variables r 1, r T . . .,  r~ can be

viewed as sums of squares:

(A-i)

where ~ and ~ are independent, zero mean, identLcaUy distributed nor-

mal vectors, each with covariance matrix r. It follows that the r
~ have

• exponential marginal distributions with

E( r 1J = 2 (A-2)

r .

We specialize to the cas e where the underlying normal sequences (w 1}

• and are Markov ian

if 
‘

~
‘
~~~ 

•

~ 

p t t —j I (A 3)

and find that {r 1} is also Marlcov with the joi * density



.24-

f(r 0, r 1, r~~ 
. . . ,  r n_ I ) [u _p) D~1 

~ n
i] 

. i~ {
~~~ ~~~~ ~ r1ri+i]

_ +  
~~~~~~ 

r~( 1
+P )) ]

(A-4)

Equation ( I I )  uses the modified Bessel function Io ( ) and the notat ions

E (r 11 r~ and 
~~ r a p .  (When n a  2, the summation in exp (

1’ 1+ 1
van ishes.

The conditional density Is easily shown to sat isfy the Markov pro-

perty and (5 1

f(r i l r i j ) a  (~~1( i -p )] t ex~[. (I -p ) 
~i-~ 1~ 

I~ ( i /~~~~~~)(A-5)

with

E[r1 1r 1 1 ] 
a + (r 1 1 -fl1 1

)p “i”~-t 
(A-ó )

Varf r 1l r 1_ 1 ] r,1
2t ( t — p ) 2 + 2p (I — p ) r 1_ 1 / n ~~1l . (A — 7 )

These conditional momenta show, e. g., that the conditional mean of

exceeds its mean in proportio n to the amount by which r 1 1  exceeds its

mean, and that conditional mean Is a linearly increasing function of r n _ i .

The Dynamic Programming arguments used here required calcula-

tions of conditional expectations based on (A-5) . As Is often the case 1 2~.

the total positivity properties of f(r i( r1 1 ) are very useful for determin-

ing structural properties of the optimal policy.

It is straightforward to show that both f(r 1, r 1_ 1 ) and f ( r i t r ~ .1 ) are

totally positive of all orders (TP~ ), (5, 71. This means, for f(r1, r1 1 ),

4

~~~
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that the following determinants are non-negat ive for any N and any

~~ 
< a s . . .  < a~4; B

1 
< B 2.. .  < B N.

f(a 1. B1
) 

~~~ 
82

)... f(a 1, 3N~: > 0
1
~°N’ Ba ....

~ • : . ....... f a N. 8N~ 

—

THEOREM: If h(y) is continuous and convex, and satisfies the bounds

i) h(0 ) < 0

Li) ~h(y)~ < a + b y~~~; a >0 , b > 0 , y >0 , ma  posi tive integer.

Then g(x) is continuous , conv ex, bounded in the sense

I g(x)~ < a ’ + b’ x 2m; a’ >0 , b’ >0 , x >0 :

and belongs to one of the three following categories:

(I) g ( x ) > O f o r aU x~~~0,

(II ) g(x) ~ 0 for all x > 0 except with a possible zero at x = 0

( III ) there exists a unique ~~ 0 < z~ <~~~ such that g(x) > 0 for
all x >x*: and g( x) < 0 for x <  x~ except for a possibLe zero
a t x a 0 .

T his theorem is used to define optimal decision regions according to

the sign of a function like g(x), with ,c~ corresponding to a decision

threihold.


