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ABSTRACT

A single component system is assumed to progress through a
finite number of increasingly bad levels of deterioration. The system
with level i (0 < i < n) starts in state 0 when new, and is definitely re-
placed upon reaching the worthless state n. It is assumed that the
transition times are directly monitored and the admissible class of
strategies allows substitution of a new component only at such transi-
tion times. The durations in various deterioration levels are depen-
dent random variables with exponential marginal distributions and a
particularly convenient joint distribution. Strategies are chosen to
maximize the average rewards per unit time. For some reward func-
tions (with the reward rate depending on the state and the duration in
this state) the knowledge of previous state duration provides useful

information about the rate of deterioration.
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Many authors have studied optimal replacement rules for parts
characterized by Markovian deterioration, for example Kao [6] and
Luss [ 9] and the many references found in those papers. Kao mini-
mized the expected average cost per unit time for semi-Markovian
deteriorating system, and considered various combinations of state and
age-dependent replacement rules.

Luss examined inspection and repair models, where he assumed
that the operating costs occurring during the system's life increase with
the increasing deterioration. The holding times in the various states
were independently, identically, and exponentially distributed. The
policies examined include the scheduling of the next inspections (when an
inspection reveals that the state of the system is better than certain
critical state k) and preventive repairs (when an inspection reveals the
state of the system being worse than or equal to k). The convenience of
a Poisson-type structure for the number of events-per -unit-time made
it relatively easy to allow general freedom in the selection of observa-
tion times.

The work studied here is based on a modification of the model
used by Luss. Our model for deterioration is more general, but the
admissible strategies used here are more restricted. Here we allow
the exponentially distributed durations to have different mean values,
and to be positively correlated.

The introduction here of correlation between interval durations
permits the modeling of a rate of deterioration which can be estimated
from a particular realization of the past durations. However, the lack

of a Poisson-type of structure for the events-per-unit-time makes it
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much more difficult here to allow general freedom in the selection of
observation times. At present, only the simple case of direct and
instantaneous observation of deterioration jumps has been considered.

This model would be appropriate, for example, in a subsystem
which functions, but with reduced efficiency, when some redundant
components have failed; and for which failure of one component might
indicate environmental stresses which increase the probability of fail-
ure for other components. In addition, deterioration in correlated
stages might be used as a simple approximation for a continuously
varying degradation which does not exhibit discrete stages.

Figure { shows a typical time history of deterioration and replace-
ment. The duration in state (i-1{), prior to reaching state (i), is T
The intervals di in Figure 1 represent the time required to replace a
component when it has entered state i. The sequence {ri} will be Markov,
characterized by a multi-variate exponential distribution. Reward func-
tions will be related to the deterioration state and the time spent in each
state. The decision rule specifies whether or not to replace when enter-
ing each state i, on the basis of the history of Tigr Tiog oo - The
Markov property simplifies the decision rule to be a collection of C’.l
sets such that we replace on entering state i if and only if Tig € C’i.

The objective is to maximize the average reward per unit time:

L= lim & (Total reward in (0, T)) (1)
T~
s —El Reward per renewal] R (2)
E[ Duration between renewala] b °

(See Ross [11] page 160 for equivalence of (1) and (2).) The mean




reward per renewal is defined here as:

R=E 2 c,(t)dt - . (3)
2 f %
L

in which:

N = state at which replacement occurs (possibly random).

PN * replacement cost if replaced on entering state N
(possibly random).

ci(t) = reward rate when in state i.
Figure 2 shows several reward rate time functions c(t) which
have been considered. When one of these c(t) functions is specified

for a given problem, the ci(t) in (3) are assigned values Bic(t) with:

Bo28,28,2...28 , 28 20, (4)

to assure greater reward rates in less deteriorated states. State n
corresponds to a completely failed or worthless component.
The mean duration in (2) is defined as:
N-t

H=E z r tdy| o (5)
i=0

to include a pcssibly random time dN for carrying out a replacement at

state N.

While the ultimate objective is to choose C’i to maximize the L de-

fined in (1), it is well known that a related problem of maximizing:
Lyla) = R-a b, (6)

is simpler [1]. Indeed, the (, which maximize L will be identical to
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those which maximize to(a) for the a* such that:

L)) = 0, where £0(@)Q max Ly(a)
(e

Section 1 considers a case in which it is found that deterioration
rate information is not useful (e. g., the optimal policy is independent of
the amount of correlation between successive state durations).

Sections 2 and 3 consider other reward rate structures, e.g., as-
suming that more deteriorated parts are rustier, hotter, or more brittle,
and therefore more costly to replace. In such cases the optimal policies
do make use of estimates of the deterioration rates as well as of obser-
vations of the deterioration level.

The appendix describes useful properties of the multivariate ex-
ponential {ri} sequence which is used to model the correlated residence

times in a sequence of deterioration states.

1. Constant Reward Rate - State Independent Replacement Penalties

The constant reward rate case with ci(t) = Bi and with state-
independent replacement penalties (pi = p, di = d) is particularly simple
to analyze. We will see that as long as E[ril Tig» Tjog+++] 20 forall
i, even if the r, are not exponentially distributed, the optimal rule will
be to replace the deteriorating part upon entering some critical state kx*,
independent of the observed durations r,.

Based on the problem statement, the optimal decision on entering
state ] must maximize the mean future reward until the next renewal,

t.j(a). for a suitable a. Here:

i sl oA O o A
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N-t N-t
.tj(a)aE z Birilrj-l <E| T ri|r.

e -p-ad. (8)
=] = ]

Immediately after a renewal, when j = 0, the expectations defining :,o(a)
are unconditional. The optimal decisions for each state will be found in
terms of a, and then the proper a* (for producing decisions which maxi-

mize L) is the one for which the maximum:
max Loav) = cg(an- 0. (9)

Optimization by dynamic programming begins by considering the
decisions at the last step, i.e., on entering state (n-1). There are two

choices, to replace (R) or not to replace (R), with corresponding values:
'tn-l (@ ;R) = -p-ad, (10)

and:
fa-ql@ K = E( Ba-1Tn-t l l'u«2] - aE( “n-1 | l'1'1-2] “pead

= E[ B,y -a)r Irn_zl -p-ad. (11)

n-1

Clearly, the best decision is not to replace if and only if the difference
& v, QL& (@R -2 (@:R)
= (Bn_tc) E{x'“_l | rn_2] > 0. (12)

is non-negative. The sign of (12) will be the sign of (Bﬂ_1 -a), due to the
non-negativity of all interval durations. Thus the best decision depends

on @ and the reward parameter 3 but not on the previously observed

n-{’
duration. Two cases will be considered separately.
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I8, 4 2a then the best decision at state (n-1) is not to replace.
We will now explain why, under this condition, it is best not to replace
at any state less than n. Consider the situation on entering (n-2). We
have already shown that it is better not to replace on entering (n-1).

Thus the choice will be based on a & _, of the form:

A, _qlair, 3)= E[(B, g-a)r o+ (B, , ) lr,.3) (13)
Here we have:

By.9=@) > (B, =) >0, (14)
by assumption, and:

E{ry lra3]20 and E(r__,lry.31 20 (15)

because all r > 0 with probability one. Thus & n-2(° :rn_3) >0 for all

r > 0, and it is also better not to replace here. This argument can

n-}
be repeated for states (n-3), (n-4),..., 1, 0.

The other case to consider is Bn-l < a, which requires replace-
ment on entering state (n-1), if the system ever reaches that state.

When we consider the decision on entering (n-2), the & a2 iss

A, _qlair, _3) = E[B, =)t olr, 3l (10)

which has the sign of (Bn_z-a). It (ﬂn_z-a) < 0, then replacement is
optimal on entering (n-2) and (n-3) is considered next. This iteration
may eventually reach a state (k-1) where (Bk_t -a@) > 0 and it is better

not to replace. Arguments similar to those for the 3 -a > 0 case

n-{

show that non-replacement is the optimal decision at all state preceding

the one which first arises as a non-replacement state in this backward

e TN o




iteration,

In summary, in the constant reward rate-constant replacement
penalty case to(a) is maximized by a decision rule which says replace

on entering some state k < n which depends on the reward parameters

{Bl} and the a:
k= min{i:(a-Bi) > 0} . (17)

Finally, we must choose a* so that tg(a*) = 0, where:

0 k-1
Lyl@) = -p-ad + T (B,-a)E(r,] (18)

Figure 3 shows a typical plot of Sg(a) as a continuous, piecewise
linear curve whose zero crossing (.tg(a*) = 0) defines a* and the opti-

mal replacement state k* for maximizing L.

Example: Figure 3 shows that the optimal average reward per unit time
is L = Z%When k* = 3, where Bo= 9, 31 = 4, ,82= 3, ;33= 2, ;34= 1,
35 =0, p=5,d=1, n;=2(=0,1,23,4) andn= 5. From Equation

(18), the optimal k is a function of @, which remains constant when «

varies over each interval ﬁiﬂ Sa s Bi' as shown in the figure. x

2. Increasing Replacement Penalties-Constant Reward Rate

Here we generalize the model of the previous section by allowing
the replacement cost P; and replacement duration di to be functions
of the replacement state (i), and to be random. These parameters are
assumed to have mean values E( pi} and E[ di] which are convex non-
decreasing sequences in i, corresponding to the increased difficulty

in replacing more deteriorated parts which may be e. g., rustier,

e ey - —— -, . -
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hotter or more brittle. We also assume that the mean durations are

ordered: n 2> ngZeoo 20 o corresponding to faster transitions of
more deteriorated parts.

The foregoing assumptions, together with properties of the as-
sumed multivariate exponential density for stage-durations (see Appen-
dix), lead to an optimal decision policy with a nice structure. That
optimal policy prescribes replacement when entering state j, if and
only if 1.'j_1 < r;‘_i. where the decision thresholds are ordered:
0< r::/n(_‘,f_r;“/'n1 .00 r::_'llnu_1 = o,

The optimal decision on entering state j must maximize the mean

future reward until the next renewal, i.e., .Cj () For a suitable a, we

have:

£.j(a)= E 1\:3; B, rilrj-i} -QE{I::Z; rilrj_i} -E[pN +adN] (19)
For notational simplicity we define e = E[p.l + adi] and note that e, is
also convex and non-decreasing since we are only interested in a > 0.
The optimal decisions for each state will be found in terms of @, and
then the proper a* (for producing decisions which maximize L) is the

one for which the maximum £ vanishes:

0 N-i N-1
to(a*) = eN(a*) +E| 2 B.l r, -a* _2 r,|= 0. (20)
i=0 i=0

Optimization by dynamic programming begins by considering the
decision at the last step. Since state n represents a failed component,
we definitely replace the component when it enters state n. Next, we

consider the decision to be made on entering state n-{. There are two

e P e
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choices: to roplace (R) or not to replace (R), with corresponding

values

&n_‘(a iR) = -e (21)

n-t’
Lo @R = E(B v o-ar | o] - (22)

for £ _ (@) Clearly, the best decision is not to replace if and only if
B ra @ &y @F) -2 (@R)
is non-negative, i.e.,.

& (Ta.g)® By @) E( o | rn_2] + (e, ~ey) 2 0. (23)

Referring to (A-0), An-l(rn-z) is a linear function of The with

An‘l(O) = (Bn‘l ‘a)nn-‘(t‘p) + (.n-t.‘n)'

Figure 4 shows the possible shapes for this function. There can be no
downward zero-crossing at an L > 0.

Thus, depending on the numerical values of the parameters, there
are three possible kinds of optimal decision rules when entering state
(n=1):

( >0 for all rn-2:- 0
il) replacefornor , ifd < 0 for all "he >0

i) replace for any £ if a,.

A\

iii) replace if and only if r:_2 >ro 220, where An-l(rn-'z) = 0.

In other words,

\
Coq@ = {ry gt o o< r; af (24)
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where ':-2 could be zero (case ii) or infinite (case i).

Next we consider the optimal decision when entering state (n-2),
and assuming that the optimal decision will be made at the subsequent
stage. Weconsider cases of (Bﬂ_1 < &) and (ﬁn-t > a) separately.

a) (B“__1 < a) implies replacement on entering (n-1), so

An-Z(rn-S) " (Bn-2'°) E( rn-2| rn-3] * (Qn-2 3 °n-l)’

resulting in the same three possibilities listed above for state (n-1).
b) for (B, , >ak

O _olrp 3)= ey o+ (B, o) E[r  olr, ;]

%
b f ( (Byy @) E( L | rn-2] -en] f(rn_zl ro.3dr o
N

The2

%
r
n-2
L 3 (-0, _y) f(ry _glry _y)dr o (25)
0

Equation (25) can be simplified, with the aid of the notation (x)+ = max(x, 0),

to the form

By 2fTh 30" (8, 2°0p ) * ‘3n-z'°” E( l'n-I.’I x‘:'1.3]
+E[(8, ., (r, N T, 4l (26)

Useful comparisons can be formed if normalized variables are intro-

duced, namely

s.sr./n;: 6.8, )=l (r, )
i G | i i=1 iV i1
it T s T T
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We now prove

A) 6n-2"n-3) = 6n-1 (’n-3)

B) & (s ) is convex with at most one upward zero crossing
n-2""n-3
at an s >0,

There is no harm in writing 6n-1(’n-3) or 6n-l(’) instead of § ('n-2) for

n-{
purposes of comparing functions.

To prove A), consider
5 g(8) =5, ()= [(e, s=e. ) =(e, e )] +E[(5,  (e)s]

+ By y@)n, o= B, -n ] E[s/s ]. (27)

n

where s_represents the normalized duration preceding s.

The terms on the right side of (27) are non-negative due to the
convexity of the e ( )* > 0, (A-6), and the assumed orderings of the
Bi and nie

This completes the proof that A) is true. It follows immediately

P = T T T o il ST T

that if i) applies for state (n-1), then it is also optimal notto replace in
state (n-2) or any earlier state. (Recall Bn-t < Bn-2 <..., and we

are now considering a < {2 }e

n-1
To prove B), which is only of interest when an r:_z >0 exists,
we refer to the theorem in the appendix. The test difference 6n_2(s)

can be written as

6,.98) 3 E[e o -0 +(B, p-ain, s+, (s ] (28

Ne

in which the integrand has the properties required by h(s) in the theo-

rem. To see this, we note that r:_2 >0 implies that (én_t(O))+ = 0, so

et A EIOWTX -




the integrand is non-positive at s = 0, Thus, sn_z(s) has the shape

stated in B), implying that

-3
€o3= {Ty 3t Tn.3 S Tpoal (29)

where r:_3 may be zero, infinity, or the non-negative value defined
*
by 6n-3(rn-3/"n-3) i

The foregoing arguments can be repeated for r..4 Tn.5ct roto

n-5

prove that the optimal replacement policy has the form:

Replace on entering state i if and only if r; < r:

where
* e *
< < < < =
0 v /n, STy/n Seve S i, 8w

When repeating the proof for earlier stages, the ( )+ term in (28) is modi-
fied to the form, e.g., [(6n_2(s))+ - (én-t(s))+]’ This term is zero for
x = 0, and generally non-negative, due to A), so the basic theorem is

still applicable.

3 Comgutational Procedure

The preceding section derived the structure of the optimal decision
rule for the case where replacement is more difficult and more expensive
when the part is more deteriorated. The corresponding optimal decision
thresholds can be formed as follows:

a) choose an initial a.

b) Find the r:(a) (i= n«2, n-<i, ..., 0) recursively, via numeri-
cal integrution of expressions like (26) (where ":_3(0) is defined by the

. *
condition & _,(r, 3)= 0).




whila

c) Compute
0 - *
Lyla) = eg-e, + f[(Bo-a) ry + (Al(ro)) ] f(rgldr,.
0

d) If Itg(a)l < €, for sufficiently small ¢, say Lma.x za"=a:
otherwise repeat the computational cycle starting with a new a.

The following properties of .cg(a) can be used to generate an a-
sequence which converges to a*.

1. Lg(a) is monotone decreasing, since £0(a) has this property

for a fixed policy (see Eq. (19)); and if 58(02) > 38(01) for a, >a,, then

2 1
the policy used to achieve :g(az) could be used to achieve an
.Co(al) > &g(at) -=- a contradiction.

2. When p = 0, all r:‘ are zero or infinite: replacement always
occurs on arrival at a critical state i*. Use of that policy will achieve
the same average reward for durations having any value of p. Thus, a
useful bound on a™(p) is @ (0) <a (p); 0<p < 1.

3. When p = {, future r, are completely predictable
(V;r(ril r.‘-‘) 2 0 in (A=7), so a*(l ) > a*(p ). In this case there is es-
sentially a single random variable r;. and the r.l* can be calculated

without the need for numerical integration of Bessel functions.

4. Numerical Example

Table I lists parameter values for a replacement problem which

falls under the assumptions of Section 2,

i 0 1 e 3 4 5
B, 5 4 3 2 {
n i 0.9 0.8 0.7 0.6
E(p,] 2 22 2. 4 2.6 2.8
s(nl] { 1.1 1.2 1.3 1.4

TABLE [
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Case! (p=0)

Since future durations are independent of past ones, the optimal

policy replaces when a critical state i* is reached. The general opti-
mal reward expression

-N-1
el o B

a*(p) = :

N-t
E] £ r, -d
0 i N

becomes, in this case

.j-‘ -
z Blni 'E[pi]
* 0 4
a (0) = max T=1 = max A(j)
J I’z n, + E[4,] )
> o

Direct evaluation shows

FAeRe S 2 3 4 5
A(j) [ 1.5 2.13 2.205  2.085  1.89
with j* = 3 and a™(0) = 2. 205.

Case 2 (p=1)

Since e "1/"0 in this case, the optimal rule specifies a re-
placement state j(ro) as a function for o

For any such policy

2% 0
L.(a, j(r.))= E -p. ~ad, + Z n(B,-a)| .
0 0 L j im0 S |

This expectation will be maximized if j(ro) maximizes the bracketed
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term for each Ty Making the necessary comparisons for a sequence of

a-values leads to the policy

"= 1, ifry 20,298
= 2, 10,2698 < r; £0.7083

= 3, #0.7083 < r,.
for which |£,| < 0.003 and a"(1) = 2. 25.

Case3 (p= %)

We know that 2, 205 < a*(-if) < 2. 25. A pilot calculation along the
lines indicated in the previous section shows that rg(%) = 0, r;(%) = ©

for j > 2, and

xn
r;: J—-—Ha '3 ¢
8(3-a )

where a* is chosen to make the following Lo(a) vanish.

4 e S
*3 (3-0)2'1} 535 10(2. 981 -+ 0%y ) drldro

While the method for finding a*(%) is clear, further numerical work
seems unwarranted. The precision needed to get a meaningful answer
is not justified by the minimal improvement that the optimal policy will
have over the suboptimal use, for all p, of the optimal p = 0 policy (re-

place when reaching state 3).




5. Conclusions

A multivariate exponential distribution has been used to describe

e T R TEe————

successive stages of deterioration. Optimal replacement strategies ,‘}
have been found for the class of decision rules which can continuously . ‘
observe the deterioration state, and which may make replacements only

at the times of state transitions. Similar results have been found for the

other reward rates shown in Figure 2 (linear; and constant after an ini-

tial set-up interval for readjustment to the new state) (5].
The optimal replacement policy derived in Section 2 makes use of

observations which allow estimation of the current rate of deterioration

o e PR, o T VAR SIS S Y

for the correlated stages of deterioration. The numerical example

demonstrated a situation where a much simpler policy, which ignores
the correlation, can be almost as good. The relatively easy calculation
of the optimal rewards for p = 0 and p = { provides information about
the necessity for use of the more complex optimal solution. It is worth
noting that we have been unable to find other combinations of values for
the parameters in Table [ such that there is a substantial relative in-
crease in the maximum reward as p increases from zero to infinity.
The ordering of state dependent rewards, mean durations, etc.
assumed here are physically reasonable, and lead to nice ordering of
the decision regions. However, other Bi’ Ny Py di orderings might
be more appropriate in other situations, The model introduced here for
dependent stage durations could be used in those cases, together with

dynamic programming optimization, although the solutions may not

have comparably neat structures,
One reasonable generalization would allow transitions from state i

to any state j >i. This would not change the form of the solution in the
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case of constant replacement penalties. However, the possibility of
these additional transitions does ruin the structure when replacement
penalties increase with the deterioration state. (The én_z(l) >6n-1(')

argument is no longer valid. )
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APPENDIX
Dependence Relationships Among Multivariate Exponential Variables

Many multivariate distributions have been described and applied
to reliability problems [4, 8, 10]. In each case the marginal uni-
variate distributions are of the negative exponential form. Properties
of the distribution used here are most easily derived by exploiting its
relationship to multivariate normal distributions [ 3, 5].

The multivariate exponential variables Ty» Topeesy Tpocan be

viewed as sums of squares:

Lha=l 2
rEw bz, (A-1)

where w and z are independent, zero mean, identically distributed nor-

mal vectors, each with covariance matrix I'. It follows that the r, have

exponential marginal distributions with

E[ri] =27, (A-2)

We specialize to the case where the underlying normal sequences {wi}

and {zi} are Markovian

o g o

and find that {r l} is also Markov with the joint density
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-1

ne-{ n-2
wi 2 p reom—
f(!‘ r.r ....l‘ ). (“p)n n n b n I —— l‘l‘
[ Bl T Bl n-{ [ =0 i =0 0|tl-p " Niey i i+t

r r n-2 r.(1+p)
+ exp .-L —o-f-—‘-’—-i-{; T i 1 n>2,
1<P\"0 ™1 =1 M

(A-4)

Equation (11) uses the modified Bessel function I( ) and the notations

E(r,] = n and p 2 p. (Whenn= 2, the summation in exp ( )
TP Tieg

vanishes. )

The conditional density is easily shown to satisfy the Markov pro-

perty and [ 5]

| -1 o 5
f(r.|r, )=[n(1-p)] " exp|- -+
4 i' i1 i Z!-p) "
with
E[rllrt_‘] =0+ (T, NP "i/"l-t‘ (A-6)
var{r |r, ,] = n2[(l-p)2 + 20(1-p)r, /n ] (A-T)
i' il i AL P

These conditional moments show, e.g., that the conditional mean of r,
exceeds its mean in proportion to the amount by which Tt exceeds its
mean, and that conditional mean is a linearly increasing function of Faat®

The Dynamic Programming arguments used here required calcula-
tions of conditional expectations based on (A-5). As is often the case | 2],
the total positivity properties of “ﬁl rl-l) are very useful for determin-
ing structural properties of the optimal policy.

It is straightforward to show that both f(r,, rl-l) and f(ril ri-l) are

totally positive of all orders (TP ), {8, 7). This means, for f(rt. ri-l)'
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that the following determinants are non-negative for any N and any
a, <°2"‘ <ay B1 <Bz... <BN.

f(atl ﬁl) f(al‘ Bz)vtof(a‘i BN)
: - : >0

fiaN.Bt)............... t'(.aN.BN)

THEOREM: If h(y) is continuous and convex, and satisfies the bounds
i) h(0)<0

ii) |h(y)| < a+b ¢, 2>0, b>0, y >0, m= positive integer.
Then g(x) is continuous, conv’ox. bounded in the sense

|gx)| < a'+ b x2®, a1 >0, b' >0, x >0;
and belongs to one of the three following categories:

(I) g(x) > 0 for all x> 0,
(II) g(x) £ 0 for all x > 0 except with a possible zero at x= 0,

(I11) there exists a unique x*. 0<x" < %, such that g(x) > 0 for
all x >x*: and g(x) < 0 for x < x" except for a possible zero
atx= 0, :

This theorem is used to define optimal decision regions according to
the sign of a function like g(x), with x corresponding to a decision

threshold.




