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variety of statistical applications in which an important part is played by

optimization, Rustagi (1971, 1979).

Optimizing methods have been classified in four main categories:

classical optimizing methods, mathematical programming methods, numerical

methods and variational methods. A review of these methods was recently

given in a paper by Rustagi (1978a). Some recent applications of optimization

in statistics appear in a special issue of Communications in Statistics

edited by Rustagi (]978a). Survey of some of the commonly used variational

methods with their applications in statistics has also been given in a book,

Rustagi (1976).

In this paper, some recent applications of variational techniques are

given. Examples are provided from robustness studies, decision theory and

estimation of probability densities.

Under variational methods we include all the techniques which are

required to optimize a functional over a function space. In its simplest

form, a variational problem results if one wants to optimize an integral of
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a known function of an unknown function and possibly of its derivative.

In a sense variational methods correspond to methods of maxima and minima

in calculus to similar methods in functional analysis.

Some of the early results in robustness studies required optimizing

the variance of M-estimates introduced by Huber (1972) over the class of

symnetric distributions. Such a criterion can also be stated in terms of

minimizing Fisher's information and explicit solutions of these problems

require variational methods. Recent extensions of the applications of

variational techniques to dependent situations has been discussed by Portnoy

(1977) and the method of geometry of moment spaces has been utilized by

Collins and Portnoy (1979) for more general situations. This problem is

discussed in section 2.

Questions of admissibility of certain decision problems arise in many

contexts. Brown (1971) has recently studied the admissibility of certain j

decision functions in the multivariate-normal case under quadratic loss

criterion. These questions lead naturally to the solutions of the variational

problems. Using classical theory of calculus of variations and Euler-

Lagrange equations, the inadmissibility of the decision function was

exhibited with the help of nonexistence of the solution of an optimization

problem. This novel application of a variational technique is especially

illuminating as it provides a method of verifying admissibility under fairly

general conditions. We discuss further details in section 3.

Estimation of densities utilizing penalized maximum likelihood methods,

has been discussed by Good (1971), and Good and Gaskins (1971). A general

formulation of the optimization problem arising from the above in abstract

setting has been given by DeMontricher, Tapia and Thompson (1975). The

existence of the solution of the proposed optimization problems has been proved
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and certain characterizations of the optimum solution are given. This topic

is discussed in Section 4.

2. Robust statistics and variational techniques

There are several situations where variational techniques play an

important role in the study of robust statistics. In this section we

consider only two such examples. The first example is due to Huber (1972),

Portnoy (1977) and Portnoy and Collins (1979), and the second is due to

Bickel (1965).

In Huber's notation, we consider the M-estimates of a location parameter

0 for the probability density f(x-G), with c.d.f. F(x-O) based on a random

sample XIX T is called an M-estimate for & if it maximizes

n
E O(xi T)
i=l

where 0 is a given metric. M-estimates are also obtained if we solve the

following type of equation

n
E y(xi - T) =0
i=l

where 4 = p'. M-estimates include least-squares and maximum likelihood

2 _f(x)
estimates as examples, if we choose o(x) = -x and 0(x) -

respectively.

Under fairly general conditions, it is known that

T = T(F n ) 4 T(F) a.s. as n - -
n n

such that

' 4(x-T(F)) F(dx) - 0

3
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Further, the asymptotic distribution of

G (T n- T(F))

is normal with mean 0 and var'Lance V(4,F) given by

2v(,,F) -
"  (x - T(F)) ] F(d)-. (2.1)

I (x - T(F)) F(dx) ) E( 
'2

One of the important problems in robust estimation is to find the class of

statistics (Tn) such that asymptotic variance is minimized over the class C

of all distribution functions F.

Robust estimates can also be generated by using linear combinations of

order statistics and by the use of statistics derived from rank tests. These

estimates are called L- and R-estimates, respectively. Consider T as an

functional of the empirical distribution function F given byn

T = T(Fn).

n n

Then M-estimates are defined by the formula

T(F)) F(dx) 0 (2.2)

L-estimates are given by

T(F) J(t) Fl(t)dt (2.3)

and R-estimates are defined by

Ji !([iF(x) (-T2(F) -x) I F(tx) 0

where the function J gives weights in linear combination of order statistics.

4



Restricting the estimates to the translation invariant class and assuming

that the distribution function is symmetric, Huber (1964) showed that the distri-

bution which minimizes Fisher information plays a major role in determining

robust estimates.

Consider for example the class of all -contaminated normal distributions

denoted by C where an element of the class C is denoted by

F(x) a(1 - ) O(x) + H(x), 0 < c < 1,

* is known, t is the standard normal cumulative distribution function and H(x)

is a symmetric distribution function. Define I(F) = supIV(*,F)S-l, with
*

*2dF # 0. Then, Huber (1964) proved the following theorems.

Theorem 1. I(F) < - if and only if F has absolutely continuous density f(x)

r a f (x) 2
such that - f(x) dx < and then

," (x) ,2_,
1(F) f() dx.

Theorem 2. If inf I(F) = a < -, then there exists a unique F0 g C such that
F €

I(Fo ) - a.

'00to can be found. For example in the above case we have the least favorable

density fo(x) given by

fo(x) = e'-o(x)

5
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r2 i , if 1XI < k

~where o0 x =

r k - ,xj > k

k is chosen so that

-f (k) 2#(-k)
1- 6= k

Similar results hold for L- and R-estimates.

Robustness questions related to dependent situations, have been recently

studied by Portnoy (1977) and Collins and Portnoy (1979). The variational

problems arising in these applications require modern methods such as those of

geometry of moment spaces, for reference, see Rustagi (1976). Consider the

time-series moving average model,

X + Y Yii Y

i. =12,.,

where (i) Y= Yn' Y Yn+l

(ii) 0 = location parameter

(iii) X X,...,X have a stationary distribution
n

(iv) p < 1

(v) yIY2 ,. Y.,Yn are independently and identically distributed

random variables having continuous and symmetric c.d.f. G

with p.d.f. g(y).

The approximate asymptotic variance of the estimates of 0 is given by

E(21y)) E(Yg(YVF(g,)) = (Y))
1E($'(y))1 2  E(*,(Y))

J,



Variational methods are used to find i which minimizes the variance for a

fixed g and turns out to be the same as in the independent case.

The second example in the study of robust estimates of location is due to

Bickel (1965). Variational problems occur naturally in finding minimm

efficiency. In this paper, Bickel considers minimum efficiency with respect

to the class of all symmetric and symmetric unim.da.l distributions, of the

Winsorized and trimmed means with respect to the mean.

Suppose W1 < W2 < ... < Wn are the ordered statistic of a sample

X X...,X from an absolutely continuous distribution function F(x). Then
n

ce-trimmed mean is defined by

n-[cn1
E W.1

n - 2[on]

where (on] is the greatest integer in On, 0 < a < .

o-Winsorized mean is defined by

x = 1 w + (on] w

[cn1] i=[0G%]+i -' +

Let e (a) and e (o) be the asymptotic relative efficiencies of X and X
1 2

with respect to X respectively. Then

(l~ )2  P" x2 f(x)dx) ( x 2 f(x)dx

+ 2 ax(a) 2 ) "

and

x f(x)dx
e2 (at) =~+2(

C + + o-) 2

i7



(1) f(x(o)) k

(3) Jx 2f (X)dX = C

Let J be the class of all symmetric unimodal distribution functions.

Then the following theorem is proved.

Theort.m: inf £ j 1F

inf e (a)

Using Lagrange's method of undetermined multiples, Euler.Lagrange equations

of calculus of variations provide the minimizing densities ffx). Detailed

proofs are in Bickel (1965).

3. Admissibility questions and variational methods

Necessary and sufficient conditions for an estimator of the mean of a

multivariate normal distribution under squared loss function, to be admissible

have been discissed by Brown (1971). The problem of admissibility is directly

related to problems of diffusion. This correspondence is established through

classical variational techniques using Euler-Lagrange equation.

Let p9 (x) be the m-dimensional multivariate normal density of the random

vector X. Let &(x) denote an estimate of e. Suppose the loss function is

given by

L(o,8) -( - o)'D(6 -

i where D is known diagonal matrix. We have the following notation:

8
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R(,,6) = E 0[L(f,Btx))]

G(O) = Prior distribution function of 0.

B(G,6) = R(0,&) G(do),

= Bayes risk.

It is well-known that the Bayes estimator is given by

fp ep(x) G(de)(X) oX O
e =) T T~ (3.1)Gcx _7 o(x) G(dO)

* 2
Let ly!12 y'Dy. When D =I, 1y' 2  JyJ 2  E yi Suppose

g*(x) J p0 (x) G(do)
and

=*(x) ;b , , L

Then

&G(X) X +2 &+ (3.2)

Define

Gy (x) - (x) - x . (3.3)

The necessary and sufficient conditions for admissibility were given by

Stein (1955). One of the conditions for an estimator &F(x) with prior F
F

to be admissible is given by the following sufficient condition.

j Stein's condition: F is admissible only if there exist non-negative

finite Borel measures Gi, i = 1,2,... with G having compact support withi

o 1 (O ) = 1 such that

B(GiuF -(Gi , 6 ) -, 0 (3.4)

9
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Condition (3.4) can be written in the following form if we define f and f* I
related to c.d.f. F, in the s'ime way as we defined g and g* related to

c.d.f. G.
, 9f*(x) Vg- I 12 gi!xd

B(GiF) B(G& -- -T

± VJi(x) 1 2 fg*(x)d I (1 ,(x)

where

i(x) -- = -j•

The condition of admissibility is then reduced to the problem of minimizing

I(J(x)) (3-5)

subject to the constraints

(i) j(x) > 1, IxI _ 1

(ii) lim sup J(x)-- 0

Euler-Lagrange equation for (3.5) is given by

m 62j(x) m bf*(x) bj(x)f*(x) E - + Z - 0

i=l 2 i=l a x x

This is an elliptic partial differential equation and its solution provides

an answer to the admissibility question posed above. Brown has used elaborate

machinery to show that the solution to the elliptic differential equation exists

for IxI , 1 which shows the inadmissibility of the usual Bayes estimator of

the multivariate normal mean 0 for m > 2.
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4. Variational methods and penalized maximum likelihood estimates

A method of estimating probability densities utilizing penalty functions

was introduced by Good (1971) and was developed further by Good and Gaskins

(1971). To remove roughness in estimating the probability density functions,

Good and Gaskins require maximizing not the log likelihood but maximizing

log likelihood adjusted by a known function of the density function. The

optimization problems so introduced lead naturally to variational problems.

Many such problems in their abstract form have recently been studied by

DeMontricher, Tapia and Thompson (1975).

Given that XIPX2 ,...,Xn is a random sample of size n from an unknown

density function f(x), the penalized maximum likelihood estimates of f are

defined by maximizing

n
L(f) = Tr f(x) e (4.1)

i=l

subject to the constraints

Jf(x)dx =1 (4.2)

and f(x) >0 . (.3)

In a little more abstract form, the problem is formulated in terms of the

following notation. Let

0 = interval (a, b)

L'(() = class of Lebesgue integrable functions and f e L'(n)

H(O) = manifold in L'(O)

: n(0)-4 8
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The variational problem is maximizing (14.1) over a class F(O) subject to

constraints (4.2) and (4.3) for all x c 0. The existence and uniqueness

of the maximizing f is given by the following theorem due to DeMontricher,

Tapia and Thompson.

Theorem 1. Suppose H(O) is a reproducing Kernel Hilbert space, and integration

over 0 is a continuous functional and there exists at least one f with

f(x) > o, fdx = I and f(xi) > 0

i = 1,2,...,n for all x * 0.

Then the maximum penalized estimate corresponding to H(O) exists and is unique.

Under certain additional assumptions, the solution of the above problem

can be characterized as a polynomial spline. Motivated by information theoretic

considerations, Good and Gaskins considered the first penalized maximum likeli-

hood estimate of the density function by using

) f,(t)
2

p) (Ct dt, c> 0

dt

Assume that H(O) is such that

sf c H'(-,-)

The functional to be optimized is still

F n
T f(x) e - (  (4.5)

Suppose u = ./, then the optimization problem above is of the

following form

12



Fin 2a Un u(t) 2 dt
Max IT u 2(x 1 ) e

I i--1l

subject to the constraints

u e H'(ae)

and u2(t)dt - 1 (4.6)

The authors show that the first maximum likelihood penalized estimate of

Good and Gaskins exists and is unique.

The second maximum likelihood penalized estimator is defined with help of

I(f) a t f,(t)dt + f,,2(t)dt (4.Y)

for some a > 0 and 0 0.

Although in this casae also, one can show that the estimate exists and is

unique, it is not possible to obtain the estimate by an approach provided by

Good and Gaskins.

5. Comments

The wide variety of applications of variational techniques exemplified

above by various examples, exhibits their importance as a necessary tool for a

statistician. Once the problem can be formulated in the form in which its

variational character is apparent, there are many available techniques to

solve it. There are, however, a large class of problems which need further

study. Consider the problem of feedback control where the equations governing

the motion of a particle are not known. Suppose these equations are estimated

from data. The dynamic programing solution to such a feedback problem requires

a different approach and the statistical dynamic programming solution then

13



naturally leads to open questions. Distributions and stochastic convergence

of the solution are now needed and interpretation of the optimal policy is

required in view of the estimated relations. .1
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