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Recent Applications of Variational -
Techniques in Statistics ”

1. Introduction

Statistical problems in general require extensive use of optimizing
technliques. A variety of these methods, depending on the nature of the
problem, have beern: used by statisticians. 1In recognition of the importance
of optimizing methods in statistics, two research conferences in this area
were recently held, and the proceedings of the conferences exhibit the wide
variety of statistical applications in which an important part is played by
optimization, Rustagi (1971, 1979).

Optimizing methods have been classified in four msin categories:
classical optimizing methods, mathematical programming methods, numerical
methods and variational methods. A review of these methods was recently
given in a paper by Rustagi (1978a). Some recent applications of optimization

in statlstics appear in a special issue of Communications in Statistics

edited by Rustegi (1978a). Survey of some of the commonly used variational
methods with their applications in statistics has also been given in a book,
Rustagi (1976).

In this paper, some recent applicationg of variational techniques are
given, Examples are provided from robustness studies, decision theory and
estimation of probability densities.

Under variational methods we include ail the techniques which are
required to optimize a functional over a function space. In its simplest

form, a variational problem results if one wants to optimize an integral of
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a known function of an unknown function and possibly of its derivative,
In a sense variational methods correspond to methods of maxima und minina
in calculus to similar methods in functional analysis.

Some of the early results in robustness studlies required optimizing
the variance of M-estimates introduced by Huber (1972) over the class of
symmetric distributions. Such a criterion can also be stated in terms of
minimizing Fisher's information and explicit solutions of these problems
require variational methods. Recent extensions of the applications of
variational techniques to dependent situations has been discussed by Portnoy
(1977) and the method of geometry of moment spaces has been utilized by
Collins and Portnoy (1979) for more general situations. This problen is
discussed in section 2.

Questions of admissibillty of certaln decislon problems arise in many
contexts. Brown (1971) has recently studied the admissibility of certain
decision functions in the multivariate-normal case under quadratic loss
criterion. These questions lead naturally to the solutions of the variational
problems. Using classical theory of calculus of variations and Euler-
Lagrange equations, the inadmissibility of the decision function was
exhibited with the help of nonexistence of the solution of an optimization
problem. This novel application of a variational technique is especially
illuminating as it provides a method of verifylng admissibility under iairly
general conditions. We discuss further details in section 3.

Estimation of densities ﬁtilizing penalized maximum likelihood methods,
has been discussed by Good (1971), and Good and Gaskins (1971). A general
formulation of the optimization problem arising from the above in abstract
setting has been given by DeMontricher, Tapia and Thompson (1975). The

existence of the solution of the proposed optimization problems has been proved

b
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and certain characterizations of the optimum solution are given. This topic

is discussed in Section L.

?., Robust statistics and variational techniques

There are several situations where variational techniques play an
important role in the study of robust statistics. In this section we
consider only two such examples., The first example is due to Huber (1972),
Portnoy (1977) and Portnoy and Collins (1979), and the second is due to
Bickel (1965).

In Huber's notation, we consider the M-estimates of a location parameter
6 for the probability density f(x-6), with c.d.f. F(x-g) based on a random
sample Xl,xe,...,xn. Tn is called an M-estimate for 6 if it maximizes

n
iil plxy =T
where g is & glven metric., M.estimates are also obtained if we solve the

following type of eqguation

where y = p', M-estimates include least-squares and maximum likelihood
estimates as examples, if we choose p(x) = -x2 and p(x) = - £ (x)

? f(x)
respectively.

Under fairly general conditions, it is known that
T = T(Fn) < T(F) a.s, as n=m,

such that

j ¢ (x-T(F)) F(dx) = 0 .
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Further, the asymptotic distribution of
AT - T(F))

is normal with mean O and variance V(y,F) given by

2 re?
V(,E) = [ [t TE " gy - O] (2.1)
¥'(x - D(F)) F(ax) E(y' ")

One of the lmportant problems in robust estimation is to find the class of
statistics {Tn} such that asymptotic variance is minimized over the class
of all distribution functions F.

Robust estimates can also be generated by using linear combinations of
order statistics and by the use of statistics derived from rank tests. These
estimates are called L- and R-estimates, respectively. Consider Tn as a

functional of the empirical distribution function Fn given by

Then M-estimates are defined by the formula

j ¥(x - T(F)) Flax) = 0 . (2.2)
L-estimates are given by
T(F) = I J(t) F'l(t)dt (2.3)

and R-estimates are defined by
Ja {5t v 1 - w@amr) x0T ] Fla0) =0

where the function J gives weights in linear combination of order statistics.




Restricting the estimates to the translation invariant class and assuming
that the distribution function is symmetric, Huber (1964) showed that the aistri-
bution which minimizes Fisher information plays a major role in determining

robust estimates.

Consider for example the class of all g¢-contaminated normal distributions

denoted by ¢ where an element of the class ¢ is denoted by
F(x) = (1 - ¢) #(x) + ¢H{x), 0< <1,

¢ s known, & is the standard normal cumulative distribution function and H(x)

is a symmetric distribution function, Define I(F) = sup[V(v,F)]-l, with

J

r vng # O. Then, Huber (1964) proved the following theorems.

Theorem 1. I(F) < ® if and only if F has absolutely continuous density f(x)

such that f £T£§QJ f(x) dx < ®, and then

I(F) =j %i’,‘-)-) £(x) dx.

Theorem 2. If inf I{(F) = a < @, then there exists a unique FO ¢ ¢ such that
FeQ

I(FO) =

Using variational techniques and some guesswork, FO and the corresponding
*o can be found. For example in the above case we have the least favorable
density fo(x) given by

=P (x)

B T U
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% , if Ix)l <x ,

where oo(x) =

P

Ao =y [ ]
s

k2
x Ix| - 5 Ix{ >k .
k is chosen so that

8(x) - 28(-k) .
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Similar results hold for L- and R-estimates,
Robustness questions related to dependent situations, have been recently

studied by Portnoy (1977) and Collins and Portnoy (1979). The variational

problems arising in these applications require modern methods such as those of

geometry of moment spaces, for reference, see Rustagl (1976). Consider the

g T ——

time -series moving average model,

+ 0 Y

? Xy=0r¥yre¥y,y

i=l,2,---’n b

i+1 ’

3 where (i) Yo=Y, ¥ =Y %

(i1) € = location parameter é

L e AT

{111) xl,...,xn have a stationary distribution

(1v) el <2
(v) Y)5Y,, ..., Y, are independently and identically distributed
random variables having continuous and symmetric c.d.f. G i

with p.d.f. g(y).

E The approximate asymptotic variance of the estimates of 6 is given by

? v, (&%) = gD, up W) 602,

[E(y ' (Y))1° E(y' (Y))
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Variational methods are used to find LY vhich minimizes the variance for a
fixed g and turns out to be the same as in the independent case,

The second example in the study of robust estimates of location is due to
Bickel (1965). Variational problems occur naturally in finding minimum
efficiency. 1In this paper, Blckel considers minimum efficiency with respect
to the class of all symmetric and symmetric unimcdal distributions, of the
Winsorized and trimmed means with respect to the mean.

Suppose wl <W,< ... < Wn are the ordered statistic of a sample
Xl,...,)(n from an absolutely continuous distribution function F{x). Then
a-trimmed mean is defined by
n=-[em]

T W,
i
i={m+1]
n - 2{on]

]
[

where [on] is the greatest integer in am, 0 <a < -;—

o-Winsorized mean jis defined by
n-lcmn]

{[tm] W LW o+ {oml W }
lem] i={enl+l n-{ant+l

»
X, =
2

S

-— *
Let el(a) and ez(a) be the asymptotic relative efficiencies of X and X,

with respect to X respectively., Then

- A
e (0 = 120? ([ Privan ([ Prinax
Y =)
2 ox(a)®) ™t
r x £ x)dx

e _(a) = -
2 c+f’0(\+g)e
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where
(1) x(a) = -2
(2) r(x(a)) = k
A
(3) Jr x?!‘(x)dx = ¢
-3

Let J be the class of all symmetric unimodal distribution functions.

Then the following theorem 1is proved.

1
Theorwm: inf Ol(ﬂ) = 175

Fed
1
inf e (a)==.
Fed ° 3

Using Lagrange's method of undetermined multiples, Euler.lagrange equations
of caleulus of variations provide the minimizing densities f{x). Detailed

proofs are in Bickel (1965).

3. Adnissibility questions and variational methods

Necessary and sufficlent conditions for an estimator of the mean of a
multivariate normal distribution under squared loss function, to be admissible
have been discissed by Brown (1971). The problem of admissibility is directly
related to problems of diffusion. This correspondence is established through
classical variational techniques using Euler-Lagrange equation.

Let ps(x) be the m-dimensional multivariate normal density of the random
vector X. Let 8(x) denote an estimate of 9, Suppose the loss function 1is

given by
L(6,8) = (& -v)'D(8 - @)

whiere O is known diagonel matrix. We have the following notation:




TR

AT e

e T

ot

o T ]

R(6,8) = EG[L(O,B(X))]

G(6) = Prior distribution function of g.

B(G,8) I R(6,8) c(de),

= Bayes risk.
It is well-known that the Bayes estimator is given by

f ép,(x) G(ag)
8,(%) = :
o, (x) 6la0)

(3.1)

m
Let |ly112 = y'Dy. When D = I, Ny|1? = I¥12 = = y12 . Suppose
i=1

g*(x) = I pa(x) G(ds)

and
dg*  Adg* dgH\!
98*(X)= S%,%,..-, S%/ .
Then
QG(x) = X + %’;—l (3.2)
Define
Yo(x) = OG(x) -x . (3.3)

The necessary and sufficlent conditions for admissibility were given by
Stein (1955). One of the conditions for an eatimator GF(x) with prior F

to be admissible is given by the following sufficient condition,

Stein's condition: OP‘ is admissible only if there exist non-negative

finite Borel measures Gi’ i=12,... with G1 having compact support with

Gi({O}) = 1 such that

B(Gi,lF) - B(Gi,boi) -0 (3.4)

as 1w e,
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Condition (3.4) can be written in the following form if we define f and f*
related to c.d.f. F, in the s.ume way as we defined g and g* related to

c.d.f. G.
B(G,,8.) - B(G,,A. ) =I P Eg_’i.)y”z #(x)dx
1°°F 1776, (%) -~ g% (x &g

= [ Mo, 12 exoax = 103, (x))

where
Je(x) = (gl*(X) e 5
i fi*lxs ' ;
The condition of admissibility is then reduced to the problem of minimizing
I(3(x)) (3.5)
subject to the constraints
(1) Jx)>1, |xl<1
(i1) 1im swp J(x) =0,
Y=o |x|=r

Euler-Lagrange equation for (3.5) 4g given by

5+ L
i=1 Bxi i=1 axi Bxi

() 3 A, T oar(x) 3(x)

This is an elliptic partial differential equation and its solution provides

an answer to the admissibility question posed above, Brown has used elaborate
machinery to show that the golution to the elliptic differential equation exiits
for 1x| > 1 which shows the inadmissibility of the usual Bayes estimator of

the multivariate normal mean @ for m > 2,

omelint i et e

0



4., Variational methods and penalized maximum likelihood estimates

A method of estimating probability densities utilizing penalty functions
was introduced by Good (1971) and was developed further by Good and Gaskins
(1971). To remove roughness in estimating the probability density functions,
Good and Gaskins require maximizing not the log likelihood but maximizing
log likelihood adjusted by a known function of the density function. The
optimization problems so introduced lead naturally tc variational problems.
Many such problems in their abstract form have recently been studied by
DeMontricher, Tapia and Thompson (1975).

Given that Xl,XE,...,Xn is a random sample of size n from an unknown
density function f(x), the penalized maximum likelihood estimate:; of f are

defined by maximizing

n
L(e) = M £(x,) D) (4.1)
i=1
subject to the constraints
J' f(x)ax = 1 (L.2)
and f(x) >0. (L.3)

In g little more abstract form, the problem is formulated in terms of the

following notation, Let

O = interval (e, b) ,
L'(1) = class of Lebesgue integrable functions and f ¢ L'((})
H(()) = manifold in L'(QN)

$: H(Q1) =R .

11
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The varia%ional problem is maximizing (L.l) over a class H(Q) subject to
constraints (4.2) and (4.3) for all x € Q). The existence and uniqueness
of the maximizing f is given by the following theorem due to DeMontricher,

Tapia and Thompson,

Theorem 1. Suppose H(1) is a reproducing Kernel Hilbert space, and integration

over 0 is a continuous functional and there exists at least one f with

r

£(x) > o, J

fdx = 1 and f(xi) >0,

i=1L,2...,nn for all x ¢ Q3.

Then the maximum penalized estimate corresponding to H((Ql) exists and is unigue.
Under certain additional assumptions, the solution of the above problem

can be characterized as a polynomial spline., Motivated by information theoretic

considerations, Good and Gasking considered the first penalized maximum likeli-

hood estimate of the density function by using

r £ ()

$(f) =a | FET

dt, o >0

2
=har%£@ at (4L

v . \
Assume that H(Q)) is such that
JEcH (o) |
The functional to be optimized is still

n

moe(x,) (1) (h.5)
i=1

Suppose u = JT} then the optimization problem above is of the

following form

12
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no, Lo f u'(t)gdt
Mex T wu (xi) e
i=1

subjeet to the constraints

u ¢ H' (@)

and I wi(t)at = 1 , (4.6)
The authors show that the first maximum likelihood penalized estimate of
Good and Gaskins exists and is unique.
The second maximum likelihood penalized estimator is defined with help of

v

¥f) =« f £ (t)%at + p ? £02(8)at (L.7)

e

for some a > 0 and B > O.
Although in this case also, one can show that the estimate exists and is
unique, it is not possible to obtain the estimate by an approach provided by

1 Good and Gaskins.
5. Comments

The wide variety of applications of variational techniques exemplified
above by various examples, exhibits their importance as a necessary tool for a
statisticlan. Once the problem can be formulated in the form in which its
variational character is apparent, there are many available techniques to
solve it., There are, however, a large class of problems which need further

study. Consider the problem of feedback control where the equations governing

TN

the motion of a particle are not known, Suppose these equations are estimated

from data. The dynamic programming solution to such a feedback problem requires

TART TR TR

i & different approach and the statistical dynamic programming solution then

13




‘ naturally leads to open questions. Distributions and stochastic convergence
of the solution are now needed and interpretation of the optimal policy is

required in view of the estimated relations.
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