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Yok ") ABSTRACT i

The probabilities that the sidelobes will exceed some
specified level are compared for arrays with uniform and tapered

excitations when random errors are present in the amplitudes and

phases of the array element excitations. While in the cbsence of
errors the tapered excitation will usually yield lower sidelobes
than the uniform excitation, with random errors present the
situation can be reversed, i.e., due to the errors it may be more
probable that the tapered array sidelobes will exceed some level
than that the uniform array sidelobes will do so. Numerical
results are presented for a Ytriangular® excitation distribution.
A new expression for the probability that a sidelobe will exceed

a specified level is also obtained.
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A. INTRODUCTION

The effects which random errors in the array element
excitations have on the far field patterns of the arrays are
fairly well knoun&-‘ In general, one can expect that the presence
of random errors will increase the far field sidelobe levels.
One might seek to reduce the sidelobe levels by choosing an
element excitation distribution which without the presence of
errors will have a low sidelobe level to begin with, hoping that
the increase in sidelobe levels due to the errors will be tolerable.
Theoretically almost any sidelobe level can be achieved if errors
are absent; however, to achieve this, complicated nonuniform
(or "shaded" or "tapered") distributions are necessary, and for
a given array element rms error excitation ¢ the sidelobe levels
of the nonuniform distribution arrays may be increased more than
the levels of a uniform distribution arrayus Thus it is not at
all obvious that the sidelobe levels can be improved by tapering
the excitation distribution, if random errors are present; i.e.,
while the no-error levels are lower for tapered arrays, the
increase in levels due to errors is larger than for uniform
excitation arrays, and therefore, it is not clear whether the
final level with errors present is lower or higher for tapered
arrays. The effects of tapering will be discussed in this study,
and some numerical results will be presented. Although the
expression "tapered excitation" is usually used to describe an

excitation which has a maximum amplitude at the center of the
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array, and which decreases uniformly as one approaches the edges
of the array, for simplicity we will use the word '"tapered" to
describe any nonuniform excitation. Moreover, most of the time
we will be concerned with arrays in which the excitation phase
distributions are the same as in a uniform excitation array,

and only the excitation magnitudes are nonuniform, although

some of the results will apply also to arrays in which the
phases are varied. To be able to make comparisons, the uniform
excitation array will be chosen as the standard against which
the tapered arrays will be tested.

If the sidelobe levels in a specified direction in
the far field with errors present are Fo and F. for the uniform
and tapered distributions respectively, and if P(F > Yo) is the
probability with which a level F may exceed some specified

value Y,, we may define an improvement by tapering I, as
Ip = P(F, > Y - P(F, > Y) Q)

which will be positive if tapering has decreased the probability
that the far field pattern in the given direction will exceed the
level Y, for a specified rms error excitation o.

Let us consider what we know about Iy without performing
any involved analyses. When the array element rms error excitation
o approaches zero, we have no errors, and the sidelobe level is

lower for the tapered array than for the uniform array, therefore
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1y should be positive (this is mathematically obvious if

rou > Yo > Fot' where rou and Fot are the sidelobe levels with
errors absent, because then P(Fu > Yo) -+ 100% and P(Ft > Yo) -+ 0%
as 0 » 0). When ¢ » =, the element excitation is completely
incoherenc, it does not matter what the no-error distribution

is, tapered or uniform, because the no-error excitation is

insignificant compared to the error excitation, therefore
P(F“ > Yo) > P(Pt > Yo) or IT »>0as o0+

Thus we might expect the graph of IT vé. o to have one of the
shapes shown in Figure 1, where we have also indicated the
points at ¢ = 0 and ¢ » ». Of course, more complicated curves
are also possible. We intend to show that at least in some cases
I.r approaches zero for ¢ » «~ from the negative side, therefore
in those cases the curve must cross the IT = 0 axis, and there
have to be values of ¢ for which 1; is positive, and there are
also values of ¢ for which it is negative, i.e., the curve
might be similar to the dashed curve in Figure 1.

We will first examine the general equations, and then
we will calculate IT for some special cases.
B. THE GENERAL EQUATIONS

Let us now consider an array of arbitrary configuration.

In the absence of errors the far field pattern can be written as

TR VNI N e A T A AR o
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i'yn )
r, (Oo,ﬂ) - n'l%;r ngl Eo (Oo) e (2)

s

where N is the number of elements, Eno(()o) is the complex
excitation of the nth element designed so as to point the array

main beam in the direction O () is the phase of the signal

Qo» "
from the nth element arriving at a far field point in the
direction (O, and Eo is some reference excitation used to normalize
the pattern so that Fo((')o, no) = 1; i.e., if we consider only

amplitude tapering, so that the phase of Eno(()o) is-syn(oo) then

Nl E ()

In the presence of random errors A Gn or r , a,, see

Figure 2, the far field pattern is

i'yn(O) + i6n

1 N
F(ﬂo,ﬂ) - “'I-!;'— ngl Eno(()o) 1+ .i\n)e (3)

The phase error a, is assumed to be uniformly distributed from
-r to v, and the amplitude error r  is assumed to have a Rayleigh
distribution

2,2
q (xry) = (Ztn/oz) e Tn/0 . (4)

2

where ¢“ is the variance, and ¢ the root-mean-square error.

The probability that a sidelobe with errors present
will exceed a level Y, is given by 1-4
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© 2 2 2 2F f
-2 -(F.“+ £7) v o

P(F)Yo) v—z { df £ e o IO (—v-z—) (5)

where for simpliicity we have let F =|F(no,())] and F, = 'FO(OO,O)L

I, is the modified Bessel function of the first kii:d, order zero,
and

? N
2 N Jz
2 e I - ,21 -2 n=1 Eno (6)

" AT

P(F)Yo) is usually s expressed as an infinite integral as shown
in Eq. (5). However, for numerical calculations it is sometimes

more convenient to have an integral over a finite interval, there-

fore let us transform Eq. (5) into another form. Since
m
I, (x) = (1/r) j T s 7
(-]

Eq. (5) can be written as

XTV

r Z -(F 2 4 £2.9F fcos )/ 2
p(r>vo)=—zzfdffdefe 3 o, e
b ¢ o
o

The integral in Eq. (8) is over an infinite plane outside a
circular area of radius Yo, see Figure.3; f is the radial co-
ordinate,and g the angular coordinate. Since

2
v2 = 1-‘02 + £ - 2Fof cos B 9)

it is advantageous to shift from the f, g coordinate system to
the V, y coordinate system in Figure 3 in which case Equation (8)

e e
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: a’ becomes

’i ~ 2 f v24? ‘

P(FSY,) = —55 [ dy ] dv Ve (10)

: m™v v

| o
£ where (for Yo 2 Fo)
] | o 1/2
EL vV, = -F cos y + e, =~ g, sinZ'y) / (11)

is the value of V at £ = Yo.

The integration over V is elementary, thus
f 2 _ .2 . 2\1/2 242
P(F>Yo) = (llw)f dy exp '[(Yo - Fo sin 'y) - F, cos 'y] ,(, (12)
(o)

which is a new and sometimes more suitable expression for the
probability that a sidelobe level F will exceed a specified

level Y o in the presence of element excitation errors with the
rms value o. 3

The integration can be performed explicitly if b S
We then have :

P(F>F,) = (1/7) l dy exp {-(‘r‘o/\')2 ”nosvl - cosv’z

-(2F N )2 cosz-y

—gram [ we

—

T

N

T 2
o 2 2(F_/v)© cosp
" % + (1/27) e “2(Fo/) [ oo i (13)
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The integral in Eq. (13) is of the same form as in Eq. (7);
therefore finally

P, = 2+ 3 &2/ 1, [zuvo/v)z] (14)

The probability with which the sidelobe level F will exceed the
designed level F, is shown in Figure 4 vs. 2 (Foly)z. As 0 » o,
also v + o, and P(F>F,) » 1/2, while for ¢ + = P(F>F ) > 1.

One can also derive an approximation for P(F>Y ) from
Eq. (12) when F <<Y, and (F, /v) <<1l. We replace V2 in t:he ar-
gument of the exponential 1n Eq. (12) by

2 2
Vo= Y, - ZYOFO cos vy (15)
The integral in Eq. (12) then yields

P(F>Y )=P, (F>Y_)

2
e “WoM)" 1 2v Y, Bty (F )P <<l (16)

In Figure 5 the exact and approximate probabilities are compared
for u -V;Folv = 0.5, 1, and 2. The agreement is excellent for
u = 0.5, and rather poor for . = 2, but for the latter we are
violating our original condition: (F /v)2 <<1l, and therefore
good agreement cannot be expected. 'l'he condition (F /v)Z << 1
is necessary because in the integrand of Eq. (12) we are re-
placing terms of the form exp [i(Fo/V)Z] by 1.

C. TAPERED VS. UNIFORM EXCITATION

Let us use the subscripts u and t on the quantities
F, Fo, and v to distinguish the uniform excitation and the
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tapered excitation quantities.

For the uniform excitation

e 1-:“0! = |E°| and Eq. (6)
omes

v , = N 7

From Schwarz's inequality6

(rgl |E“°|)2 s’ ni::l

where the equality sign holds only for the uniform excitation;
therefore from Eq. (6)

(18)

Eno

¢ > Mu (19)

Consequently,
Yo/ve < Yolvy (20)
Foe/Ve < FoulVa (21)

As o increases, v increases and Folv decreases; there-
fore as 0 »+ ~ we can use Eq. (16) to determine L, if F, < ¥,.
Eq. (1) becomes

2
Inge'(Yo/vu) I (2YF /v2)

o ou u

c(o/v)? 1 (Y Fo/ve) (22)

2
-(Yo/ve) (23)

Because of Eq.(20) e

T 1, T R R T SR SR S ST ST BT TR T e 31 B = -
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while as o + =, ZYoFo/v2 + 0, and

IO(ZYOFO/VZ) + 1; consequently for
large o

I; <0, Fy K ¥, . (24)

Of course, since eventually e '(Yo/")2 + 0 as 0 » »; IT + 0

also, but IT will approach zero from the negative side, thus
there is at least some interval of ¢ for which it is not possible
to improve upon the sidelobe level by tapering.

D. A SPECIAL CASE

Let us consider a line array of M + 1 = N omnidirec-
tional elements (M even) with the '"triangular' excitation dis-
tribution shown in Figure 6,

Eno/IEo| = [2 @+ 1)/(M+2)] [1-|n|/(~%~M+1)] (25)

for n = 0, +1,..., + -%- M. The array is steered to broadside,
and Y () = - nkd sin 0, where 0 is the angle between a normal
to the array and the observation direction in the far field, k
is the wave number, and d is the distance between elements. The
far field pattern can be evaluated to give 7,8

f o sin® [7 G M+ 1) kd sin d]

ot (26)
F M+ 1)Z sin’(} kd sin0)
while for a uniform excitation array of M + 1 elements
1
o 8in (M + 1) kd sin ©
Pou [I ] 27)

(M + 1) sin (% kd sin 9)
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From Eq. (6) we obtain 9
3 ﬁgi i M+ 4M + 6
* M+ 2)3 (28)
while
vEaoZ/m+ 1) (29)

One can now obtain I.r for specified M, kd, etc. However, at
some angle @ one might not get a meaningful comparison of the
uniform and tapered distributions because, for example, at that
particular 0 F, might have a null while F might have a max-
imum. Thus 1nstead of the actual F,, and F ot °ne should use
the envelopes of the far field patterns? and ?ot: in Eqs. (5),

(12), and (1),

-~ 1

F -

ou  (M+1) sin(% kd sin 0) (30)
o~ 1
For = (31)

G+1)? s10?(} kd sin 0)

Ly and IT/P(Fu>Yo) vs. the rms element excitation
error ¢ are shown in Figs. 7-10 for M = 200; kd = 3; @ = 1°, 6°,
and 45°; and Y = Q¥ ,, @ =0.8, 1.0, 1.3, and 2.0. The values
of F and ? nre given in Table I. In all cases there is a
rcgion in which Iy is positive, and for large o Ly is negative.
For a fixed @ the value of ¢ at which IT becomes negative seems
to be almost independent of the value of Y, see Figs. 8-10.

10

o A a7 10
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Note that the choice of Q = 2, for example, means that
we are examining the probabilities of exceeding the designed
sidelobe level for the uniform excitation array ﬁou by 6 db or
more, regardless of the value of O or the value of ﬁou‘ For a
given rms error ¢ the probability of exceeding a sidelobe
level originally designed to be -15 db by 6 db or more will be
very small, while the probability of exceeding a designed level
of =50 db by 6 db or more will be relatively large; therefore
the same value of Q for different values of @ does not imply
similar situations. Moreover, one frequently does not care
whether the -50 db sidelobe is increased to -44 db, but one does
care whether the -15 db sidelobe is increased to -9 db. However,
there are only a few sidelobes of a relatively high level (say
=15 db), while there are many low level (say -50 db or lower)
sidelobes. Thus to evaluate the improvement or impairment
offered by a certain element excitation distribution at all
angles in the far field one would first have to assign relative
importance and tolerable sidelobe levels to different directions
in the far field. Such an evaluation is beyond the scope of
this study.

E. CONCLUSIONS

Obviously it is not always possible to improve upon
the sidelobe level by tapering if random errors in the excitation
distribution are present. The details of the improvement by
tapering will depend on the array configuration, the type of
tapering, the rms error in the excitation, etc. For the par-
ticular triangular tapering which we have considered in the
previous section, an improvement is obtained for rms errors from
zero to some value 9 The value of this o decreases as the
no-error sidelobe level decreases (i.e., as @ increases). For
rms errors greater than this o, there is no improvement.

Thus the decision whether to taper or not will depend
on the relative importance of the sidelobe levels in different

11
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1
regions in space. For example, assume that the rms error
l o = 0.3, and we are considering the triangular tapering dis-
cussed in the previous section. Then from Fig. 7 we have a
l definite improvement by tapering at @ = 6°, a negligible im-
provement at @ = 1°, and an impairment at @ = 45°, If the
l improvement at 6° and angles nearby outweighs the impairment
at 45° and other similar angles, then the tapering should be
chosen. However, such an investigation of the relative impor-
! tance and the tolerable sidelobe levels in different regions in
space is beyond the scope of this study. We merely wished to
[‘ show that it is not always possible to reduce the sidelobe levels
by tapering if random errors are present, and the results of the
present study give ample support to that contention.
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TABLE I
Envelope Values
A A
° F,,» db F ., db
1° =14.4 -16.9
6° -29.9 -47.9
45° ~44.9 -77.8
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