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AN EXTENSION OF THE THEORY OF ACOUSTIC TRANSMISSION
THROUGH POROUS MATZRIALS

Palmer S. Chase and Gerald L. Kinnison

I. INTRODUCTICN

\>“On the subject of sound absorption by porous materials much work

has been done but, unfortunately, before many recent engineering develop-
ments and apparatus. There now exists the opportunity to check some of

the earlier results and theory derived for sound absorption in porous
materials to determine whether the proposed models yield measured properties
close enough to the thcoretical values to be useful. L. L. Beranek and

C. Zwikker both derived theoretical expressions for transmission of a
single frequency through a porous media., The aim in this memorandum is

to follow Beranek's derivation; which appeared in J. Acoust. Soc. Amer.,

July 1947, ‘entitled Acoustical Properties of Homogeneous, Isotrovic Rigid

Tiles and Flexible Blankets, and included more mathematical steps for ease

in following the derivatiodsgnd to extend some of his results in the treat=-
ment of soft blankets in anticipation of long range needs for their appli-
cation.r\The information is published as a Technical llemorandum at this
time to make the information available to a limited number of persons who

have immediate need for it.

II. PARAMETSRS USED IN THS DERIVATTONS

llost of the symbols used by Beranek, and in this article, reprecsent
well=known quantities, but there are a few whose appearance needs some
explanation. 3Beranek follows Zwikker in the use of the structure factor k.

Kosten stated thiat the value of k is generally greater than 3. According
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to Kuhl and Meyer, kpo represents the total mass vibrating in one cubic
centimeter, so that the partial motion of the skeleton is accounted for.
Zwikker interprets k as the ratio of the volume of pores in the material
to the volume of the pores that run straight through the material, which
he then calls the lateral cavity factor. Figures 1 through 3 show the
fiber randomness and structure in a typical fiberglass sample. Figures 2
and 3 are closeups of the sample in Figure 1 taken from the top and edge
respectively. It is readily seen that the fibers are closer packed in
the direction passing down in the sample (as viewed in Figure 1) than in
either transverse direction. The structure factor, k, is an artificial
constant to take up some slack between the theoretical and experimental
evidence. It tries, in one lump, to take care of the effects of the
presence of the skeleton on the acoustic wave passing through the material,
It has been interpreted in many ways, one of which is the lateral cavity
factor, the reason being that a more easily measured and hence verifiable
concept is obtained. In general, k appears to try to account for the
effect of the skeletal structure of the absorption process since little is
known about this mechanism.,

The viscous resistance 31 is approximately equal to the resistance to
a stream of constant velocity gas, called the specific flow resistance.
Ra is due to frictional forces among the fibers themselves and is normally
considered negligible.

The coupling factor ¥ (which Beranek writes as 712 ) is introduced
by Beranek as a result of the difference between the velocities of the
air and the skeleton within the sample. It attempts to account for the
apparent coupling between them which causes one to move when the other

does.
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Zwikker states that after extensive tests, he found that the porosity i

and the specific flow resistance do not provide sufficient information to

T R VPR

determine the acoustic properties of a material. The structure factor

L and the coupling factor have been devised to better explain the acoustic
properties.

3 III. LIST OF SYMBOLS

These have been taken directly from Beranek's article since the

notation will be the same in this one.

a, b Complex propagation constants in cm-l.

a Attenuation constant in nepers/cm. To convert from nepers
to dB multiply the former by 8.686.

e Phase angle
c Velocity of sound in cm/sec.
d Depth of sample of material in cm.
3 Y
k Structure factor as used by Beranek and Zwikker.
Dimensionless.
l Depth of a sample of material or column of air in cm.
K

Volume coeff?cient of elasticity of air where:
K =(0/8)(F/fs,) :nd & is an incremental displacement of
a piston with area acting with a force Fi against a

column of air of length .

w Angular frequency = 2mf
P Sound pressure in dyne/’cm2 as measured by a microphone,
; Py Average excess preésure in dyne/cm2 exerted by a sound wave

against the matter contained in the material, FZ/S.

9 Vector velocity of air particles in cm/sec.
1), Vector velocity of the gross movement of the solid particles .‘
caused by the influence of a sound wave in cm/sec. {
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1 2
Infinitesimal volume of air in cm3. ;
"Infinitesimal volume of solid material in cm’. f ?
Incremental displacement of the particles of air or solid F

Volume coeff cient of elasticity of an acoustical material
where Q -(.Véz) Fy/S) dyne/cn?; and §, is an incremental
digplacement of a piston with area S acting with a force F
against a cgQlumn of material contained in a vented cylindeg
of length .

Unit area acoustic resistance in rayls; also the specific
flow resistance of a cubic centimeter of material,

Alternating specific viscous resistance offered per unit
volume of air because of a difference between 9 and Q-
The units are rayl/cm.

Alternating frictional resistance offered per unit volume
of the solid matter because of friction among the fibers
themselves, that is, due to a gradient in 9.

Unit of unit area acoustic impedance, dyne-sec/cm’. And
the unit of specific acoustic impedance.

Density of air in g/cmj.
Density of the solid matter in the acoustic material, g/cms.

Density of the acoustical material in g/cmB.
Approximately, B, = pz(l -Y)

Area of a section of material = S1 + 82.

Area of air in cma.

Area of solid matter in cmz.

Time in seconds.

Coupling factor per unit volume of the air in the material.,
Introduced because of a difference between q; and qp.
T=R, +jw(k - l)po Beranek uses T2 for this symbol.

Component of the vector velocity q in the x direction.

Infinitesimal volume of acoustical material, V = V. + V..

material,

Porosity, equals the ratio of the volume of voids to the
total volume of a sample, Y = Vl/(v1 + Vé).




2 Unit area acoustic impedance in rayls. 2 = p/4.

% Characteristic impedance of an acoustical material in
r.ylso is= o' 1. 2' 3.

Z.r Initial impedance of a sample of material; i.e., at x = O,

IV. SOME FORMULAS WORTH NOTING

oAy S AR SRR CWSR T 5o 5 5t i

1. T=Ri+jw(k-1)
2, Y=/ v+ V)
s %'xad

b K= (2)(F/s)

5. Q ‘-(!/62)(1‘}_/5)

6., w=2mf

7. = R1+jupok

8. 2= z{+nz(1-—v)a§x

9. Z= RiY +jw[py+ (k1)

V. DERIVATION OF A WAVE ESQUATION

In the mathematical treatment of a wave propagating in a fibrous
material it is expedient that we make some simplifying assumptions.
First, it will be assumed that a large number of fibers run randomly
through each infinitesimal volume of the material and that statistically ;
an equal number of them run through each face of this volume element. § :
An actual observation of a typical fiber shows that the natural construc=- §
tion by compression techniques stratifies the absorber and increases |
the numb;r of fibers running laterally through a volume element. A
one=dimension analysis will circumvent this discrepancy since we will

then rejquire only a constant number of fibers to pass through any given




unit=-cross-sectional area. This requirement can be closely met. Vhen
acoustical waves impinge on the material there will be a compression
wave propagated in the air in the spaces between the fibers. Also, a
certain fraction of the fibers will be compressed into the volume element.
That is, the skeleton will react much like a driven spring. This spring

£ effect will vary with direction since the material is in general not iso=-
tropic and hence div q will be direction dependent. Here also a one=-
dimension analysis will remove this difficulty by reducing div q to -g—’ .
and hence considering the material as propagating waves in one dimension
only.

From considerations of continuity of mass we get two equations.

Their difference arises because the gas is assumed to be compressible in
Equation (1) while in 3q. (2) it is assumed that the compressibility cof

the individual fibers is negligibly small, &

v
) div 3l+,§7%fo A -0

> ; L B2 o
(2) div g2+ V; ot b

F It can be shown by taking an incremental volume elemont and compressing

it slightly that %L =%po which becomes, when %e let d[’=é 3

{/p = d’b/ﬂ . Substituting the volume coefficients of elasticity,
°
Q and K and the above relaticnship into Zgs. (1) and (2) we find that

they reduce to:

" -Y) 9 P2 _
o dwgriye - D3 .o

%) diV%z-l-_é.éfﬁ = 0
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Beranek remarks that K will be found to assume values between 106 and

1l o“ X 106

dyns/bna as the compressions vary from isothermal to adiabatic.
Q will depend on the particular fiber chosen, but will fall in the region
of 2000 to 10,000 dyne/cmz for most materials,

The equations of motion can be derived from the physical principle
that says basically that the pressure change is proportional to the

velocity of the mass in motion, and opposite in sign. Beranek writes the

equations of motion in the following form.

;5) g BN L oy (=) R, 3%

EY o
= :Z_21%z_ - "r‘{%u
(6) -9 = -
éx& 2 Z'l Y3, Y5

wvhere Z1 and z2 are given by :
Z, = R+ (wpek
2! = RY + qwpn + (k)P )

2

s 27 = -
Zl- Zz + (' Y)RZ a*

e note the existence of the (I"’Y)R:.%—’-‘ term in 3Zq. (5) which is present
to account for dissivation forces due to relative movement of the fibers
with one another. If this frictional force is small, as we shall consider
later, then R,~v 0 and Z, = Zé. Since we are intercsted Snly in the
steady state solution, we can assume it to be periodic and make the
gimiick substitution -3—2 = j"" « Also, let D be the operator 93_* and let

div q have only a component in the x-direction. e can summarize the

manipulations so far in this derived set of equations,
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(10) -Dpa = Z, - T Y, &

This is a system of four equations in four unknowns and their first
derivatives. To solve for p, first differentiate Zq. (9) with respect
to x and then substitute for Du, and Du, from Egs. (7) and (8). e

then get

M) «pp=m X “éP‘[‘Z‘Ll--Y) +’\'Y:] - %ﬁ 40 |

Differentiate 3q. (10)

an -ppy = Zab - xY D.u,

2q. (12) is valid since (D Z_z)fqz = (Z.z D),(,(z = Z_z D*\z.

considering D and 32 both as differential operators. Again, substitute

e e

Bqs. (7) and (€) into =q. (1) to obtain

) -D%p, = TE[Z,+W] + 1Py

Solve Eq. (13) for J% P2 and substitute this into 3q. (1l).
Q
Then

av -Dp = L A [ Dpe *'YW] ¥ Z'Y9—°—°—E
;. B G AT N
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If now we differentiat 2q. (1l1) twice,

| ' Z, Yaw 2
as) -o*p = (Z,0-Y) wY)L(‘i—“D‘p, - 2o

and solving Bq. (14) for Dap2 we can substitute this expression into
Eq. (15) to obtain finally:

(16) qu - ?_(;“6%.3()"9 - ﬂ_f"_T(Z—-LY Dz?

SR s ) 2:.:2—2; P 3 ii::i%ééi:i!) [5;'7

KQ

AT

This now can be factored in the following way.

2 _ Jw &2 pr- /J'WYZ-a
a?) [D A= ][ o = ]

' i 53
— awrli=Y) why ¥ } R o
o e o P

If here we assume RZ to be negligible, implying the frictional dissipation
among the fibers themselves is negligible, then Z2 = Sé. a constant,

Then we recognize Zq. (17) as being a homogeneous fourth order differential
equation with constant coefficients. Beranek points out that the part

that Rz plays in the total absorption will have to be determined experi-
mentally, implying that leaving it in the equations complicates them

sufficiently to prohibit further derivation of useful solutions, From

e e ——

now on, we will understand Za to be the constant Zé.
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VI. SOLUTIONS TO THI WAVE ZQUATION

If we treat Eq. (17) as a fourth order differential equation with

constant coefficients it can be written as

18) {[D"— plILD*-¥] - 3D +7}P =0

where the constants ﬂJr‘JS]l can be seen to be the following from

Bq. (17). 8 = 9w 22 § = 'i"“'T(l’Y)
= ‘5‘“ \{:L‘ s Iy 1_\(1
r X 7 et
KQ
The roots to the associated equation are
o\ - Arrxs + _[lsrsrr)-4(sr)
(19) b e 2

which implies that 2Zq. (17) has a solution of the following form,

where A, B, C and E are arbitrary constants.

by b X

ax -ax
(20) p = Ae + RBe g e . Ea

From Zq. (19) we can writes a and b to be:

o ;
- [arresird 1y -4+
(21) L {[/3“"*5][2 1_2(‘ (Aff*s)z ]F

If we now substitute the values of ﬁ, r, S)"V] the result is the

following which can be written more compactly as Eq. (22).

(22) s :{j'w(zzk'?zl‘“i‘-f'i'l((l-‘()) s e +[ _4kay(2z, I, /2
g i [ K*Z.YQ-*T&(I—YT]

10




For a wave propagated in an infinite medium, A = C = O, since the pressure
must be bounded. In general, two waves will exist, corresponding to the
two propagation constants a and b, each with a different velocity of propa-
gation and a different rate of attenuation. One of these waves travels
primarily in the skeletal material and the other travels through the gas
in the pores of the material. With apparatus to test the propagation of
an oscillatory wave through a material we will be able to test the assump-
tion that two waves exist. Mathematically they exist, as has been shown.
Also; these waves are not independent because of two coupling factors.

One of them comes from the viscous properties of the gas and the fact that
there is a frictional dissipative force existing as the gas passes over the
fibers. This factor is what gives rise to the “Y in the equations derived.
The second coupling factor arises because as the quantity of solid matter
in an incremental volume of material increases, the volume available for

gaseous occupation is reduced. This is mathematically expressed by the

S 3
2T

amplitudes of particle motion, and hence volumetric change, it scems

appearance of the term in 3q. (5). Since we are dealing with small

reasonable to expect this quantity to be negligible. The combined result

2

is neglected in the derivation of the wave equaticn. And hence

of a small R, and small ai’: is that the term (1-Y)R, %= in Eqe. (S)
a2t at

SO

02 = Zao
Beranek remarks that equation (22) is difficult to use as written,

and that in practice two types of materials can be treated readily due

to simplifying assumptions in-3q. (22). These are soft acoustical blankets

and hard acoustical tiles. Both types have wide practical use, and

acoustical materials in the intermediatz range are few, a justification

for the special treatment of these two specific types.
.
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VII. SOFT ACOUSTICAL BLANKZTS

Beranek defines soft blankets as those for which
2
@3 $KR(ZZ-TH)Y << (Z)YQ +ZK +(I-0)%K)

Values of Rl and f%nthat are frequently measured require that K ) 20Q

for the above inequality to hold. Values of R, tne specific flow resistance,
Pm » ¥, Q and K/Q measured on several acoustical materials are given in
Table I and are copieﬁ direct from Beranek's report to give the reader

some feeling for the magnitudes of these quantities. For the purpose of

determining K/Q Beranek assumed a value of about 1.2 x 106 for K.

; Table I
3
| R
o g sec™L
? Material g/cm2 Y cm'-3 Q K/Q
' Fiberglass AA 0.0112 0.996 58 2800 400
Fiberglass A\ 0.0074 0.997 34
Fiberglass H=33 0.0415 0.983 29 8cco 150
(XM-PF)
J. M. Stonefelt 0.0541 0.969 28 10000 120
Type "M" 0.0426 0.97 31 9000 130
Kapok-cot ton 0.0498 0.96 118 9000 130
Wood fiber 0.0322 - 39 4000 300

Yhich simplifies to

(24) L =

With the definition for soft blankets, 2Zq. (23) yields:

Aoy ] ‘
& = [%Q(fz.‘(ci *Z, 6+ U-0)TK) ] AlLai %

If we impose further that Q/K<K1/2C, a becomes

A —— - ——— | ey

\

[Lé-“]'/‘ L 2. vl :—Y)}VL
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A similar approximation for b is facilitated by the following algebraic

(.%L = %:(|~—)()”ﬁ),,1. z é%%)y“—

approximation.

Then b becomes

b [12(Z,Y+ 22k byt + Sk 01~ Y))]/L[CKQY(Z,Z,“T‘Y))"‘}

2,k +2,Y& + YR(I-Y)
And then imposing the inequality K%20Q

% -Y*Y)Y
5 )’—10.] [(2, yr(1=Y)

(25)

i
And when (Cu/om) )2 (Re 2’.2) = R).Y then
. A L g . E : //
@) b = [“ﬁ']'/ [(K, +qm k)Y ]™

And if we let R]. = 0, k=1and ¥ =1, then Eqs. (24) and (25) reduce to

(27) az A [F ,o..,] -

(28) b = ‘JWI'O“

Here a is the propagation constant for a wave traveling in the skeleton

alone, and b for a wave in the gas alone.

VIII. RIGID OR D&NSE ACQUSTICAL TILES

We follow Beranek in his definition of a rigid tile as one for which
(29) Z,Q 7 50 Z,K

For tiles, the magnitude of 81 is close to Rl and 22 is about /‘3...“"
so that /K must be greater than SOLI;'-'?,.,/RI. This condition ia met only

for very hard tiles, for which a and b realily become:




(30) o= [§W)] (R +ywa HY_—_}""

.

(31) = fiul” [(Z L ’T Y)]'/‘

If again we let R1 = O and k = 1, then a becomes the propagation constant
for a wave traveling in the gas, and b for a wave in the skeleton, so that
the roles of a and b have changed places in going from a soft blanket to a
rigid tile. ‘hen Eq. (23) holds, K/Q'1720 and the skeleton bornewave is
rapidly attenuated and has low velocity. In a rigid tile, when Eq. (31)
holds. the wave in the skeleton is not attenuated appreciably and travels
with a high velocity. At some intermediate value of 3, both waves will
travel with equal velocity. Wwhen attenuation of a narrow frequency band
desired the tlickness and Q can be adjusted so that the two waves will
arrive at the second face out of phase and advantage can be taken of

E ; attenuation by cancellation,

We now turn our attention to finding Pye Yy and uye 3q. (2) gives p as

(20) p = Ae,m( & Be‘“x s Cebx-r- Ee-bx

If we differentiate this twice and substitute into 3q. (ll1) we can solve
for p,. Then g w thu !
Pa = =8N} Sk [Z, 01y )+ Y] |

(32) b :
bx L] Kb -2, Y qw
+|Ce = [ , . e
[ ' c ]. JL“K[Z,U‘Y)*T\']]

To find u; we substitute p and p, into Eq. (7) to obtain Dy, and then

integrate once with respect to x to obtain Uy The result is: | R 2
: .mc Kat (1-Y) + 1(Z, - gem) ¥ )

AL, = T .
| EZAC P ][ K\““(’ -Jtun-ﬁ) :

e (2, 3% ~)Y‘]k
/

[ AT+ Be Qx][

(33)

. ———

)\\b(7|"""‘/ot\*) il

. [CL,I"A -
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We can find u,y by using 2q. (8) and integrating once with respect to x.

The answer becomes: »Lw Z Y

e el e
- qw 2,Y
+ [Ceb -~ ew‘_“_ KL(Z'l)w/o“Y)]

IX. NORMAL ACOUSTIC IMPEDANCE

(34)

The normal acoustic impedance at x = d is defined by taking the ratio
p/u, where u is the particle velocity just outside the sample at x = d and
p is the acoustic pressure at this point. At x =d, u = -(ulY + ua(l-Y)).
For the acoustic impedance of a flexible blanket we can use the fact that
in a soft blanket the skeleton borne wave travels slowly and is attenuated
highly, justifying u, = 0. Then u = Yul. Since the wave in the skeleton

is attenuated greatly, the pressure and velocity are composed primarily of

the components with propagation conotant b. Then

P s Cebx-r Fe

i witd ,\ /Q
s Y[Cew x][ Kb (1-Y) +4 \{) -\

EYBLY, =T

i
(35) 1/ = 'Y[ce"" Ee

Ceb"‘»cEe.’b"}[ KYb(z, - 3w»oY) ,,_‘\}

Kbl(‘_w).r:]kv\( (Z J(-ul

L
0 Loy [: tb H
-\
L Cieym e é X
where H has the value given in Eq. (35). By definition p/ul = 2
QeE -2y e
= ™ M. If we let 2/C = e then we can write that
-
by = H etnh (bd +¥)
(30) AL d
K""-
’.—
From the equation above that states ip ® 2:1\ /*, we can solve for %/C.

15
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Using this and the exponential definition of ctnh x, we see that

Z+—H -y -
E = L = . - &7
/e 2 M e ; ctrh y H
Consequently the impedance is given by the relation
el y = KelZiodwal)  _ dh (bdv V)
o) =9 R (1Y) H{w(Z -y

2R iV il
Kb (2, —3%wY)

‘!ﬁ = .c,'f’nh-'

We can similarly find the impedance at x = d of a rigid tile. If it is
mounted so that it does not vibrate as a whole, u‘2 = 0, then the acoustic

impedance will be given by: P/M\x.:({ = _'%- ,X d

(38) V/M‘x .d = Ka(z, - JwaY) : Lethh(ad +¥)
Ka (1Y) + 4 (2,7 39pe Y™
Zo [ k(1Y) #46Y*(2, ja)]

Ke (Z2,- 9 «-u,og‘ﬂz
For a rigid tile we can approximate still further when (b"K) << (a K)

4 = c‘rnh-,

<< (wr) . le rationalize 3q. (38) and apply the inequalities to
finally obtain:

P/ul = __.__# C'(Zhl\ (Qd + Y)

(39) w Y

c‘}'nhco
For an infinitely thick blanket, i.e., a5 d-> QO , chémh =1 and

using the above inequality, (baK)2<q (Lu'?)z wve get that

(40) F/Mlco = -';J—\SY"\:’ = Z' o
w

Zo is called the characteristic impedance of the material and is defined
in 8. (40)., Tt was shown earlier that the propagation constant for homo=-

geneous and isotropic matorials ean be determined from a numbor of

16
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specific parameters, namely: K, Q, Lo 1Pmyr Yy Rl. Rz. For acoustic
blankets we found that K/Q was greater than twenty, and one of the waves,
with propagation constant x a, traveled with low velocity and was attenuated
. highly in traveling through the material. The other has propagation
constant b given by Eq. (25). When this equation is rationalized and the

values substituted for zl. z2 and T , we can write it in the following

form, which Beranek does.
_ ‘ <P.7Y)’/;( il i&_?_)'/z
(41) b AT S ( K ﬂ(ﬁ.? wr

where £4,7 and <R 7 are given by

RE /[/»mw( l+,0o(R-l)/,a,,,]z[ Yt Amlra] + 1] m(x—n)/(,,,;]l
| + Ry /L P (12 (R -:)/,.;:,.‘TL J

way <oy T Lok

ws <SR7 = R, -LH’Q"("Y—')/""'*"r’ﬂ“l(.kx")\"/f”'ﬁ—][.' ‘Lf"°("*“‘)//’":Jl‘(~
i Rr/[,o...w(t +,00(n-|)/‘,,‘“]?' J

If, moreover, Lo (k—l)/f:"the“ <% and <n") can be given by the
"

approxinations

() <Py = ook ? (R\/ﬂ.n WY‘( Y t P /1‘/;1‘}) + Il }
B ( R'//am W)-‘

s) <Ry “ R'/L‘ t (R /paw) ]

Beranek refers to </4’,) ag the effective density of the gas particles

and to SR,7 as the dynamic or effective resistance. He notes that the

1?7




value of R1 is nearly constant as a function of frequency and approximately
equal to the specific flow resistance.

The value of K, the volume coefficient of elasticity of air will vary
from about 1.0 to l.4 x 106 dyne cmz. This is evident from the definition

of K and thermodynamic considerations.

a Va !

£8 ap av 3V

Isothermal action reﬁuires that PV = constant, so that Eq. 46 implies

K = P, The minus sign appears because a positive change, increase in P,
corresponds to a negative change, decrease in V. On the othor hand, if
the gas moves adiabatically then PV = constant. Consequently, K = &' P,
where Y for air is about 1.4 near standard conditions. In general, the
motion of the gas varies from isothermal at low frequencies to adiabatic
for higher frequencies for many bases so that K will vary from 1.0 to 1.4
times the pressure as a function of frequency for air, and the result
follows since P is nearly 10'6 dyn/cm2 for normal atmospheric pressure.

C/"‘) approaches (f"*/é‘:RY) at low frequencies since the mass
reactance, “/°m, is so low that the fibers move with the gas. At high
frequencies the fibers stand nearly immobile as the air flows past with
effective density approaching %K. Also, < R approaches R, for
high frequencies when the fibers are stationary, and (“—'z;omt/‘R‘) for
low frequencies where there is little relative motion and hence little
viscous dissipation.

From Eq. (40) we can solve for K. By using an experiment to determine
the characteristic imedpance, zo. we can experimentally determine the
attenustion and phase constants of b. A theoretical prediction of b can

be obtained by Eq. (25) and the two compared, This is precisely Beranek's
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approach and shows graphically the change from isothermal to adiabatic

as the frequency increases. This changeover occurs entirely within the
100 to 2000 cps range, and mostly between 100 and 1000 cps. Beranek's
results indicated that Rl was reasonably constant over a wide range of
frequencies but that d/’,) and < R,Y wvere not. Assuming the structure

factor k to be about 1,5 and the porosity greater than 0.95, Beranek

T A A AP A MR NN

asserts that the propagation constant for homogeneous and isotropic

B SO I

materials can be found with good accuracy.

X. FRICTIONAL RESISTANCE AMONG THE FIBTRS

In solving 3q. (17) for p wve assumed that R, = 0, so that 2, = 23

and our calculations would be simplified. “hen R, is not zero then
/
ey = 24 + R, (1Y
2 = Zd 4 R 0-7)F

and E2q. (1?) would then be written
e {[D - a2 (24 + Re (1= )T [0~ qee¥y ]
__Dl[ﬂ‘(«uq('-Y) + w""r"‘Y } £
— s

This is also a fourth order differcntial equation, but unlike . (17),

terns of the first and third orders are present. The auxiliary eguation

P T ¢ T SN,

will in general have four distinct roots, none of them associates. Hence
the solution can be interpreted to be four independent waves propagated
through the material with its own characteristic velocity and attenuation
constant,

When R, # O it means there exist frictional forces due to relative
motion of the fibers among themselves which dissipate, or at least re=-
distribute, encrgy and consequently alter the propagation of the wave i

as it progresses through the medium. Any energy lost is transformed
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a priori to heating the gas in the interstices. In general, the effect

would be to reduce the velocity and increase the attenuation in the skeletal
borne wave, with the opposite effect on the wave propagated in the gas.
The thermal effects would be greater on the gas than the material.

Hence RZ acts as a thermodynamic ccupling factoer. In rigid tiles the
skeleton remains immobile so Ra is necessarily zero. In soft blankets at

high enough frequencies so that the gas moves adiabatically, the skeleton

T & o s inienh it

will again have little motion relative to the gas and RZ will again be
zero. At very low frequencies the skeleton will move in phase with the
gas and the system will act isothermally. With sufficient time for the
system to equilibrate durin; each cycle, the energy lost from the skeleton
to the gas would be returned and the effect would be the same as though Rz
were zero.

The determination as to whether Ra is actually negligible is of con-
siderable importance. e wish to determine its significance. BZnclose a
piece of absorptive material classed as a soft blanket into an evacuated
chamber and fasten one face rigidly to a mechanism that will drive the
surface at a known frequency. Then measure the motion of the opposite
surface, perhaps using an optical technique. In effect, we will consider
the problem of a plane wave impinging on one side of the material and then
measure the velocity and attenuation as a function of thickness and fre=-
quency. Ve can then calculate the propagation constants for the skeleton | |
alone, since the wave propagated in the gas will be absent. Thus we let
K=0. Also R, and p, will be zero which implies that 2, and Y are

1
also zero.

From 2q« (?), when K = 0, p = O, and DP = C in Eqs (9). Also, ¥ =0

makes EZq. (10) become




[ >

(‘08) - DP-& = -Zz %2_

Then differentiating Eq. (48) and substituting into Eq. (8) we find

B
(49) D"‘fv1 < D(Za‘za) = 23Dqa - 1WQZP2

Il BT i e i

D Q aw2)lpy = O

This becomes, upon substituting for z‘2

' /
(51) g w - AN Z = O

This equation seems reasonable since with no air present the pressure
measured by a microphone, p, would be zero so the only pressure present
would be that exerted by the material surface, Py Under the assumptions

that Rl and Po ejqual zero, 22' = J.to/‘..‘ and Zq. (51) becomes :
2 i 1
e = I RIG-VID - o !

This equation has the following solution,

' (@t x w(a = b)X
(53) Py = Aeﬂh— 4 8 e')(u

Where A and B are arbitrary constants and the constants a and b are

given by
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a = Rg(“"\f)
2Q

o TV N 2 Pwm
b = 1/‘(; (‘ \{) =+ C? - o + L=
. A}CQQ

The velocity in the gas, q,, would be zero, and we need only solve for
? 3 1
9. Using Eq. (8) we find that q, is:
Jw(@+b) X s wla~b) X
(54) g2 = —— & + B e +C
. Q (a+b) Qa-b)

If we use Zq. (10) to evaluate the constant C, we find that it must be
zero unless a = O, But this implies that 1'\‘2 = 0 and that the pressure is

a pure undamped sine wave. Since this case is trivial we discard it and

let C = O,

g

motional impedance of the material at a point x = d from the

initial point where the wave enters the medium, is given by p/ul

x=d
Since u = -(Yul + (l-Y)ua) and u, =0, then u = -(l-Y)ua. The impedance

is then given by ! S Uy
wla D) ( Jw (b-a)x
A& + Be

- =
(55) P/M i (l"Y)[ A e5 L larb)x B %o Jw (ba)%
R (ash) ~ Qe

! 1 With a little manipulation this expression becomes more useful.

\ -4uwb
_Q(\_Qb[Aeswb* + g8 gt

6 SN e Sy : —
! B ). p/M G-Y) (- A ik SRR Ba % bx
T G
: -2y
If we let 13'!5 g— =€ then the expression for the impedance can
b-ol A

more simply be written
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(57) ’7,«' 4 = Y)[OL + \-;c.*n\«(qu.bd +w)]
" .

If the impedance at x = O is called the initial impedance and denoted by
Z, then from Zq. (56)

| + '9_‘*_9-.%
+ b b=
1 o cOr (t—Y)[Q | — bt E]
b-a A

orthat otnh Y = --:;[ ("'-—\g-z_:r"'o“]

In the case that R2 = 0, we get the former result that b = 1/ om

@
and the derivation of the motional impedance yields

o ’Ql) !
I?’M\de = a-v) ctnh (3(.«:')& +'¢)

(59)

Where

(60) Y = C;éh/'t- [ ZT (' Y)]

The measured values for the impedance can now be compared with these
theoretical values to judge whether internal dissipative forces, Ra.
are actually negligible.

XI. ATTENUATION IN A TRANSMITTING MEDIUM

If we wish to consider attenuated, normally impingent, plane acoustic
waves in a medium we can consider the velocity to be complex to account

for the attenuation. This leads to the representation for pressure
4 e (wt-Kx)

in the standard form p =

vhere JK i3 the complex wavelength constant, = . « Separating the

¢
real and imaginary parts by letting [K = Y\‘j”‘ then the expression

Ot T
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for p becomes

(61) P = A e-“x ej(w.-r-KX)

1 The attenuation constant X is a lumped constant and may actually be a

function of frequency or other parameters. Ve interpret its presence as

due to viscous forces acting between the fibers and the air, or perhaps
between the fibers themselves. The mechanism for &X 1is not considered,
but we assume that a representative value for a given material can be
measured. The transmission coefficient 0(1- as a function of the mentioned
measurable quantities is now sought. When & = O we have only the acoustic
impedance mismatch resulting from the acoustic wave propagation across a
boundary as the mechanism for reduction in sound intensity. In this more
general case we allow the second medium to absorb sound energy as well.
General theory dictates that we set up the following model for three media

with two interfaces. The first and third will be considered to be infinite.

i

- 2 1 D A TIT
|~ A
— |~ —_— 7 —_—
PR L e R)s
(P =R, e
“, |~ ¥/q
L~ -
/
Z, x= 0 Z; il ;3

P:l are incident waves, Px_ are reflected waves and P, are transmitted waves.

. 5 (w'"- KX)
e

- K
The incident wave in medium I may be written (Pi)l = A‘ €

and the other waves may similarly be written:

(> \ wT \
% (R), = B, X es< + K, X)

) ), = Ac=X Lalt= k%)
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o va)l = [B.-{ ec(z ( :X“'p) 5 J(Uu'f "\-Kz*)
-l (X0} . “ -
(65) (P{SB A 3 e =3 \ e-‘)(k..t' KB(X Q))

The constants B' b} A; ‘[BJ ,A_;may be complex quantities and physically
accounting for a phase change at the interfaces. Also, &, ;%3 y ®*3 are
the attenuation constants respectively for the three media. The Zi are
the fespective characteristic impedances, given by the complex ratio of

pressure to particle velocity, P:L/ui'

The continuity of pressure at x = O gives rise to the equation
- oy ?
67) A+ B, = A, + Bye

The continuity of particle velocity implies that

(68) 00)1 - (El' = @a o @2

<
A ‘. Zy Za
which becomes after substitution for the Pi:

(69) Zi(A. i B.) = Z, <A2" [B.Q e Q)

Similarly, continuity of pressure and particle velocity at x = 1 gives
two more equations.
s \
-.47"? -jyzf 3k¢q
(70) Ay e e + Bye = B

\ : TN EN \
(71) Z3(Az€ % e.J‘LZ\1 - lee)KZIQ): Z, A3




The sound power transmission coefficient o(.r is defined as the ratio
of the intensity of the incident sound in medium I to the transmitted

sound in medium III.

s (RLT /273 i Z: M.;
(72) Xq = " S——
(P) /2 Z| Z? A‘

Where A_;/A‘ is the magnitude of the complex ratio of ﬂ-\s and A
To find ot we first can eliminate B, from Equs. (67) and (69).
-, ¢
, A = <Z,+Z;)42\a e i (21-21)8 " [Ba
(73) ) g
2 Z,

Eqs. (70) and (71) combine to give
(74) A; (Z3-23) = R 23 Bg

’b.Q— k, ] 23_:\: ZD‘)
(75) g€ e’ = Az'( 39

Then the ratio AI/A can be found from solving these equations. The

result is:

et .
(76) _A_‘_ = <Zi+2';2)(2-3+22) ej CCVIQ“
e 42,25
-3 = zQ
(¢ Balldg-Zcl e " g
4 2,25

Eq. (76) may be rewritten as

o - A gos KR

@,+2)(z,+2.) e™® ¢
Az 42223[ S el

-+ (Zl -2'2)(2,: -~z ;) e- o ?]

+ 3 Sl {2200 7) @

42,23 =12 -21)(22—23)e ‘J
2




With a little manipulation, and using the exponential definitions of sinh

and cosh we are led to the final form for A. / AB

7 Al \e 2. 1/
(78) #T; = [Z-2) (23—331"‘%“‘9 cosh («, 8+ ¢)

a 2;23

2 /i :
b LT Ly bt )

22323

Substituting the magnitude of this quantity into Eq. (72) we are led to

the final result for °(T'

(79) < T e 2'2325 AR [ cos? £, 0 COS)'\:"(JQW- ‘{')
[27-25)(23-23)]
+ s k8 Suh? (a4 D]
where . 2.(2,+2,) :
[(2f-23)(23-25)"
il 2.1+ 2%

¥
[(z3-22)(23 -23))

The theoretical characteristic impedance of a sample of material can be

shown to be /.’(L » Where /O is the density of the material and c¢ is the

velocity of sound in the material, for a wave traveling in the positive

direction., Letting Zi = ,0,_‘ ¢ for i =1, 2, 3 and making the useful

assxnmpti})n that the characteristic impedunces are related by the

inequalities ﬁ‘(" > Pa c! ?? /alc}

we obtain
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(80) = 43

«
L r¢ I[QOS Lhewshod + snlK,R s (@, 4 "“})]

where ‘q, =0

- o) 5563 /"2"'1) ~ 89 L ;g
15-“ 3!'\}\ (/02Qz+ /,Q /odcl ,a'c.

If, in addition, 4,,Q is small, we can use the approximation that sinh-lx o~ X

for small x to obtain the following results:

- 455 23
(81) % /e : 2
i I:Cos K&+Smk‘2( (.;(,Q.'.f_’ys /’Ja)]
22 A
On the other hand, if "fa'q were large enough compared to ;S' so that
the further inequality e >7 e R‘Q held, then we could approximate

o T in this case by the expression

a /& P33

(82) o T ) ¢,

A thick, or highly absorbing material, such as an acoustic blanket, rigidly
attached to a stiff backing would satisfy the inequalitics assumed in
deriving the transmission coefficient given in =g. (82).

Another useful approach is to let /,C‘ - /03 C3 <L Ao <
Then if we assume that k.1 is small enough that cos k.1 2 1 and sin

e 2

kzl > kzl, and going back to IZq. (77) we can derive an equivalent eguation

for this case.
4 /7
0 (‘

@3 «q i
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For very small &5 this expression becomes

+p, cl

@) o =

f fod [ (#24+ Qﬂ,cu) + (XaQ)'z:]

When the second term in the denominator of the above expression is
sufficiently larger than the first term that we can neglect the first

term, we obtain the familiar mass law.

4/:2

This might be more apparent if we replace/oa" by ¥ , the area density,

(85) b

cak2 by 27T f, and then take the logarithm to the base ten of both sides
of the equation to find the transmission loss, T.L., in dB. The recogniz=

able result is:
ol = TiL. (dB) = 20 dog L + 20lg ¥
(86) 0F r.C
If we let the medium be air, with a characteristic impedance of about
415 1KS rayls, and changing units so that §~ is expressed in lb/ft2

then Zq. (86) becomes

We recall that this equation is valid for kzi << 1 and for all reasonable
frequencies with the assumption that the second medium has characteristic
impedance much greater than the surrounding medium.

When “;e is large in Zq. (84) it becomes
-2ty 4
R AR 2 , R 2
= /é‘/ﬂo ¢ c ~ /(‘/’:C [~

e [+ k] ~ ole

R
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which can also be written in terms of the Transmission Loss, in dB.
¢
@) T.L. = 20109 i/L:ic_“ + 0.868 a4
(R |

Still another approach is to consider the loss due to medium II alone,
and the interface between the second and third media. The problem then is

5 ST IoN
reduced to finding the transmisber coefficient given by

2
(9 Ay = (RYs /23? w iy
(R)Z /22, 2

For this case we can allow z2 to be complex.

From Eq. (75) this transmission coefficient is
42, 2y -2y

$ios T <4acs
e (Z; + 23R

Since the magnitude of Z} is much less than Z2 by hypothesis then

- L
(92) - 4,38 € 24
L | 2z)

Allowing that the second medium is a soft blanket we can substitute
for ZZ the value of Zo given in Eq. (40). The value of b as given in

Eq._ (26) is

w b= QLY janm]?

from when the magnitude of zo can be computed and substituted into Iq. (92).

- R
4 o3¢ € Fol

/ Y2
] (P25 + R )M
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Analyzing Eq. (93) we see that the frequency dependence of 0(;- decreases
as &J increases. At lower frequencies the attenuation given by e(; is
more dependent on the frequency.

The import of these results is that knowing the transmission loss O(T
of a sample of material of thickness —( » then we can find -ﬁ. as a
function of the viscous absorption OGT It appears that knowledge of the
behavior of the absorption of an acoustical wave as it travels through the
material, giving aﬂz, and a measure of the transmission loss after it
has passed through one interface into air will yield enough information
to determine k, the structure factor of the material. The assumptions we
have made are briefly:

l. small amplitude of particle motion

2. %)% < (%)% << (wr))?

3. Y » 0.9

be 2597 24

XII. APPLICATICNS

The theoretical results found in this memorandum can be directly
applied to producing better sound transmission loss materials in the
following manner. Sound propagation from a steel bulkhead through a
sound=-absorbing material and into air satisfies the model used for attenua-
tion in a transmitting medium. As such, the theoretical results are
applicable. J\ttenuation constants can be measured for various sound-
absorbing materials and a prediction of the transmission loss obtained.
Various aspects of the theory can then be readily checked. These are:

(1) The equations for transmission less, beginning with 3Iq. (80); (2)
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By enclosing the sound-absorbing material in an evacuated chamber and
optically measuring its displacement due to surface vibration, a check
of the theory simplified for near zero atmospheric pressure can be made,
as predicted in section X. Further, an estimate of the magnitude of RZ'
the frictional resistance among the fibers themselves can be made. (3)
For partial atmospheric pressures, known values of K and Q can be used
to predict the values of the propagation constants a and b from which
estimates of the variables k and ¥ can be made.

‘An attenuation tube, as originally designed by Scott, and a standing
wave type impedance tube are now in use. Appropriation of materials and
equipment for the previously suggested experimeats has begun, including
the acquisition of an optical tracker, vacuum equipment and transducer.
The transducer is located in water and will drive the steel hull of a
barge with the sample and optical tracking equipment in place on the
inside of its hull. This method is simultaneously easy to set up in
terms of available equi ment and useful, since it will test samples in

an actual operational environment,
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Fige 1. Sanmple of fiberglass
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Fige 2. Top view of sample




Mg. 3, Side view of sample
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