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SUMMARY

PROBLEM

Conduct very-low-frequency underwater sound propagation experiments in shallow
water off Mission Beach, CA, to measure the S/N ratio on both hydrophones and three-
component geophones for narrowband (CW) and wideband (explosive) sources. Model the
propagation loss by means of a normal mode computer program.

RESULTS

» The geophones had a better S/N ratio for close-in shots (fess than 10 miles) at
frequencies below 15 Hz. At longer range (and deeper water), the hydrophone outper-
formed the geophones. Propagation loss was modeled successfully by means of a Fast
Field Program modified to run on the UNIVAC 1110 computer at NOSC.

RECOMMENDATIONS

Make similar measurements and/or caiculations in area of strategic interest.
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INTRODUCTION

Propagation of low-frequency sound in shallow water involves interaction with
the bottom and, in general, the longer the wavelength, the deeper the penetration of the
bottom. Thus, the possibility of detecting sounds from ships transiting the continental
shelf — where the water is generally less than 100 fathoms (182.88 m) deep — by using
geophones buried in the sediment is an attractive one (Refs. 1,2). Geophones are instru-
ments which, like seismometers, are sensitive to particle motion in the ground. Detection
by this means is especially rewarding for sounds below the ‘‘cutoff’ frequency, the
frequency below which wavelengths are too long to permit propagation in the water layer.
The sea floor in the shallow-water areas of the world varies considerably in thickness and
composition. Thus, propagation loss varies as a function of geographic location as well
as of frequency and seasonal changes in the sound-speed profile of the water layer (Ref. 3)

In order to measure propagation loss and the relative reception capability of
geophones and hydrophones off San Diego, a program to install an array of bottom-mounted
detectors near the NOSC oceanographic tower was funded in 1977 by NAVELEX
320 (Fig. 1). Ambient noise and 50-Hz CW measurements were made with this array in
August of 1978, and an explosive beyond the break in slope was made under ONR
(Code 463) sponsorship in December 1978. An additional CW tow was made in February
1979 for NRL. This report summarizes some of the results of these experiments.
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Figure 1. Map of the San Diego, California, area showing the location of the NOSC
ocesnographic tower.
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PREVIOUS WORK

Early work on detection of sound by geophones was done at the Hudson Laboratories
of Columbia University in the early 1950’s. Several 1956-ft (596.18-m) wells were drilled
to basement (granite rock) on Fire Island at the Bellport, NY, coast Guard Station (Ref. 4)
and vertical geophones were inserted in a well at various depths from 300 ft (91 44 m) to
the bottom. Reception of both CW and explosive sources was completed to a range of about
10 miles (18.52 km) in three directions. Results showed recording in the wells was noisy,
principally because of the excitation of organ pipe modes or “‘tube waves™ (Ref. 3).
Additional work was done off Florida by Urick (Ref. 5), McLeroy (Ref. 6), and Latham
(as reported by Hecht in Ref. 2). Geoacoustic parameters of the NOSC tower site were
reported in Ref. 7 and this, along with reports by other authors, was summarized at an
ONR symposium (Ref. 6).

METHOD
FIELD WORK

Sources

A CW source at 162 dB re | uPa at 1 m emitting a S0-Hz sine wave was towed in a
triangular pattern over the continental shelf area west of the NOSC tower in August, 1978
(Fig. 2). An additional 40-Hz tone of unknown source level was associated with the tow
boat. In February, 1979, a 100-Hz CW source was towed in a circular pattern of 1-km
radius about the receivers. These data were used to document the directionality gain of the
geophones (Fig. 3).

In December, 1978, a shot run was made with the USNS DE STEIGUER from 1.4
mi (2.59 km) to a range of 43.8 miles (81.3 km) west of the tower (Fig. 4). The shots were
made up of from one to four 1.8-1b MK 64-0 SUS charges set to explode at 60 ft (18.28 m)
over the continental shelf, and 800 ft (243.84 m) in deeper water off the edge of the shelf.
The “shallow™ and “deep” shots were alternated over the last three-quarters of the run,
the size of the deep shots being increased at the longer ranges. The shallow shots were fired
with SUS launcher when a single 1.8-1b shot was detonated, while for a 3.6-1b “'shallow™
shot, one SUS charge was fired by launcher, and the other dropped over the side at the
instant the first one hit the water. Charges of 3.6, 5.4, and 7.2 Ib at 800 ft were made up
of two, three, and four SUS charges taped together; details of the shot schedule are shown
in Table 1. Shot instants were transmitted to the radio receiver in the tower by placing the
microphone of the ship's laboratory radio set against the deck at the time the shock wave
reached the ship. Radio reception was excellent throughout the shot run and the shot
instants were well recorded at the tower.

Receivers

Two triaxial arrays of Walker-Hall-Sears, Inc., Model M-Z-3 geophones (N-S, E-W.
and vertical) orthangonally mounted on an angle iron framework (Fig. §) were buried about
6in (15.24 cm) in the sand by the divers. The instruments were leveled by the use of a
bubble level mounted atop the angle iron frame, and the N-S geophone was correctly
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Table 1. Shot size, depth, range, and water depth beneath the ship.

SHOT SIZE (Ib) DEPTH (ft) RANGE (nmi) RANGE (km) | WATER DEPTH (m)

TEST 1.8 60 14 2.58 438
| 138 60 145 2.68 47.5

2 18 60 218 398 548
3 1.8 60 295 546 4.0
4 18 60 3.65 6.75 73.1
S 18 60 47 87 84.1
6 18 60 56 10.37 122.5
7 18 60 6.25 11.57 3749
8 18 60 708 13.08 4188
9 18 60 79 14.63 484.6
10 18 60 8.78 16.2 §37.6
11 36 60 95 17.59 6108
12 36 60 10.5 19 44 749 8
13 36 60 14 211 850.3
14 36 60 122 22.59 731.5
15 36 800 13.1 24.26 694 9
16 36 60 1393 258 8193
17 54 800 14.57 270 974.7
18 36 60 15.5 28.7 976.5
19 54 800 168 311 987.5
20 3o 60 17.54 R 1002.1
21 54 800 18.61 3448 10113
22 36 60 19.3§ 35.85 9290
23 7.2 800 20.50 3797 1018.6
24 36 60 21.76 403 10314
25 72 800 220 40.76 10479
26 36 60 2381 4.1 1064.3
27 72 800 241 44.64 1073.5
28 36 60 2494 46.19 9144
29 7.2 800 2548 47.2 3258
30 36 60 26.78 49 6 308
31 7.3 800 28.07 520 2889
32 3.6 60 28.67 S3.1 2743
33 72 800 30.29 56.1 329.1
34 36 60 30.56 56.6 4773
35 7.2 800 3137 58.1 S15.7
36 36 60 32.61 604 $30.3
37 72 800 33.04 61.2 S449
38 36 60 338 62.6 S01.1
39 7.2 800 34 .88 64.6 $37.6
40 36 60 3591 66.5 $30.3
41 72 800 37.36 69.2 665.6
42 3.6 60 37.63 09.7 6583
43 | 800 3849 M3 693.1
44 36 60 3947 73.1 702.2
45 72 800 40.17 44 7089
46 36 60 4098 759 704.1
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Table 1. (Continued)

SHOT lSIZl:‘. (b) [ DEPTH (ft) |RAnm=. (nmi) ]RANm-: (km) LWAT\ER DEPTH ()

47 72 800 41.74 773 715.1
48 18 60 42.05 70 7278
49 3o o0 4389 813 7318
SO 54 800 43189 813 318

Figure 5. Photograph of the three-<component geophone array that was used for detection
of sound in the ground at the NOSC oceanographic tower.

oriented by the divers. An additional array of five E-W oriented geophones was deployed
at 1,000 £t (304.8 m) bearing 045 deg. (T) trom the tower tor the August exercise, The
geophones had a sensitivity of about =124 dB re | uPa and a natural frequency ot 8 Hz,
Figure 6 shows the frequency response curves for the geophones.

Two hydrophones were deployed at cach of the geophone clusters, one on the
bottom and one buried about 9 in (22.86 ¢m) in the sediment. These hydrophones were
of the pressure-sensitive ceramic type and had sensitivity of about =110 dB re | uPa. They
had a flat response down to about 20 Hz with a roll-oft of about 8 dB per octave below that
(Fig. 7). For the shot run, a relatively insensitive hydrophone was suspended tfrom the tower
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for recording high-level shot signals from close-in shots causing overloading of the other
detectors. At the time of the shot run, this insensitive hydrophone became inoperative
(apparently due to leakage), one of the vertical geophones was also inoperative, and one of
the E-W geophones appeared to give peculiar results.  Later analysis of the records showed
that the response of this E-W unit was intermittently saturated at 44 and 88 Hz, a condition
believed due to tilt (the horizontai geophones have to be within 3 deg of horizontal to func-
tion properly). Therefore data from this geophone and its orthagonal N-S unit were not
used in the results (the vertical geophones are not nearly as sensitive to leveling as the
horizontal units). Data were recorded on a 14-channel AMPEX 1300A FM magnetic tape
recorder for later processing and a 1 2-channel model 906C Honeywell Visicorder for visual
monitoring of the shot signals.

Analysis

The tape recordings were played back on the same unit that recorded them, using
the same amplifiers (Ithaco Model P11) used in the ficld. Narrowband frequency analysis
of the signals was done on a Spectrum Dynamics Model 330 spectrum analyzer and displayed
on a Hewlett Packard Model 70358 X-Y plotter (Fig. 8). For analysis of the shot records,
the SD-330 analyzer was operated in two modes: transient capture and peak hold (Fig. 9).
The CW signals were analyzed in the eight-pulse averaging mode and displayed on a Moseley
Model 680 Autograf recorder (Fig. 10). The Visicorder was used in analysis for display of
sections of the recordings requiring more detail than was available on the records made in
the field. Source levels for the SUS charges were computed from Ref. 8.




Figure 8. Photograph of the recording analy sis cquipment used in the experiment.
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Figure 9. Frequency spectrum analyses of signals from a
1.8-1b “shallow™ shot at 4.7 miles (8.7 km) showing both
the transient capture and peak hold results,
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RESULTS
PROPAGATION

General

Propagation was by SR/BR (Surface Reflected/Bottom Reflected) ray paths for
both the deep and shallow shots. As shown in Fig. 11, the sound rays were concentrated
both over Thirtymile Bank and the continental shelf. Some additional rays were reflected
from the flanks of Thirtymile Bank and show up as later arrivals of shots 13 through 27.
Computed propagation loss is marked by the lack of convergence zone peaks and an 8- to
10-dB up-slope enhancement (Fig. 12).

Measured propagation loss for the 40-Hz and 50-Hz CW runs over the continental
shelf section is known in somewhat better detail. The 40-Hz data show various peaks and
troughs associated with cancellation and reinforcement of propagation modes to be more
prominent in the E-W and vertical geophone data than the N-S geophone and hydrophone
data (Fig. 13). Also, as shown in the figure, propagation loss is greater over the area of
thickening, unconsolidated sediment than where there are rock outcrops, and the E-W geo-
phone was the only one that received data at ranges beyond the sedimentary basin.

The 50-Hz data were reduced to spectrum levels so that the CW and shot levels
could be plotted on the same scale (Fig. 14). As shown in the figure, the vertical geophone
data again show prominent mode interference patterns, whereas the E-W, N-S, and hydro-
phone data do not. At longer ranges, the shot data show mode interference peaks of about
5-6 dB forall the detectors. No one unit appears to be superior throughout, but the hydro-
phone data show greater loss than the geophone data in the range interval 7-18 km. The
overall loss appears to be about 20 Log R + 10 Log R, where Ry is 300 m (the point of

closest approach ot the CW tow to the detectors) as shown by the dashed curve in the figure,

No close-in data were available for frequencies below 40 Hz because the first three
SUS charges overloaded all the detection systems. Data from shots 4 through 11 (at ranges
of 6.75 to 17.59 km) are shown in Figs. 15a-15d for frequencies of' S, 10, 20 and 30 Hz,
respectively. As shown in the figures, the geophones showed less loss than the hydrophone,
except at 20 Hz, where the hydrophone performed as well or better than the geophones.
(This effect may be produced by the roll-off of the hydrophone’s response, which is
sharper than that of the geophone.) Even so, the 30-Hz data show the hydrophone loss to
be greater than the geophone’s, and at this frequency, both types of detectors have a flat
response.

Beyond the edge of the shelf (shot 11) no obvious ground arrivals were noted on the
records. For shots at greater ranges, the S/N of the hydrophones was greater than of the
geophones for frequencies above 5 Hz. Examples of these data are shown in Figs. 16a-16d,
for shots 32, 36, 46, 49, and 50 for frequencies of S, 10, 20, 30, 40, and 50 Hz, respec-
tively. Figure 17 shows the type of spectral analysis from which these data were measured.
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Figure 12. Propagation loss curves, computed using the RAYWAVE method (Ref. 9) for
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Figure 17. Spectrum analysis of signal and noise levels for shot 49,
the last “shallow” shot in the profile in a 3-Hz bandwidth for
frequencies up to 500 Hz.
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Ground Arrivals

Shots 1-11 over the continental shelf and slope showed prominent ground arrivals
preceding the water arrival. As shown in Fig.18, the arrivals appear on both the hydrophone
and geophone traces. The first arrival shown in the figure is the arrival of the compressional
or (P) wave through the ground; the next (in time) prominent arrival is interpreted as a
shear or (S) wave; and the last, and most intense, arrival is the water wave, i.e., energy that
traveled with the speed of sound in water between source and receiver.

SHOT 43
181 AT 00 ft
.16 km

..m__...w\,w . e
m/\’:; \/\f’\/“l \;/\\\V‘Aw*d

%MWM VAN 0 4 ‘,.,»

WAVE WAVE WAVE

Figure 18. Oscillograph recording of shot 3 showing the hydrophone, geophone, and radio
signals received. Note the prominent S (shear) wave arrival after the initial P (compressional)
wave arrival.

Based on these arrival time data, a plot of water wave travel time vs ground wave
travel time was constructed (Fig. 19). As shown in the figure, the P arrivals form a straight
line having an intercept of 0.7 s, and a slope of about 3.2 times that of the water wave
(which has a slope of 1). With this information, the thickness and sound speed of the
refracting layer can be determined by means of the standard formulas for refraction
profiling calculation (see for example Ref. 10):

e
2=+ —— )

2
V3- Vi

[ 18]

where Z is the depth of the refracting layer, V| is the sound speed of the first layer, V>
is the sound speed of the refracting layer, and t; is the intercept. Since V) is known
(Ref. 7) and V5 can be determined from Fig. 19, the depth can be casily calculated to be
553 m.
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An additional line, shown in Fig. 19, having and intercept of 0.92 s and a slope of
2.3 times W, is based on secondary arrivals (as that marked G2 on Fig. 18). The arrivals
determining this line are interpreted as being shear arrivals and give a sound speed of
3420 m/s which is close to that predicted (3038 m/s) for layer S (Ref. 7) and gives a
Vp/Vs ratio of 1.71, which is near that expected with a Poisson ratio of 0.25. This inter-
pretation requires that the energy was propagated as compressional waves in the water and
sedimentary layers above the basement and converted into a shear wave at the consoli-
dated sediment-basement interface (Ref. 11). The intercept value of 0.92 s supports such an
interpretation because it gives a two-way travel time thickness of 2194 m, which is within
10 percent of that measured (Table 1). The S/N ratio of this second arrival (at 16h 4sm
325) is greater than for the first arrivals (at 16™ 45™ 29.5%) on all the detectors (Fig. 20)
for shot 6, as is true for the other shallow-water shot data. This observation supports
the interpretation of a shear-wave in the basement being converted to a P wave in the upper
layers as described in Ref. 12. This type of “converted’ P wave is believed to be due to
a transformation of part of the compressional waves into vertically polarized shear waves
(SV) at the contact between the sediment and the underlying crystalline rock, where nearly
all of the energy is in the form of shear wave (Ref. 2)
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Figure 20. Spectrum analysis of the early (16" 45™ 29.5%) P arrivals,
later S arrivals (16" 45™ 32%), and ambient noise for arrival time of
shot 6 in the frequency band 0-100 Hz for both hydrophone and
geophone data.
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AMBIENT NOISE

Ambient noise during the summer (August) experiment was dominated by a strong
cyclic component, thought to be due to an as yet unidentified biologic source (Ref. 13).
These sounds, which have previously been described as of the “chorus-type™ (Ref. 14),
peak periodically at about 400 Hz, with amplitudes diminishing rapidly below 100 Hz and
above 1000 Hz. The periodicity is typically about 45 s and amplitudes vary from barely
discernible to 26 dB (Fig. 21). As shown in the figure, the troughs between peaks in the
cycling sounds deepened near morning twilight and the time interval between peaks in-
creased. The sounds were damped when local cloud cover occurred at 0630. Noise levels
from this source were higher on the hydrophone recordings than on the geophone record-
ings and slightly higher on the E-W oriented geophone than on either the vertical or N-S

geophone.

1 HOUR

v

NOISE LEVEL, a8V

Figure 21. Ambient noise record for 24 August 1978, as detected on a bottomed
hydrophone, in the 0- to 500-Hz band (3-Hz bandwidth).

The cyclic noise so prominent in summer appears to be absent in winter. The noise
levels during the shot run (in December) were thus dominated by fishing vessels and surf.
A typical example (Fig. 22) shows the noise level on the E-W geophone to be the
highest in the 0- to 100-Hz band, the vertical geophone being next (below S0 Hz), the N-S
geophone lower yet, and the buried hydrophone the lowest of all. (Generally, the buried
hydrophone had a slightly lower noise level — and correspondingly better S/N ratio - than
the bottom hydrophone.) The increase in noise level in the 30- to 70-Hz band, with some
tonals near 30 Hz, was due to a ship that later passed fairly close to the tower. A strong
(about 6-ft, as measured on the ladder at the tower) swell was running at the time, a light
rain was falling, and there was a light wind from the SW. Surf along the beach (1.4 km
to the cast of the tower) was high, as it had been all day.
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GEOACOUSTIC MODEL

The geoacoustic model for the tower site consists of five layers.

order, with their corresponding compressional sound speeds, these are:

1500 m/s

Water

Unconsolidated
Semiconsolidated
Consolidated

Basement

1798 m/s
1855 m/s
4770 m/s
5860 m/s

Further details are shown in Table 2.

Table 2. Geoacoustic parameters of the NOSC tower arca.

In descending

ATTENUATION
LAYER VELOCITY (m/s) | CONSTANT (K)® | DENSITY | THICKNESS| DEPTH
DESCRIPTION A A K, K @v/em®)|  (m) (m)
1. Water 1499 1.028
1501 . 18.3 18.3
2. Unconsolidated | 1798®  197® | 4® 35 2™ 8.2 2.5
(sand)
3. Semiconsolidated | 1855 331 0.3 13.2 2.14)
o 1875 3% 03 13.2 2144
1917 482 0.2 48 209 1o 375
4. Consolidated am70ld) 2983 0.1 34 20
(sandstone)
4889 2794
’ 4908 2805 583 590
5. Basement (basalt) | 5860(®) 3420 0.03 0.07 283 1400 1990
(a) Asin atten (dB/m) = Kf (kHz)
(b) In Situ measurement by divers (Ref. 15)
(¢) Well log data
(d) Apparent velocity
(¢) Seismic refraction measurement
33
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These parameters were input data for an FFP (Fast Field Program) computer model (Ref. 16)
‘ for calculating propagation loss. The program takes into account both the compressional
? and shear wave velocity and attenuation in the sediments as well as the density and thickness
' of layers. Comparison of the calculated and observed loss at 50 Hz is quite good, as shown
in Fig. 23. The program has an option for calculating the ground motions in millimicrons
for the north-south, east-west, and vertical geophones.

Seismic Gain

The term “‘sesmic gain’ as used by Urick (Ref. 1) describes the difference in S/N
observed on geophone records compared to that observed concurrently on geophone records.
For the close-in shots (less than 5 km), seismic gain of 5-8 dB is computed from the data of
Fig. 9. As shown in Fig. 24, there is 4-8 dB seismic gain at § and 15 Hz for the vertical and
E-W geophones, but only at 5-Hz for the N-S geophone.

30.00
50 M2
- CALCULATED
= e OBSERVED
e - = = 20L0G R
¢0.00 P~
7000 -
00.00 b=
90.00 P~
100.00 1 1 ;
0 1 2 3 q
RANGE (km)

Figure 23. Computed and observed propagation loss to S0-Hz hydrophone data.
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DISCUSSION AND INTERPRETATION

Some insight into the question of which type of detector would be best for
surveillance purposes in this shallow-water area has been provided earlier in this report.
The matter will now be resolved quantitatively by showing the number of times a specific
detector recorded a higher S/N ratio than the others. These data, culled from plots similar
to those of Fig. 18-22, are shown in the form of a histogram in Fig. 25. Data for shots |
through 11 are shown in the histogram and indicate that the N-S geophone and the buried
hydrophone, in that order, have the best S/N ratios most of the time, while the E-W and
vertical geophone detector were the worst in the S- to 20-Hz band. This distribution at
first appears contradictory to the propagation loss curves (which show the E-W geophone
to have the lowest propagation loss). However, the discrepancy is cleared up when the
concept of S/N ratio is used (as in the histogram, Fig. 25) because the highest noise levels |
were observed on the E-W and vertical geophones. Thus, these units would be expected to
have the poorest S/N ratio, as indeed they do. Also, it should be remembered that ambient
noise propagates in the same manner as the signals, so the E-W noise level is high for three
reasons: (1) surf noise is east of the tower; (2) shipping density is greatest west of the tower;
and (3) propagation was best in the direction of the E-W geophones. The geophones also
have a directionality gain of about 5 dB over an omnidirectional sensor (Ref. 2).
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