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Subject: Radiated Noise Due to Boundary—Layer Transition

References: See page 32.

Abstract: A theory is presented for the noise radiated by incompressible
boundary—layer transition that occurs on an infinite, rigid
flat plate. It is hypothesized that it is the intermittency of
the boundary—layer flow within the transition zone that is
dominant in noise production. Using Lighthill’s analogy, it is
shown that dipole, quadr upole , and octupole sources are generated.
The dipole sources are attributable to the shear stress fluctu-
ations that occur in transitional flow while the others are due
to fluctuating Reynolds stresses and their images. Under the
assumption that dipole sources are more efficient than quadrupoles
or octupoles when the Mach number is very small, the power
spectrum of the radiated noise due to the dipole contribution is
derived. The spectral level rises at 6 dB/octave, peaks at a
frequency corresponding to the time it takes for a turbulence
burst to move through the transition region, and then drops
off again at 6 dB/octave. The radiation efficiency is analyzed
and found to be quite low; it is only 20 percent of that for a
fully—developed turbulent boundary layer flow.
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I. INTRODUCTION

By contrast with the number of papers devoted to the investigation of noise

radiated by a region of fully—developed turbulence, only a few have addressed the

sound field generated by the laminar—to—turbulent transition zone [1 — 4].

Ffowcs Williams [1] discusses the transition zone noise in terms of the initial

formation of turbulence spots. The elegant analysis of a three—dimensional

disturbance growing in accordance with the equations of linear stability theory

by Brooke Benjamin [5] was incorporated into Lighthill’s theory [ 6 ]  for the

radiating component of flow noise. A quadrupole source was assumed and it was

thus shown tha t sound radiation would occur essentially only when the wall was

of pressure releas.e type. For an assumed rigid surface the imaging effect

transforms the quadrupoles into much less efficient octupole radiators. Further-

more, even for the soft surface, the analysis shows that it is only at the very

beginning of spot formation where sound is generated . Farther downstream the spot

grows exponentially,  but the sound pressure is found to decrease exponentially with

time. Of course it could be argued that the linear stability model breaks down as

a spot develops which may account for this conclusion. Ffowcs Williams points out

that the theory may be applicable only if sound is truly generated in the early

stages of instability, but late enough such that the asymptotic theory of Brooke

Benjamin is established, while at the same time the spot amplitude is still small.

Dolgova [4] considered the planar flow over a rigid surface and analyzed the

sound radiated by only the Tollmien — Schlichting wave growth . As in linear

s tability models she le t a pressure wave grow exponentially in the direction of

f l ow, and then applied Fourier and Nankel transforms to obtain an expression for

the sound pressure and directivity function . At low frequencies the pattern is

. .
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dipole while at higher frequencies the main lobe tilts to the downstream direction,

gets sharper , and develops several side lobes. The resulting expression for the

sound pressure, however , shows no Mach number dependence.

Natural transition is characterized by essentially three distinct, flow

regimes. In the early stages of instability, the laminar boundary layer becomes

disturbed in a linear, wavelike manner. It is here where the theory of Dolgova (4 1

is applicable. Farther downstream, these linear disturbances become more non-

linear and three dimensional. The analysis of Ref. [1] appears to be applicable

in this regime, but breaks down rapidly as turbulent bursts begin to form. Within

the third flow regime, where the boundary layer intermittently alternates between

laminar and turbulent, is where no fundamental flow noise theory has yet been

developed. We hypothesize that this region of intermittent boundary—layer flow

may give rise to sound radiation [2, 3]. We know from elementary boundary—layer

theory that the mean velocity gradients and profiles are quite different between

laminar and turbulent flow over surfaces. In intermittent flow, we would expect

that the wall shear stress and the mean boundary layer velocities, both parallel

and normal to the surface, undergo gross fluctuations in time. According to

Lighthill’s analogy (6], fluctuating velocities give rise to quadrupole noise

sources, while fluctuating wall shear stresses give rise to dipole sources [7].

At very low Mach numbers, H, this latter source would be expected to dominate the

noise field. This is deduced from the fact that the acoustic efficiency of dipole

sources is of the order M3, while that of quadrupole sources is of order M5, viz.,

Ross [8].

- 
- In this paper we will appr oach analytically the problem of noise generated by

intermittent boundary—layer flow as it occurs in natural transition on a flat plate.

___ _ _
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We will assume the plate to be infinite in extent and to be acoustically rigid . We

will furth er assume that incompressible hydrodynamics will describe the transitional

process. Our goal is to derive expressions for the radiated noise spectrum and

acoustic efficiency. The spectrum, because of our infinite extent assumption, will

be derived in terms of the sound pressure radiated per unit spanwise width of

transition. A comparison of predicted spectra with experimental data obtained on

the surface of a buoyantly—propelled vehicle is also presented.

II. ANALYSIS

Consider the uniform flow over a flat plate. If a laminar boundary layer

begins to form at the origin of our Cartesian coordinate system, and if the flow

direction is in the x
1—direction, then the flow will ultimately become nonlinearly

unstable at the downstream line x
1
x
0 (see Fig. 1). There is then a short distance,

over which turbulent “bursts” occur. Along x
1 

= x
0 + ~x, the flow becomes

fully turbulent while for x
1 

< x0, the flow is assumed completely laminar. In the

analysis to follow, we will treat ~~xdx
3 as our source volume, where iS is the

boundary layer thickness.

The equation that describes the sound radiation from fluid—d ynamic sources is

the well—known Lighthill equation [6]:

2
— 

2~~~ p ’ _ 9 Tij
2 C 2 9x 3x ‘ 

(1)
i j

where p ’ is the fluctuating density , t is time, c is the sound velocity in the

medium surrounding the source region, and T
ij 

is Lighthill’s stress tensor given

by:

- 
~~~~~~~~~~~ 

- - ~~~~~
_ 5 .~~~~~~• . . ~~ - _

~~~~~~~~~~~~~~~ S~~~~~~~~~~~~~~~
; 

_______
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Tij 
— ~u1u~ 

— + (P’_P’c
2)iS

ij ‘ (2)

where p is the mean density.

Composing this tensor is pu
1
u~, the fluctuating Reynolds stress tensor; a1.,

the fluctuating viscous shear stress tensor; and (p’—p ’c
2), a term that relates to

heat conduction or nonlinearity. For hydrodynamic flows, this last term is zero

which means that the fluctuating density is related to the fluctuating pressure by

p ’ = p’c 2 
. (3)

From this point on, we will drop the prime from the fluctuating quantities , and

solve Eq. (1) for the acoustic pressure through use of Eq. (3).

A. T
i1 

for Boundary—Layer Transition

Within the region x
0 

< x1 < x
0 
+ ~x, the flow intermittently changes from

laminar to turbulent regimes. A typical turbulence burst is shown schematically in

Fig. 2. A burst will grow as it travels downstream at a mean convection velocity,

u~. The locus of a typical burst forms a wedge of apex angle 2ct. Emmons [9] first

observed ci to be on the order of 9.60 for flat plate flows. This was reconfirmed

later by Schubauer and Klebanoff [10], although it should be pointed out that

Farabee, et.al. (11] found propagation angles significantly greater than this.

In reference to the elevation view of Fig. 2, we might anticipate that at a

given point on the x
1—axis, 

the mean velocity profile and the wall shear stress

will undergo gross fluctuations in time as bursts are swept by. We will assume

that these fluctuations are much larger than the velocity and shear stress fluctuations

that occur within a burst itself or within the fully—developed turbulent boundary

layer tha t occurs at x
1 

> x0 + t~x. For example, the wall shear stress under a

turbulent boundary layer can be calculated from [12]: 

- ~~~~ r;;
__ _ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - 
- 

—5- .5 -.5.— — S_____
~
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2 
-

T
T
(X
l
) = O.0288pu

0 
(u
0x1

/V) , (4)

while at some other instant of time, when the boundary layer is laminar at x1:

— 1/2
TL (xl) — O.332pVu

0
(vx

1
/u
0
) (5)

where v is the kinematic viscosity. Thus, as the flow regime alternates between

laminar and turbulent, we might expect fluctuations in the wall shear stress on the

order of 0(x
1
), where

0(x
1) tT~

TL —3/ 10
E = 1 — ll.53(Re ) , (6)

tT xl/ T xl

and Re u
0
x
1
/v which is the local value of length Reynolds number. Typically,

1
Re 3 x 10~, so 0(x0

) O.9TT
(x
o). Although not quantitatively proven, we would

expect that fluctuations of this magnitude far exceed the wall shear stress fluctuations

that may occur beneath a fully—developed turbulent boundary layer (compare , for

example, Fig. 16.17 with Fig. 18.4 of Schlichting [12]).

Consequently, Eq. (2) for T
11 

may be written

T
ij Pu1

u~ — r 0 (x 1, t)  , (7)

where

= 0l2 1x 2 = 0 
>> oij(i.J~ 12) (8)

.

-

L -~ -~- -S’—— - - — -. . -
~~~~-~~~~ -.5 ~~~~~~~~~ - -~~~~~~~~~ —~~~~~ - - -~——- - ~~~. .5 .-~~~~~~ —- - 

- . - -5 — -~~~~~-- .5 — ~~~~~~~
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which is the fluctuating wall shear stress due to the creation and convection of

turbulence bursts. If we further assume (because of the slow rate at which a burst

spreads laterally) that the mean velocity fluctuation in the x
3—direction is small

compared to u
1 and u2, then T1~ will have only three dominant components in addition

to r0 (x1, t) .

We have not yet been explicit regarding the time depender~~e of T0, u1, and u2.

It will prove expedient first to solve Eq. (1) subject to our assumed form of T
ij

and the appropriate acoustic boundary conditions.

B. Formal Solution

The solution of Eq. (1) for flow over arbitrary surfaces was first constructed

by Curle [13]. Powell [14] showed that when the surface is rigid and planar, one

could consider a new extended flow field obtained by reflection of the original one

in the plane x2 = 0, as illustrated in Fig. 3(a). Using Powell ’s result, we find

p(r,t) = c2p’(r,t) = 

~ ~~~ . J J J ~~ _~•]~ LIV — 

fi~5~— J J —s. dS , (9)

v+V’ S

where the integrands are functions of the retarded time variable (t—r/c) and primes

refer to the image—flow side of the plane. The radial coordinate defining the

point of observation is r = Jx — fl~ , where Ti denote the source volume coordinates.

By making the far—field assumption, we can let r r’ ~X1, and then by making the

standard transformations from spatial derivatives to time derivatives, Eq. (9)

becomes:

.,—,,— —---. —---- - ——-- - - .5 - —5- - - - .5  - - - -5- - -
~ 

~~~~~~~~~~. M 5-—- -—— .—- -- ~~~~~~~~~~~~~~~~~~~~~~~~~ - . ~~~~~~~~~~~~~~~~~~~~~~~ . ~~~ ~~~~ ~~~~~~~
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2
4irrc2p(r,t)/p = ~ ~ JJ J u

1
2dV + z—2.~

2 

~~ J I J u1u2dV .5

+ ~ J JJ u~
2dV + ~~~~) ~ J JJ (u

1
’)~ dV’ + 2 1

2
2 

~ J JJ u
1

1u~ ’dV ’

+ (3 ~ J JJ (u
2
’)2dV’ + 2~ ~~~~) 

~~ JJ r
e
dS . (10)

Each of the terms composing Eq. (10) represent a hydrodynamically — generated

acoustic source. The direction cosine preceeding each integral tells us the order

and orientation of each of these sources. We see that the first and fourth terms

have a cos2O directivity characteristic (see Fig. 1 for definition of 0), indicating

that they are longitudinal quadrupoles with axes parallel to the surface. These

two sources, one being in the image flow combine constructively to form a single

longitudinal quadrupole of twice the strength of one alone. The second and fifth

terms represent lateral quadrupoles because of the cross—term products and directivity

function sin 0 cos 0. However, when combining a lateral quadrupole with its image,

a less efficient octupole results. We can safely neglect those source terms involving

u
1 u2 

and u
1

1u2
’ under our low Mach number assumption. The third and sixth terms

also represent longitudinal quadrupoles, but because (x
2/r)

2 
= sin 2O their axes are

perpendicular to the surface; when combined, another inefficient octupole results [15).

The last term of Eq. (10) includes the image contribution and describes a dipole

source with axis parallel to the surface. Pig. 3(b) illustrates in an elementary

manner the combination of these various sources. 
-

__________________ 

I
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Our solution to Eq. (1) thus reduces to the sum of a volume integral describing

-: longitudinal quadrupoles and a surface integral describing dipoles, i.e.,

p(r,t) = ~ J j J u
1
2
(~1~

t-r/c)dV(~~)

+ f r J~J t0(~1,t—r I c) d S ( ~ .) . (11)

As pointed out in the INTRODUCTION, we can expect the dipole contribution of Eq. (11)

to be of the order M 2 more efficient than the quadrupole contribution. As a first

approximation, we would like to accept this supposition, and examine in detail

p(r,t) fr t0th1,t-r/c)dS(n1)  , (12)

when M << 1.

C. Proposed Model for the Wall Shear Stress Fluctuations

A We have developed the solution given by Eq. (12) upon the notion that it is

the intermittency of the boundary layer within the transition zone that cteates

noise. Intermittent boundary—layer flow is a situation where we can construct a

mathematical model for the fluctuating physical parameters of interest. This model

is analogous to that which the experimentalist uses to distinguish time intervals

when his sensor is in irrotational fluid from those when it is in turbulent fluid .

~ _5-_ii__ 
~~~~~~~~~~~ _ _ _ __ _  ~ __ 
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Clearly, this is a zero—one function which we shall call the indicator function ,

I (x
i
,t). The use of such a function to describe intermittently turbulent flows is

not new, viz., Ref s. [16—18], among others. However, as will becoiae apparent below,

we will require the space—time correlation functions of I(x
1
,t), and these functions

have not been so well investigated for boundary—layer transition [19].

Typically, the indicator function at a given point , x~, in the sourc e volume

may be illustrated as in Fig.4. This function is zero when the f low is laminar and

is unity when turbulent. Also shown in this illustration is the first time derivative

of I(x1,t) which is a random sequence of alternating Delta functions. Because

Eq. (12) needs only to be evaluated on the surface , the functional dependence of I

on x
2 
is not required. It is reasonable to let I be statistically homogeneous in

because of our infinite plane surface assumption ; however , I must necessarily be

non—homogeneous in x
1
.

The non—homogeneity of I in the x
1
—direction is due to the fact that the

boundary layer ultimately changes from fully laminar to fully turbulent. As

increases beyond x
0 
more and more impulse functions fill in the time scale. The

-j time—average value of I(x1,t) is appropriately called the intermittency factor, i.e.,

T T

y(x
1
) = u r n  

~ J I (x
1
,t)dt = lim 

~ J I
2 (x 1,t)dt , (13)

0 
- T-’°’ 0

and represents the fraction of time that the flow is turbulent. This is a pre—

dictable function for boundary—layer transition on flat plates [9 1 as well as for

axisyninetric bodies [20]. Another Important mean property of I(x1,t) is the

“burst frequency ,” N(x 1) .  This function describes the expected number of bursts that

- .5-_ -~~~~~~~~~1- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .5 
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occur at a given point per unit time. It too, may be predicted for most hydro—

dynamic f lows  [9 , 11, 20]. Fig. 5 shows, in principle, how the indicator function

varies in time and space; also shown are typical distributions of y and N.

With these definitions for I(x
1
,t), and its mean properties, we propose that

• t0
(x
i,
t) = [l_I(x~~t)] TL

(x
i

) + I ( x ., t) T~ (xj)  (14)

where I may take on the values 1 and 3. By taking the time derivative of Eq. (12)

inside the integrals, we find :

91
= (t~ —i~~) ~~ = a(x

~
)  I ( x

1
,t)  , (15)

where o was first defined in Eq. (6).

As this point it is important to emphasize that Eq. (14) implies that the wall

shear stress is capable of changing from a laminar value to a turbulent value in an

-j infinitesimally—short period of time (I’s are Delta functions). Obviously, this

H- would seem physically impossible. However, we do know, from oscillograph traces of

the velocity and/or pressure fluctuations that occur in transition flows, that the

flow state can change in extremely short periods of time as turbulent bursts are

created at or swept by the measuring sensor [10—12]. Eq. (14), al though ideal istic,

may be quite adequate for estimating the low—frequency portion of the radiated

noise spectrum. The techniques developed by Schottky [211 in his classic analysis

of shot noise would seem appropriate here.

As a final point regarding Eq. (14), we note that its time average is simply:

— [l—y(x
1
)1 

~L~
”l~ 

+ y(x
1
) 
~T

(x
l

)  (16)
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which is identical to that suggested by Emmons [9] for the transition region.

Several experiments have verified this equation, e.g., Dhawan and Narasimha [22].

D. Power Spectral Density of the Radiated Noise

After the substitution of Eq. (15) into Eq. (12) we find that the radiated

acoustic pressure is of the form:

p(r,t) = 

~ J J ~(~1
,~ 3, t-r/c) o(x 0+~~) d~1d~3 , (17)

where the origin of our coordinate system has been displaced x
0
—units downstream in

order to simplify the variables in our integrals. The one—sided physical spectrum

can be calculated from the Fourier integral [23]:

G(r ,f )  = 2 

L 
<p (r ,t) p(r,t+T)> e~~T dT , (18)

where <p(r,t) p(r,t+t)> is the autocorrelation function of p(r,t), f is the fre—

quency, and w = 2Trf. In general,

T

<gg’> <g(t) g(t+t)> = lim 4 g(t) g(t+r)dt . (19)

T-~~ a

Therefore, f o r  p ( r ,t): 
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<PPf > = ~ J J J J <j(n1,fl3,t-r/c) ~($1,~3,t-r/c+t)>

•o(x
0+r11
) 0(x

0
+~1

) d~1dn3 d$1d43 , (20)

where for the time being, we will not show the limits of integration. It will

prove useful to change the 4k
_variables to spatial—separation variables

= — ~~ such that Eq. (20) becomes:

= 

4~~r~c~ J J J J <j(~1,n3,t~~k) I(fl1+~1,fl 3+~3,t—r/c~~)>

‘cl (X0+fl1) G(x
0
+T1
1
+~1)dfl1dfl3 

d~1
d~3 

(21)

If we assume ~(x ., t) to be stationary in time and homogeneous in x3, Eq. (21) may

be written without any loss of generality as:

co
26 1 1 1 1  •

= 

4w~r~c~ J J J J <I(~11O,O) I(Tl1
+~1

,~ 3,T)>

•a(x
0+fl1
) o(x

0
+~1

+~1
) d~1 d~3 d~1dE3 . (22)

(We note that it makes no difference, in a stationary process, when one begins

analyzing an event, whether at t = t or at t ’ = t + r/c.). Because <II’> =

the power spectrum of a process composed of Delta functions is

equivalent to times the power spectrum of the same process composed of unit

impulse functions. Thus, Eq. (18) becomes

45--

. -4
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G(r ,f) - ;~:)~ J J JJJ <I(~~,O,0) I(n1+~1,~~3,t)>

•o(x0+f l 1) o( x0+f l 1+~1) eiml 
d~1d~3 

d~1
d~3 dt . (23)

It is now assumed that <II’> can be treated in much the same way as the

analogous space—time correlation function that occurs in the case of a homogeneous,

fully—developed turbulent boundary layer. In particular, we assume that <II’>

can be separated [24, 25], i.e., let

<II’> = R~,(fl1,~1,T) R2(T11,~ 3) . (24)

The lateral term, R2, can be integrated in the form:

L

f R
3
(~~,~ 3

) d~3 J d~~ = 2L
3(fl1) , (25a)

where L
3
is a transition—width integral scale. Chen and Thyson [20] discuss a

spanwise length scale in the region of transition where the bursts begin to

overlap; that is, where -
~~ Ax. They write this scale in the form

A 1.5 Ax tan a. Let us set L
3
(Ax) = A and L

3
(0) = 0. It would then seem that

L
3(ri1
) 1.5r%,~ tan a

for ci = 9.60 . (25b)
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- .~~~~~ :. 

:. 

- ‘I 5- ~~~~~~~~~~~~~~~~~ .5- 5-~~~~~
. - - - - .5 - S. - .

~~



5- z : : .~-~~~- i ” ~~- - --- -5--- r”—---5---=?--~~~ --—--—- --— - - - - — 5 — -  5—- —-—--—-------— - ------——_- —-— -5 -. .’

—17— 23 July 1979
CCL:pjk

It can be shown, through a Taylor series expansion, that (7 T
T
TL 

is only

weakly—dependent on its argument through the range of integration required in

Eq. (23). In particular,

—1/5 —1/2
(1. — f—) — Bx0 (1 — 

~~~—) , (26)

where

2 —1/5
A = 0.0288pu

0 
Reu

1/2
B = 0.332p\iu

0
Re

with

Re = u
0
/v, which is the unit Reynolds number.

The maximum value which £ assumes is Ax, the streainwise extent of the transition

zone. For incompressible boundary—layer transition, Ax can be estimated from the

following emperical relationship [20, 22] between the Reynolds number based on the

transition point, x0
, and that based on Ax:

2/3
ReAx 6ORe

~ 
- . (27)

This relation can be rewritten in the form

—1/3
AX

C
UIaX I 6ORex0 x
0 

x0

. 5 .
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In connection with the discussion following Eq. (6), we would expect the first term

(the turbulent wall shear stress) of Eq. (26) to dominate, so that

—1/5 —1/3
a(x +c ) Ax (1—l2Re )O max 0 x

0

0(x ) (28)

This approximation implies that if the boundary layer were completely laminar or

completely turbulent over the distance Ax, then the mean value of the wall shear

stress changes insignificantly over this streamwise distance. It is analogous to

the parallel—flow assumption commonly used in analyses related to fully—developed

turbulent boundary—layer flow.

Differentiating Eq. (23) with respect to x3, and making use of Eq’s. (25) and

(28), yields:

9G(r ,f) ::s ~~~~~
2

(X
0

) J JJ fl1R
1(fl1,~ 1,T) e

iO)T 
d~1 d~1 

dt , (29)

which is the power spectral density of the sound radiated per unit spanwise width

of boundary—layer transition.

1. Longitudinal Space—Time Correlation Function

The longitudinal space—time correlation function, R1(fl1, F1,T), has not been

previously investigated in enough detail for us to write down an explicit expression

for it; however, Shivitz [26] presented a very limited set of data for at

— 0.6Ax. Although somewhat heuristic we will attempt to formulate a model for

R
1 
based on our physical notions of the transition process. In regards to the

L_ _ _  J
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T—dependence, we let the random sequence of impulse functions that make up our

indicator function be Poisson distributed. We select this distribution because

it is a discrete distribution (which it necessarily must be) for a number of events

(turbulent bursts) that all happen at random times with an average of N events per

unit time (our burst frequency). Indeed, the experimental investigation of

turb ulence burs ts by DeMetz, et.al. [27] does suggest a Poisson process. Under

this assumption, the classical correla tion func tion for a rand om telegr aph signal

may be used (see Rice [28]), which is of the form exp(—2NITI).

The non—homogeneity of R,
1 
in necessitates weighing it by the standard

deviation:

<I
2
(rj1, O)> = y(r~1

) , (30)

which is the intermittency factor [from Eq. (13)]. At a given location, Tb, , we

expect tha t the correla tion should peak when T ~1
/u~ which re presen ts the lag

time for a given turbulence burst to convect over the distance at a convection

speed u .  However, in a frame of reference moving at the convection speed we

would experience a so—called “moving—axis decorrelation [29]” which accoun ts for

the fact that a burst cannot remain perfectly correlated as the distance increases

beyond some characteristic scale. With these notions, Eq. (31) appears to satisfy

what is required:

—c i i  I _2NI t_~j,/U~ I
e - e , (31)

*where ci and N are presumed to depend on

______  
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By way of a simple experiment, a pinhole microphone assembly was flush mounted

in the wall of a subsonic wind tunnel. The tunnel speed was adjusted so that the

probe was in the transition zone of the wall boundary layer. An intermittency

detector enabled us to generate, electronically, the indicator function and to

determine y and N. A real—time correlation analyzer was used to compute the auto—

correlation function of I(x1,t). The result of this experiment is shown in Fig. 6

along with the prediction given by Eq. (31) for = 0. The agreement is seen to

be quite good.

With regard to the y and N distributions, we note that Emmons [9] first discussed

them and developed a probabilistic model to predict them. He assumed the existence

of a source—rate density function , g(x0, z0,t), which specifies the rate of production

of turbulent point—source bursts per unit area on the surface at position x
1 

—

= z
0
, and time t

0
. In his example, Emmons assumed g(x0, z0, t0) to be constant ;

however , a later investigation by Narasixnha [30] which made use of the data of

Ref. [10], showed tha t g(x0,z0, t0) is more accurately described by a Delta function.

In particular, g(x1
) = n6(x

1
—x0

) ,  where n is def ined as the number of sources per

unit length per unit time along the line x
1 

= x0. Farabee, et.al [11] made use of

this form of g in deriving emperical relations for y and N. They are:

4 1 8  2
- y(Z) = l—e . 5Z (32 )

U
0 —4.l85Z

2
and N(Z) = 1.272 Ze (33)

where Z ri1/Ax . Figure 7 shows plots of N and y as compu ted fro m Eq ’s. (32) and

(33).

- 5 - - -  --~~~~~~- — 5-~~~~~~~~~ 
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The flare parameter , cI*, in Eq. (31) is considerably more difficult to predict

because of the lack of experimental data. Under a fully—developed turbulent boundary

*layer , we can estimate a from Fig. 7 of Blake’s [29] wall pressure data. The

smooth—wall decay envelope can be approximated by exp(_~j/2d*) ,  where is the

displacement thickness. Thus, we let ci (Z� l) — (2~5 
) . Within the transition

zone, we can make use of the space—time correlations measured by Shivitz, ibid,

Fig. 24. H:re, Z = 0.6 and the decay envelope can be approximated by exp(_F1/llOó*) ,

where the cS is that measured shortly downstream of where the flow became fully

* *_ l
turbulent; hence, ci (Z = 0.6) = (ll0~5 ) . Farther upstream in the transition

*zone, we can only speculate as to what value a may have. Because there will be

fewer bursts of turbulence as Z -
~~ 0, we might anticipate that the moving—axis

*decorrelation becomes less severe, meaning a should decrease as Z + 0. We will

*assume this to be the case , and also , that ci can never become smaller than

(Ax) ’
~ ’; thus, we let c&* (Z = 0) = (Ax)’4. Using the three values of c&* discussed

above, and the values of and Ax measured by Shivitz, the following equation for

• *a can be constructed :

ci* 
= (l+83.35Z

8)/Ax

which is shown graphically in Fig. 8.

The space—time correlation function given by Eq. (31) was computed for Z 0.6

and u0/Ax = 467 Hz (typical value for water). Figure 9 shows the resulting three—

dimensional surface..
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2. Integration of Eq. (~9)

If we now substitute Eq. (31) into Eq. (29), and change the variable (t_E
1
/u
~
)

to r ’ , we then have:

Ax Ax-ti1

= 

2 

J ~~ e~~
*
R1~ ‘e~~~~ J e~~

1hi t eimt dr ’ d~1 
d~1

where kc = W/U
c • The last integral is well—known and equal to 2N/(4N2-4-w2).

Because the power spectrum must be real, the above equation reduces to:

aG(r ,f)  
- J 4N2~~~ {J  e ‘cos k~~1

d~1 + 

Ax
Jfl

l
e
~~

*
~lcos k~~ 1d~ 1 ~d~1

.(35)

The integrations over can be performed. Without showing the details, but noting

that the following identity was used:

F 
__________

a sinO + b cosO = /a2+b2 sin(O+tan’4 ~)

and that the change of variable from r~.1 
to Z = fl1/Ax was also made, Eq. (35) becomes :

ac f a2(x
0
)cos2eu

0
(Ax)

2 
*

2 2 2 F(k Ax ,ci Ax,u/u
0
) , (36)

3 2ir rc
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with 

1 -

1 2 —4 .l85Z —4.l85Z
- 

I F(k Ax ,a*Ax , u iu  ) = (k Ax)
2 l.~ 72Z (l—e )e

1c c O  c U~~~~~ 2 8 3 7 L 2 * 2 2
0 [6.472 —} Z e +(k Ax) 

J 
(a Ax) +(k Ax )

I
• 

* 
2ci~Ax 

2 — e~~~~A~~ sin(k~AxZ_4,) + e~~~Ax~~~~~sin[k~Ax(l_Z)_4,] dZ (37)
Ax) +(k Ax)

and 4, = tan
1 (ci*Ax/kcAx) . In the development of Eq. (36), it has been assumed that

is independent of frequency.

Equation (37) cannot be integrated conveniently; however, because of its non—

dimensional form, it need only be integrated once for a few discrete values of

u~~/u 0 and a range of k
~
Ax [assuming Eq. (34) describes the behavior of cz*Ax J .  This

integration has been performed for u j~
j 0 = 0.6 and 0.8 by Simpson’s rule. The result

is presented graphically in Fig. 10. We see that boundary—layer transition generates

signiEica~ t noise only in a frequency band centered about f
0 = u c/2

~
Ax

~

Because 0(x
0
) is proportional to Pu0

2
, Eq. (36) suggests that the spectral level

increases according to U
0

5 
for constant Ax. However, Eq. (27) suggests that Ax is

inversely proportional to u0, so Eq. (36) predicts a u0
3 velocity dependence even

though the source of noise is dipole. The reason for this unexpected behavior is

that the solution is derived in terms of the detailed hydrodynamics. These details

result in a source area that changes with velocity.’ Thus, to be consistent with

less—rigorous, flow noise order of magnitude estimates, the radiation—field pressure

should be normalized by the area of the source region , which is proportional to

Ax. The mean—square value of the sound pressure radiated per unit area would then

be given by the integration of Eq. (36) over frequency divided by (Ax)
2
. A 5th -

power velocity dependence would thus be retained .

. 5-  - - - -__
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E. Radiation Efficiency

The radiation efficiency, 
~tr ’ is defined as the ratio of acoustic power, N ,

radiated to the farfield—to—the work expended per unit time by the hydrodynamic

motions within the acoustic source region, N
h
. By re—writing Eq. (36) in the form:

aG(r,f) 2 2
ax c o s O < p

0
>

we see that

2ir ir
1 <‘

~~~
> ~ 1 2 2N

a 
= J %D~ 

dw J J cos Or sineded4, . (38)

o 0 0  -

Upon substituting for <p
0
2>, Eq. (38) reduces to:

2 22a u,~ Ax —

N F , (39)a 3irpc

where

_ 1  
*F = J F(k Ax ,ci Ax ,u~ /u0) d(k Ax)

The magnitude of F Is denoted in Pig. 10 for each of the two convection speed ratios

considered. Essentially, P is independent of u / u 0 and is of order 0.1.
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Because Eq. (39) is the acoustic power radiated per unit spanwise width of

transitional flow, it is necessary to compute the hydrodynamic power also on a per

unit width basis . The energy expended per unit time per unit width by transitional

flow may be expressed by: 
-

N
h 

— ~~0 ~~ 
dx1 

(40)

where is the mean value of the wall shear stress. Because bursting flow occurs

between the limits of integration, we would expect that

t
0 

(x1) = TT 
(x1)y(x1) + [1—y(x1

)] ‘t
L 
(x
1
) . (41)

Because

= (TT 
- TL
) I + -r

L

where (T
T 

— T
L
) = O 9 T

~r~I we let

- t (x1) y(x1
) a (x

1
) . (42)

The intermittency distribution can be calculated using Eq. (32). Again we use

Eq. (28) to arrive at

N
h 

u
0
Ax~~x0){l 

- J e
4 85Z2

d~~

L.-_ 
~~

_ -.__
~~~~~~~~~ 

-
~~~ -~~~~~~
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Through a change of integration variable , the above integral can be expressed in

terms of the error function, i.e.,

N
h 

u Axa[l—0.488 4 erf(2.048)] - 
-

0.572 u~Axa . (43)

The radiation efficiency is now obtained by dividing Eq. (39) by Eq. (43),

which results in

auF

~tr 
= 0.37 0

3 .

PC

Again noting that a- . pu
0
2
, we see that the radiation efficiency is proportional to

the cube of the free—stream Mach number. This is analogous to what Landah]. [7]

found for the shear stress contribution to fully—developed turbulent boundary—layer

radiated noise, i.e.,

‘~TBL u
0 
M
~
3 , (45)

where u~ is the friction velocity and 
= u

~Ic.

We would like to compare the radiation eff iciency of transitional flow to that

of a fully—developed turbulent boundary layer (TBL) flow. Equation (45) cannot be

used in this comparison due to the lack of a proportionality factor. An analysis

given by Tam [31], however, may be used in this regard. Tam did not derive an

explicit expression for the efficiency, but did give an expression for the acoustic 
I -

power generated per unit surface area of boundary layer turbulence. In particular ,

-5 -- -.5  -5 -— - — . 5 --- — -- -  — --  . 5.- -.5- --
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4irr2 7
NTBL 

— 

~~~~ J F(S ,M) dS , (46)

0

where the integral is presented graphically in Reference [31] as a function of Mach

number , M. Tam concluded that the magnitude of this integral increases rather

rapidly with Mach number (slightly faster than M
2). We have thus been able to

approximate it by:

I 
F(S ,M) dS 0.0l5~~ (M > 0) . (47)

The hydrodynamic power generated per unit surface area of boundary layer turbulence

is given by u OTT, 
so we would expect that:

0.188 t H2

~TBL pcu
ø

T (48)

By letting 0 t~~, we find that

1tr. 
1.97 }‘ 

~TBL 
0.2 

~TBL 
(49)

This result implies that the wall shear stress fluctuations that occur in inter-

mittent transition zone flow generate noise less efficiently than do the super-

sonic Fourier components of the normal stress fluctuations [31] in a fully—developed

turbulent boundary layer. -
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Ill. EXAMPLE

In order to verify the analysis presented in this paper , one must conduct a very

sophisticated experiment. This author envisions such an experiment as being composed

of a large, nearly rigid, thin flat plate mounted in an anechoic wind tunnel (air

is better than water because of the rigidity requirement). The span of the plate

must be very large as to minimize the edge noise received, say at the center of the

plate. Because the theory predicts a cosine directivity curve, one must use flush

mounted microphones in order to receive the peak sound level. They should be placed

in the laminar flow regime of the plate’s boundary layer as to minimize near—field

pressure fluctuation effects. Perhaps most importantly, the operating Reynolds

number should be adjusted so that fully—developed turbulent flow occurs very near

the trailing edge of the plate (x
1 
+ Ax length of plate). The trailing edge must

be designed to minimize, as much as possible, any unsteady wake flow. Unfortunately,

an experiment such as this one has not yet been carried out.

Never theless, it is tempting at this point, to make a prediction using the

subject theory for a situation in which noise was measured flush to the surface and

within the laminar boundary layer of a test vehicle. We choose those data presented

by Nisewanger and Sperling [32]. In their experiment, a buoyantly—propelled axisym—

metric body was instrumented with flush—mounted hydrophones and noise spectra at

various locations on the surface were measured in fresh water at a vehicle speed of

19.4 rn/s. The transition point was found to be at an arc length distance of 16 cm.

Equation (27) is used to calculate Ax; we find it to be 5.8 cm using the kinematic

viscosity for fresh water at 21°C. Measurement station no. 4 of Ref. 32 is selected

because it is in the laminar flow region, 2.6 cm forward of the transition point.

Letting 0 — 00 , u / u 0 — 0.8, and multiplying Eq. (36) by the circumference of the

test body, the resulting comparison of theory and experiment is shown in Fig . 11.
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As might be expected, the agreement is not very good. The differences in level

may be attributable to several reasons . Because the test vehicle supports a substantial

area of fully—developed turbulent boundary layer flow, the data may be contaminated

by this source of noise. Also, as noted by Nisewanger and Sperling, approximately

50 percent of the measured flow noise is due to shell vibrations. Prom the more

fundamental point of view, the shear stress mechanism of sound generation by a

transition zone may not be the only mechanism involved. We neglected the Reynolds

stress contributions through an argument of relative efficiency between dipole and

quadrupole sources. It would seem reasonable that the fluctuating shear stress,

being a viscous quantity, may be considerably smaller than the fluctuating Reynolds

stress; perhaps even small enough, that the relative difference in radiation

efficiency is out—weighed. -

IV. CONCLUSIONS

We have presented an analysis of the radiated sound due to boundary—layer

transition. Our principle assumptions were that the surface is infinite in extent ,

planar , and rigid , that the transition process includes a finite region intermittent

flow where the boundary layer fluctuates randomly between laminar and turbulent , and

that it is this intermittent flow that generates the noise . Through use of Lighthill’s

analogy, we showed that the fluctuations between laminar and turbulent boundary—

layer flow give rise to dipole , quardupole , and octupole noise sources. On the

basis of a very low Mach number assumption , we treated only the dipole contribution

in detail; this contribution being due to the fluctuating wall shear stresses. We

assumed that the flow is statistically homogeneous in the spanwise directions,

non—homogeneous in the streamwise direction, and stationary, but Poisson distributed

in time. The power spectral density for the acoustic pressure radiated per unit

i
- - 1

~~~~~~~~~~~ _ _  
_ _ __ _ _ _ _ _ _
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spanwise width was derived. The level of the mean—square radiated pressure was found

to depend upon the square of the difference between the turbulent wall shear stress

and the laminar wall shear stress that would occur at the beginning of transition,

upon the square of the streamwise distance over which turbulent bursts occur, and

upon the free—stream velocity. The spectrum rises at 6 dB/octave at low frequencies

and drops off at 6 dB/octave at high frequencies. A broad peak is centered about

k
~
Ax = 1.0. An expression for the radiation efficiency was derived and compared to

the radiation efficiency of a fully-developed turbulent boundary layer. This

comparison showed that transition generates noise at approximately 20 percent the

efficiency of fully—developed turbulent boundary layer flow.

We compared a prediction using this theory with the noise spectrum measured

near the laminar—to—turbulent transition region of a buoyantly—propelled flow noise

research vehicle. The agreement was considered to be poor. Based on this

comparison and on the magnitude of the radiation efficiency it can be concluded that

the shear stress fluctuations that occur in natural boundary—layer transition are

not strong sound radiators. However , boundary—layer transition is a very complicated

hydrod ynamic phenomenon , and the neglect of fluctuating Reynolds stresses on the

supposition that they give rise to inefficient quardupoles and octupoles may not be

fully justified. A detailed examination of the first term of Eq. (9) appears to be

required but the modeling of UjUj in an intermittent flow regime may prove to be

very difficult. In order to simplify this task, it may prove expedient to first

investigate the third and sixth terms of Eq. (10) which describe the normal stress

contributions. Such analysis must be performed in wavenumber/frequency space so

that those Fourier components with phase velocities (w/k) greater than or equal to

the velocity of sound can be identified (if present). It would be these components

that lead to sound radiation ; any others would cause near—field pressure fluctuations.
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In any event, additional experimentation is required in order to support or

disprove the notion tha t boundary—layer transition is an important source of low

Mach number flow noise . The space—time correlation functions at various locations

within a transition zone should be measured. These functions would not only aid

in the modeling presented in this paper, but would provide the groundwork necessary

to proceed with further analysis such as that suggested above.
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Figure 1. Definition of the coordinates used and a schematic
representation of the transition process.
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Figure 2. Schematic description of turbulent bursts and
the boundary layer development.
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Figure 3. (a) A schematic representation of
the image flow concept; and,

(b) the way in which multipole
sources in the real flow combine

- with eç ~valent sources in the
- image flow.
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Figure 4. The indicator function composed of unit impulse
functions and its first time derivative.
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Figure 5. A schematic representation of I(x1,t) in space and

time, where y is its time average value and N is

the, expected number of bursts per unit time.
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Figure 7. The intermittency and burst frequency distributions
from Equations (32) and (33).
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Figure 8. Normalized flare parameter ct’~Ax as a functionof the normalized position in the transitional
region.
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Figure 11. Comparison of the theory with experimental spectra measured on the
surface of a buoyantly—propelled flow noise research vehicle [32].
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