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Abstract

In this report the problem of robust detection of

non—coherent signals in noise is investigated under the

assumption that the noise distribution is unknown , but

a member of a known class of distribution functions.

This problem is divided into three main categories :

partially—coherent signals, unknown frequency and phase,

and completely random phase.

In the partially-coherent problem, two general methods

are introduced for the design of robust detectors which

guarantee a non—trivial lower bound on the probability of

detection and a non-trivial upper bound on the probability

of false alarm. Two recievers are designed for the

special case in which the distributions of the~ noise

inphase and quadrature phase components are members of a
V 

class of p-point distributions. Simulation results for

finite sample size are also given for different distributions.

The M-detector method is extended to give a general

solution for the second problem.

In the third problem , three different solutions are

presented. All consider that the disttibution of the

envelope of the noise is a member of some class of

• distribution functions which is defined by quantiles.

Simulation results for these three detectors are given at

finite sample sizes for different distributions.

- • • •- - - ••• V  —~~~



V Throughout the report, the log normal and contaminated

normal distributions are utilized in conducting the

1 simulationS.
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I. INTRODUCTION

The di f fe rent  approaches for the design of a receiver

for detection of signals in additive noise fall  between two 
V

extremes. On one hand is the classical parametric approach

which requires an exact and complete statistical descrip-

tion of both the signal and the channel and utilizes the

likelihood ratio as a test statistic. On the other extreme

are rionparametric or distribution free approaches which

require minimal information about the utilized channel and

lead to constant false alarm detectors, such as sign, rank

and median detectors [1].

Often in practice, the information available is only

partial , either because the channel description is incom-

plete or because some aspects of the channel vary either

temporally or spacially. This partial information is usual-

ly more than required for design of a nonparametric detec—

H tor , but is insutficient for the design of a parametric

detector. The treatment of such problems depends on the

nature of the missing information , which can be divided into

two main categories.

1) Parameter ~mbiguity: In this case there is a

mathema€ical expression for the channel model with

some ambiguity about the exact value of some parame- 
V

ters; i.e., the actual noise is a member of a known

• finite-dimensional class of distribution functions. For

example , the channel is normal with unknown mean and/or

variance. 

~~~~~~~~~~~~~~~~~~~~~~~
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2) Distribution Ambiguity: This is the intrinsically

more difficult case where there is no mathematical

expression for the noise distribution , but some

information about the distribution is available such

as the first m moments. This means that the noise

distribution is a member of an infinite-dimensional

-class of noise distributions.

The problems in the first case are easier to handle

than those in the second and in some particular situations

it is possible to achieve an optimal performance. At other

times only a minimax or adaptive detector is possible.

Actually , the problems in this category have been studied

extensively as the composite hypothesis problem and many

good adaptive and minimax techniques have been developed

(2—4].

In treating the problems in the second category , the

receiver designers divided into three groups. The first and

most conservative group accepted the nonparametric tech-

niques to at least guarantee the probability of error of

the first kind or the probability of false alarm. The

second group utilized the available partial information to

obtain the best f it from a selected class of noise distri-

butions , then designed a parametric detector based on this

approximate distribution. Utilization of nonparanietric

techniques in such cases is useful, but their use results
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in ignoring most of the available information. On the other

hand , generation of an approximate noise distribution ,

although desirable since it leads to a parametric receiver ,

may be very dangerous since the actual observations may not

come from the assumed class of distributions . This implies

that the detector performance may deteriorate markedly from

the expected performance. To demonstrate this point, let

the approximate density function be f
3
(x) under H

3
, then

N f (x.)
the likelihood ratio will be It(x) = ~~ f(x 1 . Now,

i=1 0 i’
f1 (xk)a single factor f Cx ) equal (or almost equal) to zero or
1 k

infinity will upset the test statistic and change the final

decision [5] .

Out of these two groups and as a result of observations

similar to those above, came the third group which rejected

V both approaches and went further to reject the utilization

of strictly parametric techniques since these systems are

sensitive to bad data and there is no known procedure to

V protect any device completely against the presence of such

outliers or bad data (6] and [7]. This group believe the

best solution to the problem is in the design of. detectors

which make use of the maximum possible amount of the

available information and perform well over the class of all

distributions which possesses the properties described by

this information. These detectors , which are called robust

I
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V 
detectors , are not expected to perform as well as the optimal

detectors for all distributions in this class; however,

V they should perform better than the nonparametric method

for a large subset of this ~iass. The search for such

robust procedures has been very active during the last

few years ( 5,8-10]. All of the above work assumes that

the signal is coherent and all except [101 assumes some

class of contaminated distributions. In [lO~~, a general

V 
procedure for robust detection of known signals in additive

noise was presented. These receivers are called M-detectors.

In this report, the problem of “Robust Detection of

Non-Coherent Signals in Additive Noise” is considered. In

general , the problem is divided into three basic cases.

1) Partially—coherent signals: In this case , it is
V assumed that the signa l has an unknown phase which

is constant over each sequence of observations , but

changes randomly from one sequence to another.

V 

2) Unknown frequency and phase: It is assumed that both

the signal f requency and phase are unknown. This is

usually the case in detection in the presence of

Doppler effects.

3) Random - Phase: In this case it is assumed that the

unknown phase changes randomly from one sample to

another.

V 
- -
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Chapters II and III investigate the first problem.

In Chapter II we extend the concept of M-detectors

• presented in [10] to the noncoherent case. We show that

under some sufficient conditions on the family there

exists a transformation which maps the input data into

some intermediate space. Utilizing these points a~ new

input data we construct a detector and show that under

some assumptions on the signal amplitude it will be

V robust in a max—mm sense over the family of distributions

under consideration. In Chapter III we present another

detector , called the stochastic-approximation detector,

which has similar properties as the M-detector. We also

give simulation results to show the finite sample size

V 
performance of the above detectors ~~d to compare it to

the conventional square law detector. Chapter IV extends

the results of the previous two chapters to the second

case. In all three chapters it is assumed that some

information about the inphase and quadrature phase

components is known.

In Chapter~~~set of detectors is presented to treat

the third problem. All the detectors considered in this

chapter depend on the envelope of the received observations

as input data.

In Chapter VI the performance of the M-detector with

dependent data is investigated.

-- ~~~~~~~~~~~~~~~~ —-- —-— -~~~-~~- - V V ~~~• .  • •~~~~~~~~ V V.~~~~~~~~~~~~~~~~~~~~ - --— V
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Throughout this report, the stability of the threshold -

with respect to the actual noise distribu tion and the

power of the test were used as criteria for judging

receiver performance. Also, for all simulations, the

noise distribution was assumed either to be lognormal or --

contaminated normal. These two distributions are the

most common in the above detection problems [11,12]. The

normal distribution was utilized principally for

comparisons. V
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V II. Detection of Partially Coherent Signals

In Noise l 
V

11.1 Introduction

This chapter investigates the detection of signals

with unknown phase in additive noise under the assumption

that available information about the noise distribution

is not complete. Specifically , we shall consider these

V situations where there is no available mathematical

expression for the noise distribution function, either

because it changes in shape with uncontrolled factors

or just because of the absence of enough data. On the

other hand , it will be assumed that some information

is available about the distribution of the inphase and

quadrature phase noise components. The signal component

will be consider~ed as samples from a demodulated version

of the received signal which is given by

Sr(t) = B Sin Cw t-I-0) 0<t<T (1.1)

where 0 is the unknown pahse which is a random variable

with uniform distribution over the interval [- II , fi ]

T is the total observation period ardB is the signal

amplitude which is equal to zero under H0 and is

greater than zero under H1 . We shall call this problem

the partially coherent case.

L V VV V V .  .• •. _
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This problem appears in many communication systems

when there is uncertainity about the phase of the wave

form generated by the transmitter ’s ossilators. In V

radar applications, it appears in the case of detection

of fixed targets [3 pp 335]. A more important aspect of

V this study is that it furnishes a basis for the more

V important problems in radar systems such as the design

of doppler processors. In such situations, both the

frequency and phase will be assumed unknown.

Usually in- practice , the engineer uses some version

of the square law detector , not because of its

optimality but because of its simplicity. In this

detection procedure the detector sums the inphase

component samples and the quadrature samples, and then

utilizes the square root of the suine of the squares of

the above two sums as a test statistic. This method

V has two main defects. First, since the sum is a linear

V 
operation, if we have a large noise sample, either because

the actual distribution has a long tail or because of

some measurement error, then this observation is more

likely to upset the decision. Second , if the distribution

is not known exactly then setting the threshold will

require an adaptive technique. Usually , these adaptive

techniques cause some loss in the power of the test [13].

V.- V~V •V.~ • • V VV -V _~~~~~_~~_
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• In the following , we give a procedure for the design

of robust detectors that guarantee an upper bound on

both probability of false alarm and probability of

missing under the above mentioned assumptions. We

design one of these detectors for the class of p-point

distributions, where only one quantile is known. We

compare this detector to the square law detector for the

lognormal, contaminated normal and Guassian distributions.

V The lognormal was chosen because of its long tail and-

because it appears in many practical situations such as

detection in sea clutter and atmospheric noise. The

contaminated normal is shorter in tail than lognormal and

represents sea clutter interference in some sea states

[14] . It also can be considered as a moderate

representation of measurement errors [7]. The

Gaussian was chosen because the square law detector is

optimal against it.

11.2 Problem Statement

Consider the set of observations {z~ } given by

its inphase and quadrature phase components denoted by

{x .} and {~~~~~~
} respectively where

x = A  4w.
1 1 1

i 1,..., N (11.2)

y.  = A2 + v.

I.- 
- 

~~~
•
~~~~~~~~~~~~~~~~~~~~VV VV V V V • • ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •V ~~
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where {w
1

} and 
~
v
~

} are two sequences of independent

identically distributed noise which are also mutually

• independent, fCw
~
) and f (v1) are the density functions

of w . and v. resoectively , which are unknown members
1 1

of a class of symmetric density functions F , A1 and A2

V 

are the inphase and quadrature phase signal components

such that /A~+A~ = A . We define the two hypotheses

H0 and H1 as

H0: A 0

(11.3)

H1: A > 0

We are interested in finding a detection procedure to

distinguish between H0 and H1 such that both the

probabilities of error of the first and second types have

4 the best achievable nontrivial upper bounds.

In the following analysis we shall consider f Cv)

and f Cw) to have the same mathematical expression and

we shall deal only with the case where A1 and A2 are

constants over each group of observations. The generali-

zation to the case where A1 and A2 are changing in a

known manner as functions of i is straight forward

[10] .

Before proceeding to the solution , we shall need a

few additional definitions. Define a class of functions

C such that L c C if

L _ _ _ _  _ _ _ _  _ _ _ _ _ _ _ _ _ _ _
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1) L is convex , symmetric about the origin and strictly

‘ increasing for positive arguments.

2) 1(t) = dL(t)/dt is continuous for all t

3) for all f c F, Ef[1
2(x)] <

4) for all f c F, aEf[l(x—0)J/ae exists and is

non zero in some neighborhood of the origin.

Also, define 0NH as the value of 0 which minimizes

N
~ L(x~—0) (11.4)

i= 1

and 0NV as the value of 0 which minimizes

N

~ L(y~—0) (11.5)
i=1

or, equivalently,

~ 

l(Xi ONH) = 0 V (11.6)

and

V N
V 

.~~~~ 

1
~~
j
~
0NV~ 

= 0 (11.7)
i=1

and define 0N as

/2 20N 
— 8NH~~

0NV (11.8)

Define also Bd (OIf) and Bd (AIf) as the probability of

false alarm and the probability of detection, respectively ,

using detection strategy d when the actual noise distribu-

tion is f().

I
-.-.V - -- ——-- V.-—
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L The main results of this section will be obtained by

verifying the following two inequalities :

BL0
(OIf) < BLO (OIf Q) for all f e F (11.9)

and

BL0(vIf Q) < B~ Ø (vIf) for all f c F (11.10)

where Bd (vff) = j1~
j Bd (AIf) 

with A = v//ii , and

then by showing that BL0(vIf 0) is related to the power

of the optima l coherent detector , when the true noise

density function is f0 , by the same relation as that

between the power of a coherent and noncoherent detector

when the noise is Gaussian. The subscript L0 refers

to a detector based on a threshold test using 0
N

drived from L0 c C as a test statistic; i.e., a test

of the form

H

~~~~ 
0N 

~ (11.11)
H0

we shall call this detector the M-detector on components.

In fact it might seem more appropriate to show that

BL0(V1f 0
) is greater than or equal to the power of any

randomized test of hypotheses under the above assumptions

and assuming that the true noise is f0(), but with the

absence of an optimal procedure to design such a detector , it

is the authors opinion that the proposed criterion is

the best possible one.

~ 

- 
V
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11.3 Problem Solution

r Assume for the moment that the class of density

* 
V

functions F contains a density f C.) of minimum

Fisher information for location , that is, a density

for which V

I(F) = f [ f ’ ( x )/ f ( x ) ] 2 f (x ) d x

is a minimum over all fc P . Also, assuine that the

*class C of functions contains a function L such that

V * *L (x) = —log f (x)

For this case we will show that (L*,f
*) = (L0,f0); i.e.,

it satisfies equations (9) and (10) described above.

First, we require a preliminary lemma whose proof can

be found in [15] . It is also a special case of

Lemma 1 [10] so we shall only outline it here.

V Lemma (11.1):

Whenevery L c C and f c F , ~4~1 (ONH
_A

l) [~
‘
~~
(0Nv~~2

)]

is asymptotically distributed as a zero—mean , normal

random variable with variance

r 2 .
j 1 (x)  f ( x )  dx V

v2(f,L) = 2 ( 11.12)

~~~~~~~~~ Ef[l (X—0 )]1 0 0
} V

-—

~

—- V— --~~~ ~~~~~~~~~~~~~~~~ -- - - - V - V
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Proof:

1) As N ~ 0M1 
-

~~ A1 and 0~~ + A 2 
a.s.  and in

probability .

2) Assume that A=0 then

~~
8NH 

N 

~ 
= P{—

,~ 
~ 

l(x1
_—! ) < 0) (11.13)

3) P{—4 ~ 1(x.— —
~~~

))  > Normal (~~,V2 )
(N i=l 1 /j

~

as ‘ii = ~~~~~~ Ef[1(X—0)]1 0 0

and

= 12(x) f(x)dx

From the above lemma and under the assumption that

{w1} and {v
1
} are independent of each other we obtain

with TN = 

~~ ~°N~ ’ T 2N
TN -2v2(f L)

V f(TN~
Ho) 2 e (11.14)

N-’-~ v (f,L)
2 2

and TN +V

T 2’V2(f ,L) TN V V

f(T 1H 1) N - e I,~( 2 (11.15)
N N+~ v (f,L) “ v (f,L)

where Io() is the modefined Bessel function of the

• 

- 

first kind.

Then the asymptotic power of a test based on TN

satisfies

~ 

., . -
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TN
2 + v 2

T 2v2 f T V
BL(vIf) = 1 2 

N e ,L 10 
N 

) d TNy v (f ,L) v (f,L)

= Q( cx , y )  (11.16)

where Q(.,.) is Marcam ’s Q function, ~ = 2 and
v (f,L)

y is the threshold of the test. Notice that for any

finite falue of y , if A is a constant then v -,

as N -
~ and Q(cL,y) -, 1; i.e., the test is always

consistent.

In the above discussion it was assumed that v
~ 

and

w1 are independent for all i. Nevertheless , the results

are still correct if v~ and w1 are given by

v. = u. cos ~~~.
• 1 1 1

i = 1,..., N (11.17)

w. = u~ sin

V where {u
~
} and are sequences of independence

identically distributed random variables with

uniformly distributed between [0,2irJ . To show this, 
V

we have

Pie <~~~~J , 0 < _ -
~~~~~iN H —S  N V —S

N k N k
= P~ ~ 1(x.— J~)<0 , I ~~ 1(y .—__a)<0} V

/~i i=l 1 — 

,~~~~ i=l 1 ,Ij~ 
—

N
= P{ — ~ x.<0, I ~ Y.-<o~ (11.18)

1 /~~i=l 
1

V 

________
V. - - — - -  — —-V - -V. - V

~4 ~
. 

~~- - - - - -
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but for any two constants a and b

N b N

~ xl + — 

~ y.] is asymptotically distributed
/~~ i l  /i~ i 1  ‘

N
as a normal random variable , then [ ~ X . ]  and

1

N

~ 
I 

~ y.] are asymptotically jointly normal random
~‘F~ i=l 1

variables [161 and it is enough to show that they are

uncorrelated to prove their independent. Since

N N
E{( ~ ~ x.)( ~ y.)}

1 
~‘~~i=1 

1

N
= ~ E(X.Y.) + (N—i) E(X.)E(Y ) (11.19)

i=l

then -

N N
~~~~ ~ 

I 
~ X . ) ,  I 

~,r~ i=1 1 ,,~~ j~~~ 
1

= 

~ i~ l 
E(X~Y~) - E(X~)E(Y.)

= 0(i) (11.20)

and since the variance of each is of order 1 then the

correlation coefficient is of order (
~~~) and goes to zero

as N -, ~~; i.e., they are asymptotically independent.

Then

L____ - - -

V--V.- -V_V. -VV_ _~~V. - -V 
-• —- -V -- •-V •_ ~~~~~~—- 

•-
~~~ — —•----- ..- ~~ ..__.____~~_•._t_._ V_•V_ •__ - 

--V
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-

N k
P(V’R e <k 1, /i ~i e <k 2

} => p~ ~ ~ 1(x.— —~)<0).NH— NV— 
~~ i l  ‘ —

N k
p
~ 

I 
~~ l (y ~ —--!) < 0  - 

V

= PV [/i~ ONH
<kl} P{/I~i ONV

<k
2) (11.21)

and the results of the previous discussion continue to

hold. This completes the proof of the following lemma

Lemma 11.2:

Whenever L c C and f ~ F, v. independent from

w. for all i=1,..., N or given by eqn. (11.17), /I
~
ON

will be asymptotically distributed under H as

f(T ) = 2 

TN ~~~~~~~~~ (11.22)N v (f ,L)

and under H1 
V

(TN
2+v 2)

T 2~t2’f L’ T~~V 

f(T ) = N e ‘ ‘ ‘ ~ 
N ( 11.23)N v (f,L) 0 v2(f ,L)

To study the power relations for different f c F

we need the following lemma.

Lemma (11.3):

If there exis ts an f0 c F such that L0=-log f0 c C

then

sup BL (vlf O) 
= BL0(vlf 0) (11.24)

_ _ _  
~
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and if

v2(f ,L0
)<v 2(f0,L0) for all f c F (11.25)

then the following relation holds asymptotically

BLo (0~f) < BL0(01f 0) for all f c F (11.26)

Proof:

From equation (11.22)

BL0(OIf) 
= exp (2V2(f,L0Y)

_
~.2< exp

by virtue of equation (11.25) .

Also, for any level of false alarm a and for any L c C,
V if f0 is the true density

= —2v2(f0,L) in a 
TN

2 + 
(11.27)

T 2v2(f01L) T v
BL(vJf o) 

= 

~ 2 
N e ‘o ’

~ 2
N )d TNy v (f 0 1L) v (f 0, L)

7 - ~
(R2+

v2( O L) 
______

1-2 m a  R e I0(R v(f0,LT
)d R

= 
~~ V~~~ ,Ij) ~ 

1—2 m a  1 (11.28)

but as v2(f0,L) decreases, vl= (f
v
L) increases and so 

— — — —
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does BL (vIf o). On the other hand v2(f01 L0)<v
2(f0,L)

since this is the variance of the maximum likelihood

estimates of A1 and A2 and is equivalent to the

Cramer—Rao lower bound. This completes the proof of

the lemma.

To get the relation between BL0(vlf) and BL0(v~f0)

we assume that BL0(01f 0) 
= a , then

2 2
BL0(vIf)= 1 2 -eNi— 2 

V

v(f0,L0)v
’—2 m c i  v (f,L

0
) 2v (f,L0)

zV
) dz

v (f,L0)

using R =
v (  ,L

0
) 

-

2 2
BL0

(vlf) = 

v(f L’) 
R e - R ~~V 1

0
(Rv ’) dR

~
l
~~~v (f L 

v’~2 m a

= Q(v ’,y’) (11.29)

where v ’ = 
V f~ LQ 

and ~~ = v(f,L0)

Notice that as v(.,.) decreases both v ’ and y ’ increases

with the same ratio, which makes this relation untractable

analytically , especially with the absence of an analytic

• - -• — - —- - -_ _ _ _ _ _

1111_V ~~~~~~~~~~ - -—_-- - V V~~~~~~ V~V_  _~V_ ~•_ •_ _-V•_ V . V V ~ --V-V_V _•
-
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expression for the Q function itself. On the other hand ,

we can write eq (11.29) in the form

Q(v ’ ,y ’ ) = Q(r ~,r y) ( 11.30)

v ( f  ,L
wh e r e r =  ‘ f L ’  > 1 , v =  f , and if ~~~~ > y

~ 

— v (  0,L0)

then [3]
2 2

—(v ’ +y ’ )

Q(r ~ ,ry) = i — e /2 
~ (L-)~~~ I(v ’ y ’)

n=l v ’

2_2-r v (14k 2 )
= 1 — e 2 

~ (k )  ~ I ( r 2 72 k) (11.31)
n=1

where k = < 1. Taking the derivative with respect to r,
V

— 2 2 2 2
-- 

-
~~
— Q(r v,r y) = G[I1(r ~ k)—k 10(r V k)] (11.32)

where G is a positive constant. Thus

2 2 
-

— 
11(rv ~ 2Q(r v,r y) > 0 iff 

~~2 
> k - This implies

10(r v k)

that if V and y satisfy the above inequality for all

values of r>1 then the power of the test will be -

monotonic in r

BL0 ( v J f )  > BL0 (v 1 f 0
) . (11.33)

This completes the proof of the following lemma .

‘V.—

VS. V —— —— ~~~ ~~~ ~~~~~~~~ — V ~~~ - — -V —-  -_ — V — - - - —
~~~~~~

—-- —- _ V_ _  
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Lemma ( 11.4):

If there exists f0eF such that L0=-log f0cC and

v
2(f09L0) > ~~~~~~~~~ f c F (11.34)

I 1
(r 2 

~
2k) 2 —and if 2 —2 > k for all r> l  and v>y then

I 0
(r v k )

BL ( V I f )  > BLØ (v1f 0) f ~ F. (11.35)

V The above inequality was solved for values of y>l.9226

which is equivalent to 
~F

< •15 and it was found that k

should be less than or equal to (0.91166) . Values of

v are such that the probability of detection is greater

than or equal to about 60%. Notice that this is the

region of interest in most communication applications.

Notice also that in the case of robust coherent detectors

[10 ] this range was for all P~~ .5

The above lemma gives the lower bound on the

probability of detection over the class F. To investigate

how good this lower bound is , we compare the proposed

M-detector to the asymptotically most powerful coherent

detector when the true noise density is f0(.). If we

assume that the probability of false alarm is a , for

the asymptotically most powerful coherent detector

B0~t
(v1If 0) = 1— ~ 

1(1—a)—v1 1
2(f0)} (11.36)

-~~~~~~ - - V ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - . - -  - _ _
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where 4(.) is the standard normal distribution function

and IC .) is the Fisher information number for location.

For the proposed M-detector, since V2(f
0~
LQ)=1~~f ~ then

0’

— I(f ) I
BL0(v21f 0) = f z e 0 I0

[z v2 I
2Cf0)] dz

/-2 m a

= Q Cv 2 12 (f 0 ) ,1— 2 m a )  (1 1.37)

Comparing the above two equations with the case when

f0(.) is Gaussian [17] we find that if both probabilityV
of false alarm and detection are constant then isV

1
V the same in both cases, i.e. in replacing a coherent

scheme with an M—detector , the loss in signal to noise

ratio will be the same in the M—detector case as in the

Gaussian case.

All the above can be concluded in the following

theorem.

Theorem 11.1:

- If there exists 0(.) e F 3 L0 -log f0 c C 
and

v2(f0,L0) > v2(f ,L~) 41f c F

then the M-detector will satisfy the following relations

asymptotically

BL0(OIf) < BL0 ( 0 1f 0 ) -Vf e F (11.38)

SL (vif) < BL0(vIf 0
) ~‘L c C (11.39)

J

V • _  __________ - . • -- - _______ - - - —— . - •
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2—I (r v y)
and if = v C f  ,L ) ~ ~ threshold and 2—0 0 I 0 (r v y)  v

- for all r>1

then

BL0 ( v l f )  > BL0(v!f 0) ~ f c F (11.40)

The above results show that the design of the

receiver will depend on finding the least favorable

densi ty function f 0 as defined in Lemma 11.3. To find

this density , we notice that it must have a finite

Fisher information number for location according to

assumption 3 on C. Thus, it will also be least favorable

in the family C of density functions defined as

G = {f: f ~ F and 1(f) < ~~}. (11.41)

However , the least favor able densi ty from this cl ass is

the one with minimum Fisher information (cf. Theorem 2 [15]).

Thus , to f ind f 0, we follow the steps described below.

a) Find such that 1(f ) < 1(f), all f c G. This can

usually be done using Lagrange multiplier techniques.

*b) Check that -log f c C.

* 2 *c) Check that f maximizes v CL ,f) over F. In general,

* - 2 *if f does not maximize v (L , f )  for all f c F , then

f 0 will not exist since in this case we have only two 

-- -VV -—•- V — — —~~~~~~~~~—-- - - - -±—-
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alternatives. Either there is no f which maximizes

the variance over F, or there exis ts an f which

maximizes the variance but is not in C, so L -log f

is not an element of C.

In summary , the results given above show that the

most robust detector may be designed by f inding f 0
maximizing

v2(f,—log f) = (I(f))~~~, all f c F , (11.42)

and then using L0 -log(f0) to define ON Cif L0 c C) and

basing the threshod detector on

11.4 The Family of P-Point Distributions

This section deals with the above detection problem

when the noise has a densi ty f which is a member of the

family F of p-point distributions defined as

F {f: j
a
f(x)d(x) =

f symmetric and continuous at ±a) . (11.43)

V 
Reasons for choosing this spec i f ic  fami ly  of

distributions are as follows.

1) Thi s family covers a very wi de class of dis tr i butions ;

for fixed a and p, F contains a scaled version of

almost every symmetric distribution.

- —V...— —t ~ _Vaa~~.Vb.~ V_ 
~~~~~~~~~~~~~~~~~~~~~~~~~~

V - -VV. •~~ -~~~
• — — -

~~
V•---’ VV

~
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I ,~ 
2) The required inf ormation for this fami ly ,

1
a f(x)dx, is one of the most easily measured

parameters of a distribution.

To apply our procedure to this f am i l y ,  we must f ind f 0
and L0 which are given by the following lemma .

- - Lemma (11.5):

Over the family F of density functions given by

(11. 43) , the density function

(bl cos2(c1x), lx i  < a

f0(x) = —c 2 I x I  (11.44)

(b2e l x i  > a,

which, for appropriate choices of b1,b2,c1, and c2, is

continuous , and has a continuous f i r s t derivative , has

the following properties : a) L0 
= -log f0 c C, b) ~~~LEC

v2(f01L) = v2(f0,L0) = l/I(fQ)=supfCFv
2(f,LO). The

proof of this lemma can be found in either [l8J,[l~ or in

[20].

Lemma 11.5 shows that the detection strategy will

be to find 0NH 
and 8NV such that

N
V 

~ 
l(xj

_O
NH
) = 0 (11.45)

i=l

and

V ) 1(y~—8~Q = 0 (11.46)

- V ~~~~~~

V --  -——-- - -V :- -  - V - -  
• V -V

~~~~ 

-

- ~~~~~~~~~ - --~~~ ~~~~~ -• •~~ • • - V - • ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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S. —~~~~~



26

where

• 1C1 
tari(c~ t) I t i  ~ a

- 
1(t) = (11.47)

( c~ sgn(t) It i > a

It can be shown that this reduces to

i~ l 
ul(xi

_O
NH) = 0 (11.48)

V and

i~ l 
l~~(y~

_O
~~ ) = 0 

- 

(11.49)

with

~tan(c1 t) It ! < a

l1(t) = (11.50)

~tan(c1 a) sgn(t) lt l  > a

must then be compared to the threshold y,

H1

~~ 
e~ ~ 

-y (11.51)
H0

where 2I

— 2a 2
BL0(01f 0) = a = e 0 (11.52)

with

= 1(f0) 
= 

4a b1 c~ 
(11.53)

- - V ~~~~ V — V ~~~~~~~~~
— 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —~~~~~~ -~~~~~~-~~~~ — — -—~~~~~~~ • _~~~~~ i~~~~_~~~~ -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - - -~~~~~



V - ---- _ ---V -~~~~~~-V -~~~~~~~-- -
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ V -~~~~~~~~~~~~~~~~

- 

Thus , we have

BL0(vlf) 
> BL0(vIf 0) Q(~.! ,1-2 lna) (11.54)

0

11.5 Numerical Results

To examine the finite sample size performance of

these M-detectors, we apply the proposed procedure to

3 different distributions

1) Lognorinal distribution

f(u) = 2 2 1 2 exp [_2 (1n2
(ufl]

(2irau )~~
’ a

2where a = 6 db.

2) Contaminated normal distribution

2 2 22 u —u r —uf(u) = (1—r ) —
~~~ exp 2 + 2 2 exp( 2

a 2a g o  2ga

2 2  2 2
+ 

2r ( l — r )  ,—u (g +l)~ ,. ,u (g — 1)
2 exp~~ 2 2  ‘ 

~O ’ 2 2
go 4 g a  4 g a

Notice that this is the probability density of the

envelope of two orthogonal components, each having a

density function of the form

f(w) = 

(2~ a
2)1”2 

exp + 
(21Tg

2
a
2
)1”2 

exp 
2 g 2a2

r and g was taken to be 0.25 and 2.25 respectively.

_ _ _ _ _ _ _ _ _ _  
_  J
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V

3) Rayleigh distribution

f(u) = u e ~~~~ ?-~~

Each of the above distributions was considered to be

a member of a p-point class of distributions. We set

p=.5, then found a. Having a and p the parameters

of the nonlinearity 
~~~~~~~~~ 

in equation (11.50) were

calculated, then equations (11.48) and (11.49) were

utilized to find 0
N - Using 0N a test of the form

given by (11.51) was conducted . To find the value of

the threshold y a run was made first under H0 using

io6 groups of samples then a minimum mean square error

technique was applied to fit the output data to a curve

of the form

- - lnPF = a O + a
l y + a 2

y2.

The above equation was then used to set the threshold

for low probabilities of false alarm.

Figures 1 and 2 show the probability of detection

verses the signal to noise ratio (S/N) for different

values of probability of false alarm For log-normal.

(S/N) here is defined as 20 log10 ~~~~, where M is

the median of the distribution of the envelope.

Figures 3 and 4 show the same for the contaminated normal

and the Rayleigh distributions. Notice that the signal

to noise ratio required to achieve a certain probability

- V

L _________ — 
~~~~

- -
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of detection at any fixed value of probability of false

alarm in the case of lognormal is higher than that for

contaminated normal, which in its turn is higher than

the S/N in the Rayleigh case. This is due to the fact

that the lognormal has the longest tail and the Rayleigh

has the shortest tail.

Figures (5-8) show 
~D 

verses S/N for a square law

detector for the above distributions. Figures (9-12)

compare the performance of the conventional square

law—detector to the performance of the proposed M-detector.

Examining figures (9) and (10) we notice that the

M—detector always has a better performance than the

square law detector. Notice also that the improvement

in S/N becomes better as decreases and achieves about V

V 

4 db at io 6. For the contaminated normal, figure (11)

shows that this improvement is between (.5) and 1 db

with the M—detector , better than the square law detector.

It should be taken into account that the p—point family

is not the best family to represent the contaminated

normal and much more improvement can be achieved by the

utilization of some other distribution classes e.g. 21.

For the Rayleigh distribution , figure (12) shows that

the M—detector is about 1 db worse than the square law

detector. This loss should be expected since the square law

detector is optimal in this case.

V - -~~~~~
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From the above results we can conclude that uti l ization

of minimal information such as one quantile might lead to H

improvement in the performance of about 4 db or more.

Comparing this to a loss of 1 db in the Rayleigh case, and

taking into account that the longer tail distributions are

much more likely than the shorter tail ones , we find the

M-detector is highly preferable than the square law

detector. One should also expect to get more improvement

in the performance of the M-detector by utilization of

more information. For example, if we have some idea

about some of the partial moments, the family of p-point

distributions would be replaced by the generalized moment

V constrained class defined by

F = {f: 
I 
s~ f dx < P , l’zn<N -

or

F = {f : fs  fdx = P , l<n<M andn n — —

fs  fdx < P , M+1<n<N}
n — n — —

Notice that, if S (x) = 1 for—a<x<a and zero otherwise

we get a quantiles and if S
n

(x)  = ~
r for — b<x<b zero

otherwise we get partial moments. More details about

this class are in [22].

An important remark about these similation is that

if we normalized the data with the appropria te value of a ,

- - - --— -4
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then we can set one threshold to guarantee upper bound

on the probability of false alarm even at small values

of N as N=lO. Also, a lower bound on the probability

of detection exists. These bounds usually are the thres-

hold and signal required to achieve certain 
~F 

and

when the distribution is lognormal. In fact, it was

noticed that the changes in and when the

distribution of the noise changes from lognormal to

contaminated normal are very small.

11.6 Summary

In this chapter we presented a procedure of the

detection of signals with unknown phase in noise, under

the assumption that the noise distribution is unknown

member of a class of symmetric density functions F. It

was shown that this method asymptotically guarantees

an upper bound on both probability of false alarm and

missing whenever the noise density function is element

in the class F under consideration. Simulation results

were given to show the f inite sample size perf ormance

of this method and to compare it the conventional square

law detector.

______ _______ ~~~~~~~~~~~ V V~~V V ~~~~~~~~f l V •  S V ~~~~V~~~~~~~~~~V ~~~~~~~~~~~~~* V . V- V V-V V V - V - V V~~~ VV



F- -V

~~~~~~~~~~~~~~

--- -

~~~~

--- --V — V. -V-V

~~

-V_--V --V_- —V.—- 

~

V -V-V

~~

-V

~~~~

-V-V 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-V_-V --V - V . - — — -

44

III. Detection of Partially Coherent

Signals in Noise II

111.1 Introduction

In the previous chapter the problem of detection of

partially coherent signals in noise was solved by

V introducing the M-detector on components. In this

V chapter , we continue investigating the same problem as

defined in Section 11.2. We introduce another approach

which is called the stochastic approximation detector

(SA). It may be noticed , that the M-detector depends

on finding 0NH and as M-estimates of A1 and
V 

A2 respectively, and then conducting a threshold test

. / 2  2 . -using = 0NH~
0Nv as a test statistic. The

SA-detector will be exactly the same as the M-detector

except that the M-estimates 
~°NH 

and O~~ ) will be replaced

by their stochastic approximation counterparts SNH and

SNV respectively.

In the following section we shall give a brief

description of the SA-estimates and their properties.

111.2 Stochastic Approximation estimation

Consider the sequence of observations fx
~~
) given by

V xj = s + w i i l ,..., N (111—1)

- -V -VV~~~~~~~~~~~_ -
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where {w
~
} is a sequence of independent identically

distributed random variables with a density function

f(w), which is an unknown member of a class of

symmetric density functions F, and S is an additive

signal. It is of interest to find an estimate SN of

the form

SN 
= SN_i + ~ ~ (x~

_S
(~ _1)) (111—2)

where B is a constant and g(•) is some function

such that is a consistant estimate of S and

asymptotically normal with variance v~~(f,g). It

would be of interest also to find a pair (f0,g0) such

that

v~~(f0,g0) — Mm Max v~ (f ,g) 
- 

(111—3)
g feF

This problem has been investigated by several

researchers and we shall suinmarize some of their results

here.

Assume that p(d) = E[g(x-d))=0 has a unique

solution d=s. Consider also, the following set of

assumptions:

Assumption (A 1): ~i is a Borel-measurable function ; and

(d—s)~~(d) > 0 V

for all d ~ s. 

--V -- V.- - - - V ~~~~~~~~~~~ - ~~~~~~~~ - - - -
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Assumption (A2): For some positive constants k and

and for all d

kld—s I< Ip (d) L~k1Id—s I

Assumption (A3): For all d

= ~~(d—s) + t~(d,s)

where 6(d,s) = 0 (Id-sl) as (d-s) -
~ 0 and r~ 

-
~ 0

Assumption (A 4): a) sup E [g ( x_ d )_ ~~~(d) ] 2 <co

d

b) lim E [g (x—d) — 1.1(d) ] 2~~ 2

Assumption (A5):

lim lim sup f z2(d)dR=0
- R-’-~ c—~-0~ jd—s J< e Iz(d) I>R

where z(d) = g(x-d) - p (d)

Theorem (111—1) [23]

Suppose that assumptions (A1) through (A ) are5

satisfied and 2Bk>l. Then N ‘(S
N
_S) is asymptotically

normally distributed with mean 0 and variance

B2a2(2B ~ —l)
1 .

The proof will be omitted. Sacks also showed that

the above theorem remains true (with K replaced by ~)

$ if assumption (A2) is replaced by (A 2
1
):

LV V ~~~~~~~~ ~~~~~~~~~ - -— V - - - - 

- 
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Assumption (A2
1): For all d and some positive k1

ki~ d)I<k1I d s I

and for every t1,t2 such that

inf (~i(d) I > 0
t1< Id—s I<t 2

The above theorem gives conditions under which the

SA—estimate is consistent and asymptotically normal.

To achieve the minimax property, define the class of

*density functions F as

F ={fcF: I(f)<°’) - (111—4)

*
Assume that there exists a density f0(.)eF such that

f
I(f0

)-<I(f) for all f in F and define g0(.)=-~~~
(.), then

0
we have the following theorem from [22] V

Theorem (111—2):

Suppose that F is a 
:0~~~

x set of probability

density functions with F non-empty , g0(.) satisfies the

conditions of theorem (111-1) and

m
f
(ct) = -

~j -~ 
E [— g 0 ( x— ci ) ] =— f g0 ( x) f’ (x + ct )dx  ( 111—5)

Then

v~~( f , g
0
)<v~~(f

0~g0
)<v~~(f

0
,g ) (111—6)

*
for all f(.) c F 

- - 
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Notice that the above conditions are very similar to
.j

the required conditions for the M-estimates. To see the

difference in performance between the two estimators we

use the following lemma from [22].

Lemma (111—1) :

I.f the M-estimate and SA-estimate are both consistent

and asymptotically normal at a density function f with

positive finite variance then

v2(f,L0) < v~ (f,g0) (111—7)

with equality if f m~ (oL)=E f0[g~~(x-c~)].

The above means that the M-estimate will always have

a lower or equal variance. Another problem here is S0,

the initial value of SN
tO be used in equation (111—1).

Although SN will not depend much on the specific value

of S0 asymptotically , this choice will effect SN

dramatically at fi nite sample sizes. Notice also that if

f=f0 and g=g0=—~~ , then a2 = 1(f0) 
and if B = 

~~~~ 
‘

then v~~(f0,g0) = which is the Cramer—Rao lower

bound and the variance of the estimate of S.

In the following section, we apply the above results

to the detection problem in Section II.

-V —— -V ~ _V VV -V-V V U _ - V  - k - -- _~~~ ~~~~~~~~~~~~~ ~ - V ~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - -_________



111.3 Stochastic Approximation Detectors

Consider the problem of detection of partially

coherent signals described in Section (11.2) where {x1}

V and {y1} are the inphase and quadrature components of

the observations, respectively , given by

x. = A + w .
i 1 i

i=l,..., N (111—8)

y. = A + v .
i 2

with the same assumptions and definitions in Section (11-2).

Define S~ and S~ as the stochastic approximation

• estimates of A1 and A2 respectively given by

• = S (i-l) + g (x~ 
— S (i—l)~ 

(111—9)

and

s’~ = s ( i— l )  + g (y~ 
— S (i -l)~ 

(111 10)

Def ine S.  as
1

S. = “RS~)
2+(S~ )

2 (111—11)

and the SA-test of hypotheses as

H1
TN~

I
~ 
S y . (111—12)
N H 0

where y is the threshold of the test.

— - - -— — V - V - -V •~~~~~~~~~~ 
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where Bg (OIf) [B
g (VIf)] refers to the probability of false

— alarm [detection] using the SA-detector with nonlinearity V

g when the actual noise distribution is f -

The above theorem shows that whenever the M—detector

on components guarantees upper bounds on the two kinds of

error probability , the SA-detector will guarantee the

same bounds. On the other hand , for any density function

for which the performance is better than these bounds

the M—detector will have better performance. This means

that in using the SA-detector in place of the M-detector

we should expect a slight deterioration in performance

in return for the computational convenience. In the

next section we shall give some simulation results to

evaluate the finite sample size performance of the

SA-detector and to find out how much loss in efficiency

we suffer by replacing the M-detector by the SA-detector.

V 111-4 Numerical Results

To evaluate the finite sample size performance of

the SA—detector , simulations were done for three di f f erent

distributions , lognormal , contaminated normal and Rayleigh.

These distributions are the same utilized in the study

of the M-detector . To conduct these simulations , each

distribution was considered to be a member of a class of

V p-point distributions with p=O.S as before. Then f0(.)

is given by

V •~V ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - V__~~~~~~- V V - V - V~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~~~~~ -V -V -V-V-V~~~~~~~~~~~~~~ V.~-V~~~~ ~~~~~~~~~~~~ ~~~~V - ~-V~~~~~~~~~~~~~~~ V .V V~~ - - V -V~V V - V ~~~~~
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(b 1 cos 2 (c1x) lx i  < a

f0 (x) = —c ~ 
(111—17)

(~ 2 e 
2 lx i > a

and

(b tan(c1x) l x i  < a

g0 Cx) = (111—18)

~b tan (c1a)sgn(x)~ x~ > a

with b11b2,b,c1 and c2 chosen such that f0 is in F

and g0(.) is continuous at ±a. The constant B in

equation (111—1) was chosen to be equal to

As a result, v~ (f,g0) should be asymptotically equal

to B for all f in F. Three different choices for S0,

the initial value of the estimate, were utilized.

1) S~ x1 and S~ =

2) S~ = S ~ = 0 .
N N

-~~~ 
xi .~~~~ 

yi
~ ~H 

_ i=l d S’~ 
i 1

0 
- 

N an 0 — 

N

The third choice led to the best performance, so we

report here on the results of these simulations only.

Figures 13,14,15 and 16 show the probability of

detection for the SA-detector against the signal to noise

ratio (S/N) for lognormal N=30, lognor-mal N=lO , contaminated

normal N=lO and Rayleigh N=lO , respectively . Figures 17,

18 and 19 compare the performance of the SA-detector to

the M-detector for lognormal and contaminated normal , 

— — -V V-- -- -V ~-• - - 
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and show a loss of up to about 2db in signal to noise ratio.

Figures 20,21,22 compare the SA-detector to the square law

detector. Although the SA-detector is better for the

lognormal case it looses its superiority in the case of

contaminated normal , and runs about 1db worse than the

square law detector.

111—5 General Discussion:

The above simulations show that the deterioration in

performance as a result of replacing the M-detector by

the SA-detector is not slight but serious. It also shown

that the performance of the SA-detector is affected not

only by the choice of S0, but also by the first few

observations. To clarify this, consider N=10. Then if
- 

the first two observations are large with the same sign,

then the chance of correcting this effect by the other

eight observations is zero. On the other hand , the

M—detector can be well—approximated by a one step

Newton-Raphson version [20]. In addition , the

M-detector may also be approximated by an on-line system

if we are not interested in the specific value of 014

but only in its relation to the threshold y . By the

monotonocity of the nonlinearity l(.) in its argument,

if IO HN I>d than either

L V • ~~~~~~~~-V - V V~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -V :~~~~&~~~ - -
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N
~ l( x . —d) > 0

i=l 1

or (111 19)
N

V 

~ 1(—x . —d) > 0
i=i 1

and if 014>y then there exists a number d such that

IO HN I>d and ie~~J>~, where ff2=y2—d2. To construct the

above approximate detector , we pick a set of numbers

{i~ } between y//~ and y and conduct the test as

in equation (111-19). Note as the number of {y~~~}~~ co

we get the exact M-detector. An example of the above

implementation is shown in figure (23).

111.6 Summary

In this chapter we analysed another method for

detection of signal with unknown phase in additive noise

called stochastic approximation detector. It was shown

that, although this method is very attractive and has

good properties from the theoretical point of view, it

fails completely in application at finite sample sizes.

In addition , an approximate on line implementation for

the M—detector on component was presented .
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IV. Detection of Signal

with Unknown Phase and Frequency

lvi Introduction

In the previous two chapters , the problem of detection

of signals with unknown phase in the presence of additive

noise was considered under the assumption that the noise
V 

distribution function is not completely known. It was

assumed that all other signal parameters -— except perhaps

the signal amplitude -— are known. Often in practice, in

addition to the phase, the signal frequency is not

completely known. The analog received signal in such

cases can be modeled as

S ( t )  = B(t) sin [(w
~
+w)t + 

~~~
] (IV.l)

where W
c 

is a known carrier frequency . ~ is an

unknown phase taking any value in [0 ,211] and w is an

unknown frequency in the interval [w’ ,w”]. Although

this problem appears in many communication applications

as a result of the uncertainty about the transmitter

oscillator frequency , it is more frequently encountered

in radar applications , especially in detection of moving

V targets [241. In radar applications, this problem is

usually referred to~~’Doppler detection” and w is called

the “Doppler Shift” . Since our concern in this chapter

V -a-- S~~~~~-V 
~~~~~~~~~~~~~~~ 
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will be mainly with the radar problem , it is in order here

to discuss briefly the nature of this Dop~ier shift.

Assume that there exists a target which is moving

with radial velocity v , then the range of this target

as a function of time will be given by 
V

R(t) = R0 
— v t (IV-2)

where R0 is some constant equal to the initial range at

t=0. If the transmitted signal is V

st(t) = B(t) cos (w t) , (IV-3)

then the signal returned from the target will be

S(j~~ B(t— T(t)) cos [wc
(t_ T(t))] (IV—4)

V 

where T (t) is the round-trip delay time

V r(t) = 
2 R ( t T(t)/2]

— 

2 Ro/c 
- 

2(v/c)t (IV-5)l+v/c l+v/c

where C is the velocity of propagation. But since (v/c) -<<1 ,

equation (IV-5) can be approximated by

2R 2-r (t) = ~~ - —
~~~ t (IV—6)

Substituting from equation (IV-6) in (IV-4), we get

Sr
(t )  = B(t-T+~~ t] cos [w~

(t_T)+
~~ 

wet] (IV—7)
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where t = —s--- and is constant. Equation (IV-7) shows
V 

that the velocity of the moving target will have two

main effects on the reflected signal :

a) A shift of the carrier frequency .

b) A compression or stretching of the time scale of the

evelope.

The first effect is usually more serious than the

second one [24]. In our study here we shall not take

the second effect into consideration since the generaliza-

tion of the solution will be straightforward.

Before proceeding to the solution it would be helpful

to discuss the case in which the additive noise is known

to be Gaussian.

IV.2 The Gaussian Noise Case

Consider the envelope of the transmitted signal to be

a sequence of pulses each with duration D; the separation

V between pulses is T. Then if the pulse amplitude is A and

the observations are corrupted by additive Gaussian noise ,

these observations will be in the form, under

H1: r. = A cos[(w +w)t + fl + n (t)

H0: r
~ 

= n(t)

i=0 ,...,(N—1) (IV—8)

__ - V  V-
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But since the noise is Gaussian and independent, then the

conditioned likelihood ratio would be expressed as V.

(N—i )  
V

A ( r l w , 4 )  = IT A ( v .  1w , q ) (Iv—9)
1

where

iT+D
exp{ —

~~~~~

. f [r~~(t)—A cos((wc+w)t+4)]
2dt}

2a iTA (r. w ,q) = iT+D
V exp { —4 f (rj(t)1

2 dt)
2a iT

iT+D
= exp l 

~~~ 

r~~(t) A cos[(wc+w)t + q]dt

iT4-D
——-

~~~~~ 
f A2cos 2[(w +w)t+q]dt (IV—10)

2o iT

Substituting from (IV—9) in (IV-l0)

V 14-1 iT+D
X(rlw,4) = F exp{ f r~~(t)A cos[(wc+w)t+4]dt2o i=0 iT

(IV— 11)

where F corresponds to the received energy and is not a

V function of w or ~~~. Next, we break the remaining cosine

terms up according to the trigonometric identity

cos lw
0
t+4 ) = cos (w0t)cos(~ ) — sin(w0t)sin(4)

b_ _~~~~~~~~~~~~~~~~~~~~
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and define

N-i iT+D
L~ 

= r. (t) cos[(w +w)t]dt (IV l2)
i=0 iT 1 c

and 
V

N-i iT+D
L
~ 

= f r.(t) sin [(w +w)tjdt (IV—13)
i=0 iT c

Thus, we can write equation (IV-ll) as

A (xIw ,~~) = F exp{ —4 [L~ cos 4-L5 sin ~~~] 
(IV—l4)

If we assumed, as is usual in radar detector, that ~

is uniformly distributed over the interval [0,211], then

A (r~w) = E~~[X (rIw ,q)]

= f ~~ F exp{ -4 [L~ cos 4-L5 sin 4 ] }  d4

1/2

= F 10[A(L
2-f-L2) /a2] (IV—l5)

where ‘o~
•
~ 

is the modified Bessel function of order 0.

Notice that equation (IV-l5) constitutes a complete solution

to the detection problem when w is known [ 3]. If the

freqiiency is unknown , as is the case here, we face one of

two situations. Either we are interested in the specific

value of w or not. If we are not interested in the value of

w, we can average equation (IV-15) with respect to w to

get A(r) and then compare it to a threshold (17]. If

‘ -V -V -V -V

—-V — —~~~
-‘V. -V~

V
~ 
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we are interested in w , then we choose a set of possible

values for w , say {w~}~~ 1 , such that this sequence forms

V a fine mesh on the interval Lw ’ ,w”]. Next, we formulate 
V

a multiple hypotheses problem with a hypothesis for each

V of the M-values of w .  That is,
J

H : r .  n ( t )
0 2.

H1: r~ = A cos[(w
~
+w1)t + 41 + n ( t )

HM
: r. A cos((wC+wM)t + 4 ]  + n ( t )

i = 0,..., (N—l) (IV—16)

The likelihood ratio comparing the itji hypothesis

to the null hypothesis is

= X (x~w~) i = 1,..., M (IV—l7)

If no is greater than the threshold , then the null

hypothesis is accepted ; otherwise, each w~ for which the

threshold is exceeded is a potential detection. If only

one target is present, the maximum likelihood estima te of

w will be that w~ for which is the largest.

In the above analysis , it was assumed that the noise

distribution is Gaussian with known parameters. If the

variance of this Gaussian distribution is unknown, then an

V 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — _ _ _ _ _ _ _ _
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adaptive technique will be necessary to set the threshold .

Many types of such techniques are possible [25]. One of

these methods is the one-parameter threshold. In this

procedure we utilize a set of reference cells , say K cells ,

then we integrate the pulses in each of these cells to

get z
3
, 3=1 ,..., K. The threshold is then, with q constant,

k
r Z .T = q  L j. (IV-l8)

j=l K

Although this method is simple enough, it has two main

disadvantages: a) it depends heavily on the assumption

of normality which is doubtful in most radar application ,

b) if there is another target in one of the reference

cells, this will increase the threshold and original target

might be missed. -

IV.3 M-Doppler detector

Examining the previous detection scheme , we notice

that it consists mainly of two processes. First, assuming

that the true frequency is w
3 

, we transform the original

set of observations r.(t) into a new set of discrete

in—phase and quadrature phase components x~~ and

respectively, given by

iT+D
x . .  = f r~~(t) A cos [Cw +w.)t]dt (IV—19)

and

- - V - - V  ~~~~~~~~~~~ 
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iT+D
~~~ 

= 

~~ 
t
~~

(t)  A sin [(w
~
+w.)-t1dt (Iv—20)

Then, under H
0 

V

iT+D
x~~ = n(t) A cos [(w

c+wj)t]dt

= ~~~ (IV—21) H

and

iT+D
= f n ( t )  A sin ( ( w  -I-w.)t]dt
iT C )

= V
j 

. (IV-22)

Under H1

iT+DX j 3 = 

~.L A COS[(W
c
+W)t#

~IdA 
cos[(w

c
+w
j

)t ) d t + w i j

2 iT+D
= 

~~~ I 
cos [ ( w

~
_w

~~
)t+4]dt + w.. (IV-23)

and since w<< , then
D

A2xj~ ~~~. 
—

~~ cos[(w—w~~)iT+4] + wj~ (IV—24)

Likewise,

2
y— ~ 

‘
~
‘ ~~~ sinI (w—w~)iT+qd + ~~~ (Iv—25)

Noting that if w=w
3 
the first term in both (IV-24) and

(IV—25) reduces to ~~~~~~ cos ~ and 
~

7

~
-
~j 

sin ~ , respectively,

-V 
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and that w. . and v. . are both Gaussian since n(t) is
1) 1)

Gaussian by assumption , the second step in the previous

scheme was to utilize a square law detector to decide

whether a signal is present at w
3
.

As was discussed in Chapter II of this report , the

performance of the square law detector depends on the

assumption of normality of n(t), and if n(t) is not

normal , as is the case of interest here , the performance —

of the square law detector might deteriorate seriously.

To avoid this, we propose a more robust doppler detector

which is called the M-Doppler detector. This detection ¶

scheme consists also of two steps. The first is exactly

the same as in the previous scheme. The second utilizes

the sequences {x~~ } and 
~~~~~~~~~~~~~ as inputs to a set of

V - M-detectors on components presented in Chapter II. Since

the mathematical work required for this procedure is the

same as in Chapter II, we are going to give only a brief

description of the procedure. -

a) Find the nonlinearity l(.) which is optimum in the

minimax sense over the family of distributions F

which contains f (w . - ) and f(v. .).1] 1)

b) Find °NH~~~ 
and °NV~~~ 

defined as

~ l[x~~ 
— 

°NH~~~
1 = o (IV—26)

and

- V----
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~ l[y.~ - 

~~~~~~~ 
= 0 (1v 27)

f 2 .  2 .c) Find 0N~~~ 
=

- I d) Compare 014 ( j ) ’ s to a threshold y

It should be noticed here that an advantage of this

V method is the stability of the threshold with respect to

the distribution of n(t), so an adaptive technique is

V 
not needed and there is no consequent loss in the power

V 
of the test. Figure (24) shows an M-Doppler detector.

iv-4 Numerical results

To test the performance of the proposed detector

- a set of simulations was conducted under the assumption

that w. - and v. . are components of a lognormal
1) V

distribution with o = 6 db , and then repeated for the

case when they are contaminated normal with r = .25 and

g = 2.25. In both cases, f(w.~~) and f(v.~~) were considered

to be members of a class of p-point distributions with

p=0.5 - Then iC .) was found to be of the form

(tan(ct) It i  < a

1(t) =
~tan(ca)sgn(t) I t i  > a

for appropriate c such that 1(t) is a continuous function.

The set w~ was chosen such that the interval Lw ’ ,w”]

is divided into 16 equal parts. Using the above nonlinearity

and values of w ., the simulations were conducted and the

-V 
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results are summarized in figures (25) and (26) which show

the probability of detection verses the signal to noise

ratio for different values of probability of false alarm V

for 14=10. An important result which is not shown in these

graphs is that the simulation confirmed again the stability

of the threshold. It was found that if we normalized

the thresholds in both cases by the value of a, we get

almost the same results. 
V

Figures (27) and (28) compare the M-Doppler detector

to the one—parameter adaptive detector discussed in

section (IV—2). It may be noticed that the superiority

of the M—Doppler detector increases as decreases and/or

increases and the difference in (S/N) comes to about

8 db at 
~F
=10 6 and 

~D~~
99 for the lognormal case, and more

than this for the contaminated normal case.

--4
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V. Detection of Signals with random

Phase in Sea Clutter V

V V-l Introduction:

In the previous part of this report we assumed that

the signal phase is an unknown nonrandom parameter over

each set of observations but can change randomly from

one set to another. In this chapter, we move one step

ahead to assume that the signal phase changes randomly

from one observation to another. The main difference

between these two cases can be seen if we consider the

distribution of the inphase and quadrature observation

components . In the first case , the inphase and/or the

-V quadrature components will have the same distribution

under both hypotheses except for a location shift

V which is constant or almost constant under all observa-

tions , so it was suitable to utilize a test which was

sensitive to location changes to distinguish between

the two hypotheses. In the second case, the distribution

of these components will also be the same except for

a location shif t, but this location shift will change

randomly from one observation to another and will have

a mean which is equal to zero under both hypotheses. This

means that utilization of a hypothesis test which is sensitive

to the means of the components should not be expected to

lead to good performance , especially if this test is

________  - - V .  ~~~-V V
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robust against the changes in assumptions as in the case

-V of the M—detector on components presented in Chapter II.

This detector was simulated under the assumptions of

the second case and it was found that the signal to noise

ratio had to be increased by at least 8 db to achieve the

same probability of detection at the same probability

of false alarm as in the first case.

On the other hand , it was noticed that the mean of

the envelope of the observations is monotonically

increasing with the signal in the case of random phase

[26 Figures (4-7)]. As a result of the above

observation , the main trend in treating the problem of

detection of signals with random phase was generally to

design detectors which use the envelope of the observa-

tions as input data instead of the components or the

observations [17, 27 and 28 ] In addition, if we

examine the results in the previous chapters of this

report we may notice that, for the types of noise under

considerations , censoring the observations always leads

to improvement in the performance. This conclusion was

also supported by some previous results by Trunk [271

when he tested the trimmed-mean detector.

As a result of the above discussion , we are going

V 
to consider in this chapter only these detectors which

utilize the envelope of the observations as input data,
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and which limit the effect of the tails of the observations

distribution in some way. It should be emphasized here

that we are looking for detectors which have good performance V

over a wide class of noise distributions when there is

only partial information about these distributions. Also,

we shall consider that the available information is

always quantiles.

In Section (V—2) we present the “M-detector on

envelope” . In Sections (V-3) and (V—4) we discuss the

“Robust Quantizer” detectors and the “Extreme Value

Theorem” detectors respectively. Section (V—5) gives

brief description of the “Trimmed Means” detector which

V will be utilized in Section (V—6) for comparisons.

(V-2) M-Detector on Envelope:

Let Z1, Z2,..., ZN be independent identically

distributed samples taken from the probability density

f(z) and let F(z) be the distribution function of z.

Consider also that

f 2  2z. = x.+y . (V-l)
1 2. 1

where

x .  = A cos ct,. + w. (V-2)
1 1 1

and

y~~~~A sin~~~~+ v ~ (V-3)

______ -V -V
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where v
~ 

and w1 are noise components , 
~~~

. is a random 
V

phase with uniform density function over the interval V.

V 
[0,2-ri] , and A is the signal amplitude which is equal to

zero under H0 and greater than zero under H1 . The

exact value of A may be unknown. Assume also that 
V

there exist two known real numbers Z1 and Z2 such

that 0<Z 1<z2
<cn and F(Z11H 0)=P1 and F(Z21H 0)=P2 where

4 
P1 and P2 are known and not equal to zero or one. It

is required to design a detector which gives good

performance against all distributions having the above

properties, and which is insensitive to the variations

of the actual distribution. As was discussed in the

previous section this detector should be expected to

limit the effect of large observations.

Before proceeding to describe the M-detector on

envelope , we need the following definitions. Define

the nonlinearity l(.) as

(—b a (t)-< z1

1(t)  = -b a + 
~~~~~~~ 

(t-z
1
) z 1< t<z~ (V-4)

a Z < t

where a and b are two constants and Z11 Z2 are as defined V

before. Define as the value of 0 such that

-V --V —-——-V —— -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —-V ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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N
~ g(z ON) 0 (V 5)

i=l

g(z—O) = l (z—O) — E[l(z) 1H 01 (V—6) 
V

Then the M-detector on envelope will be of the form

H 1
~~~ -y (V—7)

H0

where y Is the threshold.

Examining the above detection strategy , we find

that the main idea is to use a fraction of the small

observations (those less than Z1) to get rid of the

large observations (those larger than Z2) without sortingF’2the data. If b was chosen to be equal to p— then
I

asymptotically this will be equivalent to the average

sum of all observations in some intermediate interval

of length (Z2—Z 1). In this, the M-detector shares with

the median detector the good property of deleting

outlyers; however, it does not depend on one observation.

So it is midway between the mean and median detectors.

To study the stability of the threshold we must

first obtain an expression for the distribution of

under H0.

V 
Distribution of 014 

V

Lemma (V .1)

Under H0, 014 
-
~ 0 as N-~~ .

- - — V - - V  ~~~~~~~~~~~~~~~~ - 
~~~~~~~~~~~~~~~~~ V
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Proof:

For any positive number ~ the law of large numbers

implies

1 N
lim ~ g(z~—c) = E[l(z — c )1H 01 — E[l(z )1H 0

]
N-~~ i=l

< 0

since 1(x) is monotonic in its argument. Also

N
u r n  ~ g(z~+c) > 0

-
. N-~~ i=1 V

V N
But since 0N is defined such that ~ g(z.-O~ )=O . then

i=l
for any positive number c , there esits a number N0 such

that for all N>N
0

— C <O N <

and

P{IO N
I<C} V. * l a s N - ~~~~,

Lemma (V.2):

Under H0, ~~‘1~~ o~ is asymptotically distributed as

normal with zero mean and variance

2
v2 O ) = 

E [g  ( z ) ]  (V—8)N [E ’ (g(z—0))~~~ 0
]
2

Proof:

P(v’~ 0N~~~ 
= 

~~~~~~~
-V 

= P[~~ 
i~ l 

g(z~ — ) < 0] (V—9)

~~~~~~~

— V V  

~

V - V V - - V - V  — V--V 
—V -  — - -V -— - — — ~~~~~~~~~~~~~ — - -~~~~~~~ -V - - V - V — --~~~~~~~ — -— - — - V—~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — -
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Using the central limit theorem it can be shown that

the sum in equation (V-9) tends to normal. Also ,

lim E[g2(z.— ~ ) ]  E[g2(z)]
N~~

and

lim /~~ E[g(z— ) ]  = lim /~~ E[l(z— ) — 1 ( z) ]
N-~~ N-~~

= —K ~~~~~~ [i (z—O)]

= —k E’ [g(z—0) 1 0 0 1

Then,

k E’ [g(z—O) I —

P{J~I 0 -.zk} -*- 
~ 1 2 2 } (V—b )N— E ” [g (z)]

where 
~~~~

( . )  is the standard normal distributjon function.

To evaluate the sensitivity of the threshold with

respect to the distribution , we calculate the explicit

value of the variance in equation (V-b ).

E’~~g(z--O) 1 0 0  E’{l (z—O )

= _____ 

Z 2 
f(z)dz

2 1

= 
(b+1)a [P —P 1 

- 
(V—il)

i.e. it is independent of the specific shape of f(z).

-i
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E[g2(z)] = E [12(z)] — E2[l(z)]

= b2 a2 P1+a
2 [l~P2]-i-[ba+ 

4
~~

a Z
1]
2[p

2
_p
1] [l+P

1
—P

2
]

+ 1
(b+1)a

111 z2f(z)dz — [ f z f(z)dz]2}
2 1

-2 [ba+~~~~~~ ~~ 
[(b±1)a] [1+P1-P2} z f(z)dz

2 1 - 2 1

(V—l2)

It can be seen that the value of the threshold will

change with changes in the true distribution only through

the last two terms in equation (V-l2). On the other hand ,

since we are dealing with detection in sea clutter , where

all possible noise distributions range between Rayleigh

and lognormal [29J a proper choice of Z
1 

and

will minimize the effect of these two terms. For example ,

V 

if we choose Z
1 

and Z
2 such that P1 

and P2equal .1 and

.5 respectively, the e f fec t  of these terms on the

variance will be negligible. This choice also would

help in calculating E[b(z) H
o
] which is required to

perform the test

Receiver implementation

To perform the above test as it was described in

equation (V-7), we must first calculate This

process may not be easy if the number of observations

involved is large sine 1(.) is a nonlinear function.

_ _  V - - V .  _ _
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But , on the other hand , noting that g(.) is monotonic

in its ~trgument, for any number ~ such that C >

N

~ g(z~—~ ) < 0
i=l

and if c < O14~ then

N
g(z~ — i ) >

i=l

Accordingly if we determined the threshold to b’- y

then the N—detector on envelope can be implemented in

the form

N

~ g(z~ —y) ~ 0 (V—13)
i=l H0

or , equivalently

N H1

~ l(z~ —y) ~ E [l(z) 1H 0 ] (V—l4)
i=l H0

The implementation of (V-14) is shown in figure (28’).

V Numerical results:

To examine the finite sample size performance of the

M—detector on envelope , simulation experiments were

conducted at sample sizes of N=lO and 30 for the case

when the noise has a lognormal distribution giveh by
in2 Z

f(z) = e 2o
2 (V—l5)

-V -V--V-V-V - - V -
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where a = 6 db, and at N=lO for the contaminated normal

distribution given by 2
2 —z

2 ~~~~~ 2 2
f(z) = (l—r ) e 2 + 

r e 2k

k

+ 
2 (l-r)z expE ~~~~~~ I

0[
2
~~~ 2

_1)
~] (V—16)

where is the modified Bessel function, r=O .25

and k=2.25.

In each experiment, the values of Z1 and Z2 were

found such that P1 and P2 equal 0.1 and 0.5 respectively .

b was taken to be = 5. To calculate E(l(z) IN 0], a1
Rayleigh approximation of the form

— (z—m) 2

f(z) = 
(z—rn) e 2a2 (V—l7)

was utilized. First, we calculate m and a such that this

distribution satisfies the requirements at Z1 and Z2. Then,

we use this approximation to calculate E[l(z)jH0]. It

was found that the maximum difference between the

approximate and true values is about 5%. It was noticed

also that the value of m is very small in both cases.

Figures (29-31) give the results of these simulations.

The signal to noise ratio was taken as 20 1og10(A/M)

where A is the signal amplitude and M is the median of

the distribution under consideration. Notice that the

L _ _ _ _  
_____________
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required (S/N) to achieve a certain at the same 
~F 

in

the case of lognormal is slightly higher than that

required in the contaminated normal case. The following

remarks can be made :

z i1) — is almost the same for the two distributions.
z2

2) At N=10, if the thresholds were normalized by the

appropriate value of Z2, then the thresholds which

would give a of io 2 and l0 6 when the noise is

lognormal, would give a of io
_2 

and ~~~~ when

the noise is àontaminated normal. This confirms

the stability of the threshold.

3) At N=lO , using the same normalization we found that

at the same signal to noise ratio the probability

of detection is also almost constant , independent

of the true distribution.

Remarks 2 and 3 imply that the detector is robust

or insensitive to changes in distribution , even at small

sample sizes such as N=lO. More about this detector

will be presented later in this chapter.

Summary

In this section, the M-detector on envelope was

presented as a solution to the problem of detection of

signals with random phase in sea clutter. The main

idea behind this detector was the use of some of the 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .~~.±±. . .
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very small observations to delete the large ones without

need for sorting the data. The robust properties of

this detector were shown both theoretically and

experimentally. In addition, a simple method for

implementing this detector on line was presented.

(V- 3) Robust Quantizer Detectors:

The main idea behind the set of detectors to be

discussed in this section is in the utilization of a

quantizer to transfer the input data to a set of

preassigned values, then to utilize the quantizer outputs

as an input to the decision rule. Assume that
N m

{z.} is the sequence of input data and {a.}
1 i=l ~~j=Ois a sequence of real number such that a0 0 and

am~~ 
. Then the output of the quantizer ~~ 

will be

given by

q
~ 

= ~ (z~) = l~ a~~ 1<z~<a1 
(V—l8)

m
where f 1.) is the set of preassigned values for the

J j =l
quantizer output. The test of hypotheses will be of

the form

N H1
TN 

= 
~~~~

• 

q
~ 

y (V-19)
i=l H0

where y is the threshold. The above choice of TN in

fact does not in anyway limit the generality of the 

. -. . ~~~-. ~~~~~~~~~~~ . .
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procedure since the q~ ’s are independent as long as the

z.’s are, and we are still f ree to choose the l .’s to
1 J

satisfy any optimality criterion we consider. Such

quantizer detectors were presented in [30,3]] under the

assumption that the noise distribution is known and in

[32] under the assumption that the noise distribution

is partially known. The following remarks are in order.

1) With the proper choice of (a.} the detector will

limit the effect of large observations to the desired

degree.

2) The detector is insensitive to the specific shape

of the distribution since it does not discriminate

between the values of observations in the same interval.

3) If there is a family of distributions such that

[F(a~ )_F(a~ _1)] under H0 is the same for all members

of this family for j=1,..., m , then the distribution

of TN will be the same for any member of this family under

and the test will be a constant false alarm

rate test (CFAR) over this family.

From the above remarks and since we are concerned with
- 

. the threshold stability,  it seems that the most appro—

priate way to choose {a.} is in some way related to the

quantiles of the distribution. This simplifies the

implementation of the receiver in the case of detection

_ _ _ _ _ _ _ _ _  

~~~~~- --— .~~ -.- . .
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in sea clutter since the designer usually has at least

some idea about the quantiles of the distribution. In

all detectors involved in this study, the a~ ’s were

choosen such tha t [F (a~ )-F(a~_1)] = for all j=l,..., m.

To choose the l ’ s three different methods were used

a) The fixed step quantizer

In this method , 1. was chosen as l.=j. So, if we
J

assume that n. observations fall between a(.1) and

a., the test statistic can be rewritten as

l~~~~~~.TN 
= 

N ~ n~ (V-20)
j =l

To find the distribution of TN 
we first find the

distribution of the nj’s which is given by

Pr Efli=Ni~ 
i 1 ,2,..., mIH OI N ‘N N !  (~ )

m (V—21)

and
N N

P [n. =N., i=l,..., m IH 1]=N! ~~~~~~ 
rn (V-22)

where P~ is the probability that one observation falls in

the interval j under H 1. Using equation (V-20)— (V-22) we

can get the distribution of TN.

b) Coherent—Optimal guantizer:

In [32] it was shown that if the signal is a dc signal

in addi tive noise then a locally most powerful quan tizer

detector of the above form can be constructed using

L. . ..~~~~~ - .— ~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
J
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ii 
= 

~ ~
1 (a. 1)~~~(a~ )~ 

j=1 , . . . ,  m (V—23)

Although this is not the case here, this quantizer was

included in the study for the sake of completeness. If

we assume the observations are distributed under H0 as

a lognormal with a=6db then the values of the a
3
’s and

1
3
’s would be given from table (V-l) below for m l O

1 2 3 4 5 6 7 8 9 10

.41 .556 .693 .841 1.0 1.10 1.44 1.8 2.43

1. 1 — .613 —.lll 0 .059 .088 .107 .123 .125 .119 .104__ 1I____________________

Table (V-i) a.’s and l. ’s for 10 level coherent

optimal quantizer under lognorinal distribution

Note that all the l
i
’s for j>5 are in the neighborhood

of .11, and that the values of the l
a
’s for j>8 are

decreasing . This second remark is a setback in this

method since it implies that as the signal increases TN

may decrease, which would be expected to lead to bad

performance.

c) Semi optimal-coherent quantizer:

To correct for the descending part in the ~~~~~ 19

and 110 were set equal to 0.126 and 0.127 respectively .

Otherwise , this quantizer is the same as the previous one.

~
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Numerical Results

To evaiu-~te the actual performance of the above three

detectors, simulation experiments were conducted using

lognormal and contaminated normal distributions as in

Section (V-l) . The results for the optimal coherent

quantizer detector were as bad as expected especially

for low values of 
~F’ 

so the results were not reported here.

Figures (32-34) show the probability of detection

versus the signal to noise ratio (S/N) at different

probabilities of false alarms P~ , for the fixed step

quantizer detector. Comparing figure (33) with (34)

we can see that the signal to noise ratio required to

achieve a certain 
~d 

at the same when the nois . is

logriormal is very close to that required when the noise

is contaminated normal.

Figure (35) shows P~ versus (S/N) for the semioptimal

coherent quantizer detector. Comparing figure (33) with

(35) we notice that the fixed step quantizer detector

is superior to the semioptimal coherent one especially

at higher values of

Summary

In this section , three quantizer detectors were

investigated. It was shown that the simplest quantizer -—

which is the fixed step quantizer -- is the best one.

To implement this quantizer detector we need only to

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ 

.~
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know some the distribution ’s quaritiles. The number of

quantiles assumed to be kncwn in the experimental study

here was 9. Since this number is large, it is our 
-

opinion that some study should be devoted to the estima-

tion of these quantiles. A first step in this direction

was taken by the author in [33] for the case of detection

coherent signals in symmetric noise. The fixed step

quantizer detector will be compared to other detectors

later in this chapter.

(V-4) The Extreme-Value Theory Detectors (EVT):

In [3 4 ] ,  [35] Guxnbel developed the extreme—value

theory. It was shown that if the tails of an arbitrary

distribution are exponential , then the right hand tail

can be represented by

F(x) = 1 — ~ exP [—ci~~(x_u~)] (V-24)

for x in an appropriately restricted region about the

parameter u~ . Similarly , the left hand tail can be

represented by

1F ( x) ~ exp [ci1(x-u 1)] (V—25)

where the parameters ~~~~~~~~ and are defined as

F(u ) = 1 - (V-26)

= n f(u ) (V—27)
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F(u1) = (V—28)

a1 
= ~ f(u1) (V—29)

and n is the number of samples from which the maximum

or minimum sample is taken. In [35] GuinbeL also gave a

technique to estimate the parameters u11u~~a1 and an

Using the above results Milstein et al [36] introduced

the “Extreme Value Theory Detector” (EVT). The main idea

in this detection scheme is that if the signal is fairly

large, then the confusion results as to whether a certain

observation is related to the lower tail of the distribu-

tion of signal plus noise or to the upper tail of the

noise only distribution . To solve this problem they

utilized an approximation of the likelihood ratio depending

on the distribution approximation given in equations

(V-24) and (V—25) . So, the test for a single observation

will be of the form

a exp [-a (x-u )1
A(x) = a~ exp [-a 1(x -uj TT < (V-30)

0

where y is the threshold. Now, if there are N observa-

tions we repeat the test for each one of them and count

how many observations out of these will exceed the

threshold. If the probability of false alarm for a single

observation is P~~, and m observations exceeded the

threshold, then the total can be calculated using the 

~~~~~~~~~~~~~~~~
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F
binomial distribution. This detector can be implemented

very simply by setting two thresholds. The first is y

which would be exceeded under H0 by any single observation

with probability 
~Fl~ 

The second is K , which is equal to

the total number of observations exceeding y , to get

the total probability of false alarm

Notice that this detector is the same as the binary

integrator detector presented in [29) for detection

of signals in log normal clutter. It was also presented

in [37)for detection of signals in Rayleigh noise channels.

In general , it is another implementation of the rank

detector.

A problem which might appear with such detectors is

in the choice of the second threshold K. Test results

show that the receiver performance depends on the choice

of K and there is a different optimal choice for each

distribution.

Numerical Results

We conducted simulation experiments for the above

detector using lognormal and contaminated normal distribu-

tions as done before in the previous two sections. First

we considered y to be constant (it was changed in a

very narrow region to guarantee P~ ) and changed the

second thr eshold K to get the required value of P~ . The

results of this test are shown in figures (36) to (38).

____ 
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It should be noticed that the required (S/N) for lognormal —

is slightly higher than that for contaminated normal to

achieve the same 
~d’ 

especially at low The test was

repeated for lognorinal using K=7 and changing y when

N=l0. Figure (39) shows the results of this test, which

show improvement in the receiver performance , especially

at “F 
= 10 2,10 3 and l0~~ where K was taken in the

previous test to be equal to 4,5,6 respectively .

Summary

In this section, the EVT detector was described and

it was shown that it leads to the same detection scheme

as the binary integration. It was shown also that the

test performance is sensitive to the second threshold

K which cannot be chosen in anroptimal way without

knowing the exact distribution under consideration.

(V— 5) The Trimmed—Mean detectOr :~

In this section , we give a brief description of the

trimmed-mean detectors which will be utilized in the next

section for comparison. Assume there are N observations ,

then the designer chooses two numbers n1 and n2 such that

N>n2>n1>0 , and the test statistics will be

n 2
TN •~~ 

zi1=nl

where z. is the ith smallest observation , i.e. z <z < .•  .<z •
2. 1— 2— — n

~~~~ ~~~~~~~~~~~~~ 
k~~~~~~~~~ . S á
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One difficulty with this test is that it requires sorting

the data. The second difficulty is in setting the

threshold since it depends on the distribution and there

is no mathematical expressiOn to be used. Notice also

that if n1=n2= [~ ] this turns out to be the median detector

and if n1=l and n2=N it is the mean detector. On the

other hand , it was shown in [27] that this detector

performs better than most of the known detectors for

both lognormal and contaminated normal distributions.

More details about the trimmed-mean detector can be

found in [38].

Figure (40) shows the performance of the trimmed

mean detector against lognormal [a=6db) when N=l0, n1
2

and n2 5. The performance of this detector against

contaminated normal is the same as the M—detector on

envelope, so it will not be repeated here. It was found

also that the M—detector is better for both distributions

then the trimmed mean n1=4, 
n
2=7.

(V-6) Detector Comparison

a) Performance

Comparing the performance results of the chosen detectors,

it should be noted that for the lognormal distribution at

N=lO the performance of the M-detector On envelope, the

trimmed—mean detector (n1=2 , ri
2

5) and the fixed step

.4

—.—--——— , - -----—-- —-—-- - -----—-— ——— —-- — -—--.-— — . — .  - - - - — - . - — -.— ---—‘. ———-— —--~~ --— -~- -..— -—-- — ——--~~~ —- —
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quantizer detector are all very comparable. In fact

the graphs for 
~d 

against (S/N ) overlap in most cases,

and all of them are within less then 1db. Also , the

performance of the M-detector gets bett than the

others as decreases and increases. The E.V.T.

detector always has poorer performance than the others,

even for K=7 which was shown to b’~ optimal for lognormal

when N=lO [29]. Figure (41) shows an example of these

comparisons at PF=l0
6. It shows also the Chernoff

lower bound as an approximation for the performance

of the optimal detector. Both the M-detector and the

fixed quantizer detectos are the closest to this bound ,

with the M-detector better at higher values of

At N=30, the performance of both the M-detector and

the fixed step quantizer is almost the same with the

M-detector better at low P~ . The E.V.T. is far behind ,

mainly because we did not utilize the optimal value for

K.

For the contaminated normal , the performance of the

trimmed mean and M-detector was the same as mentioned

before. The E.V.T. was the worst detectoi in the group.

The fixed quantizer is very slightly better than the

M-detector at 
~F 

= 10 2 but the M—detector is much

—4better at P <10

— — —- ~~- -- -- _s___ - -
~~~ -——



____ —- - - --- — ---•- -- —--- - ---.------ -.“--
---—-. -—- -- -.- --— — —- -----

115

:~~~
- 

—

95 
— 

PF=l0
6 

—

.9 /11
— optimal detector ///

.8

E.V.T.  k= 7 I
.5 — —
. 4 —  —

.3 — 
M—detector S 

—

quantizer Trimmed-mean
.2 — 

detector —

.l I I I
-2 4 6 8 10 12 14

S/N (dB)

Comparison of various detectors for log—normal
distribution (cy=6dB ) at PF=l0

6; N=l0

Figure 41 

- -5---——- -- -~~~~~~~~~~~~~~~~~~~~ -- —,~~~~~~~~~~~~~~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



116

General properties

1) The performance of the E.V.T. detector is highly

dependent on the value of the second threshold K and

the true noise distribution , and since the main reason

behind this study is the uncertainty about the noise

distribution , this detector cannot be recommended for

applications.

2) Although the trimmed-mean detector has comparable

performance to the other two good detectors , implementation

seems impractical since it requires sorting the data ,

and there is no known way to set the threshold for it.

3) The M—detector and the fixed step quantizer detector

are the simplest to implement among all detectors

studied , and they also have the best perfori~~nce.

4) The M-detector has the advantage over the fixed step

quantizer detector that it requires less information.

It requires knowledge of only two quantiles , while the

quantizer detector requires more quantiles.

5) Using the quantizer detector , will be set only

approximately and some values of are unachievable

for finite N.

6) If the designer is interested in the low 
~F 

high 
~d

region, the M-detector has better performance than the

quantizer detector.

a-

___________
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It is our opinion that the M-detector is the best

of all the detectors involved in the study , for the

above reasons. Meanwhile, we believe, as was mentioned

earlier in this chapter, that some research efforts

should be directed toward finding procedures for setting

the quantizer parameters that depend on less information

than is used here.

(V-7) Summary

The problem of detection of signals with random

phase in sea clutter-like noise was treated in this

chapter. Several detectors were developed and/or

described. Comparing these detectors as to performance

and implementation it was found that the M-detector

on envelope is ~best.
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VI. Performance of the M-Detector with Dependent Data

In all the above, it was assumed that the noise samples

were independent. In this chapter, we will examine the

performance of M-detectors in certain types of correlated noise.

Let {x
~
} be a dependent sequence of random variables

given by

m
x ~ A. x . + w , n = 0, +l , +2 , . . .n •

=
~~ 

i n— i n — —

where {w~ } is a sequence of independent , identically

distributed random variables with mean zero. Let the observa—

tions be

y = 0 + xn n

and let 0 sat isfy

- 

i=l 
l (y.— 0) = 0

We want to show that 0÷0 a.s. and that ~4~(0-0) is

asymptotically normal.

Our princthal tool is the following result due to

Billingsley [39, P.184]. Let

= 

~n ’~~n — l ’”~~ 
, n=l,2,...

= 
n’~ n—l ’”’ ~n—~+l~ ~ n=l ,2,...

v(L) = E { 1f l 0 — ~~~~~ , 9=1,2 ,... 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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Sn = 
~l 2 ~~ ”~~ n

where f ( S )  and f~~( . )  are measurable functions, ~~~~ is a

4 -mixing sequence with ~ ~~rj

] h/2 <co , and {ri~~} has zero mean

and finite variance. Suppose also that ~[v(t)]
1”2<°’ . Then

the series

a2 = E ( n ~~) + 2 
j~~l 

E(n 0n~)

converges absolutely; if a2>0, then - -
~~~ S converges in

distribution to N(0 ,a 2).

To apply this result, we rewrite X
n 

as

x = 
~ b.w

n J n-3

~ a.r.3
i= 1 1 1

where the r. ’s are the roots of rm_A lr
m l _ . ..-X and the a.’s

1 - m 1

are constants (see Sirvanci and Wolff [40]). Then

~ 2
E(x2) ~ b . a2 <

n j=Q ~ 
W

Note that {w
~

} is ~-mixing since it is an independent sequence.

It remains to show that

~ .{E(l(x0
)_l (x

0~))
2)V2< c0 , (VI . l )

where
2=1

XOt 
= 

j~~0 
b~ w_~

-.5 —- - --- --S - -  - — . ~~~~-- -- - . ~~~~~~ - — ~ -- , — .-~~-
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Lemma (VI.l):

If Il (x~—l(x2
) < R 1x 1-x 2 1 for all x

1
,x2

, and for

0<R<~~, then (VI.l) holds.

Proof:

We have

~l(x0
)- l(xot) I ~~ R1x 0

-x02 I = R( 
j
1
2. 
b~w_~~I

and thus

E{l(xo) l(xot
)}2 ~ R

2 E{~~ 2 
b~w .~ }

2 
~ R

2 

j~ L 
b~ ~~

Let a be the maximum of the 1a
~
} and r be the maximum of

the {r
~
} . Then 

;

~~~e

2 

I b . J  < :: 2 2 r22

~ b . < m  ~ a r  = m a  2j =2. l—r

and therefore

RIn a a  Rma ar
~ {E(1(x0)—l(x02

))2)1”2 :~ 
w 

~ r2 = 
W

2= 1 “l—r 2 2=1 “l—r 2 (l— r)

since 0<r<l.

Note that if 1() is either of the following , it

satisfies the requirements of the above lemma:

a , t>a

1(t) = t , -a<t<a

-a , t<-a

- - 5 -  -~ -— ----— - - - --— -~~~- . —- - _ _ _ _ _ _ _ _ _ _ _ _
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or

tan (ca) , t>a

- 1(t) = tan (Ct )  , -a<t<a

-tan(Ca) , t<-a

with Ica t < ir/2
A

To prove consistency of 0 , we need a slight generalization

of the above. Define

fln 
= l(X~ -•0) — E [ l ( X n

_ 0 ) ]

~n2. = l(Xn2.~
0) — E [ 1 ( X n2.

_ 0 ) ]

Then

v ( 2 . )  = E{ 1n 0—fl 02. 1 2 }

= E {I l ( x O
_ G ) _ l ( x O2

_ 0 ) I } ~~~E ( 1 ( x O
_ 0 ) x O2. 0)

~~

< E{l(x0
_0)-l (X02.~

0)} E(x0—x 02
)

and

Now from the above we have

N
—~~ --- ~ [l(x._0)-E [1(X. 0)]] ÷ N(0,G2)

,/~ j=1 
1 1

where

a2 = E(n
2) + 2 ~ E(n ~~~.) •

:3

_  

- -

~~~~~~~

- ---
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That is, for any e>0

‘
a 

N j~~l 
1(x~_ (0

0+c)) E[l(x
~
-(eo+c))] > 0

N j~ l 
l(x~

_ (e
0
_c)) E[l(x

~
-(oo-c))] < 0

where 00 satisfies

E[l(x
~
—0o)] 

= 0

Thus for any co>0 there is a N0 such that for N > N
0

00 c~~ 0 ~~ 
0o + C

and therefore 0 -

~~ 
00 a.s.

A N
Since /ii 0 < y if and only if — 

~~ l(x.—y/v’Th<O,
— /~i j l  

—

asymptotic normality follows from the proof of Thm . 2.1. in

[39] if we take ii
~ 

= l(x.— y//Th .

To evaluate the finite sample size performance of the

M-detector on components and on envelope in the presence of

correlated noise , a set of simulations were conducted using

correlated data. For the M-detector on components a correlated

Rayleigh , log—normal, and contaminated normal noise were

util ized. To generate the correlated Rayleigh (z )  we utilized

the following formula

~~~~~~~~~~~~ I~ ~~~
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x . 0.l x . + u .
1 1—l 1

= 0.1 
~
‘i—l + v.

2 2 1/2(x. + y.)
1 1. 1

where {u~) and {v~} are independent samples from a zero

mean normal distribution with variance 0.99. This value was

chosen to make f(x) and f(y) members of the class of p-point

distributions containing the standard normal distribution.

This will simplify the comparison with the independent case

treated in Chapter 2. The correlated log-normal was generated

as

= exP (y~ )

= O ..l 
~~~~_ 1 + u.

where Cu1) is as before. The contaminated normal was generated

as in the Rayleigh case except that {u~ } and {v~} were

independent samples from a contaminated normal distribution.

Figures 42-44 show performance of the M-detector on

components (same set of detectors as in Section 11.5) for

log-normal, contaminated normal , and Rayleigh , respectively.

Also shown is the performance of the conventional square—law

detector. The M-detector is still superior to the square-law

detector for both log-normal and contaminated normal cases,

and it is less than 1dB worse than the square—law detector for
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the Rayleigh distribution . Comparing these graphs with

Figs. 2-4, it can be seen that there is a loss of power that

achieves a maximum of about 1dB at = 10 b when ti~e noise

is Rayleigh. The minimum power loss occurs in the log-normal

case.

- The graphs do not tell us how much power is lost if the

threshold is set assuming correlated noise when in fact the

noise is independent. This power loss was calculated and

found to be less than 1.5dB, the maximum loss occuring in

the Rayleigh case.

To test the performance of the M-detector on envelope

for correlated noise the log—normal and contaminated normal

cases were considered. Figs. 45-46 show the probability of

detection vs. signal—to-noise ratio (S/N) for these cases

at N=lO. Also shown for comparison are the corresponding

results for the independent case. The loss of power is always

less than 1dB in both cases, increasing with decreasing P~ .

If the threshold was set to give 
~F 

io 6 assuming correlated

noise, then the actual 
~F 

would be 10 ’ if in fact the noise

was uncorrelated. This is equivalent to a 1dB power loss.

For larger values of 
~F’ 

the loss is smaller.

Finally , one may do better by choosing an l(.) other

than the tangent function. However , an intel l igent  choice

would require knowledge of the correlation , which is usually

unknown a priori.

_ _ _ _ _ _ _ _ _  --— - -~~~~~~~~~~~~~~~~ , .5 --~~~~~~~~~~~~~~ -~~~~~~~~~~~~—--
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VI. Summary and Conclusion

In this paper the problem of robust detection of

non-coherent signals in noise is solved under the

assumption that the noise distribution is unknown, but

a member of a known class of distribution functions.

This problem was divided into three main categories :

a) Part ial ly—coherent  signals
‘ b) Unknown frequency and phase

c) Random phase

In the partially—coherent case , it was assumed that

the unknown phase is constant over each observation

period but changes randomly from one observation period

to another. We have introduced two general methods for

the design of detectors which are asymptotically most

robust, in the sense of guaranteeing a non-trivial lower

bound on the receiver performance over the class of

distributions under consideration . It is shown that

the design of any of these detectors requires the

existence of a density function of minimum Fisher

information number in the class of distributions. Two

detectors were designed for the special case in which

the distribution of the noise inphase and quadrature

phase components are members of the class of p-point

distributions. Simulation results for finite sample

sizes were also given for different distributions. It

— 
_ _ _ . 5 ~~ ii ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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was found that the N-detector performs better than both

A—detector and the square law detector. The above

S 
- results were extended also to the second case of unknown

frequency and phase.

In the third - case, it was assumed that the signal

phase changes randomly from one observation to another.

Three detectors were presented , the M-detector on

envelope, the quantizer detector, and the extreme value

theory (E.V.T.) detector. It was found that the M-detector

is the best among the above three and the trimmed mean

detector , judging from performance and ease of implementation

in the presence of limited information about the noise

distribution. All of the above detectors assume

a 
knowledge of some quantiles. The quantizer detector is

the second best.

In general , we recommend the M—detector on component

or on envelope when the observation distribution is not

completely known , because of their threshold stability

- property and because they protect the decision rule

against bad observations.

I
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