
I i/ AD—AO 73 *6* NAVAl. OCEAN SYSTEMS CENTER SAN DIEGO CA F~ G 12/I
LEAST S UARES. ADAPT IVE—t ATT ICE ALGORIT1*45. (U)
APR 79 .J 0 PACk. E H 5ATORIUS

UNCLA SSIFI ED NOSC TR *23

.iI I!I__________mu

I— ~~ 2.2L

I I.’ ~ ~IllI~

HliI’ 25 II1II~•~ iIIIi~
4 4

MICROCOPY RESOLUTION TEST CI-$~~T
NATIONAL BUREAU OF STANDARDS l963-,~

LEVEL! (h~
)

Z
0(I)
C)

I- -IU
U)oz ‘a

Technical Report 423

LEAST SQUARES, ADAPTIVE LATTICE
ALGORITHMS

J. D. Pack
E. H. Satorius

I~1:~4 April 1979

D D C

-

Approved for public release; distribution unlimited

NAVAL OCEAN SYSTEMS CENTER
SAN DIEG O, CALIFORNIA 92152

79 09 5 002
— ~~~~~~~~~~~~~~~

.
~~L

— ____________________________
________ - -

,r~~~~ ~ ~~ :;~~~~~~i-~~;
• • ~~~~~~~~~

Is . ~.

a
NAVAL OCEAN SYSTEMS CENTER . SAN DIEGO. CA 92162

A N A C T I V I T Y O F T H E N A V A L M A T E R I A L C O M M A ND

RR GAVAZZI , CAPT . USN HI BLOOD
Commander Technical Director

ADMiNISTRAT iVE INFORMA TiON

This report was sponsored by the Naval Ocean System Center ’s Independent Research
and Exploratory Development Program (61 152N-ZR000 , O I I Z R O I 4 , 08 I I , 632-ZR94).

ACKNOWLEDGEMENTS

The authors wish to thank J. Treichier of Argo Systems, M. Shensa of Hydrotronics ,
and P. Reeves and J. D. Smith of the Naval Ocean Systems Center for helpfu l discussions
relating to this report.

Released by Under authori ty of
RH Hearn , Head DA Kunz , Head
Electronics Division Fleet Engineering Department

—

~~~~~ — ~~~~~~~ ~~.__;~ -‘~~~~~ ~ ~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ..~~~~~~~ —~#--.



r -

~

- -

~~ 

—----.- -

~~ 

~~~~~~~~~~~~~~~~~

UNCLASSIFIED / /
%ECU~~I1v CLASSIFICATION OF THIS PAGE (W~~ n Del. tn*.r.d) -— __________________________________

D~~E~~~fl~~ ~~ SI41 ~~ I J Y A Y I f ~IJ b A (~~~ READ INSTRUCTIONS
l%~~ r tJl~ I IIV’.,IJM~~~I I ~~ I l~#r’ ~~~~~‘JI~ DEFORE COMPLETING FORM

I . REPORT NUMBER GOVT ACCESSION NO. 3. REC ,PIENT S CATALOG NuMBER

NOSC Technical Report 423 (TR 423)
4. TITL E (en d Subtitl.)

/
•_ ~~~~~~~~~~~~~~~~~~~~~~~~~~ a e1!~oo COVERED

/ Research Repert
(LEAST SQUARES , ADAPTIVE-LATTICE ALGORITHMS 4’ - Jamasey-Apr*1979 -(

~ - 6. PERrO~~~,,,,. ~~~~~~~~ T NUMBER

1. Au rwoR(.) .
-

~ -— —
~~~~~ S. CONTRACT OR GRANT NUMSIR(.)

JD Pack, EH Satorius ~~~
- / 

• I .

I. PE~~FORMIHG ORGANIZATION NAM E AND A DORESS — 10. PROGRAM ELEMENT. PROJECT . TASK

/ A REA A WORK UNIT NUMBERS

Naval Ocean Systems Center 61 152N-ZR000/O 1, ZRO14
San Diego, CA 92152 08 1 I\632-ZR94

I i .  CO NTROLL ING OFFICE NAME AND ADDRESS I2. RF~~QkI f l ATE

Naval Ocean Systems Center 13 NUMBER O~ PAG ES / : / /
IA. MONITORING AGENCY NAME S AOORESS(it difi.r.n t from Controlling Offi c.) IS. SECURITY CLASS. (of ffiia r.JerI)

I / 7, / I 
- . Unclassified

/ ~‘ 
) T5.. OECLASSIFICATION/DOWNGRADINO

I / j SCHEDULE

‘ I t . 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

14. DISTRIBUT ION STArRMEI(t (o1 tAt . ~.port)

DISTRIBUTION STATEMENL~~
Approved for public release;

Distribution Unlimited 
—

I l .  DISTRIBUTION STATEMENT (of A. .b.lr .ct .ntIt.d In Block 20, Sf dSlf.rwl froo, R.port)

Approved for public release; distribution unlimited.

IS. SUPPLEMENTARY NOTES

IS. KEY WORDS (ConUnu. on r.v.?.. .Id. if n.c...~ y ~~id identity by block ns ,b.r)

noise canceling
equalization
signal processing

20. kES T R ACT (Continu, on ,.v.r.. .id. if n.c. ...fy end id.nufy by block n~~ ub.r)

Recently, it has been shown by Morf , Lee and others that least squares , adaptive algorithms may be imple-
mented in a lattice form . This result is of considerable interest due to the rapid convergence characteristics of least
squares algori thms as well as the important properties of lattice structures (such as high insensitivity to round-off
noise). This report provides an explicit derivation of the joint real process, scalar least squares lattice algorithm.
Also, a Fortran subroutine listing of the algorithm is presented.

DD ~~~ 1473 EDITION OF I NOV 61 5 OBSOLETE UNCLASSIFIEDS/N 0t02-LF-014-6601
SECURITY CLASSIFICA TION OF TWI S PAGE (ISi.., Del. bIIel. ~ )

~~~~~~~~~~~~~~ --. --~~~ _ _ . i___~~


r —
-

~~~~~

--

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (Bbs. Del. IO•el04)

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE(~~en D.t• Inl .r4)



F — - - - —

~~~~~~~~~

SUMMARY

Recently, it has been shown by Morf , Lee, and others that least squares, adaptive
algorithms may be implemented in a lattice form. This result is of considerable interest
due to the rapid convergence characteristics of least squares algorithms as well as the
important properties of lattice structures (such as high insensitivity to round-off noise).
This report provides an explicit derivation of the joint real process, scalar least squares
lattice algorithm. Also, a Fortran subroutine listing of the algorithm will be presented.

Accession
NTI S GBiA&I
DX TAB
Unannounced
Juatification.....~~....

~~~~~~~~~~~~~~~~~~~~~~~~ Cc ’~rs

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — _ _ _ _ _ _  

-

~~~~~



r ___ ~~~~~~~~~~~~~~~~~~~~~~~ 
-
~~~~

I
CONTENTS

I. INTRODUCTION.. . 5

II. NOTATIONAL CONVENTIONS AND PRE LIMINARIES.. . 7

III. DERIVATION OF THE ALGORITHM . . .9

III.A Least Squares, One-step Prediction Lattice Algorithm . . . 9
-

-

HI.B Joint Process, Least Squares Lattice Algori thm.. . 18

IV. CONCLUSIONS AND DISCUSSION.. .22

-

I

REFERENCES.. .23

APPENDIX A: DERIVATION OF THE TIME UPDATE EQUATIONS IN
THE LEAST SQUARES LATTICE ALGORITHM . . .2 5

APPENDIX B: FORTRAN SUBROUTINE LISTING OF THE LEAST SQUARES
LATFICE ALGORITHM . . .29

3

L — — ~~~~~ - .
--- ~~~~~—k~— - —— - - .~~~~~~~~~~~~~~~~~~~~~~~~~

——— • •
. j=__

_
_

~
__ ___

~~
_.__ ..~__I__~~ -— ~~~~~~ -- -.--

,- - ~~~ --- -- .~~ —--— ~~—-—- — .-- ,- ‘

-~~~~~ — ~~~~~~~~~~~~~~~~~~~~ ~
--

-
— ~~~ ~~~~~~.

~~~~~~~~~~~

I. INTRODUCTION

In many applications, such as speech processing, spectral estim ation , noise
cancellation , and data equalization , one is interested in the design of digital adaptive
filter structures whose coefficients are continuously estimated from the incoming data
in such a way as to minimize the mean squared error between the filter output and some
desired output sequence. One particular adaptive filter implementation which has found
widespread use due , in part , to its computational simplicity is the so-called least mean
squares (LMS) adaptive filter developed by Widrow (Ref. I). This filter , which is in
tapped delay line form, employs a noisy gradient estimation algorithm to compute its
coefficients. Unfortunately, in certain instances the convergence rate of the LMS filter
coefficients to their steady-state values can be quite slow. This slow convergence rate
problem can arise , for instance , when the spectrum of the input to the LMS filter
has a large dynamic range. This problem has spurred considerable recent interest in the
development of adaptive filter algorithms that converge much faster than the gradient-type
estimation algorithms.

A relatively wide class of rapidly converging adaptive filter algorithms arises in
the context of a classical least squares problem: at each time interval find the set of
adaptive filter coef ~icients that minimizes the accumulation of the squared errors between
the filter output and a desired output up to that time. The extremely rapid convergence
properties of the least squares adaptive filters have made them appear promising in a
number of different applications (e.g., Refs. 2-5). One of the major reasons for the
current growing interest in least squares adaptive algorithms is the recent work of Morf ,
Ljung, Lee, and others (Refs. 5-9 and 21) who have shown how the computational
complexity of these algorithms may be drastically simplified from their conventional
implementation (see, e.g. , Refs. 2,3). In fact , it has been shown in Refs. 5-9 and 21
that the number of operations (multiplications and additions) per update for the least
squares filter algorithms can be made proportional to the number of filter coefficients.
This is in contrast to the conventional implementation of these algorithms where the
number of operations per update is proportional to the square of the number of filter
coefficients.

Furthermore , the computationally simpler least squares filters may either be
implemented in tapped delay line (Refs. 4,6) or lattice form (Refs. 5, 8-9, and 21).
The lattice realizations of the least squares filter algorithms are of’particular interest
in this report as they offer a number of advantages over the tapped delay line
implementations (Refs. 5 and 10-12). Specifically, in speech processing applications,
the lattice implementations provide a simple check on the stability of speech modelling
filters (Refs. 10, 13). In all-pole modelling applications, recent work (Ref. 14)
suggests that lattice structures may prove useful in determining the correct order of
the model. In adaptive noise canceling applications , lattice filters provide the capability
of being able to dynamically assign the number of filter coefficients that proves most
effective at any particular instant of adaptation (Ref. 11). Also, longer lattice filters
may be built up from shorter ones by simply adding on more lattice stages. This
property should prove useful in developing a “coefficient-slice ” LSI technology for
implementing adaptive lattice filters. Finally, an important property of lattice filters
in general is their high insensitivity to round off noise (Ref. 15).

5 

~~~~~~


_ _

Although Morf , Lee, et al., originally presented the least squares lattice algorithms
in Refs. 5, 8-9, and 21 , the development in these papers is somewhat limited and numerous
errors are present (primarily in Refs. 5 and 8). It is the purpose of this report to provide a
more explicit (and therefore somewhat lengthier) development of the least squares lattice
algorithms. In particular, we will be concerned with the pre-windowed , scalar, joint real
process lattice form, which proves useful in such applications as linea r prediction , noise
cancellation , and data equalization. Extensions to the vector input case are straightforward
and are discussed further in Refs. 5, 8, 9 and 21. We will also present a Fortran subroutine
listing of the least squares lattice algorithm.

6

r - •~~~~~~~~~~~~~~~~~~~ -~~~~- ~~~~~~~~~~~~~~~~
_ _ _ _ _ _ _ _ _ _ _

II. NOTATIONAL CONVENTIONS AND PRELIM INARIES

Although the ideas which underlie the least squares lattice algorithm are simple,
the derivation of the algorithm and the algorithm itself are quite technical. Therefore, in
order to increase the readability of our presentation , we will first introduce the following
notational conventions:

(I) The upper case letters (F, A, B, C, D, 0, Q, U, V, Y) will be used to denote
column vectors.

(2) The lower case Greek Letters (y , a, p) as well as the lower case letters (d , e, f,
k, q, r, v, w, x , y) will be used to denote scalar quantities.

(3) An upper case script letter (R) and an upper case Greek letter (II) will be used
to denote square matrices. Also, a prime (‘) will be used to denote the
tra nspose operation.

At this point , we will discuss the basic problem of interest . Consider two data
sequences x(t), y(t) t 0 , l , ... ,T, and defi ne YN(t) to be an (N+ l)-dimensional vector
consisti ng of time-delayed samples of y(t), i.e.,

YN(t) = (y(t), y(t-l), ... , y(t-N))’. (I)

We are interested in obtaining the least squares filter error output sequence at time 1, i.e.,
x(T) + F~ (T) YN(T), where FN(T) is the (NI- I)-dimensional filter coefficient vector that
minimizes the exponentially weighted sum of squared errors:

w~~ [x(t) + F~ (T) YN(t) 12

The parameter w is a real constant , 0~ w~ I , which allows the filter to track slow time
non-stationarities in the data. Typically, w is close to 1 . The inverse of (1 -w) is
approximately the memory of the algorithm *.

Differentiating the above sum with respect to the components of FN(T) and
setting the result to zero leads to the following equation for the FN(T) vector:

RN(T) FN(T) = - ~yI4 x(t) YN(t) -
(2)

In Eq. (2), the (N+l) X (N+l) matrix R N(T) is given by:

RN (T) = ~~~~T-t YN(t) Y’N(t) .

•lt should be noted that the introduction of the exponentially wei~~ted sum of squared errors above
differs from the treatment used in Ref. 5 to include a tracking parameter in the least squares lattice
algorithms.

7

~

A

.~~~~~~~~~~ iT~j~~~~~~~~
— -—

~~~~~~~~~ 
-

~~
--

~
- —— - - 

_ _ _ _  

_ _ _

The solution of Eqs. (2) and (3) provides the least squares filter coefficient vector , FN(T),
at the Tth data sample.

Two points are worth noting concerning the above equations. First these equations
may be applied to a number of situations. For instance, in linear prediction applications
y(t) is a delayed version of x(t) . In noise canceling applications , x(t) is the primary input
sequence containing both signal and noise. The sequence y(t) is a noise reference input
that is used to cancel the noise from x(t) . In channel equalization applications , y(t) repre-
sents the received data from the channel , and x(t) is a reference sequence used to train the
algorithm. A second point concerning the above equations is that the limits on all the
summation signs extend from t 0  to t=T. The lower limit , therefore , imposes the assump-
tion on the data that y(t) 0 for t=- l , .. . , -N. These limits lead to the so-called
“pre-windowed” least squares algorithm. If the limits were t=N and t=T, the un -windowed
or “covariance” algorithm is obtained , and if the limit s were t 0  and t=T+N then the “pre-”
and “post-” windowed algorithms would be obtained. A more complete discussion of the
different windowing methods may be found in Ref. 9, where a least squares, one-step
predictor covariance lattice algorithm is presented.

S

‘1



- _
__________ — - - 

,---- . . 

- ~
— —fl- - —  

_ -_-- _-_ -
~~~~~

.

III. DERIVATION OF THE ALGORITHM

In order to derive the least squares lattice algorithm that solves Eq. (2) and , therefore ,
generates the sequence x(T) + F~ (T) YN(T) we will start in Section III.A by considering a
least squares prediction problem. Then in Section III .B we will show how the solution of
the prediction pr~~~em also provides a solut ion of the basic problem of interest , i.e., Eq. (2).

III.A LEAST SQUARES, ONE-STEP PREDICTION LATTICE ALGORITHM

In deriving the least squares , one-step prediction lattice algorithm , we will make
considerable use of some basic properties of the R~ (T) matrix (n 0 ,1 ,...,N), which may
easily be derived fro m its definition in Eq. (3) (with N replaced by n). Specifically , we have
that:

q~(T) Q~(T) 1Rn(T) (4a)

R~~1 (T) Vn(T)
= (4b)

as well as

R n(T) = W R~(T 1) + Y~(T) Y~(T). (4c)

The dashed lines in Eqs. (4a) and (4b) denote matrix partitioning. In these equations, the
scalars q~(T) and v~(T) are gi ven by:

q~(T) = ~T t y 2(t) , (5a)

and

vn(T) = ~T4 y2(t-n) , (Sb)

and the n-dimensional vectors Q~(T) and Vn(T) are given by:

Q~(T) = w~~ y(t) Yn l (T l) , (6a)

and

V~(T) = w~~ y(t-n) Y~~1(t) . (6b)

. .~~~~~~~~~~~~~~~~
_.

~~~~ - _ - --- _ -~~ ...—---- w~’-.- ~~~~~~~~~~ ~~~~~~~~~~~~~~ 
- __________________________

In this section we will be interested in the following least squares problem: find the

n-dimensional coefficient vector A~(T) that minimizes the exponentially weighted sum of

squa red CITOTS ,

w~~t e~ (t ,T) ,

where e~(t ,T) is the ~th order “forward ” prediction e’~or residual :

en(t~T) = y(t)  + A~(T) Y~ .1( t - l ) .  (7)

The coefficient vector that minimizes the above sum is termed the one-step, 
(exponentially

weigh ted) least squares “forward” predictor of order n. As will be seen in Section lll.B , the
problem of obtaining An(T) or e~ (T ,T) is intimatel y related to the problem of solving Eq. (2 ) .

Differentiating the above sum with respect to the components of A~(T) and setting

the resu lt to zero leads to the following equation for the An (T) vector :

~ T-t Y~~1(t - l )  Y~~l (t l)] An (T) = ~~~ (I) ( 8)

Using the definition of Rn(T) ~Eq. (3)1 and 
keeping in mind that Y~~1(—l) is the zero 

vector

(pre-windowed case), we have :

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
(9)

Therefore, Eq. (8) reduces to

R n i (T 1) A n(T) 4 Q n(T) 0 n , (10)

where °n denotes the n-dimensional zero vector.

The solution of Eq. (10) provides the vector of one-step, lea st squares “forward”
p redictor coefficients , A~(T). of order n. Substituting the solution for A1~(T) back into the

sum of the weighted squared prediction errors yields the following expression for the minimum
of this sum :

r~(T) min
[

~~ wT4 e~(t~T)]
~~

wT t y 2 t) + A ~(T)Q~(T . (~ l)

The last equality in Eq. (11) follows from Eq. (10). Note that these equations may be corn-
bined into the single , augmented matrix equation

— /r~(T)\
R n(T)A n(T) () , (12)

\
tO

L~~~_ _ _

-.

~~

,-.

-

~~~~~—— — 1_ 
~~~~~~~~ 

—
~~~~~ 

-



— 
—

~~~~~~~~
-
~~~~~~~~~~~~~~~

—--.— 
~~
.,. — ,- - — - — — - - - - - -—

~~~~

—-

~

--- —-- - .-
~~~~

---- - “ .-- -

where the ext ended , (n+1 )-dimensional vector, An(T), is given by

Afl( T )( i (T))
. (13)

Equation (12) follows directly from Eqs. (4a), (5a) ,  ( 10), and ( I I ) .
By analogy with the ~th order , one-step, “forward ” prediction vector , A~(T), we can

also define a “backward” one-step predic tion vector , Bn(T), which minimizes the sum of
exponentiall y weighted squared errors:

yjT4 r~(t ,T),

where r~(t ,T) is the ~th order “backward ” prediction error residual:

r~(t ,T) = y(t-n) + B~(T) Yn i (t) . (14)

As will be seen in Section IH.B , this “backward ” prediction vector will play a central role in
the lattice formulation of the solution to Eq. (2). Differentiating the above sum with respect
to the coefficients of B~(T) and setting the result to zero leads to an equation that is analo-
gous to Eq. (8), i.e.,

~,T-t Y~~1(t) Y 11 (t)] B~(T) = V~(T) . ( 15)

From the definition of Rn(T) in Eq. (3), it can be seen that Eq. (15) may be written as:

R n i (T) B~(T) + V~(T) = O
~~

. (16)

By analogy with the minimum ~th order forward squared error , r~(T), we can also
define a quantity r~(T) which is the minimum of the weighted sum of backward squared
erro rs, i.e.,

rh(T) = mm 

[~~~~~ 

wT4 .r~(t~T)] = w~~ y2(t-n ) + B~(T) V~(T) . (17)

The last equality in Eq. (17) follows from Eq. (16). Equations (16) and (17) may be com-
bined into the single augmented matrix equation:

/ °n ~R n(T) Bn(T ) = (  ~, (18)

where the (nI-I )-dimensional extended vector B~(T) is given by:

11



—

Bfl(T)
k 1 

( 19)

Equation (17) follows directly from Eqs. (4b), (Sb), (16), and (17).
Another auxiliary vector crucial to the development of the lattice solution of Eq. (2)

is the (n +1)-dimensional vector Cn(T) which is given by the solution to:

R~(T)  Cn(T) = Y~(T) . (20)

At this point , we will show how to obtain order updates for the three vectors : An, B~ , and
C~. These order updates are the main ingredient of lattice algorithms. In particular , we will
first show that:

— /A~(T)\ k~(T) o
A~~ 1(T)=~~ ~ ) - ( — (T I)) 

, (2 1 a)

where the constant, k~(T), is given by:

/A~( T\
kn(T) (laSt rOw O fR n÷ i (T)) (~ a (2lb )

In order to derive Eq. (21), first not e that the righ t hand side of Eq. (21 a) is in the
form:

(D~+ l ) ’

where D~ ÷ 1 is an (n+l)-dimensional vector. We will now show that:

D~~1 =A~~1(T), (22)

thereby establishing Eq. (21). To verify Eq. (22), premultiply the right-hand side of Eq. (21 a)
by R n+l (T) to obtain :

A
— re(T) k (T)

R~~~(T) 
f (

~~~T)  
1)
(
~

)} =
I() ~~~~~~

(f l)

/r~(T) — (k n(T) / rh(T-l)) ~~(T)\
(23a)

where :

A / o \
kn(T) = (first row of R n+1 (T)) (— J . (23b)

\ B~(T 1) ,

12

— . .— ~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ ~T
~~~~~~~~~~~~~~~~~~~~~~-~~~~~~~

-
~~~~~~: -~~~~~~~


- V-— ---
-..--.. ——- ----.-- --.

Equation (23) follows fro m Eqs. (4), (12), and (18). Now , fro m Eq. (4a) it is seen that:

/ I \ /q~~ 1(T)+Q ,~ 1(T) D~÷1R +1(1) 1 1 = 1
\D~~~/ \Q~+1 (T) + R ~(T. l) D ~÷i

—
(r~(T) — (k n(T) / r~(T-1)) kn(T)

°n+ 1

where the last equali ty follows from Eq. (23a). Thus , it is seen that D~÷i satisfies:

R n(T I) D~~ 1 +Q~41(T) = °n+1 , (24)

which is identical to the equation that is satisfied by A~÷1(T), i.e., Eq. (10) with n replaced
by n+l . Therefore, assuming that R~(T) is nonsingular ,* Eq. (22) and , hence, Eq. (2 1) are
verified .

Note that since,

— /r~+1(T)\
R~+1(T) A~÷1 (T) () , (25)

\ °n+ l I

we also have , fro m Eq. (23a), the following order recursion for r~(T) :

r~~ 1(T) = r~(T) — k0(T) ~~(T) / r~(T-l). (26)

In a manner analogous to the developmen t of Eqs. (21)-{26), we can also derive the

F following order upda te recursions for B~(T) and

— / 0 \ k~(T) /A~(T)\
Bn+i (T) =

~B~(T- l))
—

r~(T) k,
0)

~
(27)

and;

r~~ 1(T) = r~(T-1) —~~ (T) k~(T) / r~(T) .
A

(28)

Note that in the above order update equations , two scalars, k~(T) and k~(T) , appear.
We will now show tha t these scala rs are equal . In particular , consider the matrix product:

/A~(T) 0 \ I’An(T) 0
l l = t — J R ÷1(T) (—) . (29)

\ 0 B~(T-1)/ ~ \ 0 B~(T- 1)/

Notice that H is a symmetrical 2 X 2 matrix. Also, from Eqs. (4), (12), (18), (21b), and
(23b) we have:

*lfl practice , the positive definiteness (and , hence , nons~igularity) of R~(T) can be guaranteed by initializing
Rn(T) to a positive scalar times the identity matrix .

13

.:

~

J.I. ~~~~~~~~~~~~
.

—- ‘~~- ~~~~~~~~~~~~~~~~~~~~
.—

-. —~~~~~
_ _ _ _ _ _ _ _ _ _ _ _

—

~~1

/ A’~(T) 0 \ / r~(T) ~~(T) \ / r~(T) ~n(T)
\

=)
~

0n °n) ().
(30)

0 B~(T-I) / ‘l~~i~ ij (T 1) ~~ kn(T) r~(T-l)

However , since H is a symmetric matrix , we have the important relation:
A
kn(T) k n(T) . (31)

Therefore the order updates [Eqs. (2 Ia), (26) and (27) - (28)J take on the following form :

— /A~(T)\ k n(T) / 0 ~
A~~ 1(T) () — _____

(_
, (32a)

\ 0 / r~(T-l)

- / 0 \ k (T) n(T) \
B ~ 1(T)= I —

n j , (32b)
\Bn(T~l)/ r~(T) \ 0 /

r~~ 1(T) = r~(T) — k~(T) I rh (T-l) , (32c)

• and ,

r~~ 1(T) r~(T-l) — k~(T) / r~(T) . (32d)

To complete the development of the order updates , we will now show that C~(T)
obeys the following order recursion : *

/C~~1(T)\ r~(T) —

Cn(T) = J + — B~(T) . (33)
\ 0 / r~(T)

To veri fy Eq. (33), we proceed as in the case of Eq. (21) and premultip ly the righ t-hand side
of Eq. (33) by R~(T) to obtain:

f/ C~~1(T)\ rn(T) - ~ /Y~~1(T) \ / On \
R~(T) 11 1 + B (T)~ = (+ (I . (34)

1\ 0 I r~(T) n j \ a / \r~(T)/

Equation (34) follows from Eqs. (4), (18), and (20). The constant a in Eq. (34) is given by
I froi n Eqs. (4b) and (20)1 :

= V~(T) Cn i (T) = V~(T) R;’1(T) Yn l (T) . (3 5)

However , from Eqs. (14) and (16) we have:

a = y(T-n) — r~(T) . (36)

*ln Eq. (33) and throu ghout the rest of this report , we will use r~(I) in place of r~(T~T) [see Eq. (14) 1 .
Likewise , we will use en(T) in place of e~(T ,T) [see Eq . (7)1 .

14

-— .- •
- -. - ~~~~~~-

— - — _______ —

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-•.-

~
-

~~~~‘--~~


-

• — .- —- —-—-
~~~~~~~ ~~~~~~~~ - —~~~ .-.,

Therefore , Eq. (34) reduces to :

/C~..1(T)\ rn(T) —

R n(T) 

~ o ) + 
r~(T) 

Bn(T) = Y~(T).  (37)

Thus, the right-hand side of Eq. (33) satisfies the equation for C~(T) [Eq . (20)1. This
verifies the order recursion [Eq. (33) 1. 

— —

Equations (32) and (33) provide a complete set of order recursions for A~(T), B~(T),
C~(T), r~(T), and r~(T). From these recursions we can obtain lattice order updates for the
residuals e~(T) and rn(T). Specifically, premultiplying both sides of Eqs. (32a) and (32b)
by Y~÷1(T) yields:

en+i (T) = en(T) —(k ~(T) / r~(T-l)) rn(T-l) , (38a)

and ,

r~~ 1(T) = r~(T-l) — (kn(T) / r~(T)) e~(T) . (38b)

Likewise , premultiplying both sides of Eq. (33) by Y~(T) and defining

7~(T) = Y~(T) C~(T) = Y~(T) R~’ (1) Y~(T) , (39)

we get the following order update relation for

= 7~..1(T) + r~(T) / rh(T) . (40)

Equations (38a)—(38b) constitute the basic lattice recursions that generate the error
seq uences, r~(T), which play an important role in solving our basic problem of interest , i.e.,
Eq. (2). A schematic representation of these recursions is presented in Figs. Ia and lb. To
make these recursions adaptive in time , it is necessary to derive a time update equation for
kn(T). Such a derivation has been carried out in Appendix A, where it is shown that (Eq .
(A-l2) 1:

en(T)r n(T-l)
k~(T) = wk~(T-l) + —~~~~cr-~ 

(41)

With Eq. (4 1), it is now possible to generate at each instant T the least squares prediction
error residuals e~(T), and r~(T). Specifically, at each instan t T we generate the various
zeroth-order variables as follows:

e0(T) = r0(T) = y(T) , (42a)

rg(T) = r~(T) = wr~(T-l) + y 2(T) , (42b)

and

(42c)

15

$ 4

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  .~~~~~ - . . - ‘-—-- —-- .--- -



_ _ _  iI ~~~~~~~~~~ 
—~~ --~T~~~ 

_ .  - 

~~~~~~~~~~~~~~~~~~~~~ ~~~

N
~~ ~~~ ~~~

~~~~r
4
i

_ _  

+
+

I

_ _ _  

r~Ni

r
— I.~°~-:°N]

I

16

~ 

—- .~----———- •.—---‘- —--- _ —  _~._~ . •iI ~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~



-~

--

~

---- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
..

,- ..-..‘-- - --- ---
~~~~~~~~~~~~~

-

~~~~~~~
-
~~~~~~ 

——--— -

~~~~~

-— - -  — - -

~~~~~ 

—

Then we perform the various order updates in the following sequence (n 0 , ... N-I):

e~(T) r~(T-l)
k~(T) wk~(T - l) + (41)

e~÷ 1(T) e~(T) — (k ~ (1) / r ~(T-l)) r~(T -l) , (38a)

r~÷ 1(T) = r~(T .l) — (k ~(T) / r~(T)) e~(T) , (38b)

r~÷ 1 (T) r ~~~) — k ~(T) / r ~(T - l) , (32c)

= r~(T -l) — k~(T) / r~(T) , (32d)

and , f rom Eq. (40) :

~v~(T-l) =
~‘n-l~

T
~~

+ r~(T- l) / r~(T- l) . (43)

With the generation of the least squares residuals e~(T) and r~(T) (n l , ... , N) we may
ret urn to Eq. (2) and the generation of the least squares error sequence, x(T) + Fj~(T) YN(T).
However , befo re doing so, we wish to make some comments concerning the above least squares
lattice algorithm.

First , it is somewhat remarkable that the least squares residuals e~(T) and r~(T) obey
a set of order recursions which are identical in structure to the recursions for the minimum ,
mean squa red error , one-step backwa rd and forward linear prediction error residuals (see,
e.g., Ref. 10). The latter recursions arise basically because of the Toeplitz structure of the
autocorrelation matrix associated with y(t). However, R~(T) does not have the nice Toeplitz
matrix structure , ar~ yet simple-order recursions can still be derived for e~(T) and r~(T). The
main reason for this is that even though R~(T) is not Toeplitz, it can be factored into two
Toeplitz matrices (see Ref. 9) and , therefore , st ill possesses “nice” enough properties [i.e.,
Eq. (4)] , to allow a lattice formulation. It should be noted that this basic concept of matrices
that are not Toeplitz but nevertheless are “close” to being Toeplitz in some sense has been
further developed in the work of Friedlender, et a!. (Ref. 16).

Another comment regarding the least squares lattice algorithm derived above concerns
the parameter ‘y~(T). Note that this parameter only enters into the lattice recursions through
the time update equation [Eq. (41)1 for k~(T). In particular, the factor [1— 7 ~~1(T-l)] — l
appears as a gain factor , determining the rate of convergence of k~(T). An important property
of 7~(T) is that it is bounded by 0 and I , i.e.,

0~~i~(T)~~ I . (44)

This can be seen from the matrix inverse identity (see, eg.. Ref. 17):

R~~(T- l) Y~(T) Y~(T) R~~(T-l)
R~~(T) w~ R~~(T- l) - w 2 . (45)

I + w~
1 Y~(T) R~~(T-l) Y~(T)

17

~~~~~ - -~~~ - ~~~~~~~~~~~~~~~~~~~~~~~ • — - • ~ -



_ _ _ _ _ _ _ _ _

Substituting Eq. (45)  into Eq. (39) gives:

(w~ Y~(T) R~~(T- l) 
~
‘n~

T
~ (46)

I +(w~ Y~(T) R~~(T-l) Y~(T))

fro m which Eq. (44) is easily verified. Therefore , when y~~1(T-l) approaches its maximum
value of unity, the facto r (l1n.l (T

~
I )yi becomes large , thereby amplifying the gains in

the update equation [Eq. (41)] for k~(T). It is interesting to note that the main diffe rence
between the gradient lattice algorithms developed in Refs. 10 and I I  and the least squares
lattice algorithms is the presence of the gain factor , (li~~1(T- l )i~ , in the time-update
equations. A more complete comparison between the gradient lattice and least squares
lattice algorithms will be presented in a forthcoming report (Ref. 1 8).

III.B JOINT PROCESS, LEAST SQUARES LATIICE ALGORITHM

In order to develop a lattice for mulation of the least squares problem expressed by
Eq. (2), we first note that Eq. (2) may be rewritten in the form :

R~(T) F~(T) + Q~(T) = °n+ l ‘ 
(47)

where

Q~(T) = ~,T-t x(t) Y~(t) , 
- 

(48)

and 0 ~ n ‘~~~ N. Note that in replacing N in Eq. (2) by n in Eq. (47), we are actually con-
sidering the larger problem of generating all the least squares error sequences x(T) + F~(T)
Y~(T), n=0, ... , N. As will be seen , in the lattice formulation of the least squares problem ,
all of these sequences are generated automatically.

Substituting Fn(T) [ from Eq. (47)] back into the sum of exponentially weighted
squared error residuals, i .e.,

w~~t 
1~

(t ,T)J 2

where

e~(t ,T) = x(t) + F~(T) Y~(t) , (49)

we obtain the following expression for the minimum of this sum:

p~(T)  = mm (
~ 

~ T4 [e~(t ,T)] 2) 
= w~~ x 2(t) + F~(T) Q~(T) . (50)

Equations (47) and (50) may be combined into the single , augmented matrix equation:

18



_ _ _ _ _ _ _  
_ _ _ _ _ _ _ _ _ _ _ _  

- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _ __ _ _ _

— — / p ~(T) \
R~(T) F~(T) () , (51)

\ °n+l /

where R~(T) is an (n+2) x(n+2) dimensional matrix given by

R~(T) = ~~~~~~~~ Y~(t) ~~~t), (52)

and Y~(t) is an (n+2)-dimensional column vector given by:

Y~(t) = (x(t), y(t), y(t-l), ... , y(t-n)) ’ . (53)

Also, in Eq. (51) the (n+2)-dimensional extended vector , F~(T) is given by

Fn(T) =

[F~~T)]
. (54)

By analogy with Eq. (4), it can be easily seen from Eq. (52) that R~(T) possesses
the following properties:

— r q~(T) Q~ (T)
R~(T) H — (55a)

L Q~(T) R~(T)

V~(T)
= — — . — _ _ I (55b)

V~ (T) v~(T)

A third property of Rn(T) is the time shift relation :

R n(T) = wR~(T-l) + Y~(T) Y~(T) . (55c)

In Eqs. (55a) and (55b), the scalars q~(T) and v~(T) are given by

q~(T) = wT t x2(t) (SSd)

and

v~(T) = wT4 y2(t-n) = v~(T) . (S Se)

The last equality in Eq. (55e) follows directly from the definition of v~(T) [Eq . (Sb)]. Also,
in Eq. (55b), the (n+1)-dimensional vector V~(T) is given by

19

-

r ~~~~~
— —

V~(T) = ~T~t y(t-n) Y~~1(t) . (5 S f)
t=0

Using Eqs. (51) and (5 5) as well as the development in Section lll .A , we can now
derive a lattice solution to Eq. (2). The key relation in this lattice formation which links
Eq. (2) with the results in Section III.A is the following order-update relation for F~(T):

— / F~(T)\ k~(T) / 0 \
F ~ 1(T)=~ I — I — I , (56)n

~ ~ I r~+i (T) \Bn+l (T)/

where the scalar k~(T) is given by

— / F~(T)\
k~(T) = (last row of R~ ÷ 1(T))~ 0) (5 7)

The derivation of Eqs. (56) and (57) is analo gous to the derivation of Eq. (21) and follows
by premultiplying the right-hand side of Eq. (56) by_R~÷ 1(T) and then using Eqs. (18), (5 1),
and (55). Premultip lyin g both sides of Eq. (56) by Y~~~1 (T) lead s to the following lattice
recursion

e~~ 1(T) = e~(T) — (k~(T) / r~~ 1(T)) r~÷ 1(T) , (58)

where e~(T) in Eq. (58) is used to denote e~(T ,T) [see Eq. (49)]. In direct analogy wi th
Eq. (41), a time update equation for k~(T) can also be derived. Such a derivation has been
carried out in Appendix A, and the resulting update equation for k~(T) is given by [Eq .
(A-22)J :

e~(T) r~~ 1(T)
k~(T) = wk~(T- l) ÷ I — 7~(I) (5 9)

Equations (58) and (59) together with Eqs. (32c), (32d), (38a), (38b), (40), and
(41) represent the complete lattice algorithm that generates the desired least squares error
sequences e~(T), n=0, ... , N . A schematic representation of the lattice is given in Fig. 2,
and a Fortran subroutine listing of this algorithm is presented in Appendix B. It should be
noted that in addition to the zeroth-order variables in Eqs. (42a)—(42c), which mu st be
computed every sample instant T, we also have

e~1(T) x(T) . (60)

It is interesting to observe that , as in the case of k11(T) , the parameter i~(I) enters
into the time-update equation for k~(T). It is the presen ce of this gain parameter which
enables the least squa res algorithm to converge rapidly. The fast convergence properties
of the least squares lattice will be examined in more detail in another report (Ref. 18).

20

-
~~~~~~~~~~ 



• 
- -



~

__

~~~~~~~~~~ •— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~r — -~- ~~~~~
-.—-

~~~~~~~~~

IV. CONCLUSIONS AND DISCUSSION
In this report , a complete derivation of the pre-windowed , scalar , joint real process

least squares lattice algorithm has been presented. This algorithm , which was originally
developed by Morf, Lee, and others in Refs. 5 and 8—9 has a number of useful properties
including quick convergence and a computational complexity per update that grows only
linearl y with the number of filter coefficients. It has been the purpose of this report to
provide an explicit development of the algorithm.

Some comments regarding the application of the least squares lattice algorithm to
adapti ve noise filtering and data equalization are worth making. First , note that in the
present formulation of the algorithm , the residual , e~ (T) = x(T) + F~ (T) Y1~(T), is
computed at each iteration. This is in contrast to usual adaptive noise~filter ing and
eq ualization algorithms (see, e.g., Refs. 4 and 19), where the resid u al , e~ (T) = x(T) +
F~ (T-l) YN(T), is computed every sampling instant T. It is straightforward to derive an
alternate form of the least squares lattice algorithm that computes ~(T) instead of
e~ (T). This alternate lattice fonn can be more readily implemented for purposes of
decision-directed , adaptive data equalization , as will be discussed further in Ref. 18.

Another comment regarding the lattice algorithm considered in this report
concerns the choice of the data window used in developing this algorithm . In particular ,
we have considered a growing-fading window , i.e., we have exponentially weighted the
data between t 0  and t=T. The fade factor , w , allows the filter to adapt to nonstationar-
ities in the data as discussed previously. Another common method of allowing the filter
to track data non-stationarities is to use a fixed-nonfading memory (Ref. 10), i.e.,
to uniformly weight the data between t T-T0÷ 1 and t=T. The parameter T0 represents
the memory size for the fixed-nonfading memory method. This latter method may prove
useful for purposes of adaptive noise filtering or data equalization in highly nonstationary
environments and is an important subject for future investigation. See Ref. 20 for an
application of this method to intrusion-detection.

22

L 

_ 

.~~~~~~-



REFERENCES

I . B. Widrow , “Adaptive Filters,” in Aspects of Network and System Theory, R. Kalman
and N. DeClaris, eds., New York : HoIt , Rhinehart , and Wi nston , pp. 563-587, 1971.

2. F. J. Harri s, “A Maximum Entropy Filter,” Naval Unde rsea Center , NUC TP 441 ,
January 1975.

3. D. Godard , “Channel Equalization using a Kalman Filter for Fast Data Transmission,”
IBM Journal of Research and Development , May 1974 , pp. 267-273.

4. D. D. Falconer , L. Ljung, “Application of Fast Kalman Estimation to Adaptive
Equalization ,” IEEE Trans. Comm., Vol. COM-26, No. 10 , pp. 1439-1446, Oct. 1978.

5. M. Morf , D. Lee, “Recursive Least Squares Ladder Forms for Fast Parameter Tracking, ”
Proc. of the 1978 IEEE Conf on Decision and Control , Jan. 10-12 , 1979, San Diego,
CA, pp. 1362-1367.

6. L. Ljung, M. Morf , D. Falconer, “Fast Calculation of Gain Matrices for Recursive
Estimation Schemes,” m t .  Journal of Control , 1978, Vol. 27 , No. 1, pp. 1-19.

7. M. Morf , L. Ljung, and T. Kailath , “Fast Algorithms for Recursive Identification ,”
Proc. IEEE Conf on Decision and Control, pp. 916-92 1, Clearwater Beach, FL,
December 1976.

8. M. Morf , D. Lee, J. Nickolls, and A. Vieira, “A Classification of Algorithms for ARM A
Models and Ladder Realizations ,” Proc. IEEE m t .  Conf on Acoustics, Speech , and
Signal Pr ocessing, Hartford , CT, pp. 13-19, May 1977.

9. M. Morf , A. Vieira , and D. T. Lee, “Ladder Forms for Identification and Speech
Processing,” Proc. 1977 IEEE Conf Decision and Control , New Orleans, LA,

• pp. 1074-1078, December 1977.

10. J. Makhoul , “A Class of All-Zero Lattice Digital Filters: Properties and Applications,”
IEEE Trans. on Acoustics, Speech, and Signal Processing, Vol. ASSP-26, No. 4, pp.
304-314, August 1978.

11. L. J. Griffiths, “An Adaptive Lattice Structure for Noise-Cancelling Applications,”
in Proc. IEEE m t .  Conf on Acoustics, Speech , and Signal Processing, Tulsa , OK,
pp. 87-90, April 1978.

12. E. H. Satorius, S. T. Alexander , “Channel Equalization using Adaptive Lattice
Algorithms,” to appear in IEEE Trans. on Comm., June 1979.

13. J. Makhoul , “Stable and Efficient Lattice Methods for Linear Prediction ,” IEEE
Trans. Acoustics, Speech , and Signal Processing , Vol. ASSP-25, No. 5, pp. 423-428,
Oct. 1977.

14. L. J. Gri ffiths , R. S. Medaugh, “Convergence Properties of an Adaptive Noise
• Cancelling Lattice Structure,” Proc. of the 1978 IEEE Conf. on Decision and Control,

• Jan. 10-12 , 1979, San Diego, CA, pp. 1357-1361.

23 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~


F •~~~~~;~~~T . •
~1

15. J. D. Markel and A. H. Gray, Jr. , “Roundoff Noise Characteristics of a Class of
Orthogonal Polynomial Structures,” IEEE Trans. Acoustics, Speech , and Signal
Processing, Vol. ASSP-23, pp. 473-486, Oct. 1975.

16. B. Fri edlander, M. Morf , T. Kailath , and L. Ljung, “New inversion Formulas for
Matrices Classified in Terms of Their Distance from Toeplitz Matrices ,” to appear in
Linear Algebra and Its Applications.

17. G. Zielke , “Inversion of Modified Symmetric Matrices,” Journal of Association of
Computing Ma chines, Vol. 15, pp. 402-408, 1968.

18. E. H. Satorius, J. D. Pack, J. D. Smith , “Least Squares, Adaptive Lattice Filters:
Properties and Applications ,” (NOSC TR, in preparation).

19. B. Widrow , et al., “Adaptive Noise Canceling: Principles and Applications,” Proc.
IEEE, Vol. 63, pp. 1692-17 16 , December 1975.

20. N. Ahmed , et al., “A Short-Term Sequential Regression Algorithm,” in Proc. IEE E m t .
Conf on Acoustics. Speech , and Signal Pro cessing , Tulsa, OK, pp. 123-126 , April
1978.

21. M. Morf , “Ladder Forms in Estimation and System Identification ,” 11th Annual
Asilomar Conf Circuits, Systems, and Computers, Monterey, CA, Nov. 7-9, 1977.

24

~~~— ~

_ ..•
-- -  -~~~~ - 

_ •. • ~~~~~~~~
_ _ •

—• - 
~~~~~~~~~~~ -_— .


• TIT~~~~J~J-Z.

APPENDIX A

DERIVATIO N OF THE TIME UPDATE EQUATIONS IN ThE
LEAST SQUARES LATTICE ALGORITHM

U

In this appendix , we will provide derivations of the time-update equations that
appear in the least squares lattice algorithms. In particular , we will derive the time-update
equations for kn(T) and k~(T) in Sections A. 1 and A.2 , respectively.

Ai TIME UPDATE FOR k~(T)

From Eqs. (4b) and (2 lb) , we have that :

kn(T) = V~÷1(T) A~(T) . (A-l)

To derive a time update equation for k~(T), we will separately derive time update equations
for V~÷1(T) and A~(T). The update equation for V~~ 1(T) follows directly from Eq. (4c)
by noting that the last row of R n+i (T), i.e., Vn+l (T), must obey the same time-update
relation as the rest of the elements ofR ~+i (T). Therefore , from Eq. (4c) we see that

V~÷1(T) = wV~~ 1(T-l) + y(T-n-l) Y~(T) . (A-2)

To derive a time update equation for A~(T) , we will first consider A~(T). Note from
Eq. (10) that

A~(T.l) = R~,’1 (T 2)
~ n~

T1
~

(A 3)

Comparing Eqs. (4a) and (4b), it is seen that Qn(T) obeys a time-update equation similar to
Eq. (A-2), i.e., from Eqs. (4a) and (4c):

Qn(T) = wQn(T-l) + y(T) ‘
~
‘n-l~

1
~~

(A-4)

Also , using the matrix inverse identity [see Eq. (45)], it is seen that

I R~~1(T-l) Y~~1(T-1)Y~~1(T-1)R ~!1(T- l)
R~~1(T-2) ’w I R~~1(T-l)+

L l — Y ~~1(T- l) R ~ !1(T- l) Y ~~1(T- l)

• R~!l
(T1)Yn..l(T1) Y~~1 (T l)R ~~1(T4)

=w R~~1(T-l)+ I 7n l (T4) . (A-5)

The last equality in Eq. (A-5) follows from Eq. (39). Substituting Eqs. (A-4) and (A-5) into
Eq. (A-3), we obtai n (after combining terms):

R~~1(T - l)Y ~l (T l)
A~(T- I) =A ~(T)+ “

— (1-I) y (T)+Y ~~1(T -I)A~(T)
7n- I

Cn l (T l) e~(T)
- A~(T) + IT I ~

(A-6)
‘ 7 n- 1’’

25

_ _ _ _ _ _ _ _ _ _ _

The last equality in Eq. (A-6) follows from the definition of e~(T) [i.e., e~(T ,T) in Eq. (7)]
as well as Eq. (20). Therefore, from Eq. (A-6) we have the following update for An(T):

• A~(T) = 1~n(T l) - I -7~~ (T-l) (cn..1~ r-l))
- (A-7)

Substituting Eqs. (A-i) and (A-2) into Eq. (A-I) gives

wen(T) A
k~(T) wk n(T- l) — I — (1-I) V~+i (T 1) C n i (T l)

~1’n- I

— e (T)
+ y(T-n -l)Y~(T) A~(T .l)— I — (T-l))‘n..l (T l~~ (T n l) . (A-8)

7n- I
A

in Eq. (A-8), Vn+1 (T 1)denOtes an n-dimensional column vector whose elements are simply
equal to the last n elements of V~+i (T-l). Note fro m Eq. (A-2) that :

A A
V~~ 1(T -l)= w~’ [V~~ 1(T) — y(T-n- 1)Y~~1(T-l)J . (A-9)

Furthe rmore , fro m Eqs. (4a) and (4b) the following simple relationsh ip may be derived:
A

• V~~ 1(T) = V~(T- 1) = -R~ ..1(T-1) B~(T-l) . (A-b)

The last equality in Eq. (A-lO) follows from Eq. (16). Substituting Eq. (A-b) into Eq.
(A-9) gives

A
V~~ 1(T l) = ~~~~~~~ [B ~(T l) R n..i (T l) — y(T-n-l) Y~~1(T-l)] . (A- I I)

A
Equation (A-8) may now be simplified by substituting for V~~ 1(T-l) from Eq. (A- I I) and
expressing An(T 1) in terms of An(T) [from Eq. (A-i)] . The result is (after combining
terms):

e (T)
k~(T) wk~(T.l)+ 1- (T-l)

[Y(Tn4)1B~
(T1)Rn l(T4)Cn i (T l)I

7n- I

= w k~(T-l) + en(T) r~(T-l) / (1 — ‘y~~1(T-I)) . (A- I 2)

The last equality in Eq. (A-i 2) follows from Eq. (20) as well as the definition of rn(T- I)
[i.e., r~(T-l , T-l) in Eq. (14) 1. Equation (A-I 2) is the desired time-update equation for
k n(T).

A.2 TIME UPDATE FOR k~(T)

The derivation of the time-update equation for k~(T) follows along lines analogous

• to those of the derivation in Section A .l. In particular, from Eqs. (55b) and (57)

k~(T) = V~~ 1(T) F~(T) . (A-l3)

26

H

_ _ _ _ _
-

The time update for k~(T) follows from the time updates for V~~ 1(T) and F~(T). From
Eq. (5 Sc)

V~÷1(T) = w V~÷1(T-l) + y(T-n-l) Y~(T) . (A-l4)

Also, from Eq. (47),

Fn(T4) = R~~(T i) Q~(T-l). (A l 5)

The time update for Q~(T) may be obtained from Eq. (5 Sc). The result is:

Q~(T) = w Q~(T-l) + x(T) Yn(T) . (A 16)

Substit u ting Eqs. (A-16) and (A-S) (with T replaced by T+l and n replaced by n+I) into
Eq. (A-b 5), we obtain (after combining terms):

R~~(T) Y~(T)
F~(T .l) = Fn(T) +

~ — ‘y~(T) Ex(T) + Y~(T) F~(T)I

C~(T) e~(T)
l — y ~(T) (A- 17)

The last equality in Eq. (A-I 7) follows from (20) and the definition of e~(T) (i.e., e~(T,T) in
equation (49)). Therefore, from (A- I 7) we have the following upd ate for F~(T):

— — e~(T) / 0
F~(T) = Fn(T l) — i — i r~(T) (~C (T))

- (A-l8)

Substituting Eqs. (A-IS) and (A-14) into Eq. (A-i 3) gives

w e ”(T)
k~(T) = w k~(T-l) —

I — 7n(T) V~~ 1(T-l) C~(T)

— — y(T-n-l) eX(T) —

+ y(T-n-l) Y~(T) Fn(T4) — 1 ~4 Y~(T) C~(T) . (A-I9)

In Eq. (A- 19), V~~.1 (T- I) denotes an (n+ 1)-dimensional column vector whose elements are
simply equal to~ the last n+ I elements of V~÷1 (1-I). From Eqs. (SSa) and (4b) the following
simple relationship may be derived:

A
V~~ 1(T) = Vn+i (T) = R n(T) Bn+l (T). (A 20)

The second equality in Eq. (A-20) follows from Eq. (16). Also, from Eq. (A-14) we have

27

IL •‘.
~

.—,‘.•
~

-• . • - . • • . •• •‘••
~
.--

“~~~
-

— - —
~

—.-
~~~



_ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~
— 

~~~~~~

. . - •

~

• - • •

~~~~~~

- - • • • • - - - - •• • -

V~~ 1(T-l) = w~ [V~~ 1(T) — y(T-n-l) Y~(T))

—w~ [B~+i (T) R n(T) + y ( T n l ) Y ~(T)] , ( A 2 l )

where in the last equality we have substituted from Eq. (A-20) for V~~ 1(T). Substituting
Eqs. (A-2 l) and (A-l8) into Eq. (A-19) yields the following :

ex(T)
k~(T) = w k~(T-l) + I i~n

(T) [y(T-n- l) + B~~ 1(T) R~(T) C~(T)J

e~(T)r n+i (T)
= w k ~(T-l)+ I 

~~~~ 
(A-2 2)

The last equality in Eq. (A-22) follows from Eq. (20) and the definition of ~~ 1(1) [i .e.,
rn+i (T,T) in Eq. (14) 1. Equation (A-22) is the desired time-update equation for k~(T).

28

- ~~~~~~~~~~~~~~~~~~~ - ~~~~~~~ -~~~~~~ • -•~~ • • -~~~~~~~~~~~~~~~~~~~

-
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -•

-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~ •..~~~- • .•-•- • —---- — ---- •~ • - - ••••- -- -
~~ 

— • - -.•

~~

..—

APPENDIX B

‘ FORTRAN SUBROUTINE LISTING OF THE LEAST SQUARES LATTICE ALGORIThM

The following is a complete Fortran subroutine listing of the least squares lattice
algorithm given by Eqs. (41), (42), (38a), (38b), (32c), (32d), (43) and (58) through (60).

SUBROUTINE LSANC(U. TPMTF )
C BASED 014 NOAP’S PRE-IJ INDOIJED FAST—TRACKING ALGORI?HN

D1I’IE?4S1011 E~Sø).P(5ø),K (5~)iRE (S )e G (SI)sRR (Sø)iEX (51)~KX
(50)

COflI’ION ‘RDhTA ~ X (5Gø ),Y(5$ø)REAL K,K)t,K~’ØC NOTE THAT J TAKES ON (JALUES t,a.3,4,.. UHII..E N ASSUNES 0,1,2,3,...
C THE FOLLOUING SHOUS THE CORRESPONDENCE BE TWEEN THE MAIIES USED IN
C THIS PROGRAN AND THE NOTATION FOUND IN THE DERIVATION .
C RE (J~ IS RE (J,T)C RR (J) IS RR(J.T)
C £(J) IS E(J,1T)
C 1’R IS
C ?RR IS RR (J , T— I l

GNP~ IS GAPINA (J—t.T-1)C ~IIIO IS GAPIP IA(J—1 , T)
C G00 IS ~AMMA (J,T)C RQ IS P . (J+ I ,1)
C RRO IS RRC J+ t , T)

IJRITE (6 ,66 )
• 66 ~ORN.~T (1  N T’,5~,’K’,8X,’AKE~,?X.’AKR ’,8X ,’E’.9X ,’R’,8X,

C RE’ ,8X , ‘RR ’ ,SX , ‘GANNA’ ,BX. ‘X KP’ ,SX, ‘EX’)
C DEL IS A SMALL NUMBER JSED TO PREVENT DIVISION BY ZERO.

DEL~ .0000001
DO 7 I-1,IP
R ( I ) ~0.
RR(I).DEL
KX U)~0.
K CI)”O.

7 P.E(I~~~DEt.
K>~0~0.
DO 100 N 1 1 ,NTF
r~TI ’ 1—NT— I
TRR’RE (l)
PE~1 )“U*RE(l)+YOiT)**a
RR (1 ).RE(1)
ElI ~ ‘~(NT .1
TP’R~ 1)
R(t 1~ V ( NT )
P >(0.XCN T )*Y(NT)+KXO*lJ
E>~f 1 .X (P4T)—KXG *Y (MT), RR(1)
~Mp 1’O .

DO aee J .I ,IP
U~ .1—1
J1~ J+I

C K(J,T).IJ1K J,T—t )+RtJ,T—1)*EIJ,TI,(1.—GANMA (J—t,T—1))
K (J ) .$J *K (J )+TR *E ( J ) / U . —G PIPI )
AKE’KCJ)/RE (J)
AKR’K( .1 ~iTRRC E(J+l .T 1’E(J ,~’ )— K ( J , T) *R( J,T—1 )/RR CJ ,T—1 )
EC.JI)~E(J)-K(J)tTR/TRRC R (J+1~1~.P(J,T— 1 J—K (J,T)*E(J,T)/RE(J,T)
P Q”TR—K L J )*E’ J ‘/PE J,

C RE(J +t ,T ) ’ RE(J , T )—Y.(J , T)**2/RR(J ,T—t )
RE(Jl. )~ RE(J ~—K (J)**a .”rcR

C PR(J+I,T)~RR (J,T—I —Kt J,T1**2/RE J,Ti
RRQ~TRR—K (J )**2’RE’J)

29

~

- :  —
1_u~~~~_____ ~_•. _ _ 

~~~~~~~~~~~~~~~~~~ • ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


r —

C GANNA(J .t)~GAflNA(J-1, T)4R(J,T)**2/RR(J,T)
000-GNO+R(J)*R (J)‘RRCJ)

C KX (J ,T).U*K.X (J T—1)iEX (J,T)*R(J+t,T)/(1.—CANNA (J,T))
K X (J)~U *KX (J)+EXtJ) $RG/ (t . —G00)

C EX C J+l ,T)~EX (J,T)—KX (J,T)*R(J+t,T)’RR(J+l,T)EXCJ I)~EX (J)—KX (J)$RQ/RRQ
U XKP’KX (J)’RRO

C SWAP VAR IABLES IN PREPARATION FOR NEXT ITERATION ON J.
TR’R (J +l)
R (i+i)-RO
TRR~RR (J+1)
RR (J + I)’RR~J• GNN Gi (J t)
G(J)~GPl0
CMGuGOS

aoe URITEtb ,6)’4,NTN ,K(J),AKE,AKR,E (J),R (J),RE (J),RR (J),
CGN0,XKP ,€~’C(J)

6 FORMAT (~ I5,I0F10.6)
100 CONTI NUE

RETURN
END

30

1
—

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
_ _ _ _  _ _ _ _ _


