et b S

¥ et R

PSRV RATH

FOP 073 462

Technical Note 1979-35

SN

Performance Limitations on Parameter DD C
. - . . n — :‘Tk ,rﬂ"‘:;
Estimation of Closely Spaced Optical @&Eﬂ e

Targets Using Shot-Noise Detector Model ij “ i
‘ PTG T
SN

Prepared for the Department of the Army
under Flectronic Systems Division Contract 119628-78-C-0002 by

Lincoln Laboratory

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

LEXINGTON, MASSACHUSETTS

Approved for public telease; distribution unlimited,

N

£
Y
KT
g
&
.
¢l

4 o
K gl

\5*. J g2 m _, 0 ', ‘A_,' n‘(\}’ ‘fﬁ.‘ .,
zs? e 1088 LA Lk Wl 5
& k4 oo ke

BEST AVAILABLE COPY



The wetk reported in this document was performed at Lincoln Laboratory,
a center for research operated by Mussachusetts lastitute of Technology,
This program 1s sponsored by the Ballistic Missile Defense Program Office,
Department of the Army, it is supported by the Ballistic Missile Delense
Advanced Technology Center under Air Force Contract F19628-78-C-0002.

This report may be reproduced to satisfy needs of U.S, Government agencies,

The views and conclusions contained in this document are those of the
contractor and should not be interpreted as necessarily representing the
officinl policies, either expressed or implied, of the United States

Government.

This technical report has been reviewed and s approved for publication.

FOR THE COMMANDER

A CW

oseph C. Syiek
L/ Project Officer
Lincoln Laboratory Project Office

M

BEST AVAILABLE COPY



T R R TR

v o0 ey

BER I
:a;:" . /J ,""
| u'*”" /4

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

LINCOLN LABORATORY

PERFORMANCE LIMITATIONS ON PARAMETER ESTIMATION
OF CLOSELY SPACED OPTICAL TARGETS
USING SHOT-NOISE DETECTOR MODEL

| "Fcoession For
| HTIS  GRAKI
| TOC TAB
i Unaunoungod
i Justifieatlon, _ _ . ‘

i Ty
cratritation/

adloblllity Codag

Avatleud/or
mpectal

Wy g WS

LEXINGTON

M-J. TSAI
K-P. DUNN

Group 32

TECHNICAL NOTE 1979-35

13 JUNE 1979

Approved for public release; distribution unlimited,

DD

D WOV RGN

SEP

C

1873

5
LLBU{)IH
D

MABSSACHUSBETTS

TUSL

oy

P

PO

S



ABSTRACT

A mathematical model for passive optical sensors, which takes
into account the inherent shot-noise process, is presented. Based
on this sensor model, the Cramer-Rao bounds on the variances of
intensity and angular location estimates for two closely spaced
optical targets are derived. Revresentative results for the esti-
mation performance degradation due to the interfering targets are

shown.
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I, INTRODUCTION

Resolving closely spaced objects (CSO) has been a serious problem
for radar and optical sensor systems [l]-([3]. Recent attention has
concentrated on the problem of determining accurately both target
amplitude and location for situations in which the targel density
is high., Techniques that are applicable to predicting the performance
of amplitude and position estimators for both radar and optical asystems
have heen described and compared [4]. The Cramer=Rao lower bounds
on the variance of target amplitude and'location estimates are well-
known to radar system designers, and they have proved useful in
predicting the performance limitation of sensor systems without the
need for extensive simulations or experiments. In references {4])
and (5], the Cramer-Rao lower bounds on the verformance of target
amplitude and locaticn estimates have been derived for closely spaced
opitcal targets. Theoretical bounds presented in [3] are obtained
using a different error analysis technique and, furthermore, the
paramaeters to be estimated ara different from those considered in
{4] and [5]. The noise model assumed in these reports was white
gaussian noise, which aoplics only to the background noise limited
case. Various pulse shapus have been considered. Some of tham
waere rather simple shapes typical of radar ovulses, see for example
[4], A particular pulse shape which approximates to the pulse shape

in [3] also considered in [4]. A gaussian function approximation




to the optical diffraction pattern was used in [5] to obtain the
pulse shape at the detector output for an optlcal point target,

In this report we reformulate the problem introducing a more
general nolise environment and a more realistic optical pulse shape.
In the next section, we present the mathematical model of the optical
system involved in the detection and estimation problem. Spacial

conalderation iB given to the model of optical sensors. In Section

III a temporal optical signal produced by a scanning detector is
desc¢ribed. The applicaiton of this detector model and vulse shape
to the eatimation problems for closely spaced optical targets is
3 presented in Section IV, Some numerical results are also included
in this report. These results emphasize but are not restricted to

the detector noise limited ocase,

i Ceaihs o rm kv b o+ e § i en




II, THE MODEL OF QPTICAL DETECTING SYSTEM

A typical optical receiving system consists of three basic
blocks: an optical receiving lens system, a photodetector, and
a postdetection processer, as shown in Fig, 1. The lens system
collecte the incldent optical field radiated from remote sources
{or targets) as well as background noises. This received
optical field is focused and filtered by the receiving lens system
onto the photodetector surface and then cunverted to an electrical
slgnal by the photodetector, This conversion process is quite
complicated and it can not be modelled as a rdeterministic process,
because the photodetector responds to the impinging radiation
field by releasing electrons from its surface at random. This
intrinsic fluctuation is often modelled as a shot noise process, a
more detailed description of this process will be given in the next
sub-section, Other noise sources in the receiving system are:
the circuit and electronic noise generated in the signal processing
operations which is often referred to as the thermal noise, and the
"dark current" in the photodetector corresponding to the random
emisson of electrons at a fixed rate when no incident field is
presgent. The processor performs the necessary amplification and
filtering (electronically) operations to recover the desired in-
formation from the nolsy photodetector output. In this section we

will concentrate on the model of the photodetector system,
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2.1 The Photodetector Response Process

TR I

2.1,1 Shot Noise Process

A photoemissive photodetector has the baslc structure shown
in Flg, 2, The photosensitive surface responds to the impinging radi-
ation by releasing electrons randomly at a rate determined by the in=-
cident intensity. These free electrons are collected by a collecting
anode due to the applied electric fileld. The current induced by these

moving electrons can be represented by the following mathematical

expression
N(Q,t)
x(t) =3 hlt-t,), (2.1)
i=1

where h(t) is theo current reaponse function corresponding to the
movement of a single electron from the photosensitive surface to
the collecting anode, tj is the instant that the jth electron is
released from the surface, and N(0,t) is the number of electrons
released from the surface over the interval (0,t).

In all cases, the area under the response function is a fixed

constant, since the integral of h(t) is the charge of a single

elactron, that is

Jf h(t)dt = charge of a single electron & a, (2.2)
0

Although the current response function may be different for each in-

dividual electron, for simplicity we mssume that every electron has

the same response function h(t). 8ince the travel time of each
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electrcn is finite, the function h(t) must be time limited to some

he That 18, h(t) = 0 for t<0 and t>1h. This time in-

terval h is inversely related to the detector bandwidth and it is
7 9

interval 1

relatively short (10~ to 10~ ° sec,) compared with the time vari-
ations of the signals considered in this report. For simplicity,

we may assume that

~ @

0<t<'rh
h
hit) = (2.3)

0 otherwise,

Substituting this back to (2.1), we have
e

N(O,t), often referred as a counting process, 18 actually a Polsson

process whose intensity, n(t), ls proportional to the power re-
celved by the detector [61, [7]. In many cases, n(t) is itself a

random process and hence N(0,t) becomes a conditional Polsson pro-

cess, x(t), the current at the detector output is known as a shot
noise or conditional shot noise process depending on whether n(t) is
deterministic or ranq?m. More detalled descriptions of these
processes and thelir sﬁatistical properties can be found in [6]=[8],
In the following we will give the mean and covariance functions of
the resulting conditional Poiasson shot noise, x(t), without

derivation:

BIx(t) ] -ft h(t-2) Bln(z)]dz (2.5)

-
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Cov,, (&, t+1) =1[.th(t~z)h(t+f-z) E[n(z) ]dz. (2.6)

-0

If the curren-: response function of the photodetector, h(t), is
given by (2.3) and its bandwidth (l/rh) is much larger than that

of'n(t), ther. wn have the following approximations

Elx(t)] = eE[n(t)] (2.5a)
and
o \2
(-T-h (t+1,)Eln(t) ] -1, <10
2
Zov, (t,t+1) & (%h) (t,=0EIn(E)]  O<ter, (2.6a)
0 otherwise

Mote that the dependence on t in (2.5) and (2.6) indicates that

the general detector process, x(t), is nonstationary,.

2,1.2 Intensity Process

The jintensity of the shot noise process of a photodetector
output is a function of the incident field power and other factors
related to the photosensitive material used. A simplified math=-
ematical model is used in this report as well as other references
{6] - [8]. The intensity, n(t), of the shot noise process (alsc
referred to as count energy, or count power, for example, in re-

ference [6])) is linearly vroportional to the received field power,

et
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F(t), at time t
n(t) = p P(t), (2.7)
where

b= fe (2.8)

and

n: Quantum efficiency
h: Planck's constant
f: Optical frequency.

If the incident field involves certain random sources, for example
: background noises, then the intensity is nc longer deterministic.
In most cases considered here, the resulting shot noise process i

4 is a conditional Poisson shot noise process.

2.1.3 Background Noise

There are two basic types of background noise sources which

e ¥ v

may appear in the field of view of the photodetector, they are:

LT R

(1) the diffuse sky background, which is assumed uniformly radiant

- T
DHID .

over the whole hemisphere, and therefore is always in the field of
E ) view of the detector, and (2) discrete, or point, sources such as
stars, planets, sun and the like, that are more localized but more

1 intense, and may or may not be in the field of view of the detector.

In this report we will only consider the uniform background radiation

noise.

A common model for this uniform background radiation is to
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agsume the sky appears as an ideal blackbody radiator. Then the
average background noise power collected on the detector surface is

0

. fv
p = N B o (209)
b oh o QdL

where va is the detector field of view, QdL the diffraction limited
field of view of the lens system, Bo the optical filter bandwidth
and Nob the effective spectral level for a blackbody radiator at

temperature T degrees Kelvin:
hf
N = {2.10)
ob eEf aT_l

where # is Boltzmann's constant.

2.1.4 Gaussian Approximation for the Shot Noise Process

If the intensity, n(t), is significantly "large", the in-

stantaneous probability density of the shot noise process can be
approximated by the probability density of a Gaussian process with
mean and covariance given by (2.5) and (2.6), respectively. A

rigorious justification of this can be found in [7].

2.1.5 Dark Current and Thermal Noise

bark current in a photodetector corresponds to the random
emission of electrons at a fixed rate, when no field is being de-

tected. This current is added directly to the shot-noise current

10
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at the detector output, 1In typical operation, the average leval of

the dark current is much less than the average ievel of the shot-~
noise current and the dark current can often be neglected.
Thermal noise is always present in an electrical alement,
Its magnitude depends on the temperature of the element and the
bandwidth of the processing filter which the element feeds. This

thermal noise in an optical system is often considered as an add-
itive gaussian noise to the shot noise. However, its effect can
ba usually made negligible by operating the detector in a very low

temperature environment (semiconductor type) or with a very high

current gain (photomultiplier type).

2.2 Signal~to=Noise Ratio

Let s(t) and Pb be the average signal and background noise power

received by the photodetector, Then the average count intensity is,
from (2.7),

Ein(t)] = p(s(t)+Pb) . (2.11)

According to (2.5a) and (2.,6a), the mean of the shot noise process

is
Bix(t)] = ep(s(t)+Pb) (2.12)
and the variance
e2
var(x(t)] = £ (8(t)+P,) . (2.13)
h
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It is clear that the shot nolse process is not simply a
desired signal plus an additive noise. Instead, the desired signal
is immersed in the noise. The conventional definition of instantane-

ous signal=-to=-noise ratio (SNRt) for this particular case is [6]

4 Imean of the shot noise due to s(t) at_time tl2
shot noise variance at time ¢t

SNRt (2.14)

Suppose, in the post-detection processor, the constant mean
(eszb) of the shot noise due to uniform background radiation is re-
moved and the remainder of x(t) 1ls filtered by a low pass filter with
unit gain and bandwidth B, 1In general, this bhandwidth must be selected
juch that it is much smaller than the bandwidth of the detector current
response function (l/Th) and much larger than the bandwidth of the s(t).
At the filter output, the mean signal is equal to eps(t) and the
variance of noise is equal to [ezp(s(t)+Pb)+N°c]ZB where Noc is the
two-gided power spectral density of the thermal current noise.
Therefore, SNRt becomas

2 232

SNR, = 3 o p's”(t) . (2.15)
le p(a(t)+Pb)+Noc]23

If ezp(s(t)+Pb)>>Noc, that is, 1f the noise current contributed by
the shot noise process greatly exceeds the thermal noilse current,
the second term in the denominator can be dropped, and we say the

receiver is ghot noise limited, That is,

2
ENR, = —R8 [t . (2.16)

(8(t)+Py) 2B

12




Substituting for p by (2.8), we have

2
sNR, = D8 {t) ' (2.16a)

€ 2nfB(s(t)+P,)

It is important to note that the signal-to-noise ratioc does not

increase without bound as the background noise (Pb) and circuit noise

(Noc) are weakened, but rather approaches the following limit:

C.ogIoew i

ng(t)
SNRt = REE- ¢ (2.17)

(e ea By S

In this case, we say the receiver is guantum limited. This is a :

major difference between an optical receiving system and its

1 microwave counterpart. At the other extreme, the background noise

power dgreatly exceeds the signal power and we have a background

limited condition. In this case, (2.l16a) becomes 3

2 ]
na_(t) (2.18) ;

SNR, = 2hEBP,

Since the output noise is dominated by the background noise
in this background limited case, one may describe the signal and

nolse relation by the usual "signal plus noise” concept (where

the nolse covariance is independent of the a%gnal) which is
familiar to communication engineers. However, in general, this
5 interpretation of signal and noise relationship may lead to

F

incorrect conclusions,
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IT1. OPTICAL PULSE SHAPES

i S

The radiation emitted from a remote point target forms an image
in the focal plane of a telescope. A detector is often used to
scan through the imnge and thue it receives a time-varying optical
slgnal associated with the fixed image. This optical signal
together with the background nolse appears on the detector
photosensitive surface and produces a shot=-noise current at the
detector output. The pulse shape of the time-varying optical
signal is considered in this section

Let us first assume the incident optical field from the re-
mote point target is monochromatic (wavelength 2A) and normal to
the aperture at its center, and that the aperture lens is aberration-
free and rectangular with dimension (d,b). Then according to the
Fraunhofer transformation [9] the diffracted field intensity

in the focal plane is

gy = D (sin(ndx/(xfcy) 2 (sin wby/(kfc») ¢ (3.1)
g rig * rdx/ (AE) mhy/ (A£,)

where E 18 the total energy collected by the lens, which is pro-
portional to the intensity of the point source and inversely pro=-
protional to the square of the distance from the point source to the
telescope, fc the focal length, A = db the aperture area and (x,y)
the rectangular coordinates in the focal plane. Next we assume

the detector is rectangular with dimensionsa vy and Wy in the x and v

directions, respactively, and has responss function given by

14
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glx,y) ={1 [|x] :51 and |yl :57' (3.2

0 otherwise.

The input of the detector after the scanning process (i.e., the
incident signal power at the photosensitive surface) is then given as

the convolution integral of g(x,y) and sg(X,¥),

sd(xopyo) = er :lp sf(x.y) g(xo-x, yo-y)dxdy (3.3)

whare (xo,yo) is the center position of the detector.
The scanning process converts the spatial structure of the
image into a temporal slgnal. 1f the scanning rate is fixed, the

resultant temporal signal function will have the same form as the

image spatial function. Here we further assuma that the detector scans

along the x-axis with a constant scan rate, Vot This simply means

xo L] th' (3-4)

and
Yo = 0. (3.5)
Substituting (3.1), (3.2), (3.4} and (3,5) into (3.3) and carrying

out the integral we can write the temporal optical signal at

the detactor an

Bd(t) = a ao(t) (3.6)

where

15
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A k ,
= _ E 2 sin"v

and

¥ 2 .
8 (t) = 84 (2nat+np) - Bi0_(nat+np/2)
o mat+nR/2

'é' =81 (2nat=wp) + sinz(ﬂut-ﬂﬁ/2)
Tat=18/2 .

(3.8)

Q? Here, Si(x) is the sine integral evaluated at x. The constants which

¢Q appear in Equations (3.7) and (3.8) are as follows

"(YO-WZ/Z)

,ﬁ fc(\/b)
w(yo+w2/2)
kz N e —————————

E £.(2/b)

o = (vx/fc)/{k/d), (normalized angular scanning rate)

B = (W/£)/(2/d). (normalized detector angular width)

If v, is significantly larger than the extent of the point source
image formed by the telescops, then a in (3.7) can be approximated
by B/,

When there are n incoherent point sources located at angles
01,...,®n along the x-axis, the resulting optical signal at the
detector is simply the superposition of response from each target;

n
8y (t) = Eg%aiao(t-Ti) (3.9)

16
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where

Ti ";7?—- . (3-10)

Note that the time frequency, f, of the optical asignal is related

to the spatial fredquency, fs' by

f = fs . Vx (3.11)

Usually Vy should be high enough to avolid problems with targat
motion during detection on one hand and should be as low as possi-
ble to ease the subsequent signal processing on the other hand.

In deriving (3.6) = (3.10) we have made several asgumptions.
The dlifraction nattern under these assumntions is of the form
{s8in u/u)? When any one of these assumptions is modified the shape
of the diffraction pattern would be different.* For example, if the
aperture lens area 18 circular the diffraction pattern 1ls given by
(2Jl(u)/u)2 whaere Jl(“) ig the Bessel function of the first kind
(9. If the incident optical field has finite bandwidth instead of
being monochromatic and telescope aberration is unavoidable, the
diffraction pattern might be better approximated with a qgaussian

function of the form [10]

2,.2
E X"+
Bp(X,y) @ =, Bxp = [~—— (3.12)
£ 2102 ( 205_)

where ¢ depends upon the spectral bandwidth of the incident radiation

and the aberration of the telescope,

"Pulse shapes different from s_(t) given in (3.8), are easily in-
corporated into the analysis dBscribed in the following sections.

17
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IV, PERFORMANCE LOWER BOUNDS FOR INTENSITY AND LOCATION ESTIMATES

In many optical sensor applications, it is necessary to estimate
the target intensity and angular location from the signal coullected
at the output of a post-detection filter or a detector itself., It
is expected that the quality of the estimates for a desired target
degrades when there are interfering targets. In (4] and (5], the
Cramer~Rao lower bounds on the variances of these astimates were usgsed
to characterize the degraded performance. These bounds are frequantly
eady to calculate and are generally tight bounds for a wide class of
unbiased estimators whaen the signal-to-noise ratioc is high (see for
example, [ll]=[14]). In general, these bounds shall not be inter-
preted as the achievable performances but rather the lower bounds
on the achievable performances of unbiased estimators., In the
following subsection, we will first derive the Cramer=-Rao bounds

(CRB's) associated with the sensor and signal (optical pulse shape)
models described in the previous sactions. Sacondly the so-called
"degradation factor" = the ratio of CRB with interfering target

and CRB without interferiny target will be derived.

4.1 Cramer-Rao Lowar Bounds

Suppose y = {y....,yk} ig a serquence of observations and
W = (wl,mz,...,mq} is a set of parameters to be estimated, Then
the CRB on the unbilased estimators for w given the observations

Yy 1s obtained by inverting the Fisher information matrix with its

18
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(1,1)" element defined by [11]

3 log p(y/w)\ f0 log ply/uw)
L = (4.1)

13 = B
13 ( 9 wy ) “’j

where E { ) denotes statistical expectation, uw; the ith glement of the
unknown parameter vector, «, and p(y/w) the joint probability density
function of y given w.

From discussions in Section 1I, we know that the current at
the detector outnut, x{t), is a Polsson shot noise process as described
by (2.1), =x(t) is always contaminated by the thermal noise which
is usually modeled as additive gaussian noise. However we intend
to cnlt this type of noise because it is practically negligible
in most applicatinons, We alao know that the count intensity, n(t),
of the shot nolse »rocess is proportional to the received optical

powar which is the suuw of the background radiation power, Pb' and the

signal powar 84(t)., That is
A\(t) L D(!d(t)-ﬂ’b), (402’

where P, is given in (2.9) and sd(t) ig given in (3.9),

Suppose an ideal integrator is used as the post-detection
filter. The integrator integrates and resots every Tp seconds
during (=T7/2,T7/2). A sequence of measurements on the integrator
output current, y = (Yl""'yk) is obtained at ty = - % + QTP,
iml,. s,k Buppose Tp>>1h and Tpg 1/(23n) where T im the duration

of the detector impulse response as dascribed previourly and Bn is

19




the bandwidth of the count intensity, n(t). Then we have

e
Yo =1 N(tz-T ebs)
Tp p’ &
%
(4.3) |

a
= "'N(t 't )
£
TP 1’ "2

SIS

which is similar to x(t;) in (2.4) except Ty is replaced by T

The electron counts N, = N(t _,,t;), &=l,,..,k are independent
and Polsson distribhut~l when conditioned on the count intensity,

n(t). The unknown narameters, w, which we wish toc estimate from

the observations y are the inteneities and angular locations of the

n targets appeared in the field of view of the detector, namely,

ai's and ri'a of g, (3.9), Therefora, we may refinec

PP U a) i e
1 D BT s Bl R et o P

(Di - Gi
(4.4)

J. for i"l'.oo’nn
In order to compute the Figher information matrix according to

(4.1), we nead the jolnt conditional probability density function

IR Ty

From Bg., (4,3) and the fact that Ng.anl....,k are mutually

:
1 p(x/lil_)'
independent, we have
5 ply/u) .TT P (N, = ~§~E /w) .
; flml] i
N
K tmy) "
{ = «-~T— exp(-mz} {4.%)
g=y Nge

20
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wvhere

m, = mean (or variance) ot Ny

] L
= _/¢ n{t)at

L)

& ot [84(t) +Py ] (4.6)

It is easy to obta’/n that [3]

Ly S ety amgle) 3 syl

fw] ad(t)+Pb 9 wi ] wj

(4.7,

where

) Byt ) B (t=Ty) 1f vy =ay -
L 4.8

9 Wy
-ajao(thj) if wiij'

The Cramer~Rao lower bound for each component of the unknown par-

ameter w can be calculated easily by inverting the Fisher inform-

ation matrix P, that ia
2 -1
Uwi i (F )ii' (4.9)

This result is applicable to the shot-noise limited case. If the

condition for the background limited case is satisfled, i.e.,

21
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(t)<<pP,_, then we can further reduce (4.7) to
b

...E t d(tz) 3 sd(tg) (4.1
=T 3wy 9 w4 »10)
L=1 3

= i sevami A e i

Notice that this formula is a discrete courterpart of the Cramer-
Rao bound obtained in {4]. More detailed discussion about the com=-

parison between our results and results in [4) will he given in a

future report. :
In deriving (4.7)-(4.10), the current gain of the detector is :

assumed equal to unity. However this assumption is made only for

convenience of analysis. It can be easily shown that the same

equations can be obtained for different current gain as long as it

is a constant.
It was pointed out previously that the optical detector shot-
noise process can be approximated by a gaussian process when the i

count intensity n(t) is large. It can be shown that, basad on the

gaussian process, the same formula for the Fisher information matrix
as given in (4.7) and (4.10) can be obtained if n(t)>>l/rp.

The unit-amplitude optical signal so(t) and its derivative
; (t) must be available in order to compute the Fisher
information matcix in accordance with (4.7) or (4.10). Suppose

so(t) is given by (3.8). Then the necessary éo(t) is given as

2 . i

. . gin (moat+1r3/2) sin(mat=n8/2) 2 i
lo(t) = - (4.11) )

moat+nR/2 noat-mHR/2 !

22 b

o At e o L L. N
28 A ST e KT e e s e thaid s
o iatbin, R o At s s — ki il A A




Both s,(t) and éo(t) are dependent only on the normalized detector
size B 1if the scanning rate o is kept constant.

In presenting results, it is convenlent to rewrite (2,9) as

below

P = P B (4.12)

.

whare

P = N

bo ob"o 8
and B” = (wz/fc)/(l/h) is the normalized angular width of the

b

e i

detector in the direction perpendicular to the scanning direction.

Since Pro is independent of the scanning process, it is convenient

T

» to use it to .ormalize the signal, sd(t), that is

~ A 1 -3

B (t) = 55— 8,(t) '

N d Ppo @
Eiu o
! B SLNT=RE e |
£ i=1 i
3 Here §d(t) and 3i denote the relative magnitudes of sd(t) and a; 'é

with respect to Pbo' regspectively. The (i,j)th element of the
Pisher information matrix for the normalized unknown parameter be-

comes

k N, 3 B, (t,) 3 B,(t,)
=-}E: d % d_% (4.14) 3
l (t Y+R 3 wi

9 wj %

R e O

 \ where
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Ne = prPbo (4.15)

which 1ls the average number of electrons released from a detector of
angular width equal to A/d (or B=1l) due to background noise during
the integration interval, T Por the background-=noigse linited casa

or, equivalently, Ed(t)<<B, Ea. (4.10) bacomes

9 E (t, ) 8 & (tz

F e): . (4.16)

Q=1 wy L) mj

The expression of 3 §d<tg)/a wy is the same aB 3 sd(tl)/a wy in

(4.8) and (4.10) expect all ui's should be replaced by ii'a. It
should be noted that for a observation interval, T, it can be sasily
seen that an increase of the integration intexrval, Tp, will decrease
the number of samples, k, but the value of Fij will be unchanged.

The CRB's on the variances of intensity and position estimates

are expected to boe closely related to the signal-to-noise ratio

To demonstrate this point let us consider, for simplicity, the Bingle

target and background noise limited case. Using (2.18) we can

write for this case the instantaneous signal-to-noise ratio as

SNR psg(t)
Pb/'rp
or
- 2
N, _ a
. e 1 2
SNR, = = 2t (4.18)

Here, the target is assumed located at rlno. Obviously the SNRt




is proportional to N, ﬁi/e for a fixed 8. From {4,16), we have the

assoclated Fisher information matrix,

w, [Zed (e, -8, T 8, ()8, (t,)

i) (4.19)
B L&, Ta (e, (6, 82882 (e

F o

since the off-diagonal entries of matrix F are relatively small (it

can be shown that s, (t) and éott) are orthogonal), it follows that

£ [(;l—rl)z] 2 CRB(r ,ns1) = By % =3 (4.20)
LIC DY ML
and l
~ ~ o] ~
E{(a,-a,)"] CRB(a, ,n=1) B 1
—— > —=F ST RETITL . Al
2y 2) N8y Ly (ty)

Here %1 and al denote the estimates of T and ;l’ CRB(w,n) denotas

the Cramer-Rao bound of the estimate for parameter w in the casge of

n targets, This implies that for a fixed value of 8 the CRB for

R e L R

the T estimate and the normalized CRE for the & estimate of a single

S 5

panmas

target are inversely proportional to SNR in the background~noise limited

case.
In other cases, CRB and SNR might be related in a more complicated

T T 1 e T

manner. The reasons for this are twofold, First, in cases other

than background limited, the noise is dependent upon the aignal and

25




SNR, is no longer simply proportional to Nesi/s. Secondly, in the

presence of a second target, the signal due to this target becomes

interference to the desired target, For the case of two targets

1 {(L,e., n=2 in (3,9)), the instantaneous signal-to-noise ratio for

the 15% target can be obtained by modifying (2.14) as follows

2
fmy (£)]

vi (4.22)
variance of shot nolse at time t + [mz(t)]

e A T b i

% SNR, =

ok

where mi(t) is the mean of shot noise due to the th target, i=]
f) and 2. The interference from the second target becomes part of the

total nolse., The above equation can be expressed as

i i b - i

?.
’ 2
b {epa,s_(t=T4)]
b SNR{ = o 1 (4,23)
g;[azo(ad(t)+Pb)] + [epazso(t-rz)lz
l.'
\ or equivalently,
3
' 5 2. 2 ]
N &, “s “(t=T,) ]
SNRi -8l 0 1 — . (4.24)
(Bq(t)+8) + N EZs _“(t-1,) y

Usually, the SNRt is gpecified at L when the signal due to the

T

18t target is at ite maximunm.

4,2 Dagradation Factors

B R

) In this report we are concerned with two cases; one is the 3

case where there exists one target without any interference (n=1) :




pllial k£ ]

i

and the other is the case where there is an interfering target in
addition to the desired target (n=2), Without loss of generality
we can assume the target is at 11=0 for the nwl case and the two
targets are at TL=-AT/2 and 12-A1/2 where Ar-AG/(vx/fc) is the
angular saeparation in terms of time. The subcripts 1 and 2 are
used to Indicate the first (desired) and the second (interfering)
targets respectively.

The effect of an interfering target on the accuracy of intansity
and angular position estimates of the desired target is customarily
indicated by the so-called "degradation factor" which is defined as
the square=-root. of the ratio of the CRB for the intensity (or
angular position) estimate of the desired target in the presence
of an interfering target to the CRB for the intensity (or angular
position) estimate of the desired target without any interference.
Mathematically, with DF‘a and DFT denoting the degradation factors

for intensity ard position estimates, they are

[CRB (&, ,n=2) ] ™

bF, = [————— (4.25)
|CRB(a ,n=1)
[CRB (1, ,n=2) | ¥

DFT = CRB(Tl,n*l) . (4- 26)

It is convenient to characterize the effect of interference by

27




these "degradation factors", if one is only interested in the chauge
of "relative" performance due to the interfering target. The optical
sensor noise models used in {4], [5] and the typical noise model

uged for radar analysis assume an additive white gaussian noise,

In these cases the degradation factors are, generally, independent

of tha signal-to~noise ratio of each target. To calculate the actual
estimation performance for a target with intarference via the de=-
gradation factor, in these cases, it is necessary to determine the
"absolute" performance of the desired target without interferenca.

It should be noted here that the degradation factors presented in
this report, except those for the background-noise limited cases,

are dependent upon several signal~to-noise ratio related parameters

such as normalized detector size (B), normalized target intensities

(El and 52). The simple and universal representations of interference

effects via the daegradation factors appropriate to the additive
white gauasian noise cases no longer apply here, These points

will be made clear when we examine the results presented in tha next

section,

28
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vV, RESULTS

Previously, we discussed the mathematical model of optical
detectors, the nature of noise contributions, the pulse shape of a
point target image response and the parameter estimation problem for
closely spaced optical targets. In this section we will present
some computer results regarding the Cramer-Rac bounds and degrada-
tion factors for the target intensity and angular position estimation.
These quantities were computed according to (3.8), (4.8), (4.11),
(4.13), (4.14), (4.25) and (4,26) with respect to three parameters:
B (the detector size along the scanning direction normalized by
the optical resolution A/d), oAt (the angular separation between
two targets normalized by A/d) and Ne (the detected electron counts
due to background noise during the integration interval when the
detector width 1s equal to A/d).

In the previous discussions we considered the target positions
as points on the time axis. However, in the real computation, for
convenience, we considered them in terms of angles normalized by
A/d. 'These two measures are different only by a constant, a, the
normalized linear scan rate. The degradation factor for the position
estimate remailns tho same no matter which quantity is used to
measure target position. However, the CRB for the angular position
astimate, CRB (ut,n), bacomes the product of uz and the CRB for the
time position estimate, CRB (t,n), which was defined earlier in

Section 1IV.
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The ranges for B8 and aAt employed in the computation were
»25655 and .1<uAt<2, respectively. An arbitrary value, 100, was
used for Ng. The samples used in all computations were equally

spaced in the range of ot from -6.4 to 6.4 at an interval of .05,
For all values of B and aAr considered hera, this range is large
enough to cover the important portion of the associated optical

gignal and the sampling frequency is well above the Nyquist fre=~
guency.

Fig. 3 shows a zet of DFa curves as functions of 8 and oAt

for the case where al = 52 = ,01 and Ny, = 100, Fig. 4 shows the

DFT curves for the same condition. From these figures it is obvious

that as aAt becomes larger both DFa and DFT become smaller and

asymptotically converge to unity. This implies that when the in-

terfering target is angularly further apart from the desired target,
it can do less impairment to the estimation of target intensity

and location and hance the egtimates should be more reliable. From

Fig., 3, we also see that, at any targat separation, the degradation

factor for intensity estimate is always smaller for a detector with

smaller detector width. However, it ias not entirely true for the

degradation factor of the position mstimate as shown in Fig. 4 where
the degradation factor for A=5 is smaller than that for f=2
when the anqular separation is approximately over .8 A/d,

Figs, 5 and 6 show an example of how the degradation factors

vary with different intensities of the interfering target in the

simple shot=~nolse limited case. In this example, 3l=l, Ne=100
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and 52 is chosen as .1, 1, 10 and 100. From these figures it is
clear that at any angular separation both degradation factors be- !
come larger for stronger interference. This mean” that the stronger ?
the interfering target, the more severe ia its influence on the in- %

tensity and position estimation of the desired target, Note that

JCRB(Sl,n=2)/El {lower bound on normalized standard deviation of
;- intensity estimatesa) and '#CRB (url,nHZ) (lower bound on standard

X
the ordinates in Figs, 5 and 6 can be also used to indicate %

deviation of angular position estimates normalized by A/d) respect=-

ively. For examplas, when 51=§2-B=1 they are 2.65% and .0l6 for

& et . STy o s Liamm

alAt=]l respectively.
Fig. 7 shows the degradation factors of intensity estimation

for several pairs of 51 and 32. Tha detector size used is B=1,

EoemaRao

We can see that in the background-noise limited cames where ﬁl<<B

and 82<<ﬂ the degradation factor becomes independent of ai's.

}l
:l
E: ‘ However, this particular relationship does not arise for othar cases

where ii is comparable or much greater than £, as indicated by 3

et

| curves for 31-32-1, Elnizﬂlo and 31-52-100. The same concluaion ;
applies for the degradation fautors of location estimation although
they are not shown. This figure should clarify the assertion made ]

in section 4.2,

The conditions in Figs, 3 and 4 can be considered as bheing

background-noise limitad because 31 is much smaller than all B's

considered, Since the degradation factors for the background~noise

limited case are indevendent of the target intensity as illustrated

3l
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by Fig. 7, the deqgradation curves shown in Figs, 3 and 4 are the
limiting curves for all background=noise limited cases. Figas., 5
and 6 which show the effeact of interference can also serve to
demonstrate the signal-dependence of degradation factors,
Flgs, 8 and 9 show the CRB curves as functions of B and adlrt
for 81-10, 32-1 and N =100. Scales for CRBI’(El,n-Z)/i1 and
CRBH(arl,n-Z) are also provided. As expected, the CRB on either
the intenaity ov position (stimate decreases as the angular separation
increases for all detector sizes. However, no distinct relation=-
ship between the detector size and its associated Cramer-Raoc bound
can be observed from these figures, For this particular axample,
it can be observed that the detector size which ylelds the lowest
CRB 18 different for different ranges of target separation. This
result may be dume +n +a particular detector response function assumed
which was discussed in [5], or the fact that detectors with smaller
(larger) siuze can increase (decrease) the resolution capability but,
cn the other hand, can also decrease (increase) the device sensitivity.
Fig, 10 illuatrates the relationship between the signal-to~
noise ratio (dB), target intensitles and target separation. The

é is computed at twt, according to Bq. (4.24). This figure

SNR
illustrates that the signal-=to=nolse ratio decreaases significantly
when the interfering target is stronger than and/or vlose to the
deslred targot, The additional noise power due to the lnterfering
target fades out, as one expacts, while the target separation is

large. This is demonstrated by the fact that all curves tend to
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Fig.7. Degradation factors of intensity esti-
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Fig.9. The Cramer-Rao bound of angular position
estimate of the first target computed for ditferent
sizes and angular separatinns; a shot-noise limited
casge.
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level off asymptotically. Comparing Fig. 10 with Figs. 5, 6, 8 and 9

. we can see that the estimation performance varies monntonically with

i slgnal~-to-noise ratio. It should be noted that the oscillation
g shown in the bottom curve of Fig. 10 is due to the sidelobes of the
optical pulse shape assumed in Section III.
Figs. 11 and 12 show the estimation accuracy in the case of
a single target in relation to the normalized target intensity, 31,

| and the detected electron counts due to the uniform background

radiation, Ne' The detector angular width 1s choosen equal to A/d.
It is clear that for a fixed value of Ng the estimation accuracy of :
intensity estimation, expressed by CRB(il,n-l)/El, and that of 'j
angular position estimation, expressed by CRB(aTl,n-l), decrease
monotonically as 51 increases. In fact, the decrease is linear in
,} log=log scale with slove ecqual to 1 for the background-noise limited
‘ case(al<<s) and with slope equal to & for the quantum limited case
(31>>B). This difference is attributed to the characteristics of
the shot-noise in which the noise is dependent upon the signal in
addition to the background nocisa., The stronger the target the more
noise is generated and the increase in riolise level effectively off=
pets some advantage gained with stronger signal,
From Figs, 11 and 12 it alsc can be seen that for the same 51

the estimation accuracy is inversely proportional the square root

as defined in (4.15) and

of Ne' Note that Ne is equal to OTppbo

is the intensity relative to P The actual value of Ne could

31 ho*
vary in a wide range depending upon the background condition and the

4l
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particular sensor system used, If p and Tp are constant then for

an absolute target intenaity, a8y, the corresponding il is different

for different Ne' Therefore when figures which are shown in tarms

of relative quantities are used to interpret the absolute physical
measurements care should be exercised.

It 18 worthwhile to note that Figs. 11 and 12 can be couplad
with the degradation factor curves (e.g., those shown in Figs. 3 and

4) to give the actual estimation accuracy of the desired target

in the presence of an interfering target. On the other hand these

figurea can also be coupled with the estimation accuracy curves

(e.g., those shown in Figs, 8 and 9) to yield the estimation degrada-

tion factors.
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VI, CONCLUSIONS

In this revort we have presented a mathematical model for
passive optical detectoras and the Cramer-Rac bounds on tha var=-

iances of intensity and angular location estimates of two closely

g! spaced optical targeta, We have emphasized the case in which the
g' system is shot noise (not background noise) limited, Representative
‘ curves for the Cramer-Rao bounds and the performance degradation 'ﬁ
i
factors are shown. 3
An intrinsic noise source for the passive optical estimation %
system arises from Poissgocn shot noise, The mean signal in the shot- 4

! noise current 1s proportional to the input signal. However, the
variance of the shot nolse current is alasc dependent unon the sig=

nal in addition to any background radiation noiae.

owing to the nature of the shot noise and the prescnce of a
si gecond target, the estimation of the first target's intensity and ;1
¥ angular location is a complicated procedure, It is found that the ‘
;: estimation performance degrades as the separation between the two ;;
targets becomes small and that there is no clear implication from
the values of the lower bounds that there is an optimal selection

of detector size.

Rl Ae

It should e noted that the Cramer-Rao bounds derived for two

e e e wae e
. e

target cases in this report implicitly assume that the two targets
have been "resolved". We did not address the CSO resolution problem 1

completely in this report. We feel that the combined detection and
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estimation problem must be addressed in order to provide a more
balanced view of the resolution problem., We must alsv alert the
readers to the fact that the Cramer-Rao lower hounds are theoratical
limitations for unbiased estimators. An estimation algorithm which
is combined with certain detections schemes may become a blased
estimator even if the estimator alone is unbilased in the absense of
a detection procedure, 1In order to answer guestions about how close
can one resolve two adijacent targets, it may be necessary to carry
out Monte Carlo simulations., It is aexpected that the simulation
results will be heavily dependent upon the specific algorithms one
chooses.

This report doas not include the comparison between our result
and results in references [3]~[5] which assumed different image
diffraction patterns and different noise conditons. A Monte Carlo
simulation study for a specific algorithm is alsc deferred., These

will be the subjects of subsequent reports.
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