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ABSTRACT

A mathematical model for passive optical sensors, which takes

into account the inherent shot-noine process, is presented. Based

on this sensor model, the Cramer-Rao bounds on the variances of

intensity and angular location estimates for two closely spaced

optical targets are derived. Representative results for the esti-

mation performance degradation due to the interfering targets are

shown.
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I. INTRODUCTION

Resolving closely spaced objects (CSO) has been a serious problem

for radar and optical sensor systems [11-13]. Recent attention has

concentrated on the problem of determining accurately both target

amplitude and location for situations in which the target density

is high. Techniques that are applicable to predicting the performance

of amplitude and position estimators for both radar and optical systems

have been described and compared [41. The Cramer-Rao lower bounds

on the variance of target amplitude and location estimates are well-

known to radar system designers, and they have proved useful in

predicting the performance limitation of sensor systems without the

need for extensive simulations or experiments. In references [4]

and (5], the Cramer-Rao lower bounds on the performance of target

amplitude and location estimates have been derived for closely spaced

opitcal targets. Theoretical bounds presented in (3] are obtained

using a different error analysis technique and, furthermore, the

parameters to be estimated ars different from those considered in

[4] and (5]. The noise model assumed in these reports was white

gaussian noise, which aPpliris only to the background noise limited

case. Various pulse shapes have been considered. Some of them

were rather simple shapes typical of radar oulses, see for example

[4]. A particular pulse shape which approximates to the pulse shape

in [3] also considered in (4]. A gaussian function approximation
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to the optical diffraction pattern was used in [51 to obtain the

pulse shape at the detector output for an optical point target.

In this report we reformulate the problem introducing a more

general noise environment and a more realistic optical pulse shape.

In the next section, we present the mathematical model of the optical

system involved in the detection and estimation problem. Special

consideration is given to the model of optical sensors. In Section

III a temporal optical signal produced by a scanning detector is

described. The applicaiton of this detector model and pulse shape

to the estimation problems for closely spaced optical targets is

presented in Section IV. Some numerical results are also included

in this report. These results emphasize but are not restricted to

the detector noise limited case.
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II. THE MODEL OF OPTICAL DETECTING SYSTEM

A typical optical receiving system consists of three basic

blocks: an optical receiving lens system, a photodetector, and

a postdetection processor, as shown in Fig. 1. The lens system

collects the incident optical field radiated from remote sources

(or targets) as well as background noises. This received

optical field is focused and filtered by the receiving lens system

onto the photodetector surface and then converted to an electrical

signal by the photodetector. This conversion process is quite

complicated and it can not be modelled as a deterministic process,

because the photodetector responds to the impinqing radiation

field by releasing electrons from its surface at random. This

intrinsic fluctuation is often modelled as a shot noise process, a

more detailed description of this process will be given in the next

sub-section. Other noise sources in the receiving system are:

the circuit and electronic noise generated in the signal processing

operations which is often referred to as the thermal noise, and the

"dark current" in the photodetector corresponding to the random

emisson of electrons at a fixed rate when no incident field is

present. The processor performs the necessary amplification and

filtering (electronically) operations to recover the desired in-

formation from the noisy photodetector output. In this section we

will concentrate on the model of the photodetector system.

3



I

'I

LI
-I,ii� - - - - I

I �1
I I I
I I u
I I

I I I

A
I 

'H

iJ ii
ii

-I

4
-4



2.1 The Photodetector Response Process.

2.1.1 Shot Noise Process

A photoemissive photodetector has the basic structure shown

in Fig. 2. The photosensitive surface responds to the impinging radi-

ation by releasing electrons randomly at a rate determined by the in-

cident intensity. These free electrons are collected by a collecting

anode due to the applied electric field. The current induced by these

moving electrons can be represented by the following mathematical

expression
N(O t)

x(t) -t hMt-tj), (2.1)

where h(t) is the current response function corresponding to the

movement of a single electron from the photosensitive surface to

the collecting anode, t is the instant that the Jth electron is
j

released from the surface, and N(O,t) is the number of electrons

released from the surface over the interval (O,t).

In all cases, the area under the response function is a fixed

constant, since the integral of h(t) is the charge of a single

electron, that is

f h(t)dt - charge of a single electron e. (2.2)
0

Although the current response function may be different for each in-

dividual electron, for simplicity we assume that every electron has

the same response function h(t). Since the travel time of each

5
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electron is finite, the function h(t) must be time limited to some

interval t That is, h(t) = 0 for t<0 and t> h. This time in-

terval Th is inversely related to the detector bandwidth and it is
h 7 9grelatively short (10 to 10 sec.) compared with the time vari-

ations of the signals considered in this report. For simplicity,

we may assume that

aT 0 <t< thh(t) - h (2.3)

0 otherwise.

Substituting this back to (2.1), we have

x(t) - Th N(t.¶h-t). (2.4)hfh)

N(0,t), often referred as a counting process, is actually a Poisson

process whose intensity, n(t), is proportional to the power re-

ceived by the detector [6], [7]. In many cases, n(t) is itself a

random process and hence N(0,t) becomes a conditional Poisson p-ro-

ce.ss x(t), the current at the detector output is known as a shot

noise or conditional shot noise process depending on whether n(t) is

deterministic or random. More detailed descriptions of these

processes and their statistical properties can be found in (6]-[R].

In the following we will give the mean and covaziance functions of

the resulting conditional Poisson shot noise, x(t), without

derivation:

I',[x(t) t h(t-z) E[n(z)]dz (2.5)

7



CoV (t,t+T) =fth(t-z)h(t+T-z) E[n(z)]dz. (2.6)

If the current: response function of the photodetector, h(t), is

given by (2.3) and its bandwidth (l/Th) is much larger than that

of n(t), ther. wt have the following approximations

E[x(t)] = eE[n(t)] (2.5a)

and

() 2 (T+Th )E[n(t)] - Th<T<O

COVx(t,t+T) (T -h)Efn(t)] 0<T<T (2.6a)X ~ hh

a0 otherwise

Note that the dependence on t in (2.5) and (2.6) indicates that

the general detector process, x(t), is nonstationary.

2.1.2 Intensity Process

The intensity of the shot noise process of a photodetector

output is a function of the incident field power and other factors

related to the photosensitive material used. A simplified math-

ematical model is used in this report as well as other references

[6J - [81. The intensity, n(t), of the shot noise process (also
referred to as count energy, or count power, for example, in re-

ference [6]) is linearly proportional to the received field power,

8



P(t), at time t

n(t) P P(t), (2.7)

where

h p (2.8)

and

n: Quantum efficiency
h: Planck's constant

f: Optical frequency.

If the incident field involves certain random sources, for example

background noises, then the intensity is no longer deterministic.

In most cases considered here, the resulting shot noise process

is a conditional Poisson shot noise process.

2.1.3 Background Noise

There are two basic types of background noise sources which

may appear in the field of view of the photodetector, they are:

(1) the diffuse sky background, which is assumed uniformly radiant

over the whole hemisphere, and therefore is always in the field of

view of the detector, and (2) discrete, or point, sources such as

stars, planets, sun and the like, that are more localized but more

intense, and may or may not be in the field of view of the detector.

In this report we will only consider the uniform background radiation

noise.

A common model for this uniform background radiation is to

9



assume the sky appears as an ideal blackbody radiator. Then the

average background noise power collected on the detector surface is

•fv
P = NobBo QdL (2.9)

where Qfv is the detector field of view, 2dL the diffraction limited

field of view of the lens system, B the optical filter bandwidth
0

and Nob the effective spectral level for a blackbody radiator at

temperature T degrees Kelvin:
hf

Nob hf (2.10)

where • is Boltzmann's constant.

2.1.4 Gaussian Approximation for the Shot Noise Process

If the intensity, n(t), is significantly "large", the in-

stantaneous probability density of the shot noise process can be

approximated by the probability density of a Gaussian process with

mean and covariance given by (2.5) and (2.6), respectively. A

rigorious justification of this can be found in [7].

2.1.5 Dark Current and Thermal Noise

Dark current in a photodetector corresponds to the random

emission of electrons at a fixed rate, when no field is being de-

tected. This current is added directly to the shot-noise current

10
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at the detector output. In typical operation, the average level of

the dark current is much less than the average level of the shot-

noise current and the dark current can often be neglected.

Thermal noise is always present in an electrical element.

Its magnitude depends on the temperature of the element and the

bandwidth of the processing filter which the element feeds. This

thermal noise in an optical system is often considered as an add-

itive gaussian noise to the shot noise. However, its effect can

be usually made nogligible by operating the detector in a very low

temperature environment (semiconductor type) or with a very high

current gain (photomultiplier type).

2.2 Signal-to-Noise Ratio

Let s(t) and Pb be the average signal and background noise power

received by the photodetector. Then the average count intensity is,

from (2.7),

Efn(t)] - p(s(t)+Pb) * (2.11)

According to (2.5a) and (2.6a), the mean of the shot noise process

is

Erx(t)] - ep(s(t)+Pb) (2.12)

and the variance

2
Varlx(t)i ] = (s(t)+Pb) . (2.13)

11
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It is clear that the shot noise process is not simply a

desired signal plus an additive noise. Instead, the desired signal

is immersed in the noise. The conventional definition of instantane-

ous signal-to-noise ratio (SNRt) for this particular case is (6]

[ mean of the shot noise due to s(t) at time t] 2 .
shot noise variance at time t

Suppose, in the post-detection processor, the constant mean

(e 2 pP b) of the shot noise due to uniform background radiation is re-

moved and the remainder of x(t) is filtered by a low pass filter with

unit gain and bandwidth B. In general, this bandwidth must be selected

;uch that it is much smaller than the bandwidth of the detector current

response function (l/Th) and much larger than the bandwidth of the s(t).

At the filter output, the mean signal is equal to ePs(t) and the

2variance of noise is equal to [e p(s(t)+Pb)+Noc] 2 B where Noc is the

two-sided power spectral density of the thermal current noise.

Therefore, SNRt becomes

SNR 2 0 2(t)- (2.15)le P(s(t)+Pb)+Noc 12B

if e2(S(t)+Pb)>>Noc that is, if the noise current contributed by

the shot noise process greatly exceeds the thermal noise current,

the second term in the denominator can be dropped, and we say the

receiver is shot noise limited. That is,

SNR t P p2(t) - (2.16)
(s(t)+Pb) 2 B

12
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Substituting for I by (2.8), we have

2
SNRt W (2.16a)

2hfB(h(t)+Pb)

It is important to note that the signal-to-noise ratio does not

increase without bound as the background noise (Pb) and circuit noise

(N 0) are weakened, but rather approaches the following limitt

SNRt = h . (2.17)

In this case, we say the receiver is quantum limited. This is a

major difference between an optical receiving system and its

microwave counterpart. At the other extreme, the background noise

power greatly exceeds the signal power and we have a background

limited condition. In this case, (2.16a) becomes

2
SNR na W (2.18)t 2hfBP b

Since the output noise is dominated by the background noise

in this background limited case, one may describe the signal and

noise relation by the usual "signal plus noise" concept (where

the noise covariance is independent of the signal) which is

familiar to communication engineers. However, in general, this

interpretation of signal and noise relationship may lead to

incorrect conclusions.

13



III. OPTICAL PULSE SHAPES

The radiation emitted from a remote point target forms an image

in the focal plane of a telescope. A detector is often used to

scan through the ima.ge and thus it receives a time-varying optical

signal associated with the fixed image. This optical signal

together with the background noise appears on the detector

photosensitive surface and produces a shot-noise current at the

detector output. The pulse shape of the time-varying optical

signal is considered in this section

Let us first assume the incident optical field from the re-

mote point target is monochromatic (wavelength X) and normal to

the aperture at its center, and that the aperture lens is aberration-

free and rectangular with dimension (d,b). Then according to the

Fraunhofer transformation 191 the diffracted field intensity

in the focal plane is

sf i ky)rby/(Xf
sf~xY) A EA a si ('dx/c))2 rb/(Xf0) c

where E is the total energy collected by the lens, which is pro-

portional to the intensity of the point source and inversely pro- I
protional to the square of the distance from the point source to the

telescope, f the focal length, A - db the aperture area and (x,y)c

the rectangular coordinates in the focal plane. Next we assume

the detector is rectangular with dimensions wl and w2 in the x and I'

directions, respectively, and has response function given by

14
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g(x,y) 2. lxi and I (3.2)

C0 otherwise.

The input of the detector after the scanning process (i.e., the

incident signal power at the photosensitive surface) is then given as

the convolution integral of g(x,y) and sf(xpy),

Sd(xoYo) sf(x,y) g(xo-x, yo-y)dxdy (3.3)

where (x oy) is the center position of the detector.

The scanning process converts the spatial structure of the

image into a temporal signal. If the scanning rate is fixed, the

resultant temporal signal function will have the same form as the

image spatial function. Here we further assume that the detector scans

along the x-axis with a constant scan rate, v This simply means

- vxtg
K0 v xt o (3.4)

and

Yo  a 0. (3.5)

Substituting (3.1.), (3.2), (3.4) and (3.5) into (3.3) and carrying

out the integral we can write the temporal optical signal at

the detector an

ad(t) a So(t) (3.6)

where

15



a 2 f i2V2 dv (3.7)
k 1

and

s (t) Si(2irat+ir3) . .sin 2(rXt+irI3/2)
iTat+7T a/2

-Si (2'rrI t-'tr'I) + !in2 'r't-OrLt !2 2 (3.8)

Here, Si(x) is the sine integral evaluated at x. The constants which

appear in Equations (3.7) and (3.8) are as follows

k 7 (Y o-W 2/2)

f (N./b)

'T (yo+w 2 /2)
S~k 2 U

f c(X/b)

a = (V /fc)/,X/d), (normalized angular scanning rate)

S= (Wl /f c)/(X/d). (normalized detector anqular width)

If w2 is significantly larger than the extent of the point source

image formed by the telescope, then a in (3.7) can be approximated

by E/v.

When there are n incoherent point sources located at angles

0 1,..0n along the x-axis, the resulting optical signal at the

detector is simply the superposition of response from each target?

n

a d(t) lais 0 (t-Ti) (3.9)

16
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where
0i

T _ x . (3.10)

Note that the time frequency, f, of the optical signal is related
to the spatial frequency, f., by

f v fs a Vx (3.11)

Usually vX should be high enough to avoid problems with target

motion during detection on one hand and should be as low as possi-

ble to ease the subsequent signal processing on the other hand.

In deriving (3.6) - (3.10) we have made several assumptions.

The diffraction nattern under these assumPtions is of the form

(sin w/v)? When any one of these assumptions is modified the shape

of the diffraction pattern would be different. For example, if the

aperture lens area is circular the diffraction pattern is given by

W l(W(•/W2 where J1 (p) is the Bessel function of the first kind

[9]. If the incident optical field has finite bandwidth instead of

being monochromatic and telescope aberration is unavoidable, the

diffraction pattern might be better approximated with a gaussian

function of the form [101

5(XY) . Exp 2 (3. 12)
71r-2+ 2 \F

2w p - ( a/
where a depends upon the spectral bandwidth of the incident radiation

and the aberration of the telescope.

P~uise sapes different from s (t) given in (3.8), are easily in-
corporated into the analysis d~scribed in the following sections.

17



IV. PERFORMANCE LOWER BOUNDS FOR INTENSITY AND LOCATION ESTIMATES

In many optical sensor applications, it is necessary to estimate

the target intensity and angular location from the signal collected

at the output of a post-detection filter or a detector itself. It

is expected that the quality of the estimates for a desired target

degrades when there are interfering targets. In 141 and [51, the

Cramer-Rao lower bounds on the variances of these estimates were used

to characterize the degraded performance. These bounds are frequently

easy to calculate and are generally tight bounds for a wide class of I
unbiased estimators when the signal-to-noise ratio is high (see for

example, [1.1-[14]). In general, these bounds shall not be inter-

preted as the achievable performances but rather the lower bounds

on the achievable performances of unbiased estimators. In the j
following subsection, we will first derive the Cramer-Rao bounds

(CRB's) associated with the sensor and signal (optical pulse shape)

models described in the previous sections. Secondly the so-called

"degradation factor" - the ratio of CRB with interfering target

and CRB without interfering target will be derived.

4.1 Cramer-Rao Lower Bounds

Suppose Y { is a sequence of observations and

S(W VWll2 ,..., q J is a set of parameters to be estimated. Then

the CRB on the unbiased estimators for w given the observations

Sin obtained by inverting the Fisher information matrix with its

18



(ij) th element defined by [111

F E )loq p(y/w) 11 log P (Y/Fij • - -(4.1)

I Wj

where E { ] denotes statistical expectation, wi the ith element of the

unknown parametur vector, w, and p(y/w) the Joint probability density

function of . given it.

From discussions in Section I1, we know that the current at

the detector output, x(t), is a Poisson shot noise process as described

by (2.1). x(t) is always contaminated by the thermal noise which

is usually modeled as additive gaussian noise. However we intend

to omit this type of noise because it is practically negligible

in most applications. We also know that the count intensity, n(t),
i ~of the shot noise nrecess J s proportional to the received optical

power which Is the s•ui of the background radiation power, Pb' and the

signal power Sd(t) That is

"Ai(t) - Pmd (t)+Pb), (4.2)

where Pb is given in (2.9) and sd(t) is given in (3.9).
Suppose an ideal integrator is used as the post-detection

filter. The integrator integrates and resets every T seconds

p

during (-T/2,T/2). A sequence of measurements on the integrator
output current, y - (yl,.*..yk) is obtained at t - T + kp

.-l,...,k. Suppose Tp>>'h and Tr 1/(2Bn) where Th in the duration

of the detector impulme response as described previour!y and Bn is

19



the bandwidth of the count intensity, n(t). Then we have

y N= p(t •Tp't)Yii
"N(t£.~£ 43

p

which is similar to x(tz) in (2.4) except rh is replaced by Tp

The electron counts N, - N(tz.l,tL), i-l,...,k are independent

and Poisson distrin)utnI when conditioned on the count intensity,
n(t). The unknown narameters, L,, which we wish to estimate from
the observations y are the intensities and angular locations of the

n targets appeared in the field of view of tho detector, namely,

aiIs and oi'S Of Eq. (3.9). Therefore, we may definc

(1 1~in- ai

(4.4)
U~n+i "Ti

for i-l,..,#n.

In order to compute the risher information matrix according to

(4.1), we need the Joint conditional probability density function

p(y/,,). From Eq. (4.3) and the fact that N£,t=l,.,k are mutually

independent, we have

P(Y/ P 7[ ,,

k (mlt
" --- exnf-ni, (4.5)

X=1 N t!

20
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I
where

rn mLEcn (ur variance) ot N,

4,
n Wltdt

t£.

P-T +P 4.6)

It is easy to obta!n that (3]

Fi Tp a Sdl(t1 X s d(t1t (4.7,

e d1 a Wti W W

wheire

d(t (t-Tj) if W a
d (4.8e),

a WI a I-% (t-Tj) if Wi"T J

The Cramer-Rao lower bound for each component of the unknown par-

ameter w can be calculated easily by inverting the Fisher inform-

atiun matrix F, that 1i

2 -1
G > (F (4.9)

This result is applicable to the shot-noise limited case. If the

condition for the background limited case is satisfied, i.e.,

21
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sd(t)<<b, then we can further reduce (4.7) to

i -prb• 2 dt£ sd~£
b d ( (4.10)

j P bW i W •

Notice that this formula is a discrete courterpart of the Cramer-

Rao bound obtained in (4]. More detailed discussion about the com-

parison between our results and results in [41 will be given in a

future report.

In deriving (4.7)-(4.10), the current gain of the detector is

assumed equal to unity. However this assumption is made only for

convenience of analysis. It can be easily shown that the same

equations can be obtained for different current gain as long as it

is a constant.

It was pointed out previously that the optical detector shot-

noise process can be approximated by a gaussian process when the

count intensity n(t) is large. It can be shown that, based on the

gaussian process, the same formula for the Fisher information matrix

as given in (4.7) and (4.10) can be obtained if n(t)>>I/T
p

The unit-amplitude optical signal s (t) and its derivative
s 0 (t) must be available in order to compute the Fisher

information matrix in accordance with (4.7) or (4.10). Suppose

S$(t) is given by (3.8). Then the necessary s 0 (t) is given as

sin (1± t+iý ý/21 sin(t-7T/2) J
ioIt -

22



Both so(t) and So(t) are dependent only on the normalized detector

size 0 if the scanning rate "• is kept constant.

In presenting results, it is convenient to rewrite (2.9) as

below

P= bo a (4.12)

where

Pbo = ob o 8

and (w = (w2 /fc)/(/b) is the normalized angular width of the

detector in the direction perpendicular to the scanning direction.

Since Pbo is independent of the scanning process, it is convenient

to use it to ,ormalize the signal, sd(t), that is

Pbo

= aso(t-'ri) . (4.13)

i=l

Here sd(t) and Ii denote the relative magnitudes of sd(t) and ai

th
with respect to Pbo' respectively. The (i,j) element of the

Fisher information matrix for the normalized unknown parameter be-

comes

k Ne • •(t) ( dt)ki N O d X d k (4 . 1 4 )
i -- E j(t )+a W Wi

where

23



N pt bop (4.15)

which is the average number of electrons released from a detector of

angular width equal to X/d (or -1) due to background noise during

the integration interval, 'c" Por the background-noise limited case

or, equivalently, id(t)<<8, Eq. (4.10) becomes

N eka ad(t) a ~d(t zPij = T E(4.16) ,

W, aw

The expression of a id(tz)/a Wi is the same as a sd(tz)/a Wi in

(4.8) and (4.10) expect all ti's should be replaced by Ri's. It

should be noted that for a observation interval, T, it can be easily

seen that an increase of the integration interval, Tp, will decrease

the number of samples, k, but the value of Fij will be unchanged.

The CRB's on the variances of intensity and position estimates

are expected to bu closely related to the signal-to-noise ratio

To clemonstrate this point let us consider, for simplicity, the single

target and background noise limited case. Using (2.18) wo can

write for this case the instantaneous signal-to-noise ratio as

Sor el2

t Here, the target is assumed located at t 1 =0. Obviously the SNRt
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I.

is proportional to N a for a fixed 8. From (4.16), we have the

associated Fisher information matrix,

11: l90otdi o(tk &I(

since the off-diagonal entries of matrix F are relatively smail (it

can be shown that so(t) and io(t) are orthogonal), it follows that

E [(T 1 -i) 2]_ CRfB(,rl,n=I) . X x 1 (4.20)
e )

and

AE ... ...)' > 'a n-l) 8

a3 . a1 . Nea o2 (4ti1

A A -

Here and a denote the estimates of T and a1; CRB(w,n) denotes

the Cramer-Rao bound of the estimate for parameter w in the case of

n targets. This implies that for a fixed value of 8 the CRB for

the T estimate and the normalized CRB for the I estimate of a single

target are inversely proportional to SNR in the background-noise limited

case.

In other cases, CRB and SNR might be related in a more complicated

manner. The reasons for this are twofold, First, in cases other

than background limited, the noise is dependent upon the signal and
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SNR~ is n longer simply proportional to N /6 Secondly, in the

presence of a second tmirget, the signal due to this target becomes

interference to the desired target. For the case of two targets

(i.e.,n-2 in (3.9)), the instantaneous signal-to-noise ratio for

the let target can be obtained by modifying (2.14) as follows

NR - . . . . .. . . ...... (4 .22)SN, variance of shot noise at time t 1
where mi(t) is the mean of shot noise due to the ith target, i-l

and 2. The interference from the second target becomes part of the

total noise. The above equation can be expressed as

[1 tepa (t-ot.)] 2
... 1 . (4.23)

SN 1 2 2
T( e(@sd(t)+Pb)] + [epa 2 So(t-T2)]
p

or equivalently,

N1 - NeI 1
2So 2 (t-.I)

e R+ 2o . (4.24)

d du to t2)
Usually, the SNR is specified at t-wI when the signal due to the

1s target in at. its maximum.

4.2 Degradation Factors

In this report we are concerned with two casesi one is the

case where there exists one target without any interference (n-l)
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and the other is the case where there is an interfering target in

addition to the desired target (n-2). Without loss of generality

we can assume the target is at 'l=0 for the n-1 case and the two

targets are at TL=-AT/2 and T2-AT/2 where ýT-AO/(V /f ) is the

angular separation in terms of time. The subcripts 1 and 2 are

used to indicate the first (desired) and the second (interfering)

targets respectively.

The effect of an interfering target on the accuracy of intensity

and angular position estimates of the desired target is customarily

indicated by the so-called "degradation factor" which is defined as

the square-root of the ratio of the CRB for the intensity (or

angular position) estimate of the desired target in the presence

of an interfering target to the CRB for the intensity (or angular

position) estimate of the desired target without any interference.

Mathematically, with DFa and DF denoting the degradation factors

for intensity arnd position estimates, they are

_[CRB(;t
1 1 nm2) 1_CRB (al, nl)

"CRB(-tI'nm2)]

DFT -- CRB( 1 ln- 1) .(4.26)

It is convenient to characterize the effect of interference by
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these "degradation factors", if one is only interested in the chaiige

of "relative" performance due to the interfering target. The optical

sensor noise models used in [4], [5] and the typical noise model

used for radar analysis assume an additive white gaussian noise.

In these cases the degradation factors are, generally, independent

of the signal-to-noise ratio of each target. To calculate the actual

estimation performance for a target with interference via the de-

gradation factor, in these cases, it is necessary to determine the

"absolute" performance of the desired target without interference.

it should be noted here that the degradation factors presented in
this report, except those for the background-noise limited cases,

are dependent upon several signal-to-noise ratio related parameters

such as normalized detector size (8), normalized target intensities

(a1 and 52). The simple and universal representations of interference

effects via the degradation factors appropriate to the additive

white gaussian noise cases no longer apply here. These points

will be made clear when we examine the results presented in the next

section.
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V. RESULTS

Previously, we discussed the mathematical model of optical

detectors, the nature of noise contributions, the pulse shape of a

point target image response and the parameter estimation problem for

closely spaced optical targets. In this section we will present

some computer results regarding the Cramer-Rao bounds and degrada-

tion factors for the target intensity and angular position estimation.

These quantities were computed according to (3.8), (4.8), (4.11),

(4.13), (4.14), (4.25) and (4.26) with respect to three parameters:

0 (the detector size along the scanning direction normalized by

the optical resolution X/d), c*At (the angular separation between

two targets normalized by X,/d) and Ne (the detected electron counts

due to background noise during the integration interval when the

detector width is equal to X/d).

In the previous discussions we considered the target positions

as points on the time axis. However, in the real computation, for

convenience, we considered them in terms of angles normalized by

X/d. These two measures are different only by a constant, a, the

normalized linear scan rate. The degradation factor for the position

estimate remains the same no matter which quantity is used to

measure target ?osition. However, the CRB for the angular position

estimate, CRB (aT,n), becomes the product of 2 and the CRB for the

time position estimate, CRB (r,n), which was defined earlier in

Section IV.
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The ranges for 5 and aAT employed in the computation were

.23<S5 and .l<aAT<2, respectively. An arbitrary value, 100, was

used for N a The samples used in all computations were equally

spaced in the range of aT from -6.4 to 6.4 at an interval of .05.

For all values of 8 and aAT considered here, this range is large

enough to cover the important portion of the associated optical

signal and the sampling frequency is well above the Nyquist fre-

quency.

Fig. 3 shows a met of DFa curves as functions of 8 and 06T

for the case where a is a - .01 and N - 100. Fig. 4 shows the1 2
DF T curves for the same condition. From these figures it is obvious

that as cAT becomes larger both DFa and DF become smaller and

asymptotically converge to unity. This implies that when the in-

terfering target is angularly further apart from the desired target,

it can do less impairment to the estimation of target intensity

and location and hence the estimates should be more reliable. From

Fig. 3, we also see that, at any target separation, the degradation

factor for intensity estimate is always smaller for a detector with

smaller detector width. However, it is not entirely true for the

degradation factor of the position estimate as shown in Fig. 4 where

the degradation factor for $-5 is smaller than that for 8.2

when the angular separation is approximately over .8 X/d.

Figs. 5 and 6 show an example of how the degradation factors

vary with different intensities of the interfering target in the

simple shot-noise limited case. In this example, 1I-1, NOM100

30
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and 52 is chosen as .1, 1, 10 and 100. From these figures it is

clear that at any angular separation both degradation factors be-

come larger for stronger interference. This means that the stronger

the interfering target, the more severe is its influence on the in-

tensity and position estimation of the desired target. Note that

the ordinates in Figs. 5 and 6 can be also used to indicate

tJ•CT'•n-2i'/a 1 (lower bound on normalized standard deviation of

intensity estimates) and (cTlvn-2) (lower bound on standard

deviation of angular position estimates normalized by X/d) respect-

ively. For examples, when ai=a 2- -1 they are 2.65% and .016 for

caT-l respectively.

Fig. 7 shows the degradation factors of intensity estimation

for several pairs of a and a2* The detector size used is 8-.

We can see that in the background-noise limited cases where 1i<<B

and h2<<O the degradation factor becomes independent of ai's.

However, this particular relationship does not arise for other cases

where is comparable or much greater than 8, as indicated by

curves for 9i-4 2ml, i-•i2 -10 and I-M 2i 100. The same conclusion

applies for the degradation fautors of location estimation although

they are not shown. This figure should clarify the assertion made

in section 4.2.

The conditions in Figs. 3 and 4 can be considered as being

background-noisa limnited bucause A1 is much smaller than all BVa

considered. Since the degradation factors for the background-noise
limited case are indenendent of the target intensity as illustrated
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* Reletiva intensity of
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20 - baokqround noise

A/d a Optical diffraction limit

B w Detector angular width
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NH - Detected electron counts due
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Fig.3. Degradation of intensity estimation of the first
target due to interference of the second target computed
for different detector sizes and angular separations; a
background noise limited case. ii
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Fig.4. Degradation of angular position estimation of the
first target due to interference of the second target com-
puted for different detector sizes and angular separationsj
a background noise limited case.

33

-... ...........--



by Fig. 7, the degradation curves shown in Figs. 3 and 4 are the

limiting curves for all background-noisin limited cases. Figs. 5

and 6 which show the effect of interference can also serve to

demonstrate the signal-dependence of degradation factors.

Figs. 8 and 9 show the CRB curves as functions of 0 and aAT

for A1-i0, A2 -i and Ne-10. Scales for CRB(Wik,n-2)/i 1 and

CRB (aTlrnr2) are also 9rovided. An expected, the CRB on either

the intensity or position atimate decreases as the angular separation

increases for all detector sizes. However, no distinct relation-

ship between the detector size and its associated Cramer-Rao bound

can be observed from these figures. For this particular example,

it ran be observed that the detoctor size which yields the lowest

CRB is different for different rangeu of target separation. This

result may be dUM te' +*'I particular detector response function assumed

which was discussed in [51, or the fact that detectors with, smaller

(larger) siue can increase (decrease) the resolution capability but,

on the other hand, can also decrease (increase) the device sensitivity.

Fig. 10 illustrates the relationship between the signal-to-

noise ratio (dB), target intensities and target separation. The

SNR1 is computed at t-T according to Eq. (4.24). This figure

illustrates that the signal-to-noise ratio decreases significantly

when the interfering target is stronger than and/or close to the

desired target. The additional noise power due to the interfering

target fades out, as one expects, while the targret separation is

large. This is demonstrated by the fact that all curves tend to
,34
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Fig.5. Effeot of different intensities of the second
target on the degradation factor of intensity estimation
of the first target; a sample example.
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Fig.6. Effect of different intensities uf the second
target on the degradation factor of position estimation
of the first target; a sample example.

36



V

5 C32-1533 I
40 o 100-

< .0

30 - .
0

U1

20 I1-1

100

0= 10 -

0 I a a(

.2 .3 .4 .5 .6 .7 . .9

Target Angular Separation Normalived by A/d (1At)
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separation between the targets (•a& - AO/(X/d)).
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level off asymptotically. Comparing Fig. 10 with Figs. 5, 6, 8 and 9

we can see that the estimation performance varies monotonically with

signal-to-noise ratio. It should be noted that the oscillation

shown in the bottom curve of Fig. 10 is due to the sidelobes of the

optical pulse shape assumed in Section III.

Figs. 11 and 12 show the estimation accuracy in the case of

a single target in relation to the normalized target intensity, alp

and the detected electron counts due to the uniform background

radiation, Ne. The detector angular width is choosen equal to X/d.

It is clear that for a fixed value of N the estimation accuracy of

intensity estimation, expreFised by CRB(•I,n-l)/&I, and that of

angular position estimation, expressed by CRB(aTl,n-l), decrease

monotonically as A increases. In fact, the decrease is linear in

log-log scale with slope equal to 1 for the background-noise limited

case(al<4$) and with slope equal to ½ for the quantum limited case

(a >50). This difference is attributed to the characteristics of

the shot-noise in which the noise is dependent upon the signal in

addition to the background noisoi. The stronger the target the more

noise is generated and the increase in noise level effectively off-

sets some advantage gained with iitronger signal.

From Figs. 11 and 12 it also can be seen that for the same a1

the estimation accuracy is inversely proportional the square root

of Ne . Note that NG is equal to OrpPbo as defined in (4.15) and

is the intensity relative to P3ho0  The actual value of Ne could

vary in a wide range depending upon the background condition and the
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Fig.12. Accuracy of angular location estimation in the
case of a single target in relation to the normalized
target intensity (ai) and the detected electron counts

due to background radiation (Ne).
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A
particular sensor system used. If p and T are constant then for

P
an absolute target intensity, a,, the corresponding 1, in different

for different Na. Therefore when figures which are shown in terms

of relative quantities are used to interpret the absolute physical

measurements care should be exercised.

Tt is worthwhile to note that Figs. 11 and 12 can be coupled

with the degradation factor curves (e.g.,those shown in Figs. 3 and

4) to give the actual estimation accuracy of the desired target

in the presence of an interfering target. On the other hand theme

figures can also be coupled with the estimation accuracy curves

(e.g.,those shown in Figs. 8 and 9) to yield the estimation degrada-

tion factors.
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VIN

VI. CONCLUSIONS

In this reoort we have presented a mathematical model for

passive optical detectors and the Cramer-Rae bounds on the var-

iances of intensity and angular location estimates of two closely

spaced optical targets. We have emphasized the case in which the

system is shot noise (not background noise) limited. Representative

curves for the Cramer-Rae bounds and the performance degradation

factors are shown.

An intrinsic noise source for the passive optical estimation

system arises from Poisson shot noise. The mean signal in the shot-

noise current is proportional to the input signal. However, the

variance of the shot noise current is alec dependent upon the sig-

nal in addition to any background radiation noise.

owing to the nature of the shot noise and the presence of a

second target, the estimation of the first target's intensity and

angular location is a complicated procedure. It is found that the

estimation performance degrades as the separation between the two

targets becomes small and that there is no clear implication from

the values of the lower bounds that there is an optimal selection

of detector size.

It should be noted that the Cramer-Rae bounds derived for two

target cases in this report implicitly assume that the two targets

have been "resolved". We did not address the CSO resolution problem

completely in this report. We feel that the combined detection and
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estimation problem must be addressed in order to provide a more

balanced view of the resolution problem. We must also alert the

readers to the fact that the Cramer-Rao lower bounds are theoretical

limitations for unbiased estimators. An estimation algorithm which
is combined with certain detections schemes may become a biased

estimator even if the estimator alone is unbiased in the absense of

a detection procedure. In order to answer questions about how close

can one resolve two adjacent targets, it may be necessary to carry

out Monte Carlo simulations. It is expected that the simulation

results will be heavily dependent upon the specific algorithms one

chooses.

This report does not include the comparison between our result

and results in references [3]-[5J which assumed different image

diffraction patterns and different noise conditons. A Monte Carlo

simulation study for a specific algorithm is also deferred. These

will be the subjects of subsequent reports.
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