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1. INTRODUCTION

The initial simulation research work done in the MIRADCOM Infrared
Simulation System (IRSS) was heavily partitioned between analog and dig- ;
tial computers that were driving real time hardware [1]. Several dis- ;é
advantages to this method of driving the IRSS hardware were noted.

These disadvantages centered primarily on the complexity and maintenance

of such a distributed system and on the resulting control difficulties. ﬁ
It also became apparent that complexity, maintenance, and these control |
difficulties could be significantly reduced by placing all computer
functions external to the IRSS in one existing high speed digital com-
puter that communicated with the IRSS facility. by

Only one problem remained before this idea could be implemented.
The airframe solution frequencies were too high for conventional
real-time digital simulation methods. This report documents the model-
ing method that was discovered to be suitable for solving this problem.

2. AIRFRAME EQUATIONS

The airframe equations originally developed for analog and hybrid
simulation are suitable for digital simulation with minor modification.

These equations can be reduced to

u’ - 0 +V°F" = wq” = £ g uin (6 +8) (1)
v = ES v’ - 56 r’ + 521 8,4 sin¢ (2)
v =g w48 Q7+ gcos (8 +0p) - &y 8 cosd (3)




a‘ = 51 w' o+ 52 qQ° + 520 Gwi cos¢ (4)

®.

E - . Cl vi o+ £2 r’ + 620 Gwi sing (5)

in the non-rolling missile coordinate system

shown in Figure 1, Utility
definitions used in Equations (1) through (5)

are E
Su‘ * *
Ry " 21y 9C8, taz T (Xeg - Y N et (6)
Py
= PSu’d
52 21 Cmq 7
y
Su” %
E5 e Cntotal (8)
56 -0 )
I.;
€18 = 39 374 ft/sec2 (10)
14
520 = 3.81972 [BIO(GI + Gza) + Bll(g1 + gza)] Tm (11) -
521 =< 3.81972 85(81 + gza) Tm (12)

I
|
| =
{

e

Su
B, ..23__




*S32103 Tewmiou
PUE Sjudwow d>yweulpoise pue sme3sis ajeuyprood STTSSTR

‘Ylaea o3 jdadsax yjym Te3juoziaoy auerd Sutaow e
ur sdemre s} syxe .X Yl “°ITISSTu a3yl yira mes
Pue yo37d op Inq Buprrozucu si1e saxe 2N

*09 3 url8rio yya P9XIJ 9TFSSTu aie saxe (Z°x°X)

MIIA Fa1s
i
doy

20y, :
~

= II.— $

\J
N

°T @an8y3

DN\ 0 5

ONIM Q3XId uomummmmm
ONIM ATGVIAOKW .,.o TANNOL




i i

£x

total

G, oeal

£

= 81 (I/Iy)

= - 81 (1/m)

= 'I‘h (1/m) + B5 CA

*
= Cm + Cm
pe

*
= Cn + Cn
pe

“F+Pa (T, + Faa)léwilrm

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(21)

(23)

(24)




: *
; Cn = f + foa+ (f, + fao)ldwih

| = % (25)
G, =C, +ac, (26)
(&)
AC, = (A} + Aza)ldwil (27) J

where Tm is a wing incidence control tuning factor that must be deter-

mined by tuning to match test flight maneuverability in conjunction with

TCP which i1s an indirect measure of CP location that must also be tuned
for matching test flight trim conditions.

TCP is implemented in

Xeg = X = Keg = XDrage ¥ Tep (28)

Note that Equations (1) through (5) are coupled, nonlinear, and time-

varying. Additional equations for use in the airframe model are

¢ -ﬁ:‘dt (29)

8p '-‘-'fq’dt (30)
o s

u’l’ -jcos OP dt (3D

where p” is a roll-rate time history from a nominal test flight.




r

3. MODEL DEVELOPMENT

Consider coupled Equations (3) and (4) together.

Q" =&, w +E,q

-

+ 520 dwi cos¢ (32)

® .

i w’ o= 55 v+ gb q° + &18 cos(GL + ep) - 521 dwi cos¢ (33)

Take the Laplace transforms of Equations (32) and (33), and assume con-

stant coefficients to obtain,

q°(s) = [q7(0) + & wi(s) + a0 L (84 cos$)1/(s - &,) (34)

and

wi(s) = (wi(o) + & q7(s) + L[§;g cos(B, + 6p)

- 521 Gwi cosp]l/ (s - 55) (35)

T ——

after rearrangement. The coupling is shown in Figure 2. Take the Z-

transform of Equation (34) as

vl Zo )




‘weaderp Surydnoo _m pue _b -z aand1j

(s).n ~———| - [¢s0> F'9TC5-(dg4Tg)s008Tg)1

(s).m T + o

Foyrly

AmV\v g — " (¢psod

(s).b




+ S’2OZ[L (th cosd) (;—-_L?—-)}
]

(36)

i
The first Z-transform on the right-hand side of Equation (36) is exact

and can be obtained from table but the last two are not and an approxi-

thod is appropriate.

S,
mate convolution me The exact transform is

PSR

-

(37)
%2 ,2
1 - ze
where the definition of the Z-transform [2] is taken as
w0
Z{L[f(t)]} -Z[f(s)l = Z f(nT)z" = f(z) (38)
n=0
Note that T is the simulation time step, ;;
8
3
Tunable trapezoidal convolution [2] is defined by Dickson as T Pf
A
Zis@e®) = w8 - 1t osee) + (1 - MROE@]  (30) |

T
2
2
-
=
—
o
o
L)
=
£
=
"~
©
~
=
=
~”
=
—
(2]
=
@
=]
a
=
=
]
=
T
=
:
(=%
~
=
=
@«
g
-~
“
[~

convolution, Equation (39), as

"Euler tunable convolution (ETC)" in a
more recent reference [3].

He also uses the term

"trapezoidal tunable
convolutfon (TTC)" in that re

ference [3] to name a convolut fon method
not used in this work.

10




It Equation (39) {s applied to the middle RHS term of Equatfon (36),

Z[\"(u) (n—:.l’,-: ] - 1“"’(1)( “”LT‘.‘:) - '1‘71\»‘(0(——--~«——-—l 3 T)
-t _2 2

1 - ze 1 - ze

- T(1 =~ l])l._l(;:‘l—{—) \"(l) (40)
2
t=(0

Note that

l.-.l (;—:’1-‘(') - ] (4a1)
‘ t=0

from the transform table {n the Appendix. Equation (40) becomes

. - . (e) w”(0) .
Z wi(s) (;—_-—q> ( r“zT - QT = T - Mw(e) .

1 - ze 1 - ze (42)
If Equation (39) {s applied to the last RHS term of Equation (36),
l ™~ . ——-——-L—-——.*

Z[L(G',i cosd) (’ o 59] 1‘[Z(6"l x.om&)] ( 527)
1 - ze
1

- ‘l‘n(cs"i coad) te0 (—-——t—z—f)

1 ~ gze
11 ¥
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, 1 )
- T(1l - n) L (s - ‘:2 )t‘-OZ(G"’1 cos¢)

(43)
TZ(8 . cosd) T™(S ., cosd)
1 & wi wi t=0
Z[L(6w1 cosd) ( o €2 )] {’2.1. - EoT
1 - ze 1 - ze ©
- T(1 = 1) Z((‘Swi cosd) - (44)
Substitute Equations (37), (42), and (44) into Equation (36).
q‘(z) ~ ——A:(Q)__. + £ TW‘(Z) S 'XIIW‘(O) - T(l - n)w‘(z)
EZT 1 CZT EZT
1 - ze 1 - ze 1 - ze
TZ((S cosd) ™(S . cosd)
wi wi t=0
* §op o 30 - T - mZKs,, cosd)
1 - ze 1 - ze
(45)
- 3 - -
q (o) + EIT[W () ~nw (o) = (1 =M - ze “) w (z)]
q7(z) =
§2T
1 - ze
&2T
p EZOT [Z((Swi cosd) - 11(6“"i cos¢v)t_0 - (1 =-=n-ze )Z(Gwicomf‘)]
1 - ze€2T
(46)

12




From Equation (38), it is seen that

wi(z) = | w'(nr)2" (47)
n=()

and

;Z:(Gwi cosd) = z [6w1 (nT) cos(wnT)]z" (48)

n=0

and

a°(2) = § q°(am)2™ . (49)
n=(

Substitute Equations (47), (48), and (49) into Equation (46);

E,T\ « ®
(1 it 2) I a’@m) 2 = q%(o) + g1 [ I v(mz® - nu’(o)
N=()

n=(
52 L
=1 =~-n{1 - ze ) w'(nT)z“]
n=0

+ EZOT nZo léwi (nT) cos(wnT)]"

= N6y cosd) _o

13




oo

n=0

EZT v n
~(Q=-nl1- ze I [8,,(nT) cos(unT)]z

n=(
(50)
E,F =
I come-e* 1 Cani?
n=(
=070 + T - (1 -m] ] w@aD® - £mu’ (o)
n=0
E L @
+ £1T(1 -n) e e z w'(nT)zn+1
n=0
+ 6yl = (1 = m)] nEO [6,,(vT) cos (wnT)]z"
= 850T™6y cosd) g
£2T v n+1
+ EZOT(I - n)e nzo [Gwi(nT) cos(wnT) ]z (51)

Now the Z-transform shifting theorem consistent with the definition of
Equation (38) is




T m—

@ f m=-1
zi{z) = J f(T -aDz" -~ ¥ f@T - 1) 2"

(52)
n=( n=(

where

(53)

and m is an integer. The shifting theorem, Equation (52), can also be

written as

o
z f (nT) ™ i B Z f(nT - mT) Z" (54)
n=0 n=m
which is directly useful in many cases. Use the shifting theorem,
Equation (54), in Equation (51).
o E,T o
I ¢°() 2wy 2 Y ¢t -1 2"
n=0 n=1
= q (0) e Elmw (0) b Eonn(Gwi cos¢)t-0
+6™ § @D "+ LT e 2§ wiaT - 1) 2"
n=0 n-1
+ Eonn I [Gwi (nT) cos (wnT)]) 2z
n=0
15 V7

o = .
———— TR

SERPIGL DEP PTG g Py

DI g 480, g APPSR VI S B I e

&
pe
[
g

M T




§,T e
6T = n) e )

{6 (0T = T) cos [w(nT - T}1)2" (55)
nel wi

Complete all Z-~transforms in Equation (55),

0

g, T ® E.T
[ ): 6 2™ - 2 Z q°(nT - T) 2™ + ¢ 2 q’(—T)]
n=0 n=0

=iq’(0) = [&lw'(O) * &5 (8.4 coswt_o]

+6m £ wan "+

C2T b n
§iTA -n) e | w’(aT - T) 2z
n=0

n=0

£,T o
SETA - e 2 wier) 4 €50 ngo [8,4(nT) cos (wnT)] 2"

E,T
+EM(l-ne? § s,

1aT = T) cos [w(nT - ) }2"
n=(Q

T

£2
[6w1(-T) cos(ﬂuT)]f

- 520T(1 -n)e (56)

The ability of Equation (56) to handle a nonzero ini

tial condition can
be shown by letting

n =0 (57)
and noting that
97(0) = q”(0) (58)

16




i
r
Zk,
|

results when coefficients of z" are equated,

Now let

n=1

and equate coefficients of z" in Equation (56) to obtain

E.T

1]

qQ°(T)

E.T

+

+

If one lets

n=2

and equates coefficients of z" in Equation (56), then

Eal

T

;
* 6T = me ™ [8,,(T) cos )] + £, Tw"(2m)

+ Eonn[Gwi(ZT) cos (2wT))

2 o €2T
e q (o) + CIT(I -n) e w” (o)

E20T(1 =me * [8_ (o) cos(o)]

&, Tnw™(T) + £90TI8, (T) cos(uT)]

&
TED e M ETA-m e ? wi(

(59)

(60)

(61)

(62)

B




Comparison of Equations (60) and (62) shows that for

n>1 (63) }

the coupled general recurrence equation is

E,T £,T

- - - 2 -
qn ~ e q o + &lann + ClT(l -n)e wn-l
CZT
+ EZOTn(Gwi COS¢)n + EZOT(l - Ne (Gwi cos¢)n_l . (64)

If an identical procedure is used on Equation (35), one obtains

the other coupled general recurrence equation,

» E’ST - - EST i
L Yot £6ann + £6T(1 - nN)e 9. .
+ Tnlg,q COS(eL + ep) = 181 cos¢]n
€5T
+ T(1 - n)e [518 cos(8L + Op) - 5216"1 cos¢]n_1 (65)
for
m21 (66)
Also, 1if a1
n=20 (67)




|
the result is
wi(0) = w’(0)

(68)

for handling nonzero initial conditions.

Equations (64) and (65) are algebraic equations that can be solved

simultaneously for q; and w;. The results are ri
§,T L
/. 2 5
E e £ 1ETT(1 - nne y s
U q
n 2 e n-1 .
1= §&T n

B

ET Ea ,;

g [ne® + (1 - me? ] BE o o :
o 7 2 Wy * L) o 0, :
EST ']

2 o

EIEIBT (l-n)ne A
73 cos(6L + BP) i

1-gETn 3

+

[T, (€0 _ &6y, |
2.2 [¢6,q o8,
1- gger?n

T —

£,T CST)
i FT(l - n)(Ezoe - Clﬁlene

(S .cosd) -1 (69)
3o 51£6T2n2 wi n

19
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e ——

and

eLST & c T (l-n)ne 2 neCZ *(l-n)e 5
wes o 16 — b o—
n 1~ g8 r2n2 -1

E1g™ §,gT(1-n)ebsT
+ ‘\22 cos (0L+8P) +

e T S
l-glng n

1- &t 1%

FTH(ibionﬂ-CZI)
R ... S

+ o g 3 2 (6"'1 cos¢>)n
67
T(1-n) (€46, e 2T-¢.  bsT
% 6520 21 5
18 ¢ 222 (Oy4q cos®) (70)
1%
for ety (71)
Make the definitions
*2T 4 ¢ £6T2<1-n)ne55T
by = (72)
=g €6T n
3
Ly ness 4 (1-n)egz?J
bo

(73)
163 647%n°

cos (6L + eP)n-l




b
¥ |
E18 6T
L 55 £.1n? (7%)
-l r
§166T N |
[ 5 E.T
£18,gT (I-mne &
b B 33 (75) |4
1=E.E.T™n |
176 "q
-Tn(ﬁz =51862,™)
ag = U ; 12 (76)
L l-£l€6T n
1 g,T T
; T(l'n)(ezoe 'glﬁlene )
‘ 23 = 2 2 (77)
[ ET E.T
e > + &1 (1-n)ne
b St 7 2 e
1-£l€6T n
E,T EcT
§6T[ne S (1-n)e 5]
)y 22 (79)
1-£1£6T n
% =
! n
E | €0 '( 18 2 2) e

21




S A oo,

5T
élaT(J-n)e

el
c4 1"€1€6T2”2

(81)
Tnig ¢ W~ F, )
6520 21
Tes = ‘*““: 22 (82)
l-g1£6T n
£,T EsT
T(l‘n)(i €20Tne T Egne )
6520 21
Teo = \2 3 Bt | (83)
L 1-€1€6T n
If the approximations
COS(GL + ep)n = COS(eL + ep)n_l (84)
cos(eL + GP)n-l > cos(f, + eP)n-Z (85)
are made and Equations (72) through (85) are substituted into Equations
(69) and (70), then
q, = blq‘;_1 + bo"£-1 + azcos(eL-i-BP)n_1 4 alcos(eL + GP)n-Z
+ a0(6wi cos¢)n + e3(dwi cos¢)n_1 (86)
and
W, © ezwn_1 + elqn—l + € cos(GL + Gp)n_l + Tcé cos(eL + eP)n—Z
+ TCS(dwi cos¢)n + Tc6(dwi cos¢)n_1 (87)

22
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Equations (86) and (87) can each be evaluated with one line of digital

program code.

Consider coupled Equations (2) and (5) together.

. »

£ = —glv + Ezr + 520 6w1 sin¢ (88)

. »

v = gsv' - gér‘ + 521 Gwi sin¢ (89)

Take the Laplace transforms of equations (88) and (89) and assume

constant coefficients to obtain,

r'(s) = [r7(o) - EIV'(S) + EZOL(éwi sing)] / (s-£,) (90)
Vi(s) = [v(0) - Egr (s) + EpyL(s , sind)] / (s-Es) (91)

after rearrangement. The coupling is shown in Figure 3. By direct
analogy with the method used on the q“(s) and w”(s) equations, one can
find that

F T E,T
r = e r

n n_l = ngnvn = ElT(l"n)e vn_l + €20Tn(6w1 Sinq’)n

€,T

+ EZOT(I—n)e (Gwi sin¢)n_1 (92)

and

- gST A - EST -
Vn ~ e vn—l - £6ann - E6T(l-n)e Ty T 621Tn(6wi sin¢)n
EST .
+ 521T(l-ﬂ)e (Gwi 51n¢)n_1

23




r” (o)
+ r }
4 £ |
gzoL(éwi sing) . s-¢, 1 (S)
i
€1 |e——— I
v’ (o)

5211»(6”1 sing) 8-5,5 r——--——’\——-——.-v'(s)

-

Figure 3. r  and v’ coupling diagram.

for

n>1. (94)

One also finds that for

n=20 (95)
i el
% that
1 r“(0) = r’ (o) (96)
:
E and
¢ vi(o) = v (0) 97)

are consistent with the handling of nonzero initial conditions.

24




Equations (92) and (93) are algebraic equations that can be solved

simultaneously for r& and vé. The results are '

E.T ExT E.T &7 j
iy a‘gbrz(l-n)ne . £ TIne >+ (1-n)e ? ] v*
. | - — -1 ‘
n S n-1 P }
1 = §,€1%n 1 - §& 1 i
I
™M(Ey0-515,,™) "
b 1 2.2 (Gwi sin¢)“ Ay
1-§,56Tn !
4
T(l‘n)(gzo(’ - CIEZITne
+ e — 1 (8., sing) (98)
R - wi n-1
1 - Elng n
! and
Sl . Gl Sak Ay
e’ 4 Clész(l-n)né . L6T[ne ¢ (I-n)e : ]
V‘ - Ay V" = el [“
n . g n-1 - n-1
1 - &1L6T n L = §&Tn 1
i
T’](Ezl = ibx‘:onn) r
+ = (6w1 sin¢)n
1-£,£,Tn
EgT £,T |
T(l-n) (52 l(‘ o 565201‘“9 )
+ 22 (8,4 sind) 4 (99)




Substitute Equations (72), (73), (76), (77), (78), (79), (82), and (83)
into Equations (98) and (99). The results are

r’ =~ blrn-l - bovn_1 + 30(5wi sin¢>)n + e3(6wi Sin¢)n_1 (101)

and

Vo ¥ gV = Ty - TCS(Qwi sind))n - Tc6(6wi sin¢)n_l s (102)

Equations (101) and (102) can each be evaluated with one line of digital

program code.

If Equation (30) is written with an initial condition,

t
Bp = £ q°dt + Oy . (103)

Take the Laplace transform of Equation (103).

q°(s) +6
op(s) = ———SE (104)

Take the Z-transform of Equation (104).

0p(2) *Z 14" () @) + 0gp Z ) (105)

Use Equation (39) and the transform table in the Appendix on Equation
(105).

8p(2) = Tq(2) (1=5) ~ TInalo) (1)

0
+ (-t (%)Poq'(Z)] +l%§ (106)
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Tq{z) - Tnqlo) - T(1-n)(I-2)q(2) + 85y

1l -2

ep(?) =

(l-z)BP(z) = Tnq(z) + T(l-n)zq?z) - anio) + Ogp

Applicable Z-transforms definitions are
0
0,(2) =] 6, (n1)z"
n=0

and

Q@) =) ¢ (D" .
n=0

Substitute Equations (109) and (110) into Equation (108).

(1-2)] e,(M)z" = ™) q (a7)z" + T(1-n)z] q”(aT)2"
n=0 n=0 n=0

- an?o) + eSE

”

I 8pamz” - § 8,amz"" = ] o"(an2" + TU-M] Dz
n=0 n=0 n=0 n=0

Tnq(o) + eSE

Use the shifting theorem, Equation (54), in Equation (112).

(107)

(108)

(109)

(110)

(111)

n+l

(112)




w (e8]

I o,z - § e (nr-m)2"
n=0 n=1

o

= Tn} q’(am)2"
n=0

(L)

+ T(1-n)] q”(aT-T)2" - Tnglo)
n=1

+ OSE (113)

Complete all Z-transforms in Equationm (113).

L 0p(mz" - § 0 (nr-1)z" + 8,(-1) = ™) q”(a1)2"
n=0 n=0

n=0

+ T(1-n)] q"(nT-T)2"
n=0

- T(1-n)q{-T) - Tnq{o)

+ BSE (114)

The ability of Equation (114) to handle a nonzero initial condition can
be shown by letting .

n=0 (115)
and noting that
Gp(o) = eSE , (superelevation angle) (116)
results when coefficients of z" are equated. Now let
n=1 (117)
and equate coefficients of 2" in Equation (114) to obtain,
8p(T) = 0p(0) + Tnqg(T) + T(1-n)qlo) . (118)
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Now let

n =2 (119)

and equate coefficients of z" in Equation (114) to obtain,

8p(2T) = B,(T) + Tnq(2T) + T(1-n)q(T) . (120)

Comparison of Equations (118) and (120) shows that for
n>1 (121)

the general recurrence equation is

6p = 8p  + Tng) + T(1-n)q)_; - (122)
n n-1

Equation (31) can be written with an initial condition as

t
¥p = { Tgdt + Yppap : (123)

where

Tg = r’/cosby . (124)

Take the Laplace transform of Equation (123).
To(8) + V¥ %
¥p(s) : — (125) L3
8 . “
o
If Equation (125) is treated the same as Equation (104), then 1
Wp ~ WP + Tntgn + T(l-n)Tgn_1 ; (126)
n n-1 F
and
E
Vp(o) = WLEAD’ (lead angle) . (127)
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Make the definitions,

Ty = In (128)

and

Tog ™ T(1-n) . (129)
Substitution of Equations (128) and (129) into Equations (122) and (126)
yields

eP % 6P i Tclqn'+ Tc2qn—1 (130)
n n-1
and
Yp = Y¥p + Ty T9n + Teo T9 (131)
n n-1
for
n>1 (132)

Equations (130) and (131) can each be evaluated by one line of digital

program code.

Now the longitudinal acceleration of the missile can be computed
algebraically with the aid of Equations (1), (21), (86), (87), (101),
(102), and the approximation

sin(eL + eP)n ] sin(BL + eP)n-l (133)
as
l‘ln = Ell‘ + Vnrn - wnqn pan 518 Sin(eL + eP)n-l . (13‘.)

Tunable integration [2] of Equation (134) yields

Y
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where

u“(o) = UBORECLEAR (136)

Note that the tunable integrator is in the same form as that obtained
by tunable trapezoidal convolution [2] of integration of uncoupled
variables. They are equivalent. Substitute Equations (128) and (129)
into equation (135).

. - « ”

u = u * Tl + Te2la.1 (137)

Equations (134) and (137) can each be evaluated with one line of digital

program code.

Finally, Equation (29) can be written with an initial condition as
t
i £ P dt + OpoRECLEAR (138)
and treated the same as equation (103). Usually,

®BORECLEAR = © - (139)

The resulting recurrence Equation for

n>1 (140)
is then

¢n 24 ¢n-1 ¥ Tclpt: g Tc2pr;-1 (141)
where

¢(0) = SpopEcLEAR * )

The p” roll rate history to be integrated must be representative of test
flight conditions and be available over the missile flight time of

interest.
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4. DISCUSSION

Although the airframe model has been derived with the assumption of
constant coefficients, it is known that the coefficients are time varying
and that some have discrete jumps corresponding to wing erection and
motor events. In order to minimize the error associated with such an
assumption, the coefficients are updated only one-fourth as often as the
airframe variables. This method allows the coefficients to appear con-
stant for three out of every four passes through the airframe equations,
but yet allows time variation and thus discrete jumps in these coefficients
on the fourth pass. This approach is desirable not only because it allows
stable solutions when the tunable trapezoidal convolution [2] phase
parameter, n, is tuned, but also because it relieves the real time
computing load by not requiring coefficient recomputation in each pass
through the airframe. Passes are identified with frame numbers that
cycle through one to four as shown in Figure 4. The coefficient comput-
ing load is then distributed among the four frames. This method also
allows the distribution of other simulation computations in the four

frames as long as real-time computing limits are not exceeded.

This airframe model has been used in three applications to date as

illustrated in Figure 5. The first application was a real time hardware-

in-the-loop IRSS simulation. This simulation was implemented as shown r‘

in Figures 5a and 6. The purpose of the airframe model is to drive

IRSS commands that cause real time motion of the hardware-in-the-loop
(guidance section). The IRSS then supplies measured hardware motion as
well as guidance section output, 6W1n—1’ in order to close the simulation :4
loop. It should be noted that the guidance section is responding to a
real time projected IR enviromment during this time and is therefore
driving the simulation when in closed loop. Note also that open loop

capability is present for checkout and other studies. ~N |
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The second application is to emulate the IRSS system as shown in
Figure 5b. The emulation is critical to use of the IRSS simulation since
it allows checkout and some validation to be accomplished without sub-
jecting the actual guidance section to heavy wear during checkout. Also,
a majority of the IRSS checkout can be emulated even when the IRSS facil-
ity [1] has frequent maintenance or other missile users. Then all
lessons learned on the emulator are transferred to the IRSS program with

its identical airframe.

The third application is to simulate a rolling airframe missile in
a pure digital simulation as shown in Figure 5c. An effective digital
seeker model is required, but extra computation spent here is offset by
reduced computation in the airframe model presented. The result is a
reasonably economical simulation suitable for kinematic boundary studies
and other general applications. It should be noted that the seeker model

used here is also used in the IRSS emulator.

Begin nth pass

AIRFRAME
EQUATIONS

FRAME CYCLE

r
FRAME FRAME FRAME FRAME
1 2 3 4
COEFFICIENTS COEFFICIENTS COEFFICIENTS COEFFICIENTS

ETIER WU RN

-

s

End nth pass

Figure 4. Airframe model calculation block diagram.
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Figure 6. Airframe model implementation in the IRSS.
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1
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» -
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°n-l v ¢n
Pa-1 = Py |
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ePn--l y ePn
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Proceed to frame cycle and
calculate coefficients

Figure 6. Airframe model implementation in the IRSS. (Cbntinued)
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. |
TABLE OF TRANSFORMS
F(t) f(s) f(z)
1 1 i
X s 1 =2 f
1 Tz (
¢ & 1 |
s (1 - 2) '»
" 2! 12 2(1+2) t
83 (1 - 2)3 4
t3 32 132 (1 +4z42%) .
sa 1 - z)a j
e-at 1 1
s + a @ e-at
-at 1 Tz e 3T
S 2 —aT.2
(s + a) (1 ~2ze23Y !
”
g g e a (1 - 3T, ‘
s(s + a) AT e e-aT) :
" Ry b+z(‘% sin wT - b cos wT) ke
o sin wt 2 2 3 |
s 58 ot s° tw 1-2z cos T + 2 '
at+e-3t_1 az (aT+-e-aT~1)z+( l-e-aT—aTe_aT) 22 14
sz(s+a) (1-2)2(1-2 e'aT)
R L 1 14z e 2T (ar-1
s(s+a)2 1=2 (1-z e~2T)
s 1-2 cos wT
cos wt 73 3
s +w 1-2z cos wT+z
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TABLE OF TRANSFORMS (CONTINUED)

£, f(t) f(s) f(z)
. w z sin wT
0 sin wt 53 5
s+ 1-2z cos wT+z
1 S _s+a 1-z 73T cos T
5 2 2 —aT ~2aT_2
(s+a) +w 1-2z e cos wT+e z
0 SR w z e 3T gin oT
(s+a)2+w2 3:25 & PP wT+e-ZaT22
1 coalt wt 2w > 1-z cosh wT ,
s —w 1-2 z cosh wT+z
0 e 2w > z sinh wT .
s -w 1-2z cosh @T+z
1 e-at conl it s + a z sinh wT
(s+a)2—w2 1-2z cosh wT+22
0 eI ook uik W z e 3T ginh WT
(s+a)2—w2 1-2z e 2Tcosh wr+z2e~28T
cosb cos(Wt+h) s cgs¢;w sing cosd-z cos(wT;¢)
s tw 1-2z cos wT+z
sing sin(wt+d) W c;s¢;s sin¢ sing+z sin(wT;¢)
s+ 1-2z cos wT+z
§ (o) 6(t) 1 § (o)
87 (o) §°(t) s 87 (o)
s oy | 6™ (r) s" 5™ (o)
§ (nT) §(t-nT) . 28 (o)

(This table is extracted from reference 2.)
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SYMBOLS

Curve fit functions for representing ACA

Axial drag coefficient

Incremental axial force coefficient

Zero 1ift drag coefficient

Moment and normal force coefficients

Control wing moment and normal force coefficients

Damping coefficient

Modified secant slope moment and normal force
coefficients without plume effects

Exhaust plume effect moment and normal force
coefficient increments to CH and Ch

Total modified secant slope moment and normal
force coefficients

Missile reference diameter

Base of natural logarithms

*
Curve fit functions for representing Cn
*
Curve fit functions for representing Cm

Acceleration ‘due to gravity

Curve fit functions for representing anl
Curve fit functions for representing lel
Moment of inertia about y, or z axes

Missile roll, pitch, and yaw rates

. AN (TR IR T, PPN 4 e



Missile reference area

Time from missile boreclear

Missile thrust

Missile velocity components

Missile acceleration components
Missile fixed coordinates

Distance between CG and missile nose

Distance between wind tunnel reference point and
missile nose

Nonrolling missile coordinates
Missile angle of attack
Missile control wing incidence

Euler angles from earth fixed to launch coordi-
nate system

Euler angles from nonrolling missile to launch
coordinates

Atmospheric density

Roll angle between missile fixed and nonrolling
missile coordinate axes

Roll angle between missile fixed coordinate
system and the projection of the missile velocity
vector in the Y'Z” plane

At zero wing incidence

At time from boreclear equal zero

Coefficients
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( )BORECLEAR
n

eSE

WLEAD

51’ 521 Es’ 56’

180 %20 E210 By
Bz' 86) Bs’ 86’ Be’

Bro® B11v €44

At present time
At present time minus T
At present time minus, 2T

At present time minus 3T
Simulation time step

At time t = 0

Tuning parameter

Integer time step number
Superelevation angle
Lead angle

Complex variable used in

Complex variable used in
definition

Denotes the operation of

Denotes the operation of
transform

Denotes the operation of
laplace transform

(n=0@¢t =0)

Z-transform definition

laplace transform

taking a Z-transform

taking a laplace

taking an inverse

Utility variables and constants
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