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1. INTRODU CTION

Distribution systems for manufactured goods are often composed of a

hierarchy of warehouses that stock goods for distribution to other ware-

houses and to retail stores, at which demand for these goods originates.
• A multi—facility distribution system such as this is g~ rally called a

multi—echelon inventory system. Of course, such systems are not limited

to warehouses and retail stores. For example, the factory which produces

the goods could be part of the system. The factory ’s inventories would

include raw materials and work in process at various stages of completion.

Another example would be a repairable item system where there are depot

and field repair stations. Other factors that can make a distribution

system more complex are transshipments, that is, the redistribution of

stock between warehouses on the same level, repair facilities at some or

all distribution points (combination of repair and consumable products),

and exogenous demand at any facility in the system, to mention only a few.

Once the number of installations and their locations have been

fixed, the multi—echelon inventory problem is one of finding the best

_ _ _ _
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inventory policy for each product at each installation. There is a

lot known about this problem but there are also many unanswered questions.

The problem addressed in this paper pushes the decision process

back one step by assuming neither the number of installations nor their

locations have been fixed for a multi—product distrib .ition system. Organi-

zations setting up new distribution systems or re—examining existing ones

have paid little attention to this design problem. They have generally

fixed the nunber of levels of distribution and the number of installations

in some arbitrary manner and have then attempted to determine optimal

stockage levels for the given system.

In Section 2 of this paper we present a mathematical model for solving

this design problem; that is, a model for finding the number of echelons,

number of ir.stallations, and where products should be stocked for a multi—

product, mul ti—echelon inventory system. The model presented in Section 2

relies heavily on the ability to determine inventory policies for a given

multi—echelon system. A method for finding these policies, using dynamic

programming, is presented in Section 3. Section 4 generalizes the model

presented in Section 2 to include capacity constraints and presents a 0—1

linear programming formulation of this generalized model. In Section 5 we

present somE: computational experience obtained in solving the two design

models giver in this paper and indicate areas of future research. This

introductory section concludes with an illustration of the design problem

and a discussion of the premises on which it is based.

1.1 The Design Problem

Figure 1 shows a three—installation arborescent—configuration system.

Installation B (warehouse) obtains goods from a source (factory) and feeds

the two lower—level installations, A
1 and A2 (retail stores), where

exogenous deotands, D1 
and D2 , occur.

— 2 —
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Source

1~B Warehouse

[A1 J A~j Retail stores

it I
D
1 

D
2

Figure 1. A three—installation, arborescent—
configuration system.

Figure 2 gives two alternative designs for this system. In Figure 2(a)

installation B has been removed from the system and A1 
, A

2 
are supplied

directly from the source of production. Figure 2(b) shows another alterna-

tive design to the basic three—installation arborescent system . A2 
has

been removed and its demand goes directly to B . Since the exogenous

demand is still located, physically, near where A2 had been loca ted , the

dashed line indicates that individual shipments are made one at a time to

the customers represented by D2 
. This can be thought of as mail—order

business.

— 3 —
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Source Source

D X D2
(a) (b)

Figure 2. Alternative designs for the
system of Figure 1.

The phrase echelon structures will be used in referring to the

alternative designs for a multi—echelon distribution system. The basic

echelon structure will be thought of as the one containing the maximum

number of levels and installations under consideration. For example, if

Figure 1 represents a basic echelon structure then the system has a maximum

of 2~ = 8 possible alternative echelon structures.
1 

In general, if a

basic echelon structure is composed of p installations, then the number

of alternative echelon structures is 2~ . Of course, it might be possible

to eliminate immediately some of the structures from consideration due to

the availability of existing facilities or to geographical, political,

economic, and other constraints.

1This number would increase if we considered more situations than an
Installation simply being in the system or not in the system. For example ,
a third possibility is to have an installation carry a lifetime supply of a
product.

— 4 —  
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The multi—produc t , mu lti—echelon inventory system design problem

discussed in this paper is based upon two premises. First , there is no

reason to s~.sspect that the minimum cost design will be one in which all

products use the same echelon structure. That is , given a set of echelon

structures under consideration , if we were to find the best inventory

policy for each product stocked under each echelon structure , it would

very likely be found that d i f fe rent  echelon structures were best for dif-

ferent products. Second, the objective to minimite some measure of total

system cost will usually be accomplished only if some products do not use

the echelon structure best for them. This is because different products

stored at the same installation will share the fixed cost of that

installation.

To illustrate these premises we have constructed an example problem

concerned with designing a four—product inventory system in which four

echelon structures are considered [see Pinkus (1975)]. In this example,

which uses realistic inventory costs, we find that a different echelon

structure is best for each product. Furthermore, to minimize the total

cost of the system, two of the products cannot be stored in ways that

minimize their individual inventory costs.

The next section presents a mathematical model for solving the design

problem described in this section.

2. ANALYSIS OF THE DESIGN PROBLEM

In this section a mathematical model for determining the best design

for a multi—product, multi—echelon distribution system is presented . The

purpose of this model is to find the best echelon structure for each product,

bearing in mind that the products are not independent when it comes to

sharing installations. A superposition of the best echelon structure for

each product will then result in the best system design.

2.1 Measure of Effectiveness

We first consider what is meant by “best” design. The measure of

effectiveness to be used will be one that minimizes some measure of total

— 5 —
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system cost, for example, total expected cost per year or total discounted

cost for the lifetime of the system. The system cost will include

all the real (out of pocket ) operating expenses of the system,

capital expenditures for building the system , and those intangible factors

to which a cost can be assigned . The penalty cost for loss of goodwill

as a result of back ordering (not meeting demand wnen it occurs) is an

example of such an intangible cost. Any intangible factor to which a cost

can be assigned can be handled directly by the model to be presented . Other

ways of handling intangible factors will be discussed at the end of this

section.

For a given product using a given echelon structure, we separate

these system costs into two categories. The first includes all the costs

associated with the inventory stockage policy. We call these the inventory

costs and they include the costs of procurement, carrying inventory, f ill—

ing orders, and stockouts. The second category includes all the costs asso-

ciated with operating the installations of an echelon structure regardless

of the number of products using the installations. We call these facility

costs and they include the capital expenditure for building the installa-

tions, along with a number of fixed costs associated with operating the

installations, for example, administrative expenses, the expense of renting

facilities (if they are not built), and certain other fixed operating expenses

for a given product that do not depend on the inventory policies used at

the various installations. The facility costs are all fixed costs that are

normally considered sunk costs in solving a multi—echelon inventory problem ,

because the echelon structure has been set.

2.2 Mathematical Model of
the Design Problem

Let a~3 
= the inventory cost of product j
using echelon structure i

bk = the facility cost of installation k

= the facility cost of installation k
when echelon structure i is used ,

— 6 —  
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where

bk , if installa tion k is included in

• echelon structure i
hik

0 , otherwise.

The costs a.. and b . are arrayed in the matrix [a. .  :b ] of Figure 3.
ik iy ik

Products (j) Installations (k)

Echelon 1 a:1 a
12 

::: a
: b:1 b12 I i i  b

1

Structures 2 a21 a22 ... a
2 ‘ b21 b22 ... b

2

(i) . . I

m a a ... a b .  b ... bml m2 urn I m .a. m2 mp

Figure 3. Array of inventory costs and facility costs.

If the facility costs b
ik 

were all zero, all products could be treated

independently and the solution to this problem would be obvious. We would

select the minimum element in each column of matrix [a t.] , that is, the

minimum inventory cost for each product. The echelon structure i

— 7 —
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• associated with this minimum cost for product j would he the echelon

structure used by product j . Unfortunately, the bik are not all zero.

The design problem is similar to the assignment problem of linear

programming in that it is desired to assign products to echelon structures

so that minimum cost over the a1~ is achieved . Unlike the assignment

problem, however, multi—assignments in any row are permitted and the assign-

ment of products to echelon structures can create additional costs (facility

cost), depending upon which installations are required in the echelon struc-

tures chosen. A further complication occurs because each facility cost,

bk , is a fixed cost , regardless of the number of products using installa-

tion k

We now define decision variables and give a mathematical formulation

for the design problem.

Let x . .  = 1 if product j uses echelon structure i

= 0 if product j does not use echelon structure i

Then the problem is to find the matrix X [x..] which minimizes

m xi p m n
F(X) = E ~ a . .x .. + ~ u ~ 

(b.k ~ x ..) bk 
(1)

i=l j=l 13 13 k=l i=l ~ j=l 13

subject to:

m
E x .. = 1, j 1 ,2,.. . ,n, (2)
i=l

x .,. = 0 or 1 , for all i and j , (3)

where

u (y)  = 0 if y < O

= 1  If y > O .

— 8 —
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Thus the problem of designing a mul t i—product , mult i—echelo n

distribution system has been formulated as a 0—1 nonlinear programming

• problem. The objective is to find the matrix X~ which minimizes F(.)

Real-life design problems often must take into account intangible

factors to which costs cannot be applied. For example, suppose it is

necessary to have a particular installation in the system because of cer-

tain trade agreements, regardless of the cost this might entail. This

situation may be handled by considering only those echelon structures

which include the particular installation.

We have solved the above mathematical model using a branch—and—bound

algorithm. This algorithm is described elsewhere [see Pinkus, Gross, Soland

(1973)]. However, one of the weaknesses of the formulation just presented

is that it assumes that there is no limit to the storage space available at

a given installation. It is one purpose of this paoer to overcome this

weakness by incorporating space constraints in this model. Before doing

that, however, we describe one way of finding the inventory costs, a1.

To obtain these costs requires the solution of another problem——the multi—

echelon inventory problem.

3. MULTI—ECHELON INVENTORY MODEL

This section is concerned with obtaining the value of a.. , the
13

inventory cost to be used in the design model.
2 This value, and the

associated inventory stockage policies, are arrived at by solving a multi—

echelon inventory problem. Thus, for product j stocked under echelon

structure I , it is desired to find the optimal inventory policies, at
each installation of the structure, which yield a ..

13

Only dynamic solutions to the multi—echelon inventory problem were

considered . This means that we want to make a number of inventory stockage

decisions over time, not consider just a one—period or static solution.

2To avoid confusion in this section, the notation a.. will be used
13

rather than the phrase inventory cost, where the particular echelon structure
i or the particular product j is immaterial. The methods for obtaining
ajj will be applicable for all I and for all j

— 9 —
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At first glance. this seems to be an obvious assumption for the inventory

problem so that it will tie into the problem of designing a system to be

used for a long period of time. However, it is conceivably optimal for

a distribution system to stock a lifetime supply of a product, rather

than reorder from the source of production. If one wanted to consider

such a situation, it would best be handled by modifying the design model.

3.1 Clark’s Approach

Clark (1958) presented a dynamic programming solution to the

problem of finding inventory policies for a multi- installation, single—

product inventory model with stochastic demand. His method for solving

multi—echelon inventory problems is built on the framework of the classical

approach to uncertain demand , periodic review dynamic inventory problems,

first presented by Arrow, Harris, and Marschak (1951). Under this approach,

the cost of the system is represented as a function of the inventory level.

This cost function includes ordering, holding, and shortage costs. The

objective is to minimize the total expected discounted cost.

Clark’s solution was shown to be optimal by Clark and Scarf (1960)

when the installations were in series. However, they pointed out that

Clark’s procedure was not necessarily optimal for the more realistic

arborescexit configuration of installations (see Figure 1). Nevertheless,

they felt that under many real situations it gave an excellent approximation

to the solution of the arborescent case.

One of the assumptions made by Clark and Scarf was that the cost

to an installation of ordering an item from a higher installation in the

system was linear, without any fixed cost of ordering. The only exception

to this assumption was at the highest installation, where a fixed cost of

ordering was allowed. In a subsequent paper [Clark and Scarf (1962)] they

relaxed this assumption and were able to give upper and lower bounds on

the cost function for the optimal solution. This led to an approximate

optimal inventory policy for each installation, ~ sed upon the upper bound

on the optimal solution.

— 10 — 
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A modification of the Clark approach will be used to determine the

values of a.~ for the design model of this paper. It should be noted

that any method for determining multi—echelon inventory policies could be

used to find the values of a.. . The selection of a method is, of course,
1)

dependent upon the characteristics of the inventory situation for which a

multi—echelon system is being designed . The Clark approach has been

selected because (1) the determination of the a.. is an immediate by-

product of the calculation of the optimal inventory policies, (2) the

dynamic programming calculations are straightforward , and (3) the model

is rich enough to include many multi—echelon inventory situations.

3.2 Review of Classical Inventory Models

Before describing Clark’s method for finding optimal inventory

policies for a single product stored in a multi—echelon system, we review

the classical dynamic, periodic review, stochastic demand inventory model

for a single item at a single installation. This model forms the basis

• for the Clark multi—echelon model .

3.2.1 Classical Inventory Problem — A purchasing decision is to be

made at the beginning of each of a number of regularly spaced periods of

time , for example, at the beginning of each week. This decision will be

based on the level of inventory at the time, ordering , holding, and shortage

costs during the period , and the effect the decision will have on future

periods. Let

z = purchase quantity , z > 0

c(z) = cost of purchasing z units

A = number of time periods lag between an order and
its delivery , the possible values for )l being
0,1,2 

— 11 —
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= probability density function of demand during
a period , where demand is a continuous random
variable and is independent from period to
period

u = inventory on hand at the end of a period , where
-~~ < u < (a negative value indicates that
demand occurred during the period that could not
be filled)

h(u) = holding cost charged on inventory on hand at the
end of a period

p(u) = shortage cost charged for failure to meet demand
during a period

x = inventory on hand at the beginning of the nth
~ period , before an order is received , that is,

the inventory on hand at the end of the previous
period

y = inventory on hand at the beginning of the nth
‘~ period , immediately after an order is received

L(y~) 
= expected holding and shortage cost during the nth
period (hereafter referred to as the period cost).

f~’~ h(y -t)~ (t)dt + p ( t — y )~~(t )dt  , y > 0

= n = 1,2,...
10 p (t—y~)~ (t)dt , y < 0

If a delivery is to be received during a given period as a result of

an order placed A periods before, then it is assumed this order arrives

at the beginning of the period and before the purchase decision for the

period is made. Furthermore, it is assumed the supplier carries an infinite

supply of the item, that is, the supplier never back orders the installation.

The dynamic programming formulation of this problem is now given. In this

formulation it is assumed that A = 0 , that is, delivery is instantaneous,
and that excess demand is back ordered . Let

C ( x , y )  = total expected discounted inventory cost
for a problem lasting xi periods n = 1,2,...

c’. = discount factor .

— 1 2 —
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The periods are numbered backwards in time, thus, period number one is

the last period of the problem . It is assumed that units on hand at the

end of the last period have no salvage value.

Suppose we are at the beginning of the nth period of the problem ,

that is, there are n periods of business remaining for the installation,

and x is the inventory on hand before an ordering decision is made. The

optimal policy for the nth period is the policy which minimizes C(x ,y)

The well—known dynamic programming recursive relation for this problem is:

C(x ) = mm {c(y —x ) + L(y )
y > x
‘~~ ‘~ n = l ,2,... (4)

+ ct f0 C 1(y — t ) 4~( t )d t }

wher e C ( x ) equals minimum t otal expec ted discounted cost f or a problem

lasting n periods, xi = 1,2 In this equation C(x ) has been broken

down into three components: the purchasing cost for the nth period ; the

period cost for the nth period ; and the total expected discounted cost for

n—i per•iods• of operation, assuming an optimal inventory policy is followed

during the last n—i periods. This recursive relation is used to find the
• optimal value of y , which we call S~ . Clearly,  the desired inventory

level at the beginning of the nth period, S~ , has an effect on all future

levels S. , i = l,2,...,n—l

Two well—known results for this model are now given.

3.2.2 No Fixed Cost of Ordering — Assume the purchasing cost is

• linear with no fixed cost of ordering. Then

c(z) = c • z , z > 0

Assume L(y~) is convex. Then it has been shown by Karlln (1958) that

the optimal policy for an n period problem can be characterized by a

sequence of critical numbers S1,S2,... ,S~ . The policy for the kth period

is:

— 13 —
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if < S
k 

, order Sk 
— X

k

if X
k 

> Sk 
, order nothing.

This result can be shown as follows:

C
k

(x
k
)yk) 

= c(y~_x
~) + L(y

k
) + a i; ck_l()tk t (t)dt . (5)

ck l (y
k
t) is a convex function because it is the sum of convex functions.

Let

Wk (Y k) = L(y~ ) + a f~ 
ck_l()~k

t) t)dt

Wk
(y
k
) is the sum of convex functions and, thus, is a convex function.

c(y k
_x

k) = c (y~
_x
~)

Substituting into ( 5)

Ck (x
k lY k

) = c 
~
y
k~~k~ 

+ W
k

(y
k
)

We desi r e to f ind Sk , the va lue of which minimizes fu nction Ck

Taking the partial derivative and setting equal to zero, we get

• Wk (S.~
) = —c

3.2.3 Positive Fixed Cost of Ordering — Assume the purchasing

cost is linear with a fixed cost of ordering equal to K . Then

c(z) = c • z + K , z > 0

, z 0 .

Assume L(y~) is convex. Scarf (1960) has shown that the optimal policy

for the kth period is defined by a pair of critical numbers, (Sk,sk)
• The policy for the kth period is:

if X
k ~ 

S
k 

, order S
k 

— X
k

if xk 
> 8

k 
order nothing.

— 14 —
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3.2.4 Two Unnecessary Assut~ptions — In presenting the dynamic program-
ming formulation for the classical single—installation model , two unnecessary

assumptions have been made for the sake of

• (a) simplifying the following description of
Clark’s approach, and

(b) simplifying the computer program which has
been written to obtain the inventory costs,
a.U

First , it was assumed that A = 0 , that is , del ivery of an order

is immediate. This is not a necessary assumption. For the case where

A > 0, Karlin and Scarf (1958) show that the optimal purchase quantity is

a function of the total stock on hand plus on order , regardless of the

dates of delivery, assuming excess demand is backlogged . They show how to

reduce a problem with an order time lag (A>0) to one in which no lag exists,

and thus the above results, where A = 0 , are applicable in general. In

developing their multi—echelon results, Clark and Scarf all ow for
• A > 0 (A0 ,l,2,...) . To simplif y the discussion of these results we

continue to assume A = 0

Second, it has been implied by the lack of a subscript that the

functions c~(t), c(z), h(u), and p(u) are stationary. The dynamic pro-

gramming formulation for solving the single—installation problem can easily

handle a situation where these functions are non—stationary. Nevertheless,

the assumption that they are stationary is continued. This greatly slinpli—

fies the amount of input data and bookkeeping necessary for the operation

of the computer program that has been written to determine the inventory

costs. Finally, it is noted that although c~(t)  was stated to be a con—

tinuous densIty function, all the results of this section hold if ~ (t)

is a discrete probability function. The following discussion assumes the

continuous case, while the examples and computer program utilize the

discrete case.

— 15 — 
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3.3 Multi—echelon, Series—configuration Model

Having reviewed two important cases of the classical single—echelon

model, we are now in a position to describe the Clark approach to a multi—

echelon stochastic demand model. For the present, only a multi—echelon

system in which the installations are arranged in series is considered.

Suppose there are N installations, where installation N supplies

stock to installation N—i , N—l supplies stock to N—2,..., installation

2 supplies stock to installation 1 . This series configuration is

pictured in Figure 4.

Source

[N]

[N-i]

[2]

~.1~
[1]

‘Ii’
Demand

Figure 4. A multi—echelon system with N installations
in a series configuration.

— 16 — 
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The highest installation in the series, N , receives its stock from the
source of prcduction.3 The n.tation and assumptions given at the beginning

of this section still generally apply and are not repeated here, with the

following exceptions:

Let x~ 
= inventory on hand at echelon i at the beginning

of the nth period before an order is received

y
1 

= inventory on hand at echelon i at the beginning
of the nth period , immediately after an order is
received

L.(y’) = period cost of echelon i

c
~
(z) = ordering cost function for echelon i , z > 0

It is important to note the following distinction between an installation

and an echelon. The stock at installation i refers only to the stock

physically at that location. But when we refer to the stock at echelon i

we mean the sum of all the stocks at installations i, i—l,...,2,l plus

all the stocks in transit between installations i, i-l,...,2,l

The formulation of the Clark model follows. It is assumed that:

1. Demand, exogeneous to the system, occurs at
installation 1 only.

2. The purchasing cost between installations is
linear without a fixed cost of ordering. This
cost can be thought of as the cost to transport
a unit from one installation to the next instal-
lation in the system. The only exception to
this assumption is at the highest installation,
where a fixed cost of ordering is allowed.

3. Demand in excess of supply at any installation
is backlogged.

3The source of production could be included in the series as the
highest installation. Then , its source of stock would be the supplier of
raw material.

— 17 —
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4. The functions L
i

(y’) are convex, I = 1,2,... ,N

4
5. Delivery at each installation is instantaneous.

• 6. The functions c(z), h( u) ,  p (u) and ~(t) are stationary .
4

The model is described for the special case N 2 • Let

1 2C ( x ,x )  = minimum total expected discounted cost of
the system at the beginning of period n

• befo re an order is placed , n = 1,2 

• Following the approach for the single—installation model , we get the

recursive relation:

“ 1 2  . 1 1  2 2• C ( x ,x )  = mm {c
1(y —x ) + c 2 (y —x )

x
l 

< y
l 

< y
2

n —  n—  xi

2 2y > xn —  xi
n = l ,2,...

+ L1
(y1) + L2

(y 2) + cx f~ 
C~~1(Y 1_t~ y

2—t )~ (t)dt}

The problem with this app roach is that in the general case Cn is a

function of N variables. Therefore, the recursive calculations of

dynamic programming would be prohibitively long, even for a high—speed

computer, if the function C~ is left in this for~i. Clark and Scarf

have overcome this difficulty. They prove that the function

C ( x l
,x
2
,...,XN) can be decomposed into N functions, each of a single

var iable, that is,

= D1(x1) + D2(x2) + ... + DN(xN) .

This permits the computation of the optimal inventory level at each echelon

separately using the same method that is used f or the classical single—

installation model. What is involved is described by returning to the

special case , N 2

was pointed out earlier in this section that this is not a
necessary assumption.

— 18 —
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“ 1 2 “1 1 “ 2 2C(x ,x ) = D ( x ) + D
n

(X n ) xi = 1,2 .

• Begin by considering the lower echelon and assume there is no limitation

on the stoc k ava~ lable to it f rom the higher echelon.

1 1  . r 1 1  1D ( x ) = mm 
i 

1
~
C
l(Y

n
_X

n
) + L

1
( y )

y > xU —

co ”~j  l+ cx f
~ 

D 1(y — t ) 4 ( t ) d t } , xi = 1,2 (6)

It has been assumed that L1(y~ ) is convex and the purchasing (transportation)

cost is linear without a fixed cost of ordering, that is,

c1(y
1
—x1) = c1 (y1—x 1) . Therefore, recursive relation (6) is identical

to Equation (4) ,  and the optimal policy f or this echelon is described by

the sequence of critical numbers ~~~~~~~ .,S~ , where S~ is the optimal

• level of inventory for echelon 1 in the ith period . This conclusion has

assumed installation 2 can satisfy the demand of installation 1. This will

not always be the case. However, Clark and Scarf show that installation 2

should satisf y as much of the demand from installation 1 ~s is possible
5and backlog the rest.

The fact that installation 2 might not be able to satisfy the demand

of installation 1 suggests that in solving for the optimal policy of eche—

ion 2 , a shortage penalty , in addition to the penalty includ ed in L2 , be

incurred by Installation 2 when it must backlog the demand that installation 1

places on it. This penalty is simply the additional expected cost suffered

at installation 1 because installation 2 could not satisfy its demand. This

penalty is determined as follows.

5it is assumed that installation 2 will deliver at most one shipment
each period to installatiort 1 and that this shipment goes out in the “split

• second” after installatiorL 2 has made its reorder decision but before its
stock is replenished . This sequence of decisions is necessary in order to
force this example, with A = 0 , to behave like a real problem with A > 0

— 19 —
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Consider the kth period at echelon 1. Suppose x~ < S~ . Then

echelon 1 will order S~ 
— x~ stock from echelon 2, and the total cost

fo r k per iods at echelon 1 will be

D~ (x~ ) = c~ 
. (S~—x~) + L1

(S~ ) + cx f~ 
D~~1(S~ — t )~~(t)dt

If the stock level at echelon 2 is such that x~ < (S~ —x~ ) , that is ,

installation 2 cannot satisf y all the demand from installation 1, then

echelon 1 will have x~ stock on hand after ordering , rather than S~

stock. This means that the order received by installation 1 is

— x~ . In other words, all the available stock at installation 2 was

shipped to installa tion 1. Under this situation, the total cost for k

periods at echelon 1 will be

D~ (x~ ,x~) = c~ (x~-x~) + L1(x~~) + cx f~ 
D~~1

(x~-t)~~(t)dt

• Let !~~( )  = the additional shortage penalty at echelon i
for not being able to meet demand at echelon
i—i during the nth period , i = 2 ,3 , . . .  ,N
xi = 1,2 

The penalt y A~ ( )  is

—l 1 2 “1 1D
k

(xk,xk) 
- Dk(xk)

2 1  1 1  2 1
= c

1 
(x
k
—x

~K
) — c

1 
(S
k
_x
k
) + Ll (x k) — Ll (Sk

)

+ cx f~ 
[D~~ 1(x~—t) — D~~1(S~ — t ) ]~~( t )dt

= ci (x~-S~ ) + L(x~) - L(S~ )

~ 
“1 2 “1 1+ cx 

‘0 
[Dk l (x

k
_t) — Dk l (S

k
_t)]4(t)dt

2 2
= 

~k
(
~
ck) .

— 20 —
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A more comp lete statement of the func tion A
2 

is

• A 2
~~

2 ) = c~ (x
2
—S1) + L1

(x 2 ) — L1
(S
1
)

w “
~~ 2 “1 1+ cx f~ [D 1(x —t) — D 1

(S~~t)]~~(t)dt

for  < S1 , n = 1,2,...

= 0 , for x2 > S1 , n 1,2 
• xi n

The fact that is a function of x2 alone is very significant. It

means that the recursive relation for the total cost of n periods of

operation at echelon 2 is a function of the single variable x2 . Thus,

a dynamic programming solution is feasible.

The ptimal policy at echelon 2 is now described .

D
2
(x
2) = 

2 2 
{c
2

(y2—x2) + L
2

(y 2) +
y > x

x i —  n (7)
co ”2 2+ cx f
~ 
D 

1(y— t)~~(t)dt} , xi = 1,2 

It has been assumed that L
2

(y 2) is convex and the purchasing cost is

linear with a fixed cost of ordering , that is , c2
( y 2—x~ ) = c2 

(y~—x
2
) + K

Since is the sum of convex fu nctions , it is a convex function.  There-

fo re , the solution of (7) follow s the solution given for the classical model
• with a fixed cost of ordering , and th e optimal policy fo r the nth period

at echelon 2 is described by the pair of critical numbers (S2,s
2
) , where

the superscript indicates the echelon.

The procedure described here for two echelons can be used for any

number of echelons in series. Clark and Scarf show that the policies

obtained in this way are optimal policies, and their proof allows for

A > o

— 21 —
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A summary of the important ideas behind the Clark approach follows.

1. The decision variable is the stock level of an echelon,

not the stock level of an installation.

2. An N installation problem in N decision variables

becomes N separate problems, each in one decision

variable. Each separate problem is a special case of

the classical single—installation stochastic demand

inventory problem and can be solved by dynamic programming.

3. The c- st function for each echelon i (except the first)

includes the additional shortage penalty A~ for not

being able to supply the complete order of echelon i—i

in the nth period . This covers the additional expected

cost resulting f rom echelon i—i not being able to achieve

its optimal level of stock for the period. The penalty

is obtained from the solution of echelon i—i.
n

We iow present an example of a two—installation problem. The

optimal policies are calculated for two periods.

3.4 Two—installation, Series—configuration Example

Let u . = inventory on hand in echelon i at
the end of a period .

h1(u.) = holding cost at installation i.

hi(u .) = holding cost at echelon i.

p~ (u.) = shortage cost at installation i.

pj(ui
) = shortage cost at echelon i.

Suppose h~(u1
) 2.2u1

h(u
2
) 2.0u2

— 22 —
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p1(u1) = 72u 1

= 5u
2

c1
(z) = 5z

c2 (x) = 50z + 30

where all costs are in dollars.

Since this model determines optimal echelon policies, the period

cost L. , I = 1,2 , must be based upon echelon costs, not installation
costs. The holding and shortage costs at echelon 2 are merely these

respective costs at installation 2. Thus,

h
2
(u
2

) = h ( u
2
) = 2u

2 
, and

= p~ (u2
) = 5u

2

To find the holding cost at echelon 1, it is noted that any units on hand

at echelon 1 at the end of a period have already been charged $2 holding
cost because they were counted in the stock of echelon 2 that was on hand

at the end of the same period . The same reasoning applies to the penalty

cost at echelon 1. Thus,

h1
(u
1

) = h~(u1) - h ( u
1
) = 2.2u 1 

- 2.0u
1 

= O.2u 1 , and

p
1
(u
1
) = p~ (u1) 

- p(u1
) = 72u

1 
- 5u

1 
= 67u

1

If there were N installations arranged in series, the holding and shortage

costs at echelon N would be obtained the same way as for echelon 2 in

this example, and the costs for echelons N—i , N—2 ,..., 1 would be obtained

using the cost—added concept that was used for echelon 1 in this example.

* * * *Note that the cost—added concept implies that h > h and p > p
n—i — n n—i -— n

for n = 2 ,3,...N .

— 23 —
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Suppose the demand ~ (t)  fo r this example follows a Poisson

distribution , and the mean demand is one unit per period. The period cost

is found by evaluating the following expression :

-t

L.(y
m
) ~ h. (y’—tX (t) + ~ p .  (t —y ’) q ( t )  , y1 > 0

U fl 
— U . U Ut—0

I = 1,2 , n = 1,2,...

= 

~ 
(t — y ~ ) q ( t )  , y’ < 0 , i = 1,2, n = 1,2 

t=0 n

Note that the functions L
~
(y’) , i = 1,2 , satisf y the assumptions of

convexity because the holding and shortage cost functions are convex.

We now evaluate the recursive relations D1 and D2 for xi = i

and xi = 2 , from which the optimal policies will be obtained. The results

appear in Tables 1 and 2, which are read from right to left. This follows

the way dynamic programming is used to find the optimal policy of the last

period (period 1) and then moves backwards in time, calculating successively

the optimal policies for periods 2,3,...,n . Wherever possible the notation

def ined earl ier is used to head the columns of these tables. Each table is

split into two par ts , the lower , representing echelon 1, and the upper,
representing echelon 2.

Table 1 shows the various possible costs for period 1 at different

stock levels. The actual interpretation of stock level [Columns (1) and

(8)], that is, whether it is stock on hand before or after receiving an
order, depends on the cost column under consideration. Columns (2) and

(9) of Table 1 show zero cost because this is the last period of operation

and there are no future costs. Successive differences of the entries in

Column (4) are shown in Column (5). These are used to locate the critical

number S~ . It was shown in the description of the classical single—

installation model without a fixed cost of ordering that the critical

• — 2 4 —
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Tab le 1

PEEI O D 1 SOLUTION OF TWO-INSTALLATION , SERIES-CONF1GUKATION EXAMPLE

2 2 2
• Assuming Always W 1(x 1

) — w1
( .)  

=(~4) Order When 2 2 Total Expected L2 (y~~) A~~(x~~) a 1 ~~ (y~— t)+ (t) ~~~~~~
2 - W

1
(x

1
— 1) Cost Before

1 Ord er ing
( 15) ( 14) (13) ( 12)  (11) (10) (9) (8)

12.00 12.00 2 00 12.00 12.00 0.00 0.00 7
• 10.00 10.00 2 0 0  10.00 10.00 0.00 0.00 6

8.00 8.00 8.00 8.00 0.00 0.00 5
6.03 6.03 6.03 6.03 (..O0 0.00 4
4.16 4.16 1 2 5  4.16 4.16 0.00 0.00 3
2 . 9 1  2.91 

— 12~41 
2.91 2.72 0.19 0.00 2

15.32 15 .32 15.32 2.57 12.75 0.00 1
55.02 55.02 55.02 5.00 50.02 ‘ 0.00 0

122.02 135.02 
— 

122.02 10.00 112.02 0.00 —1
185 .02 185.02 ~~— 189.02 15.00 174.02 0.00 —2
235.02 235.02 256.02 20.00 236.02 0.00 —3
285 .02 285.02 323.02 25.00 298.02 0.00 —4

ECHEI.ON 2 I

2 2 ~l I W’(x t ) -
~~~~~~ ui (x i ) 

W~~(x~ — 1)  
Tot:l 

~~~~~~~~ L
1

(y~ ) a 
t~ 0 

ui~(y~— t ) $ ( t ) 
~~~~~~

Ordering
(7)  (6) (5) (4) (3)  (2)  (1)

0.00 1.20 2 1.20 1.20 0.00 7
0.00 1.00 0 1.00 1.00 0.00 6
0.00 0.84 .16 0.84 0.84 0.00 5
0.00 0.88 04 

0.88 0.88 0.00 4
0.00 1.96 1.96 1.96 0.00 3
0.19 6.96 —~~~ ~ 7.15 7.15 0.00 2
12.15 11.96 2 4 . 7 0  24 .70  0.00 1
50.02 16.96 66.98 66.98 0.00 0

112.02 2 1.96 133.98 133.98 0.00 —1
174 .02 26.96 200 .98 200.98 0.00 — 2
236.02 31.96 261.98 267.98 0.00 —3
298.02 36.96 334.98 334.98 0.00 —4

ECUELON 1

— 25 —
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• number S satisfied W(S ) = —c . Since we have shif ted to discrete

valued functions, the method of finite differences must be used to find

S
1 
. It can be shown that the critical number S1 satisfies the relation

- W1(S1-l) < _C
l 

W (S1+l) - W1(S1) . (8)

Successive differences are shown in Column (5) until  the inequality (8)

is satisfied. In the case of echelon 1 during period 1

—5.19 < —c
1 

= — 5 < —1.08

thus 4 = 3

Column (6) of Table 1 shows the total expected cost after ordering,

for various stock levels before ordering . Since it is optimal to have a

stock level of three units at the beginning of period one, if 4 < 3 , we

purchase 3 — 4 units and add the cost of this purchase, 5 • (3—4) , to

4(3) . Column (7) shows the cost of not being able to bring the stock level

up to 4 . This cost, 4 , is equal to Column (4) minus Column (6) and

is the penalty charged to echelon 2 as a result of installation 2 back—

ordering installation 1.

The echelon 2 section of Table 1 shows the costs involved in obtaining

the critical numbers (S~~,s~ ). Much of this section is similar to the

echelon 1 section. Only the differences are commented upon. Column (10)

is equal to Column (7). In Column (12) the function W~ includes the

additional cost 4 . Column (13) shows that 4 = 0 . Column (14) is

obtained by assuming an order is always placed to bring the stock level up

to zero if 4 < 0 • In comparing Columns (14) and (12) , note that it is

not always wise to order when 4 < 0 . When 4 = —l , the total cost

after ordering is $135.02, while if we had not ordered , the total cost would
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have been $122.02. The stock level, 4 , at which the costs in Column (14)

are less than or equal to the costs in Column (12), is the level at which

ordering should begin . In this case , 4 = —2 • Column (15) shows the

total expected cost after ordering , for various stock levels before order-

ing. The entries of Column (15) are the minimum of the entries in Columns

(12) and (14).

Table 2 shows the determination of the critical numbers for period 2.

Columns (6) and (15) of Table 1 have been brought back one period in time

to become Columns (2) and (9), respectively, of Table 2. The calculations

in Table 2 are obtained as described for Table 1.

The critical numbers for the last two periods of this problem are:

1 2 2S1 = 3 , (S1,s1) = (O,—2)

1 2 2
S
2 

= 3 , (S
2
,s2) 

= (2 ,0)

If we are interested in using this two—installation, series—configuration

example in the design of a multi—echelon system, which would be in business

for only two periods, and if there are zero units on hand at each installa—

tion at the beginning of period 2 before an order is placed, then a ,.

for this echelon structure is

14(0) + 4(0) = $23.92 + $165.95 = $189.87

The calculation of the cr itical numbers f or this example were carr ied

out for 20 periods. The critical numbers for the 20th period are

1 2 2
s20 = 5 , (S 20 ,s20) = (7 ,1) .

The total expected discounted (inventory) cost of this echelon structure

for this product, that Is, ~~ , when it is assumed zero units are on hand

at each installation before an order is placed at the beginning of the 20th

period, is

— 2 7 —
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• Table 2

PERIOD 2 SOLUTION OF TWO—INSTALLATION . SERIE S-CON FICUKA TION EXAMFL E

‘-2
2 2 W 2

~~~)
jjZ 2 Assuming Always W 2 (x2 ) — 2 

2 2 2 ‘-2 2 Stock
2~~ 2~ Order Whe n 2 2 Total Expected L

2
(y

2) ~~~~~~ 
a E D

3
(y

2
—t )~~(L) t.evel

< W
2

(x
2
— l) Lost Before t 0

2 2 Ordering
(15) (14) 

— 

(13) (12)  (11) (10) 
— 

(9) (8)

2’ .02 22.02 91 22. 02 12 .00 0.00 10.02 7
18 . 1 1  18.11 18.11 10.00 0.00 8.11 6
14. 58 14.58 14 .58 8 .00 0 .00 6.58 5
12.58 12.~ 8 12.58 6.03 0.00 6.55 4
15.53 15.53 2 0 2  15.53 4.16 0.00 11.37 3
35.95 

~
‘s ~io 

35.95 2.12 5.19 28.04 2
89.65 115.95 

— 
89.65 2 .51 22.14 64.34 1

165.95 165.95 4 189.22 5.00 65.02 119.20 0
215.95 215.95 322.26 10.00 132.02 180.24 —l
265.95 265.95 449.04 15.00 199.02 235.02 —2
315.95 315-. 95 571.04 20.00 266.02 285.02 —3
365.95 365.95 693.04 25.00 333.02 335.02 -4

ECIIELON 2

1 1  1
W
2

(x
2
) — W 2 ( )

A~ (x~~) D~O4) W~ (x~~1) To t:1 Expected L~ (y~ ) a 
t!O 

D~~(y~ -t )$ ( t )  
~~~~~~

Ordering
(1) 

— 

(6) (5) (4) (3) (2) (1)

0.00 2 .28  2.28 1.20 1.08 7
0.00 2.11 0.19 2.11 1.00 1.11 6
0.00 2 .51  0.40 2.51 0.84 1.67 • 

S
0.00 4.28 — 1 . 7 7  

4.28 0.88 3.40 4
0.00 8.92 ~~—4.64 8.92 1.96 6.96 3
5.19 13.92 

— 0.19 19.11 7.15 11.96 2
22 . 74  18.92 41.66 24.70 16.96 1
65.02 23.92 88.94 66.98 21.96 0

132.02 28.92 160.94 133.98 26 .96  —1
199.02 33 .92  232.94 200.98 31.96 —2
266.02 38.92 304.94 267.98 36.98 —3
333.02 43.92 376.94 334 . 98 41.96 —4

ECHELON 1

— 2 8 —
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D~~ (O) + D~~~(0) = $1438.17

The series configuration of installations does not represent a very

realistic multi-echei rn system. If the Clark approach is to be used to

obtain the a.. for the design model, it will have to be applied to the

more realistic arborescent configuration of installations. The next

section shows how this approach is used to find the critical numbers and
the aij for installations arranged in arborescence and extend s the method

to allow for exogenous demand at any installation.

3.5 Finding a .. for Arborescent—configurat ion Structures

The purpose of this section is to describe how the Clark approach

presented in the previous sections is applied to a multi—echelon situation

in which the installations are arranged in an arborescent structure .

Figure 5 shows the simplest multi—echelon, arborescent—configuration

system, where the two installations at the lowest level of the system, A
1

and A
2 

, are fed by installation B

• Source

~1~

lAd 
____

Demand Demand

Figure 5. Three—installation, arborescent—
configuration system.
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The s i tuation illustrated in Figure 5 will be used to describe how Clark’s

approach is applied to arborescent configurations.

The assumptions in the previous section for the series—configuration

system apply here with the following exception. Demand , exogenous to the

system, occurs at all the installations at the lowest level of the system,

not at only one installation. The notation defined in the previous section

will be used in this section. A more cumbersome method of labeling the

installations is employed so that the level as well as the installation is

easy to identify.

Using Clark’s approach to calculate the inventory policies for the

kU-i period for each echelon of the system, we would proceed as follows .

(1) Assume installations A1 
and A2 are independent.

Determine the inventory policy for A1 by applying

the same method that was used for echelon 1 in the

series example, that is, assume stock is available

at B to satisfy the order from A1 . Also,

calculate , the additional cost that would be
experienced by installation A1 if installation B

cannot satisfy the demand of A1 during the kth period .

(2) Repeat Step (1) for installation A
2 

, that is,

calculate its inventory policy assuming B can satisfy

the demand of A
2 

. Calculate i~~”~2 .

(3) Construct the additional shortage penalty from

the marginal per unit costs associated with ~~~~~~~

and ~~,A2 
. The penalty is an additional period

cost for echelon B during the kth period , in the same

manner that the penalty applied to echelon 2 of

the example in the previous section.

— 30 — 
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(4) Determine the inventory policy for echelon B. Since

a fixed cost of ordering is allowed at installation B,

the highest installation in this system, the method

for determining the two critical numbers (S~,s~)

follows the method used for echelon 2 of the series—

configuration example.

In short, the method outlined above says to calculate the inventory

policies for each echelon separately by the methods used for the classical

single—installation situation. This procedure can be extended easily to

apply to a situation where B feeds more than two installations or to a

system containing more than two levels.

Recall that C(x
Al, x

A2, x
B) is the minimum total expected

discounted cost for the entire system of this example at the beginning of

period n before an order is placed. If the inventory policies calculated

by this method are to minimize the total expected discounted cost of the

system, it is necessary that

C(x~~-, x~
A2, x

B) = ~~
l(x’~l) + DA2(x A2 ) + DB(xB) (9)

Unfortunately, it has been shown by Clark and Scarf (1960) that decomposition

(9) does not always hold for the arborescent configuration of installations.

They give an argument for such a decomposition by assuming that the stock

levels at the lowest installations, in this case A
1 

and A
2 

, are not

out of balance. By this they mean that for a given period the ratios of

stock on hand after ordering to expacted demand are approximately the same

for A
1 

and A
2 

. In practical situations they feel that the stock levels

at the lowest installations are rarely out of balance, and therefore they

conclude that Clark’s approach gives excellent approximations, if not

optimal solutions, for the best inventory policies of an arborescent

configuration. 6

6The notations C and D will continue to be used in the remainder of
this section, even though it cannot be proven that these are the minimum costs.

— 31 —
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If the holding, shortage, and transportation costs per unit at

each of the lowest level installations are of the same order of magnitude,

then it is felt that the stock levels at the lowest installations generally

will be in balance. Experience with Clark’s approach for obtaining inven-

tory policies of installations arranged in an arborescent . configuration

indicates that his method is probably quite good .
7

An assumption was made which should not be overlooked . lt was

assumed in Step (1) that installations A
1 

and A
2 

were independent.

This means that transshipments between A1 
and A

2 
are not allowed . Thus,

an installation will be allowed to receive stock only from its designated

supplier at a level higher in the system.

Clark’s approach is now used to obtain the inventory policies for

a three—installation, arborescent—configuration problem.

3.6 Three—installation, Arborescent—configuration Example

Suppose

*h
A 
(u
A ) 2 . 2 U

A1 1 1

*hA (uA ) =

2 2 2

h
~
(u
B
) = 2•OUB

1 1  1

*
~A 

(uA ) 69U~
2 2 2

p (u
B
) = S

~
OU
B

7Clark (1960) used this approach to obtain the inventory policies
that were used in the simulation of a large arborescent—configuration
system. In personal conversations with him he indicated that the policies
produced for this simulation were excellent .
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C
A 

(z)  = 5z
1

c (a) = 3z
2

cB (z) = 50z + 30

c t = l

Using the cost—added concept described in the series—configuration example,

the echelon holding and shortage costs are:

h
A 
(u
A ) O.2U

A1 1  1

h
A 
(u
A 

) O.1U
A2 2 2

h
B

(u
B) 2.OU~

PA (U A ) &7U A1 1 1

~A 
(uA ) = 64U

A2 2 2

= SU
B

Suppose the demands at installations A
1 

and A
2 

each follow a Poisson

distribution, with mean demand one unit per period. The demand experienced

by echelon B is the convolution of the demands experienced by the two

installations fed by B. Therefore, the demand at echelon B follows a Poisson

distribution, with a mean demand of two units per period.

The calculations for the inventory policies at each echelon for

perIod 1 are now described. We follow the four—step procedure given above.
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(1) The costs and demand distribution for eche1o~. A
1 

are

identical to those given for echelon 1 of the series—

configuration example. Therefore, the echelon 1 section

of Table 1, Columns (1) — (7), gives the calculations for

period 1 of echelon A1 in this example and ~~~ =

Column (7) of Table 1 is

(2) Table 3 gives the calculations for period 1 of echelon

A2 . The arrow indicates the location of the critical

number and s~2 = 3

(3) We now show how and ~~,A2 are used to construct

If installation B cannot satisfy the demand from A
1

and A2 , it has a choice of backordering A1 , A2 , or

both A1 
and A

2 
. It desires a plan for backordering

that will penalize it the least. For example, if B is

short one unit in the first period , it is clear by examining

Column (7) in Table 1 and Column (7) in Table 3 that it is

cheaper to backorder A
1 

one unit, where the penalty is

$0.19, than to backorder A
2 

one unit, where the penalty

is $2.04. Similarly , if B were short three units in

period 1, it has the following four alternatives:

(a) backorder A1 three units at a cost of

$50.02

(b) backorder A1 two units and A2 one unit

at a cost of $12.75 + $2.04 = $14.79

(c) backorder A
1 

one unit and A
2 two units

at a cost of $0.19 + $15.87 = $16.06, or

— 34 —
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(d) backorder A2 
three units at -ì cost of

$53. 29.

Thus, B would choose alternative (b) in order to minimize

the cost of not being able to bring the lower installations

up to their desired stock levels. It is assumed that instal-

lation B will use the minimum cost backordering alternative,

and furthermore , that B generally has a choice regard ing how

much it will backorder each lower—level installation. To

determine the penalty for all possible backordering situa-

tions, we first calculate the marginal per unit costs associa-

ted with ~B,A1 and ,~R,A2 , called marginal ~B,A1 and mar-

ginal ~~,A2 in Table 4. These give the additional cost for

backordering one more unit at and A
2 , respectively.

The marginal penalties are then ranked in value, starting with

the smallest. The ranked penalties are then successively

added to form . This procedure guarantees that the least

cost combination in backordering the lower—level i~Tastal1ation

is used. These calculations are shown in Table 4. The posi-

tive ranked marginal Li~~~1 and ,~B,A2 start at stock level 5

because if echelon B has less than six units, then either A
1

or A2 
are below their desired level of three units each.

(4) Using the Li~() from Table 4, the inventory policy for

echelon B at the beginning of period 1 can be determined .

The calculations are shown in Table 5 and follow the calcula-

tions for echelon 2 of the series—configuration example , given

in Table 1. The critical numbers as indicated by the arrows

are (S~ ,s~) = (0,—2)
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If interest was only in one period of operation for this three—

inst allation arborescerit— configuration example , and if the on—hand inventory

at each insta llation at the beginn ing of per iod 1 before ordering is zero

units, then the total expected discounted cost of the system would be

D~l (O) + DA2 (O) + D~(0) = $16.96 + $10.69 + $113.32 = $140.97

This would be the inventory cost a
i~ 

for the design model. The calcula-

tions given here for one period were carried out for 20 periods. The cri-

tical numbers for the 20th period , that is, with 20 periods of business

remaining, are

• sAl _ S  s~
2 = s  ,5B B ’. — ‘11320 ‘ 20 ‘ “ 2O~~2O1 

— ‘..

The total expected discounted cost for 20 periods is $2681.29, and this

• would represent the inventory cost, ai~ 
, in the design model if we were

designing a system to last for 20 time periods.

3.7 Shadow Installations

The method just described for obtaining near optimal inventory

policies for N installations having an arborescent configuration will be

satisfactory for many of the echelon structures to be considered by the

design model. But there is one situation which cannot be handled directly

by the Clark approach for arborescent configurations. This is the situation

in which one or more of the lowest—level in~tal1ations, where exogenous

demand exists, is not included in the echelon structure. This would be the

situation if one or both of installations A1 or A
2 

were removed from

the system of Fipure 5. For example, Figure 6 shows this system with

installation A2 removed . Although installation A
2 

is not physically

included in the echelon structure of Figure 6, it is represented on the

diagram by dashed lines because demand still exists where this installa—

tion would be located if it were included in the structure. We call

installation A2 a shadow installation. Any time an echelon structure

does not include one of the lowest—level installations, that installation

is called a shadow installation.
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In the echelon structure of Figure 6, demand D
2 

must be satisfied

by installation B on an individual basis, that is, it is a “mail—order”

demand.8

Source

~1~

[A 1J~~~~~~ L
A2J

Figure 6. Arborescent configuration with
a shadow installation.

Suppose we desire to determine the inventory policies for echelons A
1

and B , taking into account that mail—order demand D
2 

exists at the

location where installation A
2 would be placed if it were included in the

system. To do this, we need a method which includes the transportation

cost from installation B to the customers represented by D
2 , and a penalty

cost at B for not satisfying the demand at . There is no need for a

holding cost at A
2 since this installation is not in the system. Let

—*
p. = the shortage cost per unit for customers at

1 the shadow installation 1.

= the transportation cost per unit in getting
an item to the customers of shadow installa-
tion i from their supplier.

8 ,,We use the phrase mail—order in referring to these individual
demands, but the manner in which they are processed is completely arbitrary,
as long as they are processed on an individual basis. Therefore, if the
product is of great enough importance to the customer, he will probably tele—
phone the demand to installation B and request an air express delivery.
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The echelon structure of Figure 6 is used to describe the method for

obtaining the inventory policies and a.~ for a tisulti—echelon configuration

with a shadow installation. The procedure for the kth period is:

(1) Assume demand can only be satisfied by

installation B, that is, it cannot be satisfied

by installation A1 - Determine the inventory

B,A1policy for A
1 

and 
~k 

using Clark s approach

for arborescent configurations.

(2) No calculations are required for echelon A2

since installation A
2 

does not exist.

(3) To construct , it is necessary to consider a

penalty at echelon B for not being able to satisfy

the demand D
2 , 

as well as the demand from A
1

Thus, we need something similar to the marginal per

unit cost of ~~,A2 Whenever a customer from

demand D2 
is backordered by installation B, he

• incurs a cost of p
~ 

. But part of this cost has

already been applied by p
~ 

; therefore, using the

cost—added concept, we let 
~A2 

equal the cost per

• unit added by penalty p - Then, marginal

~~~~~~~~ ~

(4) The inventory policy for echelon B is determined in
the same way that it was found in the arborescent

configuration, with the following exception. The

period cost, LB
(S) , must include the additional cost

of meeting the expec ted demand of D2 A2 , or in

this case

— 41 —
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B

LB
( )  = C

A 
A2 + ~ h~(y~

_t)
~~ (t)

2 t— 0

+ 
B B k B  , y~ 

> 0 , k = 1,2,...
t y 1

+l

= C
A

A2 + 
t~O 

p t ’ ~~~~~t) , y~ 
< 0 , k = 1,2

This procedure is now used to obtain the inventory policies for a

numerical example of the arborescent configuration with a shadow installation

shown in Figure 6.

3.8 Shadow Installation Example

Suppose

h
~~
(u
A
) -

h (u
B
) = 2’

~~B

p~~
(uA )  = 72uA

—*
= 78

2

= 5u
3

c
A 

(z) = 5 z
1

CA = 10
2

C
B

(z) = 50z + 30

c t = 1 .  -

•
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Using the cost—added concept , the echelon holding and shortage costs are:

hA 
(u
A ) = O.2U

A1 1 1

h
B

(u
B
) = 2OU

B

• 1 1 1

P =73
• A

2

PB(UB) = SU
B

Suppose the demands D1 
and D2 are Poisson, with mean demand one unit

per period.

— The calculations of the inventory policies at echelons A
1 

and B

for period 1 are now described, following the procedure given for multi—

echelon configurations with a shadow installation.

(1) The costs and demand distribution for echelon A
1

are identical to those given for echelon 1 of the

series—configuration example. Therefore, the eche-

lon 1 section of Table 1, Columns (1) — (7), gives
the calculations for period 1 of echelon A1 in

this example and S~~- = 3 . Column (7) of Table 1

is A~
B
~
Al

(2) Installation A2 
is not included in the configuration,

therefore s~
2 is not calculated .

(3) is constructed for this example using the same

method applied in the three—installation arborescent—

configuration example, with the exception that the

B,A2 —

marginal 
~~ ]. 

= 

~
‘A 

— 73 , for all stock levels. The
2
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ranking of the marginal , l = A1 and A
2 , and the

construction of are shown in Table 6. The positive

B,A2marginal &~ 
begin at stock level 0 because we expect

a mail—order demand from D
2 

of one unit per period and ,

therefore, want to penalize echelon B for holding less than

B, A1one unit of stock. The positive ranked marginal 
~

and ~~~~ start at stock level 3 because if echelon B

has less than four units, then either A1 
will be below its

desired stock level of three units or the expected demand of

one unit at D2 
will not be met.

(4) Using the t~~() from Table 6, the inventory policy for

echelon B at the beginning of period 1 can be determined .

The one exception to the method used for the arborescent—

configuration example is that L
B
() must include the addi-

tional cost of meeting the expected demand of D2 
for each

value of stock level. This cost equals the product of the

expected demand and the transportation cost, CA , or in this
2

case $10. The costs and distribution for demand at echelon B

in this example are identical to those used for echelon B

of the three—installation arborescent—configuration example.

Therefore LB() for this example is the L~(.) found in

Table 5 plus $10. The calculations for echelon B follow the

calculations for echelon 2 of the series configuration example,

given in Table 1. The critical numbers are (S~,4) = (1,—i).

The determination of the inventory policies for periods 2,3,...

follow the method described for period 1. The calculations for this example

have been carried out 20 periods, and the critical numbers for the 20th

period are:

— 44 —



‘—•--—- •---—---. --.-—-- — -—_,-~—‘a-- ,
~~ -~~~~ —~ • ---—-—-—--—’-- •~~~~~~ • 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

T—392

Table 6

DETERMINATION OF FOR ARBORESCENT—CONFIGURATION

EXAMPLE WITH A SHADOW INSTALLATiON

k B A Marginal Marginal Ranked MarginalStoc a ’ l  V A  V A  V A  B

Lev 1 ul AD~~l ~
D,1t2 ~~

D ,Iti a d ~ D ,it2 U
~~

7 0.00 0.00 0.00 0.00 0.00

6 0.00 0.00 0.00 0.00 0.00

5 0.00 0.00 0.00 0.00 0.00

4 0.00 0.00 0.00 0.00 0.00

3 0.00 0.00 0.00 • 0.19 0.19

2 0.19 0.19 0.00 12.56 12.75

1 12.75 12.56 0.00 
- 

37.28 50.02

0 50.02 37.28 73.00 62.00 112.02

—1 112.02 62.00 73.00 
- 

62.00 174.02

—2 174.02 62.00 73.00 62.00 236.02
- 

—3 236.02 62.00 73.00 62.00 298.02

—4 298.02 62.00 73.00 62.00 360.02

— 45 —
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A1 B B
~2o 

= 5 and (S20,s20
) = (9 ,2)

If there are zero units on hand at each installation before ordering in

the 20th period , the total expected discounted cost for 20 periods is

$2708.11. This would represent the inv~ntory cost , a . .  , in the design

model if we were designing a distribution system to last for 20 periods

and were interested in this echelon structure. Note that the total expected

discounted cost of operating the three—installation arborescent—configuration

was $2681.29. Therefore, in comparing these two echelon structures, we might

conclude that the mail—order operation is a poor way to do business for this

situation. ~ut this does not take into account the inventory costs for other

products or the fixed cost of an installation.

4. THE DESIGN PROBLEM WITH
STORAGE SPACE CONSTRAINTS

In this section we generalize the design problem formulated in

Section 2 to allow for storage space constraints at the various facilities.

The resulting model yields a 0—1 linear programming problem, which includes

the previously discussed design problem without capacity constraints as a

• special case.

Formulation of the design problem with capacity constraints requires

notation in addition to that given in Section 2, and , for convenience, we

give here all notation used in the model. The echelon structures are indexed

by i,i=l,...,m; the products are indexed by j,j=l,...,n; the installations

are indexed by k,k 1,...,p. Let

ai. = the inventory cost of product j
using echelon structure i,

b
k 

= the facility cost of installation k

r
k 

= the storage space available at installation k

d ijk = the storage space required at installation k for
product j when product j uses echelon structure i.

j
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The d iik values could be measured on the basis of either the maximum

space required (over time) or the average space required (over time). The

former seems more appropriate for this type of design problem, and the

rk values must then be determined accordingly. Note that the

d .jk~ 
k =1,... ,p , values are obtained as outputs of the multi—echelon

inventory problem solved in calculating a.. . Thus d .. = 0 for all
ij ijk

j=l,... ,n if echelon structure i does not use installation k.

The decision variables are:

• x~~ = 1 if product j uses echelon structure i ,

= 0 otherwise,

= 1 if installation k is used,

= 0 otherwise.

The problem, henceforth called problem (P), is then to find x 1~ and

values that m n p
• minimize Z E a . .x ..  + E bkyl 

(10)
i=l j=l ~~ k=l

subject to
m
E x~ . = 1 , j1 ,... ,n , (11)
i=l

us n
E E d . .kx .. — r~y~ < 0 , k=1,. . . ,p , (12)
1=1 =1 13 13

X i •
~ Yk 

= 0 or 1 for all i,j,k . (13)

Comparison of this formulation with that of Section 2 shows that the objective

functions (1) and (10) are equivalent and constraints (2) and (11) are the

same. The constraints (12) serve to Impose the storage space limitations at

the same time that they force the use of an installation if any echelon

structure using it is chosen. If 
~k 

= 0 and d
ijk 

> 0 , then x
11 

must

be 0 in order to satisfy (12). Note that the previous formulation without

storage space constraints can be easily obtained as a special case of 



___ _
~~~~~~~~~~~~~~~~~ • •~~~~~~

T—392

• (10) — (13) by letting djjk equal 1 if echelon structure i uses installation

k (and 0 otherwise) and setting all r
k 

equal to n.

The design problem with storage space constraints has been formulated

in this section as a 0—1 LP problem. In the next section we illustrate

its use for designing a multi—product , multi—echelon inventory distribution

system.

5. iLLUSTRATION OF MODE1-S

This section presents illustrative computational results using the

three models given in this paper——the dynamic programming model to find

optimal inventory policies for a mu lti—echelon distribution system, the

design model without storage space constraints, and the design model with

storage space constraints. The section concludes with a discussion of some

problems yet to be resolved.

5.1 Illustration

• In this illustration five alternative echelon structures, which include

up to three echelons and eight facilities, are being corsidered for the

design of a four—product, multi—echelon inventory distribution system.

The five echelon structures are shown in Figure 7. Echelon structure 1

is the full system, that is, it consists of the maximum number of facilities

under consideration (a central warehouse, two regional warehouses, and

five retail stores) arranged in three echelons. Although eight facilities

generate 28 = 256 possible echelon structures , only the four additional

echelon structures shown are being considered for this system. Echelon

structure 2 is a one—echelon system with mail order delivery from the

central warehouse to customers located where the retail stores would

be if they were in the system. Echelon structure 3 is a two—echelon

system without a central warehouse. In this case the two regional warehouses

are supplied directly by the sources of production. Echelon structure 4

is a single echelon system where the retail stores are supplied with

products directly from the sources of production , while echelon structure 5

is similar to echelon structure 1, with the exception that customers at

• retail stores 1, 2, and 3 are supplied by mail order fr om regional
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Figure 7 -

The Five Echelon Structures Used in the lilustration
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warehouse 6.

The dynamic programming approach , described in Section 3, was

used to find the multi—echelon inventory policies and the resulting

a..’s for the four products of this example. Table 7 summarizes the

input data needed to obtain these policies. It is assumed that the

stock levels of this inventory system are reviewed quarterly and the

demand for each product has a Poisson distr ibution,  with the mean

demand per quarter assumed to be the same at each retail store. If

echelon structure 1 is used to stock a product, it is generally assumed

that the cost to transport the product from the central warehouse

(facility 8) to one of the retail stores is 6% of the procurement cost,

that is, the cost to get the product to facility 8.~ Referred to in

Table 7 as “normal” transportation cost, this cost is divided evenly

between the cost to move the product between facility 8 and one of the

regional warehouses (facility 6 or 7) and the cost to move the product

between the regional warehouse and one of the retail stores.

In the case of echelon structures with shadow installations, the

transportation cost to satisfy mail—order demands will generally increase

significantly. Table 7 shows these costs as a percentage of the normal

transportation costs described above. Also shown are the changes in

transportation cost when either the central warehouse or regional warehouse

are not used to stock a given product. For products 1 and 2 we assume

under such a two-echelon system that there would be no change from the

normal transportation cost, whereas with products 3 and 4 it is assumed

that the transportation costs double (200% of normal cost) under these

circumstances. Table 7 also gives the holding and stockout penalty costs

used in this illustration. The holding costs per quarter range from 2%

to 8% of the total cost to get the product to the facility where this

holding cost is incurred. The shortage costs at the retail stores

91n two cases, for products 2 and 4 transported to retail stores 4 and 5,
this cost is assumed to be 3% of the procurement cost.

— 50 —
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(or shadow installations) vary from 110% to 190% of the cost to get a

product to these stores. At facilities other than the retail stores, a

shortage cost equal to 10% of the facility ’s holding cost is applied to

cover the nuisance created by backordering.

Finally, the following data or characteristics were assumed to be

common to all the products:

1. The life of the system is 20 quarters (five years),
that is, each product is stocked for 20 quarters,

2. there is no inventory on hand at the beginning of
the first period of operation,

3. the interest rate is 1—1/2% per quarter, resulting
in a discount factor of 0.985, and

4. the fixed cost of ordering is $100.

Table 8 gives the dynamic programming results. The a
i~ 

represent

the total expected discounted cost for stocking product j under echelon

structure i for 20 quarters, and the inventory policies shown are for

the 20th quarter. The computer program written to generate these results

also gives the order policies at each facility for each of the 20 periods.

It is interesting to note that steady state policies were generally reached

quickly. With the exception of three of the 20 results, the policy shown

for the 20th quarter was reached by the fifth quarter , and sometimes sooner.

Two types of inventory policies, S and (S,s), are shown in Table 8.
At the highest level facility in a system (the facility that orders the

product from the source of production) it is assumed that a fixed cost of

ordering is incurred, hence (S,s) type policies result. Since there is

no fixed cost of ordering at other facilities, S type policies are found.

The time to calculate these critical numbers and to find the inventory

costs, a.j averaged 30 seconds per product for a given echelon structure

on an IBM 360/50 computer.

Next we determine the best design for this four—product system,

using the model given in Section 2, that is, we assume there are no

constraints on the amount of space available at each of the facilities

— 52 — 
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where products might be stored. The inventory costs, a.. , given in

Table 8, and the facility costs, bik , for this problem are arrayed by

echelon structure i in Figure 8. The facility costs are consistent

with values found in previous research [see Pinkus (1971)1 and take

into account the fact that the fixed cost of operating a warehouse, in

• proportion to the value of goods that might be stocked there, is less

than the fixed cost of operating a retail store, due to economies of

scale and lower property values.

The solution to this problem is to stock all four products under

echelon structure 5, which means that each product will be stocked at

retail stores 4 and 5 and at warehouses 6, 7, and 8. The total (5—year)

expected discounted cost of this solution is $766,000. It is interesting

to note that of the four products, only products 1 and 3 use the echelon

structure that minimizes their inventory cost. If products 2 and 4 were

to use echelon structure 1, which minimizes their inventory cost, the

fixed cost of the system would increase because products 2 and 4 would

now be stocked at retail stores 1 — 3, as well as at facilities 4 — 8.

Under this solution the savings in inventory cost do not compensate for

the increased facility cost, and the total cost of the system is $790,000.

The solution to this problem was obtained in 11 seconds on an

IBM 370/148 using the branch—and—bound algorithm described in Pinkus,

Gross, and Soland (1973). Although initially written to handle 10

echelon structures, 30 products, and 30 facilities, the computer program

for this algorithm can easily be expanded to handle larger values of in

n , and p

Finally, we have solved the same problem with storage space
constraints using the model presented in Section 4. The storage space

available at each facility, rk , is given in Table 9, and the amount

of storage space required for each product is given in Table 10. To

find dijk , we multiply the per unit storage space required to stock

product j (see Table 10) by the maximum number of units (S) that will

be stocked at facility k when echelon structure i is used (see Table 8).
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Table 9

STORAGE SPACE AVAILABLE
AT EACH FACILITY

Facility rk
k (sq. feet)

1 3500

• 2 3500

3 3500

4 2000

5 2000

6 7000

7 5000

8 8000

Table 10

STORAGE SPACE REQUIRED BY
EACH PRODUCT

Product Storage Space

(~~) 
Required Per Unit

(sq. feet)

1 400

2 300

• 3 500

• 4 300

k -56 - 

~~~~~rn•~~~~~~
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For example, d1 ~ 
is 800 (that is, 400 x 2), d3 2 is 900 (that is,, , ,

300 x 3), and d5 4 8  is 3000 (that is, 300 x 10).

The solution to the problem with space constraints is to stock

products 1, 2, and 4 under echelon structure 4, and product 3 under

echelon structure 2, that is, products 1, 2, and 4 are stocked only

at the retail stores, which are supplied directly by the sources of

• production , and product 3 is stocked only at the central warehouse

(facility 8), from which customers receive product 3 by mail order.

The total (5—year) expected discounted cost for this solution is $779,000.

• In this case, none of the products are stocked under the echelon structure

that minimizes the inventory cost for a given product. This solution was
obtained in 145 seconds using a 0—1 linear programming computer code run

on an HP 3000 .

5.2 Discussion

We conclude this paper with a discussion of some problems yet to

be resolved .

The design model with storage space constraints, problem (P) , has
mu + p 0— 1 variables and n + p constraints, so the problem d imensions

may be fairly high for problems of practical size. For example, with

m = n = 30 and p = 20 , problem (P) has 920 variables and 50 constraints.

The 0—1 LP computer code used to solve the design problem with storage

space constraints in the previous section can handle only 40 variables
and 20 constraints. This fact, together with the special structure of

problem (P) , suggests that a specialized algorithm for its solution would

be much more efficient for practical problems than the general integer
linear programming algorithm that was used to get the results in Section 5.1.

Such a special algorithm is presently being developed and tested.

There is another aspect of this work that need s to be examined . It

can be shown that the model with space constraints, problem (P) , might not

obtain the best solution to this design problem. This is because we have

restricted ourselves to using the optimal inventory policy and resulting
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ajj f or a given product stocked under a given echelon structure. With

the introduction of space constraints, a situation can occur where by

• making a reduction in the optimal value of S for a given product , we

might be able to satisfy a space constraint that would not otherwise be

satisfied. Such a reduction in S would yield a sub—optimal (greater)

value for a . .  , but this increased inventory cost could be compensated

for by the reduction in fac ility cost resulting from enabling the product

to be squeezed into a set of facilities used by other products.

There is also the possibility of letting the decision variables ,

x .,. , take on fractional values . A fractional x . .  means that part of
13 13

product j is stocked under one echelon structure, and the remainder

under one or more other echelon structures. It is easy to see that the

x .,. would always be 0 or 1 for the design problem without storage space

constraints, but it is not clear that this should be the case for problem (P).

We are in the process of allowing for the use of fractional x.
3 
, for the

space constrained design problem, and plan to investigate several heuristic

solution methods in order to allow for the possiblity of using sub—optima l

inventory policies to reduce the total cost of the system.
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