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I. INTRODUCTION

Contaminant wear can be the single most influential factor limiting hydraulic
component service life. In an effort to control contaminant wear, millions of dollars
are spent annually for filters of all kinds, replacement parts, components, and the
maintenance associated with these items. Inexorably, the thought of “If some filtra-
tion is good, then more must be better.”’ has produced a .rend toward finer and finer
degrees of filtration to control contaminant wear. Without a doubt, filtration is neces-
sary; however, some consideration must be given to the trade-offs involved. What is
the point of maximum return on the contamination control investment? [t must be
recognized that filtration costs money. Not only the initial expenditure but also in the
costs required to maintain the filtration level. These costs are not fixed; for example,
a filter which exhibits a filtration ratio at 10 uM of 10 may cost more than an equally
sized B, , = 2 filter and also may have less dirt capacity and a higher pressure drop
(which adds an energy cost to the total). It seems quite possible then that there is an
optimum level of filtration, a point where the service life of a system is maximized with
full regard to the filtration investment made.

This report covers the second phase of an ongoing effort to quantify essential
steps in maximizing system life versus contamination control investment. The objective
of these phases was to establish the relationship between component life and its environ-
mental contamination level. The obvious method to attack such a problem would be a
series of varying contamination level tests on hydraulic components. However, this would
result in an unending series of testing, since the simplest of design differences from com-
ponent to component (even among the same type) could result in significant changes in
the contaminant sensitivity of the components. The method utilized in this effort avoids
that by attacking the problem at a basic level. That is: all components are systems
(assemblages of parts that together form a synergistic entity). The contaminant wear
occurring in these assemblies or components takes place most significantly in areas of
relative motion between two parts of the component. Further, there are two kinds of
motion which make up the majority of actions found in these components, a rotary
rubbing action (such as exists between a gear and a wear plate or a pump valve block
and the casing) and a linear rubbing action (normally reciprocating) as typified by a hy-
draulic cylinder or a sliding spool valve. Therefore, determination of the relationship
between contamination level and wear rate in these simple mechanisms will provide im-
portant information regarding the effect of contamination level on assemblies of these
basic mechanisms.

The Fluid Power Research Center has assembled two model mechanisms for study,
one rotary and one linear (reciprocating) along with the necessary support equipment.
The basic systems have already been in use as described in Ref. [1]. This report covers
the second year of study which consists of the results from the continuing effort on the
basic mechanisms and the results of the first component tests (gear pumps) in the program.
The first year’s effort was devoted entirely to mechanisms and the results of the first




component tests (gear pumps) in the program. The first year's effort was devoted
entirely to a mechanism wear study, and the results from that portion of the program
will be used in this report to further establish correlation between contaminant wear
and various test parameters of the basic mechanisms.

Test results have been evaluated by use of the new technology of Ferrography.
This technique of wear analysis presents data that other methods cannot, in that it
provides for efficient separation of wear debris from a fluid sample. The debris thus
separated is permanently retained and may be evaluated both objectively and subject-
ively for information regarding its origin, type, and se.erity of the wear mode which
produced it. A further understanding of the mechanics of Ferrography and its poten-
tial in fluid power may be gained from Refs. [2, 3, 4, 5].




Il. TECHNICAL BACKGROUND

In a normally functioning fluid power system, filtration elements operate in

more effective the filtration, the lower the contamination level. The system fluid,
intended among other things to lubricate system components, paradoxically carries

rate of wear is some function of the contaminant concentration and particle size

E might intuitively be expected from operation in such a ‘“super clean’’ environment
will, in reality, never occur due to wear from other sources. However, since con-

(i.e., reduced contamination) levels. The objectives of this phase of the project are
to provide information regarding the relationship between fluid contamination level
and wear in basic hydraulic mechanisms and begin to apply that knowledge toward

basic phenomena of the wearing process must be understood.

The two main categories of contaminant-induced wear are erosive wear and

provided by a second surface in relative motion to the first. This type of wear is

1 v other papers (17, 18, 19] have provided important concepts concerning component
' contaminant sensitivity.

— .

such a manner so as to establish a relatively constant fluid contamination level. The

contaminant particles to wear susceptible surfaces in each component. The resulting

distribution. |If these two factors could be reduced to an infinitely small level, great
reductions in contaminant wear could be achieved. The “infinite”’ service life which

taminant wear is such a large factor in the service life of most hydraulic components,
significant improvement in component service life would stem from increased filtration

the study of wear reduction in fluid power components by decreasing contamination
levels. In order to effectively interpret data from these series of tests, however, the

abrasive (three-body) wear. Erosive wear is the result of free particles impinging upon
the wearing surface. Bitter [6, 7] attributes the erosive wearing action to deformation
of the material under repeated particle collisions and to a cutting action on the material
by contaminant particles. Although potentially a source of severe wear, erosion is norm-
ally overshadowed by three-body abrasive wear. Abrasive wear is similar in some respects
to erosive cutting wear, since it is also the result of particles cutting or plowing material

from a surface; however, the motive force in this case is no longer simply the particle’s
own momentum (and fluid viscous forces). In three-body wear, the cutting force is

) evident when clearances are small enough to trap contaminant particies between surfaces
with enough force to produce the cutting action. Khruschov [8, 9] established prece-
dence for abrasive wear studies when he utilized a mechanism consisting of abrasive
coated paper in relative motion to a metallic specimen under unlubricated conditions.
Other investigators [10, 11, 12, 13, 14, 15] followed his lead, but not until this decade
was significant work done in the area of wear in fluid power components. For example,
1 in 1972, noteworthy progress was made with the introduction of the Bensch and Fitch
Contaminant Sensitivity Theory for Fluid Power Pumps [16]. In the last three years,




The contaminant sensitivity theory, even though a great stride in the direction
of true contamination control, still relies on measurements of performance parameter
degradation to reflect component wear. It does not present any method to directly
measure wear in the component nor to relate performance degradation to surface wear.
This was a definite “stumbling block” in the universal application of these efforts.

The advent of Ferrography as a wear analysis technique has surmounted the problem
by providing the means to measure the amount of wear debris in a system to a greater
degree of accuracy than ever before. Other methods of wear debris analysis have been
utilized in the past, the most notable of these being spectroscopy. While the spectro-
meter has been applied to fluid power systems analysis, it has not enjoyed widespread
acceptance in this application. The Ferrograph is well suited to its task of wear

debris analysis in fluid systems, particularly in the case of contaminant accelerated wear,
and has proved to be a viable complement to spectroscopy [20].

In an actual fluid power component, abrasive wear is normally the dominant
contaminant wear mode. In the first phase of this study, as reported by Ref. [1],
the situations of two surfaces in rotational relative motion and linear relative motion
were simulated by separate mechanisms. To determine the effect of a contaminated
environment on these two types of mechanisms, particulate contaminant (AC Fine Test
Dust, ACFTD) was introduced into the fluid being circulated through the mechanisms.
The tests were arranged to evaluate the mechanisms’s wear at various concentrations and
size ranges of contaminant particles. This provided for a broad application of the results,
since contaminant concentration and particle size distribution may vary widely from
system to system dependent on its filtration and external environment. The constant
factor of the first phase of effort was the fact that all tests were conducted at a single
clearance, which is not normally the case in a “real world” component. Even with this
condition, however, the results were promising, as they indicated significant improve-
ments in component life could be possible by decreasing contaminant levels of system
fluids.

The second phase of effort has been directed toward:

1.  broadening the application of the first year’s results by repeating those
tests at a different (smaller) clearance, and

| 2.  beginning the program of component testing to provide the necessary
| correlation with the mechanism test data.
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IIl. SCOPE OF EFFORT

The report considers the second phase, which was intended to provide informa-
tion regarding the relationship of contamination level and fluid power component surviv-
ability. The overall effort (as illustrated in Fig. 1) began with a critical examination of
contaminant wear in basic mechanisms. A basic rotary motion mechanism and a basic
linear motion mechanism were evaluated. The rationale for such a beginning may be
seen from an examination of Fig. 2, which reveals the contaminant wear parameter
hierarchy. It should be noted that attempting to vary all of these parameters would
result in an extremely involved test program. The fact that each component in a system
may present many wear situations (as shown in Fig. 2) indicates the complexity of the
contaminant wear phenomenon.

BASIC MECHANISMS

777777777

Mﬂm /

FILTERS

Fig. 1. Complete Test PGM.

In Fig. 1, it may be seen that Phase | dealt exclusively with basic mechanism
studies. In that effort, three of the nine parameters of Fig. 2 were varied. They were
contaminant concentration, particle size distribution, and material. The second phase
of effort, as reported here, expands that knowledge by a change in a fourth dimension
— clearance between the two surfaces. In all other respects, the mechanism tests of the
second phase followed those of the first. Additionally, the second year extended into
contaminant wear of a system component — gear pumps. An extensive pump test pro-
gram was successfully completed with variations in two of the basic parameters —
contaminant size and contaminant concentration.

1"
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Fig. 2. Contaminant Wear Parameter Hierarchy.
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IV. DATA ANALYSIS TECHNIQUES

Of key importance in any scientific endeavor are the methods and equipment
used in data acquisition and analysis. In order for a study such as this to be success-
ful, data analysis techniques must give results in an accurate and unbiased manner.

The necessity for a high degree of confidence normally indicates reliance on more than
one method of data analysis. In other words, an engineer involved in complicated
research should not rely on a single data source for his conclusions. In this study,

two methods of data analysis have been utilized — one primary and one secondary.

In all cases (i.e., rotary mechanism tests, linear mechanism tests, and component tests),
the primary analysis technique is Ferrography. As a secondary analysis technique used
E for comparative purposes, a performance parameter change was monitored. In the case
of the linear mechanism, this parameter was leakage; in the rotary mechanism, a dimen-
sional change in the wearing surfaces; and, for the gear pumps, flow degradation. While
not used as a prime indicator, these performance parameters provided real-time trend
indications and were logical parallel parameters to the Ferrographic analysis. The
primary analysis was made on a Duplex Ferrograph Analyzer in conjunction with a
Bichromatic Microscope and Ferrogram Reader. A complete description of the Ferro-
graphic Technique, equipment, operation, and characteristics was given in Ref. [1].
However, a brief explanation of the workings of the Ferrographic System is in order.

The Duplex Ferrograph, shown in Fig. 3, produces the Ferrograms which are
to be analyzed. This is accomplished by pumping a predetermined sample volume of
system fluid across a specially treated glass substrate. The substrate rests in the field
of a powerful permanent magnet in such a manner that the magnetic field strength in-
creases along the slide. Particles present in the sample respond to several forces as the
fluid moves longitudinally down the substrate, the most important of which are magnetic,
viscous, gravitational, and mechanical (interference). For ferrous particles, the most in-
fluential of these forces is caused by the magnetic field; a large majority of those particles
are “‘captured” by the magnetic field. Particles with weaker magnetic properties exhibit
less response to the magnetic field and are, in some cases, carried completely across the
substrate into a waste bottle along with the oil itself. A ‘fixer’’ solution is passed across
the substrate, which washes it free of any remaining oil film, and the substrate (now
called a Ferrogram, as shown in Fig. 4) is labeled and stored.

The first process is only an interim step in the Ferrographic Technique. The
analysis is accomplished by means of the Bichromatic Microscope in conjunction with
the Ferrogram Reader. The system is shown schematically in Fig. 5. The densitometer
(Ferrogram Reader) measures the disturbance of a light beam by particles. The amount
of light reflected by the particles is measured and presented on the digital readout of
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Fig. 3. Schematic of Slide Ferrograph,
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Fig. 4, Tllustration of a Ferrogram.
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the Ferrogram Reader. The Ferrograph in particular is well suited to this type of
study, since it ignores extraneous particles (the AC Fine Test Dust) in measuring the
wear debris particles. It is this separation of wear debris from unwanted particles
which is the key to the Ferrograph’s value in hydraulics.

ELETRONIC | DIGITAL
CONDITIONER DENSITY
READOUT
POWER
SOURCE
|
LIGHT SOURCE

FERROGRAM

Fig. 5. Schematic of Ferrogram Reader.
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V. THE ROTARY MECHANISM

Description

The rotary mechanism is designed to simulate a wear situation exemplified by
such cases as the side of a gear and its wear plate in the case of a gear pump or a
valve block and pump body in the piston pump design. Figure 6 shows a sectional
view of the rotary mechanism in schematic form. As shown in the figure, the test
specimens function in an oil-flooded environment with the test oil entering the mechan-
ism through the stationary test specimen mounting block, traveling to a chamber formed
by the rotating specimen and recessed center of the stationary specimen, thence escaping

through the radial gap (test clearance) and on out of the mechanism. The pressure drop -
noted in the test conditions is across the gap of the test specimens. Although of a simple

and straightforward design, the rotary mechanism (due to the test clearance involved) is
an extremely precise device. To place this in proper perspective, note that the stationary
test specimen’s outer diameter is 35.56 millimetres (35,560 micrometres), and the test
clearance is only 10 micrometres. A quick check of the geometry of the device shows
an allowable angular misaliotnment (between the longitudinal axis of the two test Speci-
mens) of only 5.6 x 10'* radians (A, .03 degrees) before physical contact. With this in
mind, the mechanism was designed to allow as little “play” in each component as poss-
ible. The ball bearings were widely spaced and a preload nut incorporated into the
mechanism to reduce any misalignment. The stationary side of the mechanism consists
of a 63.5 millimetre diameter spool, 101.6 millimetres long with a nominal clearance of
12.7 micrometres. This restricts the maximum misalignment to 1.25 x 10 radians

(A; .007 degrees). In order to provide as exact an alignment as possible, the two halves
of the mechanism casing were provided with alignment and locking screws around the
mating flanges.

\ - STATIONMARY TEST SPECEMAN

/]

-—oLw

A i\ -\ | l,, W §\\\\\_\\\\\\\\\\\\\\\\\\~

\ - Oon SEAL
4 moLLER BEARMIGS

N STATIONARY SPECMMAN
HWOUNTING BLOCK
Fig. 6. Schematic of Rotary Mechanism.
The importance of the mechanism alignment may be seen in an examination of

the theoretical equations of flow through the test clearance. Figure 7 depicts the situa-
tion of flow through a rectangular gap of width, w; length, I; and height, h.
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Pressure-induced fluid flow through a rectangular gap is modeled by Ref. [2]

Q — k AP w h3
’ M
where: Q = volume flow due to pressure differential

k1 =  constant for rectangular gap
w = gap width
h = gap height
| =  gap length
AP = pressure differential across length
u# = fluid dynamic viscosity

&

5

o o
e

]
il

L

Fig. 7. Fluid Flow Through a Rectangular Passage.

A gap of height, h, differential length, dl, width, dw, and pressure drop, dp, and differ-

ential flow, dQ, may be modeled as:

da di = k4P dwh?
z H

In the case of the rotary mechanism,

h = h
dP = dP
di = dr
dw = rd¢
where: r = radius of flow passage
¢ = angle from reference
k, h® dP rd
So: da dr = 1 oy
M
17
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1 k, h?
or: - dQ dr = LA ——0" dP d¢ (8)

I

Integrating Eq. (8) with suitable boundary conditions and solving for volume flow, Q,
gives:

P 3
g e @)
uIn (R/R))

where: k = constant for radial passage
= outer diameter of radial flow passage
= inner diameter of radial flow passage

D D

Equation (9) is valid only for perfect alignment between the two wear surfaces in the
rotary mechanism. Figure 8 shows a potential situation of a misaligned mechanism.

fuad

|

ROTATING WEAR SPECIMAN

Fig. 8. lllustration of Misalignment in the Rotary Mechanism.

The gap, h, is now expressed as:

>
n

h, + R, sind sing fo< ¢ < n} (10)

h, + R sind sing {r < ¢ <2nf (1)

h =
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where: h, = gap at center line

h, = gap on “high” side

h2 = gap on low side

0 misalignment angle

¢ = angle in plane of gap from ¢ = 0 @ h, =h,

Inserting Eqs. (10) and (11) into the differential form of Eq. (9) and integrating
gives:
AP
Q, = & fh?+k R® @ ] (12)
u# In (R/Ro)

where: k,, k, = constants for radial gap with misalignment

Equation (12) points out that flow is a strong function of the misalignment angle.
Under the physical parameters of this mechanism, the flow increases (as the misalignment
goes from 6§ =0 to 6 =60 __ ) by 120%! Test personnel took advantage of this sensitivity
to precisely align each specimen prior to testing by observing flow response to 6 changes
in all directions.

Although an interesting derivation, Eq. (12) represents only the stationary case.
When the plates are in relative motion, the rotating plate acts as a centrifugal pump to
alter the flow. Figure 9 shows the stresses on the fluid during mechanism rotation.

These stresses are:

7, =  viscous shear in r direction

B - viscous shear in w direction

e = acceleration in r direction

w = relative rotary velocity of plates

In Ref. [22], the resulting radial velocity of the fluid is given as:

V, = rw £(5) (13)
where: V' = radial fluid velocity
r =  distance from axis of rotation
f(8) = dimensionless radial velocity distribution as a function of Z
5§ = Z (wh)
v =  Kkinetic viscosity
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Fig. 9. Stresses on Fluid Between Plates in Relative Rotation.

The flow therefore is:

2r  h

Q. - / [ v, dz r do (14)
o
or L R f(R2, w, h) (15)
where: Clc =  flow due to centrifugal pumping

x
»
|

constant for centrifugal flow
The total flow is the sum of the pressure flow, Q, and centrifugal flow, Q_:

g = @ +a (16)

t

where: 0' =  total flow

or: 0t = f(p, R, R, 0, u, AP, h, w) (17)

Equation (17) illustrates the important parameters of these tests. The reader will
note that all of the above parameters were held constant throughout.




Test Procedure

Tests of the rotary mechanism consisted of a five step sequence of events:
fabricate, assemble, align, break-in, and test. Fabrication entailed lapping both the
rotating disk and wear specimen until local variations in height of the wearing sur-
faces were minimized. After a careful cleaning of the lapping compound “om the
pieces, they were installed in the rotary mechanism. Alignment was a tw. fold
process, first the rotating disk and then the stationary specimen. Alignment of the
disk was with the reference to the center line of rotation, and adjustment was norm-
ally not necessary. The stationary wear specimen was fastened to its mounting block,
which was then installed in the housing, as shown in Fig. 6. Alignment of the wear
specimen was accomplished by means of the three adjustment screws located 120°
around the mating flanges of the two housing halves.

The break-in procedure for each new specimen was as follows:

1. Circulate filtered oil through mechanism without rotating until test
temperature is reached.

2. Adjust clearance and bypass valve for 50 psid and .04 I/min. flow.
3.  Run mechanism for 15 minutes. Sample at end of period.

4.  Adjust clearance and bypass valve to increase pressure by 50 psid,
keeping flow at .04 l/min.

S.  Repeat 3 and 4 until 400 psid is reached.

6. At 400 psid, run for one hour, sampling every 15 minutes.

This procedure circulated filtered oil through the rotating mechanism for 2 3/4
hours at clearances ranging from 20 down to 10 micrometres (the test clearance). This
procedure was carried out for each new wear specimen utilized in the tests.

The test procedure itself was designed to allow measurement of the effect of
varying contaminant sizes and concentrations on the wear rate of the test specimen.
These were the only two parameters varied throughout the individual tests. Table |
shows other important test parameters which were held constant. These constant para-
meter values are identical to those of mechanism tests in the first phase of this effort
with the exception of h — the test clearance. The test procedure for the rotary mech-
anism was as follows:

Break-in specimen.

Establish test conditions per Table I.
Switch filters out of system.

Extract background sample.

e
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S.  Inject 0-5 uM ACFTD at a concentration of 5 mg/l.

6. Run for 14 minutes, maintaining test conditions,and sample at 2, 4, 8,
and 14 minutes.

7.  Filter system for 30 minutes.
8.  Repeat 3 through 7 for concentrations of 10, 20, 40, and 80 mg/l.

9.  Repeat 1 through 8 for contaminant sizes of 0-30 and 0-80 uM using new
wear specimen.

10.  Repeat 1 through 9 for each wear specimen material.

TABLE 1. Summary of Test Parameter Held Constant During Rotary Mechanism Tests.

Constant Test Parameters
Symbol Description Value
Op Pressure Drop 27.6 bars
w Rotating Velocity 1550 rpm
T Fluid Temperature 38°C
h Test Clearance 10 um
Q Flow Through Mechanism .04 ¢/min

Table Il delineates the various contamination/material combinations which were
subjected to this procedure. Note that a new wear specimen was used with each con-
taminant size range. The contaminant sizes were selected in order to provide (with
respect to the clearance) one size smaller, one size somewhat larger, and one size larger.

Test Results

The effect of the various contaminant sizes and concentrations utilized in this
series of tests is presented in the form of graphs plotting these two factors against Ferro-
graphic densities. The Ferrographic data are the optical density at the 43 millimetre
location (recall this is termed D54) divided by the volume of oil utilized in making the
Ferrogram. This normalization allows Ferrograms which differ greatly in their amount
of debris to be compared on a common basis. The Ferrographic densities reflect the
amount of metallic debris contained in the Ferrogram sample. Metal in the sample is a
result of wear occurring in the mechanism. Therefore, the density readings are a direct
indicator of wear. The oil samples used for Ferrographic analysis contained wear debris
accumulated in the system fluid over the time span beginning with the contaminant




TABLE ll. Summary of Rotary Mechanism Tests.

szt.:cr:::::‘ Material S‘i:z:n;aa'::;:a(ztm) Concs::rtaat'inoi:: r('l'tng/ L)
A1 Alum. 0-5 5, 10, 20, 40, 80
A-2 Alum. 0-30 5, 10, 20, 40, 80
A-3 Alum. 0-80 5, 10, 20, 40, 80
B-1 Brass 0-5 5, 10, 20, 40, 80
B-2 Brass 0-30 5, 10, 20, 40, 80
B-3 Brass 0-80 5, 10, 20, 40, 80

injection and ending at that particular sample time. Consequently, a plot of D54/ml
versus time should be a curve with a slope indicative of wear rate. During the initial
minutes of an injection, wear sample densities plot as a straight line. After a short
period of time, however, the wear rate rapidly slows and approaches zero. This is
probably the result of contaminant destruction. In these rotary mechanism tests,
continual adjustment maintains a constant clearance, and careful design prevents con-
taminants from settling or being filtered out during tests. The decrease in wear rate

is exemplified by Fig. 10, which shows typical Ferrographic density in terms of D54/
ml readings plotted against time from the rotary mechanism tests. Since the accumu-
lation of wear stabilizes after some initial period, any sample taken in the latter portion
of the injection should be representative of the wear which has occurred. In order

to insure that the samples are representative, the last (14 minute) sample was chosen for
use in this study.

In Fig. 11, the Ferrographic density readings are plotted against the contaminant
concentration (in milligrams/litre) for the rotary test mechanism with the brass/steel wear
specimen installed. Three traces are shown for the 0-5, 0-30, and 0-80 micrometre con-
taminant sizes. The same information is given in Fig. 12 for the rotary mechanism using
aluminum/steel wear specimens. It may be seen that the two figures are almost identical
although the aluminum/steel data indicated more wear at the larger particle size range.

It is also apparent that the wear occurring in these tests is a function of contaminant
size and contarninant concentration. In both figures, the concentration seems to have a
greater effect on the wear process than does contaminant size. Note that, when the
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FERROGRAPHIC DENSITY (D54/%)
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Fig. 12. Test Results, Rotary Mechanism with Aluminum-Steel Specimen.
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concentration doubles, the density readings in each case essentially double. (The
implication of greatly reduced rates of wear with reducing contamination levels is
particularly significant in this project, since a primary objective is increased component
life through reduced contamination levels.) The influence of particle size range can
also be observed in these figures. Here, the wear rate is shown to be a direct function
of contaminant size (that is, wear increases as size increases), but the relationship is
not 1:1. That is, the wear rate observed during the 0-80 micrometre injection is not
16 times greater than the wear rate of the 0-5 micrometre contaminant. Similarly,
the 0-30 micrometre curve’s relationship to those of the other two does not reflect
the ratio of the sizes.

Although it is, many times, difficult to garner useful information from a photo-
graph, the appearance of the wearing surface is of sufficient intersst to be presented
here. In Fig. 13, the three photos show the surfaces of the brass specimen after each
had been exposed to all contaminant concentrations used in the rotary tests. The first
(left-hand) picture is of the brass surface after exposure to 0-5 micrometre test dust.
The magnification in all cases is 50X. In this first photo, the orientation is such that
the center of rotation of the specimen is directly below the photo, with the direction
rotation of the specimen being from right to left. The picture shows how the test
contaminant traveled outward in a tight spiraling path, gouging out material as it went.
The remaining two photos depict much the same information in addition to showing
the difference in “surface finish” resulting from the 0-30 and 0-80 micrometre contam-
inant sizes. '

Figures 14, 15, 16, 17, and 18 were made at the 54 millimetre location on the

Ferrograms prepared from the 14-minute sample. These are the same Ferrograms which
provided the data for the preceding graphs. In each figure, the concentration remains
the same for all three photos, but the contaminant size will vary, the left-hand photo
being of debris from a 0-5 micrometre contaminant injection sample, the center a 0-30
micrometre injection sample, and the right-hand a 0-80 micrometre injection sample.
Magnification in each case is 100X. The photographs taken across the page depict the
effects of increasing contaminant size, following in another direction; that is, from figure
to figure, each photo (of debris from 0-5 micrometre contaminant injection) illustrates
the effects on increasing contaminant concentration. Note that varying amounts of
sample oil were used to prepare these Ferrograms; and, to attempt to compare the
amount of material on one picture to another without taking this factor into account
could lead to an incorrect conclusion. With this in mind, no comments regarding the
absolute amount of material present will be made. In Fig. 14, it is apparent that the
sample was drawn from the tests utilizing a brass wear specimen. A number of brassy
colored particles can be seen to be larger and not as ordered as the ferrous material.
As a general guide, it can be assumed that all dark particles which have collected in the
vertical strands are ferrous wear debris. Figure 15 provides much the same information
as Fig. 14. Figures 16, 17, and 18 serve to further illustrate typical Ferrogram appear-
ance. The next set of photographs which comprise Figs. 19-23 repeat Figs. 14-18, how-
ever, at a higher magnification of 1000X (rather than 100X). This is sufficient to




@) (b) (©)

After Exposure to 0-5 uM After Exposure to 0-30 uM After Exposure to 0-80 uM
Particle Size Range Particle Size Range Particle Size Range

Fig. 13. Brass Test Specimen from Rotary Mechanism After Indicated Exposure (Magnification = 50X).
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After Exposure to 0-5§ uM After Exposure to 0-30 uM After Exposure to 0-80 uM
Particle Size Range (Volume = 12 ml) Particle Size Range (Volume = 12 ml) Particle Size Range (Volume = 12 ml)

Fig. 15. Ferrograms of Wear Debris (54 mm) from Brass on Steel Rotary Mechanism after Exposure to 10 mg/litre of Contaminant
(Magnification = 100X).
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(a)

After Exposure to 0-5 uM After Exposure to 0-30 LM
Particle Size Range (Volume
=6 ml)

Particle Size Range (Volume =
6 ml)

(Magnification

= 100X).

(c)

After Exposure to 0-80 uM

Particle Size Range (Volume =
3 ml)

Fig. 17. Ferrograms of Wear Debris (54 mm) from Brass on Steel Rotary Mechanism after Exposure to 40 mg/litre of Contaminant
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After Exposure to 0-30 M After Exposure to 0-80 uM

After Exposure to 0-5 uM

Particle Size Range (Volume

3 ml)

Particle Size Range (Volume =

3 ml)

Particle Size Range (Volume =

3 ml)

Fig. 18. Ferrograms of Wear Debris (54 mm) from Brass on Steel Rotary Mechanism after Exposure to 80 mg/litre of Contaminant
(Magnification = 100X).




(a) (b)

After Exposure to 0-5 uM
Particle Size Range (Volume =
12 ml)

After Exposure to 0-30 uM
Particle Size Range (Volume =
12 ml)

After Exposure to 0-80 uM
Particle Size Range (Volume =
12 ml)

Fig. 19. Ferrograms of Wear Debris (54 mm) from Brass on Steel Rotary Mechanism after Exposure to 5 mg/litre of Contaminant

(Magnification = 1000X).
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(a) (b) (c)
After Exposure to 0-5 M After Exposure to 0-30 uM After Exposure to 0-80 uM
Particle Size Range (Volume = Particle Size Range (Volume = Particle Size Range (Volume =
12 ml) 6 ml) 6 ml)

Ferrograms of Wear Debris (54 mm) from Brass on Steel Rotary Mechanism after Exposure to 20 mg/litre of Contaminant
(Magnification = 1000X).

Fig. 2I.
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(a) (b) (c)
After Exposure to 0-5 uM After Exposure to 0-30 uM After Exposure to 0-80 uM
Particle Size Range (Volume = Particle Size Range (Volume = Particle Size Range (Volume =
3 ml) 3 ml 3 ml)

Fig. 23. Ferrograms of Wear Debris (54 mm) from Brass on Steel Rotary Mechanism after Exposure to 80 mg/litre of Contaminant
(Magnification = 1000X).




distinguish individual particles in most cases, and even the casual observer may note

the lathe chip-like wear particles, normally termed cutting wear. This three-body wear
mode would be expected to occur only when the contaminant included particles much
larger than the test clearance. Therefore, the absence of cutting wear in the 0-5 micro-
metre photographs, the few cutting wear particles in the 0-30 micrometre injection
photographs, and the many cutting wear particles in the 0-80 micrometre pictures should
come as no surprise. In addition, the field of view in each photograph is approximately
50 x 75 micrometres. Therefore, while every attempt was made to provide photos of
particles which were representative of the region, there is naturally some variation.

Figure 24, Figs. 25-29, and Figs. 30-34 depict the surface of the three rotary
mechanism aluminum samples — 100X magnifications of the 54 millimetre location of
each 14-minute sample Ferrogram and 1000X magnifications of the same 54 millimetre
locations, respectively. Since the information is much the same as the preceding group
of figures, accompanying remarks will be brief. In Fig. 24, the direction of rotation is
again right to left; however, in this case, particularly in the photograph of the 0-5
micrometre contaminant debris, scoring in a direction other than parallel to the motion
is evident. Figures 25-29 appear much the same as the 100X photographs from the
rotary brass/steel test. Conspicuously absent, however, is any evident aluminum debris
(which should show as large bright particles). This could be due to the differing mag-
netic properties of brass and aluminum or from differences in the wear occurring on the
(brass or aluminum) specimen itself. The high magnification (1000X) photographs of
Figs. 30-34 again allow observation of the individual wear debris particles; and, again,
cutting wear particles may be noted in many of the photos of debris from 0-30 and
0-80 micrometre contaminant injections.

39




(@) (b) (c)
After Exposure to 0-5 uM After Exposure to 0-30 uM After Exposure to 0-80 uM
Particle Size Range Particle Size Range Particle Size Range

Fig 24. Aluminum Specimen After Indicated Contaminant Exposure (Magnification = 50X).
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i

.

After Exposure to 0-5 uM After Exposure to 0-30 uM After Exposure to 0-80 uM
Particle Size Range (Volume = Particle Size Range (Volume = Particle Size Range (Volume =
12 ml) 12 ml) 12 ml)

Fig. 26. Ferrograms of Wear Debris (54 mm) from Aluminum on Steel Rotary Mechanism After Exposure to 10 mg/litre of Contaminant
(Magnification = 100X).
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@) (b) (c)
After Exposure to 0-5 uM After Exposure to 0-30 uM After Exposure to 0-80 uM
Particle Size Range (Volume = Particle Size Range (Volume = Particle Size Range (Volume =
6 ml) 6 ml) 6 ml)

Fig. 28. Ferrograms of Wear Debris (54 mm) from Aluminum on Steel Rotary Mechanism After Exposure to 40 mg/litre of
Contaminant (Magnification = 100X).
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(a) (b)

After Exposure to 0-5 uM After Exposure to 0-30 uM
Particle Size Range (Volume = Particle Size Range (Volume =
12 ml) 12 ml)

(c)

After Exposure to 0-80 uM
Particle Size Range (Volume =
12 ml)

Fig. 30. Ferrograms of Wear Debris (54 mm) from Aluminum on Steel Rotary Mechanism After Exposure to 5§ mg/litre of

Contaminant (Magnification = 1000X).
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(a)

After Exposure to 0-5 uM
Particle Size Range (Volume =
12 ml)

Fig. 32. Ferrograms of Wear Debris (54 mm) from Aluminum on Steel Rotary Mechanism After Exposure to 20 mg/litre of

Contaminant (Magnification

1000X).

(b)

After Exposure to 0-30 uM
Particle Size Range (Volume @
12 ml)

After Exposure to 0-80 M
Particle Size Range (Volume =
12 ml)




(X000] = UONEIYIUSE) JUBURLEIUO)
Jo ani/3w gp 03 amsodxg IAJy WSIUEYIIW AIEJ0Y [93)§ U0 WNUIWN]Y WOl (Ww p¢) SUqa] Jedp Jo sweBoudy “¢f 314

Mk

(w9 (w9 (u 9
= ANjoA) dury 71 JdIey = AUNjop) Ruey IZIS ARy = ANjoA) dFury A2ZIg IydTURY
Wr 08-0 0) amsodxqy 131y Wrl gg-c 03 amsodxy 13y Wi 5-0 0} amsodxg 1)y

) (q) (e)




50

(@) (b) (c)
After Exposure to 0-5 uM After Exposure to 0-30 uM After Exposure to 0-80 uM
Particle Size Range (Volume = Particle Size Range (Volume = Particle Size Range (Volume =
3 ml 3 ml) 3 ml)

Fig. 34. Ferrograms of Wear Debris (54 mm) from Aluminum on Steel Rotary Mechanism After Exposure to 80 mg/litre
of Contaminant (Magnification = 1000X).




VI. LINEAR MECHANISM

|
|
|
|
|

Description

The linear mechanism was designed to simulate relative motion as found in a
piston/bore combination of a piston pump or a spool valve. In general dimensions, it
is modeled after a spool valve having a bore and stroke dimensionally typical of such
a mechanism. Figure 35 depicts the linear mechanism without the drive mechanism. .-
As shown, contaminated fluid enters the central chamber at test pressure. Note that ' ‘
flow forces on the spool are balanced by a second entry port 180° from the first.
Two outlet ports are placed 90° from the inlets. Upon entering the mechanism, the
fluid divides into a flow stream through the outlets and a leakage flow between the
spool and bore. Leakage flow is plumbed back to the main return line at a point ; B |
downstream of the pressure drop valve located on the main return line just past the
mechanism outlet. The leakage lines are valves in order that their combined flow may
be diverted to a sample tube. The test specimens themselves consist of three sets of
one spool of 1020 mild steel and two matched bores of cast iron. Bore diameters are
nominally 12.70 millimetres, and spool ends are lapped to individual bore diameters minus
10 micrometres. Each matched set of three pieces was utilized for one particle size range
of test dust at various, increasing concentrations.

LINEAR MECHANISM

Fig. 35. Schematic of Linear Mechanism.

Leakage flow between spool and bores was monitored when sampling as a
trend indicator. Theoretically, the flow may be expressed (from Ref. [22]) as:

= r BRB® AP g4, 2 18
Q kg — [ 5 (e/Md)?] (18)
where: Q volumetric flow
R = spool radius
b = radial clearance
AP = pressure differential
‘ 4 = dynamic viscosity
i L = passage length

eccentricity between spool and bore :
constant for annular passage »

x M
]
[}
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During the actual test, the linear mechanism is in motion. Equation (18}, however,
holds only for the static case; so, a motion-induced flow must also be considered.
The velocity profile of a motion-induced flow between two flat plates may be ex-
pressed (from Ref. [22]) as:

u = v (1/2 + (2z/b)) (19)

where: u = fluid velocity
z = distance from center of gap in radial direction
v = relative velocity of plates

In the case of the rotary mechanism with eccentricity of spool and bore center,
the gap height becomes:

h, = (b-e) + 2 (20)
where: h_ = gap height at any angle ¢
¢ = angle from minimum gap (0 < ¢ < =)
Total motion-induced flow may be found by integrating velocity over gap height and
: width:
: Qv = udA
Q, = kg mRbv (21)
: where: k, =  constant for annular passage.

The velocity, V, imparted by the scotch yoke mechanism is:

V =5 ah (22)
where: r, =. yoke radius
w = drive shaft angular velocity
@ = angle from vertical of yoke

The flows in such a small clearance may be assumed laminar; therefore, using super-

: = k Db 1+15 2 ——
. t , 7 {_.L_u [ 1.5 (e/b) ] b? } (23)
where: Q' =  total volumetric flow
k., = constant for annular passage

7

The final equation depicts a pulsating flow due to the oscillation of the piston. The
flow equations for both the linear and rotary mechanisms illustrate the complexity of
the contaminant wear/component performance inter-relationship. Note that, in both
cases, the flow is a cubic function of the clearance. This implies that there should be
large changes in leakage flow for small changes in dimensions (i.e., low wear). The
potential for disastrous contaminant wear situations is evident, |

e e
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Test Procedure

As in the case of the rotary mechanism, the linear mechanism underwent a
break-in period. The procedure not only served to break-in the mechanism but also
to check the drive mechanism for alignment and proper operation. The break-in pro-
cedure was as follows:

1. Install oil-wetted specimen set (spool and bores) in mechanism.

2.  Connect drive mechanism and check for proper alignment.

Operate stand until proper oil temperature is achieved, set proper flow
through mechanism (mechanism not reciprocating), and set pressure to 25%
of test pressure. '

4.  Activate mechanism and operate for 15 minutes.

S.  Increase pressure by 25% of test pressure and operate for 15 minutes.
6. Repeat 5 until test pressure is achieved.

7.  Operate at full test pressure for one hour.

At the end of this one hour and 45 minute period, the linear mechanism’s test
parameters were established. The parameters held constant are listed in Table Ill. Note
that a comparison of Tables | and |ll illustrates an important difference between the
rotary and linear mechanism tests; that is, the constant test clearance of the rotary mech-
anism versus the varying clearance of the linear mechanism tests. As described by the
equations depicting the theoretical flow through the annular clearance of the linear
mechanism over a long time interval, the pulsating effect (from the reciprocating motion)
integrates to zero, leaving the leakage flow a function only of the cube of the clearance.
Therefore, the leakage flow rate provided a secondary indication of the wear (i.e., clear-
ance change) in the mechanism. The test procedure was as follows:

1.  Install specimens and conduct break-in.

2.  Establish test flow, pressure, and temperature with filters in system and
activate mechanism.

3.  Remove filters from flow loop.
4.  Inject 5 milligrams/litre of 0-5 micrometre ACFTD.

S.  Grculate oil with contaminant for 14 minutes, taking samples at 2, 4, 8,
and 14 minutes.

6.  Filter circulating oil for 30 minutes.
7. Repeat Steps 3-6 for concentrations of 10, 20, 40, and 80 milligrams per litre.
8.  Repeat Steps 1 through 7 for 0-30 and 0-80 micrometre contaminants.
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TABLE II. Summary of Test Parameters Held Constant During Linear Mechanism Tests.

i Actoss Test Clearance g i

w Cycle Rats of Mechanism el
T Fluid Temperature 120°F

& Total Fluid Flow Rate e

Through Mechanism

This procedure produced a set of tests as delineated in Table IV.

TABLE IV. Summary of Linear Mechanism Tests.

Contaminant Contaminant
Specimen Size Concentration
Number Material (micrometres) (milligrams/litre)
1c Cast Iron 05 5, 10, 20, 40, 80
2C Cast lron 0-5 5, 10, 20, 40, 80
3C Cast Iron 0-80 5, 10, 20, 40, 80

Following the rotary mechanism example, each individual specimen set was subjected
to increasing concentrations of one contaminant size range. Since the diameters of the
test specimen bore and spool differed by 10 micrometres, the nominal clearance was 5
micrometres. Therefore, the 0-5, 0-30, and 0-80 micrometre contamination represented
contaminant that was the same size, larger than, and much larger than the clearance,

respectively.

Test Results

The amount of metallic debris, as measured by Ferrographic densities, was used
as the prime indicator of wear in the linear mechanism. In the same manner as reported




for the rotary mechanism, Fig. 36 plots the normalized Ferrographic densities, D54
per millilitre, against contaminant concentration in milligrams per litre. The linear
mechanism test results also follow the rotary’s in that the least amount of wear is
produced by the 0-5 micrometre cut, more by the 0-30 micrometre contaminant, and
the greatest by the largest dust size, 0-80 micrometres. Again, the curves converge
rather rapidly in the low contamination concentrations, implying that particle size
distribution is less of a factor in low contaminant concentrations.

The effect of the contaminant on each of the specimens may be seen in Fig.
37, which is a set of photographs of each spool used. Note the similarity to Figs. 13
and 14, in that the least amount of damage was done by the 0-56 micrometre contamin-
ant, much more severe scoring is evident in the photo of the 0-30 micrometre sample,
and exposure to 0-80 micrometre dust results in an extremely rough surface. This last
fact is dramatized by the darkness of the 0-80 photograph, even though the exposure
time was identical to the 0-5 and 0-30 pictures. Figures 38-42 as a set depict the 54
millimetre location on each 14-minute sample (used in all data). Again, the reader
should be cautioned not to attempt conclusions based on the relative amounts of
debris appearing due to disparities in sample volumes. A closer look at the debris in
the high magnification microphotographs of Figs. 43-47 rewals much more detail.
Immediately evident are the larger wear particles of the 0 &) micrometre tests and the
greater incidence of cutting wear in the 0-30 and 0-80 micrometre samples. These
cutting wear particles are indicative of ‘“large’’ contaminant particles and “small”’ wear-
ing clearances. Other differences in the amount of wear debris produced by the linear
versus rotary mechanism become apparent only when the results of last year’s tests at
a larger clearance are integrated into these data. 3
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Fig. 36. Test Results — Linear Mechanism — Cast Lron/Steel Specimen.
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(c)

(b)

()

After Exposure to 0-80 uM

Particle Size Range

After Exposure to 0-30 uM
Particle Size Range

After Exposure to 0-5 uM
Particle Size Range

50X).

Fig. 37. Surface of Steel Linear Mechanism Spool After Contaminant Exposure (Magnification
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@)
After Exposure to 0-5 uM After Exposure to 0-30 uM After Exposure to 0-80 uM
Particle Size Range (Volume = Particle Size Range (Volume = Particle Size Range (Volume =
12 ml) 12 ml) 6 mi)

Fig. 38. Ferrograms of Wear Debris (54 mm) from Linear Mechanism After Exposure to 5 mg/litre of Contaminant
(Magnification = 100X).



Particle Size Range (Vulume =

12 ml)

After Exposure to 0-80 M

Particle Size Range (Volume

12 ml)

After Exposure to 0-30 uM

After Exposure to 0-5 uM
Particle Size Range (Volume =

12 ml)

Fig 39. Ferrograms of Wear Debris (54 mm) from Linear Mechanism After Exposure to 10 mg/litre of Contaminant

(Magnification = 100X).




@) (b) (©)
After Exposure to 0-5 uM After Exposure to 0-30 uM After Exposure to 0-80 uM
Particle Size Range (Volume = Particle Size Range (Volume = Particle Size Range (Volume =
12 ml) 6 ml) 12 ml)

Fig. 40. Ferrograms of Wear Debris (54 mm) from Linear Mechanism After Exposure to 50 mg/litre of Contaminant
(Magnification = 100X).
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(a)

After Exposure to 0-5 uM
Particle Size Range (Volume =
12 ml)

After Exposure to 0-
Particle Size Range (Volume

(c)

After Exposure to 0-80 uM
Particle Size Range (Volume =
12 ml)

Fig 44. Ferrograms of Wear Debris (54 mm) from Linear Mechanism After Exposure to 10 mg/litre of Contaminant

(Magnification = 1000X).
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(a) (b) (c)
After Exposure to 0-5 uM After Exposure to 0-30 M After Exposure to 0-80 uM
Particle Size Range (Volume = Particle Size Range (Volume = Particle Size Range (Volume =
6 ml) 6 ml) 6 ml)

o

Fig. 46. Ferrograms of Wear Debris (54 mm) from Linear Mechanism After Exposure to 40 mg/litre of Contaminant
(Magnification = 1000X).
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VIl. DISCUSSION OF OVERALL MECHANISM RESULTS

The rotary mechanism tests were conducted with a clearance held constant
throughout the test duration. This reflects a situation often realized in actual com-
ponents of a wear-compensating design. The data, however, do not represent what is
occurring when the wearing clearance undergoes a dimensional change due to that wear.

/CMSTANT CONTAMINAYION LEVEL

CONTAMINANT WEAR RATE

WEARING CLEARANCE

Fig. 48. Theoretical Contaminant Wear Rate versus Wearing Clearance for Constant Contamination
Level.

Figure 48 depicts the theoretical wear rate with respect to clearance for a constant
contamination level. Note that, as the clearance decreases from some large value, the
rate of contaminant wear increases. A simplified explanation of this situation might

be that each contaminant particle takes a larger and larger “bite’” out of the wearing
surface until, at zero clearance, each particle is achieving its maximum damage potential.
At the other end of the scale, the clearance would be so great that all contaminant
particles would pass unimpeded. In this case, abrasive wear would drop to a zero level,
leaving only the erosive wear mode. Note that this curve is based on the assumption
that all contaminant particles are forced through the test clearance, regardless of their
size. In the Fluid Power Research Center’s rotary mechanism, this was indeed the case,
since the flow divider was designed to split the oil flow into two streams representative
of the system contamination level. Therefore, the curve of Fig. 48 should be a good
indicator of the test data curves. The test results do bear out this concept, as shown
by Figs. 49 and 50, depicting the wear rate versus test clearance at constant contamin-
ation concentrations for the brass/steel and aluminum/steel specimens, respectively.

The reader will note that both figures present the same message of increasing wear

rate with decreasing clearance. The non-dimensional factor of h/D, where h is the

test clearance and D is the largest dimension in a contaminant size range, allows the
data from the 0-5, 0-30, and 0-80 micrometre contaminant tests to be plotted on the
same figure in the form of a constant contamination concentration trace. There is some
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FERROGRAPHIC DENSITY (D54/mf)

ROTARY MECHANISM ALUMINUM SAMPLE

L -

v || |

-0 | 2 3

RATIO OF TEST CLEARANCE TO UPPER SIZE LIMIT OF PARTICLE SIZE RANGE ~h/D

Fig. 50. Wear Rate vs. Varying Test Clearance at Constant Contamination Concentrations (Aluminum/Steel Rotary Mechanism Tests).
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data scatter evident in the (h/D) < region (small clearance — large contaminant size);
however, control of such small size differences is difficult, which would enhance the
possibility of data scatter.

The linear mechanism tests represent a somewhat different situation, in that the
flow divider was the mechanism itself. Therefore, an alternate path for the contaminant
particles was available. In this case, the clearance could have a tendency to aliow pass-
age of “‘small” particles and reject larger particles.

This “‘selective filtering”’ of contaminant would occur only if the clearance was
smaller than the maximum particle size. Therefore, the theoretical wear rate versus
clearance graph, Fig. 51, traces the same (shaped) curve as was presented in Fig. 48
(wear rate versus clearance for a constant contamination level) in the region where clear-
ance is sufficiently greater than particle size such that no filtering occurs. Below the
critical clearance, h*, the contamination level decreases as some of the contaminant is
removed, resulting in a decreasing rate of wear with decreasing clearance. The results
of testing on the linear mechanism as shown in Fig. 52 essentially confirm the concept
shown in Fig. 51. This depicts the results of the 20, 40, and 80 milligrams per litre
contaminant concentration tests on the linear mechanism with its cast iron/steel wear
sample. Each curve of Fig. 52 in the region of (h/D) > 1 traces much the same path
as those of the rotary mechanisms (Figs. 49 and 50). This indicates the contaminant
concentration is within the wearing clearance and is representative of the system contam-
ination level. However, below (h/D) = 1 in Fig. 52, the curves drop off and the slope
reverses, indicating a changing contamination level in the wearing clearance.

Results from these first two series of mechanism tests are extremely encouraging.
The Ferrograph has given excellent confirmation of the theories concerning contaminant
size, concentration, wear clearance, and wear rate relationships. This is a major step
toward the goal of predicting wear rates as contamination levels decrease. Further work
using actual hydraulic components will derive great benefit from this effort.
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VIili. COMPONENT TESTS

Description

One of the most widely used pump designs in today’s fluid power systems is
that of the hydraulic gear pump. Therefore, the positive displacement gear pump was
selected for analysis in this program. The effects of contaminant wear within these
gear pumps are primarily centered around the change of flow through internal critical
leakage paths which exist. As particulate contaminant flows through these passages,
surface material is removed, allowing leakage flow to increase and, correspondingly,
pump output flow to degrade. Since it is practically impossible to measure the di-
mensional changes to these internal clearances, a relationship between the amount of
wear debris (measured Ferrographically) generated and flow degradation is therefore
necessary.

Previous studies have shown that there are three major leakage paths inherent
to hydraulic gear pumps [23, 24, 25, 26]. Thus investigation into the contaminant
wear within these passages should provide an insight to increased pump flow degrad-
ation. Figure 53 shows the schematic cross-section of a gear pump, with Ql, Q,, and
Q, defining the leakage flow through these three paths. The first leakage path can be
described by the passage between the side of the gears and the surface of the wear
plate. In this path, however, it is highly unlikely that significant dimensional changes
will occur to the length and width (changes in root diameter and shaft diameter). Thus,
any wear which occurs will result in changes in the clearance between the wear plate
and the side of the gears. The wear debris generated here can now be considered a
direct function of the clearance change in this path.

A similar result is obtained for the second leakage path, in which leakage flow
Q, is observed. Here, the width and length of this path are dependent upon the
distance between the gear shafts and the gear teeth meshing area, respectively, and
should not appreciably change with the presence of particulate contaminant. Therefore,
wear material removed within this passage can also be directly related to the resulting

clearance change of this path.

The third leakage path can be described by the clearance between the gear teeth
and the internal wall of the gear pump, through which leakage flow 03 passes. The
length and width can be described simply by the area of the gear tooth tip, with the
clearance denoted by the dimensional difference between the gear tooth tip and the
internal housing surface. Again, measurable wear debris generated in this path can only
conceivably come from changes in the path clearance. Thus, accounting for all three
leakage passages, the amount of wear debris which is generated should be directly
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Fig. 53. Schematic Cross-Section of a Gear Pump.
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proportional to the clearance change of each passage. If the total clearance for all
three paths was described by an equivalent pump clearance h, then any net change
in this total clearance could be described by Ah, or the change in the equivalent
clearance. It is then possible to describe the volume of wear debris generated during
a contaminant exposure by the following:

V = WLAh (24)
where: V = volume of wear debris generated
W = width of leakage path
L = length of leakage path
Ah = change in equivalent clearance of the pump

Unlike the rotary wear mechanism tests, it is impossible to measure or even
control the amount of clearance in the leakage paths within the pumps. Therefore,
the flow degradation resulting from each contaminant injection was recorded for corre-
lation to corresponding Ferrographic density readings. Although not disassembled,
experience suggests that the composition of the wearing parts within most gear pumps
consists of steel, aluminum, and bronze or brass. However, the majority of wear will
resuit on the gear and wear plate interface or wear of the steel and bronze or brass
materials.

Test Procedure

Essentially, the test procedure used for conducting the gear pump contaminant
wear tests was the same as the pump contaminant sensitivity test [23]. The major
exceptions to this procedure were in the variance of the contamination level used as
well as the pressure and speed at which the break-in tests were conducted. For these
tests, concentration levels less than 300 mg/iitre were used, and a pressure of 2500 psi
at 2500 rpm was maintained during break-in.

Hydraulic gear pumps were used to evaluate the effect of various contamination
levels and particle size ranges. The pumps used were all of the same lot from a parti-
cular manufacturer. Concentrations of 10, 20, 25, 75, 150, and 300 milligrams per litre
and particle size ranges of 0-5, 0-10, 0-20, 0-30, 0-40, 0-50, 0-60, 0-70, and 0-80 micro-
metres were used as contaminant exposure levels. The speed, pressure, and temperature
were maintained constant during the tests at 2000 rpm, 2000 psi, and 150°F, respect-
ively. The general test procedure for these tests was as follows:

1.  Operate the pump at the desired conditions of speed and pressure until
the temperature stabilizes at 150°F.
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2. Accurately measure the initial flow rate of the pump and expose the required
concentration of contaminant in the 0-5 micrometre size range.

3.  Run pump with this entrained contamination level until the flow remains constant
for ten minutes or until 30 minutes have elapsed. Obtain a fluid sample at the
end of this period.

4.  Valve into the system the control filters and filter oil for ten minutes. Accurately
measure the flow rate of the pump.

S.  Remove filters from the circuit and inject the appropriate concentration of contaminant
at the 0-10 micrometre size' range.

6.  Repeat Steps 3, 4, and 5 until all particle size ranges (0-20, 0-30, 0-40, 0-50, 0-60,
0-70, and 0-80) have been run or until the pump is destroyed.

A schematic of the test circuit used is shown in Fig. 54.

Test Results

The effect of the various test parameters was evaluated in terms of both flow
degradation and normalized Ferrographic density (D54/ml). Since these tests were
conducted in steps of particle size ranges, in order to obtain the amount of wear debris
generated at each larger size (e.g., 0-30), the summation of Ferrograpnic density readings
at the previous size ranges (i.e., (0-5) + (0-10) + (0-20)) was added to the recorded
density value of the current size range. Therefore, the Ferrographic density data will
be noted as £ D54/ml.

Figures 55 and 56 show the data relating contaminant concentration to flow
degradation and Ferrographic density, respectively, for particle size ranges at 2000 psi.
It is quite obvious from the amount of extrapolated data in Fig. 55 that very small
changes in flow result with low contaminant concentrations. This is not the case, how-
ever, with the Ferrographic density readings in Fig. 56. Here, all six concentration
levels are well defined for the particle size ranges tested. As was the case with both
the rotary and linear wear mechanism tests, contaminant concentration shows a greater
effect than particle size on the amount of wear debris that is generated.

The following pages of photographs document the Ferrograms as they appear
at the 54 mm position for various test contaminant size ranges and concentration com-
binations evaluated at 2000 psi. Figures 57 through 62 show tne obtained wear debris

78




Injection Chamber

g

Air \\\\

Supply
Injection
Chamber
(See detail)
o IS

o N

Fig 54. Schematic of Test Circuit.

79

b Esmeaet

PR




99 9999

99 999 4

99 99 =

999 b s'k ~ SN e B

/o
/

/
/

Q
%o}

(%]
@

95

90

80

70

60

50

FLOW DEGRADATION RATIO, ¢

40

30

20

5 10 20 30 40 5 60 70 B85

TEST DUST SIZE RANGE (O- D)

Fig. 55. Flow Degradation Ratio as a Function of Particle Size Range for Various Concentrations at 2000 psid.

80




1000 -

300 MG /f

150 MG /2

¢
E
g
<t -
0
(&)
v
¢
~— 1004
2 ]
Z ] 75 MG /A
) )
()
O 25 MG/R
(:-_1[_ 20 MG /L |
oL |
o 10 MG/A i
5 ‘
o ,
(N ’
-
W
(.

| -~ —r—T v ——r———r—r——

10 100

Fig. 56. Ferrographic Density as a Function of Particle Size Range for Various Concentrations at 2000 psid.

PARTICLE SIZE RANGE (0-D)

81




0-5 um
Sample Volume = 12 m®

]

0-40 um

0-70 um
Sample Volume = 12 m%
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at 10, 20, 25, 75, 150, and 300 mg/litre, respectively, for the various particle size
exposures. These pictures cannot be directly related to the Ferrogrephic density curves
shown in Fig. 56 due to their summation with the previously recorded density values.
However, Figures 57 through 62 can be used to evaluate the effects of particle size
range at the various contaminant concentrations. As was discussed in the test procedure,
these particle size ranges were injected in order (0-5 uM, 0-10 uM, ..., 0-80 uM). From
this fact, through analysis of the relative change in density readings as the contaminant
concentration increases, a rough estimate of the internal pump leakage path clearances
can be made. This can be done both visually in Figs. 57 through 62 as well as through
density readings obtained for these tests. Figure 56 shows the relative change in density
per change in concentration at various contaminant particle size ranges. The small
changes resulting in the 0-5 and 0-10 uM exposures overall concentrations suggest that
the clearances within the pumps are much larger than the contaminant. However, as

the particle size range increases, the change with concentration becomes more pronouned,
indicating increasing interference between the particles and the leakage path surfaces.
Because of this, increases in concentration result in a substantial increase in wear debris
generation. This same phenomenon can also be observed in the previous figures showing
the associated Ferrograms. These observations suggest, however, that composite clearance
for these pumps is probably between 5 uM and 15 uM in size.

Also evident in the Ferrograms shown in Figs. 57 through 62 are the presence
of some bronze and aluminum particles. Figure 63 shows two examples of the bronze
wear debris observed, and Fig. 64 indicates the presence of aluminum wear debris which
was found near the exit end of the Ferrogram. Identification of the aluminum was
determined by their size and location on the Ferrogram as well as their chaulky white
appearance. Only a few of these particles were found, however, probably due to the
magnetic properties of aluminum.

Figure 65 shows the type of wear debris observed (X1000 magnification) for
selected particle size ranges of contaminant at 300 mg/litre concentration. Most notice-
able is the magnitude and severity of the cutting wear particles as the contaminant size
range increases. Also visible is the increase in severe wear particles (arrows) due to the
larger contaminant size. The severity of this wear debris as larger contaminant size
ranges are injected can be related to the increasing interference between the contaminant
and leakage path clearances.




Fig. 63. Ferrograms Showing Bronze Wear Particles.
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Fig. 64. Ferrograms Showing Aluminum Wear Particles.
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IX. DISCUSSION OF MECHANISM/COMPONENT RESULTS

Since the clearances within components can very rarely be measured, the com-
ponent test phase could only measure flow degradation and the rerrographic optical
density of the wear debris to analyze the contaminant effects. As presented in Section
VI, as long as the contaminant size remains smaller than the intsrnal clearances, or
(h/d) >> 1, the major type of wear debris generated will result from erosion, with the
amount dependent upon the concentration. However, as the contaminant size approaches
that of the internal clearances ((h/d) = 1), the wear mode shifts to include abrasive wear,
with the size and severity of wear debris generated dependent not only upon concentra-
tion but also the (h/d) ratios. This phenomenon did in fact occur in the test pumps,
as depicted in the Ferrograms of the resulting cutting wear in Fig. 65, and was quantita-
tively visualized in Fig. 56 by the wear debris increase as a function of contaminant
particle size and concentration. These data seem to show that clearances within the pump
were between 5 uM and 15 uM in size and that (h/d) begins to approach one toward the
higher particle size injection ranges.

In a qualitative inspection of the wear debris generated, both bronze and alumin-
um particles were identified, indicating that some relationship between the rotary wear
mechanism test results for the brass/steel and aluminum/steel specimens exists and could
be used to better identify the severity of wear at specific parts within the pump.
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X. SUMMARY AND CONCLUSIONS

The basic mechanism wear tests have shown the importance of clearance size
in relation to contaminant-induced wear. The rotary mechanism tests revealed the
(h/d) ratio (ratio of the clearance to the largest particle diameter in a contaminant
size range) is most critical in determining the type and severity of wear debris that is
generated, while the linear mechanism produced similar results in addition to the ‘filter-

ing”’ phenomenon, which occurs when (h/d) < 1 and alternative flow passages are present.

The critical clearance at which this occurs can be identified Ferrographically.

These concepts were also verified in the component wear tests which were con-
ducted upon hydraulic gear pumps. The test data revealed a definite increase in the
magnitude and severity of wear debris as the contaminant particle size range increased
and approached the clearance sizes within the test pumps. Some “filtering” of the
contaminant particles could also be occurring as the larger particle size ranges were
injected. Since it was impossible to accurately measure the existing clearances within
the actual test pumps, no definite correlation of h/d could be made. However, the
correlation of the pump data with the results of the mechanism testing provides an
insight to the internal clearances of pumps and resulting contaminant sensitivity.

One important facet of this work was identified in analyzing pump contaminant
sensitivity Ferrographically. As was shown, the conventional method of monitoring flow
degradation required large amounts of contaminant (300 mg/litre) to record any appre-
ciable degradation. The Ferrographic density values, however, were able to detect wear
debris generation at contaminant concentrations as low as 10 and 20 mg/litre. Develop-
ment of this information could possibly allow component contaminant sensitivity testing
on a non-destructive basis.

The results of the effort have shown that the concepts developed in the rotary
and linear mechanism tests provide good insight into the actual wear debris generation
within a hydraulic gear pump and most likely other similar hydraulic components. As
these concepts are refined, their correlation to contaminant wear will be most useful in
predicting wear rates within components and eventually total hydraulic systems.
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