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.‘original k factors are important in explaining the response.

SUMMARY

THe use of a computer simulation model may be viewed as an experiment
in which a set of k input variables are combined to produce at least one output
or response variable. As in a‘y experimental situation, the design of a
compuier simulation experiment {s 1mportan£. In general, not all k inpﬁt véri—
ables or factors will be equally important in their effect on the'response
variable(s). It is very common to find that only a subset, say g < k, of the
We usually do not
know the value of g, or Eﬂi&ﬁ g factors are important.

The problem of experimentation and analysis to discover the size and
composition of the subset of active facturs g is called the factor screening
problem. It is important ﬁo accurately identify the set of Qctive factors.
Failure to identify an active factor can result in serious bias in the analysis
and conclusions drawn from the model, if that factor is ;ubsequeﬁtly ignored.
Conversely, experimentation with negligible factors is undesirable as it consumes
the resources of(experlmentation needlessly.

This report contains a survey of the available statistical wmethodolegy
useful in factor screening. It also discusses the relative meri ., of each
approach, and provides guidelines for the development of a factor screening
strategy. Several examples are presented that demonstrate the construction of

factor screening experiments, and the interpretation of the results of such

ekperiments.
Three typel of factor screening situations may be identified. The first

case is the designed experiment aituation; that is, a situation in which an

experiment is designed and conducicd with the primary objective of discovering
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the set of active factors. The usé of designed experiuents in factor screening
is particularl} important,'as deaigned experiments allow assessment of main
effects and interactions independent of other effects that may be present in
the mode. Designed experimeats also often allow the incorporation of variance
reduction methods. Finally, they usually admit a relatively simple statistical
analysis.

The major classes of factor screening designs discussed in this report
include:

1. The 2:;? and 2:;9 fractional factorial designs

2. Supersaturated designs

3. Group screening designs

4. Irregular fractional factorials
A logical screening strategy involving those designs is developed. The selection
between designs i{s based on consideration of the extent of aliasing of inter-
actions and the severity of assumptions required to produce a unique analysis
of the data. 1In particular, it is shown that group screening followed by the
use of a 2K-P fractional factorial desiga is often an optimal screening approach.
Variance reduction methods for these designs are discussed, based on common and
antithetic random number streams., Other problems discussed include the compo-
sition of the groups in group screening and selecting lgvels for negligible
factors in sub-equent experiments.

A second major type of screeningvstudy is the undesigned case. These
situations occur when there are data available from previous simulation experi-
ments with the model, and decisions regarding the identification of active
factors must be made using these data. It is unlikely that these runs will
conform to any standard factor screening design. However, in these cases, the
method of least squares can be used to fit an appropriate regression medel to

the data, and factor screening decisions can often be made using this model.
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The.usual nonorthogonality of such undesigned data makes the interpretaﬁion of
these models difficult. Standardized regression coefficients can be used to
simplify the 1pterpretation, although this still does not solve the problems
created by a nonorthogonal data set. Several measures of nonorthogonélity

are introduced, including variance inflation factors and conditioning numbers,

and the use of these measures in assessing the problems in interpreting indi-
vidual regression coefficients is discussed. In cases of extreme nonorthogonality,
parameter estimation methods other than least squares are recommended.

The third type of factor screening study involves augmenting an available
data set with a small number of new runs. The question of where these addi-
tional runs should be conducted is discussed. Two design augmentation methods
are proposed, one based on minimizing the variance of the parameter estimates,
and the other designed to minimize the bias resulting from factors thought to
be negligible. |

This work was éupported by the Office of Naval Research (ONR) under
contract NOOO14-78-C-0312, I am gratefnl to Dr. Thomas C. Varley of ONR for his

advice and encouragement.
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1. INTRODUCTION

1-1. Usés of Simulation

Many prohlems in operations research are too complex to be modeled and
analyzed entirely by mathematical methods. Computer simulation is widely used
in the study of such problems. Typical problem areas in which computer simu-
lation has been successfully employed include queueing, inventory, scheduling,
qualltj control/reliability analysis, and maintenance and repair activities.
The military has made extensive use of comy.ater simulation to analyzelcomplex
combat processes, as well as su»ply and logistics activities.

A computer simulation may be viewed as an experimént in which a set of
controllable input or in&ependent variables are combined to produce at least
one output variable, usually called the dependent variable §r response. In
performing a computer simulation experiment, the analyst will usually have
one of two objectives in mind:

1. Investigate the relationships between the independent variables and
the response, determining, if possible, which factors exert the greétest ef{fect
on the response, and the extent of interaction between the factors.

2. Determine the set of factor levels that, over some appropriate region
of interest, optimize the response(s).

As 1In an experiment, the design of a computer simulation experiment is
an important aspect of the investigation. The use of formal experimental
design methods in computer simulation resu1t§ in significant advantages to
the aralyst, including simplicity of data interpretation and (usually) economic

efficiency with respect to the total number of simulation runs required. For




backyround reading in experimental design, consult Cochran and Cox [1957],
Davies ! 56, Hicks {1973], Montgomery {1976], or John [1971]. For dis- »
cuss.oa of the specifics of applying experimental design methodology to com-
pater simulation, sece Burdick and Nayler [1966], Fishman {19737, Hunter and
Naylor [1970], Tgnall [1972], Kleijnen {1975a, part II}, [1977], and

Hontgomery and Evans [1975].

1-2. The Need for Factor Screening

We shall assume that a computer simulation model méy be describsd by a
set of k controliable input variabies or factors. These factors are generally
of two types:

1. Factors that are centrollable or subject to design in the "real
world" system being modeled, such as inventory reorder quantities, service
rates, or the rate of fire of a weapons system.

2. Factors that are not controllable in the real system, such as
demand, weather effects, or the location of encmy troops or equipment. For
purposes of conducting the experiment, however, all k factors will be assumed
to be controllable in the simulation; that is, we may induce desired weather
effects, or control the movements of an enemy submarine.

In general, not all of these k factors will be equally important with
respect to their effect on the response variable(s). The factors may range in
importance from highly important to negligible. It is very common to find
that only a subset, say g<k, of the original k factors are important in
explaining the response variable. However, generally, we do not know the
value of g, nor do we know which g factors are important. This situation is
discussed by Jacoby and Harrisen [1962], who state that the problem is
frequently encountered in computer simulation.

The problem of experimentation to discover the size and composition

. W G e




ot the subsut of active factors is called the factor screening problem. 1t

is important that the set of active factors be accurately determined. Failure
to identify an active factor can lead to serious bias in the analysis and
conclustons drawn from a model, 1f that factor {s ignored in subsequent cxperi-
ments.  Cn the other hand, experimentation with negligible factors is unde-
sirable as it consumes the resources of experimentation needlessly, and may
increase the noise level in the data to the point when real effects are more
diftficult to discover. Fér example, many of the optimization techniques
applied to computer simulation models decrease rapidly in efficiency as the
number of independent variables increases, Clearly, identificaticn of the

set of active factors plays a critical role in the successful use of this
methodology.

Factor screening methods can be profitably employed at two places during
the development and use of a computer simulation model. They can be employed
at the model design and development stage. Applied at this stage, screening
methods can atrect the choice ot variables used in the model and hopufully
simplify the archivecture of the {inal model. This ma; roguire oxpevinentativy
with components our subroutines of the model, or, vhen practisal, ezpé:iﬁuniutiun
with the real-world system. When used in this manner, factor screening cou!é
contribute significantiy to reducing the running time of a simulatrion model,
if nepligible factors can be identified. Factor screening is also applicahle
to a complete simulation model, although itris unlikely that any major simpli-
tication of the model structure will result. However, tne total number of
computer runs that are to be made in exercising the model may »o subsiaantially
reduced if some factors are nct active.

This report contains a summary of the available statistical methodolopy

usviul in factor screening. It also discusses the relative merits of each
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approach, and provides guidelines for Jevelopment of a screening strategy.
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Other questions, including the implementation of variance reduction methods,

choice of levels for factors thought to be negligible, and rome details of

parameter estimation ip linear statistical models are also discussed.
1-3. Factors, Levels, and Parameter Estimation
Suppose that XyeXgee.o,X, are the contrcllable factors in a computer
simulation experiment and y {s the (single) response. We assume that the
general structure of the simulation is such that it can be expressed in the
form
y = f(xl,xz,....xk) + €. ' , (1-1)
. |
.}\ P In this equation, f is8 a functional relationship that determines the mean value
S
i
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of the response y, and € is an ervor term such that E(r} = 0, In {actor
screening problems it is almost always sufficient to assume that t iy Pinear
in the unknown parameters that relate the response to the {acteors. For
example, one possible model would be

k

+ 7 Rox, +¢ S (1=2)
f=1 it _

y = 30
where 80.81....,8k are unknown parameters.

To perform an experiment with this system, we must choose a set of values
or levels for cach factor, and then run the computer simulation model at some
subset (or possibly the full set) of th; factor level combinations. The choice
of the number of levels of each factor and their spacing when the factor is
continuous (or approximately so) is‘importanc. Generally, we should be puided
by the information we have about the likely effect of that factor on the
response y.

Iﬁ most factor screening experiments, we are simply attempting to deter-
mine the effect of the factor, not necessarily trying to develop a useful
predictive or interpolative equation. Consequently, a relativelv small number
of factor levels is generally employed. Often two levels, arbitrarily called
high‘and low, are sufficienf. For example, in Figﬁre 1 we have i.lustrated
the behavior of y as a functfon of the factor x. Although y and % are related
in a complex nonlinear manner, the use of two levels for x will be sufficicent
to measure the effect of x. However, in cases where extreme curvaturc is
present in the functional relationship, more than two levels will be necessary.
Rarely, however, would more than three or four levels of the factor he
employed in a factor screening study. The need for more than a small number

of levels often indicates that the region of exploration for x is too larpe.
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The spacing of factor levels ie also importént. Levels should be far
enough apart to measure anticipated effects, bﬁt not so far as >0 cause non-
linearities in the functiornal relationship to distort or mask sigrific.nt
effects. For example, consider Figure 2. If the low and high levels of x
are x, and ¥as respectively, then (depending on the amount of noi < it is
highly urlikely that the effect of x on y will be discovered.. On the otner
hand, 1if the low and high levels are x; and X, then the curvature In the
functional relaticnship will likely mask the true effect of x. “~“.e choice

of x) and x4 {or x, and xa)‘as low and high levels of x will reveal that x has

3
a significant effect on y. Neither case, however, would be sufficient for
def'ning the effect of x so that a predictive or interpolative equation valid

over the entire range X < x<x, could be developed.

The effect of a factdf may be defined as the change in response y pro-
duced by a change in the lg&els of the factor. This is usually called a main
effect, For example, consider the data in Table 1, which presents information
obtained from an experlment§w1th two factors xq and Xy, The rain effect of x;
is the difference between the average response at the high level of xy and the

average response at the lowflevel of x;, say
|

50420 _ 42410 .
L2 Z ’

That is, the average response increase upon changing from the low to the high

ievel of x) 1s 9 units. Similarly, the main effect of x, is

50+42 _ 20+10

2 2 31.
6
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Figure 1. Use of Two Factor Levels to Model the Effect of x on y
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Figure 2. The Spacing of Factor Levels
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Table 1

Data For a Factorial Experiment

2
low high
low 10 42
*1
high 20 : 50

The experimental design in Table 1 is a factorial design; that is, a
design in which all possible factor level combinations are run. Furthermore,
there is only one observation in each cell (we say the design is replicated

once), Most screening designs are factorial designs.

Now consider the data in Table 2. Here the effect of x; is

30420 _ 42410 o
2 T2

which implies that the X effect is small. However, Inspection of Table 2
reveals that the X, effect is not negligible, it just depends on the level of -

factor Xy. For example, at low Xy the x) effect is
20 - 10 = 10
and at high X, the x; effect is

30 - 42 = -12,

e ke R v e - a . S eein ey ——
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Table 2

A Factorial Experiment

%2
low high
low [ 10 42
X
high | 20 30

fhis is un example of an interaction between two factors. More
specifically, it is a two-factor interaction. Most screening studies have to
make certajin assumptions about the types of interactions that are likely to be
present in the system in order to design an economically efficient experiment.
In general, factor screening attempts to sort out the main effects and log;
order interactions that drive the systenm.

The method of least squares can be used to estimate the main effects
and interactions. Suppo. : that we can describe the system by a linear

statistical model, say

k .
yi - 30 + jzl Bjxij + ei’ 1=1,2,...,0 (1—3)

there y; is the ith response, x4 is the 1th level of factor 3§, and Bj'
3=1,...,k arc unknown parameters. Letting y = (yl,yz,....yn)', 8= (80,81,.;.,Bk)'.
€= (el,ez,...,en)x where the prime denotes transpose, and letting X denoﬁe an

nx (k+1) matrix whose first column is all ones and whose (1,j+1)3t element is

X14» then it is well-known that (1-3) can be written as

i R e o - . U
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y=Xg+e¢ _ (1-4)

The least squares estimators of [ are given by the solution to the normal

equat fons
(x'08 = x'y, (1-5)

or
= (x'0"Ixy (1-6)

assuming that x'x)"! exists.
To illustrate, consider the data in Table 1, and assume that the high
and low levels of X, and x, can be represented by +1 and -1, respectively.

Then (1-3) become§

yy - 80*-81xi1 + 82x12 + ei, i=1,2,3,4.

We have assumed that x; and Xy do not interact., Then, in matrix notation,

we have for (1-4),

X1 %2
- - - -
10 1 -1 -1 FBO rel \
20 1 1 -1 61 €y \
- + |
42 -
1 -1 1 LB2 53 \
| 50 | _1 1 1 £, |
The normal equations are
10
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(x'08 = X'y

r " -y - -
Bg .22
sty | 8 | = |18,
8 6
B2 2 J

and the least squares estimates of the parameters in the model are

. 9 F ~
BO 30.59
3 4.50
B1 -

le 15.50

9 . L .

Note that the least squares estimates of the parameters are exactly half the

miin effects of x, and Xy} that is,

~

81 = 4.50

.82 =.15.50

The parameter éO = 30.50 is called the grand mean.

If we wished to incorporate interaction into this analysis, we would

define the mcdel as

\

~ \
Yy = BotByxgy ¥ BaXyp ¥ Bip¥XpyXgp * €y 1°1,2,3,4.

1
)

\

It i{s readily verified that

11
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r B 10 7 r
10] 1 -1 -1 1] [8, €]
20 i 1 -1 -1 g £

- 1 + 2
42 1 -1 O 82 €,
_SO_ i 1 1 1 1_ b812- ] EA_
and the ncrmal equations become
F" - ~ -
Bo 122
‘Bl 18
41, Bz = 62
B -2
L 12 ] ] |

The least squares estimates of the parameters become

B, 30.50
B, _ 4.50 |
- - |
8, 15.50 .
8 -0.50 .
| B2 i g

From examining the estimates of the effects, we conclude that both factors
exert large (positive) main effects, while the two-factor interaction between
those factofs is negligible.

~ Users of statistically designed (xperiments are accustomed to analyzing
the resulting data by relatively formal methods, such as the analysis of
variance. In factor screening problems this is usually not done and the

least squares estimates of the model parameters (or the effects) usually allow

12
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significant factors to be identified. Often it is not practical to conduct
a formal analysis of variance because of the small number of degrees of

freedom that remain for error.

1-4. Designed and Undesigned Screening Experiments

The objective of a factor screening study is to discover as much as
possible about the factors that significantly affect the response. Designed
experiments are particularly useful in factor screening, as they allow assess-
ment of effects and interactions independent of other effects present in the
model, they often allow the incorporation of variance reduction methods, and
they usually admit a relatively simple statistical analysis., However, screening
is still possible in the undesigned case such as where there is data available
from previous simulation runs. 9nce again, the method of least _quares is useful
here, although the usual nonorthogonality of such undesigned d#ta makes the
interpretation problem somewhat more difficult. Section 2 of this report will
deal with designed screening studies, and Section 3 will discuss some aspects
of undesigned screening situations, including the intermediate case in which
some ohservations can be édded to an existing data set.

In both cases, the method of least squares will be used for parameter
estimatfon. UYe now state some useful results coacerning least squares analysis

of the general linear model. The model ir

where y 13 (nx1), x is (nxp), B is (px1), and € is (nx1). Note that the
nimber of observations n must at least equal the number of parameters p.

The least squares estimator of § is

13
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g = (X'X)-lx'y . (1-7)

If E({) = 0 and the model is correct then the least squares estimators are

unhiased; that is
E(B) = 8 .

{ the errors are uncorrelated with constant variance 02 then the covariance

matrix of the least squares estimator is
cov(d) = o?(x'n ! | (1-8)

Note that the assumption of independent observations with constant variance
will likely not hold in a simulation expetiﬁent. In féct, there are cases
where the choice of variance reduction strategy induces a correlative structure
between the observations. In cases where the assumption of uncorrelated

crrors with constant variance does not hold, the method of weighted least
squares is useful. If V is a matrix of weights.(chosen proportional to the
variances and covariances of the errors) then the weighted least squares

estimator of 8 is

Bas = &'vIn vl (1-9)

-

ﬂst is an unbiased estimator for B (as is é). The covariance matrix for

ést is (1-10)

14
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Cov(ngs) - (x'v‘lx)'lcz (1-11)

1-5. Previoﬁs Work on Factor Screening in Simulation

Although there {s a substantial literature on f:ctor screening, there
has been little analysis or interpretation of this methodology in the computer
simulation environment. Kleijnen [1975a,b], [1977] and Hunter and Naylor
[1970] have suggested the use ~f fractional factorial designs and group screening
(a procedure in which factors are arranged in sets) methods in simulation.
However, they do not give any examples. Only Kleijnen [1975b] attempts to
give any guidelines for the choice of a factor screening strategy. Nolarn anﬁ
Sovereign [1972] employ a gror .-screening strategy in a large-scale simulation
model of airlift and sealift . .erations. However, they do not give any details
of the screening methods used. Williams and Weeks [1974] have proposed using
special types of p" factorial designs for factor screening in simulation. Their
methodology requires poteﬁtially many computer simulations runs, and there are
no examples or evaluation of their methodology given. In general, there does
not presently seem to be any systematic collection or evaluation of factor
séreening methods available, nor is there much specific analysis of their use
in computer simulation. Some_aspeéts of this will be dealt with in this

report.
2. EXPERIMENTAL DESIGN METHODS IN FACTOR "CREENING ~ ~—— ——— =~ — =

2-1. Full Factorial Designs

Full factorial experiments could be used for factor screening. The
most efficient design to consider is the 2k factorial; i.e., k factors each
at twoc levels. It is relatively standard practice to denote the factors by

upper case letters such as A, B, etc., rather than-the Xys X3 etc. notation

oo

15




used previously. The statistical model for a 2k design would include k main
k . , k . .

E- . effects, (2) two-factor ingcract1ons, (3) three-factor interactions, ..., one
k-factor interaction. That is, for a 2k design the complete model would contain
2k -1 effects. Two éystems ot notation fnr treatment combinations are widely
used. For example, in a 25 design abd denotes the treatment combination with
factors A, B, and D at the high level and factors C and E at the low level.

A system of + and.— signs is aléo useful, occassionally, where + denotes the
high level of a factor and - denotes the low level. Thus +-+- and abd are
equivalent notations., The treatment combinations may be written in standard

“‘order by introducing the factors one at a time; each new factor being successively
cembined with those above it. For example, the standard order for a 2% design is
(1), a, b, ab, ¢, ac, bc, abc, d, ad, bd, abd, e¢d, acd, bed, and abced.

For even a moderate number of factors the total number of runs in
a 2k factorial design is larpe. For example, a 25 haé 32 treatment

combinations, a 26 has 64 treatment combinations, and so on. Since resources

.

are usually limited, the number of replicates that the experimenter can employ
. may be restricted. Frequently, available resources will only allow a single
replicate of the design to be run, unless the experimenter is willing to omit
some of the original factors. Most factor screening experiments would fall into
: this category.
With only a single replicare of the 2k it is impossible to compute an
{ estimate of experimental error, that is, a mean square for error. Thus, it
. seems thal hypotheses concerning main effects and Interactions cannot be tested.
However, the usual approach to the analysis of a single replicate of che 2K 4g

to assume that certain higher-order interactions are negligible. The statistical

e er—

analysis of these designs is well-known (see John [1971] or Montgomery [1976]).

| B

Either Yates' tabular algorithm or the regression approach outlined in Section
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1 moy be used to ecatimate the offects.  The variance of the estimate of any

- R . . - . .
eitfect is N 10‘, where N ois the total number of observations, assuming that

observations are independent.  Note that the regression treatment of the data

fn Table 1 is the analysis of a 22 design. The smallest design for which this
procedure is recommended is the 2&.

The practice of combining highcf—order interaction mean squares to estimate
the error is subject to criticism on statistical grounds. If some of these
lnécravtinns are significant, then the estimate of error will be inflated. As
a result, other significant effects may not be detected and the significant
interactions used as error will not be discovered. As a general rule, it is
probably unwise to assume twe-factor interactions to be zero without prior infor-
mation, If most two-factor interactions are small, then it seems likely inat
all higher-order interactions will be significant also. (A word of caution
here--one does wot have to leook very far for counterexamples to these rules).

In most factor screening studies, we will be willing to assume that
certain high-order interactions (say threo-factor and higher) are negligible.
Considering the amount of information provided by a 2k factorial, this is
probably reasonable. For example, consider a 25. The 32 observations allow

31 effects to be estimated:

5 main effects
10 2 factor interactions
10 3 factor interactions
5 4 factor interactions

1 5 factor interactions

In many situations, out {nterest would be confined to detecting main effect

and the 2-factor interactions. Thus we could either use the 16 higher-order

17
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effects as an estimate of error, or as the basis of developing a more efficient
design via fractional replication.

When a large number of effects are estima;ed. we may wish to find some
formal basis for declaring which effects are significant. If thefe is either
replication or insignificant factors pooled to estimate error, we could possibly
use analysis of variance methods and conduct formal statistical tests. However,
if variance reduction methods such as common randcm numbers have Eeen used,
the usual analysis of variance statistical tests may not be appropria;e. For
a discussion of this problem is simple designs, see Heikes, Montgomery, and
Rardin [1976]. A‘useful approach is to plot the effects on normal pro-
bability paper. Negligible effects on such a display *.111 fall approximately
alc~~ a straight line, thle real effects will lie far from the line. For
examples of this methodology in a general experimental design setting, see
Montgomery [1976]. We will {llustrate the approach in subsequent examples.

The 2% factortai series has a projection property useful in factor
screening. For example, consider the 23 design in Figure 3. If factor A is
negligible, we can collapse the 8 ruﬁs from the 23 in factors A, B, and C into
two replicates‘of a 22 in factors B and C. In general, if we have 2 single
replicate of a 2K and h(<k) factors can be dropped because they se>m mnegligible,
then the remaining data will always correspond to 2h replicates of a full |
factorial in the remaining k-h facfors. These replicated design points can be
used to obtain an estimate of error.

Full 2k factorial are advantageous in screening in that they potentially
produce all of the information required to identify significant effect and

interactions. However, there are more resource-efficient methods that can

produce equivalent information.

18

e i Y B0 “ - e o s e . [ —

.v
% i R

P e et e ]




s

o
. .

g

|
!
l |
i |

| I |

]

{

7

7
7
s
7 C

Figure 3. Projection of a 23 into a 22 Design in the Factors B and C
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2-2. The 2K~P Fractional Factorial Design
2-2.1 General Results

As the number of f.ctors in a'2k factorial design increases, the number
of runs required for a complete replicate of the design rapidly outzrows the
resources of most experimenters.va éompiete replicate of the 26 design requires
64 runs. In this design only 6 of the 63 degrees of freedom correspond to main
effects, and only 15 degrees of freedom correspond to two-factor interaztions.
The remaining 42 degrees of freedom are associated with thtee;factor and higher
interactions.

If the experimenter can reasonably assume that certain high-order inter-
actions are negligible, then information on main effects and low-order interactions
may he obtalned by running only a fracii&n of the complete factorial experiment.
These fractional factorial designg are widely used in industrial research, and
have major applications in factor screening. For a general introduction to
the construction and elementary properties of these designs wefer to Montgomery
[1976, ch. 10] or Box and Hunter [1961].

In a 2KP fractional factorial design, only a fraction of the 2k treatment
combinatlong are actually run, Speqifically. a fraction qflthe 2k design
containing 2k-P runs is called a 1/2P fractior of the Zk, or, more simply, a

2k-p fractional factorial design. The designs discussed in this section are

regular fractions, that is, estimates of the effects are orthogonal. The effects
may be estimated by Yates' algorithm»(John {1976}, Daniel [1977], Montgomery
[1976]) or by generating the contrast for any factor using the table . of + and
- signs for that design (which 1is equivalent to the regression approach out-
lined in Section 1). The variahce of the estimate of any effect is 2P~kg2,

There are several methods of constructing these designs. One method of

constructing a 2K~P fractional factorial design is to select p independent

20
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generators (no chosen generator is a generalized interaction of the others),
constructing the 2P blocks associated wi.1 those generators, and then sclecting
one block as the fractional design. The defining relation for the design
,coﬁSistu of the p generators initially chosen and their p L p - 1 generalized
interactions.

The alias structure may be found by multiplying each effect modulus 2 by
the defining relation. <Care should be éxerclsed in choosing the generators so
that éffects of potential interest are not aliased with each other. Each effect
has 2P - 1 aliases. In most factor scregning studies we assume higher-order
interactions (say third- or fourth-order and higher) ro be negligible, and this

>greac1y simplifies the alias structure.

- '4 k-
4 second mcthod of design construction is to consider the 2 P design as

a full factoiial in h = k-p factors. Then the table Qf:* and ~ signs for the

full 2k design is wraitten down, and the additional p factors added by equating
their factor levels with the products of certain factor%levels in the full Zk.
As an example, consider the 26-2 design. This is a llbzfraction of a 26. con-
taihing 26-2 = 24 = 16 rows. To construct this design forn a 2‘ design in the
factors A, B, C, and D, as shown in the left-hand paneléof Table 3. Two columms
must be added to 1ncorporaté the fifth and sixth factor;. E and F. These factor
leﬁcis are found in the center panel of Table 3, by equ;ting E = ABC and F = ACD.
Néte'that this is equivalent to choosing generators I = ABCE and 1 = ACOF and

using the first procedure described above to construct the design. The treatment

combinations are shown in the right-hand panel of Table 3.

Since the generators of this design are I = ABCE and I = ACDF and the
generalized interaction of the generators ABCE and ACDF is BDE", the complete
defining relation for this design is I = ABCE = ACDF = BDEF. To find the

aliases of any effect multiply that effeci by each word in the defining relation.
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Table 3

Construction of the 26"2 Design With Generators I = ABCE and I = ACDF

Treatment
A B C D E = ABC F = ACD Combination
A ; ! @
+ - - - + + aef
- + - - + - : be
+ + - - - + g abf
- - + - + + cef
+ - + - - - ; ac
- + + - - + ' bef
+ + + - + - : abce
- - - + - + i df
+ - - + + - ' ade
- + - + + + g bdef
+ + - + - - ' abd
- -+ + + - ; cde
+ - + + - + ‘ acdf
- + + + - - : bed
+ * + + + + | abecef
' ;
\ i
\ |
|
\ :
[ i%
l‘ v 22
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For example, the alias of A {is

A = BCE = CDF = ABDEF

It is easy to verify that every main effect i1s aliased by three-factor and
five-factor interactions, while two-factor interactions are aliased with each
other and with higher-order interactions. Thus, when we estimate A, for
example, we are really estimating A + BCD + CDF + ABDEF. . The complete alias
structure {8 shown in Table 4. If three-factor and higher interactions are
negligible, this design gives clear estimétes of main effects.

The 2X~P fractional factorial design has the projection property noted
previously for fhe full 2k design. 1In general, say 2k-P fractional factorial
design can be projected into either a full factorial or a replicated fractional
factorial in séme subset of r = k~p of the original factoré. Those subsets of
factors providing fractional factorials are subsets appearing as words in the
complete defining relation. This {s particularly use’'ul in screening experiments,
when we suspect at the outset of the experiment that most of the original factors
will have small effects. The original Zk'p fractional factorial can then be
projectéd into a full factorial (say) in the most interesting factors.

For example, the 26'2 fractional factorial will collapse to a single
replicate of a 24 design in any subset of four factors that is not a word in.
the defining relation. It will also collapse to a replicated one-half fraction
of a 2‘ in any subset of four factors that i{s a word in the defining relation.
4-1 in

Thus, the design in Table 3 becomes two replicates of a 2 che factors

ABCE, ACDF, anc BDEF, since these are the words in the defining relation.
There are 12 other combinations of the six factors, such as ABCD, ABCF, and so

on, for which the deaign projects to n'single replicate of the 2%, This

23
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Alias Structure for the

Table 4

26-2 Design Witli I = ABCE = ACDF = BDEF

Effect Alfas
A BCE CDF ABDEF
B ACE DEF . ABCDF
C ABF. ADF BCDEF
D ACF BEF ABCDE
E ABC BDF ACDEF
F ACD BDE ABCEF
AB CE BCDF ADEF
AC BE DF ABCDEF
AD CF BCDE ABDF
i. AE BC CDEF ABDE
AF Cch BCFF ABDE
BD FF ACDE ABCF
BF DE ARCD ACEF
ARF CEF BCD ADE
CDE ABD AEF CBF

24
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design will also collapse to two replicates of a 23 in any subset of ghree of
the six factors or four replicates of a 22 in any subset of two factors..
To present a fractional factorial for which the projection property can
be visually demonstrated, co sider the 1/2 fraction of the 23 with generating
relation I = ABé. This covld also be denoted as a 23-1 design. The design is
shown in Table 5. The projection of this design into a full 22 factorial is
accomplished by eliminating one of the original three factors. This is illustrated
in Figure 4. |
2-2.2 Resolution 117 Designs
It is useful to classify 2k-P frac‘ional fact6f1a1 designs according to
" their resolution. The system is as follows:
(1) Resolution III Designs. These are designs in which no main effects
is aliased with any other main effect, but main effects are aliased
.with two-factor interactions and two-factor interactions are aliased
vitﬁ each other. The 23-1 design 1n‘Tab1e 5 1s of resolution III.
(i1) Resolution IV Designs. These are designs in which no main effect is
aliased with any other main effect or two-factor interaction, but
two-factor interactions are aliased with other. The 2"-1 design
with I = ABCD is of resolution IV.
(1i1) Resolution V Designs. These are designs in which no main effect
or two-factor interaction is aliased with any other majin effect
or two-factor interaction, but two-factor interactions are aliased \
with three-factor interactions. A 291 design with I = ABCDE is \
of resolution v. I
In general, the resolution of a design is equal to the smallest number of
letters in any word in the defining relation. Consequently some authors refer

to these plans as three-letter, four-letter, and five-letter designs, respectively.

25
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Table 5

The 277} Design With I = ABC

Treatment
A B C=AB Combinations
- - + c
+ - - a
T + - b
+ + + abc

We can show that a design is of resolution (2t+l) if we can estimate effects
of order t when effects of order higher than t are negligible. Roman numeral
subscripts are used to identify the resnlution of a design. Thus, a 23'1 desipn

111
3-1 dcaign of resolution III. For the more highly fractionated designs,

is a 2
more extensive assumptions are required to draw conclusions from the data.
Resolution III an& IV designs are particularly useful in factor screening
studices. This section will discuss the 2:;? design. We may construct resolution
111 designs fpr investigating up to k = N -~ 1 factors in N runs, where N is a
mulciple of 4. Designs in which N is a power of 2 can be constructed by the
-etﬁods presented previously. Of particular importance are designs requiring
4 tuugﬂfor up to 3 factors, 8 runs for up to 7 factors, 16 runs for up to 15

factors, and 32 runs for up to 31 factors. If k = N - 1 the fractional factorial

design is said to be saturated.

3-1

111
design, presented in Table 5. Another very useful saturated fractional factorial

A design for analyzing up to three factors in four runs is the 2

111
This design is a one-sixteenth fraction vi the 27. It may be constructed by

is a design for studying seven factors in eight rums; that is, the 2 design.

first writing down the plus and minus levels for a full 23 in A, B, and C, and

27
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then penerating the levels of four additional factors using the interactions
of the original three as follows: D = AB, E = AC, F = BC, and G = ABC. Thus,
the penerating relations for this design are I = ABD, T = ACE, T = BCF, and

1 = ABCF. The design is shown in Table 6.

Table €
The 2;;? Design With Generators 1 = ABD, 1 = ACE,
I = BCF, and I = ABCF

A B c D=AB E=AC F=BC G=ABC

- - - + + + - def
+ - - - - + + afg
- + - - + - + beg
+ + - + - - - abd
- - + + - - + cdg
+ - + - + - - ace
- + + - - + - bef
+ + + + + + + abcdefg

The complete defining relation for this design is

—
L}

ABD = ACE = BCF = ABCG = BCDE = ACDF = CDG = ABEF = BEF

I}

AFG = DEF = ADEG = CEFG = BDFG = ABCDEFG

To find the alias of any effect multiply that effect by each word in the

defining relation. For example, the alias of B is

B = AD = ABCE = CF = ACG = CDE = ABCLF = BCDG = AEF = EG

. = ABFG = BDEF = ABDEG = BCEFG = DFG = ACDEFC

- |
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This design is a one-sixteenth fraction, and since the signs chosen for
the generators are positive, this is the principal fraction. It is also of
resolution III, since the smallest number of letters in any word of the defining
contrast is three. Any one of the 16 different 2;;? designs could be constructed

by using the generators with one of the 16 possible arrangements of signs in

I= + ABD, T = +ACE, I = #BCF, 1 = +ABCG. All of these designs would be said

to belong to the same family.

The eight runs in this design may be used to estimate the seveﬁ main
effects. These estimates are obtained as linear combinations of the observations,
where the signs in a particular linear combination are given in the associated
column of Table 6. Thus, to estimate A, use the plus and minus signs in the
A column. Each of these effects has 15 aliases; however, if we assume that
three-factor and higher interactions are negligible, then considerable simplifi-

cation in the alias structure results. Making this assumption, each of the linear

combinations

~
]

A+ BD + CE + FG
tc-c+A£+nr+Dc

=D+ +
Lp = D + AB + CG + EF (2-1)
L. = E + AC + BG + D¥

F+BC+AG +DE

~
e
]

t.c-c+cn+nz+u'

where Li refers to the linear combinations of treatment combinations given by

column 1 in Table 6.

The saturated 2:;: design in Table 6 can be used to obtain resolution

III designs for studying fewer than seven factors in eight runs. For example,
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to generate a design for six factors in eight runs, simply drop any one column

in Table 6, for example, column G. This produces the design shown in Table 7.

Table 7

A 2:;: Design With Generators I = ABD, I = ACE, and I = BCF

A B C D=AB E=AC F=BC

- - - + + + . def
+ - - - - + af

- + - - + - Le

+ + - + - - abd
- - . + + - : - cd

4 - + - + - ace
- + + - - + bef

+ + + + + + abcdef

It 1a easy to verify that this is a 22;2 design or a one-eighth fraction
of the 26. The defining relaticn for the 2?;: design is equal to the defining

7-4
II1

deleted. Thus, the defining relation for this design is

relation for the original 2 design with any words containing the letter c

I = ABD = ACE = BCF = BCDE = ACDF = ABEF = DEF

1n general, when d factors are dropped to produce a new design, the new defining
relation is obtained as those words in the original defining relation that do
not contain any dropped letters. When constructing designs by this method,

care must be taken to obtain the best design. If we drop columns B, D, F, and

t
| S




G from Table 6, we obtain a design for three factors in eipht runs, yet the
treatment combinations correspond to two replicates of a 22. The experimenter
would probably prefer to run a full 23 design in A, C, and'E..

It is also possible to obtain a resolution III désign for studying up

This saturated 2;?;11 design can be generated by

first writing down the 16 treatment combinations associated with a 24 in A, B,

to 15 factors in 16 rums.

C, and D, and then equating 11 new factors with the 2, 3, and 4-factor inter-
actions of the original 4. A similar procedure can he used for.the 22%;26
design, which allouws up to 31 factors to be studied in 32 runs.

By combining fractional factotial_designs in which certain signs are
switched, ve can systematicalii‘isolate effects of potential interes: The
alias structure for ahy fraction with the signs for one or more factors
rever;ed 1s cbtained by méking changes of sign on the appropriate factors in
the alias structure of the original fraczion.

Consider the 27;6 design in Table 6. Suppose that along with this

principal fraction a second fractional design with the signs reversed in the

column for factor D is also run. That is, the column D in the second fraction

is

“t+ -t -

The effects that may be estimated from the first fraction are shown in (2-1) and

from the second fraction we obtain
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IA-A-BD+.CE+FG

£, =B - AD + CF + EG

&)
)

o f&
] ]

(2]
»
)

C + AE + BF ~ DG

-D + AB + CG + EF

E + AC + BG - DF

F + BC + AG ~ DE

G - CD + BE + AF

(2-2)

assuming that three-factor and higher interactions are insignificant. Now

from the two lineér combinations of effects %(Zi + l:) and %“1 - l:) we

obtain

1 ; Fron-%-(l1 + L:) From %(li - l:)
A A+CE+T¥G BD
n‘? B+ CF + EG AD
C . C+AE+BF DG
D AB + CG + EF D
E E + AC + BG DF
F F + BC +.AG DE
G G + BE + AF cD

Thus we have isolated the main effect of D and all of its two-factor

interactions. 1In general, if we add to a fractional factorial design of

resolution III or higher a further fraction with the signs of a single factor

reversed, then the combined design will provide estimates of the main effect
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of that fac;or and its two-factor interactions.
Now suppose we add to any fractional factorial design a second fraction
in which the signs for all factors are reversed. This procedvse breaks the alias
links between main effects and fuo-factor interactions. That is, we may use
" the combined design to estimate all main effects clear of any two~factor inter-

actions. For example, suppose we added to the 2%;: design in Table 6 the

second fraction shown in Table 8.

Table 8

A 2;;2 Design With All Signs Switched

A [ C D=AB E=AC F=BC G=ABC

+ + o+ - - - + abcg
- + + + + - - bede
+ - + + - + - acdf
- - + - + + + cefg
+ + - - + o+ - abef
- + - + - + + ‘bdfg
+ - - + + - + adeg
- - - - - - - (1)

The effects that may be estimated from this fraction are

=-A+BD+CE+FC
Ly = -B+AD +CF+EG
£ =C+AE+BF+0DG

{=-D+as+cc+EP

k)
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2% = -E + AC + BG + DF
LY = -F 4+ BC + AG + DE
£~ = =G + CD + BE 4+ AF

Upon combining the two fractions and forming the linear combinations

%(l1 + (:) and -%(li - l;), we obtain

1 From 5(Z; + ) From 3(2 - £3)
A BD + CE + FG : A
B AD + CF + EG B
c AE + BF + DC c
D  AB + CG + EF D
E ~ AC + BG + DF E
F : BC + AG + DE F
G CD + BE + AF G

Therefore clear estimates of all main effects and the two-factor interaction
alias groups are c.tained.

The designs due to Plackett and Burman [1946] are also two-level
Resolution III fractional factorials. These Gesigns can bé used for studying
k = N - 1 variables in N runs, where N is a multiple of 4. If N is a power of
2, these designs are identical to those presented earlier in this section.
However, for N = 12, 20, 24, 28, and 36 the Plackett-Burman designs are fre-
quently usciul,

The upper panel of Table 9 presents rows of plus and minus signs used to

construct the Plackett-Burman deaigns for N = 12, 20, 24, and 36, while the
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lower panel of the table presents blocks of plus and minus sign: for constructing
the design for N = 28, The designs for N = 12, 20, 24, and 36 are obtained by
writing the appropriate row in Table 9 as a column. A second column is then
generated from this first one by moving the elements of the column dovn one
position and placing the last element {n the first position. A thi;d column

is produced from the second similarly, =nd the process continuéd unfil.column k
is generated. A row of minus signs is then added, completing the design. For

N = 28, the three blocks X, Y, and Z are arranged as

X Y 2
Z X Y
Y Z X

‘and a row of minus signs added to these 27 rows. The design for N = 12 runs

and k = 11 1svshown in Table 10.

The alias structure of the Plackett-Burman designs is complex. 1In
general, all two-factor interactions not involving factor Q (say) are aliased
with the estimate of Q. For example, in the 11 factor plan shown in Table 10,
each main effect is aliased with 45 two-factor interactions, and‘éach two-
factor interaction appears in 9 of the 1 estimates of main effecte. This is
somevhat less troublesome if fewer tﬁan 11 factors are considered. _further-
more, the two-factor interactions could possibly be untangled by adding a

second fraction with all signs reversed, provided that only a few of them

were large.

EXAMPLE 1. We shall now illustrate some of the above ideas with an example.
The problem setting is inventory control, and we wish to determine the effect

of various parameters on the average annual cost. We note that simulation
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Table ¢

Plus and Minus Signs for the Plackett-Burman Designs

k=1l Ne12 4444+« +-

k=19 N=220 44t tectadtatocaettde

k=35 N= 36 i I S SR IR IR I 3R TETIE b K e S O G

k=27, N =28
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Table 10

Plackett-Burman Design for N = 12, k = 11

C D E F G H
+ - - - + + +
- + - - - +
+ - " - - -
+ + - + - -
- + + - + -
+ - + + - +
+ + - + + -
+ + + - + +
- + + + - + +
- - + + + - +
- - - + + +

|

|

\

|

"\
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methods are not required for this problem, as there are analytical models that
can be used to describe the system. However, the problem has been kept simple
deliberately to illustrate the experimental methods.

There are three items in the inventory. These items are military beits,
such as used in jeans and other casual apparel. Item 1 is hardware, item 2 is

dycd webbing, and item 3 is natural webbing. The following quantities are

fixed:
Item 1 Item 2 item 3
Annual Demand (D) 500,00 doz. 300,000 doz. 200,000 doz.
Demand during‘a Uy = 20,000 Hy = 6,000 uy = 4,000

Lead time :

X ~ N(u,02) o, = 3,000 g, = 900 gy = 600
ﬁead Time T 2 weeks 1 week 1 week
Fixed Cost A $35 per order §$15 per order $15 per order
Unif Var. cost C $6.25/doz. $3.10/doz. $2.80/doz.
Carrying cost h $.20 $.28 $.28
Cost per unit short « * $.40 $.40

The following variables represent parameters that we would like to investigate

to learn their effect on the system:

Variable Level Item 1 Item 2 Item 3
Order quantity Q 1 10,000 4,000 3,000
2 20,000 8,000 6,500
Reorder point r 1 17,000 5,000 3,500
2 35,000 11,000 7,000

Cost per unit o 1 .3

short
2 ]
38
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Note that there are seven factors, each at two levels. The 2;;? design
in Table 6 is run, using the high and loy levels of these factors shown above.
Let factors A, B, and C denote the order quantities for items 1, 2, and 3; D,
E, and F denote the reorder points for items 1, 2, and 3; and G denote the

shortage cost for item 1. From the design in Table 6, we obtain the following:

Treatment Response

Combination $ X1000 Effect + Aliases (2-1) Estiméte
(def) 4,626 A : -65
afg 4,693 B 50
beg 4,718 D -180
abd 4,655 c -66
cdg 4,662 E -72
ace 4,653 F =58
bef 4,685 G 80
abcdefg 4,626

Obviously, the effect of D (and its aliases) is large. Since this is the only
large effect, we might stop and conclude that over the range of variation, that
only item 1's reorder point seriously affects the system. However, to be more

certain of these results, we run the alternate fraction given in Table 8, This

gives the following:




Treatment Response
Combination $ X1000 Effect + Aliases (2-2) Estimate
abeg 4,683
bede 4,632 ’ -A 66
aecdf 4,656 : -B : 114
cefg 4,704 -D 182
abef 4,647 -C ' -32
bdfg 4,640 | , -E 72
adeg 4,640 -F 24
(1) 4,716 -G -16
Combining the results from the two fractions, we obtain

i From-%(gi + 2;) From-%(li - )

| A BD+CE+FG= 1 A= =65

| B AD + CF + EG = 82 B = <32
c AE + BF + DG = -49 C=-17
D AB + CG +EF = 1 D = -181
E AC+BG+DF= O E=-72
F BC + AG + DE = -17 F =41
G CD + BE + AF = 32 = 48

Clearly the main effect of D is large; Since the effect of D is over
twice as large as the next largest effect, we are tempted to conclude that it
is the only significant factor. This is confirmed by viewing the normal
probability plot of the estimates of the effects, Figure 5. Point 1 on this
plot is D. It is significantly off the straight line formed by the other

effects. We conclude that only the effect of D is significant.
40 | : S
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2-2.3 Resolution IV Designs

A Zk_p fractiona; factorial design is of resolution IV if main effects
are clear of two-factor interactions and sdme two~-factor interactions are
aliased with each other. Thus, if three-factor and higher interactions are
suppressed, main effects may be estimated directly in a 2¥;p de;ign. The

26-2 design in Table 3 is of resolution IV. Furthermore, the two combined

7-4
111

Any 2¥;p design must contain at least 2k runs. Resolution IV designs

fractions of the 2 design in Example 1 is a 2;;3 design.

that contain exactly 2k runs are called minimal designs. Resolucion IV designs
may be obtained from resolution III designs by the process of fold over. To
fcld over a 2¥;¥ design simply add to the original fraction a second fraction
with all signs reversed. Then the plus signs in the identity column T in the
first fraction are switched in the second fraction, and a (k+1)St facror
associatedelth this column. The result is a 2¥:l-p fractional factorial
design. The process is demonstrated in Table 11 for the 2%;; design. The

resulting design is a 2?;1 design with generating relation I = ABCD.

Table 11

A 2571 pegign Obtained by Fold Over
v y

D

I A B c

' 3~-1
Original 2III I = ABC + - - +
+ + - -
+ - + -
+ + + +
231
Second JIII with signs switched - + + -

&~
[ 3%}
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As a second example of fold-over, consider the 21;4 design used in
Example 1 (also see Table 6). By adding to the design the fraction in Table 8

and assocjiating an Sth H factor with the column I = + in Table 6 and I = -~ in

Table 8, we would have a 28-4 plan. The generating relation for this design is
v
I = ABDH = ACEH = BCFH = ABCG = BCDE = ACDF = CDGH
= ABEF = BEGH = AFGH = DEFH = BDFG = ADEG = CEFG
= ABDEFGH.

The generator of the new design will consist of all generators from the old
design that contain an even number of letters and all generators from the old
design that contain an odd number of letters will have the new letter added.

| Any resolution IV design will contain a 23 complete factorial design.
That is, it will provide r replicates of a 27 design any 3 of the original factors,
provided the design contain r23 points. Thus the 2366 plan above provides two
replicates of a 23 in any subset of 3 of the original 8 factors. This often has

important applications in screening.

EXAMPLE 2. Consider the inventory problem in Example 1. We will fold over the

4
I

taken to be the mean ¢ the lead time demand distribution for item 1. In the

original 2:; design in this example, giving a 2?;4 plan, with the 8th factor

first fraction the mean is 20,000, while in the second it is 25,000. The

following results are obtained.
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Treatment

; Combination Respoase ($ X 1000) Estimate Effect
; def 4626
; afg 4693 - 96 FG + AH + BD + CE
: beg 4718 | 258 EG+AD + BH + CT
' abd 4655 288 " AB + CG + DH + EF
cdg 4662 -170 DG + AE + CH + BF
f ace 4653 ~-24 AC + BG 4+ LY + DF
| = bdf 4685 -58 BC + AC + FH + DE
, ; abcdefg 4626 -8 CD + AF + GH + BE
% i
f % abegh . 4742 278 -R
‘ bedeh 4631 224 -A
g acdfh 4655 158 -8
' cefgh ' 4822 648 -D
i abefh 4682 -38 -
bdfgh 4639 120 -E
) adeg 4639 S8 -F
!T h 4786 -168 -C

Once again, only the effect of D appears large. This is confirmed by the normal

probability plot given in Figure 6.

RS —

2-2.4 Remarks on Computations and Aliasing

To this point we have used the relatively simple computational methods
associated with the Zk-p designs, assuming that at least a regular fractfon {is
availuble. Sometimes an experimenter will want to update the estimates of the
effocts following cach additional run. This might often occur when augmenting

a 2"-p design with additional runs to estimate certain interactions. If we
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Figure 6. Normal Probability Plot, Example 2
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consider the model

we can give an updating equation for f in terms of each new run, assuming that
the starting peoint was a block of runs giving orthogonal minimum variance
estimates of B (such as the Zk_p designs). This updating equation is

n

(y, = 3,)x (2-3)
121 i 1.1

~ ~ .. -1
- . + +
Bugw = Bop * N P)
where p 1s the number of model parameters, N is the block size, m is the number
of blocks completed, yi'is the new observation associated with the new vector
. N

of variable settings x, (i=1,2,...,n < N), and y, = B

B, Xy Equation (2-3) waf

derived by Hunter [1964].

We may algso give a genetai result concerning aliasing. If the true

model is
B AR AR IR 1
but the experimenter has est;-ated only the parameters §1 using the model
I=X8, +¢
then it is well koown that B, 1s biased, such that

E(S)) = B, + 48,

46
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where the matrix A = (xixl)'l(xixz) is called the aljas matrix. This general

prrm—"
+

.

result can be used to work out the aliases for effects in the 2% system.
i It is often useful in more complex design settings than the Zk'P,'patticularly g

in irregular fractions, such as discussed in the next section.

2-3. Irregular Fractions of the 2k Design , ' v ' |

| - There are some multifactor screening situations in which higher

_ saturation of the design than canvbe accomplished with regular fractions would
be justified. This would be the case, for example, when computer runs are very
time—-consuming or expensi’ve. In these situations, certain irregular fractional
factorial designs may be useful. Often in these designs, the experimenter will

‘only De able to estimate certain parameters in the model and will have few

P
-

remaining degrees of freedom. Furthermore, the estimates of the effects will

generilly be noncrthogonal, |

o
3 f

+

The simplest irregular fractions result from augmentation of : “alanced

—— g
.

Zk.’ fraction. One may view the process of conﬁining fractions from the same
family in the 2:;; series as sugnmentation decigés. vhere the augmented set is
as large as the initial set. The methods preseﬁted here are based on smaller
sugnented sets, usually 1, 2, 4, or 8 runs, addéd with the objective of esti-
" mating two-factor 1§:eractiaas. § |
As an elementary example, consider the i:;: design. If only the A
effect is large, then an estimate of the A effect clear of the BC interaction
can be obtained with only one additional run. Thus i{f I = -ABRC, and the runs
made are (1), adb, ac, and Sc. Row consider obiervation a. Since E(a) = |

MW+A B ~-C~-AB~AC +BC, we have, if B =C = AB = AC = O,

E(a) =y + A+ BC

i -
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If we have an estimate § from the original fraction, then A + BC is estimated
by i*ea -vﬁ. We can estimate A -~ BC diréctly from the first fraction as
L = -(1) +ab + ac - bc. Then 2* + £ estimates A and 2* - 2 estimates BC.
Similar augmentation schemes can be derived for most other designs in
the 2¥°P series, either to separate a single two-factor interaction, a pair of
two~factor interactions, or four such interactions. Daniel [1972] is the basic
refevence in thié area. Addelman [1969] discusses tﬁe same problem, in more
detail than Daniel [1962], but with less adaptation of results to special cases.
Three~-quarter replicates of the 2k-P series are often highly usefﬁl.
These designs may be viewed as constructed by either omitting a quarter-fraction
from the full 2% or by adding a quarter-fraction to a one-half fraction. A
good survey of these designs is in John [1971]. We will illustrate one of these

designs with an example.

EYAMPLE 3. Suppose that in Example 1, only items 1 and 2 are of interest. We
would like to obtain estimates of all 4 wsin effects (the order quantities and
reorder points) and the 6 two-factor interactions. Obviously a 2"0-1 will not

do, since it contains only 8 runs and we msust estimate 10 parameters. The full

&

2" design, requiring 16 rows, is considered too expensive. Only 12 rows can be

taken.

We can estimate all 10 effects with 12 observations by using a 3/4

2

fraction of the 2°. Consider the quarter replicates (2“ » [ = +AB = +ACD):

(1) I = +AB = 4ACD = +BCD; d, ab, c, abed
(2) T = +AB = ~ACD = -BCD; (1), abd, cd, abc
(3) T » -AB = 4ACD = -BCD; bd, a, bc, acd
(4) 1 = -AB = -ACD = +BCD; b, ad, bcu, ac.




I | | -

Omit the first fraction and run only the last three. Now overlap these three

quarter replicates as follows to estimate the effects:

Fraction 1: (2) + () J = «RCD

- ABCD = -110

>

Fraction 2: (2) + (4) I = =ACD
B - ABCD = -32

AB - BCD = 0

BD - ABC = 32

ABD ~ BC = 0O

Fraction 3: (3) + (4) J = -AB
- ABC = -318
-88

- ABD =
- ABCD= 0

8 1o s

The estimates of the 4-main effects and 6 two-factor interactions Are shown

above, assuming that higher-order interactions are negligible. Once again,

note that only the reorder point for item 1 seems to produce a significant result.
Addelmsn and Kempthorne [1961] have developed a series of orthogonal main

effect plans. These designs arec useful in cases vhere only main effects are of

interest. In many cases fartors with either 2 or 3 levels can be conaidered.

Much other work has been doue.on irregular fractions of the 2k3' series.

- lz 49
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Margolin [1968] [1972] has done much of the work in this arca. Webb [1965] [1971]
has also developed very compact mixed fractional factorials from this series,
involving 20 or fewer runs, There plans all have very heavy 2 factor interaction

aliasing. Of related interest is Webb [1968].

2-4, Supersaturnted Plans

These are two-level designs devised by Booth &nd Cox [1962]. 1In these
designs, @ach of k fhctors appears at the high and low levels N/2 times, where
K < k. H§ assume that N i{s even. Clearly not all estimates of the effects can
be orthogonal, since N < k. Booth and Cox [1962' generated these designs 'to

obtain "near-orthogonality” by using the design criterion

min(max |d{d,})
gy )

vherc d; 18 a row vector denoting the levels of factor i. The vector 21 will consist of
‘. N/2 + 1's and N/2 - 1's. Booth and Cox [1962] tabulate designs for N = 12 and

k < 16, 20, 24; N = 18 and k < 24, 30, 36; and N = 24 and k < 30. They describe

an algoritim for generating other designs, although the proucedure may be very

fnefficient.

EXAMPLE 4. To fliustrate the use of a supersaturated design, consider the
inventory problem in Example 1. We now add a fourth item to the inventory, with
the following parameters:

D = 350,000, o, = 2,000, A = $25, C = $4,30, h = $0.45, n = $0.50

The following 13 factors will be considered in a screening experiment:
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Factor High Level . Low Level

Q, 10,000
Q, 4,000
Q3 3,000
Q‘ 5,000
r 17,000
r, 5,000
rq 3,500
T, 7,000
L5 $0.30
ul 20,000
u, 6,000
, 2,500
, 4,000

The 13 factor Booth and Cox design to investigate

responses obtained, are shown below:

51

20,000
8,000
6,500
9,000

35,000

11,000
7,000

15,000
$0.50

25,000
8,000
5,500

10,000

these factors, and the
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i Response

R I O R L T S B UL B

A R C n E F G H I J K L M

+ + + + + + + + + + - - $61138
+ - + + + - - + - - - - 6166
- + + + - - - - + + + 6247
+ + + - - - + + - - + 6310
+ + - - - + - o+ - + + + 6328
+ - - - + - - + + + + 6275
- - - 4 - - 4 + + + + = 6619
- - + - - + - + + - + - _6‘558
- + - - + - - + - - + + 6150
+ - - + - + + - - - - + 6158
- - + - + + + - + - - 6137
- + - + + + - - + - - - 6135

The contrasts for cach factor are obtained in the usual way., These contrasts

are:

A= o7
B - -205
C = -109
D = -295
£~ -819

F = -197

Clearly the largest factor effect fs E (or

-169
297
449
267
733

115

rl). followed closely by L (or u)).

There are also several other moderately large contrasts that may indfcate
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significant factors. This example illustrates one of the major disadvantages of
a supersaturated désign. Following the initial experiment, if several effects
Meom Lo b? potentiatly active, there is no simple additional set of experiments
that can be run to isolate the factors of interest. This is in contrast to the
Zk'P series, where additional fractions from the same family can always be used
to gain further information on potentially active factors, or to untangle the
interactions. Moreover, the aliasing that is présent in the contrasts from a
supersaturated design is very heavy and irregular, and this will frequently
cause a confusing picture to the analyst. In this light, the supersaturated
deaigns are likely to be little better than the "random balance" designs pro-

posed by Satterthwaite [1959] and Budne [19591].

2-5. Group Screening Designs
2-5.1. General Approach

These designs are intended for usé in situations where the following
conditions apply: »

1. The number of factors k is relatively large

2. Allzfactors have the same prior probability of being active

3. There are no interactions between active factors

4. The direction of all effects is known

5. The errors associated with the observations are NID(O,OZ).
A group -creeningAdeoign is conducted by forming the original k factors into g
groups. Then cach group 1§'¢onéidé§ed as a single factor and investigated
through a desig@ such as ;he zg-p. If a group~factor is negligible, then all
factors within that group are considered insignificant. Group factors that

exhibit significant effects are ther divided into smaller groups for subsequent

exper .mentation,
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These designs were introduced by Watson [1961], who proposed that only
two stages be used. Thus in the second stage, we experiment with the original
factors. Patel [1962] and Li [1972] have generalized these results to multiple
stages.

2-5.2 Two-stage Group Screening

The k factors will be divided into g groups. Watson [1961] originally
suggested that all groups be of the same size, although this assumption is
unnecessary. Because the direction of effects is known, we can label the high
level of each factor as the level prbducing the largest response. The upper
level of a group factor consists of running each factor in the group at the high
level. 1If this arrangement is not followed, some factor effects may cancel.

Watson [1961] derives the optimum group size to be

£ = [a-appl™/? (2-6)

where p is an estimate of the fraction of active factors and @y is the significance

level used for the first-stage statistical analysis. This formula attempts to
minimize the total number of rums required in both stages. It also implies that
groups will be of equal size. If we have no prior estimate of p, or if the
direction of some effects are not known, then (2-4) is invalid.

Generally, we would expect p to vary from factor to factor. That is,
we.would have considerable knowledge about some factors, and little knowledge
about others. Note that as p increases, the optimum group size decreases.
Therefore, it would seem reasonable to use groups of different sizes, depending
on our knowledge of p for each factor. Factors that we strongly suspect are

significant would be run in very small groups (perhaps of size 1). Furthermore,

factors for which we do not know the direction of the effect could be tested in
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groups of size 1 to prevent the cancellation effect.

As a hypothetical example of group screening, suppose we have 17 factors.
Suppose that the direction of factor 1 is unknown, and that we are almost
positive that factor 2 {s active. fhe posélble directions of the other is

factors are known. Therefore, a logical arrangement of the groups would be:

Group Factors Original Factors

A 1
B 2
c 3,4,5,6,7
D 8,9,10,11,12

E 13,14,15,16,17
These five factors could be investigated in the first stage using a 2;;% design
(8 runs). This would permit investigation of all main group effects, but these
effects would be aliased with the two-factor interactions of the group effects.
If we wanted to use 16 runs, the 2;;1 design would allow estimation of all main
effects and two-factor interactions of the group factors.

If the assumption of no active two-factor interactions between the original
factors holds, then ﬁhe factors may be formed into groups on an arbitrary basis.
However, some choices of grouping arrangements will lead to more easily intet—‘
preted results, or to smaller qets of active factors to be investigated at the
second stage. Sometimes we can use our knowledge of the ptobléﬁbfoméééﬁ iﬁerru
groups. For example, we might place all similar factors in the same groups.
Thus if we are simulating an inventory system, all reorder quantities could form
one group, all reorder levels‘a second group, etc. If some two-factor inter-
actions may be active, then we must take more care in forming the groups.
Generally, a significant two-factor interaction (say AB) biases the estimates

of a third factor (say C) if and only if all three factors belong to separate
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group factors. Therefore, if we suspect that some two-factor interactions
are active, then all the factors invelved in thusovintvrartiuns'shuuld b
placed in the same gfoup. For a proof of this rvgul!, see Kleijnen {19795, bl

fro the second stage of a group screenfng design, in addition to investigating
the set of potentially active factors, we ﬁust also choose levels for the negli-
gible factors identified in the first stage. Rpcall that the linear mode! can

be written as
y- xlél + xzﬁz +€,

vhere now El_contalns the set of potentially active factors and fz contafns the
set of factors tentatively identiffed as neglipgible at the first stage. The
matrix X; consists of the levels assigned to the active factors in the second
stage and x, consists of the factors assigned to the negligible factors. Now,

a -1 ¢
the expected value of the least squures estimate of 51. §l - (xixl) lx,!. is

A ] -1
E(B)) = B) + (X X)) "X Xp8,.

.Clearly, if all the factors thought to be insignificant from stage 1 really are

insignificant, then 82 = 0 and él is an unbiased estimator of g‘. However,
if one or more of these effects is active, then §2 ¢ 0 and él is a biased

estimator of 91'

-~

The extent of the bilar in 8, is given by the alias matrix A = (x;xl)"x;x:.
This may be coatrolled by the choice of factor levels for the variables in Xo.
Assuming that two-level factors are employed, then i{f all levels in X, are
identical (say +1, the high level) then the coefficients fn §2 will bias onlv the

intercept or overall mean term in 91' No other effects in El will be biascd by

factors in 92'




e

o
.

oy

/Wﬁ&ﬁ.mwan.w. e e e
- // ’,v’ A
s

To prove this, suppose that Xl is nxp, @1 ispx1l, X2 is nxr,
and ﬁz is rx1. If the second-stage design is a 2K er an orthogonal fraction
of the Zk, then (X{Xl)_l = (l/n)Ip. Furthermore, if all of the negligible

Iactors In X, are set at their high levels, then x2 is an nxr matrix of 1's.

2
Now X, is an nxp matrix, the first column of which consists of 1's (to account

1
for the overall mean i) and the remaining p-1 columns consist of the +1 and -1
levels from the orthogonal 2k design.' Therefore, Xix2 is a pxr matrix, the

first row of which consists of n's, all the remaining elemtns are all zero.

Therefore,

(X X)X, = (/WI, | n n ... n

and the alias structure is

5B = 8+ I 8
=p

E(B,) - B> 1=1,2,...,p-1
Thus *he r elements in B, bias only the estimate of the intercept éO' Strictly
speaking, all of the r negligible factors do not all have to be here at the high

level. However, each factor must bz held at the same level throughout the

experiment.
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EXAMPLE 5. Consider the inventory problem in Example 4. Suppose that there are
13 factors of interest, Ql’ Tys Uy ul, Qz, Ty Ugs QJ, g, QA’ T4 and - Hg

will arrange these factors in 4 groups, according to item, as follows:

Group Factor Original Facior
A Q, Tyr M M
B Qs Ty My
c Q3> T3, My
D Qr Tyo My

4-1

A2 design is used to analyze these four grouﬁ factors. The results are

summarized below:

Treatment
Combination Response Effect Estimate

(1) 6207

ad 6164 A + BCD -180

bd 6183 B + ACD -116
; ab 6134 AB + CD -10
g éd 6210 C + ABD 6

ac 6168 AC 4+ BD 4

be 6181 BC + AD -8

abcd 6135 D + ABC 2

Note that the two largest effects are A and B (and other aliases). Group
factors C and D, and consequently the factors for item 3 aad 4 are negligible.
Therefore, following the¢ initial 8 rows, we have reduced the set of potentially

active factors from 13 to 7. The 7 remaining factors, G, T1» ul, "1’ Q. Tys

7-4

7-3
111 °F 21v plan, such as illustrated

and Y, could be investigated using a 2
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equier.
2-5.3 Group Screening With More Than Two Stages

Patel {1962] and L1 [1962] have generalized Watson's results to more
than two stages. Their procedures are very similar. Patel showed that the total
number of runs is minimized if we choose the number of groupsvaccording to

g = lq,n/(n-u)

| L 1/(atD)
82.83-°~°'8n"8n+1"? »

wvhere By is the number of groups into which each of the groups at stage i-1 is

split. He also notes that an n-stage procedure is preferable to an n-1 stage

procedure if

p < [1-(/m) ™™D,

Group sizes decrease geometrically with parameter pl(“+1).. Note that if we
suspect that if more than one-fourth of the factors are active (p > .25), then the
optimum number of stages is one. If between one-twelfth and one-fourth of the
factors are active, then two stages should be used. Sinilarly, a three-stage
procedure would be used if between one-thirtieth and one-twelfth of the factors
are active. Clearly, these designs will be useful only in situations where p

(the ratio of active to total factors) is thought to be very small.

2-6. Variance Reduction Considerations in Factor Screening
An important consideration in the design of a computer simulation experi-
ment i{s the incorporation of variance reduction methods into the design. Two

common variance reduction methods are the use of common pseudorandom numbers and
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antithetic pseudorandom numbers for different points in the design. These

methods have application to factor screening. Early work on this problem was
by Fishman [1974]. Recently,a comprehensive treatment of the subject was
published by Schruben and Margolin [1978].

We assume that when common random number streams are used at two design
points, the two output statistics exhibit positive correlation, and when anti-
thetic random number streams are used at any two points, negative correlation
between outputs is induced. These assumptions are, of course, not always met
in practice, but they are satisfied relatively often, as has been confirmed by
numerous investigations (see Kleijnen [1975a}], pp. 197-198).

Two possibie estimation methods can be used, ordinary least squares (OLS);

or weighted least squares (WLS). These estimators are

LS ™ (X')O-lx'! ‘

gn >

and

B = X'vio~Ix'vly

where V is the correlation matrix induced on the responses. The covariance

matrices for these estimators ére

2 - vy =ly ry=1 wy~1
COV\Loho) (X'X)"X'VTOX(X'X)

Cov( 5,1_5) = (x'v-1p-1

PRT
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A widely used criterion for cbuparing designs for estimating £ is the
‘determinant of the covartance matrix of the estimator. Designs that minimize
this criterion are called D-optimal designs. The determinants of the covariance

miatrices assoctated with the OLS and WLS estimators are

- ’ -2 rep- Lyt
Doy s = XX 7|x"w i

and
s = | (xvIin=1

The WLS estimator has smallesat generalized variance a-oﬁg the class of linecar
unbiased estimntors. However, it {s often impossible to calculate the WLS
estimate because the matrix V is unknown.

There are some situations in which the OLS and UIS est imators are equiva-’
lent, and, hence, these two estimators would produce the same covariance matrix.
Schiuben and Margolin [1978] show that the two estimators are equivalent for the
cases of the randcln number assignment schemes that nlni-izé DUI.S‘ That is, an
induced correlation structure that would minimize Dhs is also one for which

-~

tbe estimators EOIS

‘the OLS estimator can be used.

and ém (and have DOLS and D“_s) are identical. Therefore,

Schruben and Margolin {1978] propose the follovin# rule. If an experimental
design a&-tts orthogoful blocking ;nto two blocks, then lf for all points in
block 1 we use the saue common set of pseudorandom numbers, and for all points
in block 2 we use the antithetic set of random numbers, then the OLS estimator
of g will have minimum generalized varfance. Specifically, this assigmment rule
will produce an estimator of 8, that is superior to that obtained by commson

random numbers, and equivalent in terms of dispersion to common random numbers
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for estimating the ruw ning parametess in E. 1In general, the best results are
obtained {f the block sizes are the same. Furthermore, the positive and negative
correlations induced do not have to be equal.

There are usome special results that can be stated tor thé 2KP series of
designs. 1f the induced positive and negative correlations are equal in magnitude,
then the assignment rule above produces a minimum geaeralized variance for the
class of Zk'P designs assuming that the linear wodel contains a mean (Bo) plus a

subset of ¢ < 2k'p

effects. This assignment rule also minimizes the trace of
the covariance matrix of é ithat is, fhe sum of the Qariances of éO'él""'ér
is minimized).

Occasionally, factor screening experiments will make use of saturated
designs. For a saturated design, any induced correlative structure between the
observation: results in an {wprovement with respect to the generalired variance
criterion over that obtained fron.independently ==ecking each design point.
Furthcrmore, the (LS and WLS estimators are equivalent in this case also.

These results have direct application to factor screening. Any 2% or
2k-p §eslgn that i{s not saturated can be run in two orthogonaf olocks by identi-
fying the blocks with the + and - levels of one of the k columns in the design.
Thus, only k-1 factors could be inveltfgated.

Ve now give sowe illustrarions. First consider the .‘!6-"2 design shown in

Table 3. We can run this design in two blocks, say

(1) bdef] \ be daf
aef abd \ abf ade
bef cde i cef bed
abce acdf ac abcde1
block 1 dlock 2
62
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These blocks were formed by confounding the ARF C"‘I't‘l‘ (and ftx aliases; Hew
Table 4) with blocks, The treatment combinatfons tn block 1 would be run with
one met of common randiom mumbers and those in block 2 would be run with the
antithetic nev ot random numbers,

An a second example, consider the 2:;? desipn run in Fxamgle 1. Since 7
factors are consldered in only 8 runs, thin is a saturated fractional tactortal,
1f enly this fraction {s to be run, any tnducttion of correlation i superjor to
{ndependent ubm-rvmiuhé. so running all 8 observatfons with (ommon random number
streams would be an appropriate strategy. N«Q. if any fractfon from the same
family s added to the original fraction, the new traction should he run using the
antithetic random mmber stream,  Clearly, this Is an optimal strategy, since the
two fractions together can be viewed asn a fold-over design with the random number
stream offect taking the levels of the eighth factor (rshich §s + fn the fraction

1 and ~ (n fraction 2).

1

inventigaten & factors in 8 runs, and since {t {8 not a maturated fraction, we

As a third example, consider the 26-3 denign in Table 7. This desipn

could obtain a mintmwm generalized varfance by decomposing the design into two
orthoponal blocks of 4 runs each. Now anvy nonsaturated R:-sqlut fon 111 plan can
he run in two hlocks by fdentifying tﬁo + and -~ leveln of a sningle additional
varfable with the blocks, Thus, in our cxample, add a seventh vo“nun to Table

7 by setting the signs in that column equal to B = ABC, Thus, the sipgns are

- +, #\, e ¥y, =, =, and +. Connequentlv, run treatment combinations def, abhd,
ace, .-m{l bef dn block 1 (=) with a common set of random numbers, and treatment
nmhlmlt:‘,lnna n", be, cd, and abedef in block 2 with the antithetic set of random

i
numbers .\

Nc&w suppose upon examining the entimaten of the effects from this fraction,
it is decided to add a second fraction from the same family to separate main

effectn and two-factor tateractions. The appropriate second fraction ix

6) %
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+ + + - - - abc
- + + + + - bede
+ - + + - + acdf
- - + - + + cef
+ + - - + + abef
- + - + - + bdf
+ - - + + - ade
- - - - - - (n

‘ln this new fraclion,.block 1 would consist of bede, acdf, abef, and (1).

These rows would be made with the same set of random numbers uéed in block 1

frﬁn the first fraction. Block 2 in the new fraction would consist of abc,

cef, bdf, and ade. These runs would be made with the antithetic stream of random
numbers used in block 2 fn the original ffactlon. It {s ecasy to verify that the
final design is a 2:;2 plan, with generation I=LCDE=ACDF=AREF. The estimators

from the combined design have minimum generalized variance.

2-7. Evaluation and Choice of Screening Designs

In this section, we will evaluate the characterlaftcs of the various types
of screening designs. Hopefully, this will provide guidance on the selection of
designs in practice. o

The 2%-P fractional factorial design has many advantages in _actor screen-
ing. If we can afford N runs, where N is a power of 2, Resolution II[ plans can
be derived that incorporate up to N-1 factors. These plans require the experi-
menter to assume that two-factor and higher interactions are negligible. How~

ever, the assumptions regarding interactions can, to some exter®, be checked by

combining the original 2%;; design with a second fraction from the same family.
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1f the experimenter can afford up to N=2k runms, the Zk-P Resolution 111 and 1V
plans are highly recommended.' The Plackett~-Burman plans, also of Resolution III,
arc not generally recommended for factor screening unless the analyst knows in
advance that all but a few two-factor interactions are negligible. The heavy
aliasing of main effects and two—factof interactions 18 an undesirable property
of these designs,

The supersaturated plans of Booth gnd Cox, like the Plackett-Burman
designs, assume that only main effects até active. If this assumption is false,
then the alias structure génerated by a supersaturated design would be extremely
difficult to untangle. The group screening methods of Watson and Patel are
recommended instead. This aﬁproach would seem to have the economic efficiency
required in simulation, without the overly-teat;ictive assumptions regarding
interactions. For the vast majdrity of screening problems, either two or three
stages will be sufficient. Once groups of factors are formed, it is recommended

that 2¥"P fractional factorials be used to investigate the group factors.
3. SCREENING WITH UNDESIGNED AND PARTIALLY-DESIGNED DATA

3-1. Factor Screening with Regres:fon Models
Very few factor screening studies will begin in an inter. . tionless state. ;
In mose cases, we find that the analyst has some computational experience with
the simulation model. It would be economically efficient to incorporate as much
as possible of this historical information into the screening study.

In Section 2, we illustrated how the general linear model
y=xB+e

could be used in factor screening. If an experimeat can be designed for studying

the effect of the factors, very efficient parameter estimation techniques can be
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used and data interpretation in relatively simple. One reason that the desipgned-

experiment case is o simple {s that most ucrevning designs are orthogonal; that

is, the regression coefficients £ have unconditional faterpretations. 1f we

apply the same approach to undesigned data that may have been collected fqr

other purposes (such as validation or verificatioﬁ). this ease of interp-etation

iz lost. However, it ix atil] possible to learn somcthing about the relative

importance of the factors.

When dealing with undesigned or historical data, our approach s to fit

an appropriate regresaion model to the data, and then make inferences on the

model parameters to determine the effects of the factors. This is often hazardous,

since {t i{s well~known that the regression coefficients 8 wmeasure only the

partial effect of a variable, That is, Bj measures the effect of xy conditional

"on the other xi (1#3) in the regression model. Furthermore, depending on the

degree of nonorthogonality in the data, the lsast squares estimates of § may be

very far from the tr.» regression coefficients.

With undesigned data, the factor screening problem consists of two stages,

(1) vartiable selection, and (2) interpretation of regression coefficicats. We

will discuss these probléus in the next two sections.

There may also be a third type of screening study, part-way between the

extremes of designed experinenfs and undesigned experiments. This i{s the situation

in wvhich some new data points may be collected for use with the original undesigned

data, but the amount of new data to be added is not enocugh to constitute a fully-

designed screening study. We will discuss methods for augmenting undesigned

data for factor screening studies of this type.

3-2. Variable Selection Procedures

There is a vast literature on variable selection in regression.

A very

comprehensive review of this subject is in Hocking [1976]. Variable selection is

66

e e ——

L“g‘,




both an art and a science, and should be performed with care and caution. It
shoulid be regarded as exploration of the structure of the data.

e may claxsify varfable selection methods into two general types,
stepwinc-type mrthods and search methods. Stepwise regression and its major
varfattons (torward selection and backward elimination) are well-known. These
procedures xhould not be used mechanically to find the “best™ regression equation,
Moreever, the order in which variables enter an' leave the mude] should not be
interpreted as measuring the relative (mportance of the {actors. The existance
of multicollinearity (correlation betwesn factors), which is often a function of
thw disposition of the data in n-space, impacts the variable selection prodlem
signif fcantly, |

Scarch=type variable selection methods faclude the all-possible regresaion
algorithma, the Hocking-Lamotte SFLECT procedure (sece Mocking [1976] for a
description), and the directed t-search sethod (see Danfel snd Wood [1971)).
These procedures of ten praduce resulls superior to stepwise type maethods, par-
ticularly for data that is badly nonorthogomal. The all possible regressions
methonic has much to recommend it, particularly vhen the mmber of factors is
umali, say 20 . = less. There are several gond computationally efficient

~algorithms for «+! ~ -ible regressions, including the Furnival and Wilsom ‘
[1974] algorithe, which * ‘ow available on BMD-P. |

For facAmr screening purp. ~'s, stepwise type methods can be used at the

~ outnet of the problem, Vto reduce the number of factors to about 20. Cewmerally,
backword elliln" {on serms to work well at thrliarstia;;v.ia—l!;mgh aay ‘of the
stepwise-type procecures can produce ju3d results if caretully used. Then one
of the scarch methods such as all possible regressions, should be employed using
the subset of the original factors identified at the first stage. The end result
may he several final equations. Each good candidate equation should be examined

for adequacy and validity using ‘the atandard techniques of residual analysis

i
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(sce Drapef and Smith [1966], Ch. 3). Since the primary objective of building

the regression model is to obtain good estimates of the parameters, the model
selectlon eriterfon should be chosen accordingly. Sclecting the model that gives
4 minfmum mean square error will generally lead to good esiimates of the i: lividual
repression coefticients. Selection of variables based on r2 {a popular pr. tice)

of ten causes important varjables to be left out of the equation.

31, lu(rrprétdlinn of Repression Coefficient

Aw noted previously, interpretation of repression coefficients is hazardous,
since oy measures the etfect of xj afven that other factors x4 (i#j) are alsc in
the rodel.  Furthermore, the mognitudes of the individual coefficients are
affected by the units ot the factors and the response v.  For this reason it i,
unu 11y bent te work with standardized coefficients (often identificd as "beta
coctfrcients” on oregression computer program outputs).  In peneral the standardiced

con Pt dents e tound by solving
* .
C - 3 -1

mha e 4 1w The corrtelation matrax o2 the s factors and @ is a4 vector ot ~izple

corrciationg hetuern X and the fespense v, The relationsiip betwesn the

ctoartatdiTesd ! ortyinal forrosslon coetticients is
B BRI (3-0)

whe e S 1a The corferted w0l uguafes ot v and b, ts the Cofrected s oot
seviafes ot the X,
“hile the macattude and sion of the stardardized renression coetticients

are often used as mseasures of irportance of the factors, we must femenher that




the partial nature of these cocftficients still hampers interpretation, Only if

the factors X i=1,2,...,k are orthogonal (or nearly so) is the total effect of

* - . -
s, retlected by 5. Theretore, o shonld examine the Fingl set of factors

i=1,7,. .. ke and measare the extent of departure from orthoponality betore

N

I

interpreting the individual standardized regression coctticients,  One usetul
measure of orthoponality is ;(Ii. It (G = 1, the tactors are orthogonal, while

it l¢] = 0, there is at least one linear dependency in the tactors.  Theretors,

'3(‘.] is Larpe, say close to 1, we feel relatively confident in interpreting

the individual resression coctticients.  On the other hand, if *C'; is small,

Sav {(( 0.1, then we suspect that severe sulticollinearity is prescat, and,

consequent by, the repression coctd jeients are very unstable.  In such o case,

interpretation of the individual coefficients would be verv risky,

For interacdiate values, <ay 0.1« €7« 0.9, other measutes ot walti-

collinearity ~houtd be axanimed.  These dinclude the variance inflation tactors

-1 . .
(the main divconal clements of CT), and the viyenvalues of ¢, 11 the larpoest

varianee sntlation 1actor 1 pcreater than [0, or if the ratio ot the Larpest

to b lest cipenvalae (ealled the conditioning matber) excedds 10, then
corrective action shoald be taken betore interpreting the individual coetficient-.

via o eortective cotion would consint 0! re=estimatingg the parameters by g method

Coeevptae iy o dosionad to o ecombhat sulticollinearity.

A wtdeliegued parreter enti=ation method desipned to comhat rolti-

v liseanity s rndee regressions The ridac regression estinates are def ined as

(b)) & (¢ + k1) 4 (3-3

~ettod tor cneesing & i to solve (1=3) for varfous &,

s

plet () versus &, and delect xoas the value at which reasonable stablization

e« . . - .
i1 the coctfticients L 3) resaltss TV s plot s called the ridge trace. For

(]




s

further Jdetalls, sece Hoerl and Kennard [1970].

1f. (3-2) in applied to the full set of factors, then the ridge trace is
used to climinate negligible (."l'ctors. The rules for climination of factors are:

1. El.l;laut.o factors whose standardized coefficicats are stable but
small. |

2. Eliminate factors whwse coefficients are unstable and tend to zero as
k Increases.

3. Eliminate one or more factors with unstable coeificients.
The n-aluﬁm sct of varfables should be examined (c;r near-orthogonality. This
may bhe done praphically by plotting D = é‘(k)'é.(k) agatnst k. Note that‘b is
the nquared distance of é'(k) from the orfgin. 1t can be shown that for an
urlhﬁ:onal ﬂy;ltc'-. the dintance of the ridge coefficients from the origin should
be 5‘(0) 'i:*.(_")l(lil)z. If the factors are nearly orthogonal, the graph of these

two tunctions should be nrarly identical.

EXAMPLY 6, Consider the four-item inventory problem described earlicr. Table
12 coatains 10 obhservations on average annual cost and the corresponding valuex
of the indiependent variables Q. Q. Q4. Q. 1o Tas 3o T *1e and by These
30 runx do not correspond to aay standard factor screening design. We vill '
fllustrate how regression methods can be used to identify the most influential

factors,

These 10 variables were analyzed using the BMD-P stepwise multiple regression

program P2R. The F-level for entering and removing varfables was arbitrarily
act at 4.0 (the logic for this cholce stemn from the fact that t2 = F, and t = 2.
corvesponds rouphly to 95 percent significance). The results of this analysis

are susmarized below:
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Table 12

Data for the Inventory Problem, Example 6

I

Observat ton Cost Ql Qz Q, QA rl r, ry r, 1 1
1 A449 10490 4230 5310 8970 22380 8610 3940 14200 .70 32030
2 4223 22370 3750 S350 7520 24130 8240 6800 21830 .27 39120
3 6181 9960 7790 35690 10490 37570 4100 6360 18740 ,15 23490
4 6162 9600 8940 6230 6990 268920 11490 7510 7060 .39 27190
3 6194 8960 8540 4480 7390 32600 5150 4270 3680 ,60 25830
é 6188 10340 6350 6120 10590 29300 10280 3840 8430 .18 35440
7 6160 §7960 5180 3400 4540 29700 7070 3440 17620 .71 11400
8 6145 9220 5220 3IS80 11400 25900 9920 3080 9210 37 22902
9 6174 14400 4840 35870 4880 17960 6200 33510 3136400 .38 17030
10 4438 15010 5410 3990 4270 17430 43570 4230 4700 .54 25770
11 4198 9300 32640 6140 9140 18580 6990 4320 15400 .18 24010
12 6214 23940 8130 4440 9760 26410 97270 432¢ 6120 .36 34070
1 6176 18380 6900 4340 7250 20590 7250 4220 14800 .67 21990
14 6169 11000 4630 4080 3640 33040 10060 3050 8200 .47 14790
15 6492 8120 4490 4380 9620 27000 4700 3410 6140 .40 34480
16 6132 12350 3990 5000 5230 32340 10330 6040 9900 .55 24170
17 6218 21490 7280 4660 9800 21380 5100 6180 203500 .19 33330
18 6138 13780 3480 3380 9140 36860 9880 6470 21120 .83 17500
19 6385 20200 6960 5820 5150 15030 11150 3930 9260 .77 28100
20 4283 16440 4090 5920 4210 25590 6400 7360 7130 .90 29200
21 6287 19510 6110 5190 3580 22530 9870 4530 4900 .15 34590
22 6189 18040 5400 4940 3790 164660 4560 6260 21060 .76 12340
23 6714 9390 8540 6260 4930 19230 4870 3000 19930 .65 34900
24 6138 15110 6140 3780 8680 23490 11200 7900 17420 .40 15450
5 6193 21780 4270 3000 11160 26110 3550 5060 15020 .43 28270
26 6141 18230 7000 4950 6990 27080 10990 3920 8130 .84 10980
27 6162 17450 3390 6170 11500 28910 6120 6980 7660 .55 22220
28 6276 13900 3320 3940 8220 30670 7080 4400 10410 .50 39150

.. 29 6138 13670 8360 3840 3790 39980 9190 6130 12240 .45 25000
’ 30 6135 19120 4100 3980 7110 34150 8030 7620 14240 .13 24900
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! Variable Standardized Coefficient Partial F Statistic
‘ Q -0.372 7.438
" ~ -0.442 : 13.119
n ' 0.378 8.940
T 0.612 23.866

This equat ion has R = 0.6630 and M, - 6936.97. A plot of residuals from this
mode: vbvrsus the predicted values ;‘ is showm in Figure 7. This display
Iadicates g teadency to nﬂa~rperct cost near the extreme value ufv the response
variable, This could occur either because important variables have been left
out ol the mudel, or because the relationship between cost and the independent
variables s not linear. In this problem, considering that we know that average
annual inventory cost is not a linear function of Q and r, it would ;we- that
the latter pn_:msibillty sbéuld be explored.

Since none of the variables assbciated with items 2, 3, or 4 hre apparently
significant, they are ignored, and the data analyzed with the candidate vari~
ables Qe 7y Ql"l‘ r%. "l' and M. This second analysis is perfnr-jvd with
the RMD-P all Mslble regressions algorithm (Furnival and Wilson 11;976') POR.

The eriterion f-or avde]l selecti-n ix minimm !SE. The results are s:tuum below:

R Varjable Standardized Coefficient t-statistic
Q -1.350 -2.20
i n =-2.995 -2.57
H .
. Qry 1.175 1.72
i - 1.767 1.92
l!l 0.401 3.34
[ ul 0.667 5.46
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This s—or! > yaelds R? = 0.7226 and MS; = 6206.86. Clearly Q, has astrong
1. _¢ effect, and r; exhibits both linear and second-order effects. The
variables Ql and r, are much more 1§fluentu1 than Rl and ¥ in explaining the
variation in average annual cost. There is also evidence of an interaction
between Q; and £y

A plot of the residuals from this model versu; the corresponding titled
values lg shown in Figure 8, and a normal probability plot of residuals is showm

in Pigure 9. These displays do not indicate any gross violation of assumptions.

34, Mtiu Undesigned Data

In screening situations where some additional runs cam be added to existing
da#. a natural question is the development of criteria for locating these new
observations. If multicollincarity is a significant problem in the original
data, then it seems logical to locate the nev points so as 23 alleviate this

problem, insofar as that is poqsible. On the other hand, if multicollinearity

. is not present, then other criteria could be developed.

A syaptoms of multicollinearity is a small value of lC[. Therefore,
1f » new runs are to be made, they should be at points in the factor space chosen

to maximize ICI. If there are k factors, and if we think of the region of interes:?

for these factors as a k-dimensional hypercube, then lcl is maximized by adding =

new runs at the corners of the experimintal region. For detafls of this procedure,
see Caylor and Merrill [1968] and Dykstra [1966]. Their procedure allows the
coordinates of all m new points to be determined simultanecusly. 1If sequential
sugmentation is desired, then adding each new run at that point in the factor
space vhere the variance of the predicted response is meximized will also
maxintze |c].

Maximizing |C| 1s a variance-oriented criterion. It is a reasouable
criterion 1if the form of the wodel fit to the data 1s correct. However, in most

factor screening studies, we have made the assumption that some effects are
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weplipible. Stace there 15 alwavs the possitility that these assomptions are
fvortect, the amalvst conbd eleéct to aupgment his ordipinal data with points

chosen s that the bras (o resression estimates from exe Juded l.'u-('urs is miniuﬂm-d.
Wee will nvew ddesor the g data augmentat fon soheme tor thlslsltuatlun.

Supparie that we have 1t the mode]

Yoty

but the response is really determined by the relat tonship

Fiv) = « Fp ¢

l L]
-

-.
.
*e
.

Asizammes that the fmlependent varfables are det h‘c‘:' such that Nl-c' coenter of the
repion of interest R ds at (O, O, (.. 0Y, The vegfon of inter st is a k-dimensfonat
wnit sphere anmd should foclnde all peints tn the undesipgned data.  Care must be
tabhen in selecting R stnee bias (x not invarfant under the transtormat fon and
ditterent sesults would be .-M.Hm.--l for diferent reptons of interest,

The mean square erpor ig .0 measure of both bias and varfance,  The swean

suare error, inteptated over the region ol foterest, s

J - I“ Klf()_s) - n().t)l2 dx

traceli, M1 4 alld R
13 W) 'll ll l-}.! ll;'z - ul_‘“||“|2 1

(M"M - u"u Y (n"n - u"u ) Ja \ (3-4)
1o 0o i n o2 e =2

-1, i
wvhere H” - N X‘X‘. fo §=1,2, are matrices of design moments,
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‘uij - IR Zi'x'j dx fR d_)s (3-5)

are region moment matrices, gy = N 52/0, N is the number of observations, and 02

is the experimental error varfance.

The averiage mean square error is composed of two terms, the average variance

1

V= tracg[ullnlll. (3-6)
and the average squared bias
' -1 -1 -1 - -1
B - - + - . . G-
3yl (g = Wypgug) + GHTMy - Ty O M) - ey lge O-)

Average squared bias is minimized when design moments are equal to region moments,

or

Mll - u11 and M = (3-8)

12 12
Average squared bias then i{s a function only of the region moments which are not

“4,¢Q2trollable by the experlienter and {ts minimum value is

= - . -9
Batn = l¥2z = Mty le - 3-9)
An undesipned experiment will not meet the conditions in Equation (1-8),
but it {s possible to augment the experiment in such a way that the conditions
will be met or nearly met. We then are operating on the controllable part of

average squared blas, say
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B = gyl (MM, - ) 12)“11("12"12 M) 19 ©-10)
Consider first the case of fitting a model containing all second order
cffects when some third order effects are present. We desire design moments to
¢qual region moments through order 5. Expressing the equalities in equation
(3-8) results in a set of simultaneous non-linear equations that can be solved
for the additlonal experimental trials necessary. For example, the pure sccond

design moments should equal the corresponding region moments, or

N
Y x2 = N/(k+ D), d=1,... .k, (3-11)
u
u=]l
where k is the number of factors. Similar equations are written for the other
moments. For the N observations already taken,the left hand side of Equation
(3-11) is constant. We can now select m additional runs so that
W
I x2 =wk+2),
u=l
where W = N + m. The levels of the varfables for the additfonal runs are Xiu®
“'N*l.oco.wo
The selection of the m additional runs 18 accomplished by minimizing the

function

1=1 \u=t i=1 331 \u=1

k 2 k k k W 2
+ ] (): Xy -H/(k+2)) + ) 1 1 ) xiuxjuxl,)

=1 \u=1 i=1 §>1 2>§ \u=l

k 2 k k W 2
o= J (el e ()

(e L L (L )

+ X, X + x* x. x

1=1 j#1 (;-1 tu jf) =1 §=1 261 (;-1 {u"Ju"tu
2>3 :
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“ot,

[

+

k k k k W 2
L L (4 e

i=1 j#i 2>] p>L \u=1

W
y xfuxiu S Wk + 2)(k + )2

+
~1

+

k LI 2
) )) x| -W/(k+2)(k+4))
i=1 u=] v

W 2

k
DY oxox,oxox o x
i=1 151 255 p>2 oop \u=1 iu"ju"u”puTqu

(3-12)

+
i 1

For the case where we fit a main effects model and the tfue system contains
sccond-order effects, moments through order 3 must be equal and this is
accomplished by minimization of F(x) in Equation (3-12) considering only the
first four terms.

The bias will be minimized if the additional design points can be
selected so that F(z) is zero. However, in many cases when adding only a
limited number of design points the minimum value of F(x) -is greater than zero,
that is, not all moments can simulténeously be adjusted to the required values.
In those cases where the minimum possible value of F(}) > 0 the augmented design
will minimize bias only when the contribution to the controllable part of bias
resulting from any design moment not equalling the corresponding region moment
is the same for all moments, that is, all components of a, are equal.

The value of ¢, increases as we add observations causing the minimum

viltue of bias, B to increase while the value of the controllable component

min®

of bias, B. is decreasing. B, can be decrcased to zero, in which case further
additional observations can only increase average squared bias due to the

increase in Bm Also the amount of increase in Bnin may become greater than

in®

the decrcase possible in B,. This indicates that a measure is necessary that
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will indicate when average squared bias is at a minimum,

We select as such a measure the percentage reduction in bias, say

By - B
0
PR = ——2 y 100%
Bo
where the subscript 0 indicates the original valde of the undesigned experiment
and the subscript a indicates the value after augmentation. By letting the terms
inside the square brackets in equation 4 be denoted by Q, we can express PR as

N ' '
g20Q0:20 EZaQaan

PR = :
%20Q%20

Mg (B2/0)Qy Ny (8,/0) - A, (By/00Q, A (8,/0)
Mo (82/0)0g g (By/0)

or

N.Q, - NQ
PR=—20 3 . » (3-13)
. NoQQ )

It can be seen that PR does not depend on the unknown value of 22/0. The.proce—

dure to minimize bias is to determine the maximum number ofrqew runs allowed,

then scquentially select one run at a time by minimizing F(x) m times. Any

unconstrained search technique could be used to minimize F(x).
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