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SUMMARY

e use of a computer simulation model may be viewed as an experiment

in which a set of k input variables are combined to produce at least one output

or response variable. As in aiy experimental situation, the design of a

computer simulation experiment is important. In general, not all k input vari-

ables or factors ill he equally important in their effect on the response

variable(s). It is very con-non to find that only a subset, say g < k, of the

original k factors are important in explaining the response. We usually do not

know the value of g, or which g factors are important.

The problem of experimentation and analysis to discover the size and

composition of the subset of active factors g is called the factor screening

problem. It is important to accurately identify the set of active factors.

Failure to identify an active factor can result in serious bias in the analysis

and conclusions drawn from the model, if that factor is subsequently ignored.

Conversely, experimentation with negligible factors is undesirable as it consumes

the resources of experimentation needlessly.

This report contains a survey of the available statistical methodology

useful in factor screening. It also discusses the relative mer . of each

approach, and provides guidelines for the development of a factor screening

strategy. Several examples are presented that demonstrate the construction of

factor screening experiments, and the interpretation of the results of such

. - experiments. a

Three t)P f actor screening situations may be identified. The first

"case is the designed experiment situation; that is, a situation in which an

experiment is designed and conducLod with the primary objective of discovering
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the set of dctive factors. The use of designed experL..ents in factor screening

*is particularly important, as deaigned experiments allow assessment of main

ef fects and interactions independent of other ef fects that may be present in

the mode. Designed experimeaits also of ten allow the incorporation of variance

reduction methods. Finally, they usually admit a relatively simple statistical

analysis.

* The major classes of factor screening designs discussed in this report

Include:

1. The 2k-p and 2k-p fractional factorial designs
III IV

2. Supersaturated designs

3. Group screening designs

4. Irregular fractional factorials

A logical screening strategy involving those designs is developed. The selection

between designs Is based on consideration of the extent of aliasing of inter-

actions and the severity of assumptions required to produce a unique analysis

of the data. In particular, It is shown that group screening followed by the

use of a 2k-p fractional factorial deoign is often an optimal screening approach.

Variance reduction methods for these designs are discussed. based on common and

antithetic random number streams. Other problems discussed include the compo-

sition of the groups in group screening and selecting levels for negligible

factors In sub-iequent experiments.

* A second major type of screening study is the iundesigned case. These

situations occur when there are data available from previous simulation experi-

ments with the model, and decisions regarding the identification of active

factors must be made using these data. It is unlikely that these runs will

conform to any standard factor screening design. However, in these cases, the

L. method of least squares can be used to fit an appropriate regression rModel to

L the data, and factor screening decisions can often be made using this model.
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The usual nonorthogonality of such undesigned data makes the interpretation of

these midels difficult. Standardized regression coefficients can be used td

simplify the interpretation, although this still does not Solve the problems

created by a nonorthogonal data set. Several measures of nonorthogonality

are introduced, including variance inflation factors and conditioning numbers,

and the use of these measures in assessing the problems in interpreting indi-

vidual regression coefficients is discussed. In cases of extreme nonorthogonality,

parameter estimation methods other than least squares are recommended.

The third type of factor screening study involves augmenting an available

data set with a small number of new runs. The question of where these addi-

tional runs should be conducted is discussed. Two design augmentation methods

are proposed, one based on minimizing the variance of the parameter estimates,

and the other designed to minimize the bias resulting from factors thought to

be negligible.

This work was supported by the Office of Naval Research (ONR) under

contract N00014-78-C-0312. I am grateful to Dr. Thomas C. Varley of ONR for his

advice and encouragement.
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1. INTRODUCTION

1-1. Uses of Simulation

Many problems in operations research are too complex to be modeled and

analyzed entirely by mathematical methods. Computer simulation is widely used

in the study of such problems. Typical problem areas in which computer simu-

lation has been successfully employed include queueing, inventory, scheduling,

quality control/reliability analysis, and maintenance and repair activities.

The military has made extensive use of cotnr %ter simulation to analyze complex

combat processes, as well as suiply and logistics activities.

A computer simulation may be viewed as an experiment in which a set of

controllable input or independent variables are combined to produce at least

one output variable, usually called the dependent variable or response. In

performing a computer simulation experiment, the analyst will usually have

one of two objectives in mind:

1. Investigate the relationships between the independent variables and

the response, determining, If possible, which factors exert the greatest effect

on the response, and the extent of interaction between the factors.

2. Determine the set of factor levels that, over some appropriate region

of interest, optimize the response(s).

As Inan experiment, the design of a computer simulation experiment is

an Important aspect of the investigation. The use of formal experimental

* - design methods in computer simulation results in significant advantages to

the analyst, including simplicity of data interpretation and (usually) economic

efficiency with respect to the total number of simulation runs required. For



background reading in experimental design, consult Cochran and Cox [19571,

Davies .,561, }licks j1973], Montgomery [1976], or John [19711. For dis-

cu•;:.... of the specifics of applying experimental design methodology to Com-

pater simulation, see Burdick and Naylor [1966], Fishman 11973!, Hunter and

Naylor [ 19701, Ignall [19721, Kleijnen [1975a, part II], [1977], and

Montgomery and Evans [1975i.

1-2. The Need for Factor Screening

We shall assume that a computer simulation model may be described by a

set of k controllable inpuc variables or factors. These factors are generally

of two types:

1. Factors that are centrollable or subject to de.-ign in the "real

world" system being modeled, such as inventory reorder quantities, service

rates, or the rate of fire of a weapons system.

2. Factors that are not controllable in the real system, such as

demand, weather effects, or the location of enemy troops or equipment. For

purposes of conducting the experiment, however, all k factors will be assumed

to be controllable in the simulation; that is, we may induce desired weather

effects, or control the movements of an enemy submarine.

In general, not all of these k factors will be equally important with

respect to their effect on the response variable(s). The factors may range in

importance from highly important to negligible. It is very common to find

that only a suhset, say g< k, of the original k factors are important in

explaining the response variable. However, generally, we do not know the

value of g, nor do we know which g factors are important. This situation is

discussed by Jacoby and Harrison [19621, who state that the problem is

frequently encountered in computer simulation.

The problem of experimentation to discover the size and composition

2
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of the subset of active factors is called the factor screening problem. It

is; important that the set of active factors be accurately determined. Failure

to idi,.nrify an active factor can lead to serious bias in the analysis and

coneishions drawn from a model, if that factor is ignored In subsequent experi-

inents. On the other hand, experimentation with negligible factors is unde-

sirable as it consumes the resources of experimentation needlessly, and may

increase the noise level in the data to the point when real effects are more

difficult to discover. For example, many of the optimization techniques

applied to computer simulation models decrease rapidly in efficiency as the

number of indepondent variables increases. Clearly, Identificatien of the

set of active factors plays a critical role in the successful use of this

met hodo logy.

Factor screening methods can be profitably employed at two places during

the development and use of a computer simulation model. They can be employed

at the model design and development stage. Applied at this stage, screening

methods can atrccL the cholcz &t variables used in the moiel anO So?.(ul:,"y

simplify the archiie.ture of the final model. This ma, r,,:rt,_ cxpteAt.

with components or .ubroutines of the model, or, -,.*h*n practl,:al, ¢:pi irwtitia

with the real-world system. When used in this manner, factor s5'rtefning couLdi

contribute significantij to reducing the running time of a simulatton model,

if negligible factors can be identified. Factor screening is also applicable

to a complete simulation model, although it is unlikely that any major simpli-

fication of the model structure will result. However, tie total number of

computer runs that are to be made in exercising the model may hr! subsLantially

reduced if some factors are net active.

This report contains a sunmmary of the available statistical methodology

u.,'.ul in factor screening. It also discusses the relative merits of each

?3
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approach, and provides guidelines for ievelopment of a screening strategy.

Other questions, including the implementation of variance reduction methods,

choice of levels for factors thought to be negligible, and rome details of

parameter estimation in linear statistical models are also discussed.

1-3. Factors, Levels, and Parameter Estimation

Suppose that xlx 2 .. ,xk are the contrcllable factors in a computer

simulation experiment and y is the (single) response. We assome that the

general structure of the simulation is such that it can be expressed in the

form

y f(xl'.x2 ,.. .. Xk) + C. (1-i)

In this equation, f is a functional relationship that determines the mean value

1;I
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of the response y, and C is an error term such that E(U) 0. In f;cW,

screening problems It is almost always ,ufficient r.o assume, th it i; .:ir

in the unknown parameters that relate the response to the faot-eors. V, r

example, one possible model would be

kY = 0 + •- ix i + f 1-!

ill

where SON,1 ... .8 are unknown parameters.

To perform an experiment with this system, we m-ust choose a set ,f v:i1.us

or levels for each factor, and then run the computer simulation model at ';-,cn

subset (or possibly the full set) of the factor level conihination.s. 'l'•hi choice

of the number of levels of each factor and their spacing when the fVictor is

continuous (or approximately so) is Important. Cenerally, we should bh guided

by the Information we have about the likely effect of that factor ,)n the

response y.

In most factor screening experiments, we are simply attempting to de.ter-

mine the effecc of the factor, not necessarily trying to develop a useful

predictive or interpolative equation. Consequently, a relatively: s-,,ll ;:iichr

of factor levels is generally employed. Often two levels, arbitrarily called

high and low, are sufficient. For example, in Figure 1 we have i~lustr:ited

the behavior of y as a function of the factor x. Although y and x are related

in a complex nonlinear manner, the use of two levels for x will he slufficient

to measure the effect of x. However, in cases where extreme cUrvature is

present in the functional relationship, more than two levels will be neces.;ary.

Rarely, however, would more than three or four levels of tho factor be

employed in a factor screening study. The nevd for more tha, a small nu;mber

of levels often indicates that the region of exploration for x is too large.

5



The spacing of factor levels iE also important. Levels should be far

enough apart to measure anticipated effects, but not so far as .o cause non-

l.nearities in the functional relationship to distort or mask sigrific;.nt

effects. For example, consider Figure 2. If the low and high levels of x

are x1 and " respectively, then (depending on the amount of nho ý. it is

highly urlikely that the effect of x on y will be discovered. On the other

hand, if the low and high levels are x1 and x4 , then the curvature ' the

functional relationship will likely mask the true effect of x. •'-e choice

of x1 and x3 (or x3 and x4 ) as low and high Levels of x wllu reveal that x has

a significant effect on y. Neither case, however, would be sufficient for

def'ning the effect of x so that a predictive or interpolative equation valid

over the entire range x1 < x < x4 could be developed.

The effect of a factor may be defined as the change in response y pro-

duced by a change in the levels of the factor. This is usually called a main

effect. For example, consider the data in Table 1, which presents information

obtained from an experiment with two factors x1 and X2 . The gain effect of x,

is the difference between the average response at the high level of x, and the

average response at the low level of xl, say

!50+20

2

That is, the average response increase upon changing from the low to the high

level of xI Is 9 units. Similarly, the main effect of x2 is

50+42 - 20+10 31.
2 2
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Table I

Data For a Factorial Experiment

x 2

low high

low 10 42

xl

high 20 50

The experimental design in Table 1 is a factorial design; that is, A

design in which all possible factor level cosbinations are run. Furthermore,

there is only one observation in each cell (we say the design is replicated

once). Most screening designs are factorial designs.

Now consider the data in Table 2. Here the effect of x, is

30+20 - 42+10
2=-1

which implies that the x, effect ts small. However, Inspection of Table 2

reveals that the xI effect is not negligible, it Just depends on the level of

factor x2. For example, at low x2 the xl effect is

20 - 10 - 10

and at high x2 the x, effect is

30 - 42 - -12.

[ 8



Table 2

A Factorial Experiment

x2

low high

low I0 42

x|

high 20 30

This is an example of an interaction between two factors. More

specifically, it is a two-factor interaction. Most ccreening studies have .to

make certain assumptions about the types of interactions that are likely to be

present in the system in order to design an economically efficient experiment.

In general, factor screening attempts to sort out the main effects and low-

order interactions that drive the system.

The method of least squares can be used to estimate the main effects

and interactions. Suppo. - that we can describe the system by a linear

statistical model, say

k
Y + I + Ci, 1-1,2,...,n (1-3)Jal jii

z:here Yi is the Ith response, xij is the ith level of factor J, and

Jml,...,kare unknown parameters. Letting y- (yly 2 ,.•.,y)', 9 - (,01,... ,Bk)"

- (ClC 2,...,Cn)', where the prime denotes transpose, and letting X denote an

nx(k+l) matrix whose first column is all ones and whose (i,J+l)st element is

xj, then it is well-known that (1-3) can be written as

tA



y = XB + C (1-4)

Thqe least squates estimators of E are given by the solution to the normal

equat ions

(X'X)s3 - X X, (1-5)

or

S(X'X)-1 X'y (1-6)

assuming that (X'X)" exists.

To illustrate, consider the data in Table 1, and assume that the high

and low levels of x1 and x2 can be represented by +1 and -1, respectively.

Then (1-3) becomes

Yi 0 0 +01 Xl + 02x1 2 + EC, i-192,3,4.

We have assumed that x, and x2 do not interact. Then, in matrix notation,

we have for (1-4),

10 1 -1 -1 r0o CI
20 1 1-1 0I1 £2

- +1

42 1 -1 1 2j £3

[50 1 11 L £4

The normal equations are

10
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(X'X)A - X'y

0 &22
0

413 18

a 2 j 62

and the least squares estimates of the parameters in the model are

a 0 30.50

4.50

a 2 15.50

Note that the least squares estimates of the parameters are exactly half the

main effects of x1 and x that is,

- 4.50

82 " 15.50

The parameter So 30.50 is called the grand mean.

If we wished to incorporate interaction into this analysis, we would

define the model as

Yl 0+ 1 x1 1 ÷ 2xi2 + 112 Xt 1Xt 2 + it, i-12,3,4.

It is readily verified that

11 A.
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10 1 -1 -1 1 0 [C 1

20 i 1 -1 -12

42 I -1 -I 321

•50] 1 1 1 1 2.4

and the normal equations become

122 1
18

41 4 s2 62!

La 2j L -2 J

The least squares estimates of the parameters become

o�0[30.50

4.50

K2  15.50

06121 -0.50

From examining the estimates of the effects, we conclude that both factors

exert large (positive) main effects, while the two-factor interaction between

those factors is negligible.

Users of statistically designed Lxperiments are accustomed to analyzing

the resulting data by relatively formal methods, such as the analysis of

variance. In factor screening problems this is usually not done and the

u least squares estimates of the model parameters (or the effects) usually allow

12
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significant factors to be identified. Often it is not practical to conduct

a formal analysis of variance because of the small ntuber of degrees of

freedom that remain for error.

1-4. Designed and Undesigned Screening Experiments

The objective of a factor screening study is to discover as much as

possible about the factors that significantly affect the response. Designed

experiments are particularly useful in factor screening, as they allow assess-

ment of effects and interactions independent of ol:her effects present in the

model, they often allow the Incorporation of variance reduction methods, and

* they usually admit a relatively simple statistical analysis. However, screening

is still possible in the undesigned case such as where there is data available

from previous simulation runs. Once again, the method of least -quares is useful

here, although the usual nonorthogonality of such undesigned data makes the

interpretation problem somewhat more difficult. Section 2 of this report will

deal with designed screening studies, and Section 3 will discuss some aspects

"of undesigned screening situations, including the intermediate case in which

some olservations can be added to an existing data set.

In both cases, the method of least squares will be used for parameter

estimation. Ve now state some useful results co~tcerning least squares analysis

of the general linear model. The model itr

y -X8 + E

where y is (nxl), x is (nxp), B is (pxl), and E is (nxl). Note that the

number of observations n must at least equal the number of parameters p.

The least squares estiliator of 0 is

S13
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- (X'X)- X'y . (1-7)

If E(O) - 0 and the model is correct then the least squares estimators are

unbiased; that is

E(R) - B

2"14' the errors are uncorrelated with constant variance a then the covariance

matrix of the least squares estimator is

Cov(S) - Cy(X)-l ()-8)

Note that the assumption of independent observations with. constant variance

will likely not hold in a simulation experiment. In fact, there are cases

where the choice of variance reduction strategy induces a correlative structure

between the observations. In cases where the assumption of uncorrelated

errors with constant variance does not hold, the method of weighted least

squares is useful. If V is a matrix of weights (chosen proportional to the

variances and covariances of the errors) then the weighted least squares

estimator of 0 is

A (X'V- 1X)-IX'V- 1 y (1-9)

is an unbiased estimator for 8 (as is a). The covariance matrix for

OWS is (1-10)

14

_____ A



[
Cov( - (X'V-lx) -l2 (1-11)

1-5. Previous Work on Factor Screening in Simulation

Although there is a substantial literature on f.ctor screening, there

has been little analysis or interpretation of this methodology in the computer

simulation environment. Kleijnen [1975a,b], [19771 and Hunter and Naylor

[19701 have suggested the use if fractional factorial designs and group screening

(a procedure in which factors are arranged insets) methods in simulation.

However, they do not give any examples. Only Kleijnen [1975b] attempts to

give any guidelines for the choice of a factor screening strategy. Nolan and

Sovereign [19721 employ a gror -screening strategy in a large-scale simulation

model of airlift and sealift , .erations. However, they do not give any details

"of the screening methods used. Williams and Weeks [19741 have proposed using

special types of pn factorial designs for factor screening in simulation. Their

methodology requires potentially many computer simulations runs, and there are

no examples or evaluation of their methodology given. In general, there does

not presently seem to be any systematic collection or evaluation of factor

screening methods available, nor is there much specific analysis of their use

in computer simulation. Some aspects of this will be dealt with in this

report.

2. EXPERIMENTAL DESIGN METHODS IN FACTOR "CREENING . .

2-1. Full Factorial Designs

Full factorial experiments could be used for factor screening. The

most efficient design to consider is the 2 k factorial; i.e., k factors each

at two levels. It is relatively standard practice to denote the factors by

upper case letters such as A, B, etc., rather than-the xl, x2 , etc. notation

15
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used previously. The statistical model for a 2k design would include k main

effects, (2) two-factor interactions, (3) three-factor interactions, ..... one

k-factor Interaction. That is, for a 2k design the compl) lete model would contain

2k- 1 effects. Two systems of notation for treatment combinations are widely

used. For example, in a 25 design abd denotes the treatment combination with

factors A, B, and D at the high level and factors C and E at the low level.

A system of + and - signs is also useful, occassionally, where + denotes the

high level of a factor and - denotes the low level. Thus +-+-+- and abd are

equivalent notations. The treatment combinations may be written in standard
ore byltodl

order by introdtcing the factors one at a time; each new factor being successivelv

combined with those above it. For example, the standard order for a 2 4 design is

(1), a, b, ab, c, ac, be, abc, d, ad, bd, abd, cd, acd, bed, and abed.

For even a moderate number of factors the total number of runs in

a 2 k factorial design is large. For example, a 25 has 32 treatment

combinations, a 26 has 64 treatment combinations, and so on. Since resources

are usually limited, the number of replicates that the experimenter can employ

may be restricted. Frequently, available resources will only allow a single

replicate of the design to be run, unless the experimenter is willing to omit

"some of the original factors. Most factor screening experiments would fall into

this category.

With only a single replicate of the 2k it is impossible to compute an

estlxate of experimental error, that is. a mean square for error. Thus, it

seems thaZ hypotheses concerning main effects and interactions cannot be tested.

However, the usual approach to the analysis of a single replicate of the 2 k is

to assume that certain higher-order interactions are negligible. The statistical

analysis of these designs is well-known (see John [19713 or Montgomery t19761).

[ Either Yates' tabular algorithm or the regression approach outlined in Section

16
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I m.'y be used to 0. t ii!ate the ef fcts. The varlance of the est imate of any

-N -i ubr fo
e.ffect is N , h, , Lre I is the tota nucber of obskrvat ions, asstim i ng that

oh:;t rvaitIons are indcjpe.ndent. Note that the regression treatment of the data

in Table I is the analysis of a 2- design. The smallest design for whirh this

procedtiue is recom.mnended is the 24.

The nractice of cxmbinino hi•gher-order interaction mean squares to estimate

the error is suhbect to criticismti ot, statistical grounds. It some of these

Snt eractions are significant, then the estimate of error will be inflated. As

a retsult, other significant effects nmav not be detected and the significant

interactions used as eiror will not he discovered. As a general rule, it is

probably unwise to assuieI two-factor interactions to he zero without prior Infor-

mation. If mo.-:t two-factor interactions are small, then it seems likely tnat

all hither-order interactions will be significant also. (A word of caution

here--one does .ot have to look very far for counterexamples to these rules).

In most factor screening studies, we will be willing to assumite that

certainhigh-order interactions (say threo-factor and higher) are negligible.

Considering the amount of information provided by a 2 k factorial, this is

probab.y reasonable. For example, consider a 25 The 32 observations allow

31 effects to be estimated:

5 main effects

S10 2 factor interactions

10 3 factor interactions

5 4 factor interactions

1 5 factor interactions

In many situations, out Interest would be confined to detecting main effect

and the 2-factor interactions. Thus we could either use the 16 higher-order

17

.1



1I-
effects as an estimate of error, or as the basis of developing a more efficient

design via fractional replication.

When a large number of effects are estimated, we may wish to find some

formal basis for declaring which effects are significant. If there is either

replication or insignificant factors po oled to estimate error, we could possibly

use analysis of variance methods and conduct formal statistical tes"s. However,

if variance reduction methods such as common random numbers have been used,

the usual analysis of variance statistical tests may not be appropriate. For

a discussion of this problem is simple designs, see Heikes, Montgomery, and

Rardin ,19761. A useful approach is to plot the effects on normal pro-

bability paper. Negligible effects on such a display -All1 fall, approximately

alr-7 a straight line, while real effects will !;e far from the line. For

examples of this methodology in a general experimental design setting, see

Montgomery [19761. We will illustrate the approach in subsequent examples.

The 2k factorial series has a projection property useful in factor

*screening. For example, consider the 23design in Figure 3. If factor A is

* negligible, we can collapse the 8 runs from the 2~ in factors A, B, and C into

two replicates of a 22 in factors B and C. In general, if we have 'L single

replicate of a 2kand h(<k) factors can be dropped because they se~m negligible,

then the remaining data will always correspond to 2h replicates of a full

factorial in the remaining k-h factors. These replicated design points can be

used to obtain an estimate of error.

Full 2 k factorial are advantageous in screening In that they potentially

produce all of the information required to identify significant effect and

interactions. However, there are more resource-efficient methods that can

produce equivalent information.

[ 18
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2-2. The 2 k-p Fractional Factorial Design

2-2.1 General Results

As the number of f-ctors in a 2k factorial design increases, the number

of runs required for a complete replicate of the design rapidly outgrows the

resources of most experimenters. A complete replicate of the 26 design requires

64 runs. In this design only 6 of the 63 degrees of freedom correspond to main

effects, and only 15 degrees of freedom correspond to two-factor interactions.

The remaining 42 degrees of freedom are associated with three-factor and higher

interactions.

If the experimenter can reasonably assume that certain high-order inter-

actions are negligible, then information on main effects and low-order interactions

may he obtained by running only a fraction of the complete factorial experiment.

These fractional factorial designs are widely used in industrial research, and

have major applications In factor screening. For a general introduction to

the construction and elementary properties of these designs refer to Montgomery

f1976, ch. 101 or Box and Hunter [1961].

In a 2 k-p fractional factorial design, only a fraction of the 2k treatment

combinations are actually run. Specifically, a fraction of the 2 k design

containing 2 k-p runs is called a 1/2P fractior of the 2 k, or, more simply, a

2 k-p fractional factorial design. The designs discussed in this section are

regular fractions, that is, estimates of the effects are orthogonal. The effects

may be estimated by Yates' algorithm (John [19761, Daniel (19771, Montgomery

119761) or by generating the contrast for any factor using the table of + and

- signs for that design (which is equivalent to the regression approach out-

lined in Section 1). The variance of the esrimate of any effect is 2P-ka2.

There are several methods of constructing these designs. One method of

constructing a 2 k-p fractional factorial design is to select p independent

20

T'o *



generators (no chosen generator is a generalized interaction of the others),

constructing the 2P blocks associated wi.- those generators, and then selecting

one block as the fractional design. The defining relation for the design

consists of the p generators initially chosen and their 2P - p - 1 generalized

interactions.

The alias structure may be found by multiplying each effect modulus 2 by

the defining relation. Care should be exercised in choosing the generators so

that effects of potential interest are not aliased with each other. Each effect

has 2p - 1 aliases. In most factor screening studies we assume higher-order

interactions (say third- or fourth-order and higher) to be negligible, and this

greatly simplifies the alias structure.

k-p
4 second mcthod of design construction is to consider the 2 design as

a full factorial in h - k-p factors. Then the table of + and - signs for the

kfull 2 design is written down, and the additional p factors added by equating

their factor levels with the products of certain factor'levels in the full 2k

6-2 6As an example, consider the 2 design. This is a 1/4 fraction of a 2 , con-

taining 26-2 . 24 - 16 rows. To construct this design form a 24 design in the

factors A, B, C, and D, as shown in the left-hand panel'of Table 3. Two columns

must be added to incorporate the fifth and sixth factors, E and F. These factor

levels are found in the center panel of Table 3, by equating E - ABC and F a ACD.

Note that this is equivalent to choosing generators I - ABCE and I - ACOF and

using the first procedure described above to constrect the design. The treatment

combinations are shown in the. right-hand panel of Table 3.

Since the generators of this design are I - ABCE and I - ACDF and the

generalized interaction of the generators ABCE and ACDF is BDE', the complete

defining relation for this design is I - ABCE - ACDF - BDEF. To find the

aliases of any effect multiply that effect by each word in the defining relation.

21
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Table 3

Construction of the 26-2 Design With Generators I = ABCE and I ACDF

Treatment
A B C D E -ABC F - ACD Combination

+ - - - + + aef

- + - - + - be

* + - - - + abf

- - + - + + cef

+ - + - - - ac

- + + - - + bcf

+ + + - + - abce

" - - + - + df

+ - - + + - ade

- + - + + + I bdef

- + abd

. - + + + . I cde

+ - + + - + acdf

- + + + - - bcd

+ + + + + + abcdef

"L 22

L

/



For example, the alias of A is

A - BCE - CDF = ABDEF

It is easy to verify that every main effect is aliased by three-factor and

five-factor interactions, while two-factor interactions are aliased with each

other and with higher-order interactions. Thus, when we estimate A, for

example, tie are really estimating A + BCD + CDF + ABDEF. The complete alias

structure is shown in Table 4. If three-factor and higher interactions are

negligible, this design gives clear estimates of main effects.

The 2 k-p fractional factorial design has the projection property noted

previously for the full 2 k design. In general, say 2 k-p fractional factorial

* design can be projected into either a full factorial or a replicated fractional

factorial in some subset of r - k-p of the original factors. Those subsets of

factors providing fractional factorials are subsets appearing as words in the

complete defining relation. This is particularly use.ul in screening experiments,

when we suspect at the outset of the experiment that most of the original factors

will have small effects. The original 2 k-p fractional factorial can then be

projected into a full factorial (say) in the most interesting factors.

For example, the 26-2 fractional factorial will collapse to a single

replicate of a 24 design in any subset of four factors that is not a word in.

the defining relation. It will also collapse to a replicated one-half fraction

of a 24 in any subset of four factors that is a word in the defining relation.

Thus, the design in Table 3 becomes two replicates of a 24-1 in :he factors

AICE, ACDF, ane BDEF, since these are the words in the defining relation.

There are 12 other combinations of the six factors, such as ABCD, ABCF, and so

on, for which the design projects to a single replicate of the 24. This

[..
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Table 4

Alias Structure for the 26-2 Design With I -ABCK ACDF -BDEF

Effect Alias

A BCE CDF ABDEF

B ACE DEF ABCDF

C ABE ADF BCDEF

D ACF BEF ABCDE

E ABC BDF ACDEF

F ACD BDE ABCEF

AB CE BCDF ADEF

AC BE DF ABCDEF

AD CF BCDE ABDF

AE BC CDEF ABPE

A? CD BCEF ABDE

BD E.F ACDE ABCF

BF DE ABCD ACEF

ABF CEP BCD ADE

CDE ABD AEF CBF

V 24



design will also collapse to two replicates of a 23 in any subset of three of

the six factors or four replicates of a 22 in any subset of two factors.

To present a fractional factorial for which the projection property can

be visually demonstrated, co isider the 1/2 fraction of the 23 with generating

relation I - ABC. This could also be denoted as a 23-1 design. The design is

shown In Table 5. The projection of this design into a full 22 factorial is

accomplished by eliminating one of the original three factors. This Is illustrated

in Figure 4.

2-2.2 Resolution IN Designs

It Is useful to classify 2 k-p frac'ional factorial designs according to

their resolution. The system is as follows:

(i) Resolution III Designs. These are designs in which no main effects

is aliased with any other main effect, but main effects are aliased

with two-factor interactions and two-factor interactions are aliased

with each other. The 23-1 design in Table 5 is of resolution III.

(i1) Resolution IV Designs. These are designs in which no main effect is

aliased with any other main effect or two-factor interaction, but

two-factor interactions are aliased with other. The 24-1 design

with I - ABCD is of resolution IV.

(iMi) Resolution V Designs. These are designs in which no main effect

or two-factor interaction is aliased with any other main effect

or two-factor interaction, but two-factor interactions are aliased

with three-factor interactions. A 25-1 design with I - ABCDE is

of resolution V.

In general, the resolution of a design is equal to the smallest number of

letters in any word in the defining relation. Consequently some authors refer

to these plans as three-letter, four-letter, and five-letter designs, respectively.

25
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Table 5

3-1
The 2 Design With I ABC

Treatment
A B C-AB Combinations

- - + C

* + - a

- + -b

+ + + abc

We can show that a design is of resolution (2t+l) if we can estimate effects

of order t when effects of order higher than t are negligible. Roman numeral

~ V 3-1subscripts are used to Identify the resolution of a design. Thus, a 23- design

Is a 23 dcaign of resolution ITT. For the more highly fractionated designs,

more extensive assumptions are required to dray conclusions from the data.

*Resolution III and TV designs are particularly useful In factor screening

studies. This section will discuss the 2 kpdesign. We may construct resolution
III

ITT designs for Investigating up to k - N - I factors in N runs, where N is a

multiple of 4. Designs In which N is a power of 2 can be constructed by the

methods presented previously. Of particular Importance are designs requiring

4 runs for up to 3 factors, 8 runs for up to 7 factors, 16 runs for up to 15

factors, and 32 runs for up to 31 factors. If k - N - 1 the fractional factorial

design Is said to be saturated.

A design for analyzing up to three factors in four runs Is the 23-1
TII

design. presented in Table 5. Another very useful saturated fractional factorial

io a design for studying seven factors In eight runs; that Is, the 2 7-4 design.

V 7
This design is a one-sixteenth fraction oi the 2 . It may be constructed by

first writing down the plus and minus levels for a full 2~ In A, B, and C, and

27



th.n gent-rating the levels of four additional factors using the interactions

of thie original three as follows: D = AB, E = AC, F = BC, and G - ABC. Thus,

til gcne'rating relations for this design are I = ABD, I = ACE, I - BCF, and

I AIMF. Tilt design is shown in Table 6.

Table

"[hi 27- Design With Generators I = ABD, I = ACE,

I = BCF, and I = ABCF

A B C D=AB E=AC F=BC G=ABC

- - - + + + - def

+ . ... + + afg

- + - - + - + beg

+ + - + - - - abd

- - + + - - + cdg

+ - + - + - - ace

- + + - - + - bcf

+ + + + + + + abcdefg

The complete defining relation for this design is

I = ABD = ACE - BCF - ABCG - BCDE - ACDF - CDGC - ABEF I BEF

= A:G = DEF = ADEG = CEFG = BDFG = ABCDEFG

To find the alias of any effect multiply that effect by each word in the

defining relation. For example, the alias of B is

B = AD = ABCE = CF = ACG =CDE =ABCDF - BCDC AEF EG

= ABFG = BDEF = ABDEG - BCEFG = DFG = ACDEFG

28
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This design is a one-sixteenth fraction, and since the signs chosen for

the generators are positive, this is the principal fraction. It is also of

resolution III, since the smallest number of letters in any word of the defining

contrast is three. Any one of the 16 different217-4 designs could be constructed

by using the generators With one of the 16 possible arrangements of signs in

I = + ABD, I = +ACE, I a +BCF, I - +ABCG. All of these designs would be said

to belong to the same family.

The eight runs in this design may be used to estimate the seven main

effects. These estimates are obtained as linear combinations of the observations,

where the signs in a particular linear combination are given in the associated

column of Table 6. Thus, to estimate A, use the plus and minus signs in the

A column. Each of these effects has 15 aliases; however, if we assume that

three-factor and higher interactions are negligible, then considerable simplifi-

cation in the alias structure results. Making this assumption, each of the linear

combinat ions

tA = A + BD + CE + FG

-B - B + AD + CF + EG

tc - C + AE + BF + DG

t - D + AB + CG + EF (2-1)

LE +AC + BG + DF

tF - F + BC + AG + DE

t G - G + CD + BE + AF

where t refers to the linear combinations of treatment combinations given by

column i in Table 6.

7-4The saturated 27-4 design in Table 6 can be used to obtain resolution
Ins

III designs for studying fewer than seven factors in eight runs. For example,

29
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to generate a design for six factors in eight runs, simply drop any one colun

in Table 6, for example, column G. This produces the design shown in Table 7.

Table 7

A 26-3 Design With Getierators I - ABD, I = ACE, and I BCF
III

A B C D-AB E-AC FRBC

-+ + + def

+ . ...- + af

- + - - + - be

*+ + - + - - abd

- - + + - - cd

- + - + - ace

- + + - - + bcf

+ + + + + + abcdef

"It is easy to verify that this is a design or a one-eighth fraction
III

of the 26. The defining relation for the 26-3 design is equal to the defining

relation for the original 2i7-4design with any words containing the letter G
III

deleted. Thus, the defining relation for this design is

I " ABD - ACE - BCF - BCDE - ACDF - ABEF - DEF

In general, when d factors are dropped to produce a new design, the new defining

relation is obtained as those words in the original defining relation that do

not contain any dropped letters. When constructing designs by this method,

care must be taken to obtain the best design. If we drop columns B, D, F, and

L
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G from Table 6, we obtain a design for three factors in eight runs, yet the

2treatment combinations correspond to two replicates of a 2 The experimenter

would probably prefer to run a full 23 design in A, C, and E.

It is also possible to nbtain a resolution III design for studying up

to 15 factors in 16 runs. This saturated 215-11 design can be generated byIII

first writing down the 16 treatment combinations associated with a 24 in A, B,

C, and D, and then equating 11 new factors with the 2, 3, and 4-factor inter-

actions of the original 4. A similar procedure can be used for the 231-26

design, which allows up to 31 factors to be studied in 32 runs.

By combining fractional factorial designs in which certain signs are

switched, we can systematically isolate effects of potential intecesT The

alias structure for any fraction with the signs for one or more factors

reversed is obtained by making changes of sign on the appropriate factors in

the alias structure of the original fraction.

Consider the 27-4 design in Table 6. Suppose that along with this
- III

principal fraction a second fractional design with the signs reversed in the

column for factor D is also run. That is, the column D in the second fraction

is

The effects that may be estimated from the first fraction are shown in (2-1) and

from the second fraction we obtain

"N~ .• 31
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-A M A - ED + CE + FG

eB W B -. AD + CF + EG

= C + AE + BF - DG

L =-D+AB+ CG +-F (2-2)

-E+ AC + BG- DF

t; F + BC + AG - DE

t G - CD + BE + AF

assuming that three-factor and higher interactions are insignificant. Now

from the two linear combinations of effects 1(t + t*) and 21t )we

obtain

From t(ti)+ From :L 1

A A + CE + FG BD

B + CF + E AD

C C+AE+BF DG

D AB + CG + EF D

E E+AC+ BG DF

F F + BC + AG DE

C C+BE+AF CD

Thus we have isolated the main effect of D and all of its two-factor

interactions. In general, if we add to a fractional factorial design of

resolution III or higher a further fraction with the signs of a single factor

"E reversed, then the combined design will provide estimates of the main effect

[ 32
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of that factor and its two-factor interactions.

Now suppose we add to any fractional factorial design a second fraction

in which the signs for all factors are reversed. This procedvre breaks the alias

links between main effects and two-factor interactions. That is, we may use

the combined design to estimate all main effects clear of any two-factor inter-

actions. For example, suppose we added to the - design in Table 6 the

second fraction shown in Table 8.

Table 8

A 27-4 Design With All Signs Switched
III

A 3 C D-AB E-AC F-BC G-ABC

+ + + - - - + abcg

- + + + + - - bcde

+ - + + - + - acdf

- - + - + + + cefg

+ + - - + + - abef

- + - + - ÷ + bdfg

+ - - + + - + adeg

- - - - - - - (1)

The effects that may be estimted from this fraction are

" -A + 3D + CE + FG

4 -B + AD + CF + EQ

' -- C + #2 + BF + DC

4 - -0 + AD + CC + EF

33
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- -E + AC + BG + DF

ED

--. F 4 BC + AG + DE

F

'3 -C + CD + BE + AF

Upon combining the two fractions and forming the linear combinations

t+ t) and ! t j ) we obtain

i From 1(t +e

A BD + CE + FG A

B AD + CF + EG B

C AE + BF + DG C

D AB + CG + EF D

E AC + BG + DF E

F BC + AG + DE F

G CD + BE + AF C
L.

Therefore clear estinates of all main effects and the two-factor interaction

alias groups are ctained.

The designs due to Plackett and Burman [1946] are also two-level

Resolution III fractional factorials. These designs can be used for studying

k a N - 1 variables in N runs, where N is a multiple of 4. If N is a power of

2, these designs are identical to those presented earlier In this section.

However, for N - 12, 20, 24, 28, and 36 the Plackett-Burman designs are fre-

quently usoLJul.

The upper panel of Table 9 presents rows of plus and minus signs used to

construct the Plackett-Burman designs for N = 12, 20, 24, and 36, while the
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lover panel of the table presents blocks of plus and minus signt for constructing

the design for N - 28. The designs for N - 12, 20, 24, and 36 are obtained by

writing the appropriate row in Table 9 as a column. A second column is then

generated from this first one by moving the elements of the column down one

position and placing the last element in the first position. A third column

is produced from the second similarly, -nd the process continued until coluLnpkn

"is generated. A row of minus signs is then added, completing the design. For

N * 28, the three blocks X, Y, and Z are arranged as

X Y Z

z X Y

V Y z X

and a row of minus signs added to these 27 rows. The design for N = 12 runs

and k - 11 is shown in Table 10.

The alias structure of the Plackett-Burman designs is complex. In

general, all two-factor interactions not involving factor Q (say) are aliased

with the estimate of Q. For example, in the 11 factor plan shown in Table 10,

each main effect is aliased with 45 two-factor interactions, and each two-

factor interaction appears in 9 of the 71 estimates of main effecte. This is

somewhat less troublesome if fewer than 11 factors are considered. Further-

* more, the two-factor interactions could possibly be untangled by adding a

second fraction with all signs reversed, provided that only a few of them

were large.

"EXAMPLE 1. We shall now illustrate some of the above ideas with an example.

The problem setting is inventory control, and we wish to determine the effect

of vario-js parameters on the average annual cost. We note that simulation

35
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Table

Plus and Minus Signs for the Plackett-Burman Designs

k - 11 N - 12 + +-+ ++ -- - +_

k- 19 N - 20 ++- +++-+-+ -+ . +

k - 35 N - 36 + +-+++ - +++++ ++++ + + +

k -27, N -28

+- + + +÷.. + ... -. - -÷ +÷- . ÷ +

+- +++++ +÷ +.. ++ + +. + ÷- +_+
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Table 10

Plackett-Burman Design for N - 12, k - 11

A B C D E F G H I J K

+ - + - _. _ + + + - +.

+ + - + - - + + + -

- + + - + - , + + +

+ + + + + +

+ + - + + - + - _ +

ii + + + - + + - + - _ _

- + + + - + + - + - -

L. - " + + + - + + - + -

S- - + + + - + + - +

S+ - . . + + + - + + -

- + - . - + + + - + +
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methods are not required for this problem, as there are analytical models that

can be used to describe the system. However, the problem has been kept simple

deliberately to illustrate the experimental methods.

There are three items in the inventory. These items are military belts,

such as used in jeans and other casual apparel. Item 1 is hardware, item 2 is

dyed webbing, and item 3 is natural webbing. The following quantities are

fixed:

Item 1 Item 2 item 3

Annual Demand (D) 500,00 doz. 300,000 doz. 200,000 doz.

Demand during a -I - 20,000 P2 - 6,000 13 = 4,000
Lead time
X -XN(Ij,02) 01 - 3,000 02 - 900 03 600

Lead Time T 2 weeks 1 week I week

Fixed Cost A $35 per order $15 per order $15 per order

Unit Var. cost C $6.25/doz. $3.10/doz. $2.80/doz.

Carrying cost h $.20 $.28 $.28

* Cost per unit short i * $.40 $.40

The following variables represent parameters that we would like to investigate

to learn their effect on the system:

Variable Level Item 1 Item 2 Item 3

Order quantity Q 1 10,000 4,000 3,000

2 20,000 8,000 6,500

Reorder point r 1 17,000 5,000 3,500

2 35,000 11,000 7,000

Cost per unit T* 1 .3
short

2 3
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7-4
Note that there are seven factors, each at two levels. The2 design

in Table 6 is run, using the high and low levels of these factors shown above.

Let factors A, B, and C denote the order quantities for items 1, 2, and 3; D,

E, and F denote the reorder points for items 1, 2, and 3; and G denote the

shortage cost for item 1. From the design in Table 6, we obtain the following:

Treatment Response
Combination SXI00O Effect + Aliases (2-1) Estimate

(def) 4,626 A -65

afg 4,693 B 50

beg 4,718 D -180

abd 4,655 C -66

cdg 4,662 E -72

ace 4,653 F -58

bcf 4,685 G 80

abcdefg 4,626

Obviously, the effect of D (and its aliases) is large. Since this is the only

large effect, we might stop and conclude that over the range of variation, that

only item l's reorder point seriously affects the system. However, to be more

certain of these results, we run the alternate fraction given in Table 8. This

gives the following:

-?9
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Treatment Response
Combination $ XlO00 Effect + Aliases (2-2) Estimate

abcg 4,683

bcde 4,632 -A 66

acdf 4,656 -B 114

cefg 4,704 -D 182

abef 4,647 -C -32

bdfg 4,640 -E 72

adeg 4,640 -F 24

(1) 4,716 -G -16

Combining the results from the two fractions, we obtain

i From -7(zi + i) From 1(ti - ti)

A BD + CE + FG - 1 A - -65

B AD + CF + EG - 82 B - -32

C AE + BF + DG -- 49 C - -17

D AB + CG + EF - 1 D - -181

E AC + BG + DF - 0 E - -72

F BC + AG + DE - -17 F - -41

G CD + BE + AF - 32 G - 48

Clearly the main effect of D is large. Since the effect of D is over

twice as large as the next largest effect, we are tempted to conclude that it

is the only significant factor. This is confirmed by viewing the normal

probability plot of the estimates of the effects, Figure 5. Point 1 on this

plot is D. It is significantly off the straight line formed by the other

effects. We conclude that only the effect of D is significant.
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2-2,3 Resolution IV Designs

A 2 k-p fractional factorial design is of resolution IV if main effects

are clear of two-factor interactions and some two-factor interactions are

aliased with each other. Thus, if three-factor and higher interactions are

suppressed, main effe'ýts may be estimated directly in a 2k-P design. The
IV

26-2 design in table 3 is of resolution IV. Furthermore, the two combined

fractions of the 27-4 design in Example I is a 27-3 design..III IV
9k-p,

Any 2-V design must contain at least 2k runs. Resolution IV designs

that contain exactly 2k runs are called minimal designs. Resolucion IV designs

may be obtained from resolution III designs by the process of fold over. To

fold over a 2 k-p design simply add to the original fraction a second fraction
IIT

with all signs reversed. Then the plus signs in the identity column I in the

first fraction are switched in the second fraction, and a (k+l)st factor

associated with this column. The result is a 2 k+l-p fractional factorial
IV

design. The process is demonstrated in Table 11 for the 23-1 design. The
III

resulting design is a 2 design with generating relation I = ABCD.
IV

Table 11

A 24-1 Design Obtained by Fold Over
IV

D

I A B C

Original 23-11 ABC + +
III

+ + - _

+ - + -

+ + + +

Second 2 with signs switched - + + -
III

_ - + +

- + - +

/



As a second example of fold-over, consider the 27-4 design used in
IV

Example 1 (also see Table 6). By adding to the design the fraction in Table 8

and associating an 8 th H factor with the column I - + in Table 6 and I = - in

8-4Table 8, we would have a 2 plan. The generating relation for this design is
IV

I = ABDH = ACEH BCFH = ABCG = BCDE = ACDF = CDGH

= ABEF = BEGH - AFGH = DEFH = BDFG - ADEG = CEFG

- ABDEFGH.

The generator of the new design will consist of all generators from the old

design that contain an even number of letters and all generators from the old

design that contain an odd number of letters will have the new letter added.

Any resolution IV design will contain a 23 complete factorial design.

That is, it will provide r replicates of a 27 design any 3 of the original factors,
provided the design contain r 3 points. Thus the 2•4plan above provides two3r28-4

replicates of a 23 in any subset of 3 of the original 8 factors. This often has

important applications in screening.

EXAMPLE 2. Consider the inventory problem in Example 1. We will fold over the

original 27-4 design in this example, giving a 2 84 plan, with the 8 th factor
III

taken to be the mean c' the lead time demand distribution for item 1. In the

first fraction the mean is 20,000, while in the second it is 25,000. The

following results are obtained.
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Treatment
Combination Response ($ X 1000) Estimate Effect

def 4626

afg 4693 96 FG + AH + BD + CE

beg 4718 258 EG + AD + BH + cr

abd 4655 288 AB + CC + DH + EF

cdg 4662 -170 DG + AE + CH + BF

ace 4653 -24 AC + BG 4iH + DF

bdf 4685 -58 BC + AG + FH + DE

abcdefg 4626 -8 CD + AF + GH + BE

abcgh 4742 278 -H

bcdeh 4631 224 -A

acdfh 4655 158 -B

cefgh 4822 648 -D

abefh 4682 -38 -C

bdfgh 4639 120 -E

adeg 4639 58 -F

h 4786 -168 -C

Once again, only the effect of D appears large. This is confirmed by the normal

probability plot given in Figure 6.

2-2.4 Remarks on Computations and Allasing

To this point we have used the relatively simple computational methods

associated with the 2 k-p designs, assuming that at least a regular fraction is

availlble. Sometimes an experimenter will want to update the estimates of the

effects following each additional run. This might often occur when augmenting

a 2 k-p design with additional runs to estimate certain interactions. If we

I
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L consider the model

y - X6 + C

we can give an updating equation for B in terms of each new run, assuming that

the starting point was a block of runs giving orthogonal minimum variance

estimates of 8 (such as the 2 k-p designs). This updating equation is

-1n

-" + (M + p)- (Y- Yi)Xi (2-3)

where p Is the number of model parameters, N is the block size, a is the number

of blocks completed, y' is the new observation associated with the new vector

v of variable settings xi(i-1,2,...,n < N), and Y. X- , Equation (2-3) was

derived by Hunter [19641.

" We may also give a general result concerning alcasing. If the true

model is

y Xl§1 + X2 2 2 + C,

but the experimenter has estimated only the parameters u rsing the model

S"XsI§l + E€

then it ts well known that B is biased, such that
-1

-l - 2l -

i.4
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where the matrix A = (XX 1 )-I(XiX2) is called the alias matrix. This general

result can be used to work out the aliases for effects in the 2 k-p system.

It is often useful in more complex design settings than the 2k-p, particularly

in irregular fractions, such as discussed in the next section.

"2-3. Irregular Fractions of the 2 k Design

There are some multifactor screening situations in which higher

saturation of the design than can be accomplished with regular fractions would

be justified. This would be the case, for example, when computer runs are very

time-constming or expensive. In these situations, certain irregular fractional

factorial designs may be useful. Often In these designs, the experimenter will

only be able to estimate certain parameters in the model and wtill have few

remaining degrees of freedom. Furthermore, the estimates of the effects will

generally be noncrthogonal.

.- The simplest irregular fractions result 'from augmentation of % balanced

2 2kp fraction. One may view the process of combining fractions from the same

faily In the 2-p series as augmentation designs, where the augmented set is
III

as large as the initial set. The methods presented here are based on mailer

augmented sets. usually 1, 2. 4, or 8 runs, added with the objective of esti-

mating two-factor interactio"s.

As an elementary example, consider the 23-1 design. If only the AIII

effect is large, then an estimate of the A effect clear of the SC interaction

can be obtained vith only one additional run. Thus if I - -ABC. and the runs

made are (1), ab, ac, and bc. Now consider observation a. Since E(a) -

+ A -B- C -A -AC BC, we have, if -C -AS AC 0,

-(a) - II + A + SC

1.4
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If we have an estimate ý from the original fraction, then A + BC is estimated

by I - a - j. We can estivmate A - BC directly from the first fraction as

t -(M) + ab + ac - bc. Then I + f estimates A and 1* - I estimates BC.

Similar augmentation schemes can be derived for most other designs in

the 2k-p series, either to separate a single two-factor interaction, a pair of

two-factor interactions, or four such interactions. Daniel [19721 is the basic

reference in this area. Addelman [19691 discusses the same problem, in more

detail than Daniel N1962], but with less adaptation of results to special cases.

Three-quarter replicates of the 2 k-p series are often highly useful.

These designs may be viewed as constructed by either omitting a quarter-fraction

from the full 2 k or by adding a quarter-fraction to a one-half fraction. A

good survey of these designs is in John [19711. We will Illustrate one of these

designs with an example.

EYAMPLE 3. Suppose that in Example 1, only items 1 and 2 are of interest. We

would like to obtain estimates of all 4 bmain effects (the order quantities and

reorder points) and the 6 two-factor interactions. Obviously a 24-1 will not

do, since it contains only 8 runs and we must estimate 10 parameters. The full

24 design, requiring 16 rows, is considered too expensive. Only 12 rows can be

taken.

We can estimate all 10 effects vith 12 observations by using a 3/4

fraction of the 24. Consider the quarter replicates (24-2, I +AB - +ACD):

(1) I - +AB - +ACD - +BCD; d, ab, c, abcd

(2) T - +AB - -ACD - -MC; (1), abd, cd, abc

(3) 1 a -AB - +ACt - -BCD; bd, a, bc, acd

(4) I - -AB - -ACD - +BCD; b, ad, bcu, ac.
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Omit the first fraction and run only the last three. Now overlap these three

quarter replicates as follows to estimate the effects:

Fraction 1: (2) + (A) J. --RCD

A - ABCD - -110

AB -ACD - 0

AD - ABC - 0

ARD - AC * -110

Fraction 2: (2) + (4) 1 - -ACD

5 - ABCCD - -32

AR - I -!) , 0

BD - a * 32

ARD - BC - 0

Fraction 3: (3) + (4) J - -AS

C - ABC a -318

D - AMD n -88

CD - ARCM- 0

The estimates of the 4-main effects and 6 two-factor Interactions are shown

above, assuming that higher-order interactions are negligible. Once again,

note that only the reorder point for item I seems to produce a significant result.

Addelman and Kempthorne r1961) have developed a aeries .)f orthogonal main

effect plans. These designs are useful in cases where only main effects are of

Interest. In many cases fartors with either 2 or 3 levels can be considered.
•kp

Mtuch other work has been done on Irregular fractions of the 2k3 series.
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r
Margolin 11968] [.19721 has done much of the work in this area. Webb [19651 [1971]

has also developed very compact mixed fractional factorials from this series,

Involving 20 or fewer runs. There plans all have very heavy 2 factor interaction

aliasing. Of related interest is Webb 11968].

2-4. Supersaturated Plans

These are two-level designs devised by Booth end Cox [19621. In these

designs, each of k factors appears at the high and low levels N/2 times, where

N < k. We assume that N is even. Clearly not all estimates of the effects can

be orthogonal, since N < k. Booth and Cox [1962' generated these designs to

obtain "near-orthogonality" by using the design criterion

min(max IddjI)
10ij

where dis a row vector denoting the levels of factor 1. The vector d will consist of

N/2 + I's and N/2 - l's. Booth and Cox (19621 tabulate designs for N - 12 and

k < 16, 20. 24; N - 18 and k < 24, 30, 36; and N - 24 and k < 30. They describe

an algorithm for generating other designs, although the procedure may be very

Inef ficient.

EXAMPLE 4. To illustrate the use of a supersaturated design, consider the

inventory problem in Example 1. We now add a fourth Item to the inventory, with

the following parameters:

D - 350,000, 04 - 2,000, A -$25, C $4.30, h $0.45, N i$0.50

The following 13 factors will be considered in a screening experiment:
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Factor High Level Low Level

QI 10,000 20,000

4,000 8,000

Q3 3,000 6.S00

Q4  5,000 9,000

r 17,000 35,000

r 5,000 11,000

r 3  3,500 7,000

r 4  7,000 15,000

$0.30 $0.50

20,000 25,000

112 6,000 8,000

. 13 2,500 5,500

S114 4,000 10,000

The 13 factor Booth and Cox design to investigate these factors, and the

responses obtained, are shown below:

51
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Lan Q1 Q2  Q3  Q4  r 1  r 4 1 1 2 3 4

A ft C D F F G. H I J K I. .

I + + + + + + + + + + + - - $6138

2 + - + + + - - - + . . . . 6166

3 - + + + - - - + - . + + .+ 6247

4 + + + . . .. + - - + - - + 6310

5 + • - - - + - - + - + + + 6328

6 + - - - + - - + - + + + 6275

7 - - - + - - + - + + + • - 641q

N - - + - - + - + + + - o - 6358

q - + - - • - , + • - - + + 6150

10 - - + - + + + . . . . • 6158

I! - - + - + + + - - - + - - 6137

12 - + - + + + - - - + - - - 6135

The contrasts for each factor are obtained In the usual way. These contras.ts

are:

A - -71 H - -169

5 - -205 1 - 297

C --- 109 J - 449

D - -295 K - 267

E - -819 L - 733

F - -197 M - 115

Clearly the largest factor effect is E (or rI). followrO closely by L (or i3).

There are also several other moderately large contrasts that may indicate

52



significant factors. This example illustrates one of the major disadvantages of

a supersaturated design. Following the initial experiment, if several effects

n,,m t-o he itenriaily active, there is no simple additional set of experiments

that can be run to isolate the factors of interest. This is in contrast to the

2 k-p series, where additional fractions from the same family can always be used

to gain further informat t.on on potentially active factors, or to untangle the

interactions. Moreover, the aliasing that is present in the contrasts from a

supersaturated design is very heavy and irregular, and this will frequently

cause a confusing picture to the analyst. In this light, the supersaturated

designs are likely to be little better than the "random balance" designs pro-

posed by Satterthwaite (1959] and Budne [1959].

2-5. Croup Screening Designs

2-5.1. General Approach

These designs are intended for use in situations where the following

conditions apply:

1. The number of factors k is relatively large

2. All factors have the same prior probability of being active

3. There are no interactions between active factors

4. The direction of all effects is known

5. The errors associated with the observations are NID(O,a 2 ).

A group screening design is conducted by forming the original k factors into g

groups. Then each group is considered as a single factor and investigated

through a design such as the 2g-p. If a group-factor is negligible, then all

factors within that group are considered insignificant. Group factors that

exhibit significant effects are ther. divided into smaller groups for subsequent

expe•i Waetation.
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These designs were introduced by Watson t19611, who proposed that only

two stages be used. Thus in the second stage, we experiment with the original

factors. Patel [1962] and Li [1972] have generalized these results to multiple

stages.

2-5.2 Two-stage Group Screening

The k factors will be divided into g groups. Watson [1961] originally

suggested that all groups be of the same size, although this assumption is

unnecessary. Because the direction of effects is known, we can label the high

level of each factor as the level producing the largest response. The upper

level of a group factor consists of running each factor in the group at the high

level. If this arrangement is not followed, some factor effects may cancel.

Watson [1961] derives the optimum group size to be

[(lc1 )-a l/2  (2-4)

where p is an estimate of the fraction of active factors and al is the significance

level used for the first-stage statistical analysis. This formula attempts to

minimize the total number of runis required in both stages. It also implies that

groups will be of equal size. If we have no prior estLimate of p, or if the

direction of some ef fects are not known, then (2-4) is invalid.

Generally, we would expect p to vary from factor to factor. That is,

we would have considerable knowledge about some factors, and little knowledge

about others. Note that as p increases, the optimum group size decreases.

Therefore, it would seem reasonable to use groups of different sizes, depending

on our knowledge of p for each factor. Factors that we strongly suspect are

significant would be run in very small groups (perhaps of size 1). Furthermore,

factors for which we do not know the direction of the effect could be tested in
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groups of size 1 to prevent the cancellation effect.

As a hypothetical example of group screening, suppose we have 17 factors.

Suppose that the direction of factor 1 is unknown, and that we are almost

positive that factor 2 is active. The possible directions of the other Is

factors are known. Therefore, a logical arrangement of the groups would be:

CopFactors Orig inal Factors

A1

B 2

C 3,4,5,6,7I
D 8,9,10,11,12

E 13,14,15,16.17I

5-2These five factors could be investigated in the first stage using a 2 design

(8 runs). This would permit investigation of all main group effects, but these

effects would be aliased with the two-factor interactions of the group effects.

If we wanted to use 16 runs, the 25- design would allow estimation of all main

effects and two-factor interactions of the group factors.

If the assumption of no active two-factor interactions between the original

factors holds, then the factors may be formed into groups on an arbitrary basis.

However, some choices of grouping arrangements will lead to more easily inter-

preted results, or to smaller sets of active factors to be investigated at the

second stage. Sometimes we can use our knowledge of the problem to form the

groups. For example, we might place all similar factors in the same groups.

* Thus if we are simulating an inventory system, all reorder quantities could form

one group, all reorder levels a second group, etc. If some two-factor inter-

actions may be active, then we must take more care in forming the groups.

Generally, a significant two-factor interaction (say AB) biases the estimates

of a third factor (say C) if and only if all three factors belong to separate
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group factors. Therefore, if we suspect that some two-factor .nterc't iols

are active, then all the factors involved in those inte'ractions should lit-

plmactd in the .s.ame group. For a proof of this result, see Kli.ijuen 197a:, W

Ife I he siv:Emd sta~ge of a group screening design, in addition to itlves"tigat i n;

the set of potentially active factors, we must also choose levels for the n..•li-

gible factors identified in the first stage. Recall that the linear modell can

be written as

X- 01 + 2 +

where now - contains the set of potentially active factors and P2 contains the

set of factors tentatively identified as negligible at the first stage. The

matrix x 1 consists of the levels assigned to the active factors in the st-cond

stage and x 2 consists of the factors assigned to the negligible factors. Now,

the expected value of the least squares estimate of •1" - (XI' 1 ) l is

E(61) + (XXI1) -l;Xf

Clearly. if all the factors thought to be insignificant from stage I really are

insignificant, then 2 0 and is an unbiased estimator of 61. However.

if one or more of these effects is active, then -,2 0 0 and - is a biased

estimator of 01.

The extent of the biar in 1 is given by the alias natrix A - (XIX0)X VX.

I .

This may be controlled by the choice of factor levels for the variables in x,.

Assuming that two-level factors are employed, then if all levels in x, are

Identical (say +1, the high level) then the coefficients in -6, will bias onl" the

intercept or overall mean term in V No other effects in F will be biased |'v

factors in 02.

56



I

and 92 is rx 1. If the second-stage design is a*2k or an orthogonal fraction

of the 2 k, then (XX 1)-
1 = (1/n)I0 . Furthermore, if all of the negligible

Ilrtors In X are set at their high levels, then X2 is an nx r matrix of l's.!2

Now X is an nxp matrix, the first column of which consists of l's (to account
I

for the overall mean 1j) and the remaining p-1 columns consist of the +1 and -1

levels from the orthogonal 2 k design. Therefore, XIX2 is a px r matrix, the

first row of which consists of n's, all the remaining elemtns are all zero.

Therefore,

(XlX2) XIX2  (1/n)I n n ... n

and the alias structure is

r-1E00o) "0• + I Bi
i=p

A
E( i) - i, i-l,2,...,p-1

Thus #he r elements in 02 bias only the estimate of the intercept 0' Strictly

[ speaking, all of the r negligible factors do not all have to be here at the high

level. However, each factor must be held at the same level throughout the

I experiment.

5
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L
EXANPLE 5. Consider the inventory problem in Example 4. Suppose that there are

13 factors of interest, Ql, rig UPl" lil Q2 , r 2 , •2 Q3 9 P31 Q4 * r 4 , and V4 - We

will arrange these factors in 4 groups, according to item, as follows:

Croup Factor Original Factor

'A Q19 rig U1, 111

""B Q2 , r 2 , U2

C Q3 9 r 3 , 13

D Q4 9 r4, V 4

A 2 4- design is used to analyze these four group factors. The results are

* summarized belov:

b

Treatment
SCombination Response Effect Estimate

"(1) 6207

ad 6164 A + BCD -180

bd 6183 B + ACD -116

- ab 6134 AB + CD -10

Scd 6210 C + ABD 6

ac 6168 AC + BD 4
"*1

be 6181 BC + AD -8

abcd 6135 D + ABC 2

Note that the two largeot effects are A and B (and other aliases). Group

factors C and D, and consequently the factors for item 3 aad 4 are negligible.

Therefore, following the initial 8 rows, we have reduced the set of potentially

active factors from 13 to 7. The 7 remaining factors, Q, ri, P1. W19 Q2 , r 2 ,
"• ~ ~~~ ~~7-4 7-3pansuhailsrte

and 02 could be investigated using a 2i11 or 2IV plan, such as Illustrated
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earl ier.

2-5.3 Croup Screening With More Than Two Stages

Patel [19621 and Li 119621 have generalized Watson's results to more

than two stages. Their procedures are very similar. Patel showed that the total

number of runs is minimized if we choose the number of groups according to

S -- kpn/(,+n)

g2 =g3 9M =n "gn+1 -"P-(n)

where g. is the number of groups into which each of the groups at stage i-I is

split. He also notes that an n-stage procedure is preferable to an n-i stage

procedure if

n(n-1)

Group sizes decrease geometrically with parameter pl(n4l). Note that if we

suspect that if more than one-fourth of the factors are active (p > .25), then the

optimum number of stages is one. If between one-twelfth and one-fourth of the

factors are active, then two stages should be used. Similarly, a three-stage

procedure would be used if between one-thirtieth and one-twelfth of the factors

are active. Clearly, these designs will be useful only in situations where p

(the ratio of active to total factors) is thought to be very mall.

2-6. Variance Reduction Considerations in Factor Screening

An important consideration in the design of a computer simuletion experi-

[ ment is the incorporation of variance reduction methods into the design. Two

common variance reduction methods are the use of common pseudorandom numbers and

59
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antithetic pseudorandom numbers for different points in the design. These

methods have application to factor screening. Early work on this problem was

by Fishman [19741. Recentlya comprehensive treatment of the subject was

published by Schruben and Margolin 119781.

We assume that when common random number streams are used at two design

points, the two output statistics exhibit positive correlation, and when anti-

t. thetic random number streams are used at any two points, negative correlation

between outputs is induced. These assumptions are, of course, not always met

in practice, but they are satisfied relatively often, as has been confirmed by

numerous investigations (see Kleijnen [1975a], pp. 197-198).

Two possible estimation methods can be used, ordinary least squares (OLS),

or weighted least squares (WLS). These estimators are

:0 -S (X'20IX'y

and

OL- (x'V-X) x'V y

where V Is the correlation matrix induced on the responses. The covariance

matrices for these estimators are

[ CovX-• =(X'X )--

anid

L Cov( 8 rS)- (X'V-1x)"

K 60
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A widely used criterion for comparing designs for estimating e. is th-

determinant of the covariance matrix of the estimator. Designs that minimize

thim criterion are called D-optimal designs. The determin.ants of the covariance

matrices associated with the OS and WLS estimators are

DOLs" Ix'xV-2Ix'v'xi

and

S - i(xov-lx)-I

The WLS estimator has smallest generalized variance among the class of linear

unbiased estlistors. However. it is often impossible to calculate the IlLS

estimate because the matrix V is unknown.

There are some situations in which the OS and WIS estimators are equiva-

lent, and, hence, these two estimators would produce the same covariance matrix.

Schituben and Margolin [19781 show that the two estimators are equivalent for the

cases of the random number assignment schemes that minimize DWLS. That is, an

induced correlation structure that would minimize DiLS Is also one for which

the estimators and 8 (and have s a ) are identical. Therefore.
ZOlLWS '1vis

the OLS estimator can be used.

Schruben and Margolin (19781 propose the following rule. If an experimental

design admits orthogonal blocking into two blocks, then if for all points in

block I we use the sa-.e comn set of pseudorandom numbers, and for all points

in block 2 we use the antithetic set of random numbers, then the OLS estimator

of B will have minims generalized variance. Specifically, this assignment rule

will produce an estimator of So that is superior to that obtained by common

random aumbers, and equivalent in terms of dispersion to common random numbers
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for estimating the rt .Ing paramete,'s in a. In general, the best results are

obtained if the block sizes are the same. Furthermore. the po.sitive and negative"

correlations induJce.d do not have to be equal.

There are some special results that can be stated tar the 2 k-p series of

designs. If the induced positive and negative correlations are equal in mignitude,

then the asnignm.nt rule above produces a minimm geaeralized variance for the

class of 2k-P designs assuming that the linear model contains a mean (60) plus a

subset of r < 2 k-p effects. This assignment rule also minimizes the trace of

the covariance mutrix of ;that is, the sum of the variances of O.Bl. *.... r

is minimized).

Occasionally, factor screening experiments will make use of saturated

"designs. For a saturated design, M induced correlative structure between the

obmcr'atlon. results in an improvement with respect to the generali.-ed variance

criterion over that obtained from independently =-eking each design point.

Furthermore, the OLS and ULS estimators are equivalent in this case also.

These results have direct application to factor screening. Any 2 k or

2 k-p design that it not saturated can be run in two orthogonal blocks by identi-

fying the blocks with the + and - levels ,f one of the k columns in the design.

Thus, only k-I factors could be investigated.

W4- now give sme illustraptons. First consider the 26-2 design shown in

Table 3. We can run this design in two blocks, say

(1) bdef be df

aef abd abf ade

bcf cde cef bcd

abce acd ac abcde

block 1 block 2

I
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I I
The.se bloctks wetre fori'd by confounding th.e ARY cI fIett (sand1 it% ali ases .; t

Tabhl 4) with blocks. The trealtment combinaat ions In block I would be run with

one met oif et"mn randmh numbers and those in block 2 would be run with the

antlthetlic net ot random nimbern.

As a it second example. cons ider telt 21-4 desi¢n run in Exeamfle 1. Siince 7
I'll

factors ar.e considered in only 8 runn. thin in a Natura•tetd fractitonal factorial.

If enly this fraction in to be- run. any Induction of correlation in superior to

independent ob.imrv.at ions,. o running all observwt itins with •tiemnn randi Mw ne.br

mtreamm would be. ;in appropriate ntrategv. Nsw. if any fracti.on from the st~me

famiulty I adled to the originual fraction, the new i raction should be run using the

antithetic randnm numbetr stret.m. Clearly. this in an toptimal straitelgy. siince the

tw frnct ion 4 together can he viewed am a fold--over design with the random number

st ream etffect taking the levels of the eighth factor ('ihich in + in the fraction

I anti - in fraction 2).

AK ai third erample. consider the216-3 design in Table 7. Thim des&ign

Investtigate.s 6 tactor 4 in A runs. and since it its nt a saturated fraction, we

coiuld obtain a minimum generaliared variance by decomposing the design into two

orthogonal blocks of 4 reins each. Now any nonsaturated Rtesolut ion IlI plan cani

be run in two blocks by Identifying the + and - le.vels of a single additionael

var •able with tihe blocks. Thust. in our example, adO a seventh column to Thblte

7 by netting the signs in that column equal to K - ABC. Thus. the signs are

-. *, *!. -, ++ -. -. and 4. Consequentlv. run treatment combinations def. abd.

ace. and bef in block I (-) with a cmokn met of random numbers, and treatment

combinations a", be. cd. and abcdetf in block 2 with the antithetic set of random

numbers.

1NL, mu1 tpome upon examining the estimates of the etfects from this fraction,

it Is dehr ded to add a second fraction from the same family to separate main

etfects and two-fa'tor Interactrions. The appropriate second fraction is

[ •e3



A B C D--AB E--AC F=-BC

+ ÷ ÷ - - - abc

- + + + + - bode

+ - + + - + acdf

- - + - ÷ ÷ cef

+ 4 - - + + abef

- + - + - + bdf

+ - - + + - ade

-. . .... (I)

In this new fraction, block 1 would consist of bode, acdf, abef, and (1).

These rows would be made with the same set of rdndom numbers used in block I

from the first fraction. Block 2 in the new fraction would consist of abc,

cef, bdf. and ade. These runs would be made with the antithetic stream of randoM

numbers used in block 2 in the original fraction. It is easy to verify that the

fin6al design In a plan, with generation I-bmLDE=ACDF-ABEF. The estimators
IV

from the combined design have minimum generalized variance.

2-7. Evaluation and Choice of Screening Designs

In this section, we will evaluate the characteristics of the various types

of screening designs. Hopefully, this will provide guidance on the selection of

designs in practice.

The 2 k-p fractional factorial design has many advantages in -actor screen-

ing. If we can afford N runs, where N is a power of 2. Resolution III plans can

be derived that incorporate up to N-1 factors. These plans require the experi-

menter to assume that two-factor and higher interactions are negligible. How-

ever, the assumptions regarding interactions can, to some extert, be checked by

combining the original 2 k-p design with a second fraction from the same family.
III
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If the experimenter can afford up to N=2k runs, the 2 k-p Resolution III and IV

plans are highly recomnmended. The Plackett-Burman plans, also of Resolution 11I,

are not generally recommended for factor screening unless the analyst knows in

advance that all but a few two-factor interactions are negligible. The heavy

aliasing of main effects and two-factor interactions is an undesirable property

of these designs.

The supersaturated plans of Booth and Cox, like the Plackett-Burman

designs, assume that only main effects are active. If this assumption is false,

then the alias structure generated by a supersaturated design would be extremely

difficult to untangle. The group screening methods of Watson and Patel are

recomended instead. This approach would seem to have the economic efficiency

required In simulation, without the overly-restrictive assumptions regarding

Interactions. For the vast majority of screening problems, either two or three

stages vill be sufficient. Once groups of factors are formed, it is recommended

that 2 k-p fractional factorials be used to investigate the group factors.

3. SCREENING WITH UNDESIGNED AND PARTIALLY-DESIGNED DATA

3-1. factor Screening with Regres-3on Models

Very few factor screening studies will begin in an inter..:tionless state.

In mose cases, we find that the analyst has some computational experience with

the simulation model. It would be economically efficient to incorporate as much

as possible of this historical information into the screening study.

In Section 2, we illustrated how the general linear model

Z x0 +

could be used in factor screening. If an experiment can be designed for studying

the effect of the factors, very efficient parameter estimation techniques can be
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used and data interpretation if relatively simple. One reasiAn that th* ,.' nt-

experiment case is so simple is that most "Mreening daaiguns art urtht'jot!al; that

Is, the regression coefficients P have unconditional interpretations. If We

apply the same approach to undesigned data that may have been collcteda for

other purposes (such as validation or verification), this ease of inttrrp-rtatigu

is lost. However. it is still possible to learn momething about the relative

importance of the factors.

When dealing with undesigned or historical data. our approach is to fit

an appropriate regression model to the data, and tien make Inferences on the

model parameters to determine the effects of the factors. This is often iazardous.

since it is weil-known that the regression coefficients B measure only the

partial effect of a variable. That is, 0 measures the effect of x, conditional

on the other x, (i#J) in the regression model. Furthermore, depending on the

degree of nonorthogonality in the data, the least squares estimates of 8 may be

very far from the ttxv regression coefficients.

With undesigned data, the factor screening problem consists of two stages,

(M) variable selection, and (2) interpretation of regression coefficients. We

will discuss these problems in the next two sections.

There may also be a third type of screening study, part-way between the

extremes of designed experiments and undesigned experiments. This is the situation

in which some new data points may be collected for use with the original undesigned

data, but the amount of new data to be added is not enough to constitute a fully-

designed screening study. We will discuss methods for augmenting undesigned

data for factor screening studies of this type.

3-2. Variable Selection Procedures

There is a vast literature on variable selection in regression. A very

comprehensive review of this subject is in Hocking [19761. Variable selection is
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bWth an art and a science, and should be performed with care and caution. It

should be regard" as exploration of the structure of the data.

We. may clamsity variable, selection methods into two general types.

otelwis--type mrthods and search methods. Step•i"e regression amd its major

variagtamn (torwa.rd selection and backward eliainaatium) are well-known. T7.1.t

pre,',dures should not be used mechanicallv to find the "best" reg~ression equation.

M4ore%-vt-r. the order in which variables enter agh leav.e the model should not be

ihterprrted a% moa.uring the relative importance of tOe factors. The existance

of milt ic.llinearity (rc'rrclaticim btwtrw factors), which it often a function of

the disposition of the dat-a In a-space, impacto the variable selection problem

s ign if Lrast ly.

S-arch-type variable selection methods include the all-po"sible rcgressia-

algorithms. the lMocking-Lamotte SELJCT procedure (s*c Mocking 119761 for a

description), and thw directed t-search method (see Dastel amad Wood 11971').

T1nw- procedures often produce results superior to stepviste type methods, par-

tfcul;srly for data that is badly nonorthogomal. The all poassible rgrerssiotm

metho,-, tuhas much to recomad it, particularly when twe number of factors is

%mall. s..y 20 - lss. There are several good computationally efficient

algorithms for .,. '-ible regressioms, including the Furilval and Wilson

119741 algorithm, whirh -- -w available on RD-P.

For factor screening purp. -:'s, stepuise type methods can be used at the

oestmet of the problem, to reduce the number of factors to about 20. emnerally.

backward elimip-t ion seems to work well at this stage. although amy of the

stepwise-type procecures can produce .,od results if caretully used. Then oe-

of the search methods such as all possible regressions, should be employed using

the sabset of the original factors identified at the first stage. The end result

may he. se-veral final equations. Each good candidate equation should be examined

for adehq.uacy and validity using -the standard techniques of residual analysis
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I
(see Draper and Smith [19661, Ch. 3). Since the primary objective of building

tht, regression model is to obtain good estimates of the parameters, the model

s.elect Ion criterion should be chosen accordingly. Sele.cting the model that gives

.1 minimum mean square error will generally lead to good vstimates of the t: lividual

rt.egressnn coefIic ienits. Selection of variables based on R2 (a popular pr. Liece)

often -au.-;es important variables to be left out of the equation.

3-1. Iritctrprotatiou of Rt-gress.ion Coefficient

A-. notcd previously, int erpretation of regression coefficients is hazardous,

sinice 3j r!eesurt-s thhe et fect of x -Ivt-n that otht-r factors x, (i#j) are alsc. in

thIe rnode I . Furtht rtm:r,,* tbhe, , tuodes of t he individual coefficients are

.Aftt,-d by the unit-; ot the f'actors and the° response Y. For this reason it i

,,o 1 Yv b•-.t to, work with -st~nd~ardized coefficitents (Oiten identified as "beta

.,- .r ," en r a,. r,*; i',t ct"m~ut er pr roj ,rm outp'ut.s). In ý,;eneral the, stadndardi;."ed

,,,, I. I. ,t nt . .al, ,,,'qc, ftv -.,)I • vli

c - (3-1)

r t, . ,, i .f !" .u - x .4d n t.- ra-s,,-nN . 3'A.t- re!at ior: z,;•ip bh tw -t- thk

1 - . t. r, ',, . u.r . , - ,''. ot t ' "e t.ý2'T', rh-.•'d rc-ýrt- %%-&'n t- t Iicjelnts

art- t,fttn i - :. q : , ,.i% urt- ,' ir;-.+rt ;iflC.- of t.' f;ýktor's w , -1 .,t rt--kber tI at

I|

! -3



Ilit, p:i~r~t i;,1 atxark ot tilvs'e ctt-l ijcieflts still liampers inIterpretat ion. Onl IvIt'

fict 1';icto x), a.l,,. k;re n)rthogigo l (or nearly so) is the totail effect ''I

x. 1,1 ..-tcl hy 'Thcr.-It rv it. !jimlioi l txamtliiit tilt fia !;d,.it of fat fir~s,

* .1 **... I *mnt ntcastire tlit, cxt.n oft ~tIipir tuirt- fromthii r thoynal lity blit orc

ti t riirt'r i ,it; i lit, j iid iv itlu~i I ;.n I~aa zv~td rvgres!; ion c.'cI t i v it-tt s. One tisul ul

mv. v;a ;irv to I %rt Iit i~aa'i; I it v i b :;~ I i C t lit-t t t ti~t rs are' torI i tigminiI . wit i I v

it ic1 ý' 0. fli-rc i'; at. 1,-.Jtint, Iinever 4jjtlpndt'lt*CV in tilt t actors. Therefor.

iiC Ii I rc -.a is 't't ii I . wt ftce 1 el at ivt I '. ctnf i dent in int erpret i ng

tlt- irndivix' il.1 I u.)vf in toe tie jnt s. Oil the other hand. if IC~ is Small1.

i.iv 41.1 ti * n wt- -iu';pt-v c C it st'vt're mu It ico11 inear it v is pro-crtnt Lind.

, ii;.qt4pai tlv * Iti'lt- c- j c. tic j icivnt, art, verv uznstabl.thI In suchi at case.

hi tcrIrt'tatCitin wt itt.' inilividiia.ai t~iieft ticlt'fts aWiiulJ he, vt'Fv riSity.

Vr ittri-l4i .a I Va.s.s I .a I 0.1 C 0 f.. 10. cit tir m..a,%ts r . it I mu II i -

11. 1 fti Ii v A.lati I I bic 4 xx I IwI. 1I .*'v-ý i ti' Lit;% t he v.,r i anne i nf Lit, itbio I ic tu4%F

it I cn Il~,'a cni-'.lit' % 1 C ) artI the t'~iv~~..ot 4. 11 t I%& Iag 'Air.

V.1r ltax,' V ilt I.1t ji.': 1  .14t.- i ,Ir.ae-i r t i-an P~. or if that% ratito t't t he I aor y.4

* sh I . 4'1; ?V.u IAt- c.a I I ( -t I t ! it-4. .1J It i titi 11 :aiatbcr ) ex~cat' J!. 110 thatia

'r ..C .- i.C 'n .hoaIdbe t.a.uli !k..: t'r int erpret in, th t i nJ ividu~al ctwit itt.ient

'ri, tiv. *~ti~n ~ t~it t rce-,Ei.zlatin,:. the p~tartorterii hv a wu

.,t i-alI.j. .a-nj C, '.'~kt ~aht t-ollinevarjtv.

A t~~I-i; 're..t. -ttnt~'i~d deignvd tit etwtttt vwjlti-

~ Ia....r:t a- r .tr.-;",.-S.1rl'. The rlJý* rt'rc'.%ion 4tkZ ivt--s lirv d'f int-d .et.

~~~~- I. ,L*v.!~t :'r i-~-.~r. k is to sove n-)for various k .

1. -7 a- .a1.l'21 .- & a.0 t ilt' V~alue~ at which rV.1a4m~abIe St ablpal .t it

4 1 t,, .-. *t .ir t '.. t i I )r' t p. I' v~ pt i c ta I I d t he rtidr v t r ae. For



further details, see Hoerl and Kennard [1970W.

It, (3-2) in applied to the full set of factors, then the ridge trace is

used to eliminaite negligible factors. The rules for elimination of factors are:

1. Eliminate fsctors whose standardized coefficients are stable but

2. Eliminate- factors vhosr caefficients are unstable and tend to zero as

k increases.

3. Elimin-ete one or more factors with unstable coefficients.

The remaining set of variables should be examined for near-orthogonality. Thi%

may be do-e jrgrphically by plotting D '(k)'Le(k) against k. Note that D is

the squared distance of •(k) from the origin. It can be shown that for an

orlhogenal system. t.e distance of the ridge coefficients from the origin shivuld

be I(0)'1(0)/(l~k)2 . if the factors are nearly orthogonal, the graph of these

tw, functions shu,,ld be nearly identical.

rXAq1,FY. 0. Coudster the four-item Inventory problem described earlier. Table

12 cotailav M) observations on average annual cost and the corresponding values

of the independent variables QI" Q 2 , Q16 Q4, rl" r 2 ' r3, r 4 " '1" and 1 These

30 runs dkv not correspond to awy standard factor screening design. We will

IIl,-trate how regression methods can be used to identify the most influential

#actor%.

Th--w 10 variables were analyzed using the BMD-P stepwise multiple regressifh-i

program P.M. The F-level for evtering and re'moving variables wax arbitrarily

art at 4.0 (the logic for this choice stem from the fact that tZ ,. F, and t - 2.0

corresponds roughly to 95 percent significance). The results of this analysis

ar saumar.zed behow:

I..
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Table 12

Data for the Inventory Problem, Example 6

)b..rvat ion COst Q r r 2  r3  r4  I ;1

1 4•49 10490 4230 5310 0970 22380 8810 3940 14200 e70 320102 6225 22370 3750 5350 7520 24130 8240 6800 21830 .27 391203 6181 9960 7790 5690 10490 37570 4100 6560 18740 .15 234904 6162 9600 8960 6230 6990 28920 11690 7510 7060 .39 271905 6194 6960 8540 4480 7390 32600 5150 4270 5680 .60 258306 6188 10360 6350 6120 10590 29300 10280 5860 8430 .18 35640
7 6160 17960 5180 3600 4540 29700 7070 3460 17620 .71 114008 6165 9220 5220 3580 11400 25900 9920 3080 9210 .57 2290')
9 6174 14600 4860 5870 4880 17960 6200 3510 13600 .38 1703010 4438 15010 5410 3990 4270 17430 4570 4230 4700 .56 257701! 6198 9300 3260 6160 9140 18580 6990 4320 15400 .18 2401012 6214 23940 9150 4440 9760 26410 9770 432G 6120 .36 3407013 6176 105W 6900 6540 7250 20590 7250 4220 14800 .67 2199014 6169 11000 4650 4080 3640 33060 10060 3050 8200 .47 1679015 6492 8120 4690 4580 9620 27000 4700 3410 6140 .60 34480I1 6132 12550 3990 5000 5230 32360 10330 6040 9900 .55 2617017 6218 21690 7280 4660 9800 21380 5100 6180 20500 .19 3333018 6138 13780 3680 3580 9140 36860 9880 6470 21120 .83 1750019 6385 20,00 6960 5820 5150 15010 11150 3930 9260 ,77 2810020 6283 16440 4090 5920 4210 25590 6400 7560 7130 .90 2920021 6287 19510 6110 5190 3580 22530 9870 4530 4900 .15 3459022 6189 18060 5400 4940 3790 16660 4560 6260 21060 .76 1234073 6714 9390 8540 6260 4930 19230 4870 3000 19930 .65 34900

24 6138 15110 6160 3780 8880 23490 11200 7900 17420 .40 15660:?s 6195 21780 4270 3000 11160 26110 5550 5060 15020 .41 28270!6 6141 18230 7000 6950 6990 27080 10990 3920 8130 .84 1098027 6162 17450 5390 6170 11500 28910 6120 69"0 7660 .55 2222028 6276 15900 3320 3940 8220 30670 7080 4400 10410 .50 3915029 6138 13670 8360 3640 3790 39980 9190 6130 12240 .45 2500030 6135 19120 6100 39"0 7110 34150 8030 7620 14240 .13 24900
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a,

V~ariabhle St.ndardized Coefficient Partial F Statistic

(I -0.372 7.438

r, -0.442 13.139

f 1  o0.378 8.940

0.612 23.866

This *4luat Iam has R 2 0.66b10 and -SE 6936.97. A plot of residuals frow this

m~d,.I versus the predicted values y is shown in Figure 7. This display

indicattes a tteadency to underpredict cost near the extreme value of the retsponse

variable. This could occur either because important variables have been left

out ol the mtdel, or because the relationship between cost and the independent

variables in not linear. In this problem, considering that we know that average

anmnul Inventory cost Is not a linear function of Q and r, it would seem that

the Iltter possibility should be explored.

Since none of the variables associated with item 2. 3, or 4 -ire apparentlv

stignifivant, they are ignored, and the data analyzed with the candidate vari-

abhes Q1o rl. QOlrl rq. Ill. anal Pl. This second analysis is performed with

the RMP all possible regressions algoriltm (Furnival and Wilson 119741) POR.

The criterion for model selecti- is minimum IE. The results are shswn below:

Variable Standardized Coefficient t-statistic

-1.350 -2.20

r1  -2.995 -2.57

Qlrl 1.175 1.72

C`2 1.767 1.92

Sn 0.401 3.34

II 0.667 5.46
7

II
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I

This ,- vr! z yeids i2 - 0.7226 and MSE - 6206.86. Clearly Q1 has a strong

*.. -z effect, and r 1 exhibits both linear and second-order effects. The

variables Q, and r 1 are much more influential than U1 and 1 in explaining the

variation in average annual cost. There is also evidence of an Interaction

between Q, and r 1 .

A plot of the residuals from this model versus the corresponding title"

values is shown in Figure 8. and a normal probability plot of residuals is shown

in Figure 9. These displays do not indicate any gross violation of assumptions.

3-4. Augmenting Undesigned Data

In screening situations where ome additional runs cam be added to existing

data, a natural question is the development of criteria for locating these new

observations. If mlticollinearity is a significant problem is the original

data, then it seems logical to locate the new points so as 3 alleviate this

problem, insofar as that is possible. On the other hand, if malticollinearity

is not present, then other criteria could be developed.

A symptom of multicollinearity Is a smell value of JCJ. Therefore.

if m new runs are to be made. they should be at points in the factor space chosen

to maximize IcI. If there are k factors, and if we think of the region of interest

for these factors as a k-dimensional hypercube, then ICI is ma=imzed by adding ,

smw run at the corners of the experimental region. For details of this procedure,

see Caylor and Merrill [19681 and Dykstra [19461. Their procedure allows the

coordinates of all m new points to be detemined sinltameously. If sequential

agmentation is desired, then adding each new run at that point in the factor

space where the variance of the predicted response is maximized will also

maxi me IC!.

Naximizing ICI is a variance-oriented criterion. It is a reasonable

criterion if the form of the model fit to the data is correct. Roiwver, in most

factor screening studies, we have made the assumption that some effects are
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itj - JR Rdx dx (3-5)

are relvion moment matrices, 92 - P• W21o, N is the number of observations, and '2

I s the experimental error variance.

The average mean square error is composed of two terms, the average variance

-I
V = trace[PlllMl 1 , (3-6)

and the average squared bias

S-1 -1 -1 --

B -P-2 + (P2 2 - I + - 12- u1 1 2)i-2 " (3-7)

Average squared bias is minimized when design moments are equal to region moments.

or

I " P11 and M - 12 (3-8)

Average squared bias then is a function only of the region moments which are not

jcytrollable by the experimenter and Its minimum value is

'mi 2 - Q;[1"2 2 - -i1 2 llI 12k_2 . (3-9)

An untiesigned experiment will not meet the conditions in Equation (3-8).

but it in possible to augment the experiment in such a way that the conditions

will he met or nearly met. We then are operating on the controllable part of

average squared bias, say
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BC 2 M - 1 P ) P (MN -1 M p-1 ) le (3-10)Mc -2 1112 112 1 12 11 12=-2

Consider first the case of fitting a model containing all second order

cffe•ts when some third order effects are present. We desire design moments to

equal region moments through order 5. Expressing the equalities in equation

(3-8) resulhs in a.set of simultaneous non-linear equations that can be solved

for the additional experimental trials necessary. For example, the pure second

design moments should equal the corresponding region moments, or

N}"x2u - /(k + 2), i-l,...,.k, (3-11)

where k Is the number of factors. Similar equations are written for the other

* moments. For the N observations already taken, the left hand side of Equation

i.

(3-11) Is constant. We can now select m additional runs so that

2ux. - W/(k + 2),
u-I

where W - N + m. The levels of the variables for the additional runs are Xlu,

u=N+I ,... ,W.

The selection of the m additional runs is accomplished by minimizing the

function

F(x) iI( 1  2+ 2 2
+Ik IfW, 2 W( 2 ) 2 k k k /W \uxt 2

+~~~~~~ I Ius 1 -W( 2 (j iXJX~
I P"i =Jj \ =I

k k u) \2 k k k W

112
If n u~l t~ux JI u uj u

[+L x + I I I W '2-1 inl i=u1 J-1 0 1 uu
L>J

79

/



k k k k (W x 2
+ Y x ilu-

k k (Wl X'u22
+ x i Yu= u- - W/(k + 2)(k + 4)

1=1 j>i =L

+ ~ ~ xil- W/(k +2)k4l \. I I

k k k k k fUW \2
+ Y Y xxiXtuxxq (3-12)
i--1 jl Z>J p>k q_>p

For the case where we fit a main effects model and the true system contains

sccond-order effects, moments through order 3 must be equal and this is

accomplished by minimization of F(x) in Equation (3-12) considering only the

first four term.,;.

The bias will be minimized if the additional design points can be

stle'ted so that F(x) is zero. However, in many cases when adding only a

I imited nu:mmber of design points the minimum value of F(x) is greater than zero,

that is, not all moments can simultaneously be adjusted to the required values.

fit those cases where the minimum possible value of F(x) > 0 the augmented design

will minimize bias only when the contribution to the controllable part of bias

ret:tlting, from any design moment not equalling the corresponding region moment

is the same for all moments, that is, all components of a 2 are equal.

The value of 22 increases as we add observations causing the minimum

valuc of bias, BRain' to increase while the value of the controllable component

of' bias, Itc is decreasing. Bc can be decreased to zero, in which case further

additional observations can only increase average squared bias due to the

increase in Bmil. Also the amount of increase in Bmin may become greater than

tim decrease possible in B.. This indicates that a measure is necessary that
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will indicate when average squared bias is at a minimum.

We, select as such a measure the percentage reduction in bias, say

B0 - Ba

PR- X OO
B0

where the subscript 0 indicates the original value of the undesigned experiment

and the subscript a indicates the value after augmentation. By letting the terms

Inside the square brackets in equation 4 be denoted by Q, we can express PR as

S I a

PR L2OQO(-20 - 2a a-t2a
PR =--,

(' 209o'20

€0 (B2/°)QO 0• Q•2/0) -€a (92/°F)Qa a(-2)
€V0 (92/0)Q0 )A0- ()2/0)

or

NoQ0 - NaQaPR - 0 aa(3-13)
N0 Q0

It can be seen that PR does not depend on the unknown value of a 2/a. The proce-

dure to minimize bias is to determine the maximum number of now runs allowed,

then sequentially select one run at a time by minimizing F(x) m times. Any

unconstrained search technique could be used to minimize F(x).
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