



AD A 0 7 3 .





# **O** DEPARTMENT OF DEFENCE

DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION

WEAPONS SYSTEMS RESEARCH LABORATORY

DEFENCE RESEARCH CENTRE SALISBURY SOUTH AUSTRALIA

> TECHNICAL REPORT WSRL-0056-TR

## AN ATTEMPTED EXTENSION OF A FINITE ELEMENT SOLUTION TO AXISYMMETRIC POTENTIAL FLOW

M.K. HASELGROVE

DDC DRC20000 SEP 4 1979 DEGETTED B

Commonwealth of Australia

08 3

NOVEMBER 1978

AR-001-422



**Approved for Public Release** 

79

COPY No. 26

IDC FILE COPY

THE UNITED STATES NATIONAL TECHNICAL INFORMATION SERVICE IS AUTHORISED TO REPRODUCE AND SELL THIS REPORT

APPROVED

FOR PUBLIC RELEASE

## DEPARTMENT OF DEFENCE

AR-001-422

## DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION

WEAPONS SYSTEMS RESEARCH LABORATORY





M.K. Haselgrove

## SUMMARY

11) Nov 78

 $^{\sim}$ A Galerkin finite element method, which has been successfully applied to two-dimensional inviscid flow, has been applied to axisymmetric potential flow. Solutions have been sought for three alternative formulations using different representations for the velocity components. Two of the formulations produced only poor results, while the third gave no worthwhile results at all. Possible reasons for the failure of the method are discussed. F



set

125 p.

Approved for Public Release

POSTAL ADDRESS: Chief Superintendent, Weapons Systems Research Laboratory, Box 2151, G.P.O., Adelaide, South Australia, 5001.

UNCLASSIFIED

410 929

## DOCUMENT CONTROL DATA SHEET

| Security classification of this page UNCLASS                                        | IFIED                                                |
|-------------------------------------------------------------------------------------|------------------------------------------------------|
| 1 DOCUMENT NUMBERS                                                                  | 2 SECURITY CLASSIFICATION                            |
| AR AR-001-422                                                                       | a. Complete<br>Document: UNCLASSIFIED                |
| Report<br>Number: WSRL-0056-TR                                                      | b. Title in<br>Isolation: UNCLASSIFIED               |
| Other<br>Numbers:                                                                   | c. Summary in<br>Isolation: UNCLASSIFIED             |
| 3 TITLE<br>AN ATTEMPTED EXTENSION<br>TO AXISYMMETRIC POTENT                         | OF A FINITE ELEMENT SOLUTION<br>IAL FLOW             |
| 4 PERSONAL AUTHOR(S):                                                               | 5 DOCUMENT DATE:<br>November 1978                    |
| M.K. Haselgrove                                                                     | 6 6.1 TOTAL NUMBER<br>OF PAGES 24                    |
|                                                                                     | 6.2 NUMBER OF 6<br>REFERENCES:                       |
| 7 7.1 CORPORATE AUTHOR(S):                                                          | 8 REFERENCE NUMBERS                                  |
| Weapons Systems Research Laboratory                                                 | a. Task:<br>b. Sponsoring<br>Agency:                 |
| 7.2 DOCUMENT SERIES<br>AND NUMBER<br>Weapons Systems Research Laboratory<br>0056-TR | 9 COST CODE: 331202                                  |
| 10 IMPRINT (Publishing organisation)                                                | 11 COMPUTER PROGRAM(S)<br>(Title(c) and language(s)) |
| Defence Research Centre Salisbury                                                   |                                                      |
| 12 RELEASE LIMITATIONS (of the document):                                           |                                                      |
| Approved for Public Relea                                                           | ase.                                                 |
| 12.0 OVERSEAS NO P.R. 1 A                                                           | B C D E                                              |
| Security classification of this page: UNCLAS                                        | SSIFIED                                              |

and the second state of th

Security classification of this page:

UNCLASSIFIED

13 ANNOUNCEMENT LIMITATIONS (of the information on these pages):

No limitation.

| 14                        | DESCRIPTORS:           | Axisymmetric bodies                                                       | Computation | 15 | COSATI CODE |
|---------------------------|------------------------|---------------------------------------------------------------------------|-------------|----|-------------|
| a. EJC Thesaurus<br>Terms |                        | Inviscid flow<br>Axisymmetric flow<br>Fluid flow<br>Fluid dynamics        |             |    | 2004        |
| b. 1                      | Non-Thesaurus<br>Ferms | Galerkin finite elemen<br>Finite element method<br>Weighted residual meth | t<br>od     |    |             |

S

LIBRARY LOCATION CODES (for libraries listed in the distribution):

SUMMARY OR ABSTRACT:

16

17

(if this is security classified, the announcement of this report will be similarly classified)

A Galerkin finite element method, which has been successfully applied to two-dimensional inviscid flow, has been applied to axisymmetric potential flow. Solutions have been sought for three alternative formulations using different representations for the velocity components. Two of the formulations produced only poor results, while the third gave no worthwhile results at all. Possible reasons for the failure of the method are discussed.

| NTIS                               | White Section                          |
|------------------------------------|----------------------------------------|
| DDC                                | Buff Section                           |
| JUS TE REATION                     |                                        |
|                                    | ************************************** |
| BY<br>DISTRIBUTION/A               | VAILABILITY CODES                      |
| BY<br>DISTRIBUTION/A<br>Dist Avent | VAILABILITY CODES                      |

Security classification of this page:

UNCLASSIFIED

1

## TABLE OF CONTENTS

|                 |                                                         | Page | No. |  |
|-----------------|---------------------------------------------------------|------|-----|--|
| 1.              | INTRODUCTION                                            | 1    |     |  |
| 2.              | APPLICATION OF F.E.M. TO AXISYMMETRIC POTENTIAL FLOW    | 1 -  | 9   |  |
|                 | 2.1 Field equations                                     | 1 -  | 2   |  |
|                 | 2.2 Finite element representation                       | 2 -  | 6   |  |
|                 | 2.2.1 Definition of new flow variable                   | 3 -  | 4   |  |
|                 | 2.2.2 Explicit (u,v) formulation                        | 5 -  | 6   |  |
|                 | 2.3 Boundary conditions                                 | 6 -  | 8   |  |
|                 | 2.4 Order of the numerical integration                  | 9    |     |  |
|                 | 2.5 Geometry of the flow field                          | 9    |     |  |
| 3.              | RESULTS                                                 | 9 -  | 12  |  |
|                 | 3.1 Standard configuration                              | 9 -  | 10  |  |
|                 | 3.2 Results from the $(\mu, v)$ formulation             | 10 - | 12  |  |
|                 | 3.3 Results from the (u,v) formulation                  | 12   |     |  |
| 4.              | DISCUSSION                                              | 13   |     |  |
| 5.              | CONCLUSIONS                                             | 13   |     |  |
|                 | NOTATION                                                | 14   |     |  |
|                 | REFERENCES                                              | 15   |     |  |
| APP             | ENDIX I ELEMENT SHAPE FUNCTIONS                         | 16   |     |  |
| LIST OF FIGURES |                                                         |      |     |  |
| 1.              | Co-ordinate system                                      | 2    |     |  |
| 2.              | Iso-parametric transformation for axial element         | 6    |     |  |
| 3.              | Nodal geometry for 13 x 21 grid                         | 10   |     |  |
| 4.              | Results for surface velocity for optimum configurations | 11   |     |  |
| 5.              | Values of longitudinal velocity on upstream axis        | 11   |     |  |

### 1. INTRODUCTION

The finite element method has been used successfully in recent times to solve various fluid-flow problems. The apparent generality of the method, and its ease of handling arbitrary flow boundaries, led to its adoption as a basis for work in computational aerodynamics. The long-term aim of the work is to replace some elements of wind-tunnel testing of missile aerodynamics with computer simulation techniques and thereby gain from the configurational flexibility and time saving of computational methods. However, reduced staff ceilings have necessitated the redeployment of resources on work with more immediate benefits and, as a consequence, the finite element work is being terminated by this report.

The project was initiated by Fletcher, who in reference 1 successfully applied the method to two-dimensional, incompressible inviscid flow, and later in reference 2 extended the flow regime to include the subsonic case. The present work was intended as an extension of Fletcher's two-dimensional results to axisymmetric geometries, starting with the inviscid, incompressible case. The formulation of the problem follows that recommended in reference 1, and the program used for solution has subroutines copied or adapted from those used for the results in reference 1.

It should be noted that standard programs are available which use singularity distributions to solve the present problem, for example the method of Albone (ref.3) which uses minimal CPU time but is limited to 'smooth' profiles, and the much more general method of Hess and Smith(ref.4). From the results of reference 1 it is doubtful whether a finite element solution to the present problem would be much more efficient in terms of computing time than others already in use. The benefit of the present work therefore, is dependent on its future extension to more complicated flow regimes, such as in reference 2, where the singularity methods cannot be applied.

### 2. APPLICATION OF F.E.M. TO AXISYMMETRIC POTENTIAL FLOW

### 2.1 Field equations

The governing equations for the present problem, in terms of the radial and longitudinal velocity components u and v (see figure 1), are the continuity equation

$$\frac{1}{r}\frac{\partial}{\partial r}(ru) + \frac{\partial v}{\partial z} = 0$$
(1)

and the equation of conservation of vorticity

$$\frac{\partial u}{\partial z} - \frac{\partial v}{\partial r} = 0, \qquad (2)$$

where r and z are radial and longitudinal coordinates as shown in figure 1.





Figure 1. Coordinate system

To complete the problem the boundary conditions are: that the velocity must assume the free-stream value U in the far-field, and that the axis of symmetry and body surface must form a streamline of the flow. That is,

$$u \to 0,$$
  
 $v \to U, \text{ as } R = (r^2 + z^2)^{\frac{1}{2}} \to \infty,$   
 $u = 0 \text{ on } r = 0,$ 
(3)

and u = v.  $r_0'(z)$  on the body surface  $r = r_0(z)$ .

Equations (1) to (3) are identical to those solved in reference 1 except for the non-linear term in (1). This term requires a modified formulation from that used in reference 1.

#### 2.2 Finite element representation

Following the conclusions of Fletcher(ref.1) a Galerkin formulation with quadratic rectangular elements of 'Serendipity' type was chosen. This formulation is a Method of Weighted Residuals, where the weighting function at each grid point is the shape function at that point. These shape functions, which are given in Appendix I, are chosen so that the isoparametric transformation

 $x = \sum_{i=1}^{n} N_{i}(\xi,\eta) x_{i} \quad \text{where } x = r \text{ or } z, \qquad (4)$ 

transforms axisymmetric elements with nodes  $(r_i, z_i)$  in the (r, z) plane into square elements with nodes  $(\xi_i, \eta_i)$  in the  $(\xi, \eta)$  plane, where  $\xi_i = \pm 1$  and  $\eta_i = \pm 1$ . The transformation relates the shape functions in the two planes as

$$N_{i}(\xi,\eta) = M_{i}(r,z),$$
 (5)

where the point  $(\xi,\eta)$  transforms into (r,z) under (4).

A CONTRACTOR OF A CONTRACTOR O

Full details of this finite element representation and the associated shape functions  $N_i(\xi,\eta)$  can be found in reference 1. Its application to the present problem can proceed in several ways, as follows.

2.2.1 Definition of new flow variable

Multiplying (1) and (2) by r and defining the new flow variable

$$\mu = \mathbf{r}\mathbf{u} \tag{6}$$

gives

$$\frac{\partial \mu}{\partial \mathbf{r}} + \mathbf{r} \frac{\partial \mathbf{v}}{\partial z} = 0 \tag{7}$$

and

$$\frac{\partial \mu}{\partial z} - r \frac{\partial v}{\partial r} = 0.$$
 (8)

With the representation in terms of the nodal values,

$$y = \sum_{i} M_{i}(r,z) y_{i}$$
 where  $y = \mu$  or  $v$ , (9)

and where  $\sum_{i}$  means the sum over all contributing nodes i,

the residuals of (7) and (8) are given by

$$R_{i} = \sum_{i} \frac{\partial M}{\partial r} i \mu_{i} + r \sum_{i} \frac{\partial M}{\partial z} i \nu_{i} \qquad (10)$$

and

$$R_2 = \sum_{i} \frac{\partial M}{\partial z^i} \mu_i - r \sum_{i} \frac{\partial M}{\partial r^i} v_i. \qquad (11)$$

The Galerkin formulation

$$\iint_{j} \mathbf{R}_{i} \, \mathrm{drdz} = 0 \qquad \text{for } i = 1,2 \qquad (12)$$

where S is the region of the (r,z) plane occupied by the flow field, then gives two algebraic equations at each node point j:

$$\sum_{i} (a_{ji}^{\mu}{}_{i} + b_{ji}^{\nu}{}_{i}) = 0$$
 (13)

and

$$(c_{ji}\mu_{i} - d_{ji}v_{i}) = 0,$$
 (14)

where

$$ji = \iint_{S} M_{j} \frac{\partial M_{j}}{\partial r} dr dz,$$

$$ji = \iint_{S} M_{j}r \frac{\partial M_{i}}{\partial z} dr dz,$$

$$ji = \iint_{S} M_{j} \frac{\partial M_{i}}{\partial z} dr dz$$

$$ji = \iint_{S} M_{j}r \frac{\partial M_{i}}{\partial r} dr dz.$$

$$ji = \iint_{S} M_{j}r \frac{\partial M_{i}}{\partial r} dr dz.$$

4 -

and

Because the shape functions  $M_k(r,z)$  are defined to be zero in elements not including the k<sup>th</sup> node, the integrals in (15) are actually evaluated only over the elements common to the j<sup>th</sup> and i<sup>th</sup> nodes. This is indicated hereafter by deleting the subscript S from the integral sign.

By transforming the integrals to the iso-parametric plane as described in reference 1 and applying (4) it can readily be shown that

$$j_{1} \sum_{k} j_{1k} k'$$

$$b_{ji} = \sum_{k,1} D_{jik1} k^{r} k'$$

$$c_{ji} = \sum_{k} G_{jik} k'$$

 $d_{ji} = - \sum_{k,1} D_{jik1} k^{r_{1}},$ 

 $a_{\ldots} = \sum G_{\ldots,z_{\perp}}$ 

k

(16)

(15)

and

where

and

$$G_{jik} = \iint N_{j} \left[ \frac{\partial N_{i}}{\partial \xi} \frac{\partial N_{k}}{\partial \eta} - \frac{\partial N_{i}}{\partial \eta} \frac{\partial N_{k}}{\partial \xi} \right] d\xi d\eta$$

$$D_{jik1} = \iint N_1 N_j \left[ \frac{\partial N_i}{\partial \xi} \frac{\partial N_k}{\partial \eta} - \frac{\partial N_i}{\partial \eta} \frac{\partial N_k}{\partial \xi} \right] d\xi d\eta$$

### 2.2.2 Explicit (u,v) formulation

The representation

$$y = \sum_{i} M_{i}(r,z)y_{i} \quad \text{with } y = u \text{ or } v \quad (18)$$

can be used to express (2) in a form identical to that given for the two dimensional vorticity equation in reference 1 and this, together with the substitution

 $\mu_{i} = r_{i}v_{i} \tag{19}$ 

in (13), gives (1) and (2) in terms of the unknown nodal velocity components  $u_i$ ,  $v_i$ , as

$$\sum_{i} (a_{ji}r_{i}u_{i} + b_{ji}v_{i}) = 0$$
 (20)

and

$$\sum_{i}^{\prime} (c_{ji}u_{i} - a_{ji}v_{i}) = 0, \qquad (21)$$

where  $a_{ji}$ ,  $b_{ji}$  and  $c_{ji}$  are as defined in (15) and (16). Note that this formulation is somewhat inconsistent, in that (21) assumes the representation (18) while (20) assumes (9). This choice is determined by the necessity to make the resulting integrals amenable to the iso-parametric transformation.

An alternative formulation which may be more consistent in this respect is derived by substituting

$$\mu = \left(\sum_{k} M_{k} r_{k}\right) \cdot \left(\sum_{i} M_{i} u_{i}\right)$$
(22)

into (7) which gives

$$\sum_{i} (\sum_{k} a_{jik} r_{k} u_{i} + b_{ji} v_{i}) = 0, \qquad (23)$$

where

$$a_{jik} = \iint M_{j} \frac{\partial}{\partial r} (M_{k}M_{i}) dr dz$$

$$= \sum_{l} \iint N_{j} \left\{ N_{k} \left[ \frac{\partial N_{i}}{\partial \xi} \frac{\partial N_{l}}{\partial \eta} - \frac{\partial N_{i}}{\partial \eta} \frac{\partial N_{l}}{\partial \xi} \right]$$

$$+ N_{i} \left[ \frac{\partial N_{k}}{\partial \xi} \frac{\partial N_{l}}{\partial \eta} - \frac{\partial N_{k}}{\partial \eta} \frac{\partial N_{l}}{\partial \xi} \right] d\xi d\eta . z_{1}$$
(24)

$$\sum_{j} (D_{jilk} + D_{jkli}) z_{l}$$

with  $D_{jilk}$  defined in (17). The other equation, (21), remains unchanged.

- 6 -

### 2.3 Boundary conditions

and

The far-field limit of the flow field is taken as the semi-circle  $R = (r^2 + z^2)^{\frac{1}{2}} = R_0$ , and all velocities are scaled with respect to the free-stream velocity U. Hence for the explicit formulations described in 2.2.2 above, if the i<sup>th</sup> node is on the boundary the conditions (3) become

$$u_{i} = 0$$

$$v_{i} = 1$$
on R = R<sub>0</sub>,
$$u_{i} = 0$$
on the axis of symmetry r = 0, (25)
$$u_{i} = v_{i}r'_{0}(z_{i})$$
on the body surface.

For the  $(\mu, v)$  formulation (Section 2.2.1) an additional condition may be required on the axis of symmetry, since the condition  $\mu_i = 0$  does not imply that  $u_i = 0$ . Consider an element on the axis as shown in figure 2 with the corresponding iso-parametric element.



Figure 2. Iso-parametric transformation for axial element

Using the shape functions given in Appendix 1 together with (4) and (9), we can write down the finite-element representation of  $\mu$  and r on the 3,6,2 boundary of the element (i.e. the  $\xi = 1$  boundary of the iso-parametric element) as

$$\mu_{e} = r_{e} u_{e} = \frac{1}{2} \eta (1 + \eta) \mu_{3} + (1 - \eta^{2}) \mu_{6}$$
(26)

and

$$\mathbf{r}_{s} = \frac{1}{2} \eta (1 + \eta) \mathbf{r}_{3} + (1 - \eta^{2}) \mathbf{r}_{6}. \qquad (27)$$

Hence

$$\mu_{s}(\eta) = \frac{\mu_{s}}{r_{s}} = \frac{\frac{1_{2} \eta \mu_{3} + (1 - \eta)\mu_{6}}{\frac{1_{2} \eta r_{3} + (1 - \eta)r_{6}}}.$$
 (28)

The axis condition  $u_{s}(-1) = 0$  then gives

$$\mu_6 = \frac{1}{4} \mu_3 \tag{29}$$

provided  $r_6 \neq r_3/4$ .

Similarly the value on the median line 7,5 ( $\xi = 0$  in the isoparametric element) can be written as

- 7 -

$$x_{m}(\eta) = \frac{1}{4}(\eta^{2} - 1)(x_{3} + x_{4}) + \frac{1}{2}(1 - \eta^{2})(x_{6} + x_{8}) + \frac{1}{2}(1 + \eta)x_{7}$$
(30)

where  $x = \mu$  or r. Thus the radial velocity component is given by

$$u_{\rm m}(\eta) = \frac{\mu_{\rm m}}{r_{\rm m}} = \frac{\frac{1_4(\eta - 1)(\mu_3 + \mu_4) + \frac{1}{2}(1 - \eta)(\mu_6 + \mu_8) + \frac{1}{2}\mu_7}{\frac{1_4(\eta - 1)(r_3 + r_4) + \frac{1}{2}(1 - \eta)(r_6 + r_8) + \frac{1}{2}r_7}$$
(31)

and the axis condition  $u_m(-1) = 0$ , together with (29) applied at nodes 1 and 2, then gives

$$\mu_7 = (\mu_3 + \mu_4)/2. \tag{32}$$

By applying (29) and (32) the number of unknown nodal  $\mu$  values in each axial element is reduced from five to two. The actual representation for  $\mu$  in the iso-parametric element can be shown by substitution to be

$$\mu(\xi,\eta) = \frac{(1+\eta)^2}{8} \left[ \mu_3 (1+\xi) + \mu_4 (1-\xi) \right], \qquad (33)$$

that is, linear in  $\xi$  but still quadratic in  $\eta$ . In the (r,z) plane it can be deduced from (1) and (2) that u = O(r) near r = 0, which implies a form such as

$$\mu = r^2 f(z) \tag{34}$$

in the axial elements. If we choose

$$r_6 = r_3/2,$$
  
 $r_8 = r_4/2,$  (35)  
 $r_7 = (r_3 + r_4)/2,$ 

then the iso-parametric transformation for r becomes linear, that is

$$\mathbf{r} = \frac{1+\eta}{4} \left[ \mathbf{r}_3 \left( 1+\xi \right) + \mathbf{r}_4 \left( 1-\xi \right) \right]. \tag{36}$$

Thus we can see from (33), (34) and (36) that  $\mu$  has the required form in the (r,z) plane if the geometrical conditions (35) are satisfied and in addition,

$$z = z(\xi) \tag{37}$$

This last condition can be shown to be true only if

$$z_1 = z_8 = z_4$$
,  
 $z_5 = z_7$ , (38)  
and  $z_2 = z_6 = z_3$ .

Thus we deduce that, for the  $(\mu, v)$  formulation, the elements adjacent to the axis of symmetry should be constructed to satisfy (35) and (38). Since the choice of the finite-element grid is largely arbitrary, satisfying these geometrical constraints presents no problems except for those elements containing the front or rear stagnation points, in which three nodes lie on the body surface and (38) cannot generally be satisfied. The boundary conditions for the  $(\mu, v)$  formulation are then

> $\mu_{i} = 0$  $\nu_{i} = 1$  on R = R<sub>0</sub>,  $\mu_{i} = 0 \text{ on } r = 0 ,$   $\mu_{i} = \nu_{i} r'_{0}(z_{i}) r_{0}(z_{i}) \text{ on } r = r_{0}(z) ,$ (39)

together with (29) and (32).

At those nodes where one or both of the velocity components are known, only one or none of the Galerkin equations was applied, to equalise the total numbers of equations and unknowns. For the  $(\mu, v)$  formulation either (29) or (32) replaced one of the Galerkin equations at the appropriate side node in the axial elements.

The far-field condition on v gives rise to a non-zero right-hand side in the matrix form of the equations of motion. This can then be solved for the nodal unknowns, in the present case by using the same sparsematrix inversion routine as described in reference 1.

- 8 -

the second se

## 2.4 Order of the numerical integration

As in reference 1, two-dimensional Gaussian quadrature was chosen to

evaluate expressions such as (17) because an m<sup>th</sup> order quadrature can integrate exactly, in an analytical sense, polynomial integrands of order (2m-1) or less. The polynomial order is dependent on the order of the composite shape functions which in this case is two or one (see Appendix 1). However the total order can be reduced by the differencing factor in the integrand. Thus for example, the maximum polynomial order of the integrands in (17) is expected to be five and seven respectively, but could be as low as two and three.

Fletcher(ref.5) has found that improved accuracy may result from reducing the order of integration by one from that required to give an exact result. The effect of this 'reduced' integration was briefly examined in the present work, although it should be realised that such integration is still exact for many of the lower-order integrals. It is clear that complete reduced integration would require a variable-order integration routine and would nullify many of the advantages of the isoparametric formulation, and for this reason was not attempted in the present work.

#### 2.5 Geometry of the flow field

The body half-profile chosen was an ellipse of unit half-thickness and length 2, to which was added a sinusoidal fore-and-aft asymmetry of amplitude A. The functional form was then

$$r(z) = (1 - z^2/4)^{\frac{1}{2}} + A \sin(\frac{\pi}{2}z)$$
 (40)

A polar grid geometry was used with the same number  $N_y$  of nodes on the far-field boundary and body surface, and  $N_x$  nodes along each segment of the z-axis between the body and the far-field. A small offset could be added to the angles of the polar grid to make these asymmetrical about the r-axis. The spacing of the nodes could be varied on the z-axis and body surface, to change the grid density near the stagnation points relative to that near the body mid-point and the far-field.

#### 3. RESULTS

### 3.1 Standard configuration

A "standard" configuration was chosen with far-field radius  $R_0 = 10$ and A = -0.3 (equation (40)) which, with  $N_x = 13$ ,  $N_y = 21$  and conditions (35) and (38) satisfied, gave the nodal geometry shown in figure 3.



Figure 3. Nodal geometry for 13 x 21 grid

Initially  $N_x = 17$  and  $N_y = 21$  were chosen to take advantage of the local computer priority system (i.e. less than 2 min CPU time per calculation on an IBM 370), but it was subsequently found for some cases that  $N_y$  could be

reduced to 13 without significantly changing the computed surface velocities. Single precision arithmetic was used, and at nodes where one of the field equations was omitted or replaced, the continuity equation was retained.

Accuracy of the results was judged by comparing surface velocities with those from an iterative method due to Albone(ref.3) in which the relative error is expected to be less than 1%. On figures 4 and 5 the present results are plotted with squares and triangles and those from the Albone program with the broken line, while the solid line represents the body profile.

### 3.2 Results from the $(\mu, v)$ formulation

The  $(\mu, v)$  results shown on figure 4 were calculated using the standard configuration described above, with 'exact' integration and (29) and (32) applied except on the body surface. The axis elements shown in figure 3 also satisfy the additional condition

 $z_5 = z_7 = (z_1 + z_2)/2$  (41)

in the notation of figure 2, which was found to significantly improve the results.



Figure 4. Results for surface velocity for optimum configurations

The  $(\mu, v)$  results shown in figure 4 are generally close to the Albone values, however as a solution they exhibit a number of undesirable properties. For one thing the axial values of v, shown for the upstream axis in figure 5, do not follow the required monotonic decrease from 1 at infinity to zero at the stagnation point; the Albone program does not calculate off-body values and so these cannot be shown for comparison.



Figure 5. Values of longitudinal velocity on upstream axis

- 11 -

Secondly, the results shown could not be improved by changing computational variables such as the values of  $N_x$  and  $N_y$ , the choice of

- 12 -

grid geometry, or the application of the various axis conditions. Rather, any variation from the computational configuration described in 3.1 above could significantly degrade the results compared to those given. However the  $(\mu, v)$  results of figure 4 were not significantly affected by increasing R<sub>0</sub> to 20 provided the axial grid was appropriately

scaled, by using double-precision arithmetic, or by reducing the order of integration (from orders  $4 \times 4$  and  $3 \times 3$ ) either to all  $3 \times 3$  or  $3 \times 3$  and  $2 \times 2$ , even though the change in value of the equation matrix elements affected was typically 30%.

Other variations investigated included the effects of grid and body asymmetry. The accuracy of results for a symmetric elliptical body (A = 0 in (40)) was similar to that of the standard body shape, all else being equal. However a small grid asymmetry seemed necessary for reasonable results, even for the standard asymmetrical profile.

3.3 Results from the (u, v) formulations

Results from the formulation given by (20) and (21) are shown by the triangles on figure 4. In this case the standard configuration was used with the original values  $N_x = 17$  and  $N_y = 21$ , and it was found that the

same regularised grid as used for the  $(\mu, \nu)$  results was necessary to avoid poor results near the axis of symmetry, with the exceptions that (41) was not required but the body surface nodes in the axis elements needed to satisfy (42)

$$z_6 = (z_2 + z_3)/2$$

and  $r_6 = (r_2 + r_3)/2$ .

It was also necessary to use 'reduced' integration, that is third order for  $D_{jik1}$  and second order for  $C_{jik}$  in (17); neither exact nor all-

third-order integration gave satisfactory results. No explanation for these two requirements is apparent. For the formulation given by (23) and (21), no reasonable results could be obtained for any of the three integration routines or any combination of the other computational variables.

Figure 4 shows that the first explicit formulation gives results of similar accuracy to those of 3.2 above. The present results also exhibit similar behaviour on the symmetry axis, as shown in figure 5, and generally have the same tendency to deteriorate as the computational variables are changed, including in this case the order of integration. This deterioration is usually manifest most obviously in the stagnationpoint elements, in particular the values of tangential velocity at the two surface nodes adjacent to the stagnation points. As already noted, these two nodes cannot in general be chosen to satisfy (35) and (38), unless the body surface has infinite slope for a short distance from the axis. The standard body shape was modified to effect this, but the resulting equation matrix behaved as though it were singular, and no solutions could be obtained.

## 4. DISCUSSION

The results described above indicate that neither of the finite element formulations is at present a useful solution technique for the problem under consideration. However Galerkin formulations have been applied to similar problems in two dimensions, for example references 1 and 6. Certain aspects of the results already discussed indicate that the formulation of the problem near the axis of symmetry may contribute to the unsatisfactory nature of the solutions; for example, the behaviour of the v component along the axis as shown in figure 5, and the constraints imposed on the nodal geometry and nodal unknowns by application of the  $\mu$ -component boundary condition, which are apparently also required in the (u,v) formulation.

Multiplying equation (1) by r to obtain a tractable finite element formulation, gives an equation that is trivially satisfied on the symmetry axis; this is also true of (2) in the  $(\mu, \nu)$  formulation. Thus it might be expected that the Galerkin equivalent of (1) contributes little at an axial node since the weighting function (i.e. the shape function for the particular node) biases its effect towards the axial node. However in the  $(u, \nu)$ formulation where (2) has a non-trivial contribution on the axis, it was found that the single equation applied at the axial nodes had to be (1) to give the results in figure 4.

In addition to the behaviour near r = 0, a major difference between the present formulation and those of references 1 and 6 is that the latter use Green's theorem to include the boundary conditions implicitly in the field equations, as a boundary integral in the Galerkin formulation, while in the present case the boundary conditions appear only explicitly in the equation Of relevance here may be Fletcher's comments in reference 5 with matrix. respect to reduced integration, that results may be improved by relaxing the constraints on the polynomial form that the solution must assume in each Inclusion of the boundary conditions in a Galerkin sense, as in element. references 1 and 6, may ensure satisfactory behaviour without the constraints imposed by conditions such as (29), (32), (35) and (38). As already noted, the 'reduced' integration used here has little apparent effect on the  $(\mu, v)$ results, but is required with the first (u,v) formulation if any reasonable results are to be obtained. Whether a changed integration scheme such as complete reduced integration could improve the results from the second (u,v)formulation, has not been determined.

No attempt has been made to change the type or order of finite element used from rectangular Serendipity. It was felt unlikely that the choice of element could be responsible for the apparent incompatibility in the formulations used.

#### 5. CONCLUSIONS

A Galerkin finite-element method, using quadratic, rectangular, Serendipity elements, has been applied to the equations governing axisymmetric, inviscid incompressible flow. Three different formulations, using the same representation for longitudinal velocity and two different representations for the radial velocity component, have been tried.

The best results obtained have, surprisingly, shown only poor agreement with correct values and exhibit a number of undesirable properties, such as their dependence on an appropriate choice of grid geometry. None of the formulations has provided a useful aerodynamic calculation method.

## - 14 -

## NOTATION

| Α                                    | amplitude of profile asymmetry (equation (40))                        |
|--------------------------------------|-----------------------------------------------------------------------|
| C <sub>ijk</sub> , D <sub>ijk1</sub> | coefficients from integration in iso-parametric plane (equation (17)) |
| Mi                                   | shape function in (r,z) plane for i <sup>th</sup> node                |
| N <sub>i</sub>                       | shape function in $(\xi,\eta)$ plane for i <sup>th</sup> node         |
| N <sub>x</sub>                       | number of nodes on each segment of z-axis                             |
| Ny                                   | number of nodes on far-field boundary and body surface                |
| R                                    | distance from origin in $(r,z)$ plane, = $(r^2 + z^2)^{\frac{1}{2}}$  |
| Ro                                   | radius of far-field                                                   |
| R1, R2                               | equation residuals in Galerkin formulation                            |
| S                                    | region of (r,z) plane occupied by flow field                          |
| U                                    | free-stream velocity                                                  |
| a <sub>ii</sub> , b <sub>ii</sub> ,  | coefficients in matrix form of                                        |
| c <sub>ij</sub> , d <sub>ij</sub>    | field equations (equations (13),(14),(20),(21),(23))                  |
| <sup>a</sup> ijk                     | matrix coefficient (equation (23))                                    |
| r,z                                  | radial and longitudinal coordinates (figure 1)                        |
| ro                                   | functional form of body surface profile (figure 1)                    |
| u,v                                  | radial and longitudinal velocity components (figure 1)                |
| ξ,η                                  | transformed coordinates in iso-parametric plane<br>(figure 1)         |
| μ                                    | derived flow variable, = ru                                           |
| Subscripts                           |                                                                       |
| i                                    | referring to i <sup>th</sup> node                                     |
| 1,2 etc.                             | referring to nodes 1,2 etc. (figure 2)                                |
| 5                                    | values on one side of element boundary                                |
| m                                    | values on median line of element                                      |

「「「「「「「」」

the second second

in the second

## REFERENCES

| No. | Author                             | Title                                                                                                                                         |
|-----|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | Fletcher, C.A.J.                   | "The Application of the Finite Element<br>Method to Two-Dimensional Inviscid Flow"<br>WRE-TN-1606(WR&D), May 1976                             |
| 2   | Fletcher, C.A.J.                   | "Subsonic, Inviscid Flow by the Finite<br>Element Method"<br>WRE-TR-1858(W), August 1977                                                      |
| 3   | Albone, C.M.                       | "Fortran Programmes for Axisymmetric<br>Potential Flow Around Closed and Semi-<br>Infinite Bodies"<br>Aero. Res. Council, C.P. No. 1216, 1972 |
| 4   | Hess, J.L., and<br>Smith, A.M.O.   | "Calculation of Potential Flow About<br>Arbitrary Bodies"<br>Prog. Aero. Sciences, Vol.8, 1967                                                |
| 5   | Fletcher, C.A.J.                   | "Improved Integration Techniques for<br>Fluid Flow Finite Element Formulations"<br>WRE-TR-1810(W), April 1977                                 |
| 6   | Baker, A.J., and<br>Manhardt, P.D. | "Finite Element Analysis of Low Speed<br>Viscous and Inviscid Aerodynamic Flows"<br>NASA Contractor Report CR-2908,<br>October 1977           |

#### APPENDIX I

### ELEMENT SHAPE FUNCTIONS

The shape function corresponding to a particular node is required to have the value one at that particular node and zero at all other nodes. The 'Serendipity' type form one family of the many functions which can be defined explicitly on the iso-parametric element (see figure 2) to have these properties.

For the quadratic rectangular elements used in this report, the shape functions of this family are defined as follows, where  $\xi_i = \pm 1$  and  $\eta_i = \pm 1$ : at the corner nodes  $(\xi_i, \eta_i)$ ,

I.1  $N_i(\xi,\eta) = \frac{1}{4}(1 + \xi\xi_i)(1 + \eta\eta_i)(\xi\xi_i + \eta\eta_i - 1);$ 

at the side nodes  $(o, \eta_i)$ ,

1.2 
$$N_{i}(\xi,\eta) = \frac{1}{2}(1-\xi^{2})(1+\eta\eta_{i});$$

at the side nodes  $(\xi_i, o)$ ,

I.3 
$$N_{1}(\xi,\eta) = \frac{1}{2}(1 + \xi\xi_{1})(1 - \eta^{2}).$$

Note that N<sub>i</sub> may be either quadratic or linear in the coordinates  $(\xi, \eta)$ .

In the (r,z) plane the function  $M_i(r,z)$  corresponding to  $N_i(\xi,\eta)$ , and defined implicitly by equations (4) and (5) in Section 2.2 of this report, will have a different functional form in each element common to the i<sup>th</sup> node, and by definition will be zero outside those elements.

- 16 -

11

and an and a second sec

DISTRIBUTION

|                                                                                           | Copy No. |
|-------------------------------------------------------------------------------------------|----------|
| EXTERNAL                                                                                  |          |
| In United Kingdom                                                                         |          |
| Defence Scientific and Technical Representative, London                                   | 1        |
| R.A.E., Aero Department                                                                   | 2 - 3    |
| Space Department                                                                          | 4        |
| Weapons Department                                                                        | 5 - 6    |
| Bedford                                                                                   | 7        |
| Library                                                                                   | 8        |
| R.A.R.D.E.                                                                                | 9        |
| T.T.C.P., UK National Leader Panel W-2                                                    | 10 - 13  |
| Aeronautical Research Council                                                             | 14 - 15  |
| Aircraft Research Association (Bedford)                                                   | 16       |
| C.A.A.R.C. Secretary                                                                      | 17       |
| National Lending Library of Science and Technology                                        | 18       |
| Royal Aeronautical Society, Library                                                       | 19       |
| Professor O.C. Zienkiewicz, Department of Civil Engineer<br>University College of Swansea | ing, 20  |
| Professor J.R. Whiteman, Department of Mathematics,<br>Brunel University                  | 21       |
| In United States of America                                                               |          |
| Counsellor, Defence Science, Washington                                                   | 22       |
| Defence Research and Development Attache, Washington                                      | 23       |
| Applied Physics Laboratory, Johns Hopkins University                                      | 24       |
| Air Force Armament Testing Laboratory                                                     | 25       |
| Ballistics Research Laboratories                                                          | 26       |
| Edgewood Arsenal                                                                          | 27       |
| Eglin Air Force Base                                                                      | 28       |
| N.A.S.A.                                                                                  | 29 - 32  |
| Naval Surface Weapons Center                                                              |          |
| Dahlgren                                                                                  | 33       |
| White Oak                                                                                 | 34       |
| Naval Weapons Center                                                                      | 35       |
| Naval Ship Research and Development Center                                                | 36       |
| Picatinny Arsenal                                                                         | 37       |
| Redstone Arsenal                                                                          | 38       |
| T.T.C.P. US National Leader Panel W-2                                                     | 39 - 42  |
| Wright-Patterson Air Force Base, Library                                                  | 43       |
| American Institute of Aeronautics and Astronautics, Libr                                  | rary 44  |

|    |                                                                                       | Сору | No. |
|----|---------------------------------------------------------------------------------------|------|-----|
|    | Pacific Technical Information Services, Northrop Institute of Technology              | 45   |     |
|    | Applied Mechanics Reviews                                                             | 46   |     |
|    | Arnold Engineering Development Center                                                 | 47   |     |
|    | A.R.O. Inc.                                                                           | 48   |     |
|    | Sandia Corporation, Library                                                           | 49   |     |
| In | Canada                                                                                |      |     |
|    | Defence Research Establishment, Valcartier                                            | 50   |     |
|    | N.A.E., Ottawa                                                                        | 51   |     |
|    | T.T.C.P., Canadian National Leader Panel W-2                                          | 52 - | 55  |
|    | University of Toronto, Institute of Aerospace Studies                                 | 56   |     |
|    | Professor D.H. Norrie, Department of Mechanical Engineering,<br>University of Calgary | 57   |     |
| In | Europe                                                                                |      |     |
|    | A.G.A.R.D., Brussels                                                                  | 58 - | 63  |
| In | India                                                                                 |      |     |
|    | Aeronautical Development Establishment, Bangalore                                     | 64   |     |
|    | Indian Institute of Science, Bangalore (Dept. of Aero.<br>Engineering)                | 65   |     |
|    | Indian Institute of Technology, Madras (Dept. of Aero.<br>Engineering)                | 66   |     |
|    | Hindustan Aeronautics Ltd., Bangalore                                                 | 67   |     |
|    | National Aeronautical Lab., Bangalore                                                 | 68 - | 69  |
|    | Space Science and Technology Centre, Trivandrum                                       | 70   |     |
| In | Australia                                                                             |      |     |
|    | Chief Defence Scientist                                                               | 71   |     |
|    | Superintendent, Science and Technology Programmes                                     | 72   |     |
|    | Director, Joint Intelligence Organisation (DDSTI)                                     | 73   |     |
|    | Air Force Scientific Adviser                                                          | 74 - | 75  |
|    | Army Scientific Adviser                                                               | 76 - | 77  |
|    | Navy Scientific Adviser                                                               | 78 - | 79  |
|    | Controller, Policy and Programme Planning                                             | 80   |     |
|    | Deputy Chief Defence Scientist                                                        | 81   |     |
|    | Central Studies Establishment                                                         | 82   |     |
|    | Defence Information Services Branch (for microfilming)                                | 83   |     |
|    | BDRSS, Canberra                                                                       | 84   |     |

The Part

Copy No.

14.

| Defence Information Services Branch for:                                           |           |
|------------------------------------------------------------------------------------|-----------|
| United Kingdom, Ministry of Defence,<br>Defence Research Information Centre (DRIC) | 85        |
| United States, Department of Defense,<br>Defense Documentation Center              | 86 - 97   |
| Canada, Department of National Defence,<br>Defence Science Information Service     | 98        |
| New Zealand, Department of Defence                                                 | 99        |
| Australian National Library                                                        | 100       |
| Chief Superintendent, Aeronautical Research Laboratories                           | 101       |
| Superintendent, Aerodynamics Division, ARL                                         | 102       |
| D.A. Secomb, for data exchange agreement, ARL                                      | 103       |
| Superintendent, Mechanical Engineering Division, ARL                               | 104       |
| Library, Aeronautical Research Laboratories                                        | 105       |
| Library, Materials Research Laboratories                                           | 106       |
| Defence Library, Campbell Park                                                     | 107       |
| Aircraft Research and Development Unit, Edinburgh                                  | 108       |
| G.A.F., Department of Productivity, Melbourne                                      | 109       |
| RAAF Academy, Point Cook                                                           | 110       |
| C.A.C.                                                                             | 111       |
| Institute of Engineers, Australia                                                  | 112       |
| Dr C.A.J. Fletcher, Department of Mechanical Engineering,<br>University of Sydney  | 113       |
| WITHIN DRCS                                                                        |           |
| Chief Superintendent, Weapons Systems Research Laboratory                          | 114       |
| Superintendent, Aeroballistics Division                                            | 115       |
| Head, Ballistics Composite                                                         | 116       |
| Principal Officer, Dynamics Group                                                  | 117       |
| Principal Officer, Aerodynamics Research Group                                     | 118       |
| Principal Officer, Ballistics Studies Group                                        | 119       |
| Principal Officer, Field Experiments Group                                         | 120       |
| Principal Officer, Flight Research Group                                           | 121       |
| Author                                                                             | 122       |
| DRCS Library                                                                       | 123 - 124 |
| AD Library                                                                         | 125 - 126 |
| Spares                                                                             | 127 - 150 |
|                                                                                    |           |