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• 1. INTRODUCTION

The finite element method has been used successfully in recent times to solve
various fluid-flow problems. The apparent generality of the method, and its
ease of handling arbitrary flow boundaries, led to its adoption as a basis for
work in computational aerodynamics. The long-term aim of the work is to
replace some elements of wind-tunnel testing of missile aerodynamics with

• - 
computer simulation techniques and thereby gain from the configurational
flexibility and time saving of computational methods. However, reduced staff
ceilings have necessitated the redeployment of resources on work with more
immediate benefits and, as a consequence, the finite element work is being
terminated by this report.

The project was initiated by Fletcher, who in reference 1 successfully applied
the method to two-dimensional, incompressible inviscid flow, and later in
reference 2 extended the flow regime to include the subsonic case. The present
work was intended as an extension of Fletcher’s two-dimensional results to
axisyinmetric geometries, starting with the inviscid, incompressible case. The
formulation of the problem follows that recommended in reference 1, and the
program used for solution has subroutines copied or adapted from those used for
the results in reference 1.

It should be noted that standard programs are available which use singularity
distributions to solve the present problem, for example the method of Albone
(ref.3) which uses minimal CPU time but is limited to ‘smooth’ profiles, and the
much more general method of Hess and Smith(ref.4). From the results of
reference I it is doubtful whether a finite element solution to the present
problem would be much more efficient in terms of computing time than others
already in use. The benefit of the present work therefore, is dependent on its
future extension to more complicated flow regimes, such as in reference 2, where
the singularity methods cannot be applied .

2. APPLICATION OF F .E .M.  TO AXISY MMETR IC POTENTIAL FLOW

5 2.1 Field equation s
The govern ing equation s for the present problem , in terms of the

radial and longitudinal velocity components u and v (see figure 1), are
the continuity equation

~~ (ru) +-~~~~~
• = 0 (1)

and the equation of conservation of vorticity

ôu 8v
az ar = 0,

where r and z are radial and longitudinal coordinates as shown in
• figure 1.

1555 • 5~~ 5S • S.5 -_5 -• •.5-S-SSS-S5 • -_ _~ - • • ~~~~~~~~ ~~~~~~~~~~~~~~~ 
• 
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Figure 1. Coordinate system
t.I.

To complete the problem the boundary conditions are: that the velocity must
assume the free-stream value U in the far-field, and that the axis of
symmetry and body surface must form a streamline of the flow. That is,

u— .0,
v —’-U, as R = (r2 + z2 )~~~0.00, (3)
u = 0  on r = O , L

and u = v. r~ (z) on the body surface r = To(z).
Equations (1) to (3) are identical to those solved in reference 1 except

for the non-linear term in (1). This term requires a modified formulation L~~ .

from that used in reference I.

2.2 Finite element representation 5.

Following the conclusions of Fletcher(ref.1) a Galerki.n formulation with
quadratic rectangular elements of ‘Serendip ity’ type was chosen. This
formulation is a Method of Weighted Residuals, where the weighting function
at each grid point is the shape function at that point. These shape
functions, which are given in Appendix I, are chosen so that the isoparainetric
transformation

x = N.(~,fl)x. ~tere ~ = r or z, (4)

transforms axisyimuetric elements with nodes (r~, Z j) in the (lr,z) plane
into square elements with nodes ~~~ ‘i~) in the (~ ,

s~) plane, where

= ±1 and = ±1. The transformation relates the shape functions in
the two planes as

N1(E ,n) = M1(r ,z), (5)

where the point (E ,t~) transforms into (r ,z) under (4) .

- 5 -  5 - - - -  --- - - — -5 - -~~~~~
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Full details of th i s  f in i te  element representation and the associated
shape functions N1(~,~) can he found in reference 1. Its application to

the present problem can proceed in several ways, as follows.

2.2.1 Definition of new flow variable

Multiplying (1) and (2) by r and defining the new flow
variable

- - 
i L = r u  (6) •

gives S I

av
= (7) 5

5 S

and - H

-i- - r~~-~ = 0. (8)

-~ 
;- With the representation in terms of the nodal values,

y = ~~~M . ( r ,z)y ~ where y ~ or v , (9)

and where~~~~ mean s the sum over all contributing nodes i ,

the residuals of (7) and (8) are given by

R1 ~~~~~~ 1~ ÷ r ~~~~~ V~ (10)

and

R2 = tL . - r V
1

. (11)

The Galerkin formulation 
S

ffM . R. drdz = 0 for i = 1,2 (12)

where S is the region of the (r,z) plane occupied by the flow
field, then gives two algebraic equations at each node point j:

+ b..v.) = 0 (13)

IL. - 
- 

~~~~~~~~~~~~~~~~ 
—- 5 -  ~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ . ~~~~~~~~~~ ,~~~~~

-
~~~~~~~~~~~~~~~~~~ -~~~ -~~~~~
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and

(c 3.~~ . 
- d 1v.) = 0, (14)

where
r r  aM.

a. . = JJ M. 1dr dz ,
3 1  j ar

S

b.. = f M~r ~~~ dr dz ,

S (15)

aM. S

= ff ~~~~~ dr dz

and r r  aM. .
5

I I  1
= i i  M .r—dr dz.d.. j  or

3 1

S

Because the shape functions Mk (r , z) are defined to be zero in

elements not including the kth  node , the integrals in (15) are

actually evaluated only over the elements common to the jth and
• . th . . .

i nodes. This is indicated hereafter by deleting the sub-
script S from the integral sign.

By transforming the integrals to the iso-parametric plane as
• described in reference 1 and applying (4) it can readily be shown

that ‘ 1
a.. = ) (‘..z ,

• 3 1  ~~~~~~ jik k
k

b.. = DJ.kl rkrl~
k,l (16)

c.. = G . .  r31 ~~ jik k

k

and
d.1 = - L~1 D .Iklzkrl,

k i

where a a a
G,lk = f f N j L - k

~~i.5~
tL j dt dn

and (17)

D,ikl~~ffMiN j L a; 4~~~~4i1j~ 
_ _ _ _ _ _
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2 . 2 . 2  Expl ic i t  (u ,v) formulation

The representation

y = H .(r , z )y .  wi th  y = u or v (18)

can be used to express (2) in a form identical to that given for
the two dimensional vorticity equation in reference 1 and this ,
together with the substitut ion

= r .v .  (19)

in (13) , gives (1) and (2) in terms of the unknown nodal velocity
components u 1, v 1, as

) (a. .r.u . + b. .v .)  = 0 (20)
L_ j  31  1 1 31  1

i ‘S

and

(c~~ u~ — a . . v . )  = 0 , (21)

where a . . ,  b . .  and c .. are as defined in (15) and (16) . Note
31  31  ii

that this formulation is somewhat inconsistent , in that (21)
assumes the representation (18) while (20) assumes (9) . This
choice is determined by the necessity to make the resulting S

integrals amenable to the iso-parametric transformation.
An alternative formulation which may be more consistent in

this respect is derived by substituting

= (~~
‘ 

M~r~ ) . (~~~ M.u . )  (22)

k i

into (7) which gives

~~ aJlkrkul 
+ b~1v1) = 0 (23)

where

a~ ik = ff ?4~ ~~ (MkMi) dr dz

S 

- ~ 11 1 N r~ ~~~ ~~i ~~j 1 (24)
- (. k ~~~ a~ a~ a~ j

+ N i[~~j~~~~~~~~~~~~~~~~a~~~~~J Z  

—

- 5 .•  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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= (D. ilk ÷ D i k l i )  z 1

w i t h  defined in (17). The other equation , (21),  remains

unchanged .

2 .3  Boundary condi t ions

The f a r - f i e l d  l i m i t  of the f low f ie ld  is taken as the semi -circle

R = (r 2 ÷ z2 ) = R0, and all velocities are scaled with respect to the
free-stream ve loc i ty  U.  Hence for the explicit  formulations described

in 2 .2 .2 above , if the ~th nod e is on the boundary the condit ions (3)
become

u. = 0
1.

v. = 1 o n R = R 0,

u1 
= 0 on the axis of symmetry r = 0, (25)

and u. = v 1r’0 (z~) on the body surface.

For the (P, v) formulation (Section 2 .2 . 1)  an additional condition may
be required on the axis of symmetry , since the condition i.t~~ = 0 does not
imply that  u .  = 0. Consider an element on the axis as shown in figure 2

with the corresponding iso-parametric element .

11

4 7 ’ l i 3

8/
- 

2

Figure 2. Iso-parametric transformation
for axial element

Using the shape functions given in Appendix 1 together with (4) and (9),
we can write down the finite-element representation of p and r on the
3,6,2 boundary of the element (i.e. the E = 1 boundary of the iso-
parametric element) as

= r5u5 = ~i(1 + ‘7) ~.i3 + (1 - ~~2 ) P6 (26)

I -• S-- S _ _ _ _
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and

r = ½ 17(1 + ?7)r3 + (1 - ?7
3 )ro. (27)

Hence

÷ (1 - fl )M6

u5(~) = = ½ ‘7 r3 + (1 - 17)r6 (28)

The axis condition u5(-1) = 0 then gives

P6 = ¼ P 3  (29)

provided r6 * T3/4 .
Similarly the value on the median line 7,5 (~ = 0 in the iso-

parametric element) can be written as 
ri

x (~) = ¼(172 _ 1)(x3 + x,) + ½(1 — 172 ) (x6 + x8)+½( 1 + ~)x, (30)

where x = p or r. Thus the radial velocity component is given by

¼ (~ 
- 1) (12 3 +114 ) +½ (1 - t7) (126 +118)  + !~ ~17

m — rm 
- 

¼(n - 1) (T3 +r4 )÷½ (1 - ~ ) ( r6 +r8 ) + ½ r~

and the axis condition Um
(_1) = 0, together with (29) applied at

nodes 1 and 2, then gives

117 = (p~ + P4)/2. (32) -
5

By applying (29) and (32) the number of unknown nodal p values in
each axial element is reduced from five to two. The actual
representation for P in the iso-parametric element can be shown by 

S 
-

~

substitution to be

= 
(1 + ~~)

2 

[P3(1 + ~
) + M~(1 

- , (33)

that is, linear in E but still quadratic in ti. In the (r,z) plane it
can be deduced from (1) and (2) that u = 0(r) near r = 0, which implies
a form such as

p = r~f(z) (34)

-S 
-- - - - S •.--—-_—-. --- -~~~- •~~ -~~~~~~~~~-
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in the axial elements. If we choose

r~ = ra/2,

r~ = r4/2, (35)
r, = (r3+ r4)/2,

then the iso-parametric transformation for r becomes linear, that is

S 
r = ~ ~~‘

7 
[r~u + E) + r4(1 - E) (36)

Thus we can see from (33), (34) and (36) that p has the required form
in the (r,z) plane if the geometrical :onditions (35) are satisfied and
in addition ,

z = z(~) (37)

This last condition can be shown to be true only if

Zj  = Z~ = Z4 ,

z5 = Z~ (38) 1~and = = zj • 

S

Thus we deduce that, for the (p,v) formulation, the elements adjacent
to the axis of symmetry should be constructed to satisfy (35) and (38).
Since the choice of the finite-element grid is largely arbitrary,
satisfying these geometrical constraints presents no problems except for
those elements containing the front or rear stagnation points, in which
three nodes lie on the body surface and (38) cannot generally be satisfied.
The boundary conditions for the (Sl y) formulation are then

= 0 1
vi = l J o n R = R 0 ,
a = 0 o n r = O  , (39)

111 
= v

~
r
~
(z.)ro(z.) on r = r0 (z) ,

together with (29) and (32).
At those nodes where one or both of the velocity components are known,

only one or none of the Galerkin equations was applied, to equalise the
total numbers of equations and unknowns. For the (p,v) formulation
either (29) or (32) replaced one of the Galerkin equations at the
appropriate side node in the axial elements.

The far-field condition on v gives rise to a non-zero right-hand side
in the matrix form of the equations of motion. This can then be solved
for the nodal unknowns, in the present case by using the same sparse-
matrix inversion routine as described in reference 1.

_ 

J i
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2.4 Order of the numerical integration

As in reference 1, two-dimensional Gaussian quadrature was chosen to 
S

evaluate expressions such as (17) because an mt)
~ order quadrature can

integrate exactly, in an analytical sense, polynomial integrands of order
(2m-1) or less. The polynomial order is dependent on the order of the
composite shape functions which in this case is two or one (see Appendix
1). However the total order can be reduced by the differencing factor in
the integrand. Thus for example, the maximum polynomial order of the
integrands in (17) is expected to be five and seven respectively, but could
be as low as two and three.

Fletcher(ref.5) has found that improved accuracy may result from
reducing the order of integration by one from that required to give an
exact result. The effect of this ‘reduced’ integration was briefly
examined in the present work, although it should be realised that such S
integration is still exact for many of the lower-order integrals. It is
clear that complete reduced integration would require a variable-order
integration routine and would nullify many of the adventages of the iso-
parametric formulation, and for this reason was not attempted in the 

S

present work.

2.5 Geometry of the flow field

The body half-profile chosen was an ellipse of un it half-thickness and
length 2, to which was added a sinusoidal fore-and-aft asymmetry of
amplitude A. The functional form was then

r (z) = (1 — z2 /4Y~ + A Sin (-
~

- z) . (40)

A polar grid geometry was used with the same number N~ of nodes on the

far-field boundary and body surface, and Nx nodes along each segment of

the z-axis between the body and the far-field. A small offset could be 
S

adaed to the angles of the polar grid to make these asymmetrical about
the r-axis. The spacing of the nodes could be varied on the z-axis and
body surface, to change the grid density near the stagnation points H
relative to that near the body mid-point and the far-field.

3. RESULTS

3.1 Standard configuration

A “standard” configuration was chosen with far-field radius R0 = 10

and A = -0.3 (equation (40)) which, with N
~ 

= 13, Ny = 21 and conditions

(35) and (38) satisfied, gave the nodal geometry shown in figure 3.

_ _  

_ _ _ _  _ _ _  4- ~S_ •_ ~~ __ . _.~~~::_._ .___v~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - .~~~~~ ~~~~~~~~~~~~~~~~~~~~~~
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e

0 H
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0 0
0 0 0

0

0 
0 0 0

0 0 0 0 e 0
0 0 0 00 0 0 0 0

0 0 0 0

: ~ : 0 0 0 :
Figure 3. Nodal geometry for 13 x 21 grid

Initially Nx = 17 and N~ = 21 were chosen to take advantage of the local

computer priority system (i.e. less than 2 nUn Cpu time per calculation on
an IBM 370) , but it was subsequently found for some cases that N

~ 
could be

reduced to 13 without significantly changing the computed surface velocities. 
S

Single precision arithmetic was used, and at nodes where one of the field
equations was omitted or replaced, the continuity equation was retained.

Accuracy of the results was judged by comparing surface velocities with
those from an iterative method due to Albone(ref.3) in which the relative
error is expected to be less than 1%. On figures 4 and 5 the present
results are plotted with squares and triangles and those from the Albone 

S

program with the broken line, while the solid line represents the body
profile.

3.2 Results from the (p, v) formulation

The (P,v) results shown on figure 4 were calculated using the standard
configuration described above, with ‘exact’ integration and (29) and (32)
applied except on the body surface. The axis elements shown in figure 3
also satisfy the additional condition

= Z7 = (z~ + z2 )/2 (41)

in the notation of figure 2, which was found to significantly improve the
results.
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20

A (s.u-) FORM ULATI ON
0 ~XPUCIT (~i&.u) FORMULATION

— — — METNOO OF AL9ON~ (REF. 3)

1.5 - 
— —

Figure 4. Results for surface velocity for optimum configurations
1’~

The (p,v) results shown in figure 4 are generally close to the Albone
values, however as a solution they exhibit a number of undesirable
properties. For one thing the axial values of v , shown for the upstream
axis in figure 5, do not follow the required nionotonic decrease from 1 at
infinity to zero at the stagnation point; the Albone program does not
calculate off-body values and so these cannot be shown for comparison.

1 2

I!3 ~ , A :
3 0 6 .

< 0~4

A (u.,u) FOR MULATION
0 EXPLICIT (M.,o) FORMULATION

0•2

o I I I I
-10 — 9 -8 -7 —6 —5 -4 -3 -2z

Figure 5. Values of longitudinal velocity on upstream axis

- - - --  
S S ~~~~~~~~~~~~~~~~~~~~~~~ 
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S Secondly, the results shown could not be improved by changing
computational variables such as the values of N

~ 
and Ny~ the choice of

grid geometry, or the application of the various axis conditions.
Rather, any variation from the computational configuration described in
3.1 above could significantly degrade the results compared to those
given. However the (P,v) results of figure 4 were not significantly S
affected by increasing R0 to 20 provided the axial grid was appropriately

scaled, by using double-precision arithmetic, or by reducing the order of
integration (from orders 4 x 4 and 3 x 3) either to all 3 x 3 or 3 x 3 and S S

2 x 2, even though the change in value of the equation matrix elements
affected was typically 30%.

S Other variations investigated included the effects of grid and body
asynunetry. The accuracy of results for a symmetric elliptical body (A = 0
in (40)) was similar to that of the standard body shape, all else being
equal. However a small grid asymmetry seemed necessary for reasonable

S results, even for the standard asymmetrical profile.

3.3 Results from the (u,v) formulations

Results from the formulation given by (20) and (21) are shown by the
triangles on figure 4. In this case the standard configuration was used
with the original values N = 17 and N = 21, and it was found that the -‘x y

S same regularised grid as used for the (12,v) results was necessary to avoid
poor results near the axis of symmetry, with the exceptions that (41) was
not required but the body surface nodes in the axis elements needed to
satisfy

Z6 = (z2 + Z 3 ) / 2

(42)
and r6 = (r2 + r3)/2. S

It was also necessary to use ‘reduced’ integration, that is third order

S 
for Dii kl and second order for C ii k in (17); neither exact nor all-

third-order integration gave satisfactory results. No explanation for S

these two requirements is apparent. For the formulation given by (23)
and (21), no reasonable results could be obtained for any of the three
integration routines or any combination of the other computational
variables.

- Figure 4 shows that the first explicit formulation gives results of
similar accuracy to those of 3.2 above. The present results also exhibit
similar behaviour on the symmetry axis, as shown in figure 5, and
generally have the same tendency to deteriorate as the computational
variables are changed, including in this case the order of integration.
This deterioration is usually manifest most obviously in the stagnation-
point elements, in particular the values of tangential velocity at the
two surface nodes adjacent to the stagnation points. As already noted,
these two nodes cannot in general be chosen to satisfy (35) and (38), 5

5
unless the body surface has infinite slope for a short distance from the
axis. The standard body shape was modified to effect this, but the
resulting equation matrix behaved as though it were singular, and no
solutions could be obtained.

5 5 - S — - S ~~~-S5SS S S S~~~~~~~~~ S- S5 S~ - 5 - - —S ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -S 5~ 5 5 5S
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4. DISCUSSION

The results described above indicate that neither of the finite element
formulations is at present a useful solution technique for the problem under
consideration . However Galerkin formulations have been applied to similar
problems in two dimensions , for example references 1 and 6. Certain aspects
of the results already discussed indicate that the formulation of the problem
near the axis of symmetry may contribute to the unsatisfactory nature of the
solutions; for example, the behaviour of the v component along the axis as
shown in figure 5, and the constraints imposed on the nodal geometry and nodal
unknowns by application of the it-component boundary condition, which are
apparently also required in the (u,v) formulation. S

Multiplying equation (1) by r to obtain a tractable finite element
formulation, gives an equation that is trivially satisfied on the symmetry
axis; this is also true of (2) in the (~i,v) formulation. Thus it might be 

S

expected that the Galerkin equivalent of (1) contributes little at an axial
node since the weighting funct ion (i.e. the shape function for the particular
node) biases its effect towards the axial node. However in the (u,v)
fo rmulation where (2) has a non-trivial contribution on the axis , it was found S

that the single equation applied at the axial nodes had to be (1) to give the
results in figure 4.

In addition to the behaviour near r = 0 , a major difference between the
present formulation and those of references 1 and 6 is that the latter use
Green ’s theorem to inc lude the boundary conditions implici t ly  in the field
equations, as a boundary integral in the Galerkin formulation, while in the
present case the boundary conditions appear only explicitly in the equation

• matrix. Of relevance here may be Fletcher’s comments in reference 5 with
respect to reduced integration, that results may be improved by relaxing the S

constraints on the polynomial form that the solution must assume in each
element. Inclusion of the boundary conditions in a Galerkin sense, as in S

references 1 and 6, may ensure satisfactory behaviour without the constraints S

imposed by condition s such as (29) , (32) , (35) and (38) . As already noted ,
the ‘reduced’ integration used here has little apparent effect on the (Sl,v)
results, but is required with the first (u,v) formulation if any reasonable
results are to be obtained. Whether a changed integration scheme such as S

complete reduced integration could improve the results from the second (u,v)
formulation, has not been determined.

No attempt has been made to change the type or order of finite element
used from ~ectangular Serendipity. It was felt unlikely that the choice of

S element could be responsible for the apparent incompatibility in the formula-
tions used.

.5.

- 5. CC~4CLUSIONS S

A Galerkin finite-element method, using quadratic, rectangular, Serendipity
elements, has been applied to the equations governing axisyminetric, inviscid
incompressible flow. Three different formulations, using the same representa-
tion for longitudinal velocity and two different representations for the radial S
velocity component, have been tried. S

The best results obtained have, surprisingly, shown only poor agreement with
correct values and exhibit a number of undesirable properties, such as their
dependence on an appropriate choice of grid geometry. None of the formulations
has provided a useful aerodynamic calculation method.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ S ~55 5 5 5 _555_ _ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - 55 S5
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NOTAT ION

A amplitude of profile asymmetry (equation (40))

C. 
~k’ 

0. kl coefficients from integration in iso-parametric
1) 13 plane (equation (17))

shape function in (r,z) plane for ~~ node

N
~ 

shape function in CE, ??) plane for 1th node

number of nodes on each segment of z-axis

N number of nodes on far-field boundary and body [Sy surface

R distance from origin in (r,z) plane, = (r2 +z2
)

½

radius of far-field S

R1, R2 equation residuals in Galerkin formulation

S region of (r,z) plane occupied by flow field

Li free-stream velocity . 1- -

a.., b.., coefficients in matrix form of
13 13 1’ 5 5

c~~, d13 
field equations (equations (13),(14),(20),(21),(23))

a
~)k 

matrix coefficient (equation (23))

r,z radial and longitudinal coordinates (figure 1)

r0 functional form of body surface profile (figure 1)

u,v radial and longitudinal velocity components (figure 1)

~ ,i~ transformed coordinates in iso-parametric plane
(figur e 1)

derived flow variable, = ru

Subscripts

i referring to i~
’ node

1,2 etc. referring to nodes 1,2 etc. (figure 2)

s values on one s ide of element boundary

m va lues on median line of element

I
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APPENDIX I

ELE MENT SHAPE FUNCT ION S 
S

The shape function corresponding to a particular node is required to have
the value one at that particular node and zero at all other nodes. The
‘Serendipity ’ type form one family of the many functions which can be defined
explicitly on the iso-parametric element (see figure 2) to have these S

properties.
For the quadra tic rectangular elements used in this report, the shape

function s of this family are defined as follows , where E .  = ±1 and i~ . = ± 1:
at the corner nodes (E . .n1) ,  1 i

I i  N.(E ,?7) = ¼(1 + U1)(1 + nn1)( EE 1 + — 1);

at the side nodes (o,’~.),

1.2 N1(E ,11) = ½(1 — E2 ) (1 + 

;

~~S

at the side nodes (E.,o),

1.3 N.(E,n) = ½(l + EE 1)(l - ‘f ) .

Note that N .  may be either quadratic or linear in the coordinates (E, n) .
In the (r,z) plane the function M1(r,z) corresponding to N~(E~n)~ and 

S r
S defined implicitly by equations (4) and (5) in Section 2.2 of this report , 

fS 5
5

wil l  have a different functional form in each element common to the

~
th node, and by definition will be zero outside those elements.

- —— S 
SS - — -

-5 -- -- — —-5 — -~—~~~ -5--
-
- —~~~~~~ ~~~ ~~~~~ ~~~~ - —~~~~~



-~~~~~ _

WSRL-0056 -TR

DISTRIBUT I ON
Copy No.

EXTERNAL

In United Kingdom
Defence S c i e n t i f i c  and Technical Representative , London I
R.A.L ., Acro Department 2 - 3

Space Department 4

Weapons Departmen t 5 - 6

Bedf ord 7

L ibrary 8

R.A.R.D.E. 9

T . T . C . P . ,  UK National  Leader Panel W-2 10 - 13

Aeronautical Research Council 14 - 15

Airc ra f t  Research Association (Bedford) 16 (
C . A . A . R . C .  Secretary 17

National Lending Library of Sc ience and Technol ogy 18

Roya l Aeron autical Society , Library 19

Professor O.C. Zienkiewicz , Department of Civil  Engineering , 20
University College of Swansea

Professor i.R. Whiteman , Department of Mathematics , 21
Brunel University

In United States of America

Counsel lor, Defence Science, Washington 22 5

Defence Research and Development Attache, Washington 23

Applied Phy sic s Labora tory , Johns Hopkins University 24

Air Forc e Armament Testing Laboratory 25

Ballis tics Research Laboratories 26
Ed gewood Arsenal 2~
Eglin Air Force Base 28

N.A.S .A. 29 - 32
Naval Surface Weapons Center

Dahigren 33

White Oak 34 S

Naval Weapons Center 35

Naval Ship Research and Development Center 36

Picatinny Arsenal 37

Redstone Arsenal 38

T.T.C.P. US National Leader Panel W-2 39 - 42

Wright-Patterson Air Force Base, Library 43

American Institute of Aeronautics and Astronautics, Library 44

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ S~~~~ S~



WSRL-0056-TR

Copy No.

Pacific Technical Information Services , Northrop Institute 45
of Tec hnology

Applied Mechanics Reviews 46
Arnold Engineering Development Center 47

A.R.O. Inc. 48
Sandia Corporation, Library 49

In Canada

Defence Research Establishment , Valcartier 50 5 5

•

N.A.E.S, Ottawa 51

T.T.C.P., Canadian National Leader Panel W-2 52 - 55
University of Toronto, Institute of Aerospace Studies 56

Professor D.H. Norrie, Department of Mechanical Engineering, 57
University of Calgary

In Europe

A.G.A.R .D., Brussels 58 - 63

In India

Aeronautical Development Establishment, Bangalore 64 f
Indian Institute of Science, Bangalore (Dept . of Aero. 65
Engineering) S

Indian Institute of Technology, Madras (Dept. of Aero. 66
S Engineering)

Hindustan Aeronautics Ltd., Bangalore 67
S National Aeronautical Lab., Bangalore 68 - 69

Space Science and Technology Centre, Trivandrum 70

In Australia

Chief Defence Scientist 71

Superintendent, Science and Technology Programmes 72

S 
Director, Joint Intelligence Organisation (DDSTI) 73

Air Force Scientific Adviser 74 - 75
Army Scientific Adviser 76 - 77
Navy Scientific Adviser 78 - 79

Controller, Policy and Programme Planning 80

Deputy Chief Defence ScientIst 81

Central Studies Establishment 82

Defence Information Services Branch (for microfi lining) 83
BDRSS, Canberra 84

___ ________ S --S



-- -55-5 -55 - S  s_~~~~ 
- -~~ ~

WSRL-00S6-TR

S Copy No.

S Defence Informat ion Serv ices Branch for:

United Kingdom , Ministry of Defence,
Defence Research Information Centre (DRIC) 85

United States, Department of Defense,
Defense Documentation Center 86 - 97

Canada, Department of National Defence,
S 

Defence Science Information Service 98

New Zealand , Department of Defence 99

Australian National Library 100
S Chief Superintendent , Aeronautical Research Laboratories 101

Superintendent, Aerodynamics Division , ARL 102

D.A. Secomb, for data exchange agreement , ARL 103

Superintendent, Mechanical Engineering Division , ARL 104

Library, Aeronautical Research Laboratories 105

Library, Materials Research Laboratories 106

Defence Library , Campbell Park 107

A ircraft Research and Development Unit , Edinburgh 108

G.A.F., Department of Productivity, Melbourne 109

RAAF Academy , Point Cook 110

C.A.C. 111

Institute of Engineers, Australia 112

Dr C.A.J. Fletcher, Department of Mechanical Engineering , 113
University of Sydney 

S

WITHIN DRCS 
S S

Chief Superintendent, Weapons Systems Research Laboratory 114

Superintendent, Aeroballistics Division 115

Head, Ballistics Composite 116

Principal Officer, Dynamics Group 117

Principal Officer, Aerodynamics Research Group 118

Principal Officer, Ballistics Studies Group 119

Principal Officer, Field Experiments Group 120

Principal Officer, Flight Research Group 121

Author 122 5

DRCS Library 123 - 124

AD Library 125 - 126

Spares 127 - 150

—S 5— ~_-_ 
~~~~~~~~ ~~ — ~~~~~~~~~~~~~~ 5S 5.s~~-~~ ~~~~~~~~~~~~~~~~ 

ss~~
_
~~~~~~~~ — _ 5 5 5 - _ S S

-5- - 5 -— —5. - —-5- 5 - -  --5~~~~ —~~~.——---- S-~~~- - --- -5 -  -- S


