
AQ—A073 313 RESEARCH TRIANSLE INST RESEARCH TRIANSLE PARK N C flS VS
*F*i. SIP~L*TIOti FACILITY/CAPASILITY MAMJAL. VOLWC II. EXECuT7V—~TC(uPU 75 R I. CAfl P33SlUe7SeC_1301

JIC AU SPIED W*Lefl 77e1 15—VOL-I It

_ ~EJ1J
_ _IflWLFA l~ flIA

_ IL!~~~~ar~

• ,~ L~ ~ 2.8 ~L 2.5
l.’_, L

_ _ _

J~ ~2.2

I.’ ~ IIIO~8

Hill’ .25 HhII~ IwI~
MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANO AR OS-I963~A

~
AFAL.TR-77~1 18 -

~~~~~~~~

~ £ ~-3~~
a:’)

• ~~ 
L

~~ ~~~~AL SIMULATION FACIUTY/CAPARIUTY MANUAL

~ VoIum U
Exscutlvs $us~~~~. and EIsctr~~Ic Tichnology Division:
comput.r AId d Dii : ‘for Micro&sctronlcs

RESEARCH TRIANGLE INSTIT(1Th ~~RESL4RcH TRL4NQLE PARL NORn: CAROLINA 22709

D DC
f J Il$~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~ l i i ii~< ,&s,o ’
II L1i~ i~u u

~ B
;t~~~~~’~~~~~~~~~~~~~~

’
~~~~~~PAL.TR41418”

~~~~~~~~~~~~~~ 30 Ji~~ 19?t 41 ~~rdi

~~) ~c üIi~ ~-
~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~
, ‘t~~~~ ~~1a

a AI~~~ORQ AVIONKS L1~$oIM*~Y
4~oRcS W*JGIrr A*~~A*fl*AL L~~ORATO*IU

4ft’- A* Rcz s rs’r*MSCQ ~~~~ ; : ,.~~ 

‘

~~~~~~ 

‘

I
_____ MR ~~~~~~~~~~~~~~~ ~~

~~~~ r ~~ ~~~~~~~~ ~~~~~~~~~~ 
‘.

‘ 
I- ‘ 

, ,  
~~~ 

,
‘
~~

~~~~T ’ t ~p4~~ . IW ~~~~~~~~~~~~~L~~~~~~~~~~~~~~~~~~~~~~~~~’c~~~~~~~ -“ -
~~~ ~~ 

- - ‘- -
~

-- -
~.- —~

V
_

~ ~~~~~~~~~~~~~~~~~~ ~ Z~~This report his been revlsws4 by ‘the bfOv~stio. Office (1UJ~~d Ii ;‘*r.1useb~e to the Nstlonal ~chnit$T ’ Isfbruition Service ~IITIS). - At*~S,
it wfll be avail ible to the ~ Mret- ~~b1ic1 Including fortf~~ Mt4~~~~~’

This technicil report has bNn revi*sd and Is approved -for publ icatlOØ.

tot m ‘ ‘
-.

‘-
~~U

’ .~..- !~~~~~°~°~~ ~~~j~~ j j $ -
- :~

-

- ‘
- . -

—

—
-‘

r

, ~
- — ~- 4 ‘-

~ ,-~~ v_
~ ~

-.
(

‘7~I I-
L

~

-~~~~
I

I .J

-, ~~~
I

‘ ‘~~

- ‘ -s . .•

‘

.

A
:3. ~~~~~~

-—
~

-

~

4

_____-
~~~~ ~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -#. —. -f .—

~~ 
‘.- -- - -  -- -

_ _____  
__________ -- - - - -



I
,

,

UNCLASSIFIED
SECURITY CLASS IFICATION OF THIS PAGE (IThan Data Entered) 

_____________________________________

DC~~I1DT l~~~~~IIAA! J?ArIr~LI DA f~~ 
READ INSTRUCTIO NS

~~~~~~~~~~~~~~~~~ , ~~~~~ u BEFORE COMPL ETING FORM
I. REPO RT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT S CATALOG NUMBER

‘7(
~\ AFAL-TR-118, Volume II __________________________

~~~~~~ p.4-.. 5. TYPE 0 & PFRI~~ r~ ~~~~~~~~~~~~~~

~~~~~~~~~ ~~~ VI~~~~~~~~~~~~~~~~~~~~~~~~~~~IGN~FOR~~~~~~j  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ICROELECTRONICS . __________

7. AUT HOR(1J B. CONTRACT OR GRANT NUMBER(.)

(j d L;/EaXp “ I~
9. PERFORMING ORGANIZATI ON NAM E AND ADDRESS 10. PROGRAM ELEMENT . PROJECT . TASK

AREA & WORK UNLLt~UMBERS -

Research Triangle Institute / 62204F / - 1
P .O. Box 12194 / ~~~~~~~~~~~ c~L.-~ I ’’ /
Research Triangle Park North Carolina 27709 ~ ~ A 6Iø96~ 001

I I . CONTROLLING OFFICE NAME AND ADDRESS - REPORT DAT

Air Force Avionics Laboratory ~ 1 ~ Februi~~~ 1979 I .--——--- ., -
—

AFAL/AAF , Wright—Patterson AFB , Ohio 45433 ‘~~~- . NUMB EROF PAGES (/
14. MONIT ORING AGENCY NAME & ADDRESS(II dill.rai t (roe, Controflln 4 Office) IS. SECURITY CLASS. (of ffiTt7U~~~tt)

Unclassified
IS.. DECLASSIFICATION / DOWNGRADING

SCHEDULE

1$. DISTRIBUTION STATEM ENT (of tAt . Report)

Approved for public release , distribution unlimited.

D D C
17. DISTRIBUTION STAT EMENT (of A. abetted entered in Block 20. ii different frog, Report)

~~~~~~ 
fj J (~3flJ flfl flflD

AUG 30 1919

IS. SUPPLEMENTARY NOTES I [l15U~L6U U L!
B

19. KEY WORDS (Continue on rev.r.e aid. ii n.c..aary aid Identity by block nua,b.r)

Computer Aided Design Logic Simulation
Logic Design Fault Analysis
LSI Design Printed Circuit Structural Analysis
Printed Circuit Board Layout Printed Circuit Thermal Analysis

t0~~ A~~STRA CT (Continu, wi revere, aid. if n.c..aary and identity by block numb.’)

The Air Force Avionics Laboratory (AFAL ) at Wright—Patterson AFB is the
focal point for development of new avionics technology f or the Air Force . In
order to carry out this responsibility, a significant capability to simulate
physical avionics systems and components has been created by the AFAL dlvi—
slons .

DD ~~~~~~~~~ 1473 EDITIoN OF I NI~~~K.4~~~ BSOLETE UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (USi.. Data Bntered)

~ c’~/ .I~/ ( ~ (fJ ~~
]

T~~ W .— ~~ . - - ~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ . - - r ~~--~ae . , . ~~~,. —-
~~~

-
~ ~~~

-

~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~
— - —



‘7
UNCLASSIFIED

S~~~~~~IT ’~~CLA SSIFICATION OF THIS PAGE(Wisen Data lpt.r.d)

This manual presents introductory and summary coverage of the AFAL
Computer Aided Design (CAD) Facility in Section I and by presenting more
detailed descriptive material in subsequent sections. The contents of
Section I address the CAD Facility capabilities from a planning/management
viewpoint by relating the Laboratory mission to present facility capability
through the development of a conceptual simulation class structure . The
contents of subsequent sections of this manual address specific facility!
capability from a potential—user viewpoint. Specific programs/functions
documented are as follows:

1. LOGIC4 — Logic simulation and fault analys

2. ASPEC — Analog circuit analysis

3. ASSIGN/PCPRA — Printed circuit board package assignment, placement,
and wire routing.

4. CONVRT/PRF/CHPCHP/MCHPCK — Integrated circuit (IC) layout, route,
and verification.

5. SCELL/MOSTRAN - IC cell design and analysis.

6. MACNET — Microwave network design and analysis.

7. SAP IV — Structural analysis.

8. SINDA - Thermal analysis.

9. LIBBER — File/Subfile management.

The technical level of these sections is such that available capability can
be determined and some insight can be gained regarding user interface.

~~ €SSION foi p
NTIS V~ c Section ~
DOC ~~~[I~ Scctioii 0

0
JUST IC&~ •:~ 

B Y .  ~~~~~~~~~~~~~

O B ~~JAYML~UTY ~OD~S 
—

Dist. AYME and/or SPECIAL

UNCLASSIFIED
SECURITY CLA SSIFICATION OF THIS PAGE(WAen Data Sneered)

I-

_ _ _  ~T



TABLE OF CONTENTS

Page

Executive Summary xiii

1 SYSTEM OVERVIEW 1

1.1 INTRODUCTION 1

1.2 PROGRAM CAPABILITIES 2
1.2.1 Printed Circuit Board Design 2
1.2.1.1 Logic Simulation 2
1.2.1.2 Fault Analysis 4
1.2.1.3 ELEMENT and NET LIST Generation 4
1.2.1.4 Printed Circuit Board Layout 5
1.2.2 Custom LSI Design 5
1.2.2.1 The Basic Approach 6
1.2.2.2 Cell or Circuit Level Design 6
1.2.2.3 Chip or Logic Level Design 7
1.2.3 Microwave Network Design 8
1.2.4 Structural Analysis 8
1.2.5 Thermal Analysis 9
1.2.6 Data Base Management 9

1.3 FILE MANAGEMENT 10
1.3.1 File Assignments 10
1.3.2 Command Characteristics 10

2 DATA BASE MANAGEMENT PROGRAM—LIBBER 12

2.1 INTRODUCTION 12

2.2 PROGRAM PURPOSE 12

2.3 PROGRAM GENERAL DESCRIPTION 12

2.4 PROGRAM OPERATION 14
2.4.1 Program Access 14
2.4.2 LIBBER File Creating Commands 15
2.4.2.1 File Assignment 15
2.4.2.2 File Initialization 15
2.4.2.3 Subfile Creation 15
2.4.2.4 File Monitoring Commands 16
2.4.3 LIBBER Exit Command 16

2.5 LIBBER COMMAND DESCRIPTIONS 16
2.5.1 RUN LIBBER Command Description 16
2.5.2 File Assignment Command Description 16
2.5.3 MEL Command Description 17
2.5.4 TTY Command Description 17
2.5.5 TOC 17

iii 

—--— .- -  . . ,— — .. — ‘ i$P .3L . ’. . - -

‘ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

— -

~~~~



TABLE OF CONTENTS (con.)

Page

2.5.6 NEW Command Description  18
2.5.7 ADD Command Description 18
2.5.8 APP Command Description 19
2.5.9 DEL Command Description 19
2.5.10 LST Command Description 19
2.5.11 GET Command Description 19
2.5.12 SAV Command Description 20
2.5.13 RES Command Description 20
2.5.14 MRG Command Description 21
2.5.15 EDT Command Description 21
2.5.16 REN Command Description 22
2.5.17 UNT Command Description 22
2.5.18 REW Command Description 22
2.5.19 PRT Command Description 22
2.5.20 Card Headers 22

3 LOGIC SIMULATION AND FAULT ANALYSIS
PROGRAM — LOGIC 4 24

3.1 INTRODUCTION AND GENERAL DESCRIPTION 24

3.2 FUNCTIONAL DESCRIPTION 27
3.2.1 Major Functions 27
3.2.2 Stimulus!Response Simulation 28
3.2.3 Test Stimulus Completeness Verification 29
3.2.4 Fault Isolation 29
3.2.5 Program Timing 30
3.2.5.1 Gate Time 30
3.2.5.2 Coarse Time 30
3.2.5.3 Gates/Coarse-Time 30
3.2.5.4 External Time 31
3.2.5.5 Output Time 31
3.2.5.6 Strobe Time 31
3.2.5.7 Normal Simulation 31
3.2.5.8 Fault Simulation 32
3.2.5.9 Example Program Timing 33
3.2.5.10 Summary 33
3.2.6 Program Inputs 33
3.2.6.1 Control Category 36
3.2.6.2 Run Header Category 36
3.2.6.3 Elements Category 36
3.2.6.4 Generator 36
3.2.6.5 Externals Category 37
3.2.6.6 Faults Category 37
3.2.6.7 Outputs Category 37
3.2.6.8 Memory Category 37
3.2.6.9 Definitions Category 37

iv

.-‘ 
~~~TT ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~ 

— - .
‘-

TABLE OF CONTENTS (con.)

Page

4 ELEMENTS/NET GENERATION PROGRAM — ASSIGN 38

4.1 INTRODUCTION 38

4.2 PROGRAM PURPOSE 38

4.3 PROGRAM GENERAL DESCRIPTION 38
4.3.1 String Generation 41
4.32 Element Generation 41

4.4 PROGRAM FUNCTIONAL DESCRIPTION 41
4.4.1 Program Initialization 43
4.4.2 Control Category 42
4.4.3 Backplane Description 43
4.4.4 Elements Category 44
4.4.5 Generator Specification 44
4.4.6 Externals Category 44
4.4.7 Equivalence Category 44
4.4.8 Bucket Layout 46
4.4.9 Card Descriptions 45
4.4.10 String List 46
4.4.11 Manual Definitions 4d
4.4.12 Parts List 46

4.5 PROGRAM OPERATION 46
4.5.1 Manual Definition Phase 46
4.5.2 Tag Definition Phase 47
4.5.3 All Elements Phase 47
4.5.4 Gate Second Try Phase 47

4.6 PROGRAM OUTPUT DESCRIPTION 47
4.6.1 Input Data 48
4.6.2 Card Descriptions 48
4.6.3 List of Non-Fitting Elements 48
4.6.4 Bucket Map 48
4.6.5 Spare Elements 49
4.6.6 Signal Loading 49
4.6.7 Internal String List 49
4.6.8 Test Point List 49
4.6.9 Unused I/O Connector Pins or Unused Test Points 49
4.6.10 Allocated Elements 49
4.6.11 Parts Summary 50
4.6.12 Computer Written Parts List 50

5 INTRODUCTION TO PCPRA: PRINTED CIRCUIT
PLACEMENT ROUTING AND ARTWORK PROGRAM 51

5.1 GENERAL DESCRIPTION OF PCPRA 51

V

. --

~ :

TABLE OF CONTENTS (con.)

Page

5.1.1 Printed Circuit Board Design Process 53
5.1.2 PCPRA Requirements 55
5.1.3 PCPRA Utilization Guidelines 57

5.2 PCPRA FUNCTIONAL DESIGN AND CAPABILITIES 59
5.2.1 PLACE Program 59
5.2.2 WORGZ Program 61
5.2.3 PROUTE Program 64
5.2.4 MLPLOT Program 65

6 INTRODUCTION TO SCELL/MOSTRAN, CELL LAYOUT
AND TRANSIENT ANALYSIS PROGRAMS 67

6.1 GENERAL DESCRIPTION 67
6.1.1 SCELL Program 67
6.1.2 MOSTRAN Program 69

6.2 FUNCTIONAL DESCRIPTION 73

6.3 SCELL PROGRAM FUNCTIONS 79
6.3.1 BULK MANIPULATION Category 79
6.3.2 CAPACITANCE Category 80
6.3.3 COMPOSITE CHARACTERS Category 80
6.3.4 CONTROL Category 80
6.3.5 DESIGN RULES Category 80
6.3.6 EXECUTE Directive 80
6.3.7 GLOBAL PARAMETERS Category 80
6.3.8 LIBRARY Category 81
6.3.9 NET LIST Category 81
6.3.10 PLACEMENT CONSTRAINTS Category 81
6.3.11 RUN HEADER Category 81
6.3.12 STOP Directive 81

6.4 MOSTRAN PROGRAM FUNCTIONS 81
6.4.1 APPLIED SIGNALS Category 82
6.4.2 CIRCUIT PARAMETERS Category 82
6.4.3 GENERAL PARAMETERS Category 82
6.4.4 INITIAL CONDITIONS Category 82
6.4.5 MERGE Category 82
6.4.6 MODIFY Category 82
6.4.7 NET LIST Category 83
6.4.8 OUTPUT CURVES Category 83
6.4.9 RUN HEADER Category 83
6.4.10 SIMULATE Directive 83
6.4.11 STOP Directive 83
6.4.12 TYPE/MODEL ASSIGNMENTS Category 83
6.4.13 UNIT NUMBERS Category 83

vi

- —
‘ ~~~ ~~~~~~

.
~~

.,, ~~~~ . •-i---

TABLE OF CONTENTS (con.)

Page

6.5 PROGRAM OUTPUTS 83

7 IC LAYOUT PROGRAMS 87

7.1 INTRODUCTION 87

7.2 PROGRAM DESCRIPTIONS 87

7.3 PROGRAM OPERATION 87

7.4 INPUT DATA CONVERSION — CONVRT 88

7.5 CHIP LAYOUT 91
7.5.1 Component Sets 92
7.5.2 Lcvcl Sets 92
7.5.3 Automatic Placement 92
7.5.4 Chip Modification 93
7.5.5 User-Specified Placement 94

7.6 LAYOUT CHECKING—MCHPCK 97
7.6.1 Initial Net Check 98
7.6.2 Final Net Check 98
7.6.2.1 Orthogonal Interconnection 99
7.6.2.2 Diagonal Interconnection 99
7.6.2.3 Connections to Cell Terminals 100
7.6.2.4 Diagonal Connections to Cell Terminals 101
7.6.2.5 Terminal to Terminal Connections 101
7.6.2.6 Crossover (XOVER) Connections 101
7.6.2.7 BUS Connection 101
7.6.2.8 Logically Equivalent Inputs 102
7.6.2.9 Extraneous Material 102
7.6.2.10 Overall 102
7.6.3 Capacitance Loading Output 103
7.6.4 Output Net List 103
7.6.5 Design Rule Check 104
7.6.5.1 Cell to Cell Spacing 104
7.6.5.2 Cell to Interconnect Spacing 105
7.6.5.3 Interconnect to Interconnect Spacing and Width 105
7.6.5.4 Diagnostics 105
7.6.5.5 Overall 105

8 MICROWAVE NETWORK ANALYSIS AND OPTIMIZATION
PROGRAM — MAGNET 106

8.1 INTRODUCTION AND GENERAL DESCRIPTION 106
8.1.1 INPUT Data 106
8.1.2 MAGNET Program 108

vii

- —‘ .
~~~ . . . .



TABLE OF CONTENTS (con.)

Page

8.1.3 OUTPUT Data . 109

8.2 FUNCTIONAL DESCRIPTION 109
8.2.1 Starting Point 110
8.2.2 Network Analysis 110
8.2.3 Optimization Routine 111
8.2.4 Output Routine 113

8.3 PROGRAM MINIMUM REQUIREMENTS 114
8.3.1 Elements Coding 114
8.3.2 Program Control Coding 114
8.3.3 Program Outputs 114
8.3.4 Finai Optimized Circuit 115
8.3.5 Composite S Parameters 115
8.3.6 Final Circuit Description 115
8.3.6.1 Starting Point Analysis 115
8.3.6.2 Optimized Results 115
8.3.6.3 Final Circuit 116

8.4 USAGE INFORMATION 116
8.4.1 Active Device S Parameters 116
8.4.2 Program Parameters 116
8.4.3 Frequency Response 116
8.4.4 Element Creation Statements 116
8.4.4.1 Active Device 117
8.4.4.2 Non-Active Elements 117
8.4.4.3 Repeat 117
8.4.5 Element Combination Statements 117
8.4.6 INV Statement 117
8.4.7 Network Definition Termination 117
8.4.8 Run MAGNET 117
8.4.9 File Assignment 118

8.5 OUTPUTS 118

8.6 RESTRICTIONS ON MAGNET 118

8.7 ABCD MATRIX 122

9 A STRUCTURAL ANALYSIS PROGRAM—SAP IV 123

9.1 GENERAL DESCRIPTION 125

9.2 PROGRAM ORGANIZATION 126
9.2.1 Nodal Point Input Data and Degrees of Freedom 126
9.2.2 Element Mass and Stiffness Calculations 127
9.2.3 Formation of Structure Stiffness and Mass 127

viii

F. —i 
~~~~~~~~~ 

-
~~~~~~~~~ D~~is~ ~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .~~~~ — .— —.~~~-- .v -

~~
-
~~~ ‘ 

- —
~~~~~~ - -

C - -



TABLE OF CONTENTS (con.)

Page

9.3 THE ELEMENT LIBRARY 130
9.3.1 Three-Dimensional Truss Element 130
9.3.2 Three-Dimensional Beam Element 130
9.3 3 Plane Stress , P..~ .~e Strain and Axisymmetric Elements 130
9.3.4 Three-Dimensional Solid Element 132
9.3.5 Variable-Number Nodes Thick Shell and Three-Dimensional Element  132
9.3.6 Thin Plate and Shell Element 132
9.3.7 Boundary Element 133
9.3.8 Pipe Element 133

9.4 THE EQUILIBRIUM EQUATIONS FOR COMPLEX
STRUCTURAL SYSTEMS 134

9.4.1 Element to Structure Matrices 134
9.4.2 Boundary Conditions 134

9.5 STATIC ANALYSIS 135
9.5.1 Solution of Equilibrium Equations 135
9.5.2 Evaluation of Element Stresses 136

9.6 CALCULATION OF FREQUENCIES AND MODE SHAPES 136
9.6.1 The Determinant Search Solution 138
9.6.2 The Subspace Iteration Solution 138
9.6.3 Dynamic Optimization 140

9.7 DYNAMIC ANALYSES 142
9.7.1 Response History Anal ysis by Mode Superposition 142
9.7.2 Response History Anal ysis by Direct Integration 143
9.7.3 Response Spectrum Anal ysis 143
9.7.4 Restart Capability in Mode Superposition Analysis 144
9.7.5 Mode Superposition Versus Direct Integration 145

9.8 INSTALLATION OF SAP IV ON A SYSTEM OTHER
THAN A CDC COMPUTER 147

10 SINDA 149

10.1 INTRODUCTION 149

10.2 SYSTEM STRUCTURE DESCRIPTION 149

10.3 INPUT DECK 153
10.3.1 Title Block 155
10.3.2 Data Blocks 155
10.3.2.1 Node Data Block 157
10.3.2.2 Source Data Block 158
10.3.2.3 Conductor Data Block 158
10.3.2.4 Constants Data Block 162

ix

~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .~~~~~~ - ~~ - . - . .~~ 

. _ — . .

. . . .. - C . - — . _________



TABLE OF CONTENTS (con. )

Page

10.3.2.5 Array Data Block 164
10.3.3 Operations Blocks 164

11 ASPEC-ADVANCED SIMULATION PROGRAM FOR
ELECTRONIC CIRCUITS 173

11.1 INTRODUCTION 173

11.2 PROGRAM ANALYSIS CAPABILITIES 173

11.3 PROGRAM DESCRIPTION 174
11.3.1 Components Specification 174
11.3.1.1 Elements 174
11.3.1.1.1 Resistors , capaci tors , and ind uctors 174
11.3.1.1.2 Bat tery 174
11.3.1.1.3 Transconductance 175
11.3.1.1.4 Voltage-controlled switch 175
11.3.1.1.5 Coupled inductors 175
11.3.1.2 Soh~ ~~s 176
11.3.1. 2.1 DC sources 176
11.3.1.2.2 Piecewise-linear source 176
11.3.1 2.3 Repeating piecewise-linea r source 176
11.3.1.2.4 Piecewise-exponential source 176
11.3.1.2.5 Repeating piecewise-exponential source 177
11.3.1.2.6 Sinusoidal source 177
11.3.1.2.7 AC source value 178
11.3.1.3 Nonlinear devices 178
11.3.1.3.1 PN and Schottky diodes 178
11.3.1.3.2 Bipolar junction transistors (BJT) 178
11.3.1.3.3 Junction field-effect transistors (JFET) 178
11.3.1.3.4 MOS field-effect transistors (MOSFET ) 179
11.3.2 Instruction Statements 179
11.3.2.1 •MODEL Statement 179
11.3.2.2 •PARAM Statement 180
11.3.3 Analysis Specification 180
11.3.3.1 DC Anal ysis 180
11.3.3.2 •TRAN Statement 180
11.3.3.3 ‘TFUN Statement 180
11.3.3.4 •FREQ Statement 181
11.3.4 OUTPUT Speci f ica t ion 181
11.3.5 Macro Definition and Use 182
11.3.5.1 •MACRO Statement 183
11.3.5.2 Xname Statement 183
11.3.5.3 Specification of Macro Output 184
11.3.6 Temperature Specification 184
11.3.7 Worst-Case Analysis 184
11.3.8 Noise Analysis Specification 184

x

—‘ p..- ~~ ‘~~ ——--I — -



TABLE OF CONTENTS (con .)

Page

11.3.9 Print Control Specification 185
11.3.10 DC Node Voltage Specification 186
11.3.11 Breadboard Simulation 186

11.3.12 Analysis Control 186

xi

- .
~
_
‘~

__
~*JJ

___ 
~~~~~~~~~~~~~~~~~~~~~ .. - 

..-
~ ~~~~~~~~~~~

.

_ _ _ _ _

.
w - _ _ _ _ _ _ _

LIST OF FIGURES

Page

1.2-1 CAD General Functional Block Diagram 3
2.1-1 CAD Functional Block Diagram Emphasizing the LIBBER Program 13
3.1-1 CAD Functional Block Diagram Emphasing the LOGIC 4 Program 25
3.2.5.9-1 Simulation Functions Performed for One Coarse Time 34
3.2.5.9-2 Fault Simulation Operation 35
4.0-1 CAD Functional Block Diagram Emphasing the ASSIGN Program 39
4.3-1 ASSIGN Program Modes of Operation 40
5.0-1 CAD Functional Block Diagram Emphasizing the PCPRA Programs 52
5.1-1 PCPRA Program Flow 54
5.1.1-1 Exploded View of a Typ ical Multi layer Board 56
5.1.3-1 Typical Power/Ground Routing 58
6.0-1 CAD Functional Block Diagram Emphasizing the

SCELL/MOSTRAN Programs 68
6.1.2-1 Time Window 71
6.1.2-2 The P-Channel and N-Channel Models 71
6.1.2-3 Time Step Sequence 74
6.2-1 Data Flow in a Typical Cell Design Effort 76
6.2-2 Cell Design Working Structure 77
7.2-1 Chip L~ayout Programs , Block Diagram 88
7.2-2 CAD Functional Block Diagram Emphasizing the

Chip Layout Programs 89
7.5.4-1 Example of Height Contraction 95
7.5.4-2 Example of Height Expansion to Reduce Interconnect Crowding 96
7.6.2.2-1 Invalid Connections Between Orthogonal Segment A,B, and

Diagonal Segment C,D 100
8.1-1 CAD Functional Block Diagram Emp hasizing the MAGNET Program 107
8.1-2 MAGNET Program General Flow Diagram 108
8.2-1 Simplified Flow Chart of MAGNET 109
8.2-2 Element Type 111
8.2-3 Element Combination 112
8.2-4 Example Network Not Accepted by MAGNET 113
9.0-1 CAD Functional Block Diagram Emp hasizing the SAP IV Program 124
9.2.3-1 Flow Chart Showing Calculation of Number of Equations in a Block 128
9.2.3-2 Flow Chart for Calculation of Structure Stiffness Matrix and

Mass Matrix 129
9.3-1 Element Library of SAP IV 131
9.7.5-1 Amplitude Decay Wilson 0-Method 146
10.1-1 CAD Functional Block Diagram Emp hasizing the SINDA Program 150
10.2-1 Detailed Internal Flow of the SINDA System 152
10.3-1 Basic SINDA Input Deck 156
10.3.2.1-1 Summary of Node Data Input Options 159
10.3.2.2-1 Summary of Source Data Input Options 160
10.3.2.3-1 Summary of Conductor Data Input Options 163
10.3.3-1 Basic Program Flow 166
10.3.3-2 Sample Flow Chart for the Execution Block 168
10.3.3-3 Nested Structure of the Operations Blocks 169
10.3.3-4 Flow Chart of Network Solution Subroutine CNFRWD 170
11.3.5-1 A Macro Examp le 182

xii

-‘

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .;_~~~~ 

-

LIST OF TABLES

Page

1.1-1 CAD Programs 1
2.5.20-1 Card Holder Options 23
4.4-1 ASSIGN Input Data Category Functions 42
6.1.2-1 Symbols Used 70
6.5-1 SCELL Program (Step 1) Output Description 84
6.5-2 SCELL Program (Step 2) Output Description 84
6.5-3 SCELL Program (Step 2A) Output Description 85
6.5-4 SCELL Program (Step 3) Output Decription 85
6.5-5 MOSTRAN Program Output Description 86
8.6-1 Element Combination Statements 119
9.5.1-1 Solution of Equations Using Sesol 137
9.6.1-1 Calculation of Frequencies and Mode Shapes Using

Determinant Search Method 139
9.6.2-1 Calculation of Frequencies and Mode Shapes Using

Subspace Interaction Method 141

xiii

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

— .

EXECUTIVE SUMMARY

The technology of microelectronics continues to evolve toward higher
and higher density circuitry with increasing performance requirements in
terms of speed and reliability. In the military electronic systems arena ,
only limited quantities of any device are produced and the performance
requirements are always pushing against the forefront of technology. To
facilitate the continual exploration and evolvement of new designs for
electronics to meet new threats , the Electronic Technology Division of the
Air Force Avionics L~iboratory maintains a Computer Aided Design (CAD) sys-
tem , resident on the AVSAIL DEC System 10.

The CAD programs couple the computer to digital design , manufacture ,
test , and documentation to lower cost and increase productivity. This is
accomplished by h~a”ing the computer handle the routine time consuming tasks
In order to allow man more time to be creative.

This manual presents a general functional description of each of the
CAD programs. To fully understand the routine tasks performed by the CAD
programs , one must have a working knowledge of the processes used in the
design , fabrication , test, and documentation of digital electronics. To
comprehend all the details of each program is somewhat overwhelming and
generally unnecessary as the average user will onl y be concerned with a
small subset of the overall system and need not be confused by the number
of program options and details which exist. The primary purpose of this
manual , then, is to give enough of a functional description of each program
to allow a person to comprehend the basic fundamentals of that program in
order to determine if indeed it will perform the tasks required. Once this
decision has been made , then the user can proceed to a specific subset of
Users Manuals rather than having to deal with the entire program set.
Since considerable knowledge of the system under design, in addition to job
planning and control , is required to make the most cost effective use of
the CAD programs , the user should be prepared with the necessary informa-
tion required to work within Computer Aided Design. Successful use of the

system requires strict adherence to standards. Many decisions made in the
early stages of the job are not easy to change later if they are found to
be inadvisable. Adequate resources such as computer time , mass storage

xiv

~~~ T ~~~ ~~
- W S

~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
. -

— - - —

media , and trained personnel must be planned for and provided at appro-

priate times in the cycle.

The programs available to the designer simulate a logic design , link
the logic design to a physical design , determine testability of the design,
and generate layout information. These programs encompass a broad spectrum
of software tools ranging from custom Large Scale Integrated Circuit (LSI)
designs at a call level to a complete Printed Circuit Board (PCB) layout .
The programs used in the design of PCB’s are LOGIC 4 , ASPEC , ASSIGN , PCPRA,
SCELL/MOSTRAI4, CONVRT, PRF , CHPCHP, and MCHPCK. The pr imary func t ions of
these programs are: logic simulation , fault analysis , chip layout , log ic
element association , and printed circuit board layout and routing . In
addition , programs are available for analyzing and optimizing microwave
designs and for providing thermal and structural analysis of any design .
These programs are: MAGNET, SAP IV and SINDA. The data interaction of all
of the CAD programs is controlled via the data base management program
LIBBER. The interaction and generalized capabilities of the programs are
described in the brief functional descriptions that follow.

The simulation program (LOGIC 4) is normally the first and perhaps
most important program used. Inputs to this program consist of a descrip-
tion of the logic design to be simulated. This may be individual logic
blocks such as gates or LSI chips and includes an input sequence to exer-
cise the circuit described. Outputs are many useful lists of tables and a
timing diagram so the designer can verify that the circui t is performing as
intended. A Verification mode is included in which the program compares
the specified output signal levels for a good circuit to the same ou tpu t s
for a faulted circuit to determine if there is a difference in the output .
If a difference is noted a detected f a u l t is l i s t ed . A Fault I so la t ion
mode is included In which the ac tual circuit location s of the fault are
determined through the analysis of unique fault signatures or signature
sets for each fault detected. The Advanced Simulation Program for Elec-
tronic Circuits (ASPEC) is designed to perform nonlinear dc , nonl inear
transfer function, nonlinear transient and linear ac simulation of circuits
containing independent sources, linear elements and nonlinear devices.

The ASSIGN program is normally run after the design has been proven to
be of sound logical structure , and serves as the introduction and the link
to the physical design process. The program assembles the logical design

information , previously supplied to the simulation programs , into lists for
use in component interconnection on the board.

xv

,.~

- -~~~

~~~~~~~~

—

- ~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~ ~~~-
.-..- .

~~- —~~~ . ~ -- . —.~~~~ ~~~ . —.‘~~. ... -,-



The PCPRA program is a printed circuit wire routing optimization pro-
gram for production of two—sided or multilayer printed circuit boards. It
consists of four parts that are normally used in order , yet can be used
independently. The placement part (PLACE) selects a placement of the pack-
ages to be used on a PCB so as to minimize total printed wire length.  The

organizer part (WORGZ) accepts the output data from PLACE , organizes it ,
and formats it for input to the router part (PROUTE). The router performs
printed circuit wire routing for two—sided or multilayer boards. The art-
work (or printer) part (MLPLOT) presents a printer plot of the routing.

The MOS Cell Layout Program (SCELL) is a general purpose cell layout
program for designing metal—oxide—silicon (MOS) cells. Based on a library
of basic device configurations , defined for each new technology, it pro-
vides a rapid and accurate means of defining cell geometries ; that is , the
placement and interconnection of devices that form a cell. The SCELL pro-
gram is designed to interface with the MOS Circuit Transient Anal ysis
(MOSTRAN) program for a circuit transient analysis test of the cell layout.
The MOSTRAN progi.--~’ provides a simulation of circuit dynamic operations.
This program is an automated design tool for use in analyzing MOS transient
circuit performance and displays the output either as a list or as a plot
of current (I), voltage (V), or power (P).

The chip layout programs CONVRT, PRF , CHPCHP, and MCHPCK are used to
aid the design engineer in generating the data necessary for automated chip
fabrication , starting with a logic design and utilizing cell definitions in
the cell parameter library. The chip layout programs perform three primary
funct ions : conversion of input data (CONVRT), chip layout with automatic
p lacement (PRF) , chip layout with user placement ( CHPCHP) , and checking of
chip layout (MCMPCK).

The Microwave Network Ana lysis and Optimization Program (MAGNET)
allows computerized analysis and optimization of a large class of linear
microwave networks for gain , VSWR , phase linearity and noise figure. It is
capable of modeling any network that can be built from pairs of linear
two—ports. MAGNET is designed primarily for microwave networks; however ,
it may also be used for classical filter design , if suitable scaling Is
performed .

The Structural Analysis Program for Static and Dynamic Response of
Linear Systems ( SAP IV) is a computer program designed specifically for

xvi

T ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .- --



structura l analysis and has the capacity to analyze very large three—
dimensional systems. The systems to be analyzed may be composed of combi-
nations of a number of different structural elements such as three—
dimensional truss and beam elements , pipe and boundary elements , two and
three—dimensional solids, as well as plane stress and strain elements.

The Systems Improved Numerical Differencing Anal yz er (SINDA) is a
software system suited for solving lumped parameter representations of
physical problems governed by diffusion—type equations. The system con-
sists of two main pieces: (1) the preprocessor which accepts problems
written in the SINDA language and converts them to the FORTRAN language ,
and (2) the library which consists of a collection of commonly needed pre—
written FORTRAN subroutines.

The LIBBER program is a data base management program which is used for
the maintenance of all standard data libraries and archive files. It pro-
vides the basic capability to store and retrieve data in standard card
image format either as a stand—alone program , or as an integral part of
many of the programs at both the cell and chip levels of design.

xvii 

— .,-—‘ -~ -



SECTION 1
SYSTEM OVERVIEW

1.1 INTRODUCTION

The Compu te r Aided Design ( CAD ) Users Manuals are reference manuals.
They describe the details of format and functions of the computer programs
that aid electronic hardware design engineers in the design , manufacture ,
test , and documentation of digital printed circuit boards (PCB’s), hy brids
and integrated circuits. The purpose of this section is to provide an
overview which enables the users to understand the broad scope of the sys-
tem without becoming involved with the actual program details. Users that
require more detailed information on a specific topic should refer to the
appropriate section describing the program . Table 1 .1—1 is a listing of
the CAD programs which are described and the corresponding section con-
taining the detailed description.

TABLE 1.1.1 CAD Programs

SECTION PROGRAM PROGRAM FUNCTION

2.0 LIBBER Data Base Management

30 LOGIC 4 Logic Simulation and Fault Analysis

4.0 ASSIGN Element and Net List Generation

5.0 PCPRA Multilayer Board Chip Placement and Routing

6.0 SCELL/MOSTRAN Cell Layout and Transient Analysis

7.0 CONVRT/PRF/ IC Chip Layout
CHPCHP/MCHPCHK

8.~ MAGNET Microwave Network Analysis and Optimization

9.0 SAPIV Structural Analysis

10.0 SINDA Thermal Analysis

11.0 ASPEC Electronic Circuit Simulation

1

- -

~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~ ~~~~~~~~~~~



1.2 PROGRAM CAPABILITIES

The CAD system is a Set of programs available to the designer to simu-
late a logic design, link the logic design to a physical design, determine
the testability of the design, and generate layout information. These pro-
grams encompass a broad spectrum of software capability ranging from custom
LSI design at a cell level to a complete PCB layout. In addition, programs
are available for analyzing and optimizing microwave design and providing
thermal and structural analysis of any design. The interaction and gener-
alized capabilities of these programs are shown in Figure 1.2—1 and de-
scribed in the general functional descriptions that follow.

1.2.1 Printed Circuit Board Design

There are three programs in the CAD system which are used in the de-
sign of PCB’s. These are LOGIC 4, ASSIGN , and PCPRA. These programs per-
form four main functions which are:

a. Logic simulation,
b. Fault analysis,
c. ELEMENT and NET LIST generation ,
d. Printed Circuit Board Layout and routing.

1.2.1.1 Logic Simulation

The simulation program (LOGIC 4) is normally the first used. Inputs
to this program consist of a description of the logic design to be simu-
lated . This may be individual logic blocks such as gates or LSI chips and
includes an input sequence to exercise the circuit described. Outputs are
many useful lists of tables and a timing diagram so the designer can verify
that the circuit is performing as intended.

The simulation program can access a large library of LSI devices which
have been defined previously and are documented in system libraries. The
actual delays of the simulated devices do not automatically correspond to
the physical devices; therefore, it is necessary to check critical timing

paths in the design. The timing diagram represents a logic simulation in
such a way as to check pulse by pulse (semi—static) operations.

2

p. - —
~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ --~- w----. -— . .. 

~~~


DESIGN 1 _____________

~
DESIGN~~~

L~9NCEPT F54
r

ISTANOAROS I 1~
’
AD SOFTWARE

1LOGIC DESIGN 1 DATA FLOW

FUNCTIONAL~~MACROS

_ _ _ _ _ _

t~~B R A R I E S~~~L~~~~~~~J

_ _ _ _

FLOW

I_—1~ TIM IN~~l
~~OATA BASE

LOGIC

IMANAGEME4 -

I

1

LOGIC4 I) ~~ AMI SIMULATION

[
-

LIBBER _________

LcH,P
~~~~~~~

LOGIC Li
CON V~~~j )

_____________
SHIP DESIGN OR

________ 
DESIGN II

D~
E L L  

_ _ _ _  _ _ _ _

—
~‘1 P R F

________ 
CHPCHP y 

____________

I 

FICATION11

DATA BASE

MCHPCK IJ II i LIBBER
..JCELL TESTfl CHIP

IMOSTRA ~LU TEST

_________ ________ 
JMANAGEME 

~~ 

1

PLOTTER 1< II
~~~~~~~

NAL PI N

NT

ASSIGN~~ENL SIMULATIONI CHIP 1

IMANUFACTU RE I

ASSIGN I) LOGIC 4

1
~~
1 TEST 1

I I SEQUENCE

L~~~VERIFIcAT,ON I

_ _ _ _ _ _ _ _ _ _ _ _ _ JI 1 I S T R P N 1

I

THERM~~~f l ‘~~RUCTURAL ~~ANALYSIS U ANALV SIS~~~ .

~~ ___________________
SAP IV

___________fl~OLATION 1
SINDA

1OARD LAYOUT 11 I
DIAGNOSTICS

__________ PRINTED CIRCUIT
,J I B t ~~

, JI PCPRA Li
OVER

LMICROWAVE

1 LrF~~~
~~~I NETWORK 

[__________ LUTION

I DESIGN
.j_ MAGN~~~j~ 

OTTER 1

______________________ 
FINAL FINAL

IMANUFACTURINcJ~~~~1TESTI
OARO BOARD

Figure 1.2.1. CAD General Functional Block Diagram

3

_________ __________ ______________________________________ -

I .- 
~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
.- -- -

-~~
-

- .-. - . .~, ~. — _____________



1.2.1.2 Fault Analysis

The fault analysis optio n of the LOGIC 4 simulation program provides

fault verification and isolation information for use in automatic boa r d
testing . The verification option uses the input sequence from simulation
and the tagged ELEMENTS deck from ASSIGN to determine the percentage of
possible user specified faults on the board which can be detected at the
output connector. The user specifies the type of faults to simulate

(innuts and/or outputs stuck at one and/or zero). The isol’ation option
expands on these results to create a list of faults which can be isolated
to a user specified number of IC’s. If many fault conditions look the same
at the I/O connector , it is impossible to determine which of the possible
faults is occurring on the board. Therefore , the testability of the design
is enhanced by judicious test—point selection and an input sequence which
properly exercises the logic.

1.2.1.3 ELEMENT and NET LIST Generation

The ASSIGN program serves as the introduction and the link to the
physical design process. The program assembles the logical design informa-
tion , previously supplied to the simulation programs , into string—lists

(NET LISTS) for use in component interconnection on the board. The program
is capable of doing a random layout constrained only by the order in which
the data is arranged in the card deck. The ASSIGN program does not deter-
mine geometry; therefore , placement and routing information is dependent
upon the manual specifica tions of the designer.

The data—base necessary for ASSIGN consists of a library of physical
characteristics of the LSI being simulated. These parameters are used to
prepare the net lists , a dc loading table for all signa l names on the
board , a computer written parts list , and a table of unused logic and logic
that does not fit .

The ASSIGN program allows the user to punch cards or create disk files
of all output data which is used in other CAD programs. These outputs may
be:

4

- —‘ I~r~4 ’ r~.m*. ~. ~~~~ -.- .---.- ~~.- -~~~ - --- .

. 

. —~~~~-—~ —



a. A tagged ELEMENTS file which has the position for each element in
the tag f ie ld .

b. A string—list for board interconnection for use in the PCPRA
placement and organizer functions .

1.2.1.4 Printed Circuit Board Layout

The PCPRA program produces the physical layout da ta  fo r  t w o — s i d e d  or
multilayer printed circuit boards. This program consists of four parts
which are normall y run in sequence but  may be used i n d e p e n d e n t l y .  The
first part of PCPRA is the placement function (PLACE) which accepts the
BUCKET and STRING—LIST data f rom ASSIGN , TYPE—MODEL and MODEL d a t a  f r o m
LIBRARIES , and user input data then selects the placement of the component
modules to be used on the PCB. This program optimizes the placement of the
modules in order to minimize the total printed wire length and produces a
GEOMETRY DATA file formatted for input to the second phase.

The second phase (WORGZ) accepts the output data from PLACE and the
STRING—LIST data from ASSIGN , organizes the data and formats it for input
to the third phase. The output from WORGZ is a COVERFILE consisting of
GEOMETRY DATA reformatted into SHIP statements , and an EXTENDED NET LIST
which is computer ordered for routing.

The third phase (PROUTE) performs printed circuit wiring for two—sided
or multilayer boards. PROUTE accepts the COVERFILE from WORGZ and produces
a SOLUTION FILE which may be used by a plotter to produce the actual PCB.
This file may also be applied to the fourth phase of the program to produce
a computer printer plot.

The printer plot output from the last phase (HLPLOT) shows the place-
ment of all component modules and the interconnecting wiring for each layer

produced by PROUTE. MLPLOT will also accept the COVERFILE output from
WORGZ and produce a printer plot showing only the placement of the compo-
nent modules.

1.2.2 Custom LSI Design

The majority of PCB design performed by the users of the CAD programs
can be accomplished using standard TU logic ; however , the system also pro—
vides the capabilities to design custom LSI chips for an even broader spec—
trum of electronic equipment application.

5

T ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ w----- — --- _- -



1.2.2.1 The Basic Approach

The basic approach to custom LSI design is based on the cell, s y s t e m .
A cell is any arb i t ra ry  parti t ion of the design where primary emphasis Is
placed on circuit design. LSI chips are constructed of cells with primary
attention being given to logic design.

Standard Cells are families of circuits which are designed to meet the
requirements of a series of similar equipment . They are designed to ensure
that the circuits perform over a wide range of voltage , speed , temperature ,
and drive requirements. The two cell families implemented with the custom
LSI design program (dynamic two—phase silicon gate PMOS and static sing le—
guarded metal gate CMOS) are examples of standard cell families with the
additional advantage of being designed around industry standard design
rules.

Custom Cells are circuits which are designed to meet specific objec-
tives such as nigh performance , high volume production , or implementation
of a unique or unusual process. In this case , cells are designed for a
spec if ic chip where performance and size are optimized f o r  the p a r t i c u l a r
chip design . Usi ng custom cells , the design begins at the c i r c u i t  level ,
progressing through artwork generation largely under manua l control.

1.2.2.2 Cell or Circuit Level Design

The CELL program is a general—purpose cell layout program. Based on a
library of basic device configurations , defined for each new technology , it
provides a means of defining cell geometries. Design rules including width
and spacing, both for masks taken individually, and for other unique combi-
nations of masks taken together , are checked.

I n t e r c o n n e c t  nets are checked to ensure connectivity, to detect
shorts , and to identify extraneous material. During the net check, process
variables such as latent diffusion and mask misalignment are simulated ; and
electrical parameters , including actual device geometries , load capaci-
tances , and coupling capacitances , are calculated. These electrical param-

eters are used as input to the transient circuit analysis program , MOSTRAN ,
which provides a simulation of the dynamic operation of the circuit.

6

,—
_ —----- •

~~‘s 4 %?r. 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~1,~ ~~

The Cell level design aids may be used for either the Standard Cell ot
the Custom Cell approaches to LSI design. Limitations of design complexity
affixed to these programs are computer run time and core limiting factors .

The basic limitation in the CELL program is 35 levels of artwork, four
of which may be interconnect. Built—in models in the MOSTRAN program are
restricted to MOS , but models may be added by writing Fortran subroutines
to simulate other technologies.

The final output of the cell level system is a Ted ~logy Data Base to
be used in subsequent chip design. First , all input data to CELL and MOS—
TRAN is retained for future analysis or modification of any cell desi gn on
a mas ter design file. Second , the details of the geometries internal to
the cells are saved on a master geometry library. A third tile , the maste r
pa rameter l ibrary , contains the terminal charateristics of the c e l l s ; t h a t
is , all the in f o r m a t i o n neces sa ry f o r chip level p r o g r a m s to lay out ,
modif y , analyze , and check chip layouts. F i n a l l y , a f o u r t h f i l e , m a s t e r
MACRO l ib ra ry , contains MACRO or subroutine descri ptions , test sequence

generation , and fault analysis at the chip level.

1.2.2.3 Chi p or Logic Level Desi~~

Relying on the Technology Data Base , either for a standard cell family
or for a comp letely custom design using a custom cell famil y , a number of
programs are available to simulate , layout , and analyze LSI chip desi gns.
The system logic analysis program , LOGIC 4, is a general—purpose program
for the logic simulation and fault analysis of LSI systems . It is a hier-
archical , functional simulator capable of simulation or analysis at any
level of design from initial equipment specifica tion down to detailed
logic.

Once a designer is satisfied with the functional correctness of his
design and has assured himself that the design is testable , chip layout may
begin. For standard cell designs , the automatic layout program , PRF ,
places and wires his cells in accordance with the design rules for that
technology. The user has the option of using fully automatic placement ,
manual placement , or a combination of the two. Output from the PRF program
includes final placement , net loading , and detailed chip geometries , which
are all cataloged for that chip design under the Equipment Data Base.

7

- --__-,,
~~~~~~~y- 

~~ ~~~ - .



For a Custom Cell layout , a program called CHPCHP is provided for
sho rt—hand input of placement and r ou t i ng . This program may be used to
or iginate layouts of unique or unusual designs , or to al ter  or append lay-
outs generated by PRF. It also interfaces with the Equipment Data Base and
other related programs via the detailed chip geometries.

To ensure accuracy and comp lete conform ity to design ru les , a checking
program called MCHPCK is provided . Here , exhaustive net checks are per-
formed comparing the original LOGIC 4 definition of the chip against the
final chip geometries. The total LSI chip design capability is limited to
300 functional cells.

1.2.3 Microwave Network Design

The MAGNET program allows computerized analysis and optimization of a
large class of linear microwave networks for gain , VSWR , phase linearity
and noise figure. It is capable of modeling any network that can be built
from pairs of linear two ports. The program is used to minimize input
VSWR , outpui “SWR , phase deviation from linearity, noise figure , and gain
error , in any combination , for a network in a 50—ohm system. MAGNET is
designed primarily for microwave networks; however , it may also be used for
classical filter design if suitable scaling is performed. The MAGNET
program is used primarily for design of linear two port microstrip; how-
ever , it may also be used in stripline and lumped element design.

1.2.4 Structural Analysis

SAP IV is a computer program designed specificall y for structural
analysis and has the capacity to analyze very large three—dimensional sys-
tems. It has available a new variable—number—nodes thick shell and three—
dimensional element , and out—of—core direct integration for time history
analysis. The structural systems to be analyzed may be composed of com-
binations of a number of different structural elements. The program
presently contains the following types:

a. Three—dimensional truss element ,
b. Three—dimensional beam element ,
c. Plane stress and plane strain element ,
d. Two—dimensional axisyminetric solid ,
e. Three—dimensional solid ,
f Variable—number—nodes thick shell and three—dimensional element ,

8

~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~ ~~~~ ~~~~~~~~~~~~~~~~~~ .,- n.- - — ~~~ - - -.. .. - - -— ---. - - - —



g. Thin plate or thin shell element ,
h. Boundary element ,
i. Pipe element (tangent and bend).

These structural elements can be used in a static or dynamic analysis and
are carried out in the same manner. The static analysis is continued by
solving the equations of equilibrium followed by the computation of element
stresses. In a dynamic analysis the choice is between:

a. Frequency calculations only,

b. Frequency calculations followed by response history analysis ,
c. Frequency calculations followed by response spectrum anal ysis ,
d. Response history analysis by direct integration.

1.2.5 Thermal Analysis

SINDA , the Systems Improved Numerical Differencing Analyzer , is a
software system suited for solving lumped parameter representations of
physical problems governed by diffusion—type equations. The system con-
sists of two main pieces: (1) the preprocessor , and (2) the library. The
SINDA preprocessor is a program which accepts problems written in the SINDA
language and converts them to the FORTRAN language. The SINDA library con-
sists of many pre—written FORTRAN sub—routines which perform a large
variety of commonly needed actions and which reduce the programming effort
which might have been required to solve a given problem.

One of the most outstanding features of SINDA is that it accepts
“program—like” logic statements and subroutine calls as data which , ulti-
mately, permit the user to tailor the program to suit his particular prob—
1 em.

1.2.6 Data Base Management

The overall system relies heavily on installation dependent software
for  many functions relating to the creation and maintenance of f i l e  struc-
tures , bulk movement and manipula tion of data , and for on—line ed i t i ng  and
program execution. Use of these functions requires a reasonable familiar-
ity with the computer system being used and wil l  not be t r ea t ed  in de t a i l
here.

9

T ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ ~

-. 

~ ‘li T T ~~~



The LIBBER program is a machine independent data base management
program which is used for the maintenance of all standard data libraries
and archive files. It provides the basic capability to store and retrieve
data in standard card image format either as a stand—alone program , or as
an integral part of many of the programs at both the cell and chip levels
of design. All on—line data storage is maintained in packed form to opti-
mize the use of disk space. Off—line storage is expanded to standard 80—

- 

column card images for permanent storage or for intermachine transfer.

1.3 FILE MANAGEMENT

The CAD system programs perform several interrelated tasks and require
frequent interaction for the complete process. It is essential; therefore,
that the user have a complete list of the unit numbers and files associated
with each program.

1.3.1 File Assignments

To access any of the AFAL CAD programs the user must first use the re-
quired system commands to initiate system operation, after which each pro-
gram must be accessed by the appropriate program select command . When a
program is accessed the system responds with a request for file assignment

(UNIT , FILE?) at which t ime the user en ters  the a p p r o p r i a t e  commands to
reference all files accessed by the program for input data of files created
to store output data.

1.3.2 Command Characteristics

One or more files may be assigned by the user; however the END field
is used only af ter  the last fi le assignment is made . If the optiona l END
f ie ld  is not used on the last assignment , an END must appea r as the nex t

input . If UNIT 5 is assigned , it must be the last unit number assigned in
a ser ies of assignments as the system will then expect all following inputs
to be on logical UNIT 5. In addition , the END statement must appear in the
appropriate field on the data entry for UNIT 5 assi gnments  o therwise  the
program wil l  not terminate the f i le  assignment mode.

When a program is initiated , it uses UNIT 5 fo r  the input  f i l e  and
UNIT 6 for the output f i le.  Af ter  each file assignment terminated by the
DONE and carriage return , the system responds with another request for f i le

10

VP, - -
~~~ ,• I. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~
— -

~~
- . — - * -~~ - —~~~~~~ —-- - - -



F
assignment . By r ea s s ign ing  UNIT 6 al l  program o u t p u t s  are put on the
assigned disk fi le.  The user must therefore enter the next f i le assignment
without any additional prompting.

The user must define all input f i les he will require during tha t ses-
sion. In addition , the user should define all output files r equ i r ed .
Assignment of output files are not required ; howeve r , if not assigned the
system creates a FORT RAN f i le  name that stay be destroyed by any other  pro—
gram.

Upon comp letion of a program run , the program releases all file
assignments and returns to the monitor mode. Un i t s  5 and 6 are then re-
turned to their normal input/output peripherals. The system then prints
any remaining user information on UNIT 6.

11

~~~~~~~~~~~~~~~ ~
- -~“~~~ ... • -~~~~- .*.. _

~
- ‘- -

- -~~~ ~~~~~ — ___
~~~~~~~~~~~ ;

__-  - 
-

fr - I~~~~~~~~~~~~ PP ~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ - - — 

- — - - - .-—--- — -.- —- - - - S - -



SECTION 2
DATA BASE MANAGEMENT PROGRAM—LIBBER

2.1 INTRODUCTION

The programs contained in the CAD system requires frequent interaction
for a complete circuit design; therefore , it is essent ia l that a data base
be established that can be called upon for many applications. The LIBBER
program provides for this data base. Figure 2.1—1 dep icts the functional
relation between the LIBBER program and the remaining CAD programs. This
section provides sufficient information to describe the purpose and capa-
bilities of LIBBER and a general description of the various command s and
options available for use. Users need have no programming experience to
use the LIBBER program although some background is helpful.

2.2 PROGRAM PURPOSE

The LIBBER program is used to perform such convent ional  main tenance
tasks as addition , deletion , or modification of subfiles used with other
programs in the AFAL—CAD system. The program also allows control over the
use of the data on any CAD system file. The program provides aids for the
associated CAD system programs , such as displaying data—category and card—
image heading to assist in coding input categories.

2.3 PROGRAM GENERAL DESCRIPTION

The LIBBER program is a machine independent , data—base management pro-
gram that uses random access reads and ~tites to build a LIBBER file and
may be run in either the interactive or batch mode. Data is stored in
LIBBER f i les in a packed format to make maximum use of disk space. The
data stored on the file can be restored to 80—column ca rd—image forma t for
use by other CAD programs or intermachine transfer.

The LIBBER program is capable of saving the data base information on
backup tape as off—line storage . The program is used p r i m a r i l y  for  cre-
ating new subfiles or manipulating existing subfiles as follows:

a. Creates new subfiles.
b. Edits exi8ting subfiles such as:

12

T 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~

-- -
~~~~~~~~~~~ 

- -
~~ 

----
~~~~

- • —-—---
~~~~~~~~~~~~~~~~~~~~~~



DESIGN DESIGN
[CONCEPT 1=1 ~ =1 NDARDS 1~~D SOFTWA RE~~

[LOGIC DESIGN I DATA FLOW
_________ SCHEMATIC 0

(LIB RARIEs(( FUNCTIONAL
‘.

~

SUBS ~~ FLOW

____________ 
I SF”- LOGIC TIMING

FDATA BASE JL I SIMULATION DIAGRAM
[MANAGEMENT~J’ 

_ _ _ _ _ _  

~ LOGIC 4

f : 1 CHIP~~~I I LOGIC 
_______[CONvRT

_______________ CHIP
________ 

DESIGN

ii PRF

(~~~~LL (1 I I  CHIP DESIGN OR

~‘l DESIGN It 1J~ MODIFICATION - 

_ -~-~ ~~~~~~~~~~~~~~~~~ LSCELL V CHPCHP 1 L

_ _ _ _ _ _  ~ ~~~~~~~~~~~~~~~~~~~~~~~ 

~
j ~JL

_____________ 
(~~~NAL PIN ~IFAULT

CHIP 1 I ASSIGNMENT I SIMULATION
MANUFACTURE I .-~I. ASSIGN LL2~IC4

_ _ _ _ _ _  _ _ _ _ _ _ _  

_ _ _ _ _  SEQUENCE

L~~~~~ 
r~~~~

T
~~

A
~~~ 111 ~~~~~S 

_ _ _ _ _

¶1 4PRINTED C~~

CQ,

~~

J

-A II II

SOLUTION
MICROWAVELLJ I _I I_ FILE
NETWORK If~~ V

MAGNET I PLOTTER]

IFINAL FINA~~~

~~~ BOARO BOARD
IMANUFAC TURIN G TEST

Figure 2.1-1. CAD Functional Block Diagram Emphasizing the LIBBER Program

13

- 
- 
- . - . .  

_ 
. 

_ 
. — —  —- ~~~~~~~~~~~ -~ -~~~‘- -

_ _  

- -



(1) append additional data,
(2) performs line editing.

c. Deletes subfiles no longer required.
d. Provides listing of subfiles.
e. Transfers subfiles from the main library file to files

accessible by other CAD programs .
f. Combines two separate libraries.
g. Saves libraries on backup storage .
h. Restores saved libraries to a new LIBBER type f i le .

The LIBBER f ile st ructure prov ides the ca pabilities for  st oring all
data categories as subfi les for all AFAL—CAD system p rog rams .  The naming
convention used for the subfiles allows for a u t o m a t i c a l l y  se lec t ing  only
the data categories required for a program. The LIBBER file structure also
allows a specified program to select various optional categories depending
on the sort keys associated with each subfile. That is , if more than one
subfile in the library has the same subfile name and family name , the
selecting program may select the appropriate subfile by matching the sort
keys (p rocess names).

2.4 PROGRAM OPERATION

The examples described in this section use data entries contained in a
secondary file which was c rea ted  using one of the sys tem t ex t  ed i t e r s .
After  this f i le  is created , the user may enter the LIBBER program and run
the examples described .

To run the LIBBER program the user must log in us ing the app rop r i a t e
system controls , create the required secondary file , then enter the program
select command . The system will then respond with a request for file

- assignment at which time the user inputs the appropriate command . After
f i l e  assignments are made , the system responds with a request for  a L IBBER
command , and the user may input the desired command . When the command has
been processed , a request for another command is made . The user may then
again input a request or terminate the program run by an END command.

2.4.1 Program Access

To access the LIBBER Program , the user must first use the required
system command s to initiate system operation (refer to DEC SYSTEM 10

14

- -

~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ :_
-

~~~~~~~ 
- -- -

~ 

—

~~~ 

-- - - -

~~~~~~~~~~~~~~



Operating System Command Manual DEC— 1O— O SCMA—A — D). A f t e r  the sys tem has
been initiated , the LIBBER program is accessed by a program select RUN
command .

2.4.2 LIBBER File Creating Commands

To create a new LIBBER f i le  two types of command s are r equ i red .  The
f i r s t  type establishes the fi le name and f i le  type of the LIBBER f i l e  and
the input file. The second type initializes the LIBBER file and sets up
the f i le  structure . These are both per fo rmed through use of the UNIT , FILE
command .

2.4.2.1 File Assignment

Two file assignment commands are used which provide the user access to
a library file to logical Unit 15 with a file name selected by the user and
enables the LIBBER program to access the secondary file. The name assigned
to the LIBBER file may be any legal operating system name and extension.
The command s also define the f i le  types.

All LIBBER commands manipu late the file on logical Unit 15 unless pre—
ceeded by a unit number change command . Therefore , when creating a LIBBER
f i l e  the unit number specified should always be Unit 15. In add i t ion , all
LIBBER f i les are RANDOM access and should be specified as such by the file
type input.

2.4.2.2 File Initialization

The file assignment commands are followed by an initialization command
that determines the f i l e  size and structure by allocating a specified
amount of f i le  space for the Library.  Initiali ...ation is pe r fo rmed  by use
of the NEW command.

24.2.3 Subfile Creation

The ADD command creates new subfiles on the master  f i l e , initia lized
by the NEW command . The subfiles are created f rom data  conta ined  in the
secondary file. Files may also be created from data suppl ied  by the user
immediately following the command input .

15

—~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~ 
,— -w- - - —- - —~~~~ 

- 
~~~~~~~~ ~~~~~~~


2.4.2.4 File Monitoring Commands

The LI BBER program provides two file monitoring type commands (TOC and
LST) that enable the user to obtain a printout of the master file table of
contents or a listing of an Individual subfile. The line numbers are pro-
gram generated during the LST process and are not part of the actual sub—
file. These may be used for editing purposes using the LIBBER edit func—
t ion.

2.4.3 LIBBER Exit Command

To exit the LIBBER program the user must input an END command when the
program is expecting a LIBBER type command . This terminates the LIBBER
program execution at which time the user may enter another CAD program ,
perform system operations , or log off the system.

2.5 LIBBER COMMAND DESCRIPTIONS

The following sections provide a general description of the LIBBER
program functions by documenting the use and capability of each LIBBER
command.

2.5.1 RUN LIBBER Command Description

The RUN LIBBER command is the program select command that accesses the
L~ BBER program and allows the user to perform the various functions
allowed .

2.5.2 File Assignment Command Description

The UNIT , FILE command defines which f i l e s and assoc ia ted u n i t s are
assigned or accessed by a p a r t i c u l a r LIBBE R program run. Each command
specifies the unit number , f i le name , and fi le type for each assignment .

The user must define all input files he will require during that ses-
sion. In add i t ion , the user should de f ine a l l ou tpu t f i l e s requ i red .
Assignment of output files is not required ; however , if not assigned the
system creates a FORTRAN f i le name that may be destroyed by any other pro-
gram. For example , if the user outputs to UNIT 23 the file created will be
F0R23.DAT and any other user that writes on UNIT 23 will destroy the previ-
ously created file. Possible needs for file assignments are:

- 16

~~~~ 

- 
-



a. LIBBER Files (Random access only).
b. Input f i les.
c. Output  f i les .
d. SAVE f i les ( read/wri te) .
e. Restore f i les .
f .  Files to be merged.

The program defau l t  units  for files not assigned are :

a. Unit 15 (LIBBER f i l es ) .
b. Unit  5 Input .
c. Unit 6 Output.

2.5.3 HEL Command Description

The HEL (Help) command is provided only as an aid for the inexperi-
enced user. This command provides a listing of all the LIBBER commands
available.

2.5.4 TTY Command Description

The TTY command , used only in the interactive mode , cau ses the progr am
to eliminate echoing reprints of opera tor  supp lied inpu t s .  The d e f a u l t
mode of the LIBBER program is to reprint each input command prior to execu-
tion of that command. In addition , the system prints all card image inputs
to the program. For example, when the ADD command is used to create LIBBER
subfi les from a secondary f i le , each input card image of the subfile is
printed on the terminal. The TTY command eliminates this print out , there-
by, speeding up terminal interaction.

2.5.5 TOC

The TOC (Table of Con tents) command prints out a complete list of all
subfi les , the position of each subfile on the master file unit , and date
and time of each subfile creation . The p r i n t o u t  gives a summary of the
master file unit configuration , numbe r of data blocks, size of data blocks
and number of words per table of contents entry.

The LIBBER f i les are in packed format and the system has 36 b i t s  per
word with seven bits per character. Therefore , the LIBBER f i l e s  conta in

17

~~~::-,~~ ~~~~~~~~~~ 
- _

- - -

-

T_~~
-

-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~

—

~~

-— ---
~~~~~~~~ ~~~~~


f ive characters per word in the packed form. The TOC print Out lists the

block number containing the subf tie , the f i rs t word number of the s u b f il e ,
and the number of characters in each subfile.

The DATE TIME reading on the TOC is the creation date t ime record for
the subf lie . This may be the original creation record or the update record
if a RES funct ion is performed .

2.5.6 NEW Command Description

The NEW command is used to initialize a newly created LIBBER file
allocating a specific amount of disk space for the master file. This must
be t he f i r s t LIBBER command following the file assignment command s when a
new file is to be created.

Default allocation creates 7 data blocks, 1024 words per block , and 14
words per TOC entry in the TOC block. If defaults are not acceptable , the
NEW command should be specified with a Start block and End block operand .

The Sta rt block for a new LIBRER f i le should always be one . The END
block is the total number of blocks desired for that file.

Additional data blocks can be appended to a previously established
L IBBER f i le by specifying the S t a r t block as one less than the e x i s t i n g
number of data blocks in the master f i le . The Ending block wou ld then be
specified as the new total number of blocks desired after NEW is complete.

The EXTENDA BLE NEW command is used to append additional data blocks to
the last unused (empty) data block of an existing f i l e . This command can
not be used on files tha t do not have an empty data b lock. To add data
blocks in this case the SAV command and RES command should be used.

2.5.7 ADD Command Description

The ADD command creates new subfiles on a master library file from
data supplied by the user immediately after the ADD , or f rom a per iphera l
unit specified by the ADD. The LIBBER program classifies the subf t ie as a
device or as a data category dependent upon the f i rs t data i n p u t . Naming
of the subfile is dependent upon its classification.

18

~~~~~~~~

- ‘.-- - - - ,

~~~

-

~~~~

----..- ., -

S - 

_
~~

“_
~ v~~ 

—



The program provides the capability of creating mult iple data catego ry
subfiles with a single ADD command. However, multiple subf tie creation is
not possible fo r categories that are classified as devices. An ADD command
mus t be provided for each device subfile added from e i ther  the user peri-
pheral or the storage peripheral. In addition , if a device data record

follows multip le data categor ies on a file , the ADD f unction is t e rmina ted
by the data record and the device is not added to the master file .

2.5.8 APP Command Description

The APP (Append) command appends data supplied by the user to existing
subfi les  on the master f i le  immediately a f te r  the APP , or from a peripheral
unit specified by the APP .

Command forma t of the APP command is similar to tha t  of the ADD corn—
mand . Ope rand s of the APP cori’mand must correspond exactly to those estab-
lished by the ADD command . The TOC command may be used to obtain a list of
the subfile s contained in a master f i l e .

2.5.9 DEL Command Description

The DEL (Delete) command deletes speci f ied  s u b f i l e s  f rom the mas te r
f i l e .  The DEL command operands mus t  cor respond exac t l y t o those estab-
lished by the ADD command . The TOC command may be used to obtain a list of
the subfiles contained in a master file.

25.10 1ST Command Description

The LST (List) command produces a listing , with appended line numbers ,
of a specified subfile contained in a master  f i le .  This command provides
the user with a list of the subfile t itle , date and t ime of creation , and a
ca rd—image listing of the subfile . Line numbers  are a l so  a f f i x e d  to the
list that can be used for the EDT funct ion.  The LST command operand s must
corr espond exact ly to those est ablished by the ADD c ommand.

25.11 GET Command Description

The GET command produces a card—image listing of a subf tie on a pen —
pheral storage unit. This command provides the user with a file for
editing purposes or for input to any other AFAL—CAD programs. Subf ties may

19

p - 
~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- -

-

be assigned sequen t ia l l y to a storage uni t by means of success ive GET
commands.

The GET command operand s must correspond exactly to those e s t a b l i s h e d
by the ADD command . The unit number and associated file name must be de-

fined by the file assignment command and there must be one GET command for

each subfile listed on the peripheral unit.

2.5.12 SAV Command Description

The SAV command saves a complete LIBBER file , subfile—by—subfile , on a
use r specified peripheral storage unit for backup storage or e d i t i n g on ly
and not for use with other programs. SAV offers the ability to obtain a
card image print out of the LIBBER file. The date and time record of each
subfile may also be optionally saved .

The SAV command creates one ADD type card—image command for each sub—
file in the LIBBER file. The date/time record request also produces a one

word record , preceding each ADD , to save the subfile creation date and

t ime . Following the ADD card—image , are the data record s for each i tem in
the subfile.

2.5.13 RES Command Description

The RES command creates a LIBBER file from a card—image f i le contained
on a peripheral storage unit. This function is normally used with a file

produced by the SAV funct ion . However , any f i le containing the appropriate
ADD t ype card—images and date/ t ime records may be restored .

I f a f i le is saved without the optional date/t ime record , the resto r e
must be performed without the record . If however , the f i l e is saved wi th
the date/t i me option , the restore may be performed wi th the record but is
not required. When the option is used , the da t e and t ime of the s u b f i l e
creation is restored with each s u b f i l e. If the op t ion is not used , the

date and time of restore is attached to each subfile.

The RES command creates a NEW type comma nd to initialize a new LIBBER
f i le . The library size is determined by the start block , end block , words!
block , and words/b C parameters specified by the RES command . This enables
the SAV and RES commands to be used to extend the size of an ex is t ing
LIBBER f i le when all data blocks contain data and the extendable NEW cannot
be used.

20

p. -
~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- - - .  —_ ,~4~;&~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~. ~~~. 
- - - -



If the restore is performed on the library unit (Unit 15), only  the
RES command is required. If the restore is performed on another un it , the

RES command must be preceded by a UNT command . In addition , the file name

associated with this unit must be defined by the file assignment command .

25.14 MRG Command Description

The MRG (Merge) command creates a new LIBBER file from two existing

LIBBER files stored on separate peripheral units. The new file is written

on a third unit on a subfile—by—subfile basis.

The merge function is performed on a subfile—b y—subfile basis. If

duplicate subfile names are encountered , an automatic delete is performed

on the subfile with the earliest date/time record. The most recent subfile

is entered on the merged file unit.

2.5.15 EDT Command Description

The EDT (Edit) command allows basic line editing functions of the sub-

files contained in a master file. The program performs the functic-~is

specified by the text—editing input immediately following the EDT comma-id.

The EDT command functions to delete text , insert new text , or a combi—
na t1~ n of both. The functions are performed on a complete subfile record

rather than on individual characters. The text—editing inputs reference

the line numbers appended to the card—images by the LST command .

The text editing mode is terminated by an END command , thus a l l o w i n g
mul tiple text—editing functions. Because the END terminates the EDT func-

tion , add ition of an END is not allowed.

An additional feature of the text—edit function is the ( =)  command .

This is used when data is added to a subfile whose first non—blank charac-

ter is a minus sign , such as —12v. The program would normally interpret

the —12v as an update command to insert new data after line 12. The ( )

command allows the update character (—) to be changed to any other charac-
ter. After this command the update character is that specified and

remains the new character until changed back by another occurrance of the
( =) .

21

—‘ 

‘-: 
~~~~~~~~~~~ 

-
~~

- --— -

~~~~

——--- - - - -



Multiple updates made to a subfile must be made in ascending line num-

ber order. For examp le , the user could not delete line 19 and later insert
data a f t e r  line 6. The program performs diagnostic verification on the

text—editing functions and restores the non—edited subfile if an error is
made . These errors may be updates made out of order , updates made beyond
the subfile limits , or updates terminated without an END command.

25.16 REN Command Description

The REN (Rename) function allows an existing subfile to be renamed by
a second input containing a new subfile and/or family, process , and pass-
word names. The REN function only changes the subfile names and has no
effec t on the data contained in the subfile.

2. 5.17 UNT Command Description

The UNT (Unit) command changes the library unit number (Unit 15) on a

one time basis. That is, this command only applies to the LIBBER command

immediately following the liNT in put , and each subsequent LIBBER command
references the original unit.

2.5.18 REW Command Description

The REW (Rewind) command rewinds a user specified log ical unit (tape

or disk). For example , the REW command may be used prior to a RES command
to reposition the peripheral that contains the saved f i le.

2.5.19 PRT Command Description

The PRT (P r int)  command specifies a p a r t i c u l a r  un i t  to be the p r in t
unit for all LIBBER outputs. When used all outputs produced are printed on

the unit specified.

2.5.20 Card Headers

The card header options are special features of the LIBBER program
that  are used in the interactive mode.  These command s provide the user
with grid images of the card fields used in the associated CAD program data
categories. The commands and a brief description are listed in table

2 • 5 .20—1.

22

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - - -

- — S

TABLE 2.5.20-1 Card Holder Options

COMMAND USE

$ARR PCPRA Arra y category.

$BOA PCPRA Board category.

$CAR ASSI GN Card Description.

$DIS PCPRA Description category.

$ELE LOGIC $, ASSIGN , OR CONVERT
Element description category.

$LOC PCPRA Loca l category.

$NET PCPRA Net List category .

$PLA PCPRA Place category.

$PRF Placemen t Rou ter Function PRF
input categories.

$XTR PCPRA External Connectors.

$(SM PCPRA SMIP category.

23

I
- -.~-~._p ,rr, - —--.~~-- — - - - - -

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

— -
~~~

—u,. -
~~~~~~~ 

lIP ~~~~~~ W~~W~~~
-# 

~~~~~ w.- - - - - - _ 
—p . - -

SECTION 3
LOGIC SIMULATION AND FAULT ANALYSIS PROGRAM—LOGIC 4

3.1 INTRODUCTION AND GENERAL DESCRIPTION

LOGIC 4 is a Computer Aided Design (CAD) logic circuit analysis pro-
gram to be used for circuit simulation , fault detection , isolation , and
verification. The program is written in a high level language and does not
require previous programming experience for use. By use of full event—
oriented simulation , LOGIC 4 allows verification of basic circuit concepts ,
fundamental machine structure , and potential interface and timing problems .
The ability to simulate all or part of an equipment at any level of ref m e —
ment builds confidence in the ultimate correctness of the final product.
Figure 3.1—1 depicts the functional relation between the LOGIC 4 program
and the remaining CAD programs.

The LOGIC 4 program provides logic simulation and fault analysis func-
tions by means of three basic functions. These functions are:

a. Stimulus/Response Simulation
b. Test Stimulus Completeness Verification
c. Fault Isolation

A basic concept imbedded in LOGIC 4 is a hierarchical simulation
technique which assimilates many levels of complexity within one automation
system. The LOGIC 4 system is based on entities called logic blocks . A
logic block is a functional model representing an arbitrary portion of an
equipment . Logic blocks may be defined to represent any convenient parti-
tion including analog circuitry, logic circuitry, memory, or even software.
Logic blocks may be expanded into more refined functional operations , such
as more detailed logic blocks , or eventually into models for basic gates of
which an equipment is to be constructed if time and core requ i rements are
not too severe .

Logic analysis may be performed at any level. The system may be simu-
lated as a collection of logic biocks , with one or more of the blocks
expanded , or by comparing any logic block aga ins t its expansion. The

24

~~~ _ _ _ _  i’~~

_

~~~~ 
-

~~~~~~~~~~~~~~~~~~~~~~

--



DESIGN DESIGN
1CONCEPT 1 9J  

f

4 STANDARDS J f~ 4LO SOFTWARE

~ttOGIC DESIGN 1 DATA FLOW
__________ SCHEMATIC

(LIBRARIES(’( FUNCTIONAL
\~ sues \) FLOW

____________ 
LOGIC TIMING

IM~Lt
frf]T} 

~~~~
4

~~~~~~~~~
SI I!N

________ 
DESIGN

Ii 
PRF

(CELL (1 ~I.SI1
U
CHIP DESIGN OR

~ DESIGN ~ ~I MOD IFICATIONLSCELL V I I CHPCHP 
____________

* I II DATA BASE

__________ ___________ LIBBERJJ [~ ~
) MANAGEMENT

...JCELL TESTIJ CHIP
I MOSTRAN [~ TEST

MCHPCK

PLOTTER

~~Z~UFACYURE k 
~~~LENC E I

1~
?L
~ 11 (‘ RUCTURAI

~~

[~3~J

_ _

I

~~NTW C~~C

QJ

5

~~~cs

II II 
[ 

FILE

__________ II II 
_____ 

SOLUTION
.4MICROWAV EIL.JI FILE
INETWORK It~~ V

- -‘1M~GNET Ii [PLOTTER

__________________ 

IFINAL FINAr1
~~BOARD BOARD
~~ANUFACTURING TEST

Figure 3.1-1. CAD Functional Block Diagram Emphasizing the LOGIC 4 Program

25

—I----—- ~~~~~ 

‘
~~~~ ~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~ - ‘~~ - - - -

~~

_. .~~~~ -~~~ -

accuracy of the simulation is main ta ined through au tomat ic hand l ing of
funct ional interfaces and through automated aids for comparing f unc t i ona l
definitions across levels of modeling .

Fault detection analysis may also be per formed at the var ious hier-
archical levels if desired. At the basic gate level, the classic stuck—at-
one, stuck—at—zero faults are simulated ; however, at the functional level ,
the designer now has the ability to simulate any type of “functional” fau l t
which may occur in the circuitry. For example , NAND gates which are func-
tioning as AND gates, flip—flops which malfunction and pass the clock sig-
nal directly to the output line , or discrete components which fa i l in an
analog circuit causing variation in the expected o u t p u t vo l t age . At the
printed circuit board level , all functional i n t e r f a c e s are ma in t a ined so
that faul t isolation to any number of discrete modules may be performed .

At the lowest level of sophistication , the LOGIC 4 program is a three—
state bit simulator which uses predefined logic elements to simulate basic
operat ions such as NOR , AND , f l i p — f l o p s , delay lines , or one shots . A
powe r ful MACRO capabil ity exists which enables a user to combine primiti v e
functions to simulate more complex logic . Once defined , MACROS may be used
l ike any other pr imit ive func t i on . A l t e r n a t i v ely , a FORTRAN— l ike sub-
routine may be written to describe the function of an arbitrary block of
logic. These FORTRAN subroutines (SUBS) are written in terms of the
calling a rguments and are precomp iled to i n t e r f a c e w i t h i n t e rna l data
structures and to provide re—entrant c a p a b i l i t y . Again , the SUBS , once
defined , may be used like any other p r i m i t i v e . Arguments (i npu t s and
outputs) of SUBS or MACROS may be single bits , words of a r b i t r a r y length ,
or bits within words, effectively providing a register transfer capability.
In addition to the basic unit delay c a p a b i l i t y of bit s imu la t ion , SU BS
provide the capab i l i t y of sensing signal t r ansac t ions and s c h e d u l i n g
arbitrary events in the manner of a conventional event—oriented simulator.

All LOGIC 4 functions may be performed by use of a s ingle f i l e that
describes the circuit details, input signals, outputs to the sa mpled , and
the control options to be exercised . Numberous checks of the input data
a re automatical ly pe r fo rmed to aid the user in debugging the c i r c u i t
description.

26

- ---
‘

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~-, .  . 
p. 

~~~~~~~~~~~~~~ 

LOGIC 4 o f fe rs the following advantages:

a. Saves design development costs by f i nd ing design e r rors before
ha rdware is fabricated .

b. Provides documentation for the actual design.
c. Tabulates hardware requirements in the accounting statistics for

each type of element and the loading of each element .
d. Facilitates repair or replacement of hardware by isolating faults

to the desired component level.
e. Redundancies in the circuit design may become apparent to the de-

signer as the circuit is coded for program input.
f. Allows the designer to see many signals simultaneously on a timing

dia gram output as opposed to the limited number of traces avail-
able on oscilloscopes .

g. The timing diagrams printed by the computer often show logic
spikes , which may not be apparent on oscilloscopes.

h. Top down design is possible through the functional model capa-
bility. Simulation is possible even though the hardware implemen-
tat ion has not been designed .

i. Subroutines allow the simulator to be technology independent .

The program can simulate systems containing “Block Boxes” specified by
their terminal behavior only through the use of FORTRAN sub rou t ines . As
the detailed design of these boxes becomes available , the subro utines can
be replaced by the actual element descriptions , thus allowing design veri-
fication in a controlled way and of successively finer levels of detail.

3.2 FUNCTIONAL DESCRIPTION

Before a design is committed to hardware , it can be analyzed to deter-
mine design validity. This is accomplished by simulating the c i rcu i t and
comparing the response to the expected response for a given input. The
design may be changed and res imula ted u n t i l the s imulated o u t p u t s agree
with the expected outputs. Later in the design process , the complet en ess
of a given test plan can be determined by means of the f a u l t s imula t ion
capability of LOGIC 4.

3.2.1 Major Functions

The major functions of LOGIC 4 are as follows:

27

- —
‘
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~ -,. ‘ :- — - - - — -



a. Stimulus/Response Simulation in which the program accepts a de-
scription of the logic circuit (ELEMENTS), the circuit input sig-
nal specifications (EXTERNALS), simulates the logic operation of
the circui t , and produces a timing diagram showing the state of
each samp led output ( OUTPUTS) at specified t imes .

b. Test Stimulus Completeness Verification in which the program com-
pares the specified outputs signal levels for a good circuit to
the same outputs for a faulted circuit to determine if there is a
d i f f e rence in the output . If a d i f fer ence is noted , a f a u l t  is
considered detected. This mode also checks the user test
sequences for completeness of verification.

c. Fault Isolation is the mode in which the actual circuit locations
of the fault are determined through the analysis of unique fault
signatures or signature sets for each fault detected .

3.2.2 Stimulus/Response Simulation

The purpose of this simulation function is to verify that a design is
performing properly prior to committing the design to hardware manufac-
turing. This verification process is accomplished by calculating the cir-
cuit outputs for a given set of circuit inputs. These calculated or simu-
lated outputs can be compared with the outputs desired by the designer. If
the desired results are not obtained , the circuit can be modified and re—
simulated until the desired outputs are obtained.

The circuit design is defined in terms of logic elements whose inputs
and output signals have three possible states : logic 0, logic 1 , or don ’t
know (X). The program calculates the outputs for each building block ele-
ment for any set of inputs. The simulator functions by app lying a set of
circuit input signal values to the design as externals. The value of each
input signal is compared with the previous value of that signal. Any sig-
nal whose value has changed is put on a list. Then all elements which are
fed by signals on the list are simulated and the output signal values of
those elements are compared to their previous values. Any signals which
have changed are put on a new list. Then all elements fed by the new
entries are simulated. This process continues until no element outputs
change or until the number of such repetitions exceed a user supp lied
threshold. After the threshold is reached , all signals which are still
trying to change are set to the Don’t Know state (X). This can result from
actual circuit oscillation or because the threshold was too low. When the
simulation process does terminate for a given input , the resulting signals

28

p. —t -
. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ -- -



on all the elements are used as the initial conditions for the next set of
input values applied . The sequence of element calculations may be tho ug ht
of as a “wave front ” emanating from the inputs which change . All e lements
in a particular wave are considered to change state at the same i n s t a n t  of
t ime. Adjacent wave f ronts  are one unit of time apart ( one gate t ime).

3.2.3 Test Stimulus Completeness Verification

The LOGIC 4 program simulates fault s withi n a logic design by changing
signal interconnections according to the type of f a u l t .  An open input  to
an AND gate is simulated by reconnect ing that  input  to logical one . An
element output stuck faul t is s imu lated by alter ing the descr iption for the
element so that the output signal always remains at the s tuck value . The
circuit , altered for a p a r t i c u l a r  f a u l t , is then pr oces sed in the same
manner as a fault free circuit. The only additional action that takes
place is the comparison of outputs with those of the fault free circuit and
cataloging of the fault signatures.

This function verifies the completeness of the test sequence to ensure
that faults in the logic design can be detected at the circuit outputs.
Faults are defined as element input or output signals stuck at a logic zero
or logic one. In this mode , the program s imula tes  the c i r cu i t  as if the
requested faul ts  were present . Fau l t s  are considered detected when the
output for a faulty circuit differ from that of a fault free circuit. The
user can select the signal s or signal classes to be fau l ted acco rding to
e leme nt inputs , elemen t ou tpu ts , e x t e r n a l s , sign als in te rn al to com plex
dev ices , or individual signal names.

3.2.4 Fault Isolation

The Fault  Isolation mode determines the actua l locat ion of the f a u l t
- in  reference to individual  e lements .  This f u n c t i o n  is used to produce
specific d iagnos t i c  or hardware  locat ion i n f o r m a t i o n  for  the detected
fau l t s .  This provides the user with  the means to f u r t h e r  eva lua te  test
sequence and the selection of test points. This is impor tan t  since elec-
trical circuits are typically composed of replaceable modules and fault
isolation ma~r be specified in terms of the number of replaceable  modules
indicated by a given faul ty  ou tput .  LOGIC 4 handles  this  problem auto—
matical ly by analyzing the data produced du r ing  f a u l t  s imu l a t i o n .  The
number of modules is defined by the user. For each fault signature , at
each coarse time , the program compares the number of rep laceable  modules

29

~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-

~~~~~~~~~~~

-

~~~~ 

— - --- - - 
—



conta in ing  the f a u l t s  wi th  the i sola t ion c r i t e r i a .  I so la t ion  can be
accomplished if the number is less than or equal to the c r i te r ion .  If
comparison is greater than the c r i t e r ion , simula t ion  of these f a u l t s  is
continued .

3.2.5 Program Timing

The functions performed by the LOGIC 4 program operate in re la t ion  to
simulation time . Effect ive use of LOGIC 4 depend s on a clear understanding
of how t ime is handled within the program. The following paragraphs define
the basic unit of simulation time and the various mul t ip les  of this u n i t .
The basic time units used in LOGIC 4 are :

Ia. Gate Time
b. Coarse Time
c. Gates/Coarse Time
d. External Time
e. Outp ut Time
f .  St robe Time .

3.2.5. 1 Gate Time

The basic task involved in logic simula t ion  is the ca lcu la t ion  of
changes in an elements output signal value whenever a change occurs in the
elements input signal value . The t ime required for the elements output  to
reflect  the change at its input , that is the t ime required for a signal to
propagate through one element , is called a gate t ime . This is the basic
unit of t ime in LOGIC 4.

3.2.5.2 Coarse Time

A second level of time measurement in the LOGI C 4 program is COARSE
TIME . This is a user defined multiple of GATE TIME and is usual l y deter-
mined by the number of gate times required to simulate the flow of a signal

- from a circuit input to the circuit output .

3.2.5.3 Gates/Coarse-Ti me

The GATES/COARSE—TIME statement defines - the user determined coarse
t ime to the program in terms of a ratio between gate t ime and coarse t ime .
This t ime unit enables the program to determine circuit oscillation. - Th is

30 .

T ~~~~~~~~~~~~~~~~~~~~~ 
- - -— —— -  - - -



is done by examining all elements fed by a set of user def ined ex te rna l s
and simulating those elements. The program calculates the element ou tpu t s
and if their outputs are not changed s imu la t ion  is terminated  for  tha t
coarse time . If some of these outputs did change , the program s imula tes
the elements driven by the changed outputs and the process is repeated . If
all signals have not settled within the defined GATES/COARSE—TIME , the pro-
gram assumes circuit oscillation and the signals that are still changing
are set to the don ’t know state.

3.2.5.4 External Time

The Externa l time is that time at which the input  ex te rna l s  are ap-
p lied to the circuit design. This time is specified by the user as the
start time on the external input statements.

3.2.5.5 Output Time

Each signal listed in the OUTPUTS category and/or desired signal
classes specified by the SAMPLE option is sampled at the output  time and
reflected on the program timing diagram for  each coarse time s imulated .
This is usually the last gate time in each coa rse time ; howe v e r , the u se r
has the option of specif ying the output t ime for his design by the SAMPLE
statement in the CONTROL category.

3.2.5.6 Strobe Time

The Strobe t ime is the t ime at which the c i rcu i t  measurable  ou tpu t s
are tested for fault  analysis and/or the Quick Test (QT) option.

3.2.5.7 Normal Simulation

The normal simulation function is performed by applying a c i r cu i t  in-
put signal or a set of input signals (EXTERNALS) to the logic design then
simulating and analyzing the operation of each element which has an input
influenced by the applied externals (gate time one) .  Each element  whose
output is changed as a result of this input is applied to the next element
in-the logic structure. Those elements driven by this  output  are then
simulated and their output analyzed (ga te  t ime t w o ) .  This process con—
tinues until no more signals change value . If this  process exceeds the
specified number of GATES/COARSE—TIME oscillation is assumed and all  sub—
sequent signals are set to the DON ’T KNOW state. If the ef fect ends before

31

~~~~ 
~~~~~‘ 

~4~~’-~~~ ’ ~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~ 
w--.-~~- - _____-. ---

~~~~~~~~~~~



the specified GATES/COARSE—TIME is reached, the simulation function termi-
nates for that coarse time. The program then skips ahead to (SAT) the next
gate time when an external is applied and starts a second simulation func-
tion for the next coarse time . This process cont inues  for  the number of
s tr obe times specified by the user. Therefore , for good simu lation it is
important that the user analyze his design prior to simulation and specif y
specify a sufficient number of GATES/COARSE—TIME to prevent the program
from assuming oscillation when signal changes will settle. This should in-
clude all possible feedback loop effects.

3.2.5.8 Fault Simulation

Whe n Fault Simulation is requested by the user , the program first per-
forms normal simulation for one coarse time and saves the measurable out—
puts at the specified st robe time . The program then resets all signals and
memory values and returns to the f i r s t  gate t ime in that  coarse t ime and
inserts the first specified fault condition. The program performs simula-
tion at each gate time as described for normal simulation. The measurable
outputs are compared with the response of the normal machine and the fault
signature is formed . The program again resets all signals and memory ,  re-
turns to the first gate time , inserts the next fault condition , and per-
forms element simulation a second time. After all fault conditions have
been simulated the faulted output states are compared to the normal out-
puts. If a difference is noted , a fault signature is formed. Only two
types of differences will produce a fault signature in order that a fault
is considered detected. These are a zero—one or one—zero. That Is , If a
signal was a don’t know and is now a one or zero or the signal was a one or
zero and is now a don’t know, a fault signature is not formed and the fault
is not considered detected .

At the completion of fault analysis for each COARSE—TIME the program
compares the fault signatures formed. If there are less identical fault
signatures than replaceable modules for which isolation is to be performed ,
the module is considered isolated and put on the output listing . If more
identical fault signature than replaceable modules specified are formed ,
the module is not listed and the program will continue to attempt isolation
for this module at the completion of the next COARSE—TIME.

32

T .~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ 
- _ _

3.2.5.9 Example Program Timing

Figure 3.2.5.9—1 shows the operations performed for one coarse—time of
simulat ion . The COARSE —TIME is d e f i n e d as being 14 ga te t ime s by the
GATES/COARSE—TIME 14 statement. The Outputs are printed on the Timing
Diag ram at the comp letion of simulation for GAT E t ime 6 as specified by the
SAMPLE 0+6, 14 statement . Finally the circuit measurable outputs are saved
for fault analysis at g.~~e time 10 as specified by the TEST 0+10 , 14 state-
ment . The 14 indicates that the test function is to be performed every 14
gate t imes ; thereb y, occurring on the tent h gate time of each succeeding
COARSE—TIME. The TEST statement enables the user to define the Strobe time
to the program.

Figure 3.2.5.9—2 shows the operations performed during a fault simu-
lation function. The VERIFY INPUTS ONE OUTPUTS BOTH statement states the
type of faults to be inserted on each element of simulation. For example an
inverter would be faulted three times; i.e., stuck to a logic one at the
input , stuck to a logic one at the output , and then s tuck to a logic zero
at the output. The VERIFY ISOLATE TWO statements tells the program the
maxi mum number of replaceable modules to which the p rogram must i so l a t e .
The process shown for fault analysis in figure 3.2.5.9—2 is repeated for
the specified numbe r of Coarse—Time s simulation is to be performed.

3.2.5.10 Summary

-
Typically all externali. are applied at gate time zero for each coarse

t ime and outputs are sampled for the timing diagram at the strobe time .
Also the st robe time is the f i r s t gate time in each coarse time . Each of
these , however , may be manipulated by the user.

3.2.6 Program Inputs

The program inputs describe the circuit logic design input control
signal s , and select the ex pected, outpu ts and functions to be performed .
The re are nine input data catego r ies in LOGIC 4. These are:

a. CONTROL which controls the overall operation of the program
b. RUN HEADER which pr ints header s ta tements on each printout page .

33

—

~

, ‘ . - . ~~~~~~~~~~~ -..
~t. ~~~

-
~~~~~~~~~ 

---
~~~

--
~~~~~~——---—--

~~, 
- .  — — - - - .  -_ .



/

COARSE- TIME ________________

I._...APPLY EXTERNALS (s........PRINT OUTPUTS (u........STROBE TIME

1 1 2  1~ I ~I~ I 6 1 1 7 1 8  110
11

11
1 

12
1

13
1

14

~
‘I ~~- GATE TIME

I I C1
C
° GATE/COARSE TIME L~14

I GATE A I GATES B & C GATES D & E GATE F

I SIMULATE D SIMULATED 1SIMU~~
TED I SIMULATED

I GATE TIME I GAT E TIME IGATE TIME IGATE TIME
l ONE ITWO IThREE FOUR

SAMPLE Li 0+6.14
TEST I~I 0+10.14

1. OUTPUTS AR E PRINTED AT THE COMPLETION OF SIMULATION
FOR GATE TIME 6 AND REPEATED FOR EACH COARSE TIME AT
GATE TIME 6

2. OUTPUTS ARE SAV ED FOR FAULT ANALYSIS AFTER COMPLETION
OF SIMULATION FOR GATE TIME 10 AND REPEATED FOR EACH
COARSE TIME AT GATE TIME 10.

Figure 3.2.5.9.1. Simulation Functions Performed For One Coarse Time

—- 

- 34

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- - ‘V “~ ‘ - S ’ -- - - - — - - -—--- - —~~~

- - -
—~———-------——---. —.—-------—-—— —-—

~~
-—--—--- —---

~~~
-- . -



FAULT FAULT FAULT
NORMAL ONE TWO THREE
SIMULATION F~ F2 F~Co 

I NORMAL SIMULATION FOR ONEJ COARSE TIME

ci .L~~ T ~~~~~~~ CO — — — —TIME I 

~~~ FIRST FAULT INSERTED
L / 1 AND SIMULATION PERFORMED SIMULATION

~~~— CO FOR ONERESET ALL SIGN A ci~~~~
,,
,# f SECOND FAULT 

— 

COARSE

- -
NORMAL SIMULATION FOR

I SECOND COARSE
C2 L .,..ci — — — —

I FIRST FAULT FOR SECOND
I COARSE TIME FAULT

SIMULATION
C2 .L ci — _ _ —  — —— FOR

SECOND FAULT

I TIME
c2 .L .r Cl —

• THIR D FAULT

C2 1 
NORMAL FAULT FAULT FAULT
SIMULATION ONE TWO T H R E E

F1 F2 F3

VERIFY INPUTS ONE OUTPUTS BOTH

F1 F2AND F3

VERIFY ISOLATE TWO
Ti NORMA L MEASURABLE OUTPUT VA LUES SAVED
12~ FAULT F1 OUTPUT VALUES COMPARED WITH NORMAL RESPONSE & FAULT SIGNATURE FORMED
13 FAULT F2 OUTPUT VALUES COMPARED WITH NORMAL RESPONSE & FAULT SIGNATURE FORMED
14 FAULT F3 OUTPUT VA L UES COMPARED WITH NORMAL RESPONSE & FAULT SIGNATURE FORMED

FAULT SIGNATURES ANALYZED AND ISOLATION PERFORMED.

Figure 3.2.5.9~2. Fau lt Simulation Operation

35

- —‘ ,..~~ - 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ -- - 

• -
: ‘

~
- ‘

-

c. ELEMENTS which lists and defines all elements used in the circuit
design.

d. GENERATOR which describes dummy elements used to produce circuit
input signals.

e. EXTEi~NALS which define tL circuit Input signals and their values.
f. FAULTS which selects individua l faulting of input/output and

external signals.
g. OUTPUTS which define measurable circuit outputs for simulation and

fault analysis , and selects internal circuit signals for timing
diagram outputs.

h. MEMORY which provides initialization data for memory unIts.
i. DEFINITIONS which define more complex circuit devices built from

basic logic elements.

3.2.6.1 Control Category

The CONTROL category is used to define various globa l parameters ,
printouts desired , and the type of simulation to be performed.

3.2.6.2 Run Header Category

The RUN HEADER category specifies a heading to be printed on the top

of each page of the program printout .

3.2.6.3 Elements Category

The ELEMENTS category lists the elements and element inter—connections
used in the circuit. This is accomplished by specifying the element type ,
the element input signal names and the element output signal names in the
appropriate card image fields. The element types are specified by name
such as A or AND for an AND gate or MSFF for a master slave flip flop. The
interconnections are specified by assigning identical signal names to all
points (element outputs and element inputs) which are considered electri-
cally common.

3.2.6.4 Generator

The GENERATOR category is a dummy elements category used to describe
elements which produce circui t input signals. These elements are exc luded
from fault analysis. Such elements may be used to provide i n t e r f a c i n g
logic with a circuit being simulated .

36

~~~~~~~~~~~~ 

~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~ .. - •• -


— — -

3.2.6.5 Externals Category

The EXTERNALS category is used to supply the circuit input signals to
be simulated , and their value for each strobe time. This is accomplished
by specifying the circuit input signal name and the discrete values or an
input sequence formula for the value of the s ignal f o r each s t robe t ime .
The program then uses the first value assigned for each external as the
first input to simulate. The sec ond set of values is used nex t pr oviding
the user with complete control of the simulation process.

3.2.6.6 Faults Category

The FAULTS catego r y enables th e use r to spec if y faulting f o r ind i-
vidual signals. This option may be used in addition to or to override the
faults specified in the CONTROL category. The FAULTS category allows con-
trol of a signal in general or only as an input , output or external .

3.2.6.7 Outputs Category

The OUTPUTS category defines the circuit measurable outputs and lists
the in te rna l circuit signals that are to appear on the program output
timing diagram. The order in which the signals are listed in the category
is the order in which they appear on the timing diagram.

3.2.6.8 Memory Category

The MEMORY category enables the user to initialize the memory elements
(ROMS and RAMS) used in the circuit design.

3.2.6.9 Definitions Category

The DEFINITIONS category is used to define com plex ci r c u it dev ices
that are not already included in the program libraries . This new element
is defi ned in terms of elements recognizable by LOGIC 4. In add i t ion , a
new name such as F314 is assigned to the new device and is then referred to
as any other element. -

37

• - - - ~ ‘—-- -

‘
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #~ -- •_ _

t 

‘V Ti — i’T~~ 
“ 

-



SECTION 4
ELEMENTS/NET GENERATION PROGRAM—ASSIGN

The design and development of an electronic circuit involves a trans i-
tion f rom or igi nal concepts , to diagrams on pape r , and fina ll y to act ua l
construction of the circuit. The CAD ASSIGN program provides an i n t e r f a c e
between the circuit diagram and the realization of the circuit design.
Figure 4.0—1 depicts the functional relation between the ASSIGN program and
the remaining CAD programs.

4.1 INTRODUCTION

This section provides sufficient  information to describe the purpose
and general capabilities of ASSIGN arid a general descr ip t ion  of the func-
tional areas , program operation and program output available for use. Users
need have no programming experience to use the ASSIGN program although some
background is helpful .

4.2 PROGRAM PURPOSE

Through the use of ASSIGN , an association is made between each logic
element depicted in a schematic diagram and the physical element preforining
that logic function. In addition to logic element associations , all inter-
connection of element information illustrated on schematic diagrams is
translated by ASSIGN into pin interconnections and passed on to other CAD
programs which perform the physical placement and wiring of the various
devices.

4.3 PROGRAM GENERAL DESCRIPTION

The ASSIGN program is normally run af ter  the design has been proven to
be of sound logical structure , and may be run in eithe r the in te rac t ive  or
batch method. The program has two major modes of operation. These are the
normal ASSIGN (String Generate) mode and the Element Generate mode. Inputs
to the program for either mode of operation are of two classes: logic
information and hardware information (refer to Figure 4.3—1).

- 38

T 

______________ -



DESIGN DESIGN
[CONCEPT 

‘

i 

{A NDARDS I IcAD SOFTWAREJ

ILOGIC OESIGN I DATA FLOW
_________ SCHEMATIC

FUNCTIONAL
\. SUBS \) FLOW

-~~ 1 ~
( LOGIC TIMING

I DATA BASE ii I SIMULATION DI AGRAM
[MANAGEMENT

II 
_ _ _ _ _  

‘I ~LOGIC4

f IcHIP I
I LOGIC 

________

LCONVRT

______________ CHIP

________ 
DESIGN

Ii 
_____________(- CELLHI CHIP DESIGN Ô~1l1 ~~ U I TMOOIFICATIONJJ 

_________

ft I U I DATA BASE 
MANAGEMENT

.I[CELL TESTI1 CHIP 
LIBBER

I MOSTRAN [I TEST (I
_________ 

MCHPCKJ~
FPLOTTER 

~~~~ - -

~ (SIGNAL.PIN -~~ IFAULT 1
I CHIP I i~ I ASSIGNMENT I SIMULATION
[MANUFACTURE J~ ~~: ASSIGN Li&9IC 4

ii II 4 I I~~~~~ENCE I

_ _ _ _

~~

~~~~~YSIS~~~~ 
~~~~~ L~’~

- ’ ~~~~~~~~~~~~

~~ ~*I~~ (~RINTED CIRCU1~~1
FSOLATION IL~ jBOARDLAYOUT

j J
1DIAGN~~I~~ J

II It ‘ II COVER

ii ii ~ _ _ _ _ _II ~ II II

SOLUTION
I L.J~IICROWAVEU_ J I ii FILE
‘ INETWORK U—’ ‘I
4MAGNET ii LPLOTTER 1

(FINA L FINAt j
BOARD BOARD

[MANUFACTURING TEST

Figure 4.0-1. CAD Functional Block Diagram Emphasizing the ASSIGN Program

39

* —‘ ~~‘~~~~
—

~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~ - .
i__p u .-_•_

~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ ~~~
-

~~
- _

~
- - ,,, ~~~~~

. •-~~~, . _~~~~~~

LOGIC INFORMAT ION:
ELEMENTS ASSIGN
EXTERNALS PROGRAM ~~ STRING LIST

HARDWARE INFORMATION:

BACKPLANE
BUCKET
CARD DESCRIPTIONS

STRING GENERATION MODE

LOGIC INFORMATION:
STRING LIST ASSIGN

PROGRAM ~ ELEMENTS

HARDWARE INFORMATION:
BACKPLANE
BUCKET~
CARD DESCRIPTIONS

ELEMENT GENERATION MODE

Figure 4.3-1. ASSIGN Program Modes of Operation

40

“

~~~~~~ 
‘T~ 

- -



4.3.1 String Generation

In the normal ASSIGN mode , logic information in the form of logic ele-
ment interconnections , as supplied by the ELEMENTS data input , Is matched
with hardware information in the form of CARD DESCRIPTIONS data input. Use
of ASSIGN in this mode includes assignment of a gate or flip—flop to a DIP,
a DIP to a printed circuit board , or a printed circuit board to a card
rack. Outputs from the String Generate mode include a String list and/or
file containing information on all device pin interconnections according to
signal name.

4.3.2 Element Generation

The Element Generate mode is used to adjust the ASSIGN data base to
match any changed DIP and/or input/output (I/O) pin locations that are made
after the initial assignment by the ASSIGN program. DIP and/or I/O pin
locations may change because:

a. Resultant outputs of a CAD program performed after the ASSIGN pro—
gram; or

b. Design changes occurring after the ASSIGN program is run.

In the Element Generate mode, logic information , as supplied by the
STRING LIST of device pin interconnections , is matched with hardware infor-
mation in the form of CARD DESCRIPTIONS data input. Outputs from the Ele-
ment Generation mode include a description of the element interconnections
with an additional tag that indicates which element is in which device.

4.4 PROGRAM FUNCTIONAL DESCRIPTION

The following is the sequence of the input data categories to the
ASSIGN program. The order of these categories is f ixed and is always as
shown . Cer ta in  data categories may be omitted , but the sequence must
remain the same . A summary of input data categories is presented In Table
4.4—1.

41

• -~ ..• - - .•_ _•*_**•~..~ ~~~~~~~~~~~ - I-~___- ~~~
• •

~
- -

V. - —‘ 

~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ --‘~-w- -~~ - • - - - • -


TABLE 4.4-1 ASSIGN Input Data Category Funct ions

CATEGORY FUNCTION

CONTROL Specifies program control options.

BACKPLANE Describes the sockets, external connectors,
and test points locate d on the backplane.

ELEMENTS Provides the program with circuit inter-
conneC tion inform ation.

GENERATOR Special case of the EXTERNALS category,
the importance of which is in the simulation
aspect of design developmen t.

EXTERNALS Designates the input st imulus signals to the
design.

EQUIVALENCE Provides the capability to change hard ware
devices with ease.

BUCKET LAYOUT Designates the card to be placed in a socket
on the backplane.

CARD DESCRIPTIONS Provide data on each card device used in the
design.

STRING LIST Provides for interconnection of pins on the
backplane by signal name.

MANUAL DEFINITIONS Provides the ability to manually place signal
names on pins in the backplane.

PARTS LIST Provides data for a comp lete , documen ted
Computer Generat ed Parts List of the design.

PROGRAM IN IIIALIZAT ION
CONTROL CATEGORY
BACKPLANE DESCRIPTI ON

42

-

~~ ~~~~~~ T ~~ -~i~~~~a~~~~i4,
~~~~~ 

- •

~~~~

• •

~~~~~

.

~~

-. 

~~~~

. -

~~~ 

—- -



ELEMENTS CATEGORY
GENERATOR SPECIFICATION
EXTERN ALS CATEGORY
EQUIVALENCE CATEGORY
BUCKET LAYOUT
CARD DESCRIPTIONS
STRING LIST
MANUAL DEFINITIONS
PARTS LIST

4.4.1 Program Initialization

To initialize the ASSIGN program the user must  first set up the re—
quired operating system conditions (refer to DEC SYSTEM 10 DEC— 1O—OSCMA—A—
D). After the system has been set up, the ASSIGN program is accessed by
the program select RUN command. The system will then respond with a re-
quest for file assignment at which time the user must input the appropriate
commands to reference all files to be accessed or created by the ASSIGN
program by use of the UNIT, FILE command. After file assignments are made,
the program is ready to accept the CONTROL input data category.

4.4.2 Control Category

This category specifies the desired program options. These include
information on program control , I/O units , and general program parameters .

4.4.3 Backplane Description

The BACKPLANE input category contains the description of the assembl y
in which the cards , described by the CARD DESCRIPTION da t a  ca t ego ry ,  are
inserted. This may be a multichip hybrid package (M}1P), in which chips are
placed; a planar array (printed circuit board), in which DIP t s are placed;
or a card rack, in which printed circuit boards are placed. This category
is limited to the description of sockets , test point pins , and I / O
connector pins, which are to be located on the Backplane. Requirements for
this type of hardware should be unders tood befor e cod ing the BACKPLANE
DESCRIPTION input category.

NOTE
Note that the ASSIGN program is not a hardware
placement program and actual placement of hardware
on the backplane is done in other CAD programs.

43

I.. —‘ ‘ T T ~~~~
1r 

~~~~~~~~~~~~~~~~~~~~~~~~ p ø 4 ’~w.~~~~r~~~~~4r-.~~~ ~~~~- -w - 
~~~~~-- ‘~- ‘ — — -~~ - - ---— -- -

~~~~~:


4.4.4 Elements Category

The Elements category provides the description of the logic schematic
diagram in a form understood by the program. The interconnections of each
logic element used in the circuit are provided by specifying signal names
to be associated with inputs and/or outputs of each element. The same
signa l name is used for all inputs and outputs which are to be
interconnected. The ELEMENTS category contains a listing of each logic
element by type , and all associated input and output signal names.
Information required to code the ELEMENTS input data category can be
obtained directly from a logic schematic diagram if properly marked with
signal names.

4.4.5 Generator Specification

The GENERATOR specification is a special case of the EXTERNALS data
category and describes all logic used to generate input signals other than
EXTERNALS. The GENERATOR specification is used by the simulation portion
of the CAD system. If included in ASSIGN , it will be considered as an
EXTERNALS category entry. For a detailed description of the GENERATOR
category refer to the CAD Users Manual for the LOGIC 4 program .

4.4.6 Externals Category

The EXTERNALS data category defines those signal names which are ex-
ternal inputs to the system being processed and are the input stimulus to
the design. Signals of this nature should be apparent on the logic sche-
matic diagram.

4.4.7 Equivalence Category
-

Hardware changes are necessary many times during the design of a cir—
cuit. The EQUIVALENCE category provides the ability to change the hardware
in a circuit with relative ease. The EQUIVALENCE data ca tegory contains
equivalences , or synonyms , of device names . When this ca tegory is used ,
the old names in the BUCKET LAYOUT category are replaced by the new names.

44

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .“~~~ 
,

- ‘~ -— -- -‘.- 

—



4.4.8 Bucket Layout

The BUCKET LAYOUT category specifies the packages (chips , DIPs , or PC
boards) used and the sockets in which they  are inser ted . Each package
listed in the BUCKET LAYOUT mus t  be descr ibed by an en t ry  in the CARD
DESCRIPTIONS category, and each socket listed must match  a socket def ined
in the BACKPLANE DESCRIPTION category.

The order of assignment of elements to physical packages is determined
by the order of the packages in the BUCKET LAYOUT. To provide the most
efficient assignment by the program , the suggested , but not required ,
ordering of packages in the BUCKET LAYOUT is to place non—pin—sensitive
devices ahead of pin—sensitive devices. In addition , ordering within each
of these device types should be by order of increasing number of inputs.

4.4.9 Card Descriptions

CARD DE SCRI PTIONS data category contains descriptions of the physical
packages (chips, DIPs or PC cards) processed. The header , required for
each package described , contains information on the generic device name ,
number of pins, power dissipation , failure rate data , weight , cost , and
part identification number. The rest of the CARD DESCRIPTION lists the
elements contained in the device and their pin numbers along with the load
or drive capability of each. These elements and pin numbers are matched
with the elements and signal names of the ELEMENTS category to generate the
device pin to signal name association, on which the ASSIGN program func-
tions. It is important that the element type and input/output fields used
in the ELEMENTS category match the element type and input/output fields
used in the CARD DESCRIPTIONS if proper association is to be achieved
Device power and ground pins are also spec if ied in the CARD DESCRIPTIONS
Category. -

The information required to code the CARD DESCRIPTIONS category can be
obtained from manufacturer specifications on the device to be used. Data
books, catalogs , and reference manuals are all issued to supply such tech-
nical information.

45

- .~~~~ 

~~~~~~ 
- •

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

-

~~~~~~~~~~~~~~~~~ 

-

~~~~~~~~~~~~~~

--
~~~~~ ~~

~~~

•

~~

-

~~~~~


4.4.10 St ring List

The STRING LIST data category defines connections between pins on the
backplane. This is done by specif ying a signal name and all socke t , tes t
point , and external connector pins associated with tha t signal name.

4.4.1 1 Manual Definitions

The MANUAL DEFINITIONS category is used to define a signal name on a
particular socket and pin in the bucket. Thus, an element can be assigned
to a particular package by defining the output signal name for that element
to the ou tpu t pi n of a package. Options to assign special pins , such as
test point and external connector pins , are also possible using the MANUAL
DEFINITIONS category.

4.4.12 Parts List

The PARTS LIST category is used to describe items , such as capacitors ,
resistors , or wfre, which are needed for a complete parts list but are not
included in either the BUCKET LAYOUT or the CARD DESCRIPTION data cate-
gories. Header Information for the Computer Written Parts List (CPL) is
also entered in the PARTS LIST category .

4.5 PROGRAM OPERATION

The ASSIGN program produces a stored ‘list ’ of the sockets with one
data record reserved for each pin on each socket. The sockets in the
‘list’ are stored in the same order in which they appear in the BUCKET
LAYOUT data category. When a signal name is placed on a pin, either by the
MANUAL DEFINITION category or as the result of assignment by the program ,
that signal name reference numbe r is placed in the location corresponding
to that p in. The ASSIG N program makes a number of passes through the
ELEMENTS category to comp lete the pin assignment . These passes may be
divided into four phases of program operation executed in the order presen-
ted and correlated with the input category involved.

4.5.1 Manual Definition Phase

All manually defined names are placed on the specified socket pin.
The program examines each socke t in the Bucke t Layout in the order in which
they appear in the input data. If an output pin has a signal name placed
on it, the program finds the first element of the corresponding type that
has that name as an output and tries to assign it. It goes through all the

46

- —‘ ~~~~~~~~ ~~
~~r ~~~. ..,~- - -—.,~~ - - ~~~~

._
~~. ~ - _________

- —
.——-—-———--

~~
--,— ,-----—-

~~~
---

~~~
- —- - - - - - - —- - - - -

positive pins in ascending numerical order and then the negative pins in
descending numerical order during this phase. Thus , if in ass igning an
element , a name is placed on an output pin of another element which is
processed later, then a feedback process takes place and the other element
is then assigned.

4.5.2 Tag Definition Phase

This phase does not occur unless a TAG—DEFINITIONS card is placed in
the CONTROL data category. During this phase, the TAGS field of all previ-

ously unassigned elements is compared with the socket names in the bucket
and , if a match occurs, an attempt is made to assign the element to the
first unused circuit in that socket.

4.5.3 All Elements Phase

Al l devices are processed in the order in which they appear in the in—
put data. For pin sensitive devices (flip—flops as opposed to gates) the
cards are searched in the order specified in the BUCKET LAYOUT and the
device is assigned to the first unused element of the same type . Gate
devices are not assigned during this pass unless the assignment results in
all Input and .output pins of the element being used.

4.5.4 Gate Second Try Phase

The second pass processes all gat e devices not ass igned in the f ir st
pass. This is done in the order of appearance in the input data. The
ca rds are searched in the order specified in the BUCKE T LAYOUT and the de-
vice is assigned to the first unused element of the same type found . Note
that for non—pin—sensitive (gate) devices , inputs are interchanged in an
attempt to fit a device into a particular element. This is of use where
two or more elements in the same package have a common pin, resulting in a
signal name being placed or~ an input pin of an otherwise unused device.

4.6 PROGRAM OUTPUT DESCRIPTION

Following is a description of the possible printed output generated by
the ASSIGN program.

47

p - —‘ ~~~~~~~ -: ~~~~~~~~~~~~~~~~~~~ ~~ ~~~~~~~ - -

/

4.6.1 Input Data

ASSIGN Is capa ble of genera t i ng an output listing of the input data in
both unalte red forma t and expanded f o r m a t . The unaltered format is an
exact duplication of all input data categories as supplied to the program.

Expanded forma t is a l is t ing of the input data categories i ncorpo—
rating all Repeat , Synonym , and Equivalence options , where used. (Refer to
the CAD ASSIGN Users Manual for detailed descriptions of these options.)
Therefore , a listing would be generated for each of the following cate-
gories.

EXP ANDED CONTRO L CARDS
EXPANDED BACKPLANE DESCRIPTION

EXPANDED ELEMENTS
EXTERNAL VALUES
BUCKET LAYOUT
MANU AL DEFI NITI ONS

4.6.2 Card Descriptions

The CARD DESCRIPTION printout lists the device type , number of pins ,
and each element on the package by type , (giving input pin number , loa d ,
output pin number , and drive capability) and power and ground pin numbers .
Only those card devices listed in the BUCKET LAYOUT will be listed in the
CARD DESCRIPTIONS.

4.6.3 List of Non-Fitting Elements

Any element in the ELEMENTS category that does not match an element
p rov ided in the CARD DESCRIPTIONS category is listed under the heading LIST
OF NON—FITTING ELEMENTS. Any entry in this list should be considered as a
diagnostic , warning the user of the failure of the program to associate a
hardware device with a logic device that required such a hardware assign-
ment.

4.6.4 Bucket Map

The BUCKET MAP provides a listing , by socket connector and device
type , of all pins on that connector and device type , of a l l pins on tha t
connector , and the signal name which was assigned to that pin.

48

VP - -
~~ ~~~ ~~

- -
~~

-
~~~~~ --~~~, - --



— — — —

4.6.5 Spare Elements

U nassigned elements within pa r tial ly used card de v ice s a r e l i s t ed  in
t he generated output  list of SPARE ELEMENTS . The l i s t i n g  shows socke t ,
ca rd type , element type , whether input and/or output pins are not assigned ,
and output pin numbers .

4.6.6 Signal Loading

Each device pin that is assigned a signal name provides a signal drive
capability, or load imposed on the signal as specified by the CARD DESC-~lP—
T ION data.  The total loads are subtracted from the d r i v e  and the r e s u l t s
are listed in the SIGNAL LOADING output .  Sy s t em i n p u t  or o u t p u t  s i g n a l s
a re indicated as such . As no drive capability is listed for an inpu t  sig-
nal , a drive of zero is assumed for tabulation purposes .

4.6.7 Internal String List

The INTERNAL STRING LIST provides all i n f o r m a t i o n  necessa ry  to wire
t he assembly into which the backplane is to be inser ted .  I n f o r m a t i o n  in-
cluded is the signal name , type , and external connector and pin number.

4.6.8 Test Point List

The TEST POINT LIST describes the backplane test points by listing the
signal name and test point  connec tor  name and assoc ia ted  p in nu mber  of
each.

4.6.9 Unused I/O Connector Pins or Unused Test Points

Any I/O connector pins or test points that were defined in the BACK-
PLANE DESCRIPT I ON but not assigned a signa l name are l i s t ed  by connector
name and p in number.

4.6.10 Allocated Elements

The ALLOCATED ELEMENTS listing relists the EXPANDED ELEMENTS listing
with the addition of the following information: The socket to which a
particular element was assigned is listed below each element type and also

49

VP - T 

~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - ~~- — # ,  .. - - - - -



particular element was assigned is listed below each element type and also
in the tags field , replacing any previous tags. Also , the pin to which a
signal name was assigned is listed below the signal name.

4.6.11 Parts Summary

The P ARTS SUMMARY provides techn ical info rmation f or each dev ice used
in the design. Listed is device type , quantity used , power dissipation ,
failure rate, weight , cost, and part number along with totals for the com-
plete design.

4.6.12 Computer Written Parts List

The COMPUTER WR ITTEN PARTS LIST (CPL) lists each part required for the
design circuit and any ordering information as provided in the CARD DE-

SCRIPTION or PARTS LIST data categories.

50

~~~ 

~~~~~~~~~~ ~~~~~~~~~~ 4%ç pqU.-.~~~~ ç,-4..~~ —‘~~~- .-~~ - .— --- - -4- - - ———--— - - - - -



r

L.
SECTION 5

INTRODUCTION TO PCPRA: PRINTED CIRCUIT
PLACEMENT ROUTING AND ARTWORK PROGRAM

In designing printed circuit boards, there is generall y a great need
to minimize the use of layers and the length of printed wiring paths . The
Printed Circuit Placement Routing and Artwork Program (PCPRA) is a printed
circuit wiring routing optimization program for production of two—sided or
multilayer printed circuit boards (PCB’s). As such , it Is a major  tool in
the design of PCB’s. It can be applied to problems that can be modeled as
components with wiring on a PCB.

PCPRA consists of four parts that are normally used in order , yet can
be used independently. The placement part  (PLACE) selects a placement of
the packages to be used on a PCB so as to minimize total printed wire
length. The organizer part (WORGZ) accepts the output data from PLACE ,
organizes it , and formats it for input to the rou te r  part  ( P R O U T E ) .  The
router performs printed circuit wire routing for two—sided or multilayer
boards. The artwork (or printer) part (MLPLOT) presents a printer plot of
the routing. Figure 5.0—1 depicts the functional relation between the
PCPRA Programs and the remaining CAD Programs.

5.1 GENERAL DESCRIPTION OF PCPRA

The four progr ams PCPRA uses to accom p l ish a goal of min im um use of
layers and shortest printed wiring paths possible are:

a. PLACE — Inputs the BUCKET LAYOUT Category, the STRING LIST from
the ASSIGN program of CAD , and other information to automatically
place component sockets on the PCB. A complete GEOMETRY DATA file
is created .

b. WORGZ — Inputs and organizes the GEOMETRY DATA and additionally
inputs and organizes the NET LIST of signals and pins that should
be interconnected. The NET LIST may be generated by a designer or
by the ASSIGN program of the CAD system , and the GEOMETRY DATA may
be genera ted by a designer or by the PLACE program of PCPRA . The
output of WORGZ is the COVER FILE.

51

- ~~~~~~~~~~~~~~~~~ - -

~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~

_ _

~~~t ~~~~~~~ 
-- -- -

~~~ 

- - - _-
-:

~~~~~~

--
~~~~~ -- --



1~~~~ N _
I.~~~~~P T [  ][~~~~~~~~~AAO~J ~~AD SOF1WARE1~

1i~~~~~i~SIGN DATA FLOW
SCHEMATIC

LIBRARIES FUNCTIONAL
SUBS FLOW

LOGIC TIMING
DATA BASE SIMULATION DIAGRAM

MANAGEMENT LOGIC 4
LIBBER

CHIP
LOGIC

CON VAT

CHIP
DESIGN

PRF

LI CHIP DESIGN OR
DESIGN MODIFICATION

CHPCHP
DATA BASE

MANAGEMENT
LI BBER

CELL TEST CHIP
MOSTRAN TEST

MCHPCK

PLOTTER

SIGNAL-PIN FAULT
CHIP ASSIGNMENT SIMULATION
MANUFACTURE ASSIGN LOGIC 4

TEST
SEQUENCE

STRING VERIFICA TION
LIST & DIAGNoSTIcS

THERMAL STRUCTURAL
ANALYSIS ANALYSIS - -  - -SINDA SAP IV Iii ATION

PRINTED CIRCUIT TABLE &
BOARD LAYOUT 

COVER 

DIAGNOSTICS

FILE

SOLUTION 4
MICROWAVE :4-~4 FILE
NETWORK
DESIGN PLOTTER ~ -MAGNET

I AL FINAL
BOARD BOARD
MANUFACTURING TEST

Figure 5.0-1. CAD Functional Block Diagram Emphasizing the PCPRA Programs

52

VP - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~ 
- ‘ - --- -



c. PROUTE — Inputs the COVER FILE from WORGZ and performs the printed
wire routing to connect the pins in the NET LIST. The output is
the SOLUTION FILE.

d. MLPLOT — Input s the COVER FILE and/or the SOLUTION FILE and prints
a line printer plot representing the PCB with the COVER FILE
information and , depending on the user’s choice , a printer plot of
the PCB with the SOLUTION FILE information.

Figure 5.1—1 shows the logical flow of the inputs and outputs for the PCPRA
programs .

PCPRA uses the GEOMETRY DATA and NET LIST to produce the wi r ing  paths
for  the various layers of a multilayered board. The program initially
defines a PCB as having only two l ayers .  The top is layer  1 , whi le  the
bottom is layer 2. Electrical connections between the two layers are made

possible by plated thru holes called vias or feed—thrus . The wire routing
program uses a PCPRA modified version of the NET LIST, called the EXTENDED
NET LIST (ENL) , and information in the GEOMETRY DATA to make component
interconnections within the physical dimensions of the initial two—layer
PCB. If the ENL is not exhausted by the routing process , PCPRA creates
another two—layer PCB. This new board has images of all the pins and feed—
thrus from the previous board. The router uses these if possible to com-
plete the residue ENL connections on the top layer of the new board which
will be layer three of the multilayer board. If it is not possible , either
the feed—thrus created on the first board are used to connect to layer 4
(the bottom of the new board) or new ones are established . This process
continues until either all the connections are made or the maximum number
of layers allowed is reached. Any residue or unconnected signals are
printed in a failure listing. By enlarging the spacing (layering) avail-
able for routing on the PCB , the failure list can be eliminated . A line
printer plot is produced for each layer of the PCB with or without the
wiring depending on the options used,

5.1.1 Printed Circuit Board Design Process -

The physical make—up of the PCB is like a sandwich in which each layer
is separated from adjacent layers by an insulation layer. Figure 5.1 .1—1
depicts an exploded view of a typical four layer multilayer board. Layers
one and two are called outside layers and any other layers are called in—
side layers. Component sockets are located only on layer one , but their

53

- —I 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~ 

- - - - - - - -
.

.
- . - .

.
- - . - . - -

w _ -

PLACE
~~PR~~~RAM/

GEOMETRY
DATA

/
\~P~~ GRAM

_L

~~~~~

J

/ PROUTE \

\
~‘ROGRAMJ

~~~~~~~iO!J

_
_

/ MLPLOT \
\P~OG RAM)

PRINTER
PLOT

Figure 5.1.1. PCPRA Program Flow

54

-- - --- -— p — -~~~~~~~--‘---- -

_ _ _ TI~~ ~~~~~~~ ~~~~ ~T

pins , as well as test point , connector , and user—defined pins , pass through
all layers. Feed—thrus are also passed through all layers.

5.1.2 PCPRA Requirements

Specific information is required in order to use the Printed Circuit
Placement Routing and Artwork (PCPRA) programs . The typical successful
designer will have the following :

a. A reasonably accurate , d imensioned drawing of the bare P .C . board
showing tooling holes, boar d puller areas if board pullers are
used , physical connector and test point locations , electrical
connector and test point locations.

b. Indication of the outline of the area where automatically gener-
ated wiring may be placed defined by strsight horizontal and ver-
tical segments. -

c. Indication of the outline of the rectangular area where components
(sockets) m ay be placed. This area must be inside the area where
automatically generated wiring may be placed.

d. The NET LIST (usually input from the output of the ASSIGN program
of CAD) that specifies the desired interconnection. The NET LIST
is made up of a series of nets. Each net must have a unique sig-
nal name. All socket pins having the same signal name will be
electrically connected. A socket pin does not have a name if the
socket pin is not connected. A socket pin cannot have more than
one name. A typical net description is shown below.

CLOCK J01007 1101009 U02005

This typical net indicates that the signal with the name CLOCK is
to be electrically connected to connector JOl pin 7 and dual—In-
line pack 1101 pin 9 and to dual—in—line pack U02 pin 5.

e. The geometric connector and socket information. For example , if
1101. is a 54H108 DIP, the manufacturer’s catalog provides informa-
tion that this is a 14 pin dual—in—line package with a JEDEC
(TO—116) socket geometry (i.e., two rows of 7 pins with row
spacing of 0.3 inch and pin spacing of 0.1 inch).

f. Choice of socket placement at specific locations on the P.C.
board or use of the automatic placement feature of PCPRA. The
automatic placement will tend to minimize total track length and

thus maximize the probability of 100% automatic routing . Manual
placement may be used if there are mechanical or thermal

55

. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ ____

(A) LAYER ONE CONTAINS ALL COMPONENTS
(B) LAYERS ARE CONNECT ED BY PINS OR FEED THRUS
(C) LAYERS ONE & TWO ARE CALLED OUTSIDE LAYERS. THREE & FOUR

ARE INNER LAYERS
(0) LAYERS ARE SEPARATED BY INSULATION
(E) COMPONENTS ARE CONNECT ED BY PRINTED WIRE TRACKS

USING LAYER PAIRS

/
COMPONENT

INSULATION
~~~~~~

T ’ I ( PR,NTED 

3

WIRE
TRACK

PIN ON LAYER 11$
CONNECTED TO ALL —‘
LAYERS INSULATION

INSULATION

Figure 5.1.1.1. Exploded View of a Typical Multilayer Board

56

- 

~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- -

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~



constraints. Manual placement may also be necessary if there are
critical signal s or manufacturing constraints .

g. PCPRA operates on a grid system. In principle, the grid does not
have dimensions until the time when the final artwork is plotted .
However , knowledge of the physical relationship of the grid to the
real world is required. Socket pins exist at the intersection of
a horizontal and vertical grid line . Tracks are centered about
horizontal and vertical grid lines. Routing is done horizontall y
and vertically along grid lines. An example of choosing a grid is
as follows: Assume D1P’s are to be placed on a P.C. board and
one track is allowed between a pair of DIP pins . The DIP pins
must be on the grid and the track must be on the grid. DIP pins
are spaced 0.1 inch apart and a routing lane for a track must fall
between the pins. Thus the grid would be chosen to have 1/2 x 0.1
0.05 inch spacing.

5.1.3 PCPRA Utilization Guidelines

Some useful guidelines to successful use of PCPRA follow:

a. The most d i f f icul t  task for PCPRA is wiring ground and power nets.
When manufacturing permits , a ground plane and a power plane
should be used. When using ground planes and power planes the
power and ground should not be in the NET LIST. If power and
ground are already in the NET LIST then the IGNOR statement of
WORGZ is used to ignore them.

b. If power and ground tracks must be on layers along with signal
tracks then manual aid to PCPRA is recommended . Figure 5.1.3—1
shows the typical use of multiple connector pins for power and
ground at opposite ends of the connector. A power track is run
vertically on one side of the board and a ground track is run
vertically on the other side. Horizontal runs are then made with
short stubs to the socket power and ground pins. This is desir-
able because the automatic routine will be in a predominatel y
horizontal, x—direction, on layer one.

c. The next most difficult task for PCPRA is wiring signals to the
connector(s) when a majority of the connector pins are used . The
designer has the choice of assigning signals to connector pins or
allowing PCPRA to make the assignment. In either case , bo th
placement and routing give priority to routing signals to the
connector(s). If the connector plug is manufactured separatel y

57

T ~~~~~~~~ ~~~

--

~~~~ ~~
— --
~~ ~~~~~~~~~~~~

- -- ~~

-

-- —

OUTER LIMIT OF WIRING AREA ON BOARD...

.UO1 • •U02 • ,U03 •
• • • • •:

•U04 • •U05 • •UO6 •• • • • • •: :
PIN HOLES ALIGN WITH CONNECTO R PLUG

_•._1 • S •PIN TVPE •
• • CONNECTOR • • •

POWER GROUND
PINS PINS

TYPICAL POWER AND GROUND ROUTING ON LAYER 1.
HORIZONTAL OR X-DIRECTION ROUTING SHOWN

Figure 5.1.3-1. Typical Power/Ground Routing

58

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~

------
~~~~~~~~~ 

~~

-— -

and mounted on the board with pins, and the connector holes can be
defined by using a connector input statement , then no further
effort is required. This is because PCPRA is pin/hole oriented
and a connector that uses pins to plug into a hole (much as a com-
ponent into a socket) adapts to this orientation. If the connec-
tor is made by plating on both sides of the PCB , manual assistance
to PCPRA is recommended. Connectors that require strips on the
top and bottom of a two layer board to make a connection need some
manual intervention to create the strips. They are typically
generated on an interactive graphics machine.

The PLACE program is an optional automatic generator of the
GEOMETRY DATA. The user may choose not to use it and instead
create appropriate GEOMETRY DATA for use by WORGZ. If PLACE is
not chosen, then the user may want to run WORGZ and MLPLOT onl y.
WORGZ will find most of the errors in the input data and MLPLOT
will plot a picture of the board and the hardware on it w i t h o u t
the printed wiring. Otherwise the order for running PCPRA is:

a. PLACE
b. WORGZ
c. PROUTE
d. MLPLOT

5.2 PCPRA FUNCTIONAL DESIGN AND CAPABILITIES

Following is a general description of the four major functions of
PCPRA and their capabilities. Each function is treated individually along
with a discussion of each of the function capabilities.

5.2.1 PLACE Program

The placement program is the interface between the ASSIGN program and
the organizer program of PCPRA. The placement program connects the logical
interconnection of physical component sockets (which the ASSIGN program of
CAD has generated) into specific geometric placement of component sockets
on the PCB. PLACE uses component socket pin spacing (as defined by the
library) and board size (as input by the user) to determine an initial
placement of component sockets on the PCB. The NET LIST (STRING LIST of
the ASSIGN program of CAD) is used to successively improve the placement
through trial interchanges of component sockets. An improved placement

59

- -~

— -- - --

~~~~~~~~~~~~ ~~~~~~~~~ 

- -



means there is a shorter total PCB printed wire length. Component socket
rotations in ninety degree increments are tried as well as component socket
interchanges.

The input to the PLACE program is:

a. The size of the board given as a rectangle.
b. The routing outline and part outline within the board rectangle to

account for board pullers and mounting structures.
c. The NET LIST.
d. The BUCKET LAYOUT category containing the NET LIST component name

to generic component name (for example U31 is a SN5404, U26 is a
SN5410).

e. The library containing the spacing requirements and geometric pin
location information for generic components (for example a SN5404
and a SN5410 are 14 pin DIPS).

Input to the PLACE program is separated into data categories. Each
category contains a specific type of data.

Data categories are useful for several reasons . First , data cate-
gories help the user organize the data and reduce the possibility that
important data is omitted. Second , data categories allow modular software
development and maintenance by having one subroutine to process one specif-
ic data category. And finally, data categories may be input directly by
the user or any specific data categories may be automatically retrieved
from library files. The following categories are used by PLACE:

a. The CONTROL category is used to specify overall control of the
computer run. Print options may be specified. Any data category
may be specified to be input from a unit other than the main input
unit (Unit 5).

b. The STRING category is used to obtain the interconnection
information. This data category may come from the ASSIGN program
or be user generated.

c. The BUCKET category relates the socket designations in the string
list to physical components, i.e., U03 to 5404.

d. The TYPE—MODEL assignment category relates the physical component
to the package geometry, i.e., SN5404 to a 14 pin DIP. This data
category is typically input from a library file (PLAJ4OD.LIB).

60

—% 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~ - ~~~- — ~~. ‘ ~~~~—--~~ -. -~~~~ — — 

,_
-

e. The MODEL category has the component size and pin locations for
many packages. For examp le: 14 , 16 , and 24 p in D I P S are de-
scribed , as are flat packs, resistors and capacitors. This data
category is typ ically input from a library file (PLAMOD.LIB) .

f. The PLACE category must be present in order to specify the PCB
size and the area where parts may be placed. Optional input in
the PLACE category is the definition of the available routing
area. As a convenience , all of the types of data cards that WORGZ
accepts may be input free—format in the PLACE category. These
statements are just passed along to WORGZ in proper format.

g. The XTRLR category may be used to input the pin locations for test
points and input/output connectors.

The output of PLACE is the GEOMETRY DATA formatted for use by WORGZ.

5.2.2 WORGZ Program

The WESTINGHOUSE organizer (WORGZ) program is the i n t e r f a c e between
the placement and routing phases of the board design system. The WORGZ
program processes and checks the input data, assigns input/output connector
and test point pins to signals not assigned in the NET LIST, and organizes
the NET LIST into the EXTENDED NET LIST. By using computer calculated
figure s of merit that determine an order for routing signals , WORGZ
attempts to minimize layering.

The input to WORGZ is the GEOMETRY DATA and NET LIST along with some
control statements. The NET LIST and GEOMETRY DATA should be created on a
file by the user before input to WORGZ. The PLACE program is one means of
generating the GEOMETRY DATA file.

The WORGZ program requires the input of the GEOMETRY DATA and the NET
LIST. The UNITS statement of WORGZ contains the unit numbers where the
GEOMETRY DATA and NET LIST are located , and they must agree with the unit
numbers of the files assigned by the user during the file assignment por-
tion of WORGZ. Any valid DEC system unit number may be used in assigning
these files. If no output file is assigned , WORGZ writes a default file
named FOR19.DAT which is the COVER FILE on unit 19.

The following statements are used to control and input data to WORGZ:

UNITS — allows input of the GEOMETRY DATA and NET LIST files from

the system peripherals.

61

— — .4 - ~~~~~~..

BOARD — contains information on the maximum X (length) and Y
(width) value s for the PCB to be modeled . The Board
statement also specifies print options for the GEOMETRY
DATA and NET LIST inputs and the printing of the unused
connectors on the board .

ARRAY — Used to define component geometry (the pin placements) on
the board. Each statement defines a row or column of
pins and the associated pin numbers. Coordinates are
given in terms of a local coordinate system using a user—

selected local reference point . More than one statement
may be used to define a particular component .

PLACE — uses the pin confi guration defined by a set of ARRAY
statements to place a component on the board at a user—
designated location. PLACE uses the local ori gin (as

defined in ARRAY statements) to place the arra y of pins
at an X ,Y board location .

DISC — used to define and locate discrete components of up to
three pins. The discrete statement is used when there Is
a small number of components whtch do not warrant the use
of an ARRAY type definition.

XTRLR — used to define pin locations for external I/O connectors
and test points. These arrays are treated as components
with a special feature . If a connector is called out in
the NET LIST and a specific pin number is not given , the
router selects the nearest available pin. These arrays
of pins extend through each layer of the board in the
same manner as pins .

(SMIP — used to define router restrictions on the board. Such
items as tooling holes and board outlines are defined
with (SMIP statements. These restrictions are at the
board level. Another statement (LOCAL) is used to define
restrictions at the component level.

LOCA L — used to define router restrictions at the component
level , such as no feed—thrus allowed under a socket or no
lines allowed under a socket. The LOCAL statements refer
back to ARRAY statement names so that whenever a PLACE
statement uses an ARRAY statement and has restrictions
put on it by the LOCAL statement , then the LOCAL restric-
tions will appea r in the a r ea ca l l ed for b y th e P LACE
statement.

62

~

—:-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



IGNOR — used to delete unwanted signals from the NET LIST before
the routing process.

END — used to signal the termination of the GEOMETRY DATA in-
put .

NET LIST — This is not a s t a t e m e n t  in i t s e l f  but  a name f o r  a
listing of signal names and associated component sockets,
connecto rs , and tes t  poin ts  with their respective pin
numbers assigned to those signal names. The NET LIST may
be input manually or by file.

END — used to signal the termination of the NET LIST.

WORGZ generates the COVER FILE for the routing phase containing the
environment fo r the mul til ayer boa rd and the EXTENDED NET LIST which lists

the interconnection requirements.

The WORGZ output file is developed by the following sequence of opera—
t ions:

a. Input statements are read and tables are established defining all
pin locations on the board.

b. The placement informatic a is read and a table is constructed de-
fining sockets , connector and test point pin positions , and unused
pins.

c. The NET LIST file is read , board coordinates are assigned to the
pins , and the number of pins and the NET HALF PERIMETER are com-
puted and recorded.

d. The NET LIST is then sorted for subsequent processing.
e. Each signal net from the sorted NET LIST file is processed in the

following manner:

1. Assign connector pin(s) where required , based on the connector
pin proximity to a net pin.

2. Analyze the net and issue printer diagnostics for sing le pin
nets and unident if iable  signal/pin combinations .

f. The GEOMETRY DATA is converted to (SMIP statements. The (SMIP
statements reflect all pins and any router restrictions .

g. The pin list is sorted again to produce the EXTENDED NET LIST
(ENL). The (SMIP s t a t e m e n t s  and ENL are  w r i t t e n  to the WORGZ
output f i l e  and WORGZ terminates .

63

- —.. ., 
‘‘•.• .

~
.- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _, _ -_. ~~~~~~. _____



5.2.3 PROUTE Program

The printed circuit router (PROU TE) pr og ram generates socket , connec-
tor , and test point interconnections from the COVER FILE information.
Signals are considered for routing in the order determined by WORGZ. The

router works with layer pairs of a board using the second layer only when
necessary . The program routes as many signals as it can on these two
layer s and then creates another layer pair to make the remaining connec-
tions. This process continues until 1) all the signals are routed , 2 ) the

user—p icked layer limit is reached , or 3) the program layer  l imi t  of 16
layers is reached. If the router fails to comp lete the interconnec tions in
the nu mber of layer s ass i gned by the user , a d e t a i l e d  FA IL L I S T  is
generated . For example, if the user restricts the router to two layers and
at least three are required to route all the signals , a FAIL LIST would
appear listing the signais and unmade connections.

PROUTE is capable of two directions of routing :

a .  X/Y  — in which routing for layer one is primarily in the X board
direction (except for one grid changes in the Y board direction);
and fo r layer two routing is p r imar i ly  in the Y board d i r ec t i on
(except for one grid changes in the X board direction). All
layers other than these use routing in both the X and Y direc—
t ions.

b. FO UR DIRECTIONAL — in which rou t ing  is in both X and Y board
directions.

The user has the option of choosing the method used. The designer should
oversee the operation to assure good design techniques. PROUTE is also
capable of HIGH DENSITY or STANDARD DENSITY routing. HIGH DENSITY with X/Y
directional routing provides the most efficient use of the board space.

The success of automatic computer layout is influenced by the restric-
t ions used and the routing area available . When restrictions are imposed ,
manual intervention may be required to assist PROUTE. As restrictions be-
come severe , intervention may approach the amount of effort required for a
totally manual design. The main factors involved are the number of layers
Involved; number of component sockets , connectors , test points used; the

~~~t the printed circuit board ; and the permission to place feed—thrus.

64

— - -.‘.- a-’- ~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.—,..- .-

~~~~~~~~~ —
_
~.~1



There are three options available for feed thrus:

a. PROUTE is given freedom to place feed—thrus where they are needed .
b. PROUTE is limited to user—defined locations.
c. No feed—thrus are allowed. Layer to layer interconnections are

made by the component socket pins , connectors , and test points
(since the y extend to all layers).

Best results are obtained by a l lowing  PROUTE to p lace f e e d — t h r u s  where
needed.

The input to PROUTE is the output from WORGZ plus some control infor-
mation such as the maximum number of layers for the PCB.

The output is the SOLUTION FILE containing the X—Y board coordinates

of all the interconnecting segments generated . The form is signal name to

component socket of the or igin of the route , the component socket of the
ta rget of the route , and a post processor f ield.  A statistical summary is
printed containing the number of signal nets input , the number of connec-
tions to be made , the number of connections made , and the number of connec-
tions not made (fails).

5.2.4 MLPLOT Program

The multip le layer plotter (MLPLOT) assembles a line printer plot of
the boa rd layout showing the routing of all interconnections and any user
app lied routing restrictions. Any layer or all layers are printed depen-
ding on the PARAMETERS input. A group of statistics showing the number of
cells used , total number of cells , and the percentage of the PCB is printed
after each total plot. Also shown are the number of feed—thrus , pins , line
segments drawn, and signal nets.

The input to MLPLO T is the output from WORGZ and PROUTE plus some con-
trol parameters. The plot parameters control the type output , layers to be
printed , location of X,Y axes, board origin location , size of board , and
whether restrictions are to be printed.

The following types of printouts may be obtained from the MLPLOT pro-
gram when used in conjunction with the WORGZ program or with the WORGZ and
PROUTE programs :

65

- —.
‘ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —~~_ .~.• . .~ - - —--• - -



a. WORGZ and MLPLOT only produce a plot of the board components sock-

ets , connectors, and test points without interconnections ;

b. WORGZ, PROUTE, and MLPLOT produce:
1. Plot of board component sockets, connectors , and test points

connected;
2. Plot of board component sockets, connectors , and test points

unconnected.

66

- -~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ - - ~~~~~~~~~~~~~~

-

-~~~~~--~~~~~ -

SECTION 6
INTRODUCTION TO SCELL/MOSTRAN, CELL LAYOUT

AND TRANSIENT ANALYSIS PROGRAMS

This chapter describes the purpose and capabilities of the Computer
Aided Design (CAD) SCELL/MOSTRAN programs used in the design of Intergrated
Cell Layout and Circuit Transient Analysis. Figure 6.0—1 depicts the func-
tional relation between the SCELL/MOSTR.AN programs and the remaining CAD
programs.

6.1 GENERAL DESCRIPTION

The purpose of the SCELL/MOSTRAN programs is to provide a tool to
assist in the geometry design and circuit simulation analysis of integrated
circuit metal—oxide—silicone (MOS) cells. Designed MOS cells are cataloged
and stored along wi th all necessary cell geometry and circuit parameters
onto a master library to be later used by the intergrated circuit chip lay-

out progr ams

6.1.1 SCELL Program

The SCELL program is a general purpose cell layout program for design-
ing metal—oxide—silicon (1405) cells used in integrated circuits. Based on
a library of basic device configurations, defined for each new technology,
it provides a rapid and accurate means of defining cell geometries , that

is, the placement and interconnection of devices that form a cell.

Since the SCELL program maintains a library of commonly used , com-
pletely described devices, the user is required only to input the desired
spacing, placement constraints, device parameters , and valid interconnec-
tions. The program builds a picture of the cell in memory and performs a
series of automated checks . At all stages of development in the cell
design, the user controls the actual functions performed~ selecting those
necessary to each phase of design. The SCELL program is not a synthesis
program , but is a design verification program.

Automatic design rule checks and net checks are the most powerful
functions of the SCELL program. Design rules including width and spacing ,
both for masks taken individually and unique combinations of masks taken

together , are rigorously checked. —

67

_ _ _ .
- -

DESIGN DESIGN
CONCEPT STANDARDS

~~~~~~~FTWARE ii

LOGIC DESIGN DATA FLOW
SCHEMATIC

LWRARIES FUNCTIONAL
SUBS FLOW

LOGIC TIMING
DATA BASE SIMULATION DIAGRAM

MANAGEMENT LOGIC 4
LIBBER

CHIP
LOGIC

CON VRT

CHIP
DESIGN

PRF
,~~

C IP DESIGN OR
DESIGN MODIFICATION

CHPCHP
DATA BASE

MANAGEMENT
LIBBER

CELL TEST CHIP
MOSTRAN TEST

MCHPCI(

PLOTTER

SIGNAL-PIN FAULT
CHIP ASSIGNMENT SIMULATION
MANUFACTURE ASSIGN LOGIC 4

TEST
SEQUEN CE

STRING VERIFICATION
LIST & DIAGN OSTICS

THERMAL STRUCTURAL
ANALYSIS ANALYSIS
SINDA SAP IV

ISOLATION
PRINTED CIRCUIT TABLE &
BOARD LAYOUT DIAGNOSTICS

PCPRA

COVER
FILE

SOLUTION
MICROWAVE FILE
NETWORK

MAGNET PLOTTER

INAL FINAL
BOARD BOARD
MANUF ACTURING TEST

Figure 6.0-1. CAD Functional Block Diagram Emphasizing the SCELL/MOSTRAN Programs

68

~~~~~~ 
_ _ _ _ _

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- - -~~w~~~~ _ _



Interconnect nets are checked to ensure connectivity, detect shorts ,
and identify extraneous material. During the net check, process variables
such as lateral dif fus ion and mask misal ignment  are simulated; and elec-
trical parameters including actual device geometries , load capacitances ,
and coupling capacitances are calculated. These electrical parameters are
used as inputs to the MOSTRAN program.

6.1.2 MOSTRAN Program

The MOSTRAN program provides a highly accurate simulation of circuit
dynamic operations . This program is an automated design tool for use in
analyzing MOS transient circuit performance and displays the output either
as a list or as a plot of current (I), voltage (V), or power (P).

The dynamic s imulat ion of MOS c i r c u i t r y  involves the simultaneous
solution of a set of nonlinear differential equations . In the case of
MOSTRAN , these are nodal current Kirchhoff’s equations. The method of
solution is a numerical integration technique utilizing a variable time
increment to achieve reasonable accuracy within reasonable computing times.

While the user is not required to have any programming knowledge , or
even a detailed familiarity with the method of solution of the differential
equations , an awareness of the basic modeling equations is valuable because
of inconsistencies in the values of process constants across industry. The
evaluation equations are included here so that the user may determine his
process parameters according to the equations used. The symbols used
throughout this discussion are defined in Table 6.1.2—1.

The evaluation is based on the four time samples shown graphicall y in
Figure 6.1.2—1. During normal operation , the voltages for each network of
devices tied together by the user—defined net list is calculated by deter-
mining the total current charging the load capacitance of that network.
The basic equation is :

dv = (I Dcdt 3 + Cdv)/CL

where ‘DC is the dc current contribution into the net and Cdv is t r ans i en t
coupling into the net due to paras i t ic  capaci tances .  All  components  of
these two term s are based on known values of current and vol tage at times

and t3 to calculate new values at t4.

69

- —
‘ ~~

‘—:
-

• 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
S~~~~~~~~~~~ —w—.-~~--— - -_ - -

~~ ~~~~~~~~~~~~~~~~ —

TABLE 6.1.2.1 Symbols Used

SYMBOL DEFINITION

dc current into a net in mA

‘PS
Drain source current in mA

Cdv
Parasitic capacitance times the v’ ltage
differen t ial from t imes t2 to t3

t1, t2, t3 t4
Four times comprisi ng time window in nsec

dt1, dt2, dt3 Time differentials between time samples

CL net load capacitance in pF

CGS, CGD Gate-source, gate-drain parasitic capacitances
in pF

Rp R5 Drain and source resistors in kohms

VG, V~ VD
Gate, source, drain voltages in volts

VT V1~
Threshold voltage, initial threshold voltage in
volts

K, K~
Gain, initial gain in mohos/volt 2

W, L Width, length of device in hundredths of a
mU

d Lateral diffusion in hundredths of a mu

70

— r —-- - ~~~~~~
— - _ _ _ _ _ _ _ _ _

- - - f .4.

~~~~~~~ - L ~~~~~~~~~~~~~~~~~~~~~~~



— 

dt1 dt2 ~

Figure 6.1.2-1. Time Window

DRAIN DRAIN

COD COD
N0 RD

GATE GATE SUBSTRATE — ~ j

C65 C6s

SOURCE SOURCE

Figure 6.1.2~2. The P-Channe l and N-Channel Models

71

__ - 
- -- 

—--p---. —~~~~~~~~~~
-- - -

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
r -

~~~~~c~~ ’- if ‘

~~~~~~~~ ~~~~~~~~~~~~~~~~


Figure 6 .1 .2-2 i l lustrates the two basic models u t i l i z e d by MOSTRAN ,
one for P—channel devices , the other for N—channe l devices. Except fo r
sign changes , the two models are ident ica l and onl y the N—channe l model
will be discussed.

For the transient contribution , Cdv is cumulated for each device tied
to the net being evaluated according to which mode of that device is con—

nected:

Source : Cdv = Cdv + CGS(VG)t3)~VG(t.2
))

Drain: Cdv = Cdv + CGfl(VG(t3)~VG(t2
))

Gate: Cdv = Cdv + CGs(Vs(t3)—Vs(t2))
+ CGD)VD(t3)—VD(t2))

Other capacitors coupling into that net are included with similar

equations .

The dc current contribution is based on the equations developed by
T.C. Sah, modified to account for source/drain resistors.

V GS = VG — V5 — Idg(t3)RS
V DS = VD - V~

— IDS(t3)(RS + RD)

For the three regions of operation , the current equations are:

I
Ds

(t L4) K (2 V
DSIV GS

— V
T I — VDS) for (VGS

— V
T
) > V DS

IDS (t14) K (V
GS

— VT
) for (VGS

- VT) < VDS

IDS (t14) 0 for (V
GS

— VT)
~~. 0

Where VT is corrected for body effect as:

V~~ + BE

and K is corrected for slope as:

K — K ie A (V GS — V T) .

72

-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~ 
- Ii ~ TTT~ I

The initial value of K is corrected for latera l dif fusion as~

Ki K1 (W/ L — 2d)

The equations fo r the diod es are simple exponentials and the discrete re-
sistor model is evaluated with a straight forward I = (V 1 — v2) R equa-
tion.

Figure 6.1.2—3a illustrates how the time window is moved forward as
the analysis proceeds in time with no error detected. Error control is
based on a recalculation of the ~V2 based on the new currents just cal-
culated . The d i f f e rence between the old and new values of ~~~ is then
compared against a two—sided threshold. If the error is less than the
minimum threshold for all nets , the next dt is increased as shown in Figure
6. 1.2—3b. If the error is greater than the maximum threshold for any net ,
however , the time window is stepped back as shown in Figure 6.1.2—3c , the
dt is halved , and processing continues again from that point . Maximum dt
is limited by the program to one—tenth of the smallest bit time or 10 nsec ,
whichever is smaller. The user may input initial dt , the maximum dt , and
the two thresholds under General Parameters if he desires.

6.2 FUNCTIONAL DESCRIPTION

The user shou ld be awa re of three basic types of data when using the
SCELL and MOSTRAN programs . These data types are :

a. Rules data , which is data unique to a t echno logy and is app l ied
uniformly to all designs under that technology. It is initiall y
defined , careful ly checked , and then centrally stored for use by
all designers. The integrity of this data is paramount since it
af fec ts all designs .

b. Design data , which is unique to each cell design . It is def ined
during the design process and is changed frequently until a design
is complete. Once a designer completes his design , this data must
be protected against inadvertent change .

c. Control data , which is transient in nature and changes from run to
run. It controls program usage and is not retained once a design
is complete.

73

.v. - -
~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-— — 

- -



t2 4
STEP1 I ~1 I dt2 I dt3

t1 t2 t3 t4

— 

STEP 2 F at1 I ~2 I dt3 -1
A. NORMAL SEQUENCE

MINIMUM THRESHOLD

4 ~~~~~~~ 
ENCOUNTERED

STEP 1 1 dt2 d13

12 t3 14

STEP 2 1 a~1 I at2 I dt3

B. INCREASE SEQUENCE

MAXJMUM THRESHOLD
t1 t2 t3 14 ENCO UNTERED

STEP 1 dt1 dt2 dt3

t2 t3 14
STEP 2 I dt2 I ~~ 

I
12 t3 14

STEP3 
at1 I d t 2 l . f t3 

I
tI t2 t3 t4

STEP4 I 
~ 1 g~2 I ~3 I

C. DECREASE SEQUENCE

Figure 6.12-3. Time Step Sequence

74

,.. . —‘ 
~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~ ~~~~~- - - ... , —


Typical use of the SCELL and MOSTRAN programs is illustrated in the
flow diagram shown in Figure 6.2—1.

Design of a cell family beg ins with the definition and testing of
Rules Data. The following data categories are loaded in a MASTDESIGN file
for the Technology Data Base for use by all the designers :

a. CAPAC ITANCE
L b. COMPOSITE CHARACTERS

c. DESIGN RULES
d. GENERAL PARAMETERS
e. GLOBAL PARAMETERS
f . LIBRARY OF DEVICES
g. TYPE/MODEL ASSIGNMENTS

Retrieval of this data is based on keys to the data base used at each
phase of design.

A f t e r the MASTDESIGN library is established , the cell design (see
Figure 6.2—1) can proceed based on the following rules :

a. Each designer defines a design structure for each cell as shown in
Figure 6.2—2.

b. Each design is cataloged under the cell name with the following
types of files allocated :

(1) DESIGN file —— working space for data defining the cell under
design including PLACEMENT CONSTRAINTS , NET LIST , CIRCUIT
PARAMETERS , INITIAL CONDITIONS , APPLIED SIGNALS , and OUTPUT
CURVES Categories.

(2) GEOMLIB file —— cell geometries as output from the SCELL pro-
gram.

(3) PARALIB file —— cell terminal descriptions as output from the
SCELL program .

(4) XCAPS file —— cell electrical characteristics as output f r om
the SCELL program.

A designer initiates his design typically by loading MOSTRAN input
data on the DESIGN file for a rough approximation of circuit performance
based on his estimates of the circuit parameters. If the designer has
access to graphics equipment , his NET LIST can be derived automaticall y
from the circuit schematic .

75

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~ ~~~~~~~ ~~ —~~ -. - — - --- - —- - - -~~~~~~~~~



F’

!

~~
U

W I W10
4

4
4 .4z S. =5.

0 ~~~~~

‘~ rW 114 
—-J 0
0

j  
‘U114 -,

0 1
4 UIu

4 
~~ ÷ l~~ C,

Ux
0

1 —UI
I’ 0o 

a_ _ _  + UI
0 >.

_I~~,l _i a.
114W
.15.

2
U-

IA 154 0
— 0I-

0
4 Z U. — 05. C~J

W~~~ UI
0 4 . 4  0

04
15

I
14

a.4 114

~ I- C:)
-i

~~ z 
~J

I_ _iU
~~

4 *-~~~

0
UI

15

+UI
0+ UI

0

-I—
-IS.
W W

76

- —‘ ~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~ ~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * 

— .
~~~~



a. Design Rule checks.

b. Detailed Net check.

c. Calculation of detailed Circuit Parameters , includ ing al.1 load and

coupling capaci tances. This data is written onto the XCAPS file

for future use.

If there are no desi gn rule or ne t v io la t ions , the des igner  can now
rep lace his rough approximation of the Circuit Parameters by mov ing  those
on the XCAPS file to the DESiGN file and making a final MOSTRAN program ru n
to de termine if performance is as expected . The step 2 SCELL progra m run

and the MOSTRAN program run are retained as final documentation of the

design. The XCAPS file is no longer ~eeded (its data having been incor-

porated into the DESIGN file) and can be released .

The design is technically correct at this point , and all tha t r emains
is to bu ild the en tr ies per ta in ing to this  cel l  on the Techno logy  Da ta
Base. A final SCELL program execution (step 3) performs the following :

a. Loads the DESIGN file onto the MASTDESIGN file from which all sub—

sequent data is derived .

b. Calculates total net capacitance and builds a Cell Parameter entry

on the PARALIB file.

c. Generates final artwork for the cell on the GEOMLIB file.

The step 3 SCELL program run is reta ined for final documentation.

Since it derived its input dat~i from the MASTDESIGN file , wher e it was
f iled under its famil y name , the final version of the data is retained for

archival  purpose. The PARALIB a::d GEOMLIB files include traces that iden-

tif y the da ta and run number of the step 3 execution for configuration con-
trol. The DESIGN file , no longer  needed s ince  da ta now res ides on the
MASTDESIGN f ile , is now released.

Data on the PARALIB and GEOMLIB files are finally merged with the mas-

ter files. MASTPARALIB , and MASTGEOMLIB, respectivel y; and the temporary

files are released . The MASTMACROLIB file , con ta ining functional descrip-

tions of the cells for use in logic simulation , is prepared manuall y and
carefully checked for accuracy. At the conclusion of a cell family design

effort , all data finall y resides in these four files on the Technology Da ta
Base :

78

~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~ ‘~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ••_ 4. — ,— .— •~~ ~~~----——-~~ ‘

.- - - —

_ _ _ _ _ _ _ _ _ _ _ _ _  - - - - - - -



.‘ A0 A073 363 RESEARCH TRI ANSLE INST RESEARCH TRIANSLE PARK N C F’S WI• AFAI . SI*SATIO W FACIL I TY / CAPAS I L I TY MANUAL. V04.UI€ I I .  EXCCUT I V—E TC U
PU 75 R I LW F33615—75—C-1305

WCL AUIF 1W ArALeT*eTTal 15 V0L.a II.

U. .

_ _ _  

_NI
_ _ _ _ _  

_ I

H



I ~~ I~ ~ 2.8 2.5
I . V L ~~~~

______ 

L 
~~~ 1H12.2
L ~~~

I. ’ ~
III~I~111111.25 IUIU~ wo~

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STA NDARDS~1%3

CELl. DATA BASE

~III~~
LL

~~~~~~~~ 
2i1

,
,
,,
,,

~ 

_________ _________

Qisuc~~) (~EOML~~) (~~~A~~~) 
XCA1

~I)
Figure 6.2-2. Cell Design Working Structure

Once the designer is satisfied with the estimates of transistor sizes
and other parametric data , placement data is added to the DESIGN file
manually from a hand—down layout. An initial program run (step 1) is now
made through the SCELL program to perform:

a. Input format checks.
b. Initial net consistency checks.
c. Printer plot.
d. Generation of artwork on the GEOMLIB file for a pen and ink plot.

The major concern at this point is to determine if the cell is coded as

intended before more detailed checks are performed.

Having successfully coded the cell placement , the designer proceeds to
a more detailed analysis to the cell (step 2) by performing the following

functions:

77



a. Design Rule checks.

b. Detailed Net check.
c. Calculation of detailed Circuit Parameters , including all load and

coupling capacitances. This data is written onto the XCAPS file
for future use.

If there are no design rule or net violations , the designer can now
replace his rough approximation of the Circuit Parameters by moving those
on the XCAPS file to the DESIGN file and making a final MOSTRAN program run
to determine if performance is as expected. The step 2 SCELL program run
and the MOSTRAN program run are retained as final documentation of the
design. The XCAPS file is no longer needed (its data having been incor-
porated into the DESIGN file) and can be released.

The design is technically correct at this point , and all that remains
is to build the entries pertaining to this cell on the Technology Data
Base. A final SCELL program execution (step 3) performs the following :

a. Loads the DESIGN file onto the MASTDESIGN file from which all sub-
sequent data is derived.

b. Calculates total net capacitance and builds a Cell Parameter entry
on the PARALIB file.

c. Generates final artwork for the cell on the GEOMLIB file.

The step 3 SCELL program run is retained for final documentation.
Since it derived its input data from the MASTDESIGN file , where It was
filed under its family name , the final version of the data is retained for
archival purpose. The PARALIB and GEOMLIB files include traces that iden-
tify the data and run number of the step 3 execution for configuration con-
trol. The DESIGN file , no longer needed since data now resides on the
MASTDESI GN f ile , is now released.

Data on the PARALIB and GEOMLIB files are finally merged with the mas—
ter files. MASTPARALIB, and MASTGEOMLIB, respectively; and the temporary
files are released. The MASTMACROLIB file, containing functional descrip-
tions of the cells for use in logic simulation , is prepared manually and
carefully checked for accuracy. At the conclusion of a cell family design
effort, all data finally resides in these four files on the Technology Data
Base:

78

________________________________ -



a. MASTDESIGN file —— Contains all rules and design data accumulated
during design. Saved for archival purposes.

b. MASTPARALIB file —— Contains terminal characteristics of the cells
for use as rules type data by the chip design programs.

c. MASTGEOMLIB file —— Contains geometric descriptions of the cells
for use in generating chip artwork.

d. MASTMACROLIB file —— Contains logical or functional descriptions
of the cells for use in simulation, test word genera tion , and test
word verification of chips.

Data for the cell notebook is derived from these master files. Any
data generated as a result of program execution contains traces that iden-
tify the job number and date of the run generating that data. This is re-
tained in the final documentation.

&3 SCELL PROGRAM FUNCTIONS

The following categories and directives are used in the SCELL program:

a. BULK MANIPULATION Category
b. CAPACITANCE Category
c. COMPOSITE CHARACTERS Category
d. CONTROL Category
e. DESIGN RULES Category
f .  EXECUTE Directive
g. GLOBAL PARAMETERS Category
h. LIBRARY Category
i. NET LIST Category
j . PLACEMENT CONSTRAINTS Category
k. RUN HEADER Category
1. STOP Directive

6.3.1 BULK MANIPULATION Category

The BULK MANIPULATION category permits the orientation of an entire
cell to be changed , or some portion of the cell to be altered in heigh t or
width.

79

—% 

~~~~~~~~~~ ~
_ j a.-- — .—

6.3.2 CAPACITANCE Category

The CAPACITANCE category provides information needed to verify elec-
trical interconnections within the cell and to calculate net—to—substrate
and net—to—net capacitances. It also contains a description of how the
as-drawn geometries are modified during actual processing.

6.3.3 COMPOSITE CHARACTERS Category

The COMPOSITE CHARACTERS category supplies data needed to produce a
graphic representation of the cell on the line printer.

6.3.4 CONTROL Category

The CONTROL category specifies unit numbers of all input and output
data files accessed or created by the program. This category also speci-
fies which program options are desired. These options include information
on program control , I/O units and general program parameters.

6.3.5 DESIGN RULES Category

The DESIGN RULES category checks that the geometries of a cell are
valid within the constraints Imposed by the minimum and/or maximum spacing
between boundaries. This category also checks for invalid overlays of mask

levels.

6.3.6 EXECUTE Directive

The EXECUTE directive specifies the end of input data , enabl ing the
processing to begin. This directive also specifies the access keys to con-
trol the retrieval of data from the MASTDESIGN library.

6.3.7 GLOBAL PARAMETERS Category

The GLOBAL PARAMETERS category permits the user to specify device
dimensional variables in addition to those specified on the first device

description statement listed in the Library of Devices.

80

-
~~~ 

- —u—- --
~~~~~~~- ,-~~~~~-


6.3.8 LIBRARY Category

The LIBRARY category permits the user to use the LIBBER library manip-
ulation package during the cell input phase.

6.3.9 NET LIST Category

The NET LIST category specifies the electrical interconnections of de-
vices, terminals, and buses in the cell by listing all the nodes connected
to one another.

6.3.10 PLACEMENT CONSTRAINTS Category d

The PLACEMENT CONSTRAINTS category determines where and in what orien-
tation , devices, interconnects, buses, feed—thrus, terminals, polygons, and
rectangles are placed to form a cell, and also provides the scale and size
of the cell.

6.3.11 RUN HEADER Category

The RUN HEADER category identifies the cell being run.

6.3.12 STOP Directive

The STOP directive signifies the end of the program and terminates
execution.

6.4 MOSTRAN Progra m Functions

The following categories and directives are used in the MOSTRAN pro-
gram:

a. APPLIED SIGNALS Category
b. CIRCUIT PARAMETERS Category
c. GENERAL PARAMETERS Category
d. INITIAL CONDITIONS Category

e. MERGE Category
f. MODIFY Category

81

~~~1 ,~~~~
—

~~~
--

,—~~~ ‘w~ ~~~~
— —

~
-
~~~ 

——---— -w-



g. NET LIST Category

h. OUTPUT CURVES Category

i. RUN HEADER Category

j. SIMULATE Directive
k. STOP Directive
1. TYPE/MODEL ASSIGNMENTS Category
r n .  UNIT NU MBERS Category

6.4.1 APPLIED SIGNALS Category

The APPLtED SIGNALS category describes the types of signals that serve

as inputs to the circuit being simulated.

6.4.2 CIRCUIT PARAMETERS Category

The CIRCUIT PARAMETERS category contains all the parameter data about

the circuit to be simulated.

6.4.3 GENERAL PARAMETERS Category

The GENERAL PARAMETERS category contains all the parameters common to

a process and shared by the various designs using that process.

6.4.4 INITIAL CONDITIONS Category

The INITIAL CONDITIONS category permits internal nodes to be assigned

an initial voltage.

6.4.5 MERGE Category

The MERGE category signals the MOSTRAN prog ram to begin input from

library device and to interconnect cells as specified by the SCELL

statements.

6.4.6 MODIFY Category

The MODIFY category modifies a circuit just run without duplicating or

reprocessing the entire input of statements.

82

~~~1 

~~~~~~~~~~~~~~~~~~~~~~~~~~~ -



6.4.7 NET LIST Category

The NET LIST category contains a set of strings of device node pairs

describing the electrical connections between components. This category is

shared with the SCELL program.

6.4.8 OUTPUT CURVES Category

The OUTPUT CURVES category describes the basic types of output re-

quests that are permitted.

6.4.9 RUN HEADER Category
I

The RUN HEADER category identifies the cell being analyzed .

6.4.10 SIMULAT E Directive

The SIMULATE directive specifies the end of input data and proceed

with the setup and simulation phases of execution.

6.4.11 STOP Directive

The STOP directive signifies the end of the program and terminates

execution .

6.4.12 TYPE/MODEL ASSIGNMENTS Category

The TYPE/MODEL ASSIGNMENTS category simulates the electrical charac-

teristics of the devices on file in the Library of Devices.

6.4.13 UNIT NUMBERS Category

The UNIT NUMBERS category specifies the FORTRAN Logical Unit number to

be used for input or output.

6.5 PROGRAM OUTPUTS

The expected outputs from the SCELL and MOSTRAN programs are listed in

Tables 6.5—1 through 6.5—5 along with a description of the outputs.

t 
_____ 

83

- -- .. .-,_..
~ ‘~~~~
_

~
-•‘

.—
‘ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —~ ~~ - - - -. 
~~

_ _
~~~ -—w..~--,-_-.-_.__~~ .___ — -



TABLE 6.5-1 SCELL Program (Step 1) Output Description

OUTPUT DESCRIPTION

PLACEMENT checks the PLACEMENT CONSTRAINTS category and
provides warnings for improper PLACEMENT CON-
STRAINTS.

INITIAL NET CHECK Makes an initial net check of the program.

CELL COMPOSITE Provides a graphic representation of the cell using the
COMPOSITE CHARACTERS category.

ARTWORK GENERATiON Provides the values for each level of artwork generation.

TABLE 6.5.2 SCELL Program (Step 2) Output Description

OUTPUT - DESCRIPTION

PLACEMENT Checks the PLACEMENT CONSTRAINTS category and
provides warnings for improper PLACEMENT CON-
STRAI NTS.

INITIAL NET CHECK Makes an initial net check of the program.

CELL COMPOSITE Provides a graphic representation of the cell using the
COMPOSI TE CHARACTERS category.

FINAL NET CHECK Checks Net-to-Substrate capacitances and circuit
parameters.

DESIGN RULE CHECK Checks the DESIGM RULES category and provides
warnings for improper DESIGN RULES.

84

p.. ‘-.. ~ 
~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -

- — 
_. —



TABLE 6.5-3 SCELL Program (Step 2A) Output Description

OUTPUT DESCRIPTION

PLACEMENT Checks the PLACEMENT CONSTRAINTS category and
provides warnings for improper PLACEMENT CON-
STRAINTS.

INITIAL NET CHECK Makes an initial net check of the program.

FINAL NET CHECK Checks Net-to-Net Capacitances and Circuit Parameters
taking lateral diffusion into account.

I

TABLE 6.5-4 SCELL Program (Step 3) Output Description

OUTPUT DESCRIPTION

TOC Lists the Table of Contents for Library unit specified.

PLACEMENT Checks the PLACEMENT CONSTRAINTS category and
provides warnings for improper PLACEMENT CON-
STRAI NTS.

INITIAL NET CHECK Makes an initial net check of the program.

CELL COMPOSITE Provides a graphic representation of the cell using the
COMPOSITE CHARACTERS category.

FINAL NET CHECK Checks Net-to-Net Capacitance and Circuit Parameters.

ARTWORK GENERATION Provides final values for each level of artwork generation.

85

11 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~ -~~~.--~~~ - ---, - — -- - --______ 

. .. . - . . . - . . . . - - --- 

-

~~~~~~~~~

- --

- TABLE 6.5-5 MOSTRAN Program Output Description

OUTPUT DESCRIPTION

SETUP PHASE:
GENERAL PARAMETERS Lists Genera l Parameters and their values.

CIRCUIT PARAMETERS Lists Circuit Parameters for devices used in design.

PARASITIC CAPACITORS Lists the capacitors and device numbers.

TOTAL NET CAPACITANCE Lists the capacitance values of the different nets.

EXECUTION PHASE:
DELTA TIME Gives minimum Delta time and maximum Delta

time.

AVE POWER CONSUMED Lists average current, peak current, and time for each
FOR PERIOD applied signal.

LIST OF NODE VOLTAGES Lists the node voltages for the different devices.

LIST OF DEVICE CURRENTS Lists the device currents for the different devices.

PLOT OF NODE VOLTAGES Provides a graphic plot of the node voltages.

PLOT OF DEVICE CURRENTS Provides a graphic plot of the device currents.

86

p. - -
~~~ 

~~~~~~~~~~~~~~~~~~~~ 
.

SECTION 7
IC LAYOUT PROGRAMS

7.1 INTRODUCTION

The Computer Assisted Design (CAD) chip layout programs are designed

L to aid the design engineer in generating the data necessary for automated
chip fabrication, starting with a logic design and utilizing cell defini-
tions in the cell parameter library.

7.2 PROGRAM DESCRIPTIONS

The chip layout programs perform three primary functions: conversion
of input data , chip layout , and checking of chip layout. These functions
are performed by four programs:

a. CONVRT (input data conversion)
b. PRF (chip layout with automatic placement)
c. CHPCHP (chip layout with user placement)
d. MCHPCK (layout checking)

The interaction between these programs is illustrated in the block diagram
shown in figure 7.2—1. FIgure 7.2—2 depicts the functiona l relation be-
tween these four programs and the remaining CAD programs.

7.3 PROGRAM OPERATION

Data required to run the programs Is fed to CONVRT to be processed and
put in a form acceptable to PRF. The PRF program then accesses the files
produced by CONVRT and processes these files to place the cells , connect
them as required , pr~

’vide input and output pads, and to provide data neces-
sary f or ar twork preparation and plotter display input , and to provide a
line printer disp~~y of chip layout. The CHPCRP program may be used to
modify the PRF placement or, alternatively, to allow the user to design his
own chip. The ~esulting output of PRF (or CHPCRP) is then applied to the
MCHPCK program , which tests these results for calculation of capacitance
values of all wires and cell inputs.

87

~

-_— - - - --

1 ~~~~

-

~~
- . -

~~~~~~~~~~~~~~ - 
-



~ T c
~~~~~~~~~~

IER
~~~~~~~~ E

_ _

PLACEMENT •~~HPCHp

CIRCUIT ________

TYPE
FILE

( CELL
________________________ PARAM 

-

________________

ETER LIB

Figure 7.2-1. Chip Layout Programs, Block Diagram

7.4 INPUT DATA CONVERSION—CONVRT

When the engineer is su f f i c ien t ly  satisfied with his logic desi gn a nd
simulation to begin laying out a chip ,  he must select ce l l s  f rom the cell
parameter l ibrary to perform the logical operation required by each element
of his design. During simulation in LOGIC 4, signal names are a~.signed to
each interconnection between elements , chip inputs , and chip outputs.
Also , a unique tag is assigned to each element , chip input , and chip out—
put . - Althoug h the data  used f o r  logic s i m u l a t i o n  may be s u f f i c i ent to
def i ne a chip when simulation is completed , it is not st r u c t u r e d  p r o p e r l y
fo r input to the chip layout programs . The result ing cel l  types  ( p a t t e r n
numbers), signal names , and tags constitute the logic file which is input
to CONVRT. Rest r u c t u r i n g  these da ta  is the f u n c t i o n  of the input  data
conversion program , CONVRT .

The inputs to CONVRT ar e the logic deck , the PRF input paramete rs , and
the cell parameter library. These inputs are processed by CONVRT to

88

~~~~

- T~
T
~ ~~~~~~~~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -  
~~~~~~~~~ ~~~~~

- - - — — -
~.- - —

/

DESIGN DESIGN ____________

CONCEPT STANDARDS _____________

[CAD SOFTWARE

LOGIC DESIGN DATA FLOW
SCHEMATIC

IBRARIE
MACROS FUNCTIONAL

FLOW

LOGIC TIMING
DATA BASE SIMULATION DIAGRAM

MANAGEMENT
~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ 

LOGIC 4
LIBBER

CHIP
LOGIC

CONVRT

- CHIP
DESIGN - - -

PR F

CELL CHIP DESIGN OR
DESIGN . MODIFICATION

H CHPCHP -

F DATA BASE
MANAGEMENT

- LIBBER
CELL TEST CHIP
MOSTRAN TEST

- MCHPCK

PLOTTER

I NAL-
CHIP ASSIGNMENT SIMULATION

MANUFACTURE ASSIGN LOGLC 4

TEST
SEQUENCE

STRING VERIFICATION
THERMAL STRUCTURAL LIST & DIAGNOSTICS
ANA LYSIS ANALYSIS

SINDA SAP IV 
_________

ISOLATION
PRINTED CIRCUIT TABLE &
BOARD LAYOUT 

COVER 

DIAGNOSTICS

FILE

SOLUTION
MICROWAV FILE

NETWORK
DESIGN

MAGNET PLOTTER

FINAL FINAL
BOARD BOARD

MANUFACTURING TEST

Figure 7.2-2. CAD Functional Block Diagram Emphasizing the Chip Layout Programs

89

S -

~ T ~~~~~~~~~~~ ~~~~~~~~ ~ ~~~~~~~~ 
- :



produce inputs to the PRF or CHPCHP program. Outputs of the CONVRT program

f or PRF are:

a. A list of cells being used , called assignment of gates to

pat terns ;
b. Cell descriptions and capacitances for the cell family being used ,

called the circuit type file; and
c. A description of cell interconnections, called the network list.

Outputs of CONVRT in the CHIP option are those required for input to

the manual chip layout program , CHPCHP. These outputs (both of which are
provided to aid the user in cell placement using CHPCHP) are:

a. A list of cells, and
b. A network list.

The portion of the logic design data used for simulation which defines
logical elements is used by the CONVRT program to produce the assignment of
gates to patterns for PRF and a network list , either for PRF or for user—

specified placement. The logic data in conjunction with PRF input param-
eters enables CONVRT to select cells and capacitances from the cell param-

eter library, and to create a circuit type file containing the required
cell information in correct format for input to PRF.

PRF input parameters are of two types. One type may be changed as

desired by the user. The other is fixed for a cell family. PRF input

parameters are used by CONVRT only to define input and output pad cells and
are passed through CONVRT without modification.

Each cell description in the cell parameter library contains a table
which associates pin numbers with signal name field numbers. In the PRF

option , the CONVRT program utilizes the logic design inputs to select the
required cell descriptions from the cell parameter library and place them
in the circuit type file , and to create a network list of electrically
common cell pin numbers on the basis of signal name fields.

PRF requires a unique , numeric local name (instance number) for each
cell that it places. The tags supplied to CONVRT are used unless CONVRT
runs in autosequencing mode. In autosequencing, ~ONVRT assigns a sequence

number (local name) to each log ical element fr om one upward and to each pad
f r om 298 downward (for a maximum of 298 call s/gates per chip) .

90



The logic design data supplied to CONVRT must include a statement for
each logical element and pad, defining a signal name for each element input
and output . Logical elements are named using cell types in the cell param-
eter library. Input and output pads are called IPIN and OPIN , respec-
tively. If an output buffer is included in a pad cell, the OPIN and buffer
cell statements are given the same tag number , and CONVRT defines a single
pad cell. Otherwise , standard pad cells from the PRF input parameters are
used.

The CONVRT program may also be run with the CHIP option. In this
option, CONVRT produces only a network list which can be used with MCHPCK ,
and a list of cells required. The user must supply placement data to
CHPCHP.

7.5 CHIP LAYOUT

Ch ip layout may involve any of three processes : automatic cell and
interconnect placement performed by PRF, chip modification aided by CHPCHP,
and user—specified placement aided by CHPCHP.

PRF performs automatic cell placement and wire routing on the basis of
input parameters for a particular cell family technology.

The initial inputs to PRF are all outputs of CONVRT: circuit type
f ile, assignment of gates to patterns, network list, and PRF input param-
eters. The following outputs are available from PRF:

a. Chip geometry file , used in chip fabrication.
b. Network list, which includes network capacitances. Due to auto-

matic reassignment of electrically equivalent cell pins, this list
may be different from the input list.

c. Initial placement matrix and interchange map , for use in iterative
runs of PRF.

d. A schematic plot of the chip.

CHPCHP can be used either to modify a chip layed out by PRF or to de-
sign a custom chip based on manually create4 input placement data . If
CHPCHP is used to modify a chip , a chip geoc.etry file created by PRF is
supplied to CHPCHP. Additional data to modify the chip must be supplied by
the user. To create a chip using CHPCHP , the user must supply data de-
fining locations to allow placement of cells from the cell parameter

91

a -.

~ T ~~ ~~~~~~~~~~~~~~~~~~~ ~~~w--~~~~~~~~- —~~~~ 
..—- —--. -



library and to place interconnect material. The output of CHPCHP is a chip
geometry file.

Chip geometries are defined in terms of X—Y coordinates in an ortliog—
onal grid. Chip geometry data consists of component sets and level sets.

7.5.1 Component Sets

Component sets specify the placement of cells (logical elements , via

holes , and pads) on the chip. Each entry of a component set defines the X
and Y chip coordinates of the cell reference point and cell orientation.
Orientation, specified by a digit between 0 and 7 refers to the rotation or
reversal (mirror—imaging) of the cell with respect to its definition in the

cell parameter 1tbrary.

7.5.2 Level Sets

Level Sets — which include line, shape, and symbol sets — specify the
placement of material other than standard cells on each level. This in-
cludes interconnect material , borders, and legends. A line set consists of
a line width followed by pairs of entries , each pair giving the coordinates
of the end points of a line. A shape set consists of the coordinates of
the corners of a polygon. The polygàn is formed by drawing lines between
consecutive coordinates , and finally by connecting the last coordinate with
the first. All lines in a shape Set must be parallel to the X or Y axis.
Symbol sets and complete text editing capabilities are available for

placing legends on the chip artwork.

7.5.3 Automatic Placement

PRF places cells and wiring automatically on the basis of rules for a
standard cell family technology which are selected by the PRF input param-
eters. Automatic placement of cells is accomplished on a 0.1—mu XY
coordinate system; resistance is in ohms, and capacitance is in pF times
1O~~. (Note that capacitances listed in the circuit type file are in pP

times iO~~~.) Placement and routing is performed in three steps:
preplacement , final placement , and wire routing.

PRF preplacement is optional. If performed , it results in an initial
placement matr ix  and an interchange map. The initial placement matrix is a
matr ix  of cel l local names showing cell relative position. Cell rows are
shown vert ically in the matrix. It always has an even number of cell rows,

92

1’ ~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~,.. 
-



r

and may contain dummy rows. The interchange map is a corresponding matrix
of digits indicating which cells are permitted to be interchanged during
final placement. Any cell positions with identical , non—zero digits on the
interchange map may be interchanged. Cells with’n groups may be inter-
changed within the group (but not with cells outside the group) by assign-
ing a unique digit to cells in the group. A zero prohibits interchange.
Pad cells must have a value of two on the interchange map.

During final placement , cells as well as log ica l ly  equ iva len t  cell
pins are interchanged by the program to improve wire routing . The wire
routing rout ines assume two levels of wiring, one predominantly horizontal
and one predominantly vertical. When placement and routing are completed ,
a new initial placement matrix and interchange map are generated reflecting
placement results. These may be used as inputs to a second run of PRF, by-
passing automatic preplacement , to attempt to further improve the layout.

The PRF input network list produced by CONVRT includes a weight for
each net , initially set to 100. If optimum wiring for certain nets is
critical , increasing weights for these nets will cause PRF to give them
special attention.

PRF prints an output net list , reflecting final routing and including
net capacitances between levels, for the total of cell pin and wiring capa-
citances. Network capacitances are derived from capacitance per unit area
inputs from the cell parameter library.

As already explained , the circuit type file and network list inputs to
PRF are generated by CONVRT, and PRF input parameters are passed through
CONVRT without change. Most PRF input parameters  are f ixed for  a tech-
nology. Parameters are in card image format, and consist of 11 card s with
18 four—column , right—justified fields per card. Only certain parameters

may be changed for a given technology by the user.

7.5.4 Chip Modification

The CHPCHP program may be used to modify the chip geometry file output
of PRF. CHPCHP has two capabilities for the modification of chip geometry,
bulk manipulation , and additional placement inputs.

93

—
‘ ~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ 

. — 
~~— - -  -‘-~ --- --- -- . . --- —~~~~~ —~~~~ - ~.



(

Bulk manipulation provides the capability to re—orient the chip, or to
expand or contract the chip area in height or width with respect to a
cut—line through the chip. A cut—line consists of horizontal and vertical
line segments and is specified by the X—Y coordinates of points where the
segments meet. A height cut—line is drawn from left to righ t and a width
cut—line  is drawn from top to bottom of the chip. Height is changed above
the cut—line and width is changed to the right of the cut—line . An example

— is shown in figure 7.5 .4— 1.

Figure 7.5.4—2 illustrates another use of the bulk manipulation com-
mand s in CHPCHP. In this example it is assumed that excessive crowding of
interconnect material has resulted in design rule spacing violations . To
reduce the crowdi ng along the X—axis at Y~ 3, the chip is being expanded
along a cut line X 0 , Y 3 .  After chip expansion , CHPCHP automaticall y
spreads out the existing interconnect material to utilize the additional
chip space.

Chip orientation is specified in the same manner as cell orientation
with a digit between 0 and 7.

Additional cells (logical elements , pads , and via holes) and inter-
connections may be placed on a chip by means of placement inputs to CHPCHP.
The details of placement inputs are described below under user—specified
placement. Unused components to be removed from the chip must be edited
out of the geometry data by a tex t editor p r io r  to inputting the file to
CHPCHP. All placement inputs are incorporated into the chip geometry file
before bulk manipulation is performed.

Since placement inputs are incorporated prior to bulk manipulation , it
may be advantageous to use successive runs of CHPCHP when adding cells to a
chip : one run to expand the chip, and a second run to place new cells ,
etc. Proceeding in this fashion eliminates some diagnostics which might
otherwise result.

7.5.5 User-Specified Placement

• By providing placement inputs to CHPCHP, the user can specify exactly

the placement of material on a chip through a more f l ex ible process than
direct specification of component sets, line sets , and shape sets in the
chip geometry file. Placement specifications to CHPCHP define cells and

94

- ___
1 

~~~~~~~~~~~~~~~~~~~~~~~~~~~ ,-~~~.-~~~
-__

~~~~ •—~~~~.——..- ~_ . - •
• 

_____________
~~~ ,—!;— ,~~~.


ORIGINAL CHIP

S

4

~J...._.___.__—_
~77 CELLS

X~~2 r— — —;/ —CUT-LINE

2

L____J

1 2 3 4 5

AMOUNT OF CONTRACTION: 2
CUT-LINE SPECIFICATION:

3 1 3 3
xl Yl X2 Y2

MODIFIED CHIP

S

4

1 1 1 [!i
1 2 3 4

Figure 7.5.4-1. Example of Hei~~t Contraction

95

S

— Y•--
rai ~~~~~ ~— i r~~~~~~~~~~~ I1~~~~~L ~~~~~~~~~~~~~~~~~~~~~~~

• - • - • -

-
‘

~~~~~~~~~~~~~~~~~~~~
-

•
- - - -  

- _
~~~~~~

-w- -
~~__ —

ORIGINAL CHIP:
___________ 3

~~~~~ CHIP: —

I

1 2 3 4 5
AMOUNT OF EXPANSION: I
CUT-LINE SPECIFICATION:

NEW CHIP 0 3
xl vi

• 

_ _ _ _ _ _

1 2 3 4 5

Figure 7.5.4-2. Example of Height Expansion to Reduce Interconnect Crowding

96

S ________________________________

~~~~~


describe locations on the chip for both cells and interconnect material .
User placement allows for defining diagonal line segments, thereby possibly
shortening interconnect length; whereas, automatic placement places inter-
connect material horizontally or vertically and, in general , does not use
diagonal line segments.

Cell definitions consist of a local name (instance number), lib r a r y
name (cell type, pattern number), and orientation digit. The location of
cells or interconnec t material may be specified either absolutel y with
respect to the chip origin, or relatively with respect to a previously—
defined location.

Relative cell placement is specified in terms of the X and ‘1 offsets
from a previously—placed cell origin or node (i.e., pin).

Relative interconnect placement (either pin—to—pin connections or bus
material placement) is specified in terms of successive points along the
interconnection. Points may be specified with the following terms:

a. TER —— a cell pin or bus node (bus nodes are numbered downward
from 99).

b. OFS —— X or Y offsets from the preceding point.
c. VIA —— a via hole placed at the location of the preceding point.

In relative bus placement , the TER specification causes material to be
placed so that it crosses the specified cell. For cell pin interconnec-
tions, placement with the TER specification does not cross the cell.

7.6 LAYOUT CHECKING—MCHPCK

After a chip has been layed out by PRF or by CHPCHP, the designer will
probably wish to check the layout for obvious errors , e i ther with the aid
of the schematic plot supplied by PRF or with a plot produced by a graphic

• p lotter if available . For a more detailed check , MCHPC K is ava i l able to
check the chip layout against design rules defining spacing constraints for
the technology being used .

In addition to the design rules , MCHPCK must be supplied with the chip
geometry f i le , the network List , and cell family capacitances. If CHPCHP
is used to lay out the chip , the network list must be generated by CONVRT
or be created manually, since CHPCH P does not produce a network list.

97

- .
•~~~~~ _~

- T T’TIIi ” ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~
—

~~~
-
~~~

--‘-~~~~ -‘ ~~-~-—-—--~~~~ --- -- — • — - -----~~~~~-. ,_
-

MCHPCK supplies error listings for both design rule errors and network
errors , as well as network capacitances. On the basis of these outputs the
designer can modify the chip layout and recheck it until it is satisfac-
tory.

Checks performed by MCHPCK are as follows :

a. Initial Net Check — A consistency check between the network list
describing the logic being implemented and the component set.

b. Final Net Check — A detailed trace of the line sets and shape sets
to determine if the physical connections agree with the network
list , computation of capacitance for each net , reporting of all
stray matter , and construction of a net list showing actual
connections .

c. Design Rule Checks — Checks of cell to cell , cell to interconnect ,
and interconnect to interconnect spacing and interconnect material
width .

It should be noted that certain simplifying assumptions are made in these
various checks, and the user should be aware of these assumptions and the
l imitat ions of the program with regard to checks it p e r f o r m s . Under cer-
tain conditions , manual checking is desirable and necessary. Assumptions
made are described in the following paragraphs.

7.6.1 Initial Net Check

The initial net check is a one—to—one consistency check between the
input network (net) list and the component set produced by PRF or CHPCHP .
Each cell/terminal pair in the network list is checked to determine if a
corresponding terminal exists for the instance of tha t cell in the com-
ponent set. Conversely each terminal for each cell in the component set is
checked to determine if a corresponding cell/terminal pair exists in the
network list. Uniqueness is required. Duplication of cell instance names
in the component set and duplication of cell/terminal pairs in the network
list are diagnosed as errors.

7.6.2 Final Net Check

The final net check consists of a detailed tracing of the line and
shape sets of the chip geometry file (built by PRF or CHPCHP) to determine
if the physical locations of the cell nodes and interconnecting material

98

provide electrical connections as specified by the net list. The nets are
checked for the following :

a. Continuity (no fragmentation).
b. Short circuits between nets.
c. Existence of extraneous material (matter not connected in any

net).

Error messages are printed for all fragmented or connected (shorted)
nets , and network capacitances are calculated and printed. Additionally,
the locations of all stray matter , which is not a part of a net , is
listed .

7.6.2.1 Orthogonal Interconnection

Horizontal or vertical interconnect segments defined by line or bhape
sets must touch or overlap (on the same level) to be electrically
connected . For line sets, the centerline and width is defined in the chip
geometry file. MCHPCK treats - each line segment as a rectangle surrounding
the centerline of the segment.

Coordinates specified in shape sets are treated as the outline of a
polygon. All material is inside this outline . All shape sets are con-
strained to be orthogonal: that is, no diagonal lines are permitted in
shape sets.

7.6.2.2 Diagonal Interconnection

The only non—orthogonal geometries permitted are line sets. The test
for connectivity of diagonal lines is not as rigorous as for orthogonal
lines : only the two end points are checked. For two entities to be elec-
trically connected , one end point of the diagonal segment must touch mate-
rial on the same level. For two diagonal segments to be considered to be
electrically connected by the program, their end points must exactly coin-
cide. Figure 7.6.2.2—1 illustrates a weakness of this assumption where two
segments actually touch but are diagnosed as an open circuit. Where con-
nectivity was desired , this is a valid assumption since it guarantees that
no gaps exist at the point of connection such as the one shown in the
illustration. Where connectivity was not desired , this is not a valid
assumption since a short does exist between the illustrated line segments.

99

- —S • W..1. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~ - ,- -~~ S.

~

- •

~~~

• - — . .
i__ — - —

~~~~~

--. 5~~~~~~~

EII~~~~
INVALID INVALID

GAP

Figure 7.6.2.2.1. Invalid Connections Between Orthogonal Segment A, B, and
Diagonal Segment C, 0.

A second weakness of the end—point—coincidence assumption occurs where
two diagonal segments cross each other on the same level, but are diagnosed
as unconnected . This case and the previously described case must be diag-

nosed manually.

7.6.2.3 Connections to Cell Terminals

The location of cell terminals is identified by TER card images in the

cell parameter library. Cell terminals are points of electrical inter-
connection (interconnect) material where levels of valid connection are
specified in the overlay field (field 3) of the TER card image. For elec-

trical connectivity, an orthogonal interconnect must touch or surround the
point specified in the TER card image and be on the level specified in the

overlay field.

A weakness of the assumption is that, within the cell , the terminal is
actually interconnect material having some dimensions. Thus, a valid elec-
trical connection can exist without actually touching the point specified

as the terminal; whereas, the program would diagnose the connection as an
open circuit. On the other hand, the designer might inadvertently place an

interconnect too close to a terminal , but not touch the point specified by
the terminal. In this case , the program would not detect a possible short.
In general , any time the designer crosses a cell boundary with interconnect

100

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -



4

material which does not connect directly to a terminal in the normal sense,
he is constrained to manual checking for complete assurance of a valid
connection.

• 7.6.2.4 Diagonal Connections to Cell Terminals

Connections between diagonal line segments and cell terminals must
exactl y coincide since only end points are considered for diagonal line
segments. If the end poi nt  of a d iagonal  segment  misses the t e rmina l
point , or if the interconnect is not on a level specified on the overlay
field for that terminal , the apparent connection is diagnosed as on open
ci rcu i t .  Again , a valid connection can exist wi thout actually touching the

• end point of the line and the terminal .

7.6.2.5 Terminal to Terminal Connections

Occasionally connectivi ty between cells is es tabl i3hed by p h y s i c a l l y
overlapping cells. For this case , a terminal on one cell must exactly
coincide wi th  a te rminal on the othe r , and at least one level spec i f i ed  in
the overlay for each must agree. Any other situation results in a diag-
nostic identifying an open circuit.

7.6.2.6 Crossover (XOVER) Connections

Within a cell , two points that are electrically common are specified
In the cell parameter library as an XOVER. Each point can have only one
level of legitimate electrical connection associated with it. Rules for
the two points are identical to those for terminals.

7.6.2.7 BUS Connection

BUS connections to a cell are specified in the cell parameter library
as a connection extending completely across the cell on a specific level of
interconnect. For a valid electrical connection , the interconnect material
must completely cover the line defined in the BUS card image and must be
orthogonal. The interconnect material must also be on the level specified
on the BUS card . Any deviation from this results in a diagnostic.

Two weaknesses exist as a result of these assumptions . First , the
designer having knowledge of the internal geometries of the cell may elect
to not completely cross the cell with interconnect material. If he does

101

- --S 
. - 

_ _ _  ~~~~~~ 
• - 

•



so , he should manually inspect the chip geomet ry  outputs to accoun t for the
resul t ing diagnostic . Second , the requirement tha t the interconnect merely
cover the bus line may allow an interconnect that is s l igh t ly  askew to pass
without a diagnostic . The designer should check to insure that the center-
line of the Interconnect exactly coincides with the bus line and that it is

of the proper width .

7.6.2.8 Logically Equivalent Inputs

It  is f requen t ly  des i rab le  to i n t e r c h a n g e  ph y .ical con nec t ions  to
logically equivalent inputs of a cell (such as a t w o — i n p u t  NAND g a t e )  to
improve chip layout .  However , if suc h a chang e is made , the MCHPCK pr ogram

wil l  produce diagnostic messages unless the net list use’~ by MCHPCK is the
one p roduced by the PRF run which also produced  the  ch ip  g e o m e t r y  f i l e .
Two other a l ternat ives  are to interchange signal names in the LOGIC 4 deck
or to manuall y account for such diagnostic messages.

7.6.2.9 Extraneous Material

Any interconnect material which is not identified as part of a net is
diag nosed at the conclusion of the final net check. The (K , Y) location of
the lower left—hand corner of the material is given along wi th  any capaci-
tance for that material. The capacitance output also serves to identif y
what level the material is on. Unused terminals of cells are also identi-
fied as extraneous niaterial with their capacitance listed under the library
column.

7.6.2.10 Overall

As long as a designer places and in t e rconnec t s  cel ls  in a s t r a igh t -
forward manner , the final net check is extremely valuable in verifying the
log ical correctness of the physical chip layout . Manual checks should be
u nnecessary unless the designer uses shortcuts such as connecting to a cel l
at a place other than a terminal or crossing diagonal lines. To the maxi-
mum extent possible , the program diagnoses a problem if uncertainty exists.
The user is cautioned , however, that this is not always possible as pointed
out in the previous paragraphs.

102

- --S 

~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ 
.

7.6.3 Capacitance Loading Output

The final net check provides as an output the detailed loading on each
net. The capacitive loading calculation is based on data describing
capacitance as a function of the overlay of the masks normally stored in
the cell parameter library for each technology.

The capacitive loading output identifies each component contributing
to the total loading: capacitance internal to the cell as well as capaci-
tance for each level of interconnect material taken separately. The sum of
these for a given net is the total capacitance of that net. Where a net is
fragmented , the capacitance output listed is only for the identifiable por-
tion of the net. The user should check the list of extraneous material for
any additional stray portions of that net if he needs to know the total
capacitance of the net. (Note that for uniformly defined line wi d t h s , the
resistance of each net may also be derived from the capacitance output.)

Network capacitances are computed from capacitance per unit area be-
tween each interconnect level and the substrate for the cell famil y being
utilized . Capcitance per unit area [s normally defined in the cell param-
eter l ibrary in terms of overlays .

An overlay is a means of defining the presence or absence of material
at a point on each level. Overlay definition is necessary because inter-
vening material may effect capacitance between an interconnect level and
the substrate.

7.6.4 Output Net List

The net list output of MCHPCK is constructed using the actual physical
layout of the chip as defined by the chip geometry file. This list agrees
exactly with input net list if the chip is completely and accurately laid
out. In the event of wiring problems , however, this list differs from the
input list and shows exactly what is interconnected and is useful in
diagnosing problems. A user may elect to leave power busses out of his net
list since every cell is connected together. A check of the output net
list then shows whether all cells were tied together. (Note that for this
case , each power bus is identified as extraneous material.)

103

~~~~~ 
____ ~~~~~t 4”#. ”~~~~IP~~~~~ 4’.%. ~~‘ 

- 

S. _ •  • -.:



r — - — — - -  —

/

7.6.5 Design Rule Check

The design rule check inspects spacing in the chip geometry file using
the rules for the cell family being utilized . All violations in wiring
width and cell—to—cell , cell—to--wiring , and wiring—to—wiring spacing are
p rinted .

The design rules are global in nature and apply equally to all cells.
Where specific rules apply to a unique cell , such as a wiring via or bus
cr ossing cell , design rules for the cell are included in the cell parameter
library for that cell and override global rules. The following design rule
checks are made:

a. Cell to Cell Spacing .
b. Cell to Interconnect Spacing.
c. Interconnect to Interconnect Spacing and Width.

7.6.5.1 Cell to Cell Spacing

Minimum spacing between cells is specified in the BDRY card in the
cell parameter library for each edge (North, South , East , and West), once

in the design rule data category for all cells, and then for each cell that
differs from the global rules. Spacing is assumed to be uniform along each

edge , and the value listed represents the worst case spacing from what is
known to be inside tha t edge of the cell to any edge of any other cel l .
For example, if diffusion to diffusion spacing of .4 mu is the l i m i t in g
case for a given edge and a diffusion exists .15 mil inside that edge, then

the permissible cell to cell spacing for that edge is .25 m u .  Any cell
spaced closer than that results in a diagnostic message . A finite space
must exist in order for the cell—to—cell spacing check to be performed .
Overlapping or exactly coincident cells are not checked. Negative spacings
are not permitted .

Sometimes a designer , knowing what is internal to a cell , reduces
component spacing below that specified by the rules. Likewise , designers
may overlap cells. Reduced or overlapping placement is generally used for

fa irly simple structures such as wiring vias , end caps and bus crossers.
For other cells, the designer often uses (or should use) terminals in any
area of overlap where electrical connec t ion is required. These t e rmina l s

104

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~
. -

~~~~~~~~~~
-- 

~~
• _ i• . __ __ I 

-



will serve as alignment points to insure proper placement as a consequence
of the f i nal net check. In all cases of reduced spacing , manual checks are

required .

7.6.5.2 Cell to Interconnect Spacing

Cell to interconnect spacing is also specified in the BDR? card images
for each edge of a cell. This spacing can be more accurately defined since
the actual material adjacent to a cell is known. Once again un i for mi~ y is
assumed along each edge and no checks are performed for coincidence or
overlap. It should be no ted , however , tha t spac ing is not ch ec ked fo r
diagonal interconnect segments. For each of these , manual checks are

required .

7.6.5.3 Interconnect to Interconnect Spacing and Width -

Interconnect spacing and width are specified in the design rule data

and are applied uniformly across the chip. Overlapping line or shape sets
are permissible and are treated as a resulting larger polygon. Only mini-
mum spacings and width are checked . A designer wishing to increase the
width of certain interconnects , to reduce resistance for example , must

check these larger dimensions manually. No checks are performed on di-
agonal line segments and these segments should also be checked manually.

7.6.5.4 Diagnostics

The exact coordinates at which a violation occurred is always printed

with as much other pertinent information as possible: for examp le , which
cell and which level of interconnect. Cells not having unique instance

names, bus crossers for example, may cause some confusion. Use of unique

names in the component set is encouraged , but lacking this , the coordinates
uniquely identify the geometries in question.

7.6.5.5 Overall

Just as for the final net check, the designer who performs his cell
placement and wiring in a straightforward manner will find the design rule

checks to be extremely valuable diagnostic tools. To the maximum extent

poss ible , the program diagnoses a problem if uncertainty exists. The user

is cautioned , however , that this is not always possible as indicated above.
(For a more detailed description of design rules, refer to the handbook for

the cell family being used.)

105

‘ 
~ - - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



SECTION 8
MICROWAV E NETWORK ANALYSIS AND OPTIMIZATION PROGRAM—MAGNET

8.1 INTRODUCTION AND GENERAL DESCRIPTION

The MAGNET program allows computerized analysis and optimization of a
large class of linear microwave networks for gain VSWR , phase linearity and
noise figure. The MAGNET program provides the microwave designer with the
means to optimize and analyze his design. The program does not actually
design the microwave circuit; it only relieves the user of much of the com-
plex mathematics involved in the design. Figure 8.1— I depicts the func-
tional relation between the MAGNET program and the remaining CAD programs.

The MAGNET program is capable of modeling any network that can be
built from pairs of linear two ports. The program is used to minimize in-
put VSWR, output VSWR , phase deviation from linearity, noise figure , and
gain error , in any con.~ination , for a network in a 50—ohm system. MAGNET
is designed primarily for microwave net-works; however, it may also be used
for classical filter design , if suitable scaling is performed. The MAGNET
program is used primarily for design of l inear two port m i c r o s t r i p; how-
ever , it may also be used in strip—line and lumped element design.

The use of MAGNET involves three main parts which are shown in F igure
8.1—2. The main parts are:

a. Input Data.
b . MAGNET Program .
c. Output  Data.

8.1.1 INPUT Data

The Network Description and device S parameters are input to the pro--
gram via input data files. The primary file contains the network descrip-
tion and desired performance criteria. The device S parameters may also be
input as part of the primary file or called by the primary file from a
secondary file.

106



/

DESIGN DESIGN _____________

CONCEPT STANDARDS _____________

ICAD SOF TWARE

LOGIC DESIGN DATA FLOW
SCHEMATIC

LIBRARIES
MACROS FUNCTIONAL

FLOW

LOGIC TIMING
DATA BASE SIMULATION DIAGRAM

MANAGEMENT LOGIC 4
LIBBER

CHIP
LOGIC

CONVRT

CHIP
DESIGN

PRF

CELL CHIP DESIGN OR
DESIGN MODIFICATION

CHPCHP
DATA BASE

MANAGEMENT
LIBB ER

CELL TEST CHIP
MOSTRAN TEST

MCHPCK

PLOTTER 
-

SIGNAL-PIN
CHIP ASSIGNMENT SIMULATION

MANUFACTURE ASSIGN LOGIC 4

TEST
SEQUENCE

STRING VERIFICATION

ThERMAL STRUCTURAL LIST & DIAGNOSTI

ANALYSIS ANALYSIS
SINDA SAP IV 

__________

ISOLATION
PRINTED CIRCUIT TABLE &
BOARD LAYOUT 

COVER 

DIAGNOSTICS

FILE

• • SOLUTION
MICROWAVE FILE
NETWORK

DESIGN
MAGNET PLOTTER

FINAL FINAL
BOARD BOARD

MANUFACTURING TEST

Figure 8.1.1. CAD Functional Block Diagram Emphasizing the MAGNET Progra m

107

_____ - - ~~~~~~~~~~~~~~ ~~—‘ 
- - - - — -

,‘ •~~~~~~ -~~~~~~ - 
- 

-~~ --- . 
• _________________



PROGRAM INPUTS

/ / STARTING I
/ NETWORK L...... POINT / INPUT S

/ DESCRIPTION/ / PAR AMETERS

PRIMARY FILE SECONDARY FILE

NETWORK ANALYSI S
AND

MAGNET OPTIMIZATION
PROGRAM ROUTINES

F OUTPUT
ROUTINES

_ _ _  

1-LI 
_ _ _

FINAL / /~~~~MPOSITE S / / FINAL
/ OPTIMIZED / / PARAMETERS / / CIRCUIT
/ CIRCUIT L J / DESCRIPTION

PROGRAM OUTPUTS

Figure 8.1-2. MAGNET Program General Flow Diagram

8.1.2 MAGNET Program

The program consists of network analysis , optimization , and output

routines. The circuit input data is first analyzed for the desired perfor-

mance then optimized toward the desired results. After the optimization

function is complete , the output routines produce three output data files.

108

~~~~~~~~~~~~~~~ 
• • •.

_ _

PROGRAM
DECISION
CAN CIRCUIT

BE IMPROVED?

STARTING
ANALYSIS J ~~~~~~~~~~~~~NO

~~ ~~~~~~~

YES

[

OPTIMIZE
f i

Figure 8.2-1. Simplified Flow Chart of MAGNET

8 1.3 OUTPUT Data

The outputs produced by the program are:

a. Final optimized circuit file which may be input to other programs.
h. Composite S parameters for the entire network.
c. Final circuit description including the analysis and optimization

results.

8.2 FUNCTIONAL DESCRIPTION

The MAGNET program takes a circuit from a starting point , analyzes it,
compares the desired response with the actual and calculates the difference
between them. The optimization routine then varies the circuit elements in
an attempt to reduce or eliminate this calculated difference in order to
approximate the desired network response. When specific requirements are
met , the optimization routine terminates and the “improved” circuit is out—
put. Figure 8.2—1 shows a simplified functional flow of the MAGNET program
including the OPTIMIZE feedback loop.

109

___ •
~~~~~JJ4_.. ~ •., • 

~~~~~~ o.-,•• •~~~~~~~~~~,15 IJ 1W~ - —- U~~~J 1~~~~~~ ~~~~~~~~~~~~ 
• • • - - -

~~~p1~~ ~~‘ 

~~~~~~~~~~~~~~~~ 
—- —

~~~~~~~~~~~~~~~~~--~~~~~~~~~~~~~~~ ~~

--

~~~ ~~~~~~~~~~ 

-

~~~~~~~ 

—

~~

-

~~ 

-



8.2.1 Starting Point

The starting point defines the initial circuit design and the desired
results. The user provides the program with circuit topology and descrip-
tions of the components that are used in building the circuit. The compo-
nent description consists of the starting value of the component and limits
over which the value may be varied by the program . The user also provides
the program with the desired response of the final circuit.

Caro must be used in selecting the initial circuit topology and set-
ting the starting values of the circuit. If the circuit is too complex, it
may be d i f f i cu l t  to layout , assemble , and t e s t ;  if the c i r cu i t  is poorl y
configured , it may be very c r i t i c a l  of device  v a r i a t i o n s .  The program
operates to minimize the error function (the difference between the actual
and the desired response) and as a result it will progress from the start-
ing point to the nearest minimum . Therefore , the final result is a direct
function of the selected starting point.

8.2.2 Network Analysis

The network analysis routine is the heart  of MAGNET. I t  de te rmines
which circuit topologies and wha t circuit element types are allowed. The
routine performs matrix manipulation on each of the elements to allow their
combination to be put into an overall circuit.

The program allows pairs of linear two—port elements to be connected
together in almost any fashion to become a new two—port element. The ele-

ments used to make the composite element (which may have been made up of
two—port elements) are not lost and may be used again. Examples of element
types and interconnections allowed are given in Figures 8.2—2 and 8.2—3.

During all matrix manipulations , a noise matrix is carried along and

updated for each circuit element. Each noise matrix contains all of the
information to completely characterize the noise performance of its cor-
responding element. Through the use of this technique , MAGNET is capable
of accurately computing the noise figure of any network constructed within
its format. This includes all of the examples shown in Figures 8.2—2 and

8.2—3 .

110

.—
‘ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~ ~~~~~~~~~~~~~~~~~~~~~ •~ _ 
— •• -. :

ift ~ 1 M
RESISTOR INDUCTOR TRANSMISSION

RES IND LINE SECTION
— — SEC

5O~~~~~~~~~~ O L~1
IDEAL CAPACITOR ACTIVE DEVICE

TRANSFORMER CAP ACT
XFR — —

Figure 8.2-2. Element Ty pe

There are networks that cannot be modeled by MAGNET due to intermeshed

feedback ioops. Figure 8.2—4 shows a circuit with such feedback loops

which cannot be built from two ports taken in pairs.

8.2.3 Optimization Routine

This algorithm sets up a rectangular neighborhood about the given
values , then examines the boundry of the neighborhood in an orderly but
pseudorandom way to find a direction that will lower the error function.
When this direction is found , a vector is created to represent the direc-
tion. The program values are then set along the vector in an attempt to
f ind a minimum error function value . The minimum is used as a new starting
point to estimate a new direction , and the process is repeated . If no
point on the boundary can be found that lowers the error function , a
smaller neighborhood is set up, and the process is repeated. Each cycle is
defined as one iteration. The program continues until the number of
iterations , set by the user, is exceeded , or the neighborhood is less than
0.01 percent of the given circuit values.

111

T

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~ ; _

~~~~~~~~~~

• ••

~~

•

~~~

. - 

- 

..



TANDEM CONNECTION [
~ ~I~

j
PARALLEL

PAR

1~~~~ Ei rSHORT
ELEMENT 

_ _  

~~~ j /o~ N

SHORT OR
OPEN COMMON LEAD ELEMENT

CLS OR CLO

4A .1J [A~~~~~~~~~~4

A

INVERTED ELEMENT REVERSED ELEMENT

INV —

Figure 8.2-3. Element Combination

112

“~~~1r.L.-~
r

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~

-‘
~~~~~

-- —-—-

~~~~

-—-----



I I D E

~~~~~~A] _ 
_

Figure 8.2-4. Example Network Not Accepted by MAGNET

8.2.4 Output Routine

The output routine supplies the user with an analysis of the starting
ci rcuit and of the final optimized circuit erected by MAGNET. The analysis
includes :

a. Power gain,
b. Input VSWR ,
c. Output VSWR ,
d. Phase linearity,
e. Noise figure.

The MAGNET program provides a printout of circuit topology and of the
values arrived at for the elements of the optimized circuit. The program
also prints the dimensions for microstrip implementation of the various
line sections used. If other mediums are used (strip—line or lumped ele-
ments design) the dimensions are not output. It is important that the user
be aware that these dimensions do not include compensation for such effects
as line thickness or end effects.

The MAGNE T program also creates three files that contain data in a
format that can be used in this and other programs. One file (F0R23.DAT)
contains the input data modified by the optimization routine which may be
used as a starting point for further optimization used to find stability

113

~~ ~~~
T
~~~~~~~ j~~~~~Hi~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~ •~

, - .-r - ..



and gain. The third f i le  (printed on Unit  6) contains the program anal ysis
of the starting point data , the optimization results , and the final circuit
description . Any file may be listed or saved after the program is com-
plete.

8.3 PROGRAM MINI MUM REQUIREMENTS

The f i rst operational step in the MAGNET program is the c rea t ion  of a
secondary data file with the overall circuit “S.. parameter. The next step
is to create the primary f i le  with the desired c i r c u i t  p e r f o r m a n c e  da t a ,
component descri ption , a nd e lement  c o m b i n a t i o n s .  A f t e r  the f i l e s  are
created and saved the user may begin the main sequence of instructions .

8.3.1 Elements Coding

The re a re two types of element coding statements; element creation and
element combination. The element creation s t a t e m e n t s  d e f i n e  the e lement
type . The element combination statements define the electrical connec t ion
for the elements. These statements must be input to the program in the
order of element number.s which are defined on the design from left to
r igh t .

8.3.2 Program Control Coding

The program control statements initiate the MAGNET program and open
the input data files which contain the network description. The o p t i m i z e d
circuit  output is wri t ten on Unit 23 under the file name F0R23.DAT. This
file may be re—input to the program on a second run for  f u r t h e r  opt imiza -
tion.

8.3.3 Program Outputs

The program creates two new f i les  containing data in a format that can
be used in this and other programs. These files are normally output as:

a. F0R23.DAT (Final Optimized Circuit).
b. F0R24.DAT (Composite Circuit Parameters).

In addition , the program outputs the final circuit description on Unit 6.

114

~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


7

8.3.4 Final Optimized Circuit

The final optimized circuit file contains optimized input data which
may be re—input to the MAGNET program for further optimization. This file
contains the combined primary network description , desired performance
data , and the secondary S parameter data. The remaining data in the file
are the input element and combination statements and the optimized perfor-
mance ranges for each element.

8.3.5 Composite S Parameters

The composite S parameters file lists the overall amplifier S param-
eters. That is the combined S parameters for both active devices in the
circuit design.

8.3.6 Final Circuit Description

The final circuit description file printed on Unit 6 contains:

a. Sta rting point analysis data.
b. Optimization results of the input data.
c. Fina l circuit description containing the required information for

circuit layout.

8.3.6.1 Starting Point Analysis

The program analyzes the input data and prints the actual gain , VSW R ,
phase deviation , and noise figure data for the circuit as described on the
input data. The printout lists the i n i t i a l er ror f u n c t i o n , the in i t i a l
step size (DELTA) and frequencies spec fied on the input data. In addi-
tion , for each frequency specified the desired gain, as coded in the input
data , and the actual gain at the starting point is listed. Also listed is
the input and output VSWR , phase deviation , and noise figure for each fre-
quency specified.

8.3.6.2 Optimized Results

After the program analysis function is complete, the program performs
optimization for the number of iterations specified and prints the error
function after each iteration.

115

“
~~~~~~ 

4 *P’s~~~~~~~ r~ d~%~ .l ~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~ 
_ _ _ _ _ _ _



At the completion of the optimization routine the program ~rints the
optimized results. These results again list each frequency specified and
the desired gain at each frequency. The actual gain , input and output
VSWR , phase deviation and noise figure are then listed for the optimized
circui t .

8.3.6.3 Final Circuit

The final circuit description lists each element type , the character-
istic impedance of the element , and its dimensions. Width is given in
m ils , length in degrees and mils. Also listed are all element combina t ion
statements used in the design.

8.4 USAGE INFORMATION

As basic input the user provides the MAGNET program with a circuit
topology and descriptions consist of the starting values of the components
and the limits over which the value may be var ied  by the p rog ram.  Also
provided are the desired responses for  the final circuit.

8.4.1 Active Device S Parameters

The active device S parameter (scattering parameters) data may be
app lied to the pr ogr am as par t of the pr imary f i le or as a seconda r y da ta
file.

8.4.2 Program Parameters

The program parameters are specified on the f i r s t  two data entries in
the primary f i le .

8.4.3 Frequency Response

The frequency response inputs set the desired levels at which the net-
work is analyzed and optimized.

8.4.4 Element Creation Statements

The element creation Statements define the type of elements contained
in the circuit design.

116

~~~~~

~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ ~~
.-
~~--.-- - ~ ‘,. -- , ~~— --— —-



8.4.4.1 Active Device

Active dev ice creation statemen ts are followed by parameter statements
which may be in the primary file or in a secondary file called by the pri-
ma ry f i le .

8.4.4.2 Non-Active Elements

The program optimizes the element parameters for all variable elements
and has no affect on fixed elements.

8.4.4.3 Repeat

The repeat function is used as an aid to tell the program that the
element (N) is the same as a previously described element (M).

8.4.5 Element Combination Statements

Element combi nation statements combine two d i s c r e t e  e lements , which
have been previously defined to make a new element.

8.4.6 INV Statement

The INV statement is used primarily for de—imbedding.

8.4.7 Network Definition Termination

The network termination statement tells the program that the circuit
description is complete. This statement ends the circuit description input
and enables the program to run.

84.8 Run MAGNET

The run MAGNET command is the program select command that accesses the
MAGNET program and allows network optimization.

117

~~~~~~~~~~~~~~~ 
- ~~~~~~~~~~~~~~~

8.4.9 File Assignment

The file assignment commands are used to assign file names to the
system unit numbers which are assigned or accessed by the MAGI~JET program.
This statement must be used to assign the appropriate primary file name to
unit 21. The program automatically writes three output files on units 23 ,
24 , and 6. If these files are to be saved for future use , file names
should be assigned for each to prevent a second MAGNET run from destroying
the existing files.

8.5 OUTPUTS

The program output routine pr oduces two files containing the final
optimized circuit description , and the composite S parameters of the active
devices. A listing of these files may be obtained by us ing t he ope r a t ing
systems TYPE or PRINT commands.

8.6 RESTRICTIONS ON MAGNET

The following list contains restrictions on the use of the MAGNET pro-
gram.

a. Element numbers must be in order. MAGNET does not check for this .
(When operating on element 1/n the program gets the nth element in
the list , ignoring the element number.)

b In all cases j and k in Table 8.6— 1 must be less than N.
c. In ACT, when two port parameters are listed in the primary file ,

there must be only one line of data for each frequency. This also
applies to the noise figure data. No interpolation is performed.
This does not apply if “ALL’ or ‘AUTO’ is used .

d. When a secondary file is used , MAGNET will interpolate but not
extrapolate.

e. The S matrix and “ABCD” matrix must exist for all ‘ACT’ commands.
If ‘AUTO’ is used the Y matrix must also exist.

f. In all cases the ABCD matrix must exist. When ‘PAR’ is called the
Y matrix of each element must also exist. The Z matrix must exist
when ‘CLO’ or ‘CLS’ is called.

g. In the noise figure data R~ is normalized to 50—ohms.
h. A maximum number of 100 elements , 10 active devices , and 20

frequencies may be used.

118

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


g

~~
II II

~ zL
~ U! fl ! hi

‘I-
I-I I~~~

I
_ _ 1 1

_ _

I

I
I

~
-1

_ _ _ _ _ _ _

~

II
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

H —~~~~~~~~~ ~~~
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

119

~~~~~~~~~ . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ ..-..

_ _  .
-~



V

~~~~~~~~
~~~

~ ~~~~ ~~~~~~~

~~ Z CI) ,..
~~~

I- t I~

I
It~I ~tt~1~ I,~I

_ _

I z j a

I

3

b

120

0

~~~~~~~~~~~~~

a ~~~~~~
~~~
U . * O

—
t~~~~~

I_ _ _ _ _ _ _ _

I i f I I

~
1 . — i I~’ I

_ _ _

I

L

,

J ~~

it~i It~I

i

~

_ _ _ _ _ _ _ _ _ _ _ _ _ _

121

-. - ~~~~~~~~~~~~~
_4___

~ _’ —.-—-..- - u—’- —~ - -

~~~~~ ___ —- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - -
~~~ •- —--


i. (Number of variable ELE) times (Number at Freq.) times (Number of

iterations) should be less than 1000 to keep a reasonable running

time.

~~
. MAGNET assumes a 50—ohm system for all two—port parameter

representations.

8.7 ABCD MATRIX

L Most of the communication between MAGNET and the design is with S

parameters. Internally, however , the program represents every element in
its ABCD form. This is done to minimize computation in converting from one

matrix form to another.

122

-

SECTION 9
A STRUCTURAL ANALYSIS PROGRAM—SAP IV

The development of an effective computer program for structural analy—
sis requires a knowledge of three scientific disciplines——structural me-
chanics , numerical analysis and computer application. The development of
accurate and efficient structural elements requires a modern background in
structural mechanics. The efficiency of a program depends largely on the
numerical techniques employed and on their effective computer implementa-
tion. With regard to programming techniques , an optimum allocation of
high— and low—speed storage is necessary.

A most important aspect of a general purpose computer program is, how-
ever , the ease with which it can be modified , extended and updated ; other-
wise , it may very well be that the program is obsolete within a few years
after completion. This is because new structural elements are developed ,
better numerical procedures are available, or new computer equipment which
requires new coding techniques is produced.

The structural analysis program (SAP) was designed to be modified and
extended by the user. Additional options and new elements may easily be
added. The program has the capacity to analyze very large three—
dimensional systems; however , there is no loss in efficiency in the solu-
tion of smaller problems. Also, from the complete program , smaller special
purpose programs can easily be assembled by simply using only those sub-
routines which are actually needed in the execution. This makes the pro-
gram particularly usable on small size computers.

The current program version SAP IV fo r the static and dynamic analysis
of linear structural systems is the result of several years ’ research and
development experience. The program has proven to be a very flexible and
efficient analysis tool. The program is coded in FORTRAN IV and operates
without modifications on the CDC 6400 , 6600 and 7600 computers. Figure
9.0—1 depicts the functional relation between the SAP IV Program and the
remaining programs.

123

- --S

I DESIGN DESIGN
I CONCEPT STANDARDS /

~~ AO SOFTWARE

LiÔGIC DESIGN I DATA FLOW
_________ SCHEMATIC

FUNCTIONAL

~~~SUBS ~\) FLOW 

t .~F 
LOGIC TIMING

I DATA BASE~~TL J SIMULATION DIAGRAM

_ _ _ _ _  

~~ LOGIC 4

ICHIP H
l LOGIC 

_______

ICONvRT

ZJ DESIGN

F _____________

(~~CELL 
j1 II CHIP DESIGN onfi

~~~~~ DESIGN —II ? MODIFICATION II
I SCE II I CHPCHP ~j fr ____________

ft II I U II I DATA BASE

II _______ II I MANAGEMENT

.IJ~ELL TEth A II CHIP ~~ II LIBBER

I MOSTRAN JI TEST
MCHPCI(

f~LOTTER]~~~

____________ (~~~NAL .PIN
CHIP I I ASSIGNMENT I SIMULATION
MANUFAcTUREJ ~ -‘L ASSIGN (~9~ IC 4

~
j, ~~~~~~~~~~~~ SEQUENCE

~~
_ _ _

G L1;:;~__________ SOLUTION
MICROWAV E FILE
NETWORK

MAGNET ~
PLOTTE

~1

IFINAL FINAr1

— I~~~IBOARD BOARD I
IMANUFACTURJNG TEST J

Figure 9.0-1. CAD Functional Block Diagram Emphasizing the SAP IV Program

124

~T iii ~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ TTT~TT

9.1 GENERAL DESCRIPTION

The st ructu ral sy s te m s to be analyzed may be composed of combinations
of a number of different structural elements. The program presently con-
tains the following element types:

1. three—dimensional truss element ,
2. three—dimensional beam element ,
3. plane stress and plane strain element ,
4. two—dimensional axisymmetric solid ,
5. three—dimensional solid ,
6. variable—number nodes thick shell and three—dimensional element ,
7. thin plate or thin shell element ,
8. boundary element ,
9. pipe element (tangent and bend).

These structural elements can be used in a static or dynamic analysis. The
capacity of the program depends mainly on the total number of nodal points
in the system , the number of eigenvalues needed in the dynamic analysis and
the computer used. There is practically no restriction on the number of
elements used , the number of load cases or the order and bandwidth of the
s t i f fness matrix. Each nodal point in the system can have from zero to six
displacement degrees of freedom. The element stiffness and mass matrices
are assembled in condensed form; therefore , the program is equall y effi-
cient in the analysis of one— , two— or three—dimensional systems.

The formation of the structure matrices is carried out in the same way
in a static or dynamic analysis. The static analysis is continued by solv-
ing the equations of equilibrium followed by the computation of element
stresses. In a dynamic analysis the choice is between:

1. frequency calculations only,
2. frequency calculations followed by response history analysis,
3. frequency calculations followed by response spectrum analysis ,
4. response history analysis by direct integration.

To obtain the frequencies and vibration mode shapes , solution routines are
used which calculate the required eigenvalues and eigenvectors directly
without a transformation of the structure stiffness matrix and mass matrix
to a reduced form. in the direct integration an unconditionally stable

125

—t

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — -- 

I 

‘

~~~~~~~~~~

--‘••‘ — — • -- .. --

integration scheme is used , which also operates on the original structure
stiffness matrix and mass matrix. This way the program operation and nec-
essary input data for a dynamic analysis is a simple addition to what is
needed for a static analysis.

9.2 PROGRAM ORGANIZATION

The calculation of the structure stiffness matrix and mass matrix is
accomplished in three distinct phases:

1. The nodal point input data is read and generated by the program.
In this phase the equation numbers for the active degrees of
freedom at each nodal point are established.

2. The element s t i f fness and mass matrices are c a l c u l a t e d toge ther
with their connection arrays; the arrays are stored in sequence
on tape (or other low—speed storage).

3. The structure stiffness matrix and mass matrix are formed by
addition of the element matrices and stored in block form on
t ape.

It should be noted that three basic steps can be applied to any of the
element types and are the same for either a static or dynamic analysis.

9.2.1 Nodal Point Input Data and Degrees of Freedom

The capacity of the program is controlled by the number of nodal
points of the structural system. For each nodal point six boundary cond i-
tion codes (stored in the array 1D), three coordinates (stored in the
arrays X, Y , Z) and the nodal point temperatures (stored in the array T)
are required (generation capability is provided). All nodal point data is
retained in high—speed storage during the formation of the element stif f—
ness and mass matrices. Since the required high—speed storage for the ele-
ment subroutines is relatively small , the minimum required storage for a
given problem is a little larger than ten times the number of nodal points
in the system.

It is noted that the user should allow only those degrees of freedom
which are compatible with the elements connected to a nodal point. The
program always deals with six possible degrees of freedom at each nodal
point , and all non—active degrees of freedom should be deleted so as to

126

— 1__ -~ ~~~~~~*.-
- — —— — — - — - —

decrease the order of the structure matrices. Specificall y , a “1” in the
ID array denotes that no equation shall be associated with the degree of
freedom , whereas a “0” indicates that this is an active degree of freedom.

9.2.2 Element Mass and Stiffness Calculations

With the coordinates of ~‘ll nodal points known and the equation num-
bers of the degrees of freedom established , the stiffness, mass and stress—
displa cement t ransformation ma t r i ces f o r each s t r u c t u r a l e lement in the
system are calculated . As pointed out e a r l i e r , l i t t l e a d d i t i o n a l hi g h—
speed storage is required for this phase since these matrices are formed

and p laced on tape sto rage at the same time as the element p r o p e r t i e s are
read . Together with the matrices pertaining to the element , the corre-
sponding element connection array, vector LM , is written on tape. The
vector LM is established from the ID m a t r i x and the s p e c i f i e d s t r u c t u r e
nodal points per ta in ing to the element .

The element ma t r i ces are c a l c u l a t e d in groups , i. e . , al l eleme n ts
being in one group to gethe r , thus calling the co r r e spond ing e lement sub-
routine only once for each element group . After all element matrices have
been established , the ID and X, Y, Z arrays are not needed any more , and
the corresponding storage area is used for the format ion of the s t r u c t u r e
matrices and later for the solution of the equations of equilibrium .

9.2.3 Formation of Structure Stiffness and Mass

The stiffness matrix and mass matrix of the structure are formed in
blocks. The number of equations per block depends on the available high—
speed storage and is calculated in the program as indicated in Figure
9.2.3—1. It is noted that on reasonable size computers very large systems
can be analyzed for static and dynamic response. With the number of equa—
tthns per block known , the stiffness and mass matrix are assembled two
blocks at a time by direct addition of the element matrices. In this pro-
cess it is necessary to pass through the element matrices which are stored
on tape. In order to minimize tape reading , in each pass, element matrices
which pertain to the next several blocks are written on another tape. This
way the tape reading necessary for the formation of these blocks is reduced
significantly.

A flow diagram of the program organization for the calculation of the
s t ruc ture s t i f fnes s matrix and mass matrix is shown in Figure 9.2.3—2.

127

~~~~~~~~~~~~~~~~~~~~ 
~~~~ i ,,,P ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~‘-~~~ -..- ~ - - - . 

—

...a
o

I’ 0
o ~~.

N W
0 &~~~

.
0

4 C., —
~~~~cc0 -a

LU 0 U~
I’ 10~ ~~~ O
0

a x E
LU

4 ~~~~o

IU~~~~0 CD ‘-~~~ ~~~~W
~~~ 04 m a
C.,
-a Co C.) 4 0 4I) U. €.~

24
C’,

ao
~4

~~ LU 1~~1 LU
0

-J
~~ N I~~1!I ~ I

LU
—4 I-

o LU i~ U i ~ Et.1 -I S
a ’, zC’.

0 • 1~0o ~~
LU CLU 0

~~~~ 
‘~~ .

~~x CJ~~~~~ 3
.2

I ~~~~~I ~~~ O
~~ I~~~~~ W I  ~~~~~~~ C.)L ._ J  0

0 -‘ 

.E—

LU~~~~~
Z LU m m LULU C’, t
•
4 C.,
-‘ a 

~~~~~~~~~~~~~ ,‘ -~~~~~~

~~~~~~~~ 
00 —4

LUCD 4 ~,
__l
a

I-
0 

(4)4 -‘
* M.~~~~

C.,LU 
C)p.

4

LU

NJ NM
a I,

1 r ~~~~~~i4 
i iC.) m

1 

~~~~~~

~~~~~~~~~Ir~~~~~~~~~~~

0 a

o ~~~~~
-~ 4 a m

4 0

.—~—- -~

- —‘ -
~~~~~~~~~~~~

- ~~~~~~~~~~~~~~~~ ~_F-,__ • ~ - ..~ - —-

— — —~~-—--~~~~~ - —

START

I
READ AND GENERATE
NODAL POINT DATA

AND
ESTABLISH EQUATION

NUMBERS

LOW SPEED
STORAGE FILES

STRESS-DISPLACEMENT
‘I

TRANSFORMATION MATRICES
CALL OF ELEMENT

SUBROUTINES

FORMATION OF
STRUCTURE STIFFNESS
MATRIX, MASS MATRIX

AND LOAD VECTORS SrRUCTURE STIFF

CONTINUE TO STATIC
OR DYNAMIC ANALYSIS

Fi~ ire 9.2.3-2. Flow Chart for Calculation of Structure Stiffness Matrix and Mass Matrix

129

-

_
.—~~~~~~~~~~~~~~.— —-———--—--—--- — —- - - ~~~~~~~~~ ~~~~~~~~~~~~

-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ I ~ 
- 

~~ 

- -  - - - - 

~~ 

-
~~~


With the mat rices stored in block form on tape either a static or a dynamic
anal ysis can now be carried out .

9.3 THE ELEMENT LIBRARY

The element l i b r a r y of SAP IV c o n s i s t s of ei gh t d i f f e r e n t e l ement
types . These elements can be used in e i ther a s ta t ic or dynamic a n a l y s i s .
They are shown in Figure 9— 3 — 1 and are b r i e f ly described below.

9.3.1 Three-Dimensional Truss Element

The three—dimensional t russ element is shown in Fi g u r e 9 . 3 — l a . The
element can be subjected to a un i fo rm tempera ture change .

9.3.2 Three- Dimensional Beam Element

The beam element included in the program cons iders to rs ion , be n d ing
a b o u t two axes , and ax ia l and s h e a r i n g d e f o r m a t i o n s . The e l emen t is
p r i s m a t i c . The d e v e l o p m e n t of i t s s t i f f n e s s p r o p e r t i e s is s t a n d a r d .
Inertia loading in three directions and specified fixed—end forces form the
element load cases. Forces (axial and shear) and moments (bending and
torsion) are calculated in the beam local co—ordinate system.

A typical beam element is shown in Figure 9.3—lb. A plane which de-
fines the principa l bending axis of the beam is specified by the plane i,j , k. Onl y the geometry of nodal point k is needed; therefore , no addi-
tional degrees of freedom for nodal point k are used in the computer pro-
gram. A unique option of the beam member is that the ends of the beam can
be geometrically constrained to a master node. Slave degrees of freedom at
the end of th~ beam are eliminated from the formulation and replaced by the
transformed degrees of freedom of the master node. This technique reduces
the total number of joint equi l ibr ium equations in the system (while pos-
sibl y increasing the bandw1dth)~ and greatly reduces the possibility of
numerical sensitivities in many~ types of structures. Also, the method can
be used to specify rigid floor ~diapbragms in building analysis.

9.3.3 Plane Stress , Plane Strain and Axisymmetric Elements

A plane stress quadrilateral (or triangular) element with orthotropic
material properties is available (Figure 9.3—ic). Each plane stress ele—
ment may be of different thickness and may be located in an arbitrary plane

130

-
~~~~~ 

- —I 4~TTT 
~~~~~~~~~~~~~~~ ~~ ~~~~~~~~~~~~~~~~~~ ~~~~~~ ~~~~~~~~~~~~~ ~~ -. 


_ _ m4 ~~~~~~~~~~~~~~

b. THREE-DIMENSIONAL
L a. TRUSS ELEMENT BEAM ELEMENT

c. PLANE STRESS, PLANE STRAIN AND AXISYMME TRIC ELEMENTS

d. THREE-DIMENSIONAL e. VARIABLE-NUMBER-NODES
SOLID THICK SHELL AND

THREE-DIMENSIONAL ELEMENT

f. THIN SHELL AND BOUNDARY c.c.
ELEMENT Z

~ ________—~~~__.,x J I
—

TANGENT BEND
g. PIPE ELEMENT

Figure 9.3-1. Element Library of SAP IV

131

- — —---—-----——--.- — - - . - .afl -~~~~ .. - - - - - -

- —‘ 4

~~4~~~~~~~

- . - _ _ _ _ _ _ _ _ _ _ _ _~~ ~~~~~~~~~~~~~~~~~~~~~ — — - - —

- —— - - --— -— -— - - - - - -

with respect to the three—dimensional coordinate system. The plane strain
and axisymmetric elements are restricted to the y—z plane . Grav i ty , ine r-
tia and temperature loadings may be considered. Stresses may be computed
at the center of the element and at the center of each side. The element
is based on an isoparametric formulation. Incompatible displacement modes
can be included in order to Improve the bending properties of the element.

9.3.4 Three-Dimensional Solid Element

A general eight nodal point “brick” element , with three translational
degrees of freedom per nodal point can be used (Figure 9.3—id). Isotrop ic
material properties are assumed and element loading consists of tempera-
ture , surface pressure and inertia loads in three directions. Stresses
(six components) may be computed at the center of the element and at the
center of each face. The element employs incompatible modes, which can be
very effective if rectangular elements are used.

+

9.3.5 Variable-Number Nodes Thick Shell and Three-Dimensional Element

A general three—dimensional i sopa rame t r i c or sub pa r amet r ic element
which may have from 8 to 21 nodes can be used for t h r e e — d i m e n s i o n a l or
thick shell analysis (Fig. 9.3—le). General orthotropic material proper-
ties can be assigned to the element. The loading may consist of applied
surface pressure , hydrostatic loads, inertia loads in three directions , and
therma l loads. Six global stresses are output at up to seven locations
w i t h i n an element.

9.3.6 Thin Plate and Shell Element

The thin shell element available in the program is a quadrilateral of
arbitrary geometry formed from four compatible triangles. The shell ele-
ment uses the constant strain triangle and the LCCT9 element to represent
the membrane and bending behavior , respectively. The central node is loca-
ted at the average of the coordinates of the four corner nodes. The ele-
ment has six interior degrees of freedom which are eliminated at the ele-
ment level prior to assembly; therefore, the resulting quadrilateral ele-
ment has twenty—four degrees of freedom , i.e., six degrees of freedom per
node in the global coordinate system.

In the analysis of flat plates the stiffness associated with the rota-
tion normal to the shell surface is not defined; therefore , the rotation

132

—‘
4___

. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~
.- -I--- -

-

- -

normal degree of freedom must not be included in the analysis. For curved
shells , the normal rotation need be included as an extra degree of freedom.
In case the curvature is very small , the degree of freedom should be re-
strained by the addition of a “boundary element” with a small normal rota-
tional stiffness , say of less or about 10 percent of the element bend ing
stiffness.

9.3.7 Boundary Element

The boundary element , shown in Figure 9.3—if , can be used for the
following :

). in the idealization of an external elastic support at a node ;
2. in the idealization of an inclined roller support ;
3. to specify a displacement , or
4. to eliminate the numerical difficulty associated with the “sixth’S

degree of freedom in the analysis of nearly flat shells.

The element is one—dimensional with an axial or torsional stiffness. The
element stiffness coefficients are added directly to the total stiffness
matrix.

9.3.8 Pipe Element

The pipe element (Figure 9.3—ig) can represent a straight segment
(tangent) or a circularly curved segment (bend); both elements require a
uniform section and uniform material properties. Elements can be directed
arbitraril y in space. The member stiffness matrices account for bending ,
torsional , axial and shearing deformations. In a d d i t ion , the e f f e c t of
internal pressure on the stiffness of curved pipe elements is considered .

The types of structure loads contributed by the pipe elements include
gravity loading in the global directions and loads due to thermal distor-
t ions and deformations induced by internal pressure. Forces and moments
acting at the member ends (i, j) and at the center of each bend are calcu-
lated in coord inate systems aligned with the member’s cross section.

The pipe element stiffness matrix is formed by first evaluating the
flexibility matrix corresponding to the six degrees of freedom at end j.
With the corresponding stiffness matrix , the equilibrium transformations
are used to form the complete element stiffness matrix. Distortions due to

133

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ W W ~~~~~~~~~



element loads are premulti p lied by the stiffness matrix to compute re-
strained nodal forces due to thermal , pressure or gravity loads.

9.4 THE EQUILIBRIUM EQUATIONS FOR COMPLEX STRUCTURAL SYSTEMS

9.4.1 Elemen t to Structure Matrices

The nodal point equilibrium equations for a linear system of struc-
tural elements can be derived by several different approaches. All methods
yield a set of linear equations of the form

M u + C ~i + K u R , ( 1)

where M is the mass matrix , C is the damping matrix and K is the stiffness
matrix of the element assemblage. The vectors u, ii, u and R are the nodal
disp lacements , velocities , accelerations and generalized loads ,
respectively. The structure matrices are formed by direct addition of the
element matrices. For example ,

K =
~~~~‘~a~ 

(2)

where is the stiffness matrix of the mth element . Although Km is
formally of the same order as K, only those terms in Km which pertain to
the element degrees of freedom are nonzero. The addition of the element
matrices can therefore be performed by using the element matrices in
compact form, together with identification arrays which relate element to
structure degrees of freedom. The algorithm used in the program is de-
scribed in Section 9.2.3.

In the program , the structure stiffness matrix and a diagonal mass
matrix are assembled . Therefore, a lumped mass analysis is assumed where
the structure mass is the sum of the individual element mass matrices plus
additional concentrated masses which are specified at selected degrees of
freedom. The damping is assumed to be proportional and is specified in the
form of a modal damping factor.

9.4.2 Boundary Conditions

If a displacement component is zero, the corresponding equation is not
retained in the structure equilibrium equations , Eq. (1), and the corre-
sponding element stiffness and mass terms are disregarded. If a nonzero

+

134

- —
‘ 4.~~ .-

~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — J


displacement is to be specified at a degree of freedom i , say U~ x , the
equation

kui = kx (3)

is added into Eq. (1), where k >> ku . Therefore , the solution of Eq. (1)
must give u1 = x. Physically, this can be interpreted as adding at the
degree of freedom i a spring of large stiffness k and specif ying a load
which, because of the relatively flexible structure at this degree of free-
dom , produces the required displacement x.

9.5 STATIC ANALYSIS

A static analysis involves the solution of the equilibrium equations

K u R (4)

followed by the calculation of element stresses.

9.5.1 Solution of Equilibrium Equations

The load vectors R have been assembled at the same time as the struc-
ture stiffness matrix and mass matrix are formed. The solution of the
equations is obtained using the large capacity linear equation solver
SESOL. This subroutine uses Gauss elimination on the positive—definite
symmetrical system of equations. The algorithm performs a minimum number
of operations; i.e., there are no operations with zero elements. In the
program , the LTDL decomposition of K is used; hence , Eq. (4) can be written
as

LTv R , (5)
and

-

v = DLu, (6)

where the solution for v in Eq. (5) is obtained by a reduction of the load
vectors; the displacement vectors u are then calculated by a back—substitu-
t ion .

In the solution , the load vectors are reduced at the same t ime as K is
decomposed . In all operations it is necessary to have at any one t ime the
required matrix elements in hig h—speed s torage . In the reduct ion , two

k
135

+ - -—.~-—. .— .-.. *-- — —+- _J•.~—_---— _ -— ,__~~~~ ~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —~ - - -

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - 

-
~ 

- T



blocks are in high—speed storage (as was also the case in the formation of

the stiffness matrix and mass matrix); i.e., the “lead ing” block, which
f inally stores the elements of L and D, and in succession those blocks

which are affected by the decomposition of the “leading ” block. Table

9.5.1—1 gives some typical solution times.

9.5.2 Evaluation of Element Stresses

After  the nodal point displacements have been evaluated , sequent ia l ly
the element stress—displacement matrices are read from low speed storage
and the element stresses are calculated.

9.6 CALCULATION OF FREQUENCIES AND MODE SHAPES

The dynamic analysis of a structural system using mode superposition

requires as the first step the solution of the generalized eigenvalue

problem

(7)

where $ and w are free vibration frequency and mode shape , respectively.

As was described in Section 9.2.3, the program stores the stiffness and

mass matrix in blocks on tape . The mass matr ix  is diagonal wi th  pa r t ly
zero diagonal elements. The program assumes that only the lowest p eigen—

values and corresponding eigenvectors are needed . The solution of Eq.  ( 7 )
can therefore be written as

K~ = M ~ l 2 (8)

whe re ~2 is a diagonal matrix with the p smallest eigenvalues; i.e., ~2
2 =

diag (u~), and ~ stores the corresponding M—orthonormalized eigenvectors
•i~ $2~ 

. ..$
~~
. Two different solution procedures are used in the program ,

a determinant search technique or a subspace iteration solution. The

determinant search solution is carried out when the stiffness matrix can be

contained in high—speed storage in one block. Therefore , for systems of

larger order and bandwidth , the subspace iteration method is used . Both

- solution techniques solve the generalized eigenvalue problem directly with-

out a transformation to the standard form.

136

- —
‘ ~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~
‘
~
‘“  --I-- W --~~ *~~--

- .— - ~~~~~~~~~~~~~ — - -



uJ
‘- F’

N .m
C.) C..) .~~~

o C.) C.) C.)
E

C - C

— Jo

28C#) .-

UJ
r~W 

. 2 E

Ii

HI-

N

2W

137

- U— — ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ ~~~~~~~~~~~~~~~~ k- ~ + 
~~~~~~~~~~~~~~ 

- +. - -

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ 

- 

-~~~~~~~ 
- 

-

~~~~~


9.6.1 The Determinant Search Solution

The determinant search technique is best suited , for the analysis of
large systems in which K a:.d M have small bandwidths. Basically, the solu-
tion algorithm combines trian~ular factorization and vector inverse itera-
tion in an optimum manner to calculate the required eigenvalues and eigen—
vectors; these are obtained in sequence starting from the least dominant
eigenpair ~~~~~~~~~~~~ An efficient , accelerated secant iteration procedure
which operates on the characteristic polynomial

p(w2) = det(K w2M) (9)

is used to obtain a shift near the next unknown eigenvalue. The eigenvalue
separation theorem is used in this iteration. Each determinant evaluation
requires a triangular factorization of the matrix K — w2 M. Once a shift
near the unknown eigenvalue has been obtained , inverse iteration is used to
calculate the elgenvector. The eigenvalue is then obtained by adding the
Rayleigh quotient correction to the shift value. Table 9.6.1—1 shows typi-
cal solution times.

9.6.2 The Subspace Iteration Solution

When the system is too large to be completely contained in high speed
storage , i.e., more blocks than one are used, the subspace iteration solu-
tion is carried out. The iteration can be interpreted as a repeated

application of a method in which the computed eigenvectors from one step
are used as the trial basis vectors for the next iteration until conver-
gence to the required p eigenvalues and eigenvectors is obtained .

The solution is carried out by iterating simultaneously with q linear-

ly independent vectors , where q > p. In the kth iteration the vectors span
the q—dimensional subspace and “best ” eigenvalue and eigenvector approxima-
tions are calculated ; i.e., when the vectors span the p— dimensional least
dominant subspace , the required eigenvalues and eigenvectors are obtained .

Let V0 store the starting vectors , then the kth iteration is described

as follows :

Solve for vectors Vk which span ~k

KVk ~~k—i
(10)

138

~~ ~~~~~~~ ~~
_
~

_ _t:1~IT,~

C.) C) C.) C.)

.C -

L~ III

W 4o
W U . CI) C~) N N

~~bo
Zw ~~

U
C

_ _ _ _ _ _ _ _

U.
, D

~~~~~~~~~~~~ 
Q N N

~~tJ Xu. — I— C~)

~~~~~~

-2 j;: ~~<x

C

c6~~o

UJ W 0 W
Ow 2 2

Cl) s__ Cl) 2

8

139

- —‘-—a-—-——— - —
~

--—--——
~~~~~~

- - — -~~~~~r.-a--- ~~~~~~~~~~ rr S — — - ~~ - 
-+ -

+
~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


Calculate the projections of K and M onto Ek (i.e., the generalized
stiffness matrix and mass matrix corresponding to

~

=
~~~~ 

KV~ (11)

= MV~ (12)

Solve for the eigensystem of Kk and Mk

Kk Qk = Mk QkO
2k (13)

and calculate the k’th improved approximation to the eigenvectors

Vk ‘~k Qk
~ 

(14)

Provided that the starting subspace is not orthogonal to any of the re-
qui red eigenvectors , the iteration converges to the desired result; i.e.,
p
~~
+
~~

2 and V
k
+
~~~

ask
~~~

oo.

The number of vect or s q used in the i t e r a t i on is taken greater than
the desired number of eigenvectors in order to accelerate the convergence
of the process. The number of iterations required to achieve satisfactory
convergence depends , of course , on the quality of the starting vectors V0.
Unless requested otherwise (see Section 9.6.3), the program generates q
starting vectors where q = min(2p, p + 8), which has proven to be effective
in general applications. At convergence , a Sturm sequence check can be
requested to verify that the lowest p eigenvalues have been found.

Table 9.6.2—1 lists a few typical solution times using the program
+ generated starting vectors.

9.6.3 Dynamic Optimization

The solution of the eigenvalue problem may be required when a good
estimate of the required eigensystem is already known , such as in dynamic
optimization. In this case the subspace iteration method is ideally suited
for solution. The number of iteration vectors q and the vectors V0, to-
gether with the maximum number of iterations , can in this case be specified

by the user. Also, in case the number of eigenvalues and vectors required
is increased , the already calculated eigenvectors can be specified as part
of the starting iteration vectors in order to accelerate convergence.

140

‘ ‘ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ 4?~
• ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~ - - - - ‘~‘~~~~‘-~~~~



U,

Zw~~

C C
.2 .2 ~~~<z
~~~~~~ ~~co~~ C N— C., ~~~ C.)

~
. X LJ- — I—•~~ -2i <-i~~~

I-.

N

N

Cl)~~~

z

Cl)
-JO

141

-- a— --~~~~~ - ‘ - -

- —‘

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~ .w~ -
~~~~

-.-. -

-

- - ‘
~

~~~ -.‘ +. -, - — - - —  ‘
~i — 

—--

~~~~ 

- _

9.7 DYNAMIC ANALYSES

In dynamic response analysis the solution of the equations

Mu + Cu+Ku R(t) (15)

is required , where R(t) can be a vector of arbitrary time varying loads, or
of effective loads which result from ground motion. Specificall y , in the
case of ground motion , if it is assumed that the structure is uniforml y
subjected to the ground acceleration ug, the equilibrium equations con-
sidered are

MU r ~ C~r
+ KUr = ~MUg (16)

where ur is the relative displacement of the structure with respect to the
ground ; i.e., Ur = U — U

g •

The program can carry out a history analysis for solution of Eqs. (15)
or (16), or a response spectrum analysis for solution of Eq. (16). The
history analysis can be carried out using mode superposition or direct
integration. The response spectrum analysis necessitates , of course , first
the solution of the required eigensystem .

9.7.1 Response History Analysis by Mod e Superposition

In the mode superposition analysis , it is assumed that the structural
response can be described adequately by the p lowest vibration modes, where

+ p << n. Using the transformation u = ~X, where the columns in ~ are the p
W-orthonormalized eigenvectors , Eq. (15~ can be written as

+ + ~~~ ~
TR (17)

where

+ = diag(2~i~ ~ j) ; ~2 = diag(w~) (18)

In Eq. (18) it is assumed that the damping matrix C satisfies the modal
orthogonality condition

$~~~C $ 1
= O (i~~~J) (19)

142

- -_

~~~~~~~~~ 
V ~~~~~~~~ ..~ +~~ .-w.-~- - 

-



Equation (17) therefore represents p uncoupled , second—order differential
equations. These are solved in the program using the Wilson 0—method ,
which is an uncondit ionall y stable step—b y — s t e p  in teg r a t i o n  scheme . The
same time step is used in the integration of all equations to simp lify the
ca lcu la t ion  of stress components at preselected times.

In the case of prescribed ground motion ur = $X and in Eq. (17) the
right—hand side is given by _$TMig, where the ground acceleration is con-
sidered as the sum of the components in the x , y and z directions as de-
scribed in Section 9.7.3.

9.7.2 Response History Analysis by Direct Integration

The solution of the equations of motion , Eqs. (15) and (16), can be
obtained by direct integration. In the program , the Wilson 0—method is
used , which is unconditionall y stable. It need be noted that Ray leigh
damping is assumed. This form of damping is easily taken into account in
the analysis , because no storage and no multiplications for a damp ing ma-
trix are required .

9.7.3 Response Spectrum Analysis

In this analysis the ground acceleration vector in Eq. (16) is written
as

= ugx + Ugy + Ugz (20)

where ugx , ugy and ugz are the ground accelerations in the x , y and z
directions , respectively. The equation for the response in the rth mode is
therefore

x + 2 ~~w~~ + (~
2X r + r  + r  (21)r r r r  r r  rx ry rz

whe re xr is the rth element in X, and

r = $
T 
M~ ; r _

$
T Mu ; r = 

_~T M~i (22)rx r gx ry r gy rz r gz

Using the definition of the spectral displacement , the maximum absolute
modal displacements of the structure subjected to an acceleration into the
x direction are

(max) T
U r r 

M ‘x 
S(w r

) (23)

143

- + _ - ——------ — -——-‘_.-~~~~‘-
_ 

~~~~~~~~~~~~~~~~~~~ ~~~~~~~ - - ~~‘ 
- . -

-
~~~1 -  

- 
- 

- 
‘ 

~~~
‘ “ ‘ --

-

-

-

where S (u r) is the spectral disp lacement into the x direction
corresponding to the frequency Wr~

and is a null vector , except that
those elements are equal to one which correspond to the x—translational
degrees of freedom. Similarly, for the responses due to a ground accel-
eration into the y and z directions

=

~~~~ 
M I

y ISy
(ur

); ~~~~~ = $r I
~~ 

M I
zIS z

(W
r
) (24)

and the total maximum response in the rth mode is assumed to be

4max) = ~~
(max) + ~

(max) + ~~~~~~ 
(25)

Program SAP IV calculates the maximum responses in each of the p low-
est modes , where the spectra (displacements or accelerations) into the x, y
and z directions are assumed to be proportional to each other. The total
response for disp lacements and stress resultants is calculated as the
square root of the sum of the squares of the modal maximum responses.

9.7.4 Restart Capability in Mode Superposition Analysis

The most expensive phase in mode superposition analysis is usually the
calculation of frequencies and mode shapes. However , once the required
eigensystem has been solved for , it can be used to anal yze the structure
for different loading conditions. Also , in a design process the history or
spectrum analysis for the same loading can be carried out economicall y a
few times, for example , to study the stress history in different parts of
the structure.

In the program , at completion of the elgensystem solution , all vari-
ables required for a response history or response spectrum analysis ,
together with the frequencies and mode shapes , are written on low—speed
storage. The program execution may be stopped at this stage and the inf or—
mation on low—speed storage be copied onto a physical tape. Later , this
tape would be copied back to low—speed storage before starting a response
ai’alysis. If , after a number of response analyses using the eigensystem on
the tape, it is decided that more frequencies and mode shapes need be cal—
culated , the information on the tape can be used to reduce the cost of the
new eigensystem solution as described in Section 9.6.3.

144

~~~~~~ 

~~~~~~~~~~~~~ ~~ ~ “I
- -’.



+ 
9.7.5 Mode Superposition Versus Direct Integration

For an effective response history analysis the user must decide appro-
priately whether to use mode superposition or direct integration. It
should be realized that the direct integration is equivalent to a mode
superposition analysis in which all the eigenvalues and vectors have been
calculated and the uncoupled equations in Eq. (17) with p = n are inte-
grated with a common time step i~t. Naturally, the integration can onl y be
accurate for those modes for which i~t is smaller than a certain fraction of
the period T. Using the Wilson O—algorithm , the integration errors effec-
tively “filter ” the high mode response , for which ~t/T is large , out of the
solution. This filtering is due to the amplitude decay observed in the
numerical solution when llt/T is large. As an example , Figure 9.7.5— 1 shows
the amplitude decay for the initial value problem indicated .

The effective filtering of the high frequency response from the solu-
tion may be beneficial. Integration accuracy cannot be obtained in the
response of the modes for which ,~t/T is large , and the filtering process
allows one to obtain a total system solution in which the low mode response
is accurately observed. -

It is therefore noted that the direct Integration is quite equivalent
to a mode superposition analysis in which only the lowest modes of the
system , but a sufficient number to take proper account of the app lied
loading , are considered. The exact number of modes effectively included in
the analysis depends on the time step size ~ t and the distribution of the
periods.

The advan tages of mode super position are essent ial ly that f r equenc ies
and mode shapes are obtained and that a variety of response history and
response spectrum analyses can be carried out with relativel y small addi-
tional cost. Also , if the structure is slightl y changed or more eigen—
values and vectors are required , i.e., the frequency domain to be con-
sidered shall be extended , the eigensystem solved for already can be used
to reduce the cost of the new eigensystem solution (see Section 9.7.4).

The direct step—by—step integration , however , is more effective when
many modes need be included in the analysis and the response is required
over relatively few time steps, such as in shock problems. It should be

145

- - -

— ,‘ .. — 
—,-



23.0

19.0 -~~~~ 

I I 
H

15.0 _ _

4
~ 11.0

4
C.)
w
a
w
a

~~~~7.0
-J
C.
2
4

1.0

0.02 0.06 0.10 0.14 0.18 0.22 +

1~t/T

Figure 9.7.5-1. Amplitude Decay Wilson 8-Method

146

~

T
~~~: ~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~‘ ~~~ 

--- - - - +



noted that the tape reading required in the direct integration anal ysis of
large out—of—core systems can be costly,  because in the solution for the
response in each time step, the triangularized effective stiffness matrix
must be taken into high speed storage.

9.8 INSTALLATION OF SAP IV ON A SYSTEM OTHER THAN A CDC COMPUTER

SAP IV is writtcn using FORTRAN IV and has been developed on a CDC
computer. The program has also been installed with relativel y l i t t le
effort on IBM and UNIVAC machines.

The program or parts of it can essentially be used on any reasonabl y
sized computer. SAP IV consists of about 14,000 cards , and is organized in
a standard Fortran overlay structure to reduce the required high—speed
storage for program execution. The main overlay essentially consists of
the main program. The secondary overlays are , respectivel y, the element
routines , the equation solver , the eigenvalue routines , the mode super-
position history analysis program , the spectrum anal ysis program and the
direct integration routine. Using only specific overlays , efficient spe-
cial purpose programs are obtained . For example , using the main overlay,
plus the secondary overlays of the pipe element , the eigenvalue routines ,
and the response history analysis , a special purpose pipe response history
analysis program by mode superposition is obtained . On the CDC 6400 of the
University of California , Berkeley, the complete program with 1200010
high—speed storage locations allocated for solution processing (the blank
common block A has a length of 12000) requires a field length of about
1140008 for execution.

On installation of SAP IV on other machines than the CDC series , it
must be observed that arithmetic calculations should be performed using
about 14 digit words. This means that , for examp le , on IBM and UNIVAC
machines double precision need be used. The calculations to be performed
in double precision by the static and dynamic analysis are the formation of
structure stiffness matrices. These are the main steps in the solution of
the equations of motion , namely, the solution of Ku = R , the solution of +

the generalized elgenvalue problem K~~=w 2 M+, and by direct integration ,
the solution of the effective displacements u~ (see Table 4). These
calculations need primarily be performed in double precision because of
truncation errors occurring when too few digits are used , which can cause
large errors in the solution and numerical instabilities .

147

- -_
‘ 

‘ 
~~~~~~~~~~~~~~~~ 

- ii

With regard to the use of back—up storage, to keep the program system

independent , sequential accessing is used throughout. Therefore, since no

advantage is taken of efficient buffering and direct access techniques , it

need be noted that the use of secondary storage can be much improved when

tailored to a specific system.

- 148

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- - -

~~~~ 
—- - -

SECTION 10
SINDA

10.1 INTRODUCTION

SINDA , the Systems Improved Numerical Differencing Analyzer , is a
software system which possesses capabilities which make it well suited for
solving lumped parameter representations of physical problems governed by
diffusion—type equations. The system was originally designed as a general
therma l analyzer , accepting resistor—capacitor (R—C) network representa-
tions of thermal systems ; however , with due attention to units and ther-
mally oriented peculiarities , SINDA will accept R—C networks representing
-other types of systems.

The SINDA system consists of two main pieces: - preprocessor and
the library. The SINDA preprocessor is a program wi dccepts problems
written in the SINDA language and converts them t J~ FORTRAN language .
The SINDA library consists of many pre—written FORL~.+~.N sub—routines which
perform a large variety of commonly needed actions and which reduce the
programming effort which might have been required to solve a given problem .
These routines are fully compatible with the FORTRAN routines produced by
the preprocessor from the user’s input.

One of the most outstanding features of SINDA is that , in addition to
accepting network description cards and other relevant values as input
data, it also accepts “program— like” logic statements and subroutine calls
(requesting some specific operation from the library) as data , which , ulti-
mately, permit the user to tailor the program to suit his particular prob-
lem. Figure 10.1—1 depicts the functional relation between the SINDA pro-
gram and the remaining programs.

10.2 SYSTEM STRUCTURE DESCRIPTION

In the usual engineering environment , a programmer is commissioned to
prepare an applications ptogram which is subsequently made available to the
engineer on a production basis. The engineer supplies input data and re-
ceives output data.

149

,gA~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

‘ ‘
~~ 

-- - -  
*



I DESIGN DESIGN

~ 
CONCEPT STANDARDS 

~~~~

ILOGIC DESIGN~
DATA FLOW

., SCHEMATIC
(LIBRARIES((FUNCTIONAL
~. sues \) FLOW

[M~~~~i~~ T11. ~ 4~~~~~
A~~ON fJ_’TDI.AGRA~ J

LIBBER_J~ _________

f~~ciup ______I LOGIC

~
CON VR T

_______________ CHIP

DESIGN
PRF

(~CELL (1 11 CHIP DESIGN 01111
—1 DESIGN I 1l- t MODIFIC ATION II

SCELL V II I CHPCHP~~ J~ ___________

* II I II DATA BASE]
____MANAGEMENT

4CELLT~~~~
C
S
H
T
PCK~~

LUBBER

PLOTTER

(GNAL PIN ~~~FAULT ~1

~~HIP 1 I ASSIGNMENT ISIMULATIONII
I MANUFACTURE J ~~-.-~j ASSIGN ~~Q~ IC4 _j~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
I) ___________________ I I SEOIJENCE

_ _ _ _  

_ _ _ _  

ii ~~~~ ST 
L~~~ E F U ~~~~~~~~

SI A 
A ____________ ISOLATION

lf,4f1 I~ 
{>~ (PRINTED CIRCUITII TABLE & 

II ~~~~~

- 
BOARD LAYOUT DIAGNOSTI~~

II ~ II COVER

ii ii ii 
_ _ _ _ _ _

___________A II II SOLUTION
MICROWAVE1I.JI JI FI LE
NETWORK Ft~~
MAGNET [PLOTTER I

__________________ 

IPIN L FINAt1
~~~{BOARD BOARD

IMANUFACTURING TEST

Figure 10.1-1. CAD Functional Block Diagram Emphasizing the SINDA Program

150

‘

~~~~~~~~~

‘ 

- 

- -



Changes to the logic and equations are difficult for the program user
to implement conveniently since they must be written in a computer oriented
language and must be submitted through a formal programming organization.
When SINDA is used , however , the engineer need only call on the programmer
to supply a standard deck of computer oriented “control card s” wh ich will
call the various elements of the system into action in the proper sequence.
The engineer then formulates his problem in the engineering oriented SINDA
language, assembling both data and solution techniques (i.e., logic and
equations) into this card deck, which then serves as the complete input to
the SINDA system. Programmer support has been minimized since the bulk of
the programming effort is already built into SINDA preprocessor and li-
brary. The engineering user need only specify the data and the order and
type of “program building blocks” which he deems necessary for the solution
of his problem.

It should then be evident that the SINDA system is much more than an
applications program. It has , in fact , all of the functions and capa-
bilities of a special purpose operating system. Since most computers in
current use in engineering environments already have operating systems
built around a FORTRAN compiler , the SINDA system is designed to augment
the existing FORTRAN system. Hence , the SINDA library serves as an exten-
sion to the existing FORTRAN library, and the SINDA program serves as a
preprocessor to (i.e., it preceeds) the existing FORTRAN compiler. This
augmentation arrangement is illustrated in Figure 10.2—1.

When using the full capability of SINDA , the engineer will be re-

quired to exert a prograimning effort of sorts , to a major extent In the
engineering—oriented SINDA language , and to a limited extent in the FORTRAN
language. This, together with the wide variety of options and features
offered by the system, suggests an appropriate word of caution: SINDA is a
comprehensive system which cannot be mastered overnight. The prospective
user should not assume that a cursory review of the Instruction Manual will
lead to immediate success, nor should he assume that this manual represents
a “cookbook” which will eventually yield to a plodding and rigid adherence
to each and every rule. In presenting instructions on the use of a com-
puter program, It is not possible to completely avoid some “cookbook—like”

sections; however, every effort has been made to explain the “why ” and
“how” behind each rule , option , and feature , with the intent of encouraging
the reader to think about and understand SINDA in depth.

151

- —~~ - 
~~~~~~~~~~~~~~~ - - --~~~~~~~~~~~ -~~~~~-. ..-~. -- - -


DATA IN —~~~~~7
I PREPROCESSOR I -- . 4(PRESSED J

LOGIC & EQUATIONS

~~~~~~~~~ THAN
LOGIC &

EQUA-
TIONS

SYSTEM
FORTRAN
COMPILER 

CODE

SYSTEM
LIBRARY

- - SINDA
LIBRARY

LOADER

PROGRAM DATA OUT

Figure 10.2-1. Detailed Internal Flow of the SINDA System

Empirical methods require mention only for the harm they have done

through the limited nature of the understanding which they have p~oduced.

By “empirical methods” is meant a kind of wishful thinking (unsupperted by

fundamental understanding) that the solution for a given , unique problem

exists somewhere within the body of previously written SINDA statements

residing in the discarded printouts of prior users of the program. The

methodical use of SINDA opposes this approach with the assertion that the

engineer will have little confidence in the answer to his problem until he

understands every detail of its solution. However , the successful “this

152 

~~~~~~~~~~ - - - - -

~~~~~~~~~~~~~~~~~~~~~~~~ ~ir~~:~~~ _ _ _ _ _ _ _



worked for him” or “I did it this way last time ” engineer is not to be
criticized for his approach , but is to be encouraged by clear expositions
to observe how his special knowledge Is merely a valid part of a more
extensive and more useful general practice. The SINDA system is a complex
synthesis of engineer , programmer , system oriented languages, and features
which can be used to full advantage only as the result of a fundamental
understanding of the total system. Without exception , every effort to
understand SINDA will be rewarded by increased ability to use SINDA.

10.3 INPUT DECK

Two general types of problems may be handled by SINDA: thermal net-
work 3olutions and general mathematical manipulations.

Thermal problems require the user to specify a network of thermal
modeling elements (i.e., lumped parameters). Three DATA BLOCKS , (gro ups of
cards), called NODE DATA , SOURCE DATA, and CONDUCTOR DATA, are provided to
satisfy this requirement. Using various special formats described later ,
the user prepares NODE , SOURCE, and CONDU CTOR DATA cards which uniquely
establish the characteristics and interconnections of the elements of his
thermal network. The preprocessor will assemble and save the element
characteristics data in large tables stored in the computer ’s memory. For
example, when the preprocessor reads the NODE DATA cards, it will construct
a table of initial temperatures and a table of nodal capacitances. The
preprocessor also assembles the element interconnections data into an
internally coded numerical list called the PSEUDO—COMPUTE—SEQUENCE (PCS).
Operationally, the PCS serves two purposes: (1) it specifies the order of
computation to be used when performing network heat transfer calculations ,
and (2) it supplies indices into the data tables where the network element
characteristics may be found. For example , to compute the heat transferred
during some delta—time , the computer must be instructed to perform the cal-
culation for node—X connected to node—Y through conductor—Z , and it must be
informed as to where it can locate the characteristics (temperature , capa-
citance , conductance , etc.) of these specific network elements.

Two additional data blocks, called CONSTANTS DATA and ARRAY DATA , are
provided in the SINDA input deck to allow the user to include in his

+ problem numerical values which are not strictly classifiable as thermal
network element characteristics. The preprocessor assembles CONSTANTS and
ARRAY data into tables in memory for later use in the problem solving com-

putations. Since problems of the GENERAL type do not refer to a therma l

153 



network , only the CONSTANTS and ARRAY data blocks may be used for this type
of problem. THERMAL problems , however , require that all data blocks be
present in the input deck.

In addition to the five groups of cards designated as data blocks ,
the SINDA input deck requires four groups of cards designated as OPERATIONS
BLOCKS. These four blocks , called EXECUTION , VARIABLES 1 , VARIABLES 2, and
OUTPUT CALLS , are translated by the preprocessor into four FORTRAN sub-
routines , and serve , therefore , to specif y the individual instructions
required to solve the user’s problem. The subroutine which results from
the translation of the EXECUTION block is called by a main program (also
constructed by the preprocessor) whose only purpose is to communicate to
the subroutine the length and location of the various tables assembled from
the five data blocks . For a simple thermal problem , the user need not
concern himself with the complexities of computer programming , because the
SINDA Subroutifle Library contains several versatile “canned” routines for
solving thermal networks. To solve such a problem , the user needs only to
select an appropriate routine , punch the name of this routine on a card ,
and insert this card in the input deck as his EXECUTION block. This simple
procedure , however , belies the extensive computational potential and
versatility of the SINDA system.

In addition to a call on one or more of the standard network solution
routines , the EXECUTION block may contain calls to other routines in the
SINDA Library. The Library contains a wide variety of thermal , mathemat-
ical , matrix , input/output , and utility routines which may be “pieced to-
gether” within the SINDA operations blocks in order to form a complete ,
specialized “program” for the solution of the user’s problem. For example ,
SINDA works in the Farenheit temperature system *; to produce a table of
node temperatures in degrees Rankine , the user need only insert three cards
in his EXECUTION block: one to call for the network solution , one to call
for the addition of 460.0 to each temperature , and one to call for the
printout of the node temperature table.

*Al though all other units may be chosen arbitraril y as long as they are
consistent , SINDA presentl y imposes the FARENHEIT system on all
temperatures. This is due to the fact that the offset to absolute zero ,
460°s, is built into the network solution routines for the purposes of
evaluating radiation heat flow (which is a function of absolute temperature
to the fourth power). Since current engineering practice indicates an
increasing use of the metric system of units , this temperature offset will
probably be converted to a user—selectable option in the near future.

154

- —.. 

~~~~~4~~f 4 u c , -~~*. 
- —w-- ~~~ --.. — I - - - -

~~~~~

-

~~

- -- -

. 

- - - -,
~~ 

—



Clearly , the SINDA system makes it possible for the user to avoid the
programming details of such things as “DO—loops , DIt4ENSION statements and
INDEX VARIABLES ,” and yet still produce a solution “program ” which is
tailor—made for his problem. If the user does understand FORTRAN , he may
include FORTRAN statements in the operations blocks along with any neces-
sary SINDA sub~jutine calls. The translated subroutines would then contain
the user ’s FORTRAN statements in addition to the FORTRAN statements gener-
ated by the preprocessor from SINDA statements.

The network solution routines which may be called from the EXECUTION
block are made quite versatile through the use of the other three opera-
tions blocks. These blocks allow the user to interject sequences of opera-
tions , specific to the problem at hand , at certain points in the midst of
the “canned network solution calculations. Briefly, the subroutine resul-
ting from the translation of the VARIABLES 1 operations block is called
just prior to the network computations for a delta—tin’e ~tep; the VARIABLES
2 subroutine is called just after the computations for a delta—time step;
and OUTPUT CALLS subroutine is called at a time interval specified by the
user.

The basic structure of the SINDA Input deck is shown in Figure 10.3—1
This figure illustrates the five data blocks and the four operations blocks
in the correct input sequence . As shown, they are preceded by the INPUT
CONTOL CARD and TITLE BLOCK , and they are followed by parametric run decks ,
if used , and an END OF DATA CARD.

10.3.1 Title Block 
+

The TITLE BLOCK co n s i s t s  of a p rob lem s p e c i f i c a t i o n  card (w h i c h
serves as the block header card), followed by any number of optional title
cards. The problem specification card informs the preprocessor of the type
of problem which the rest of the input deck represents. Title cards give
the user the opportunity to specify a problem title which will be printed
on each page of ou tpu t .

10.3.2 Data Blocks

There are five types of data blocks , each consisting of data in
either Integer , floating point , or Hollerith format. As shown in Figure
10.3—1 , there are the node data block, source data block , conductor data
block , constant data block an d array data block. Onl y the first three
(node , source and conductor) are used in thermal—type problem applications .

155

.- - —
‘ “~~~T 

~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .—~~
. —~ -~~ ~~~. - -~~~~~ -~ —~~~~,

______ S

PARAMETRIC RUN DECKS, IF USED .
ARE INSERTED AT THIS POINT.

\ END OF DATA
~ CARD

OUTPUT CALLS
BLOCK

OPERATIONS BLOCKS VARIABLES 2
BLOCK

VARIABLES 1
BLOCK

EXECUTION
BLOCK

ARRAY DATA
BLOCK

CONSTANTS
/ DATA

DATA BLOCKS

/ CONDUCTOR
/ DATA /

BLOCK

SOURCE DATA
BLOC K I THESE BLOCKS ARE PRESENT ONLY

IN THERMAL TYPE PROBLEM DECKS.

MODE DATA
%%~ BLOCK

TITLE
BLOCK

THE SOURCE DATA
+ INPUT BLOCK IS OPTIONAL.

CONTROL
CARD

Figure 10.3-1. Basic SINDA Input Deck

156

-~~~~ -

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~



10. a 2.1 Node Data Block

Three types of nodes may be defined and input by the user: diffusion ,
a r i thmetic , and boundary. Diffusion nodes have a positive capacitance and
thus store energy. In the network solution routines , diffusion node tem-
peratures are calculated by using a finite difference representation of the

parabolic , differential heat transfer equation. Three locations in core
memory are reserved for each diffusion node input by the user: one

location to store the temperature of the node , one to store its capaci-

tance , and one for the heat source (if any) impressed on the node. Diffu-
sion node data Input options are provided to accommodate capacitance values
which are not constant (i.e., vary with temperature , etc.).

Arithmetic nodes have a capacitance of zero. The temperatures of
arithmetic nodes are calculated using a finite difference representation of
Poisson ’s equation . Since there is no capacitance value to store , only two
core locations are reserved for each arithmetic node: one for the tempera-
ture and one for the impressed heat source (if any).

Boundary nodes have no capacitance and may not receive an impressed
heat source. A single core location is reserved to store the temperature
of each boundary node. These temperatures are not altered by the network
solution routines , but may be modified , as desired , by the user.

Figure 10.3.2.1—1 summarizes the node data input op t ions  whic h are
available to the user. Two points should be clarified. Impressed heat
sources are not input with node data; they are input in the SOURCE DATA

block , in which case they are transferred to the source locations auto-

matically when needed , or the y ma y be en te red  in the source locations
directly with appropriate operations in the VARIABLES 1 block. Second ly,

+ 
the tables of nodal capacitances are always accessible to the user in th~
operations blocks, and hence , a “constant capacitance value ,” from the

standpoint of node data input , need not be held constant during the entire
course of a problem ’s solution.

157

+ —... 
~~~~~~~~~~~~~~ 

- — ---,. •t~~~~~ ,d~~~~~~~ ~~~~~~~~~~~~~~~~ p . d~~, -
.

-

~~
-

~~ ~~~~- -
‘

- -—--—
‘
__

-
-:

- - - -

10.3.2.2 Source Data Block

This block provides the user with a convenient means for defining
heat sources which are to be impressed upon the nodes defined in the NODE
Data block. Sources are always input in units of:

ENERGY
TIME

As previously described , one memory location in the heat source table
is reserved for each diffusion and arithmetic node that is defined . These
locations may be referenced from the operations blocks by using the form :

Qn, where n = actual node number. All Q locations are set to zero by the
network solution routines at the beginning of each time—step iteration. It
is appropriate to use operations in the VARIABLES 1 block to reload the Q
locations with the required source values because this block is called just
prior to performing the heat transfer calculations. By provid ing a
“shorthand” method for defining the most common types of sources (i.e.,
constant , time variant , and ten’?erature variant), the SOURCE DATA block
relieves the user of the burdefl of preparing source computation algorithms
and inputting them in the VARIABLES 1 bl~ ck.

It should be clearly understood that the preprocessor will not make
any direct entries in the heat source table (Q locations) based on data in
the SOURCE DATA block but , rather , it will provide for appropriate opera-
tions following the VARIABLES 1 block which will automaticall y add the
specified values to the Q locations during each time—step iteration of the
network solution. Since sources defined in the SOURCE DATA block are ADDED
to the Q locations after the VARIABLES 1 operations are completed , the user
need not fear that these SOURCE DATA values will erase any Q location en-
tries made directly from the VARIABLES 1 block.

The source daLa input options and their associated card codes are
summarized in Figure 10.3.2.2—1.

10.3.2.3 Conductor Data Block

Two basic types of conductors may be defined and input by the user:
(1) LINEAR and (2) RADIATION. The conductance of a linear conductor is
input in units of

158

-

—
‘ -m-~~~~

-
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~ ~~~~~~~~~~~~~~~~~~~~~~~~~ ‘a’,., ~‘ — ~~ 

- 

.
~~~~ - -


OPTION I NODE TYPE
(CODE) D A B DESC RIPTION

3 blanks x x x TO INPUT A SINGLE NODE WHERE THE CAPACITANCE IS GIVEN AS A SINGLE ,
CONSTANT VALUE.

CAL x TO INPUT A SINGLE NODE WHERE THE CAPACITANCE WILL BE CALCULATED

______ — —
BY TIlE PREPROCESSOR FROM FOUR FACTORS INPUT BY THE USER.

GEN x x x TO GENERATE AND INPUT A GROUP OF NODES; EACH HAVING THE SAME
INITIAL TEMPERATURE AND THE SAME CAPACITANCE.

SIV x TO INPUT A SINGLE NODE WHERE THE CAPACITANCE VARIES WITH TEMPERA-
TURE. FOR SI V . THE CAPACITANCE IS FOUND BY INTERPOLATING ON AN

SPV ARRAY OF TEMPERATURE VS CAPACITANCE. FOR SPy , THE CAPACITANCE IS
FOUND BY COMPUTING AN N-TH ORDER POLYNOMIAL FUNCTION OF
TEMPERATURE.

SIM x TO GENERATE AND INPUT A GROUP OF NODES, EACH HAViNG THE SAME
INITIAL TEMPERATURE AND THE SAME TEMPERATURE VARYING CAPACI-

SPM lANCE. FOR SIM, C IS FOUND BY INTERPOLATING ON AN ARRAY OF T VS C.

______ — —
FOR SPM, C IS FOUND BY COMPUTING A POLYNOMIAL IN T .

DIV x TO INPUT A SINGLE NODE CONSISTING OF TWO MATERIALS WHICH HAVE
DIFFERENT TEMPERATURE VARYING CAPACITANCES. FOR DIV . Cl AND C2

DPV ARE TAKEN FROM ARRAYS OF T VS C. FOR DPV , Cl AND C2 ARE COMPUTED
FROM POLYNOMIALS IN T.

DIM x TO GENERATE AND INPUT A GROUP OF NODES. EACH OF WHICH CONSISTS OF
THE SAMC TWO MAT ERIA LS HA VING DIFFERENT T EMPERA TURE VARYING

DPM CAPACITANCES. FOR DIM , Cl AND C2 ARE TAKEN FROM ARRAYS OFT VS

______ — — —
C. FOR DPM, Cl AND C2 ARE COMPUTED FROM POLYNOMIALS IN T.

BIV x TO INPUT A SINGLE NODE WHERE THE CAPACITANCE ISA FUNCTION OF TIME
AND TEMPERATURE. THE CAPACITANCE IS FOUND BY INTERPOLATING ON
AN ARRAY OF TIME AND TEMPERATURE VS CAPACITANCE.

D = DIFFUSION A = ARITHMETIC B BOUNDARY

Figure 10.3.2.1-1. Summary of Node Data Input Options

159

S ~~~— - - ~~~ ~~~~~~~~ ~~~~~
,
~dr# _..._. 0~ — ~- •~~V~~~’- -— - —

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- —--

~~~~~
—-. -.—

F

OPTION
(Card Code) DESCRIPTION

(3 blanks) TO IMPRESS A CONSTANT HEAT SOURCE ON A SINGLE NODE.

GEN TO IMPRESS THE SAME CONSTANT HEAT SOURCE ON SEVERAL NODES.

SIV TO IMPRESS A TEMPERATURE VARYING HEAT SOURCE ON A NODE.

SIT TO IMPRESS A TIME VARYING HEAT SOURCE ON A NODE .

DIT TO IMPRESS THE SUM OF TWO TIME VARYING HEAT SOURCES ON A NODE.

OTV TO IMPRESS THE SUM OF A TIME VARYING SOURCE AND A TEMPERATURE VA RYING
SOURCE ON A NODE.

CYC TO IMPRESS A CYCLIC TIME VARYING SOURCE ON A NODE.

Figure 10.3.2.2.1. Summary of Source Data Input Options

ENERGY (1)
TIME • °F

and the heat flow rate through such a conductor is calculated in the net-

work solution routines as:

Q G.(T~
— Tj) (2)

where: Q = Heat rate (ENERGY/TIME)
C Conductance
T = Temperature

Several types of physical heat transfer mechanisms can be modeled as
linear conductors. For heat transfer by conduction , the conductance should

be computed as:

K . A
G = (3)

L

160

- —~
., ~_‘_______ - -

,.-
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~ - .+ — 

- - - -



where: k = Thermal conductivity of the material (ENERGY/LENGTH—TIME— °F)
A Cross sectional area of the conduction path (LENGTH2)

L = Length of the conduction path (LENGTH)

For heat transfer by convection , the conductance should be coluputed as:

G = h •A  (4)

where : h = Convective film coefficient (ENERGY/LENGTH2—TIME—°F)
A Surface area (LENGTH2)

For heat transfer by mass flow, the conductance should be computed as:

C d . C p  (5)

where: ii Mass flow rate (MASS/TIME)

Cp Specific heat of the flowing material (ENERGY/MASS—°F)

The conductance of a radiation conductor is input in units of

ENERGY
TIME .°R~ 

(6)

and the heat flow rate through such a conductor is calculated in the net-

work solution routines as:

(7)

However, the value that is input as the conductance of a radiation conduc-

tor should be computed as:

Ginput = ocFA (8)

where: o = Stephan—Boltzman constant (ENERGY/LENGTH2—TIME— °R4)

(e.g. , 0.17 14 x iO”8 BTU/ FT 2—HR— °R4)
Emissivity

F = Shape factor

A = Surface area (LENGTH2)

The network solution routines automatically premultiply the input conduc-

tance value by ((T~+46O) + (T~+46 0) ) ( (T~+46O)2 + (T~+46O)2) each time a

161

-=
‘ .m—:—-- - + - -

- - ~~~~~~~~~~~~~~~~~~~~~ .~~~~~~~ 
+ 

~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~ “.. — ~~~- ‘—

S

- -.- ——- -- _•___‘_w~_’~

radiation conductor is processed so that all subsequent calculations may
use the same heat rate equation used for linear conductors. However , this
premultip lication utilizes scratch memory so that the input radiation con-
ductance value , acFA , remains unaltered in the table of conductances.

To facilitate the modeling of fluid loops , SINDA allows any conductor
to be specified as a ONE—WAY CONDUCTOR. One—way conductors permit the
realistic modeling of heat transfer by fluid (mass) flow , and their conduc—
tances are always computed as mCp. Such a conductor is defined by prefix-
ing the node number of one of the adjoining nodes with a minus sign. The
node so designated will not be allowed to lose or gain heat throug h the
conductor , even though the temperature of the node will be used to calcu-
late a heat flow. In other words , the solution subroutines will compute
the heat transferred through a one—way conductor as though it were an
ordinary conductor. This heat will not , however , be allowed to enter (or
leave) the node prefixed by the minus sign; it will be allowed to leave (or
enter) the unsigned node.

Figure 10.3.2.3—1 summarizes the conductor data input options avail-
able to the user. It should be remembered that the table of conductance
values is always available to the user in the operations blocks , and hence ,
a “constant conductance value” from the standpoint of conductor data input
need not be held constant during the entire course of a problem ’s solution.

10.3.2.4 Constants Data Block

The purpose of the CONSTANTS DATA block is to provide a means for
defining and initializing SIMPLE VARIABLES. A simple variable requires one
core storage location and is referenced wi th in a program by a symbolic name
or identifier. The name of a simp le v~iriab1e is associated , not with a
specific data value , but with the addrnss of the memory location where the
current value of the variable is stored .

There are two types of constants which may be defined in the
CONSTANTS DATA block: CONTROL constants and USER constants. Control
constants have preassigned names and are used primarily for communicating
various parameters to the network solution routines. Some constants ,
called DUMMY control constants , do not have preassigned uses and may
therefore be utilized for temporary storage of values whose significance is
peculiar to the user’s problem.

162

=-.‘

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
.- . 

-— _____ —-



OPTION
(CODE) DESCRIPTION

3 blanks TO INPUT A SINGLE CONDUCTOR WHERE THE CONDUCTANCE IS GIVEN AS A SINGLE ,
CONSTANT VALUE.

CAL TO INPUT A SINGLE CONDUCTOR WHERE THE CONDUCTANCE WILL BE CALCULATED BY THE
PREPROCESSOR FROM FOUR FACTORS INPUT BY THE USER.

GEN TO GENERATE AND INPUT A GROUP OF CONDUCTORS, EACH HAVING THE SAME
CONDUCTANCE .

SI V TO INPUT A SINGLE CONDUCTOR WHERE THE CONDUCTANCE VARIES WITH TEMPERATURE.
FOR SIV , THE CONDUCTANCE IS FOUND BY INTERPOLATING ON AN ARRAY OF TEMPERATURE

SPy VS CONDUCTANCE. FOR SPV~ THE CONDUCTANCE IS FOUND BY COMPUTING AN N.TH ORDER
POLYNOMIAL FUNCTION OF TEMPERATURE.

SIM TO GENERATE AND INPUT A GROUP OF CONDUCTORS , EACH HAVING THE SAME TEMPER-
ATURE VARY (NG CONDUCTANCE. FOR SIM, G IS FOUND BY INTERPOLATING ON AN ARRAY

SPM OF T VS G. FOR SPM, G IS FOUND BY COMPUTING A POLYNOMIAL IN T.

DIV TO INPUT A SINGLE CONDUCTOR REPRESENTING A PATH THROUGH TWO MATERIALS WHICH
HAVE DIFFERENT TEMPERATURE VARYING CONDUCTANCES. FOR DIV , G1 AND G2 ARE

DPV TAKEN FROM ARRAYS OF T VS G. FOR DPV, Gi AND G2 ARE COMPUTED FROM POLYNOMIALS
IN T.

DIM TO GENERATE AND INPUT A GROUP OF CONDUCTORS, EACH REPRESENTING THE SAME PATH
THROUGH TWO MATERIALS WHICH HAVE DIFFERENT TEMPERATURE VARYING CONDUCT-

DPM ANCES. FOR DIM, Gi , AND G2 ARE TAKEN FROM ARRAYS OFT VS G. FOR DPM, Gi AND G2
ARE COMPUTED FROM POLYNOMIALS IN T.

BIV TOINPUT A SINGLE CONDUCTOR WHERE THECONDUCTANCE ISA FUNCTION OF TIME AND
TEMPERATURE. THE CONDUCTANCE IS FOUND BY INTERPOLATING ON AN ARRAY OF
TIME AND TEMPERATURE VS CONDUCTANCE .

PIV TO INPUT A CONDUCTOR WHERE THE CONDUCTANCE IS A FUNCTION OF BOTH AN ARBITRARY
TIME VARIABLE AND TEMPERATURE. PIV DEFINES A SINGLE CONDUCTOR; PIM DEFINES

PIM SEVERAL SIMI LA R CONDUCTORS.

Figure 10.3.2.3-1. Summary of Conductor Data Input Options

163

.*1 
- “ s 

~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - ..i~~~ 
—

~~~
- ,,- - w ~~~~~

-- -
~ ~ 

- + - - - -

- S



If a particular rou t ine  called in an ope ra t ions  block requi res  a
value for a certain control constant , and if the user has not specified

some reasonable value , an appropriate error message will be printed and the
program will be terminated. The user should check the description of each

subroutine being used to determine the control constants required and the
acceptable range of values for each.

USER constants are defined and input as required for a particular
problem. Each such constant is assigned a positive integer reference num-
ber (1 to S digits) by the user.

10.3.2.5 Array Data Block

An array is an ordered list of data values occupying sequential loca-

tions in n~mory. In SINDA , an array is defined by entering a sequence of
three or more data values in the ARRAY DATA block. The first data value
must be a positive integer which will be interpreted as the user—assigned
array reference number. The last data value must be the Hollerith value

‘ END ‘ . All intervening data values will be accepted as being the
ELEMENTS of the list which constitute the array.

Numerous SINDA subroutines available in the operations blocks , as

well as the interpolation and polynomial evaluation options available in
the NODE , CONDUCTOR, and SOURCE DATA blocks , require that the exact number
of data values in an array be specified as an integer. In order to reduce
the number of input parameters and the chance of error , the preprocessor

counts the number of data values in each array and enters this integer
count as the zero—th element of the array.

SINDA ARRAY specifications may take the form of singlet arrays, doub-
let arrays , bivariate arrays, trivariate arrays, and matrices.

10.3.3 Operations Blocks

An operations block is a group of cards, preceded by a block header
card and followed by an END card , which specifies a sequence of operations

to be performed on the data previously input in the five SINDA data blocks.
Each block is translated by the preprocessor into a corresponding FORTRAN

subroutine , which in turn, is translated by the system FORTRAN compiler in—
to machine executable code. Thus, an operations block prepared by the user

becomes a program executable by the computer. To facilitate the discussion

164

~~~~~~~~~ ~~~~~~ 

— --- ~~— - - - - - S ~~~~~~~~~~~ + —

in the following sections, the name of each subroutine and its correspond-
ing operations block name is shown below:

Operations Block Name FORTRAN Subroutine Name
EXECUTION EXECTN
VARIABLES 1 VARBL 1
VARIABLES 2 VARBL2
OUTPUT CALLS OUTCAL

Three basic types of operations may be included in an operations
block , as follvs:

1. SINDA statements
2. F—type FORTRAN statements
3. M—type FORTRAN statements

A SINDA statement is a simplified form of a subroutine call which dispenses
with unnecessary key words and permits arguments to be specified using
reference forms keyed to the actual numbering system developed in the data
blocks. An F—type statement is any valid FORTRAN statement. An M—type
statement is similar to an F—type statement , except tha t the actual num-
bering system may be used to reference data. That is , F—type statements
are FORTRAN statements which are not translated by the preprocessor , where-
as M—type statements are FORTRAN statements which are modified by the pre-
processor to reflect the same translation from the actual to the relative
numbering system that is applied to SINDA statements. Each of the three
types of statements is illustrated below:

SINDA STATEMENT: STFSEP (A9+2 , T3 , G18 , K4 , Al , Q1O)
F—TYPE FORTRAN STATEMENT: CALL STFSEP (A(84), T(46), G(6) , K (2 7) , A(61),

Q(32)) T(4 6) G(6)
M—TYPE FORTRAN STATEMENT: CALL STFSEP (A(9+2), T3 , G18 K4, A7 Q10)

T3 = G18

The following discussion of the four SINDA operations blocks requires
the introduction of several concepts which may be foreign to the prospec-
tive user who is not familiar with computer programming techniques. This
situation arises because these blocks are the vehicle through which the
user specifies the sequence of operations (mathematical and otherwise) to
be performed by the computer in order to solve the user’s problem , and , as
such , they constitute a “computer program.” Just as the data blocks are

165

/

used to te l l the p l u g — a n d — g r i n d c o m p u t e r WHAT to plug , the o p e r a t i o n s
blocks are used to tell it HOW to grind .

After the preprocessor has processed the data blocks and translated
the operations blocks , the compressed data is placed on a magnetic tape
(thus releasing core memory for other uses) and the resulting subroutines
are passed to the system FORTRAN comp iler. Following compilation , the
resul t ing program is loaded into core and executed as shown in the flow
chart in Figure 10.3.3—1.

I I ~~~~~~ OCESSEDL _ t ’ DATA j_ .___[SUBROUTIrdE]__4L FINI
~N)

Figure 10.3.3-1. Basic Program Flow

This simp le flow chart reveals and imp lies several things:
1. The actions depicted in the flow chart take place within the framework

of a “main program.” Since this “main program” is fabricated entirely
by the preprocessor , the actions therein occur automaticall y from the
stand point of the user (i.e., the user has no control over these
actions).

2. The first action performed automaticall y is the reading of the proc-
essed data from the magnetic tape back into core memory.

3. The next and final action which is performed automatically is a trans-
fer of control to SUBROUTINE EXECTN.

4. Clearly, the first opportunity for the user to specify operations which
will lead to the solution of his problem occurs in the EXECUTION block.
That is, if the user includes no operations in his EXECUTION block ,

166

~IT~~~
_

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

+-

~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~


then sub r o u t i n e EXECTN w i l l be e m p t y (i . e . , i t w i l l in d i c a t e t h a t
nothing is to be per formed) and , for all intents and pur poses , his pro-
gram will do nothing . Conversely, exactly and onl y those operations
included by the user in his EXECUTION block will appear and will be
pe rformed in subroutine EXECTN when it is called .

5. The basic flow chart includes no exp licit reference to subroutine
VARBL1 , VARBL2 , or OUTCAL .

6. The basic flow chart applies to both THERMAL— and GENERAL—type problems.

No general flow chart of the EXECUTION block (and , hence , subroutine
EXECTN) can be presented here because euerything in the block must he
p laced there by the user and the sequence of operations will always be
specific to a particular problem. However , the flowchart for a typical
EXECUTION block is shown , for illustrative purposes , in Figure 10.3.3—2.
The last line in each block of this flowchart shows the SINDA operation
which will accomplish the action described there in words. The various
subrout ines referenced by name (i.e., D1DEGI , STFSEP , CNFRWD , and PRNTMP)
exist in pro—written , “canned” form in the SINDA library.

It will be noticed that this flowchart still makes no exp licit me n-
tion of subroutines VARBLI , VARBL2 , or OUTCAL. This situation will be
t r ue , in general , fo r any EXECUTION block f lowchart p r epa red b y the use r ,
because these subroutine s are ca l l ed a u t o m a t i c a l l y f r o m w i t h i n the pre—
written network solution subroutines (e.g., CNFRWD). They are not , in
general , called directly by the user. In other word s, EXECTN , as directed
by the user , calls CNFRWD. CNFRWD , at certain points in the sequence of
heat transfer calculations , calls VARBLI , VARBL2 and OUTCAL. Each of these
routines in turn , again as directed by the user , calls upon various library
subroutines to perform operations which are unique to the problem at hand .
Thus , the operations included in the VARIABLES 1 , VARIABLES 2, and OUTPUT
CALLS blocks are used to “customize ” the pre—written , “canned” network
solution routines so that they can accommodate any and all of the pecu-
liarities which are specific to a given user ’s problem. Figure 10.3.3—3
will aid the user in v i s u a l i z i n g tna t which has just been described——
namel y, that the operations entered by the user in the VARIABLES I ,
VARI ABLES 2, and OUTPUT CALLS blocks serve as °customized additives ” to the
pre—written operations contained in the various thermal network solution
subroutines (of which , the most commonly used is subroutine CNFRWD).

The flowchart in Figure 10.3.3—4 details the sequence of operations
contained in a typical network solution routine , CNFRWD. The flowcharts

167

~ T ~~ ~~~ —+_,

~~~~

. -- - - -  

—



CIXECUTION
~EXECTN)

11

CA LL A SUBROUTINE WHICH
INTERPOLATES ON ARRAY AS TO I

I FIND CONDUCT ANCE G7, USING I
I THE VALUE OF RIEST AS THE
I INDEPENDENT VARIABLE.L.4. D1DEGI(RTEST , A5, G7) I

THE VALUE OF
RTEST IS LESS THAN 5.0,

TH 1; IF NOT, SELECT
e.g.,IF~ RTEST ,LT

~~~~~~~SUBROUTINE WHICH SE TS PATH I

50) GO TO 1

THE CAPACITANCE OF MODE 6
EQUAL TO THE VALUE OF USER
COMS’TANT 8.

•.g. STFSEP (K8,C6)
______________ _______________

CALL A SUBROUTINE WHICH PER-
FORMS TRANSIENT THERMAL
ANALYSIS ON THE NETWORK DE-
FINED IN THE MODE AND CON-
DUCTOR DATA BLOCKS.
e.g. CNFRWD—i______
CALL A SUBROUTINE WHICH
PRINTS OUT THE TEMPERATURES
OF AL L THE MODES IN THE NET-
WORK ,

e.g. PRMTMP

lip
L

END 9

Figure 10.3.3-2. Sample Flow Chart for the Execution Bloc k

168

- -

- - -------- — - S - -

MAIN PROGRAM

I SUBROUTINE INPUTT THIS SUBROUTINE READS THE PROCESSED DATA BLOCKS
INTO CORE MEMORY.

SUBROUTINE EXECTN THE VARIOUS BOXES WITHIN THIS SUBROUTINE REPRESENT
OPERATIONS WHICH WERE SPECIFIED BY THE USER IN THE
EXECUTION BLOCK OF HIS SINDA INPUT DECK.

I THIS BOX REPRESENTS THE VARIOUS ELEMENTARY OPERATIONS. SUCH AS
I INTERPOLATION, ADDITION. ETC., WHICH THE USER MIGHT HAVE INCLUDED

L~!~~
HE EXECUTION BLOCK PRIOR TO REQUESTING A SOLUTION ROUTINE.

SUBROUTINE CNFRWD THIS SUBROUTINE PERFORMS TRANSIENT
ThERMAL ANALYSIS ON THE NETWORK DEFINED
IN THE MODE AND CONDUCTOR DATA BLOCKS.

SUBROUTINE VARBI 1 THIS SUBROUTINE CONTAINS THE
OPERATIONS SPECIFIED BY THE

USER IN THE VARIABLES 1 BLOC K OF HIS SINDA INPUT DECK .

THIS BOX REPRESENTS THE BULK OF THE PREWRITT EN CAL-
CULATIONS WITHIN CNFRWD WH1CH ARE REQUIRED TO INTE-
GRATE THE EQUATIONS OF HEAT TRANS FER.

SUBROUTINE VARBL2 1 THIS SUBROUTINE CONTAINSTHE OPERATIONS SPECIFIED BY
THE USER IN THE VARIABLES 2 BLOCK OF HIS SIPDA INPUT DECK

SUBROUTINE OUTCAL THIS SUBROUTINE CONTAINS THE
OPERATIONS SPECIFIED BY THE

USER IN THE OUTPUT CALLS BLOCK OF HIS SIP-WA INPUT DECK.

THIS BOX REPRESENTS THE VARIOUS ELEMENTARY OPERATIONS. SUCH AS
INTERPOLATION. ADDITION. ETC. WHICH THE USER MIGHT HAVE INCLUDED IN
THE EXECUTION BLOCK AFTER REQUESTING A SOLUTION ROUTINE.

Figure 10.3.3-3. Nested Structure of the Operations Block s

169

‘
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ ~~~~~~ ~~~ — - +~~~ ~~~~~~~~~ .~ . - —



‘~~THERMAL NETWOAK~~\
(,4,

~~~LUTION SUBROUTINE I
CNFRWD

CALCULATE THE TIME STEP TO BE

USED FOR THIS ITERATION

CALL SUBROUTINE VARBL I

CHECK
*0 CONTROL CONSTANT f ERASE THISBACKUP

—o

NUMERICALLY INTEGRATE THE
HEAT TRANSFER EQUATIONS

OVER THE SPECIFIED TIME STEP

TIME OR YES MODIFY THE TIME STEP
TEMPERATURE CHANGE SELECTI ON CRITERIATOO LARGE

NO

CALL SUBROUTINE VARB L2

CHECK *0CONTROL CONSTANT
BACKUP

NO HAS TIME
BOG RESSED TO ThE NEX

UTPUT INTERV

YES

CALL SUBROUTINE OUTCAL

NO HAS TIME
PROGRESSED TO THE EN

OF THE PROBLE ~~ THE AUTOMAT ED OPTIONS EVALUATE THE
VARIABLE NETWORK ELEMENTS AT THIS POINT

YES

END

Figure 10.3.3.4. Flow Chart of Network Solution Subroutine CNFRWD

170

~~~~~ 
—.

~~+ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~

- - -~~~~~——---- - - - -

for the other solution routines available in the SINDA library are similar
to the one shown here. Careful examination of this flowchart will reveal
the extensive versatility which may be built into the solution routines
throug h the c rea t iv e use of the VARIABLES 1 , VARIABLES 2 , and OUTPUT CALLS

blocks . The VARIABLES 1 block allows the user to interject operations which
will be performed after the time step for each iteration is computed , but
hctore the ;o-tua l heat transfer equations are integrated . The VARIABLES 2
bl ock .~flows the user to interject operations which will be performed after
t b ’ equations are integrated , and the OUTPUT CALLS block allows the user to
i n t e r I t - e L ~~~rations which will be performed only when the problem time has
progressed to a multip le of some specified interval.

The flowchart also reveals how the SINDA CONTROL CONSTANTS c-i n be
used to achieve program flow control within the network solution routines.

For examp le , the check on control constant BACKUP is build into subroutine

CNFRWD . However , since control constants are accessible from all the

operations blocks , the user could , for example , set the value of BACKUP
equal to 1.0 in his VARIABLES 2 block , and thus cause CNFRWD to automati-

cally erase the previous iteration. Control constant OUTPUT is used to

specif y the time interval at which subroutine OUTCAL will be performed.
Other control constants provide checks on the time—step used , the maximum

temperature change calculated , etc. By examining and modifying these con-
stants in the VARIABLES I , VARIABLES 2, and OUTPUT CALLS blocks , the user
is able to effec t comp le te control over the flow of the network solution
routines , in addition to interjecting his own operations into the pre—
written sequence of calculations contained therein.

The sample flowchart for the EXECUTION block (Figure 10.3.3—2) repre-

sents the result of app lying three basic concepts (i.e., flowchart develop-
ment , subroutine usage , and program flow control) to a specific problem.
These concepts are equall y applicable to the VARTABLES 1 , VARIABLES 2, and
OUTPUT CALLS blocks. The structure of the flowchart indicates the exact
sequence of operations which the user has established as being necessary
for the solution of his problem . The discrete operations detailed in each
box are mechanized through the usage of pr e — w r i t t e n s u b r o u t i n e s f r o m the
SINDA library, and the FORTRAN “IF” statement (in the diamond) is used to
accomplish program flow control (i.e., the selection of alternate sequenc& ;
of operations based on cer tain values and criteria). These three concepts
must be app lied by the user to each individual problem which he desires to
solve. Various guidelines for structuring the flow of an operations block
exist , but the user must exercise a certain degree of judgement in app lying

171

L~
- --

—

~~~ 

- - -

~~~~~~

, - - —

~

—

~~~~ 

—--  - - - 

- 

* -



them to his problem. In addition , the user should recognize that the SINDA

system provides him with the capability and freedom to innovate in those

cases where general guidelines cannot be applied . It is up to the user to

select the routines which are appropriate f o r  his  p rob lem , as wel l  as to

supply them with appropriate actual arguments. And in the same fashion ,

the responsibility for selecting and correctly app ly ing these methods rests

with the user.

172

-*0~ 
- - ---i 

~~~~~~~~~~~~ 
_ -,_‘_ - -‘,t

“ ..•• ~~~~~~~~ o*?~~ 40iwfl% , P..r ~~~~~~~~~~~~~~~~~~~~~~ ~~~ ‘-- — .-. .. - ‘ - ~~- - ‘ -. -—- --- - - —-—-- - - - -

Lily MANUAL. VOLt$~~ iI . EXECUTIVe—nc

I WCLA !!

END
FiLMI

10—7 9

ii I

1.0 I~~~~28 ~ 25

_ _ _ _

~~~~~~ 
111122

L

I.’ ~ IIIlI~0

IIIII~8

IDA ’ 25 

~IIII~•~ Iw~
1’

MICROCOPY RESOLUTION TEST CHART
NA11ONAI BUREAU OF STAN DARDS - 196 3-A



— 

SECTION 11 

-

ASPEC-ADVANCED SIMULATION PROGRAM FOR ELECTRONIC CIRCUITS

11.1 INTRODUCTION

ASPEC is a machine—independent computer program designed to perform
nonlinear dc , nonlinear transfer function , nonlinear transient and linear
ac simulation of circuits containing independent sources , linear elements
and nonlinear devices.

11.2 PROGRAM ANALYSIS CAPABI LITIES

Nonlinear dc analysis determines the quiescent state of the circuit .
The user can print out a table of the node voltages, and the source , ele-

ment and device currents and power dissipations in the dc state. If the
circuit does not have a well—defined dc state, the user can optionally de-
fine fixed dc node voltages as initial conditions.

Nonlinear transfer function analysis is a series of dc analyses per-
formed while sweeping the value of a source , element or device model. The
user may print out tables or produce line printer plots of voltages or cur-
rents versus the changing value. Furthermore , “snapshots” of the complete
circuit operating state may also be printed at selected values.

Nonlinear tran8ient analysis predicts the circuit response versus
time. Charge storage effects of capacitors and inductors are simulated .
The user m ay print tables or line printer plots of voltages or currents
with respect to time. A “snapshot” capability is also available to print
out the complete operating state of the circuit at selected time points.

Linear ac analysis predicts the frequency response of the circuit to
“impulse ” source inputs. The linearized models of nonlinear devices are
automatically calculated by the program based upon the dc state of the cir—
cult and the model information supplied. Tables and line printer plots of
selected complex outputs can be printed versus frequency.

173

- -



11.3 PROGRAM DESCRIPTION

App lication of ASPEC relies on the specification of circuit
components and program instruction statements.

11.3.1 Components Specification

Circuit components can generally be descr ibed in terms of sources ,
elements and devices. As such, input to ASPEC must include the description
of these components.

11.3.1.1 Elements

Allowed linear elements are resistors , capacitors, inductors , trans—
conductances, voltage—controlled piecewise—linear switches and batteries.
In addition, coupled inductors are allowed.

11.3.1.1.1 Resistors, capacitors, and inductors

Linear resistors, capacitors, and inductors are all specified in the
same format. Specification must include a unique identifying name , direc-

tional node numbers for positive branch current , the nominal res is tance ,
capacitance or inductance of the element at 25 degrees C, and optional
first and second order temperature coeff icient values which def ine how the
element value changes over temperature.

11.3.1.1.2 Battery

The battery element is intended primarily for simulation of Zener
diodes which are always in breakdown , although it can be used anywhere that
a constant voltage Is required . Specification must include a unique name ,
directional node numbers def ining pos itive branch current, the nominal vol-
tage of the battery at 25 degrees C, the internal resistance of the battery
(default of 10 ohms), and the optional value of the first order temperature
coefficient in parts per degree C of the battery voltage.

174

—-

~~~


— -

11.3.1.1.3 Transconductance

The specification of a transconductance element must include a unique
IdentIfyIng name and directional connecting node numbers of the element .
In addition , description of the element must include directional control-
ling node numbers of the gm element , the transconductance of the gin element
at a temperature of 25 degrees C, and optional first and second order tem-
perature coefficients in parts per degree C which define how the transcon—
ductance value changes over temperature.

11.3.1.1.4 Voltage - controlled switch

This element Is actually a resistor whose value changes during tran-
sient analysis, depending upon the voltage across two nodes. Specification
must include a unique identifying name , d i rec t iona l node numbers across
which the switch is connected , directional controlling voltage nodes , and
the break voltage value which determines the resistance of the switch
during transient simulation. Also included must be the switch type . During
DC and linear AC analysis , a switch which is normal ly open (NO) wi l l be
assigned the largest resistance value. A switch which is normally closed
(NC) will be assigned the smallest resistance value. Also to be specif ied
is the switch resistance when the voltage across the controlling voltage
nodes is less than or equal to the break voltage and also when it is
greater than the break voltage.

11.3.1.1.5 Coupled inductors

Any two inductors in the data may be defined as having a mutual
coupling factor. Coupled inductors are specified by a unique identifying
name of the coupled inductor pair and unique names of the two inductors
which are mutually coupled. Note that each of these two inductors must
have their node numbers and values assigned elsewhere in the data. Either
or both of the inductors may be coupled to any other inductors in the d r -
cult. Specification will also include the mutual inductance value between
the two inductors.

175

______________________ ________ _ _ _ _
_ _ _ _ -

11.3.1.2 Sources

Independent voltage and current sources may be dc, piecewise—linear ,
piecewise—exponential and sinusoidal with respect to time for DC and tran-
sient analysis. For linear AC analysis , sources may have a finite ac
amplitude.

11.3.1.2.1 DC sources

A dc source remains constant for all time values and is specif ied as
either a voltage or current source. Specification should include a unique
identifying name, directional node numbers , and the value of voltage (in
volts) or current (in amps). Source values may be positive, negative , or
zero.

11.3.12.2 Piecewise-linear source

A piecewise—linear source is defined with value—time “break point
pairs.” Between each of the breakpoint pairs, the source value is linearly
interpolated. Specification consIsts of a unique name for the voltage or
current source, directional node numbers , source value at time = 0 and the
voltage—time or current—time breakpoint pairs. After a specified time, the
source value remains constant.

11.3.1.2.3 Repeating piecewise-linear source

Repetitive piecewise—linear sources may most easily be specified by
using a slight modification to the regular piecewise linear source specif i—
cation. Specification Is identical to the regular piecewise—linear source
except that the repeating source does not remain constant , and theref ore
requires that a repeat time be specified.

11.3.1.2.4 Piecewise-exponential source

A piecewise—exponential source is somewhat similar to a piecewise—
linear source except that the source value rises and falls exponentially.
Instead of specifying value—time breakpoints, the user def ines star t times
and limit values.

Piecewise—exponential source values (e.g., for a voltage source) ar e
calculated as follows :

176

- -

~~~~ 
~~~~~~~~~~~~~~~~~~ ~I ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — —~~~ ~~~~~~~~~~~~~~ -


/

The dc source value (Vdc) is used from time T0 until the first time-
point (ti). The value then begins exponentially approach ing the val ue Vi
according to the equation:

V Vdc + (Vl—Vdc) * (1 — exp((T—tl)/tau))

where “tau” is either trise or tfall depending upon whether Vl>Vdc or
Vl<Vdc , respectively. The source value continues asymptoticall y to
approach Vl until time t2 is reached. Defining Vx as the source value at
time t2, the source now begins changing towards the value V2 accord ing to
the equation:

V = Vx + (V2—Vx) * (1 — exp((T—t2)ftau))

At time t3, the source begins changing towards the value V3 and so forth up
through the last value—time points (Vn tn). After time tn , the value
asymptotically approaches Vn.

11.3.1.2.5 Repeating piecewise-exponential source

Repetitive piecewise—exponential source waveforms may be specified in
a manner similar to that used for repeating piecewise—linear sources.

The specification is identical to the regular piecewise—exponential
sources except that a repeat time must be defined. The source will be
treated exactly like a normal piecewise—exponential source up until the
last time breakpoint. After that time, the source value does not asymptot-
ically approach the voltage or current breakpoint. Rather, the same limit
values and time intervals (beginning from the specified repeat time) are
continuously repeated.

11.3.1.2.6 Sinusoidal source

Specification consists of a unique identification name of the voltage
or current source , directionally numbered nodes , the source value at time —

0., the peak voltage of current amplitude , the osctllat&on frequenc y in
Hertz of the voltage or current source, the oscillation delay time, and the
exponential damping factor.

177

p1 -
~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ t~
,__

~~~
. jr-m_.__I.Iw-_ 

~~~~~~~~~~ =“-‘-‘-: -

~~~~

-‘
~~

—

~~~~~

- —a.—-— — —

~~~ ~

-.--

~~~~

._

11.3.1.2.7 AC source value

For linear AC analysis, the AC source values defa ult to zero unles s
otherwise specif ied (i.e., voltage source nodes are grounded and current
sources are effectively removed). If a source is to have a finite AC
value, it must be specified. The AC values may be specified in conjunction
with DC, piecewise linear , exponential or sinusoidal values.

11.31.3 Nonlinear devices

Nonlinear device types are p—n diodes , Schottky diodes , BJTs , J FETs
and MOSFETs. The device model s t ruc tu re s and equat ions are gene ra l l y
fixed; the user defines values to be entered into the device model equa-
tions. The more prameters the user specifies, the more complex the model
used by the program.

11.3.1 3.1 PN and Schottky diodes

Specification for PN and Schottky diodes includes the diode device
name , node numbers, and model name. This model name is used to refer to a
specific .MODEL instruction statement which is discussed in section
11.3.2.1. AddItional optional specifications include the area scaling
fac tor , the periphery scaling factor, an optional dc current value for the
initial estimate of the diode operating point , and a optional dc voltage
value.

11.3.1.3.2 Bipolar junction transistors (BJT)

Specification for both Ebers—Moll and Gummel—Poon BiT devices consist
of the transistor name, numbered nodes of the collector , base and emitter
nodes , model name, area factor, and optional initial collector current and
collector—emitter voltage values. When dc analysis is performed , these
initial values are used to calculate the initial estimate of the dc
operating point.

113.1.3.3 Junction field-effect transistors (JFET)

The JFET device specification consists of the device identification
na me , num bered nodes of the dr ain , ga te and sou r ce , model name , area

178

~~~~~~~~~~~~~~~~~~~~~~~
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~


scal ing fac tor , and optional initial drain current aad drain—source voltage
values. For DC analyses, these initial surface values are used to calcu-
late the first guess of the dc operating point.

11.3.1.3.4 MOS field-effect transistors (MOSFET)

Specification for the MOSFET device consists of the device identif i—
cation name , the drain , gate , and source node number s of the MOSFET , the
model name, the drawn width and length values , and the optimal initial
drain—source , gate—source and bulk—source voltage values. These voltage
source values are used as an initial estimate of the DC operating point.

11.3.2 Instruction Statements

In addition to a description of the components , ASPEC requires in-
struction statements to control program operation. Instruction statements
are identified by unique names beginning with a period. The period serves
to avoid any name conflicts with possible component names. Example in-
struction cards are .PRINT , .FREQ, and .TEMP.

11.3.2.1 •MODEL. Statement

The .MODEL card is used to define the model param eters assoc iated
with each different type of device . Diode , BiT , JFET and MOSFET devices
all have different model parameter names and values. However, all have the
same specification format. Each requires a model name (as referenced on
the device specification), device type , and model parameters. The ten
possible types of device models are as follows:

PN diode
Shottky diode
NPN Ebers—Moll BiT
PNP Ebers—Moll BiT
NPN Guninel—Poon BJT
PNP Gunmtel—Poon BiT
N—type JFET
P—type JFET
N—channel MOSFET
P—channel MOSFET

Each device type has parameters specific to tha t device .

179

-

~~~ 

—

~~~~

--— —
=~

11.3.2.2 •PARAM Statement

ASPEC allows for the assignment of numerical values indirectly

through the use of parameters. For example , rather than explicitl y speci-
fying a resistor with a value of 5.3K, it can be specified with a parameter

(e.g., RVAL); and elsewhere in the data, the value of RVAL can be defined
by a .PARAM statement. Parameter names can be used for source , element and
device specification as well as on .MODEL statements.

11.3.3 Analysis Specification

In addition to regular DC analysis, there are three types of analysis
statements , .TRAN, .TFUN, and .FREQ, to request nonlinear transient , non-

linear transfer function and linear AC analysis , respectivel y. Note that

these only request the analysis; they do not specify printed output.

11.3.3.1 DC Analysis

The program always performs a DC analysis prior to nonlinear tran-

sient or linear AC analysis. If a simple DC analysis only is desired , with

no follow—on analysis, an .OP card (see next section) must be used to cause

the program to perform the DC analysis and print the outputs.

11.3.3.2 •TRAN Statement

The .TRM~ statement is used to control the printing timestep during

transient analysis. As such, timestep and timepoint value pairs must b6

specified .

Note that the .TRAN card only controls the timestep used for print-

out. During transient analysis, the program may use considerably smaller

timesteps than those specified for printout.

11.3.3.3 .TFUN Statement

For transfer function analys is, the .TFUN card defines: 1) What is to
be changed (temperature or parameter value) and 2) The increments by which
either the temperature or the value is to be changed.

180

~~~~~~~~~~~
‘-‘

~~~ 

-

1t3.34 .FREQ Statement

The .FREQ statement is used to control the frequency print points
during linear AC analysis. Spcification must include the type and values
of the frequency increment. There are three types of frequency increment
specifications allowed.

DEC — Causes i points per decade to be printed logarithmically
between start and finish frequencies

OCT — Causes i points per octave to be printed logarithmically
between start and finish frequencies

LIN — Causes a total of I points to be printed linearly between
start and finish frequencies.

11.3.4 OUTPUT Specification

The .OP, .PRINT , .PLOT and .OUTPUT cards are used to define which
specific node voltages, branch currents or power dissipations are to be
printed and/or plotted for DC, transfer function , nonlinear transient or
linear ac analysis.

Although there is a limit on the number of different outputs , multi-
ple uses of an identical output count only as a single output. Thus, if
the same output is to be both printed and plotted , or plotted more than
once , it Is still considered to be only one of the total allowable outputs.

The .OP card can be used to print the complete operating condition of
the circuit in the DC state and at selected points during transfer function
or transient analysis.

For each .PRINT card , a tabular listing of the specified outputs will
be printed versus time, a parameter value, temperature or frequency.

For each .PLOT card , a line printer plot containing the waveforms of
the specified outputs will be printed versus time , a parameter value , tem—
perature , or frequency.

181

For each .OUTPUT card , the numerical value of one output will be

printed alongside a plot of the specified outputs.

11.3.5 Macro Definition and Use

A macro is a group of sources , elements and devices that are defined
as a single functional block. This block can then be used like any other

circuit component .

A simple example of a macro is the differential amplifier shown in
Figure 11.3.5—1. The circuit on the left may be thought of as a functional

bl ock , which can be connected to other functional blocks or to basic

components , as shown on the right.

p

6

;i1

OFAM P DFAMP

~ I 1
Figure 11.3 5-1. A Macro Example

182

Some other examples of macros are a Schottky—clamped transistor , a
CMOS memory cell, a TTh gate and a functional op amp model. Whenever a
circuit contains several topologically identical sections , the use of
macros can greatly reduce the amount of input data necessary to describe
the circuit.

The use of any macro requires both a macro definition, and one or
more macro expansions.

The MACRO DEFINITION assigns a unique name to the functional block ,
defines the components of which it is composed , and indicates which nodes
in the block are connected to outside circuit components. Also, the macro
definition may indicate certain source , element or device values which will
be different each time the macro is expanded.

MACRO EXPANSION involves creating a new set of circuit components ,
interconnected as described in the macro definition , but with generall y
different outside nodes. Selected component values may also be changed .
It should be understood that using macros does not save computer storage;
components created during macro expansion use the same amount of storage as
they would if they were entered normally into the data file.

11.3.5.1 .MACRO Statement

The .MACRO statement is used to define a macro. As such , it is
placed immediately preceding the data cards describing the macro compon-
ents. Its specification consists of the macro name , the external macro
node numbers used only to influence the nodes of the components within the
macro definition , and the parameter names and values. These names and
values refer to parameter names used in place of component values within
the macro definition.

11.3.5.2 Xname Statement

An Xname card is used to expand a macro. Each macro may be expanded
as many times as necessary up to the allowed limit, as long as the number
of nodes or components does not exceed the program limits.

Specification includes node numbers, the name referencing a specific
macro definition which indicates whIch macro is to be expanded , and option-
al parameter name—value definition.

A

183

. -

~~~

. •-

~~~~

-

~~

- -

~~~~~~

--

~~



/

When the macro is expanded , these node numbers replace , on a one—for—
one basis, the external node numbers specified in the macro definition.
Any new Internal nodes will be automatically assigned by the program.

The parameter name—value definition , if used , will replace the param-
eter name used on the referenced macro statement.

When the macro is expanded , the new paran~ ter values will replace the
values used in the macro definition.

11.3.5.3 Specification of Macro Output

No rmally, a macro expansion is considered  to be a “bl ack box ” fo r
which only the external nodes are of interest. However in some cases it is
useful to obtain the node voltages and currents inside a macro. When an
.OP print is specified , the internal voltages and currents are printed

automatically. Specified voltages and currents can also be obtained for
transient , transfer function and linear ac analysis using the .PRINT ,
.PLOT, and .OUTPUT cards as described below.

11.3.6 Temperature Specification

Normally, the program performs only one simulation at an assumed
temperature of 25 degrees C (298 degrees K). If desired , the simulation
may be run at several different temperatures by using the .TEMP card . Prior
to each simulation , element values and device parameters are modified
depending upon user—specified temperature coefficients.

113.7 Worst-Case Analysis

Worst—case analysis allows the user to multiply all resistors , capac-
itors, inductors , or battery element values and certain diode , BJT , JFET ,
or MOSFET device model parameter values by given factors prior to analy-
sis.

11.3.8 Noise Analysis Specification

Noise analysis enables the user to predic t  the thermal noise and
noise vs. frequency voltages across any two nodes in the circuit. Also ,
the equivalent input noise vs. frequency is calculated . Noise analysis

184

~~~~~ 

T
_ _ _ ___ __ ~~~~~~~~~~~~~

output is requested by using the .NOISE card in con junc t ion wi th a .FREQ
card .

The .NOISE card is used to request calculation of the output noise
voltages at each of the frequency points specified on a .FREQ card . Note
that noise analysis will not be performed unless a .FREQ card is also
specified.

Normally, the .NOISE card causes the program to generate plots of the
output noise and reflected input noise at those frequencies specified on a
.FRE Q card. In addition , a variation of the .OP card allows the user to
request printing of a table of the noise contribution of each resistor ,
diode and transistor at specified frequency points.

Note: This feature may be removed at a future date.

11.3.9 Print Control Specification

By use of the .PC statement , the user can control the amount and
format of the program data printout. Options available are as follows:

BRIEF — Suppresses reprinting of the data card images. All data
cards following the .PC card are affected . Thus , if no
data cards are to be pr in ted , the .PC card must be the
first card in the data deck after the Title Card.

REPRINT — Requests that the instruction card, source, element , device
and .MODEL card data as interpreted by the p r o g r a m be
printed. This reprint will also include all components
c rea t ed by macro expansions. The data reprint allows
checking to ensure that the Input data values were inter-
preted correctly by the program.

VERIFY — Causes the program to print a node connection table, itera-
tion control parameters and program storage usage. The
node connection table shows which circuit components are
connected to each node In the circuit.

ACVER — Causes the program to print the linearized Diode , BJT ,
JFET , and MOSFET models to be used during the linear ac
analysis. ACVER is ignored if no ac analysis is requested.

NP — (Narrow Paper) specifies that all output is to be printed
assuming a 72 column page width. This option allows for
output print on interactive data terminals. (If not speci-
f ied , the program assumes a 132 column page width.)

185

p.

~~ ~~ ~~~~~~~~~~~~~~ — --• - — —-- -.,----
~~
.

~~~~~~~~~~ 
-



11.3.10 DC Node Voltage Specification

The .DCVOLT card allows the user to define node voltage values which
will be maintained throughout the DC analysis (including transfer function
analysis). The effect of this card is to put a grounded voltage source on

L certain specified nodes during any DC analysis.

Caution should be exercised when using .DCVOLT card s since the cir-
cuit could be forced into an unrealistic DC state. The sources” set up by
the .DCVOLT card will sink or source any amount of current necessary to
maintain the specified node voltages. This could result in severe start—up
transients when the transient analysis begins. Linear AC analysis might
also give erroneous answers if the circuit is forced into an incorrect DC
state.

11.3.11 Breadboard Simulation

The .BBOARD card causes the program to attach a fixed grounded capac—
itor to each external node of every diode , BJT , FJET , and MOSFET in the
circuit. Note that if more than one Diode, BiT, J FET , or MOSFET dev ice is
connected to a node, more than one capacitor will be added to that node.
The .BBOARD card allows a convenient first—order simulation of a circuit in
breadboard (rather than integrated) form.

Note that during nonlinear transient and linear AC analysis , the
grounded capacitors may shunt currents to ground and thus the sum of cur-
rents into each node may not appear to equal zero.

11.3.12 Analysis Control

Analysis control allows the user to modify the program ’s DC and
transient analysis iteration scheme. It should be used with considerable
discretion since changes in the standard values could result in greatly
increased execution times with no appreciable improvement in accuracy.

186
*U.S.Ooy.,nm,nt Printi ng OffiCiz 1979— 657.002/57

p. 
~~~~


