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ABSTRACT

This paper presents the results of experiments and analysis of the

phenomenon of leading edge flutter which has been observed to occur for
supercavitating hydrofoils. The experiments confirmed the existence of
such a single degree of freedom flutter involving chordwise bending and |

indicated that for long, natural (or vapor-filled) cavities the reduced flutter

speed, UF/ch , was in the range 0.15 to 0.23. Secondary effects ob-

served were the variation with the angle of attack (a minimum flutter speed

occurred at 10°) and with a foil mass ratio. Shorter cavities typically
yielded lower flutter speeds due to a complex interaction between the
bubble collapse process occurring in the cavity closure region and the
unsteady hydrodynamic load on the foil. Finally a relatively simple
theoretical analysis for supercavitating hydrofoils with elastic axes aft of
mid-chord is presented. This linear analysis yields reduced flutter

velocities somewhat lower than those observed.
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Nomenclature

a Flexible chord l

c Chord

CD Drag coefficient |
CM Coefficient of moment, M/#p Uzc2 L
E Modulus of elasticity i

L]

Moment of inertia

I Dimensionless moment of inertia, I= IopstcZ

h] Imaginary unit

k Reduced frequency, wc/U

y] Cavity length

Spring constant

K
M Hydrodynamic moment per unit span

Free stream tunnel pressure

o
8

Cavity pressure

)
0

Q-factor, wN/Aw

w D

Equivalent cylindrical radius of the pinched-off cavity ' :

Foil span

Flexible foil thickness

o

Time

Tunnel velocity

c a4

Tunnel velocity for foil divergence

Leading edge displacement




Nomenclature (continued)

o Angle of attack

g Distance of hinge from leading edge is fc

) Leading edge displacement amplitude

A Wavelength of waves on leading edge cavity surface
o Mass ratio, pst/pc

u* Modified mass ratio, pst/pa

v Kinematic viscosity of liquid

P Liquid density

g Foil material density

o Cavitation number, (pw-pc)/‘}p o

W Radian frequency

NV First mode natural frequency of foil in vacuo
WA First mode natural frequency of foil in air
Wy First mode natural frequency in ''still" water
Wy First mode natural frequency with flow

Aw Bandwidth

Modifiers
Subscript 0 refers to mean quantities
Subscript R refers to real part
Subscript I refers to imaginary part

Subscript F refers to quantities at critical flutter conditions

Tilda over character refers to complex fluctuating quantity.

Dot over character denotes time derivative,
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1. INTRODUCTION

Hydrofoils utilized for hydrofoil boats, propeller blades and pump
or turbine blades are, of course, subject to the same kinds of fluid/structure
interaction instabilities which had earlier been investigated in the context
of airfoils (Abramson, (1969)). However increasing speeds led to the need
to redesign foil shapes so that they could operate efficiently with large
attached vapor or gas filled cavities; such redesigns involve relatively thin
wedge-shaped foils with sharp and thin leading edges (Acosta, 1973). It
has become apparent that such foils operating with fully-developed cavities
exhibit a hydrovelastic instability which has no equivalent in subsonic
aero-elasticity. This flutter phenomenon which we shall call "leading edge
flutter" is the subject of the present report. One of the earliest and un-
expected observations of leading edge flutter was made by Waid and Lindberg
(1957). During performance tests of certain supercavitating foils in a water
tunnel ,they observed that at a certain critical speed the forward portion of
the foil including the leading edge began to vibrate violently in a chordwise
bending mode while the thick trailing edge part of the foil remained stationary.
One result of this vibration was the creation of a train of waves on the cavity
surface originating at the leading edge ( a photograph taken from Waid and
Lindberg (1957) is included as figure 1). Subsequently it has been observed
by Spatgler (1966); also Rothblum, Mayer and Wilburn (1969) have noted
radical and deleterious changes in the hydro-elastic behavior of surface-
piercing struts when these develop ventilated cavitics. The phenomenon
has also been observed with supercavitating propellers (English (1978))
and some leading edge failures in supercavitating inducer pumps are

suggestive of a similar phenomenon (Gross (1975)), In practical situations




one must be concerned with unbounded flutter motions; even if non-linear

effects limit the flutter amplitude there is the threat of fatigue failure.
These sketchy and early observations suggest (correctly as will
be seen) that leading edge flutter requires only a single elastic mode,
namely that of chordwise bending of the foil. This contrasts with con-
ventional wing flutter which involves two modes (usually spanwise bending
and torsion; or more fundamentally pitching and heaving) interacting in

such a way that the foil absorbs energy from the flow. Woods (1957),

Kaplan and Henry (1960) and Song (i972) have examined the conventional

flutter potential for cavitating (or separated) flow theoretically and Song
and Almo (1967), Kaplan and Lehman (1966) and others have performed
conventional flutter experiments. Further discussion on these will be
delayed until Section 8.

One other phenomenon demands mention: it is well-known that
hydrofoils with cavities extending from the leading edge to a length of '
between about # and1% chords (i.e. closure in the neighborhood of the
trailing edge) are unstable at almost any speed; the lift exhibits oscillations
as the cavity oscillates between closure on the suction surface and a point
downstream of the trailing edge. This will be referred to as partial
cavitation instability; it is a purely fluid mechanical instability which
would occur with a completely rigid foil. However when the foil is flexible
the partial cavitation instability can lock into the natural structural frequency.
In the context of the present study it will be seen that there is an over-
lap between leading edge flutter and partial cavitation instability when the
cavity length is short.

The present investigation was designed to concentrate primarily on

leading edge flutter for long, fully-develop:d cavities and to minimize
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the complexities which might occur with the appearance of hybrid forms of
instability such as discussed above. The experimental observations will be
described first: they will be followed by some theoretical considerations

which help to explain the basic phenomenon.

2. PRELIMINARY EXPERIMENTAL CONSIDERATIONS

Consider first the dimensionless parameters which might govern
the hydro-elastic behavior of a cavitating hydrofoil which is rigidly fixed
near the trailing edgebut capable of chordwise bending. The lowest natural
structural frequency of chordwise bending in the absence of any surrounding

fluid will be denoted by ONy and this will be given by

t E
WavEC =V T (1)
NVT 1 EY T,

where E and pg are the elastic modulus and density of the material of
the foil, t is a representative thickness, c¢ the chord length and C1
some constant of order unity. The inertial effects of a static fluid sur-
rounding the flow are represented by the mass ratio u= pst/pc where
p is the fluid density. The velocity and angle of attack of the flow will be
denoted by U and « while the extent and effect of cavitation will, as
usual be represented by the cavitation number o= (pm -pc)/é p UZ , where
Pu and p_ are respectively a reference pressure far upstream and the
pressure in the cavity.

If the fluid is assumed inviscid, incompressible and unbounded and
the cavitating foil is oscillated at a frequency w the complete list of
pertinent dimensionless rarameters in addition to geometric foil shape

factors is: w/aNV » k, 0,4, o where k=wc/U isthe reducedfrequency.

The experiments were intended to seek out the nature of the relations




between these quantities for leading edge flutter whose frequency will be 4
denoted by w= Wp - Other parameters such as the Reynolds number,

Weber number, Froude number and ths modynamic factors could be added
to the above list but were not separately investigated in the present study.
Perhaps the most important of these is the Reynolds number, Uc/v, which

ranged from 106 to 3 ><106 in the tests conducted. |

3. EXCITATION SYSTEMS AND THE VIBRATION CHARACTERISTICS

TV

OF THE MODEL FOILS.

§

The foils tested were intended to model the gross structural features ,"j
"

3

of supercavitating foils yet be simple enough to be manufactured in significant

number. As shown in figure 2 they consisted of thin flat aluminum plates
(6061 T-6 aluminum) of various thickness; at the trailing edge they were

bolted to 2 much thicker and stiffer mounting bar which essentially fixed

RIOTAR, ol Nl 1 P D %
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the rear portion and trailing edge of the foils. All foils had a chord of

15.24 cm and their leading edges were machined with a 30° wedge to produce
a clean, sharp cavity separation at this point. The length of the cantilevered
flexible portion of the foil will be denoted by a ; consequently the parameter
a/c should be added to the list in the last section in order to represent

the specific foil geometry used. Experiments were carried out in two water

tunnels, the FSWT and HSWT (see below); the span of the foils tested in

these facilities were respectively 35.56 cm. and 15.24 cm. The foils were
each fitted with three strain gauges bonded to the suction side of the flexible

portion in order to monitor chordwise bending; the three gages were placed

at mid-span and near the ends of the span., One additional gage on the
mounting bar registered the fluctuating lift (actually the force normal to ‘ 4

the mounting bar).
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Most hydrofoils, propellers or pump blades are supported in such a
? way that their modes of vibration are quite complicated; nodal lines do not
lie simply in the chordwise or spanwise direction. As an illustration of
this we include in Appendix A the results of an investigation into the natural
frequencies and modes of a supercavitating hydrofoil model which was tested
in the High Speed Water Tunnel at Caltech as part of an earlier investigation
(Ward (1976)). Other examples of mode shapes are contained in the studies
of Osterwalder and Sonsino (1975). However the present foils were deliber-
v ately intended to have fairly simple modes of vibration. i

The first natural frequencies of the model foils in air were measured

by tuned excitation using an acoustical loudspeaker. These values are listed
in Tablesl and 2 along with the foil thicknesses, foil designations and other

data; Tables 1 and 2 are for the 35.56 and 15.24 cm. span foils respectively.

The first mode involved pure chordwise bending in every case; the second
mode was similar except that the phase of the bending varied over the span
with the ends out of phase by 180° and a node at mid-span. (With the 35.56 cm.
span foils the third and fourth modes respectively involved spanwise phase
change with nodes at two locations and the second mode of chordwise bending
with a node at about mid-chord and little spanwise phase change). The
experimental values in air are compared in Tables 1 and 2 with theoretical
values obtained using the method described by Barton (1951) for vibration in
a vaccuum. The agreement is fairly good and the difference is probably
due to the aerodynamic damping and added mass.

A different excitation system was developed for tests under water.
This was used for bench testing in tanks of '"'still" water and in one of the

water tunnel experiments; a schematic is included as figure 3. A music




wire attached to the leading edge (usually near mid-span) was connected to
an electromagnetic shaker. A weak spring and a load cell were interposed in
the wire. The spring allowed decoupling of the motion of the shaker and the
foil. The purpose of the load cell was to monitor the force applied to the
foil. Since frequency response spectra are most meaningful when the peak
topeak. value of the applied force is constant, a feedback system was
installed which automatically adjusted the motion of the shaker to ensure a
constant preset level of force as monitored by the load cell. Using this
system frequency response spectra of the foil displacement as monitor
by the foil strain gauges were obtained using relatively low sweep rates. The
half-power bandwidth, Aw , about the resonant or natural frequency W N
indicated the amount of damping for a particular feil under the given conditions
of flow (angle of attack, etc.); this data will be presented as Q-factors
defined in the usual way as Q= N/Aw

This procedure worked well except in the following circumstances.
When used at or near flutter conditions in the water tunnel, a certain level
of force appeared across the load cell due to compression or extension of
the spring. As long as this component of force was less than the chosen
level of excitation force all was well. But if it exceeded the chosen level
the shaker was incapable of the necessary compensation which would have
required removing power from the system. Under these conditions the
spectra were less valuable and the resulting Q-factors could not be con-
sidered meaningiul.

In the bench tests in air this excitation system yielded
natural frequencies identical to those obtained by acoustical excita-
tion. The natural frequencies, measured in ''still" water are

listed in Tables 1 and 2. They are con'pared in that
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table with the theoretical values obtained using the strip theory of Lindholm,
Kana, Chu and Abramson (1965) which incorporates estimates of the added
mass of the water. The large discrepancies between theory and experiment
are similar to the discrepancies recognized by Lindholm et al in comparison
with their experiments; there would appear to be considerable difficulties
involved in the accurate prediction of the ''still water' natural frequencies
for foils with span/chord ratios of one or greater. Some of the
difficulty may be due to lack of validity of the strip theory though viscous
and eddy shedding characteristics of the real flow may also play a role.
The theoretical values are substantially lower than the observations indicat-
ing that the amount of fluid contributing to the added mass is much less
than that anticipated by the strip theory. Later it will be seen that the
natural frequencies (and flutter frequencies) of foil vibration in a cavitating
flow are quite close to those in ''still" water (see section 4 and figure 5).
Some measurements of the damping of the 35.56 cm. span foils
were also made in "still water'. The principal conclusion of this investiga-
tion as reported in Appendix B was that the damping was non-linear and
dependent on the oscillatory Reynolds number associated with the vibration.
These measurements are only of incidental interest since the damping is
quite dependent on viscous and eddy shedding effects at the leading edge
and these effects would probably be significantly different in the presence

of an oncoming stream .
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4. INITIAL EXPERIMENTS IN THE FREE SURFACE WATER TUNNEL,

In the absence of any prior experimental investigations of leading
edge flutter it was deemed necessary to conduct a series of preliminary
; experiments in the Free Surface Water Tunnel (FSWT) in the Hydrodynamics
Laboratory at the California Institute of Technology. This tunnel operates
with a free surface open to atmosphere at speeds up to about 7.6 m/sec. | 4
The 35.56 cm. span foils were rigidly mounted in the tunnel as depicted in
figure 4; both the depth of immersion and angle of attack could be varied.

Since the velocity of this tunnel was not high enough to create

natural vapor-filled cavities, air was supplied to the suction surface by
means of an array of forward pointing tubes in order to generate ventilated
cavities. This arrangement allowed the creation of ventilated cavities

above tunnel speeds of 1.2 m/sec.; above about 5m/sec. the cavities

ventilated to atmosphere via the surface piercing supporting struts and
hence the artificial air supply was no longer necessary.

When ventilated to the atmosphere the cavities were quite long
(>1 m.) and were similar to choked conditions in a closed water tunnel.
With artificial ventilationat speeds less than 5 m/sec. the cavity length
could be adjusted to a limited extent by varying the air supply. However
it was determined that this had only a minor influence on the flutter
characteristics and since the effect of cavity length is much better defined
in the later HSWT tests (see Sections 5,6) we shall confine the presentation
here to results for long cavities. Typical artificial ventilation rates re-
quired were of the order of 2.5 %10 s standard m3/sec.; larger values
were avoided because the air jets within the cavity then caused significant

distortion of the cavity free surface.
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The two thinnest foils (F16 and F31, table 1) yielded little information;
the first diverged at 1.2 m/sec. beforea cavity could be created. The second
exhibited unbounded flutter as soon as a ventilated cavity was formed at the
lowest speed at which this was possible (also about 1.2 m/sec.). Without
a cavity it diverged about 2.1m/sec. These non-cavitating divergence
speeds are in fair agreement with theoretical values listed in Table 1 and
derived by the approximate method outlined in Appendix C.

The two thicker foile (F61 and F89, Table 1) both exhibited leading
edge flutter under cavitating conditions. On the other hand in the absence
of a cavity they remained quiescent up to the maximum tunnel velocity of
about 7.6 m/sec. This agrees with the observation that the theoretical
divergence speeds for both non-separated potential flow and for cavity or
wake flow aré all higher than this (see Table 1). Hence the tests confirmed
the dominance of leading-edge flutter in the hydro-elastic behavior of the
cavitating foils cantilevered at the trailing edge.

Frequency response investigations using the electromagnetic shaker
mounted above the tunnel (Section 3 and figure 4) showed that in the presence
of a cavity the natural frequency of the foils was virtually independent of
the angle of attack, cavity ventilation rate or level of excitation. Indeed
as confirmed by figure 5 it decreased only slightly with tunnel velocity so
that ultimately the flutter frequency was little different from the natural
frequency at subcritical speeds.

The onset of flutter as the speed was increased was much less
dramatic in these tests than in the subsequent HSWT tests; the reason for
this is not entirely clear but may be due to the additional compliance or

damping associated with air-filled rather than vapor-filled cavities.
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Typical leading-edge displacement magnitudes as a function of tunnel
velocity are presented in figures 6 and 7. Figure 6 typifies the results in
the absence of shaker excitation and at various angles of attack. The flutter
speed appears to depend somewhat on the angle of attack but is of the order
of 4 m/sec. and 7 m/sec. for foils F61 and F89 respectively. However it
was possible to operate at higher speeds as illustrated by the F6l results.
The amplitude of the limit cycle oscillation merely increased suggesting
the presence of strongly non-linear viscous damping. The effect of the
angle of attack was typical of that discerned in all of the tests reported in
this paper. It appeared that the flutter speed had a slight minimum in the
neighborhood of about a~ 10° with flutter occurring at slightly higher
values for either larger or smaller angles of attack. Steady state perform-
ance measurements were made to determine whether the steady state lift
slope exhibited any significant change at this angle of attack. No such
change could be discerned; indeed the lift slope appeared to remain constant
up to angles of attack of about 20°.

Frequency response spectra were also obtained with a number of
different amplitudes of excitation force (0.111, 0.222, and 0.444 Newtons).
Typical peak displacement amplitudes and Q-factors are presented in
figures 7 and 8 as functions of tunnel velocity. The external excitation
appeared to cause the displacement to increase more gradually than it did
in the flutter onset tests. The Q-factor graph similarly suggests a gradual
loss of damping.

Finally, questions arose concerning the effect of the shape or finish
of the foil leading edge on the observed onset of flutter. To investigate

this two different shapes of plastic cuver were fitted over the leading edge.

o
.
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No significant differences in the flutter behavior were observed when the
foils were run with these plastic covers. The separation point without the
plastic covers remained fixed at the knife edge though there was occasional
wetting of part of the 30° finishing face on the suctionsurface. With the
covers the separation point oscillated back and forth during flutter. This
did not apparently effect the gross dynamic features of the phenomenon.

In summary the FSWT tests (i) confirmed the existence of leading
edge flutter for cavitating foils, and that it occurred at speeds well below
the divergence speed (ii) suggested that such flutter did not occur in the
absence of a cavity; then the foils may well remain quiescent all the
way up to the divergence speed (iii) that though the angle of attack had some

effect the reduced flutter speed (UF/w 1-,.C where ® .. is the flutter fre-

F
quency) seemed to be about 0.11 (iv) that the flutter frequency was close
to the natural frequency of the cavitating foil in subcritical conditions and
to the natural frequency in still water. The HSWT tests described in the
next section were undertaken to extend the observations to a wider range

of speeds and foil stiffnesses and to investigate the phenomena for natural

vapor -filled cavities.

5. HIGH SPEED WATER TUNNEL EXPERIMENTS WITH NATURAL

CAVITIES.

The 15.24 cm. span foils were tested with natural vapor-filled
cavities in the High Speed Water Tunnel (HSWT) of the Hydrodynamics
Laboratory at Caltech. The mounting system is shown in figure 9. The
independent velocity and pressure regulation in this tunnel allowed observa-
tions of flutter onset for a wider range of foil thicknesses (see Table 2)
over a wide range of speeds (4.5 to 18.5 m/sec.), angles of attack (7to13°)

and cavitation numbers (from short to long cavities).
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In contrast to the observations in the FSWT, the onset of flutter in
the HSWT was sudden, dramatic and repeatable. It could not only be re-
cognized by the sudden appearance of a sinusoidal output from the strain
gauges but was also visible and audible. Furthermore the appearance of
the cavity would change as illustrated by figure 10 (see Section 7).

The flutter speed for a given foil at a particular angle of attack
was lower for shorter cavities but tended to asymptote to a certain value
for long cavities (see below). These long cavity flutter speeds ranged
from 8.5 to 19.8 m/sec. for foils H68, H89, H125, H50 A and H125 B
(foil H31 diverged and was destroyed before a cavity could be formed).
However when the flutter speeds, UF » were non-dimensionalized using
the flutter frequency, Wp (see Table2), the resulting values all lay between
0.15 and 0. 23 as illustrated in figure 11. The arrows in this figure indicate
that the flutter speeds for H68 and H50 A at a=7° had not reached a clear
limit for the longest cavity conditions examined; also the flutter speed for
HI25 at o =13° seemed to be a little above the maximum velocity of the
tunnel under these conditions.

It follows that UFR'IO. 15w pC could be used as a first order estimate
of the leading edge flutter speed of a supercavitating hydrofoil. All that is
required is the flutter frequency, W » which is close to the first natural
frequency of chordwise bending under water (see Section 3).

As in the FSWT tests, an angle of attack of about 10° consistently
manifest the lowest flutter speed (see figure 11); as previously stated the
reason for this is not clear. It should also be recorded that a few spot
checks at negative angles of attack indicated identical flutter speeds and
flow patterns to those at a positive angle of attack. This eliminated the

possibility of any Froude number or buoy: ncy effect in the phenomenon.
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The values of UF/ch for different foils seem to be shifted up or

down by the same amount atall angles of attack. If we assume that the
individual foil stiffnesses are already accounted for by the different flutter ’
frequencies, Wg then the remaining parameters which could account for

these shifts are the mass ratio, u, and the flexible chord/total chord ratio,

a/c. Collation of the data in figure 11 with the tabulated values of a/c and [

138

a modified mass ratio, u* = pst/ pa included in that figure suggests a
* |

29

fairly consistent increase in the reduced flutter speed with increasing u

b

and no consistent trend with either a/c or W

The effect of cavity length (or cavitation number) on the flutter g:
speed was similar for all foils and is typified by the results presented in :':
figure 12. For angles of attack of 10° and above there was only a very F
slight decrease in the flutter speed as the cavity length was decreased. {

}

At lengths less than about 2 chords the amplitude would increase markedly
as the leading edge flutter phenomenon began to merge with the partial
cavitation instability (seeSection 1 and figure 12). The danger of foil and
tunnel damage limited the experiments that could be performed in this short ¥
cavity regime.

Cavity length had a more marked effect on the flutter speed at the
smaller angles of attack (7°and 8°) as indicated in figure 12. In addition
to the decrease in flutter speed with decreasing length, a rather interesting
““resonant length'' phenomena occurred. The experiments were often
carried out by setting the tunnel speed at a value just a little less than the
long cavity flutter speed and subsequently decreasing the cavity length by
increasing the tunnel pressure. At the low angles of attack flutter would

occur at some cavity length but subsequently disappear as the length was

decreased only to appear again at another resonant length. These ''resonant
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lengths'' were generally integer multiples of the chord length as illustrated

by figure 13 which is a qualitative sketch of the variation in the amplitude

of leading edge dispiacement (for foil H89 at o =7°) for three different

speeds progressively further from the long cavity flutter speed. This

accounts for the hatched area in figure 12 where all the onset points are

plotted. This effect undoubtedly represents the influence on flutter of the 1
cavity pinch-off and collapse phenomenon described in Section 7. 8

Finally it is important to record that the foils were also tested in

wake flow at tunnel pressures high enough to suppress all cavitation. No
sign of flutter could be detected in any of these tests even when the tunnel
i velocity was much larger than the cavitating flutter speed (see Appendix
D for incidental data on the wake pressure fluctuations). It seemed that
no other phenomena would occur before reaching the divergence speed for

these wake flows.

6. OSCILLATING LOAD,DISPLACEMENT AND CAVITY PRESSURE

DURING FLUTTER.

The purpose of this section is to record a number of detailed
measurements made during the flutter tests in HSWT.

Both the leading edge displacement (from the foil strain gages) L
and the oscillating load (from the mounting bar strain gage) were recorded '?
during flutter and spectral analysis and cross correlation subsequently

performed on a digital signal processor.

Both the displacement and the oscillating load varied with angle of
attack and cavity length for a given foil, At the larger angles of attack 1
(10° and greater) the flutter speed was constant with cavity length; hence

typical displacement and load amplitudes are plotted against length in
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figures 14 and 15. These indicate increasing amplitudes of flutter with
decreasing length, a fact referred to previously. On the other hand at the
lower angles of attack (70, 8°) the flutter speed changes significantly with
cavity length. In this case the variation with speed rather than cavitylengthis
most apparent and not unexpectedly both amplitudes appear to increase

| with the square of the velocity as typified by figures 16 and 17.

Both signals were quite sinusoidal during flutter and cross-correla-

tion confirmed that the load (positive upward) was in phase with the foil
displacement (positive upward). This seems superficially at odds with a
resonant condition. However it should be recognized that the foil alone in
the absence of any water or flow has a natural frequency much higher than
S the flutter frequency; hence one would expect this in-phase characteristic.

Measurements were also made of the oscillations in the cavity

T

pressure during flutter; a piezoelectric pressure transducer was mounted

within the cavity for this purpose. These measurements indicated that the
magnitude of the oscillating cavity pressure was very small (about 400N/m2)
and its contribution to the oscillating load on the foil was virtually negligible.
Though the traces were rather noisy (see figure 18) the basic flutter fre-
quency could be discerned in the signal from the transducer. The magni-
tudes at the fundamental flutter frequency were obtained by spectral analysis
and all values are plotted together in figure 19. They are plotted against
cavity length because there appear to be a rough trend for larger oscillating
cavity pressures with shorter cavities. No other trends were evident; for

example the cavity pressure oscillations did not increase with foil displace-

ment, indeed the reverse seemed to be the case. The phase between the

cavity pressure oscillation and the displacement is presented in figure 20
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and suggests no great consistency though the cavity pressure generally lags
behind the displacement. All of this suggests that the cavity pressure
oscillations play little or no role in the dynamics of flutter and that the
cavity pressure remains essentially constant. This is consistent with the
fact that the thermodynamic time constant for vaporization is extremely

short in water at normal temperatures.

7. OBSERVATIONS OF THE FLOW IN THE REGION OF CAVITY CLOSURE.

This section will be devoted to a description of the interesting events
which occurred at cavity closure during flutter. Earlier we remarked on
the change in the appearance of cavity closure and cavity wake when flutter
occurred; this is illustrated in figure 10. Upon closer inspection using
high speed movies taken at 600 frames/sec. the following picture emerged.
The leading edge movement during flutter produces a train of waves on the
upper cavity surface as sketched in the upper part of figure 21. The
amplitude of these waves increases as they are convected downstream
(see figure 22). As seen from the cavity interior the crests become quite
sharp and a portion of the cavity is pinched off when these crests approach
the cavity closure region as indicated in figure 21. There are some smaller
amplitude waves on the lower surface which play a much lesser role. A
detailed frame by frame tracing of the pinch-off process is included in
figure 21. The resulting '"'separated bubble' had the appearance of a cloud
of small bubbles; the interior may however have contained larger voids.

It also had the appearance of a pair of cavitated vortices with the upper and
lower surfaces rotating in opposite directions. Consequently the periodic
pinching off also constituted the elements of a Karman vortex street with

pairs of vortices imbedded in each separated bubble; clearly this feature
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is associated with the oscillating lift on the foil. It should be noted that
Karman vortex streets in the wake of steady cavitating flows have been
observed previously (Young and Holl (1966)).

The situation was further complicated by the fact that shortly after
pinch-off these clouds of bubbles collapsed; subsequent rebounds and col-
lapses followed in synchronization with the flutter frequency as the whole
structure was convected downstream. A typical volume history for this
collapse and rebound process is shown in figure 23 for foil H89 fluttering
at a tunnel speed of about 7.9 m/sec. with a frequency of 60 Hz; the radius
of the volumetrically equivalent cylinder for a particular separated bubble
is plotted against time. (It should be noted that the significant three-dimen-
sionality could be discerned in the structure after the first rebound.) One
should visualize a train of these structures each separated in time by a
flutter period. The time between pinch-off and first collapse varied con-
siderably with different foils aud flow configurations and ranged from
almost zero up to about 2 flutter periods.

The question arose as to whether the pressure perturbations in the
liquid which would be generated by the periodic collapse of the pinched-off
bubble clouds could cause sufficient oscillatory loading on the pressure
surface of the foil to generate a closed-loop resonant system. One estimate
of the magnitude of this radiated pressure perturbation would be ZpR(I;)Z/r
where R, I;. are the radius of the bubble and its time derivative and r is
the distance to the sensing point (this is based somewhat unrealistically on
spherical bubble collapse). Taking typical values of R and I.{ from figure
23 and the length of the cavity for r such calculations result in values of

the oscillating pressure at the foil which are of the same order of magnitude




as those required to cause the observed oscillating lift (about 3000 N/mz).

To examine this further a piezo-electric pressure transducer as mounted
in the tunnel wall to monitor the fluctuating pressure in the water close to
the closure region. A typical trace and power spectrum for suck measure-
ments is shown in figure 24. The harmonic content is consistent with the
violent and non-linear process of cavity collapse. The magnitude of the
fundamental component did indeed decay with distance from the closure
region indicated in figure 25 and its magnitude was about 3000 N/mz.
A1l of this is consistent with the closed loop resonance mentioned
above. Furthermore cross-correlations revealed that the pressure per-
turbations and the foil displacement could either be in-phase with one
another or 180° out of phase. Any lightly damped system would yield

similar results. Since the phase shift is very abrupt one is unlikely to

detect the theoretical 90° phase shift at resonance. Furthermore it

could explain why the flutter speed decreased with decreasing cavity length

since the pressure perturbations encountered by the foil are then greater.
Despite all this, the above does not constitute proof that the post-

ulated mechanism is the primary reason for flutter It will be shown in the

next section that leading edge flutter for cavitating hydrofoils can be explained

without any reference to these closure region events. Nevertheless there
seems little doubt that the phenomena is in some way affected by the closure
phenomena. The effect of cavity length and the resonant length phenomena

are probably outward manifestations of this influence.

8. THEORETICAL ANALYSES OF FLUTTER.

The experimental program indicates that leading edge flutter depends

not only on the reduced velocity UF/ch but also to some extent on the
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cavitation number (or cavity length), angle of attack and the mass ratio
parameter. In this section we shall explore a simple model for this
phenomenon and attempt to collate the observations with previous investiga-
tions of conventional flutter for cavitating hydrofoils. It can however be
anticipated that no single model of such a complicated unsteady flov wvill

be capable of explaining all the observed experimental observations.

Perhaps the simplest model is that of a rigid foil hinged at some
point at or near the trailing edge; the effective spring constant of the spring
which restrains rotational motion about this hinge will be denoted by K.
This hypothetical foil (chord, c) can be thought of as performing oscillatory
motion identical to that of the zero lift line of the actual foil undergoing
leading edge flutter. The hinge position will be denoted by B where fc
is its distance from the leading edge.

Such a model is of course similar to that employed for conventional
wing flutter analyses except that the possibility of additional heave motion
of the hinge point is excluded. The instantaneous angle of attack, «, is
subdivided into a mean angle, ao , and a small time dependent component,

according to
@=a_+Re {'&ejw'l} (2)

where a represents the magnitude of the oscillations, u= Wp +ij is a
complex frequency and T is time. It is convenient to establish the origin

of T such that o is purely real. The hydrodynamic moment about the

hinge point (positive in the leading edge up direction) is similarly represented

as

M=M°+Re{i4ej°’T} (3)

A, 4,
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where M= MR +jMI is necessarily complex in general. Then if the effective

moment of inertia of the foil is I , the equation of the perturbations becomes
~ Z -3
a(K-0wI)=M (4)

If the coefficient of moment about the hinge point is defined in the conven-
tional manner as, CM=M/ipU2c2 , and M/a is replaced by dM/du

the real and imaginary parts of (4) yield

30022 — 2R K -1(wi-u?) (5)
da
dC
30U’ 2 - 2100 (6)
do

where the quantity 6M= GMR +j€:MI will be obtained from the unsteady
hydrodynamics and will be a function of the reduced frequency, k=ch /0.

It follows that the divergence speed, UD , (if it exists) is given by

~

dC
2 2 M\
UL =2K/pc

—— (7)

On the other hand flutter may occur if Wy is negative for any non-zero
value of wp ; this implies from equation (6) that the system is unstable if
dCy,;/d¥>0 and that the neutral stability or flutter point is given by

(d:;“)w for wg #0 (8)

This will determine a reduced flutter frequency kF=ch/UF

The flutter speed, U and frequency, , will then follow from equation

F ’

(5) which can be written as

F
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dac
MR _ (2K \ 1 _ 2
—MR - <;2)_52_ 21_uk (9)

where py is the mass ratio p= pst/pc and Io is a dimensionless moment
of inertia for the foil (I=I°pstc3) . At k=kp this yields U=Up given

Iy, 2K/ 0o . and the valus of the L H.5, k=kp.

Consider first the case of subsonic, non-cavitating and non-separating
flow examined by Smilg (1949) using Theodorsen's linearized unsteady airfoil
theory. Smilg found that single degree of freedom flutter could only occur
when the hinge was located between the leading edge and the quarter chord
point (0<B<0.25); otherwise daMI/d& was negative for all non-zero
values of k. Even within the range 0<p<0.25 single degree of freedom
flutter could only occur for foils with very large mass ratios. Consequently
single degree of freedom flutter will not occur for practical foils such as
those employed in the present experiments. However in the non-cavitating
tests discussed earlier the flow was clearly separating from the leading
edge and forming a wake. I* might be suggested that the dynamics under
these circumstances would be more akin to those of the cavitating flow as
anticipated by Woods (1957). The present tests did not support this view
since the cavitating foils fluttered yet there was no evidence of flutter in
non-cavitating flow at speeds as much as 50% greater than the cavitating
foil flutter speed. The reason for this discrepancy is not entirely clear but
is probably due to the differences in the dynamic response of free shear
layers and cavity free surfaces.

Turning now to the case of cavitating flow we shall restrict our

theoretical analysis to the simplest case of infinitely long cavities in an
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unbounded flow (for which 0=0). One of the reasons for this restriction l
is the difficulty involved in finding satisfactory closure models for the
cavity in unsteady flow. Certainly none of the available models come

close to representing properly the real events we have described occurring
in the closure region. The unsteady lift and moment coefficients for the
case of infinitely long cavities were evaluated first by Woods (1957) and
Parkin (1957). Later the linearized theory for small angles of attack was

further developed by Martin (1962) and Parkin (1962). In addition Kelly {

(1967) has extended Woods' (1957) results to larger angles of attack and 2
finite cavities (0>0). For present purposes we shall employ Martin and

Parkin's linearized results which yield 2 moment coefficient about the hinge

point given by

dC
% .d_a_f‘f {Q(k)+-8- k-g-‘l‘.;kz + B{O(k)+-1-6 JeW(k) - ukz}
-p% {ikw(k) - 212} (10)

where Q(k) , W(k) are complex functions tabulated by Parkin (1962). A
polar plot is presented in figure 26 for various locations of the hinge point,
B ; values of k are indicated on the curves. Note that in direct contrast !
to the Smilg case the flow with an infinite cavity will exhibit single degree
of freedom flutter if the effective hinge point is anywhere between about
mid-chord and the trailing edge (B=1). The critical or flutter reduced |
frequency, kF , for which dEMI/d;=O is plotted against the hinge
position, B, in figure 27; also shown is the corresponding value of
R/da at k=kF. It remains to determine whether single degree of

freedom flutter or divergence will occur by comparing the flutter speed,
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Up with the divergence speed, Up . From equations (7) and (9) it is

clear that

wé . dc dc
UE = ( d;MR>k=o [( ~MR>k=k +21'o“k1~?:] (11)

From the expression (10) ,

(

~

dCMR )

dae ’‘k=0 i 03_1?5) ¥ES

and this is included in figure 27. Consequently the flutter speed is virtually
always less than the divergence speed, irrespective of Iou . Indeed the
foil will exhibit single degree of freedom flutter at speeds far below the
divergence speed as demonstrated by the values of UF/ UD plotted in
figure 28 for various hinge point locations and values of Iou . Furthermore
the flutter frequency, W is readily related to the natural frequency of

the foil in a flow at speeds much smaller than the flutter speed (denoted by

wyy) by

~

t
a&
/2<—1§2 d&MR>k=kF+ZI&£:| 15

As seen by the plots included in figure 28 wF/wN for small values of

op [f/1 9Cyg
. [J(;z T et

Iou is virtually always between 0.85and0.9 and tends toward 1.0 for
very large I

It is surprising that this unique feature of supercavitating foil
dynamics has received little attention in previous studies, despite the
fact that it was briefly alluded to by Woods (1957) in his pioneering calcu-

lations of the unsteady lift and moment coefficients. What makes it more
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surprising is the fact that most supercavitating foils with wedge -like thick-
ness distributions will have an elastic axis at a distance about 2c¢/3 from

the leading edge and hence will be susceptible to single degree of freedom
flutter. Kaplan and Henry (1960) and Song (1972) both performed conven-

tional two degree of freedom wing flutter analyses for supercavitating hydrofoils
without mentioning the simpler instability. The experiments of Kaplan and

Lehman (1966), Song and Almo (1967) and Cieslowski and Pattison (1965)

all utilized systems with elastic axes forward of midchord and are there-

fore relevant only to the possibility of the conventional wing flutter which
could arise under these circumstances. We have not been able to identify
any other experimental results for the more practical supercavitating
foil case in which the elastic axis is aft of midchord.

The experimental reduced flutter speeds for long cavities (see
figure 11) are in the range 0.15 to 0.25 corresponding to a range of reduced

frequencies, k from 7 to 4. These are in fair agreement with the

F
theoretical results for a model hinged at the trailing edge for which kF= s
One might argue that it is more appropriate to use a theoretical model
whose chord is equal to the flexible chord, a , in the experiments.
However, this yields theoretical kF values of about 12 whick are even
further from the 4-7 range observed experimentally. It should however

be appreciated that the model is rather crude and that the oscillatory
camber which is absent in the model may have significant dynamic effects.
Recently Murai (1978) and Shimuzu (1979) have computed reduced flutter
frequencies for various shapes of foils rigidly supported at their trailing

edge. Figure 29 has been constructed from their results and presents the

reduced flutter frequency as a function of parametric shapes varying from
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a flat plate to a wedge. The flat plate yields kF= 12 which is qualitatively
consistent with our simpler model but significantly larger than the experi-
mental observations.

The experimental observation of a minimum flutter speed at an angle
of attack of about 10° cannot, of course, be predicted by a linear theory
whose results are independent of o, It is interesting to note that Kelly's
(1967) non-linear calculations at ar°=0 , 10, 20, and 30° reveal some
instances in which the coefficients exhibit extremums at 10°. However
more pertinent evaluation of polar plots like those of figure 26 using Kelly's
tables indicated that though the values of d E:MI/ da increased considerably
with @ neither the value of kp nor the value of (d EMR/dE)k=kF were
substantially different from those given in figure 27.

Kelly's results can also be used to assess the effect of cavity length
since he calculated coefficients for cavitation numbers greater than zero
(0.3, 0.6 and 0.9). In general the shorter cavities yield marginally smaller
values for kF . Superficially this is consistent with the experimental trend.
However we believe that the cavity closure dynamics discussed in Section 7

cause substantially alterations in the flutter dynamics for short cavities. None

of the theoretical models adequatelyincorporate these observed closure phenomena.

Some other interesting trends emerge from a comparison of experi-
mentally measured lift and moment coefficients with those predicted by the
theory. DeLong and Acosta (1969) measured coefficients for supercavitating
hydrofoils performing heave motions only and found that both in-phase and
quadrat  lift coefficients (which would contribute to d E‘:MR /da and
d aMI/dE in our notation)were both in general less than the theoretical
values. One could conclude that the resulting experimental kF would be

less than the theory which is consistent with the results of this investigation.

P T
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Furthermore Klose and Acosta (1969) found that ventilated, air-filled
cavities exhibited significant cavity pressure variations. This could account
for the fact that their measured in-phase lift coefficients were much larger
than the theory and their quadrature coefficients were comparable with the
theory. Comparison with De Long and Acosta's results suggests significant
differences between the coefficients for ventilated and natural cavities. In
the present tests the air-filled cavities examined in the FSWT tests manifest
substantially lower reduced flutter velocities (about 0.11) than the natural

cavities in the HSWT tests.

It was also shown in figure 28 that the theoretical flutter frequency,
W should only be slightly smaller than the natural frequency, Wy in
flows with velocity well below the flutter velocity. This was borne out by
the experimental results of figure 5 which suggests a flutter frequency
which is no more than 10% less than Wy - Furthermore the experiments
indicated that Wy was close to the natural frequency of the foils in still
water wy, (see Tables). This quantity W, may however be difficult to
estimate theoretically as discussed in Section 3.

Given k.. and w

= the flutter speed, U_ , follows from U

F F F-

» Fc/kF . A comparison between the calculated and observed flutter speeds
is essentially contained within the comparison of the kF values.

Finally it is necessary to discuss the nature of leading edge flutter
as defined in the introduction. It should now be clear that a practical
supercavitating foil rigidly supported at one end with its elastic axis aft of
the midchord and with a slender leading edge is suspectible to several
different instabilities. One can for example identify a simple torsional
instability for which the results of the last section are directly applicable.

There is also the possibility of leading edge flutter which involves chord-

wise bending and large amplitudes at the slender leading edge. The flutter

* %
speed for each of these will presumably be governed by UF=‘”F c*/k;
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* ’ .
where we is the natural underwater frequency in that mode, c¢ is an i

"effective'' chord length (c* =c for torsional instability but less for leading

edge flutter) and k; is the appropriate critical constant for each instability.

Now w; would normally be greater for the leading edge flutter mode than

for torsional instability. However c* is less for the former; consequently

it is not immediately obvious which instability will have the lower flutter » ;

speed. In this respect it is of interest to review the two cases (Waid and

Lindberg (1957) and Spangler (1966)) mentioned in the introduction. Accord- £
ing to figure 27 the lowest torsional flutter speed is given by kF= 17 . If -3
the cavity surface waves are convected at U; then this leads to a cavity

surface wavelength, )\ , to chord ratio of )/c=0.3 . On the other hand

%

if we estimate leading edge flutter to occur when w; c*/ UF ~ 3((;*-:* a = effective
flexible chord) then )\/c*3 2 . Now the photographs of Waid and Lindberg
(1957) and Spangler (1966) indicate c¢/\ values of about 4 and 8 respectively.
This suggests that leading edge flutter was predominant in both cases with .
effective flexible chord lengths of ¢/8 and c/16 respectively.

The present report has concentrated on a fundamental investigation
of leading edge flutter and has conclusively demonstrated the existence of
the phenomenon. The experimental models were designed to have relatively
simple modes of vibration and it has been demonstrated that once these
underwater modes and natural frequencies are known reasonable estimates
can be made of the leading edge flutter speed. Furthermore a rather simple
theoretical model yields values of the critical reduced velocity, l/kF ’
which are within a factor of two of the observations and could be used as a

conservative design estimates since they are lower than those observed

experimentally.
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CAVITY SURFACE

LEADING
. 5 . et TR \EDGE MOTION
i CAVITY
~<ifffe—
adZ FLOW
M TRAILING EDGE
SURFACE
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TO LEADING
EDGE

RIGIDLY SUPPORTED
MOUNTING BAR

e 0 FOIL CANTILEVERED
—~ FORWARD FROM
MOUNTING BAR

Figure 2. Above: typical supercavitating hydrofoils shape with the leading
edge flutter mode and the cavity configuration sketched. Below:
configuration of the models used in the experiments,
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Figure 5. Natural frequencies for foils F61 and 89 as a function of

tunnel velocity,
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Figure 9. Mounting system for the 0.152 m. span foils in the High Speed
Water Tunnel (HSWT).
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Figure 10, Photographs of Foil 1H89 with cavity under qui()\scvnl
{above) and fluttering (below) conditions (¥ = 7 (above)
and 109(below); velocity =6.6m/scc (above) and 7.4m/sec
(below)).




B e I —

-43- | 3
1
[
0.30 . , e =
Qu- 7
3 0.25F L
~N
w [
= o
w 0.20_ 1 v
a
7]
« 7
W
f—
|5 O.ISF "
= N\ THEORY
(=) FOIL FREQ. a/c MASS ”
w (Hz) RATIO, u
S o.of V He8 44 0583 0052 -
o O H89 60 0.583 0.069
&-‘ O HI25 83 0.583 0.096
A HS0A 53 0417 0.054
O HI25A 60 0.706 0.080
o ) | ] |
6° 8° 10° |12° | 4°
ANGLE OF ATTACK, a

Figure 11. Reduced flutter speeds, UF/m c , for long cavities as a
function of angle of attack.” The theoretical value of 0. 143 is
indicated on the vertical axis.




-44 -

“euswouayd y33uay jueuosax ay3 yjo swdax ayj jussaadax

3t ut sjurod 9Y) pue eaie paydjey SYJ, 'UONOIS SuU{IOoMm Y} UT
MOPUIM 3y} JO JUd}Xd 3Y} Ppuohaq papuajxa YdIYym SII3IA®D JIOJ dI®
B SwWa1IX3 Yy Uo SANTRA €T PUT 001 * ol =P 3% 68H [10F
103y y38ua| £31A®D JO UoPdUN} ® Se sdTIepunoq pue paads iang

37 "HLONIT ALIAVD

‘21 2andry

S3ILIAVYD
ONOT
§. ¥ S b ¢ 2 _ 0
f T T | T J
cevecsPececcee o€ |=D -ﬁ
e mnw O D m
—{ ) ON =D = Wo.o —m—JJ :
i |
&
1010 r
@)
o
l
..|A
b S s ol o g i sl st QN S —4S10
—
vessssevn e mn m.
N M
£
4020 o _M
L = 1 | ] ] 520 L

i



-45-

U
.

AMPLITUDE

FLUTTER

] ] 1 1 1 l
o 2 4 6
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Figure 13. The resonant length phenomena illustrated in sketches of the
flutter amplitude against the cavity length for foil H89 at
a=7°. The tunnel velocities are 11.9, 11.3 and 10, 7 m/sec.
from the top to the bottom.
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COMPONENT of CAVITY PRESSURE
at FLUTTER FREQUENCY, Nt/m2
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Figure 19. Magnitude of the fundamental component of the cavity pressure
versus the cavity length for all HSWT foils and various angles
of attack as indicated.
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WAVE AMPLITUDE / LEADING EDGE AMPLITUDE

) 10
DISTANCE from LEADING EDGE, cm

o

Figure 22, Graph indicating the rate of growth of the waves on the suction
cavity surface as a function of distance from the leading edge.
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LOCATION OF HINGE POINT

Figure 28. Values of the ratio of the flutter speed to the hypothetical .
divergence speed, U./U_ , and the ratio of the flutter
frequency to the natural fi equency in flows at much lower
speeds , w/w,, , as functions of the hinge location for
various values of Iop :
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APPENDIX A

HOLOGRAFPHIC INVESTIGATION OF THE VIBRATIONAL MODES OF
A TYPICAL HYDROFOIL IN THE ABSENCE OF FLOW

An experiment was conducted to learn more of the vibrational
characteristics of a typical modern hydrofoil shape. The foil chosen was
C.I.T. Hydrodynamic Laboratory Model 35-435 Mod II with a 15.2 cm.chord
and span; its hydrodynamic characteristics had earlier been investigated
for the Naval Ship Research and Development Center by Ward (1976). The
cross-sectional shape of the foil is shown in figure Al, and it was supported
in the water tunnel at one end only. The purpose of this study was to
identify some of the vibrational modes that might occur with moderate and
typical aspect ratio foils supported at one end only. Furthermore since
the emphasis of the present program was on modes of vibration involving
predominant chordwise bending near the leading edge, the purpose of
these tests was to examine whether such forms of vibration occurred as
one of the lower modes even in the absence of any hydrodynamic effect.
Figure A2 shows the schematic of the experiment. The whole setup was
mounted on a floating steel table (supported by scooter inner tubes) to
isolate it from ground vibration. The foil was excited at its natural fre-
quency by means of an acoustical speaker and the resulting displacement
was sensed by a Photonic fiber optic displacement sensor. Time-averaging
holography was used to obtain photographs of the node lines involved in
each of the normal modes. Figures A3 and A4 show two such photographs
of vibrational modes of 860 Hz. and 1725 Hz, The supported end of the
foil is at the bottom of the photographs and the leading edge is on the right

hand side. The black regions on the foil represent arcas of equal vibration




|
|
{
‘
!

-63-

amplitude. Thus figure A3 shows a mode which is similar to torsional
vibration. The rotational axis is somewhat behind the midchord. Figure
A4 represents a higher mode which involves leading edge vibration but in

which there is a significant spanwise phase change of the leading edge

vibration. Figure A5 presents the modes of this foil which were observed.

The conclusion of this study was that even with foils of moderate
and typical aspect ratio supported at one end, leading edge vibration

occurred as one of the lower modes of oscillation.
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Figure A5. Natural frequencies and modes of CIT 35-435 mod IT hydrofoil
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APPENDIX B

DAMPING MEASUREMENTS OF THE 35.6 cm. SPAN FOILS IN STILL WATER.

During the forced vibration tests of the 35.6 cm. spanfoilsin still

water, Q-factors were obtained from the frequency response spectra for

a number of amplitudes of excitation. These Q-factors are plotted in ,5 7]

figure Bl as a function of the leading edge displacement amplitude, § , ?

divided by the flexible chord length, a . The resonant or natural frequencies ;,..,

also varied slightly with amplitude, decreasing consistently as the amplitude b
b

increased; end point frequencies for each foil are indicated in figure Bl.
It can be seen that, in general, the Q-factor decreases like 6-1
for each individual foil. A comparison between the curves for the four

different foils reveals no clear trend with stiffness or frequency. However

M s G V- Y- il Wl
R A i 0 2 R

both the 6-1 behavior and the frequency shift are consistent with non-linear
quadratic or 'velocity-squared" damping. Analysis of systems with such 5
quadratic damping are given, for example, by Snowden (1968, p. 430) and

Dinca and Teodosiu (1973, p. 278). Such damping clearly suggests a

hydrodynamic drag force in the equation of motion which is proportional

to |§r|3'r where y is the instantaneous velocity of the leading edge:
My +Cpkpas | §|§ +Ky=F(T) (B1)

Here M is some equivalent mass plus added mass, K is some equivalent
spring constant, CD is the hydrodynamic drag coefficient (rather arbitrarily
based on the total chord, ¢ , and span, s), and F(T) is the applied force.
It follows from the velocity-squared damping analysis that if the amplitude,

& , of the motion is small then the effective Q-factor is related to the

drag coefficient by
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C pasw2
L_N} 5 (B2)

s paE ol o

o (3;2 B i -
where Wy = (K/M)% is the resonant frequency. Notice that as anticipated
above Q is proportional to the amplitude, & . Using equation (B2) and the
measured values of Wy and K , drag coefficients were computed for
each of the points in figure B 1 (Note: the leading edge deflection versus
strain gauge output calibration is not necessary for this calculation; the
values of § and K can be put in terms of strain gauge output amplitude
and static strain gauge output per unit applied load respectively). The drag
coefficients are plotted in figure B 2 against the dimensionless leading edge
displacement, &/a . The large drag coefficients at very small levels of
displacement are consistent with other direct measurements of the drag of
plates in oscillatory flow, notably those of Keulegan and Carpenter (1958).
Furthermore, like those other experimental results the drag coefficients
tend to a value of the order of unity for larger displacements. This suggests
a Reynolds Number effect; hence the drag coefficients have been replotted
in figure B 3 against an oscillatory Reynolds number, w 52 /v , based on
tip velocity, tip displacement and the kinematic viscosity, v , of the water.
Here again the general picture seems sensible with all the large values
having Reynolds numbers less than 50 and those for larger Reynolds numbers
approaching unity. However the inconsistency between the foils runs
through all the three figures presented; the thinner three are more con-
sistent with each other in figure B 2 whereas the thicker three seem more

consistent with each other in figure B3.

gt
b

Rkt {.4:;- e
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APPENDIX C

THEORETICAL CALCULATIONS OF THE DIVERGENCE SPEEDS
IN THE NON-SEPARATED FLOW AND IN CAVITATING FLOW

The purpose of this appendix is to outline the theoretical calcula-
tions of the divergence speed in two different idealized flow configurations. d
Consider a foil configured like the model foils and set at an angle of attack |
@ in a stream of velocity, U . The displacement, y , of the leading

edge is given by

2 4
y=nZLf- (a+aq) (C1)

where EI is the structural stiffness of the flexible portion and 7 is a

coefficient which depends not only on the distribution of the coefficient of
pressure but also on the ratio a/c of the flexible chord to the total chord.
The additional effective angle of attack Aa due to the displacement could
be estimated as Aa=Cy/c where C is a second constant which could be
determined given the shape of the deformed foil and the subsequent modi-
fications inits aerodynamic force coefficients due to changes in camber

and zero lift line position.

ol
Substituting for Aa into (C1) it is clear that Ao becomes un- 3
5
bounded at the divergence speed, UD , given by
EI )i .
D (ﬂ Cpc3 |

Calculations were made for two different flow configurations. A

o -

value of unity was assumed for the constant C , though in both cases the

effect of camber would be to yield effective values of C somewhat less




-75-

than unity. The dashed line in figure C1 represents the results obtained
using the theoretical non-separated potential flow pressure distribution for
flat plate at an angle of attack. This would not be realized in practice due
| to separation at the leading edge. The effect of this would be to shift the
center of pressure rearwards and thus increase UD

By way of comparison the linearized cavity flow pressure distribu-
tions (Wu (1955, 1956)) yield the divergence speeds given by the solid lines
in figure C1; this varies somewhat with the cavitation number or cavity
length and hence results are shown for lengths of 3 and 7 chords. It is

expected that the cavity flow values might also be appropriate in the single

phase wake flow configuration.
The numerical values for the four 35.56 cm. span foils are listed
in Table 1 of the main test where the comparison v ith the limited observa-

tions is discussed.
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APPENDIX D

SOME WAKE PRESSURE SPECTRAL INFORMATION

During the HSWT tests without cavitation some information was
obtained on the pressure in the wake behind foil H68 using a piezo-electric
pressure transducer attached to the mounting bar. A typical trace at a
tunnel velocity of 5.5m/sec. and an angle of attack of 70 is included in
figure D1; the output from the foil strain gauges under these conditions
was negligible. Spectral analysis of the wake pressure (see figure D)
revealed a noisy signal with a peak at the natural foil frequency of 36 Hz
(under cavitating conditions the natural foil frequency was somewhat higher
at about 44 Hz). The qualitative features of this pressure were quite un-
like those of water pressure or foil strain gauge signals at or near flutter
in a cavitating flow. The latter were invariably quite sinusoidal with a

very dominant peak in the spectra at the natural frequency.
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