

TEAER (15

JTR-79-06

AUG 29 1979

A CONTRACTOR OF A CONTRACT

ERROR PERFORMANCE OF DIFFERENTIALLY COHERENT DETECTION OF BINARY DPSK DATA TRANSMISSION ON THE HARD-LIMITING SATELLITE CHANNEL

> PREPARED FOR THE OFFICE OF NAVAL RESEARCH STATISTICS AND PROBABILITY PROGRAM ARLINGTON, VIRGINIA 22217

> > FINAL REPORT N00014 - 77 - C - 0056

> > > AUGUST 1979

DOC FILE COPY

アン

3

J.S. LEE ASSOCIATES INC.

2001 Jefferson Davis Highway, Suite 201 Arlington, Virginia 22202

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

79 08 29 105

ERROR PERFORMANCE OF DIFFERENTIALLY COHERENT DETECTION OF BINARY DPSK DATA TRANSMISSION ON THE HARD-LIMITING SATELLITE CHANNEL

by

Jhong Sam Lee Robert H. French Yoon K. Hong and a start of the start of the

JTR-79-06

August 1979

Prepared for:

The Office of Naval Research Statistics and Probability Program

Under Contract N00014-77-C-0056

Prepared by:

J. S. LEE ASSOCIATES, INC. 2001 Jefferson Davis Highway Suite 201, Crystal Plaza One Arlington, Virginia 22202 (703) 979-2230

REPURT DUCUME	NTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
REPORT NUMBER	2. GOVT ACCESSION NO	3. RECIPIENT'S CATALOG NUMBER
THE (S. TYPE OF REPORT & BERIOD COVERED
ETECTION OF BINARY DESK DATA TRANSMISSION ON THE		C. PERFORMING ORC. REPORT NUMBER
AUTHOR(+)		BORTRACT OR GRANT NUMBER(4)
Jhong Sam Lee, Robert H.	rench, Yoon K./Hong	5 N00014-77-C-0056
PERFORMING ORGANIZATION NAME A	ND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK
1. S. Lee Associates, Inc. 2001 Jefferson Davis Highwa Arlington, Virginia 22202	y, Suite 201	(12)101P.
tatistics and Probability	Program 12	August 1979
Office of Naval Research		100
4. MONITORING AGENCY NAME & ADDR	ESS(II dillerent from Controlling Ollice)	15. SECURITY CLASS. (of this report)
		UNCLASSIFIED
		13. DECLASSIFICATION/DOWNGRADING SCHEDULE
Approved for public re	lease; distribution unlin	nited
Approved for public re	lease; distribution unlin	nited om Report)
Approved for public re 7. DISTRIBUTION STATEMENT (of the ob 8. SUPPLEMENTARY NOTES	lease; distribution unlin	nited om Report)
Approved for public re . DISTRIBUTION STATEMENT (of the ob B. SUPPLEMENTARY NOTES	lease; distribution unlin	nited
Approved for public re 7. DISTRIBUTION STATEMENT (of the ob 8. SUPPLEMENTARY NOTES 9. KEY WORDS (Continue on reverse elde	lease; distribution unlin encod entered in Block 20, 11 different in I necessary and identify by block number	nited
Approved for public re D. DISTRIBUTION STATEMENT (of the ob S. SUPPLEMENTARY NOTES Phase Modulation Probability Errors	lease; distribution unlin elrect entered in Block 20, 11 different fr I necessary and identify by block number Communics Limiters	om Report) On And Radio Systems ation Satellites
Approved for public re 7. DISTRIBUTION STATEMENT (of the ob 8. SUPPLEMENTARY NOTES 9. KEY WORDS (Continue on reverse elder Phase Modulation Probability Errors Performance (Engineeri	lease; distribution unlin elrect entered in Block 20, 11 dillerent in Communica Communica Limiters	nited The Report) Ation and Radio Systems Ation Satellites
Approved for public re Approved for public re DISTRIBUTION STATEMENT (of the ob SUPPLEMENTARY NOTES Supplementary notes Phase Modulation Probability Errors Performance (Engineeri Approved for performance differential phase-shift ke sateilite channel is derive the extent of error rate de and noise correlations betw the power imbalance, or equa s intersymbol interference reference input. The noise	Please; distribution unline envect entered in Block 20, 11 different in finecessary and identify by block number Communica Limiters ng) for a differentially coher bying (DPSK) system operation of a differentially coher bying (DPSK) system operation d. The main objective of gradation of a DPSK system ivalently SNR imbalance, and/or errors in phase of correlation is a practice	nited The Report The Report

in a little bar

SECURITY CLASSIFICATION OF THIS PAGE(When Dete Entered)

Block No. 20 continued

Sis necessarily band limited in the system. Error probabilities are given as a function of uplink SNR with different levels of SNR imbalances and different downlink SNR as parameters. It is discovered that, while SNR imbalance affects error performance, the probability of error is independent of noise correlation if the symbol probabilities are equal.

Inannounced Justification By Distribution/ Availand/or Hist special	NTIS DDC TA	Graat I	
By	Jnanno Tustif	icction	
By			
Availand/or Availand/or Most	By		
Aveilability Codes	Distri	bution/	
Mist Avail and/or special	Aveil	ability Codes	
Nist special		Avail and/or	
N	Dist	special	
	N		
	111		

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

TABLE OF CONTENTS

	Page
1. INTRODUCT	TION
2. ANALYSIS	MODEL
3. STATISTIC	CS OF THE DECISION VARIABLE
4. CONDITION	NAL ERROR PROBABILITIES
5. ERROR PRO	DBABILITY EXPRESSIONS
6. COMPUTAT	IONAL RESULTS
7. CONCLUSIO	DNS
Appendix A:	Derivation of Probability Density Function of $\phi = \phi_1 - \phi_2$
Appendix B:	Evaluation of Equation (19)
Appendix C:	Evaluation of Equations (23a) and (23b)
Appendix D:	Alternate Derivation of Error Probability Equations D-1
Appendix E:	Alternate Forms for Error Probability Equation E-1
Appendix F:	A Further Consideration on Power Imbalance
Appendix G:	Computer Program Listing for Error Rate Performance of DPSK over Hard-Limiting Satellite Link with Power Imbalance and Correlated Noise at the Phase Detector G-1
Appendix H:	Error Behavior of a Binary DPSK System Due to Intersymbol Interference and Correlated Noise H-1
Appendix 1:	Computer Program Listing for Error Rate Performance of DPSK over a Terrestrial Link with Power Imbalance and Correlated Noise at the Phase Detector
References .	
Distribution	List

1. INTRODUCTION

Differentially encoded phase-shift keyed (DPSK) binary signalling is a commonly used technique in digital data transmission systems. There are, of course, other modulation techniques that are more efficient than the DPSK systems in terms of power and spectral occupancy; however, the circuit simplicity and the accompanying cost-effectiveness of the DPSK system often becomes the over-riding reason for its application in a data communication system.

The choice of DPSK modulation is particularly appropriate when a small, low-cost modulator is needed. A typical application might be a buoy which has limited space and limited prime power for the communications system. An expendable platform such as a buoy must, of course, be lowcost. The data transmission from the buoy may involve a hard-limiting satellite channel for the purpose of processing the data at a shore facility.

Surprising as it may sound, however, a complete understanding of the error behavior of DPSK system has been lacking. Much less understood is the error performance mechanism of a DPSK system over the hard-limiting satellite channel. The error behavior of DPSK system over a "linear channel" has always been assessed on the basis of a most simplified fashion, e.g. the probability of error for the binary DPSK system has always been based on the expression $P_e = \frac{1}{2} \exp(-H^2)$, where H^2 is the carrier-to-noise power ratio at the sampling instant.

1

The demodulator configuration of a DPSK system requires a phasedetector (multiplier) whose inputs are "direct" and "one-bit delayed" versions of the signal. In reality, the inputs of the phase-detector have different signal power levels due to such effects as phase error, delay line attenuation, and inter-symbol interference. Furthermore, the noises between the two multiplier inputs are necessarily correlated due to the band-limited nature of any real system. When these practical aspects are considered, the error behavior of the DPSK system cannot be assessed only on the basis of the error probability expression stated above.

The lack of adequate error behavior expressions for the DPSK system under non-ideal conditions has been a consequence of the non-linear nature of the DPSK demodulator. Thus, the noise behavior at the decision time is not amenable to a relatively simple description such as coherent PSK system. As a result, the analysis of DPSK system has always been based on a most simplified ideal assumption. In particular, the noise correlation between the two phase-detector inputs has been totally ignored in the idealized assumptions.

In this report we have treated the case of the DPSK system over a hard-limiting satellite channel with power imbalance and correlated noise at the phase detector (multiplier). A surprising result of our analysis is that the error performance is independent of the noise correlation if the <u>a priori</u> symbol probabilities are equal. As has been remarked elsewhere [1], this is a departure from previous beliefs.

2

2. ANALYSIS MODEL

The binary satellite communication system under consideration is shown in Figure 1. Our main objective is to determine the error performance of the system under the assumptions that $(SNR)_1 \neq (SNR)_2$ at the phase detector input and the noises $n_1(t)$ and $n_2(t)$ are statistically dependent. The condition $(SNR)_1 \neq (SNR)_2$ arises from a difference in signal powers due, for example, to intersymbol interference or delay circuit phase error. The noise correlation reflects the band-limited nature of a practical system.

The original transmitted signals are defined as $S_1(t)$ and $S_2(t)$:

$$S_{1}(t) = \sqrt{2P_{u}} \cos(\omega t - \theta_{1})$$
(1)

$$S_{2}(t) = \sqrt{2P_{u}} \cos[\omega(t - T) - \theta_{2}]$$
$$= \sqrt{2P_{u}} \cos(\omega t - \theta_{2})$$
(2)

where the bit duration is T; the carrier frequency is assumed to be selected such that $\omega T = 2\pi k$, k integer; and P_u is the power received at the satellite. The index i = 1 is associated with the present symbol and i = 2 is associated with the previous symbol. Bandpass Gaussian noise n_u(t) is also present on the uplink with $\sigma_u^2 = E\left\{n_u^2(t)\right\}$. The uplink SNR is defined as $R_u^2 \triangleq P_u/\sigma_u^2$.

At the receiver the signal is corrupted both by passage through the hard limiter and by additive noise on the downlink. The inputs to the phase detector (multiplier) are:

$$u_1(t) = s_1(t) + n_1(t)$$
 (3)

$$u_{2}(t) = s_{2}(t) + n_{2}(t)$$
 (4)

where $s_i(t)$, i = 1, 2, are the signals as corrupted by passage through the

FIGURE 1 BLOCK DIAGRAM OF DPSK SYSTEM OVER A HARD-LIMITING SATELLITE CHANNEL

limiter in the presence of uplink noise and $n_i(t)$, i = 1, 2, are additive downlink noise. We may write

$$s_1(t) = \sqrt{2P_1} \cos(\omega t + \phi_1)$$
 (5)

$$s_{2}(t) = \sqrt{2P_{2}} \cos(\omega t + \phi_{2})$$
 (6)

where P_1 and P_2 are the carrier powers at the phase detector and the signal phases ϕ_1 and ϕ_2 are identically distributed random variables with the conditional density function [2], [3]

$$f_{\phi_{i}}(\alpha|\theta_{i}) = \begin{cases} \frac{1}{2\pi} \sum_{k=0}^{\infty} b_{k} \cos[k(\alpha-\theta_{i})], \ i=1,2, \ |\alpha-\theta_{i}| \le \pi \\ 0, \ |\alpha-\theta_{i}| > \pi \end{cases}$$
(7)

where
$$b_k = \epsilon_k \frac{R_u^k}{k!} r(\frac{k}{2} + 1) {}_1F_1(\frac{k}{2}; k+1; -R_u^2)$$
,
 R_u^2 is the signal to noise ratio at the input to the limiter,
 $\epsilon_k = \begin{cases} 1, k = 0 \\ 2, k > 0 \end{cases}$

and $_{1}F_{1}(a;b;z)$ is the confluent hypergeometric function (Kummer's function) of parameters a and b and argument z. The bandpass Gaussian downlink noises are expressed in the form

$$n_{1}(t) = X_{1}(t) \cos \omega t + Y_{1}(t) \sin \omega t$$
(8)

$$n_{2}(t) = X_{1}(t-T) \cos [\omega(t-T)] + Y_{1}(t-T) \sin [\omega(t-T)]$$

$$\stackrel{\Delta}{=} X_{2}(t) \cos \omega t + Y_{2}(t) \sin \omega t$$
(9)

and the noise correlation is defined by

$$E\{n_1(t)n_2(t)\} = E\{n_1(t)n_1(t-T)\} = \sigma_d^2 \rho(T)$$
(10)

where p(T) is the normalized correlation with T equal to the symbol duration and the noise power is given by

$$\sigma_d^2 \stackrel{\Delta}{=} E\{n_1^2(t)\} = E\{X_i^2(t)\} = E\{Y_i^2(t)\}, i = 1, 2.$$
 (11)

The decision variable y(t) at time t is the output of the zonally low-pass filtered version of

$$x(t) = u_{1}(t) \times u_{2}(t)$$

= $[\sqrt{2P_{1}} \cos(\omega t - \phi_{1}) + X_{1}(t) \cos \omega t + Y_{1}(t) \sin \omega t]$
 $\times [\sqrt{2P_{2}} \cos(\omega t - \phi_{2}) + X_{2}(t) \cos \omega t + Y_{2}(t) \sin \omega t],$
(12)

i.e.

$$y(t) = \sqrt{P_1 P_2} \cos(\phi_1 - \phi_2) + N(t)$$
 (13)

where

$$N(t) = \frac{1}{2}X_{1}(t)X_{2}(t) + \frac{1}{2}Y_{1}(t)Y_{2}(t) + \sqrt{P_{2}/2} X_{1}(t) \cos \phi_{2}$$
$$+ \sqrt{P_{2}/2} Y_{1}(t) \sin \phi_{2} + \sqrt{P_{1}/2} X_{2}(t) \cos \phi_{1} + \sqrt{P_{1}/2} Y_{2}(t) \sin \phi_{1}.$$

3. STATISTICS OF THE DECISION VARIABLE

The probability density function of the decision variable conditioned on the phase difference between the two inputs to the multiplier is a special case of the general result obtained by Miller and Lee [4]:

$$f_{y}(y;\rho|\phi) = \frac{1}{\sigma_{d}^{2}} \exp\left[-(h_{3}^{2} + h_{4}^{2})\right]$$

$$\cdot \sum_{n=0}^{\infty} \sum_{n=0}^{\infty} \frac{1}{m!} \left[\left(\frac{1-\rho}{2}\right)h_{3}^{2}\right]^{m} \frac{1}{n!} \left[\left(\frac{1+\rho}{2}\right)h_{4}^{2}\right]^{n}$$

$$\cdot \left\{ \exp\left[-\frac{2y}{\sigma_{d}^{2}(1+\rho)}\right] S_{m}^{n} \left[\frac{4y}{\sigma_{d}^{2}(1-\rho^{2})}\right], y \ge 0$$

$$\exp\left[-\frac{2y}{\sigma_{d}^{2}(1-\rho)}\right] G_{n}^{m} \left[-\frac{4y}{\sigma_{d}^{2}(1-\rho^{2})}\right], y < 0 \quad (14)$$

where

$$h_{3}^{2} = \frac{1}{2(1+\rho)} (h_{1}^{2} + h_{2}^{2} + 2h_{1}h_{2} \cos \phi),$$

$$h_{4}^{2} = \frac{1}{2(1-\rho)} (h_{1}^{2} + h_{2}^{2} - 2h_{1}h_{2} \cos \phi),$$

$$h_{1}^{2} = SNR \text{ at input number 1 of the multiplier,}$$

$$h_{2}^{2} = SNR \text{ at input number 2 of the multiplier,}$$

$$\phi = \phi_{1} - \phi_{2} = \text{ the difference in phase between the narrow-band signals at the multiplier input,}$$

and

$$G_m^n(x) = \sum_{j=0}^m {\binom{m+n-j}{n}} \frac{x^j}{j!}$$

The probability density function of ϕ can be obtained from

$$f_{\phi}(\beta|\theta_{1},\theta_{2}) = \int_{-\infty}^{\infty} f_{\phi_{1}}(\beta+\alpha|\theta_{1}) f_{\phi_{2}}(\alpha|\theta_{2}) d\alpha \qquad (15)$$

where f_{ϕ_1} and f_{ϕ_2} are given by (7). The evaluation* of (15) is straightforward but somewhat lengthy (see Appendix A), with the result being

* For an alternate approach not requiring explicit evaluation of (15), see Appendix D.

$$f_{\phi}(\beta | \theta_{1}, \theta_{2}) = \begin{cases} 0, & -\infty < \beta \le \theta_{1} - \theta_{2} - 2\pi \\ \left\{ \frac{1}{2\pi} \right\}^{2} \left\{ [2\pi - |\beta - (\theta_{1} - \theta_{2})|] \\ + \sum_{k=1}^{\infty} b_{k}^{2} \left\{ \frac{2\pi - |\beta - (\theta_{1} - \theta_{2})|]}{2} \cos[k|\beta - (\theta_{1} - \theta_{2})|] \right\} \\ - \frac{1}{2k} \sin[k|\beta - (\theta_{1} - \theta_{2})|] \right\} \\ -2 \sum_{k=1}^{\infty} \sum_{q=0}^{k-1} b_{k} b_{q} \frac{(-1)^{k+q}}{k^{2} - q^{2}} \left\{ k \sin[k|\beta - (\theta_{1} - \theta_{2})|] \\ -q \sin[q|\beta - (\theta_{1} - \theta_{2})|] \right\} \right\}, \\ \theta_{1} - \theta_{2} - 2\pi \le \beta \le \theta_{1} - \theta_{2} + 2\pi \\ 0, \qquad \theta_{1} - \theta_{2} + 2\pi \le \beta < \infty. \end{cases}$$
(16)

An important aspect of the p.d.f. given in (16) is that $f_{\phi}(\beta|\theta_1,\theta_2)$ depends only on the difference $\theta_1 - \theta_2$, which is the information-bearing parameter in a DPSK system. We can thus write $f_{\phi}(\beta|\theta_1,\theta_2)$ as $f_{\phi}(\beta|\theta_1-\theta_2)$. This density is shown in Figure 2.

The probability density function of the decision variable y conditioned on the transmitted symbol $(\theta_1 - \theta_2)$ with downlink noise correlation as a parameter can be found from

$$f_{y}(y;\rho|\theta_{1}-\theta_{2}) = \int_{-\infty}^{\infty} f_{y}(y;\rho|\phi=\beta)f_{\phi}(\beta|\theta_{1}-\theta_{2})d\beta.$$
(17)

The result of (17) is

The state of the state of the

FIGURE 2 PROBABILITY DENSITY FUNCTION OF PHASE DIFFERENCE BETWEEN CONSECUTIVE SYMBOLS AT OUTPUT OF HARD LIMITER

$$f_{y}(y;\rho|\theta_{1}-\theta_{2}) = \frac{1}{\sigma_{d}^{2}} \exp\left[-\frac{h_{1}^{2}+h_{2}^{2}}{1-\rho^{2}}\right] \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \frac{1}{m!} \frac{1}{n!} \left[\frac{1}{4} \left(\frac{1-\rho}{1+\rho}\right) \left(h_{1}^{2}+h_{2}^{2}\right)\right]^{m} \\ \cdot \left[\frac{1}{4} \left(\frac{1+\rho}{1-\rho}\right) \left(h_{1}^{2}+h_{2}^{2}\right)\right]^{n} V_{m,n} \\ \int_{\alpha}^{\exp\left[\frac{2y}{\sigma_{d}^{2}(1-\rho)}\right]} G_{n}^{m} \left[-\frac{4y}{\sigma_{d}^{2}(1-\rho^{2})}\right], y<0 \\ \cdot \begin{cases} \exp\left[-\frac{2y}{\sigma_{d}^{2}(1+\rho)}\right] G_{m}^{n} \left[\frac{4y}{\sigma_{d}^{2}(1-\rho^{2})}\right], y\geq0 \\ \exp\left[-\frac{2y}{\sigma_{d}^{2}(1+\rho)}\right] G_{m}^{n} \left[\frac{4y}{\sigma_{d}^{2}(1-\rho^{2})}\right], y\geq0 \end{cases}$$
(18)

where

$$V_{m,n} = \int_{\infty}^{\infty} \exp[Y \cos\beta] [1+Z \cos\beta]^{m} [1-Z \cos\beta]^{n} f_{\phi}(\beta|\theta_{1}-\theta_{2}) d\beta$$
(19)

with

 $Y = \frac{2\rho h_1 h_2}{1-\rho^2}$ $Z = \frac{2h_1 h_2}{h_1^2+h_2^2}.$

and

The transmitted symbol is "mark" or "space" depending on the phase difference $|\theta_1 - \theta_2|=0$ or $|\theta_1 - \theta_2|=\pi$, respectively. Thus the following conditional p.d.f.'s are obtained:

$$f_{y}(y;\rho|space) = f_{y}(y;\rho||\theta_{1}-\theta_{2}|=0)$$
(20a)

and

 $f_{y}(y;\rho|mark) = f_{y}(y;\rho||\theta_{1}-\theta_{2}|=\pi).$ (20b)

We evaluate (see Appendix B) the integral in (19) for both space $(\theta_1 - \theta_2 = 0)$ and mark $(|\theta_1 - \theta_2| = \pi)$ by using the binomial theorem and an expansion for powers of the cosine, with the results:

$$V_{m,n}(space) = \frac{1}{2} \sum_{k=0}^{\infty} \sum_{s=0}^{n} \frac{\frac{s-v(s)}{2}}{\sum_{\mu=0}^{2}} \left(\frac{[s-v(s)-2\mu]}{2} \right) \\ \cdot \left(\frac{7}{2}\right)^{s} (-1)^{v(s)} \frac{b_{k}^{2} \varepsilon_{\mu+v(s)}}{\varepsilon_{k}} \\ \cdot \left[1_{2\mu+v(s)-k}(Y) + 1_{2\mu+v(s)+k}(Y)\right] \\ \cdot \left(\frac{n}{s}\right) {}_{2}F_{1}(-m,-s;n-s+1;-1)$$
(21a)
$$V_{m,n}(mark) = \frac{1}{2} \sum_{k=0}^{\infty} \sum_{s=0}^{m} \frac{\frac{s-v(s)}{2}}{\sum_{\mu=0}^{2}} \left(\frac{[s-v(s)-2\mu]}{2} \right) \\ \cdot \left(\frac{7}{2}\right)^{s} (-1)^{k} \frac{b_{k}^{2} \varepsilon_{\mu+v(s)}}{\varepsilon_{k}} \\ \cdot \left[1_{2\mu+v(s)-k}(Y) + 1_{2\mu+v(s)-k}(Y)\right]$$

and

$$m^{(mark)} = \frac{1}{2} \sum_{k=0}^{\infty} \sum_{s=0}^{m} \frac{\frac{s-v(s)}{2}}{\sum_{\mu=0}^{2}} \left(\frac{[s-v(s)-2\mu]}{2} \right)$$
$$\cdot \left(\frac{2}{2} \right)^{s} (-1)^{k} \frac{b_{k}^{2} \epsilon_{\mu+v(s)}}{\epsilon_{k}}$$
$$\cdot \left[I_{2\mu+v(s)-k}(Y) + I_{2\mu+v(s)+k}(Y) \right]$$
$$\cdot \left(\frac{m}{s} \right) {}_{2}F_{1}(-n,-s;m-s+1;-1)$$
(21b)

いい いい 日本 いいの いの 日本 いいい

where

$$v(s) = \begin{cases} 0, s even \\ 1, s odd; \end{cases}$$

 $I_n(\cdot)$ is the modified Bessel function of order n; and $2^{F_1}(\cdot,\cdot;\cdot;\cdot)$ is the Gauss hypergeometric function.

4. CONDITIONAL ERROR PROBABILITIES

In order to determine the error probability, we must know the threshold to which the decision variable y(t) is compared. In a binary DPSK system the transmitted phase difference between consecutive symbols, $\theta_1 - \theta_2$, is either 0 or $\pm \pi$. The threshold should be set so that correct decisions are made if noise is absent. In the absence of uplink noise the limiter does not corrupt signal phase, i.e. $\phi_1 = \theta_1$ and $\phi_2 = \theta_2$. Then in the absence of downlink noise the decision variable becomes

$$y(t)|_{no noise} = \sqrt{P_1 P_2} \cos(\phi_1 - \phi_2) = \sqrt{P_1 P_2} \cos(\theta_1 - \theta_2) (22)$$

and the information is contained in the sign of y(t). Thus the threshold is set at zero.

From (20a) and (20b) one can obtain the conditional probabilities of error from the expressions

$$P(e;\rho|space) = Prob\{y<0|\theta_1-\theta_2=0\} = \int_{-\infty}^{0} f_y(y;\rho|\theta_1-\theta_2=0) dy (23a)$$

and

$$P(e;\rho|mark) = Prob\{y>0||\theta_1 - \theta_2|=\pi\} = \int_0^\infty f_y(y;\rho||\theta_1 - \theta_2|=\pi) dy. (23b)$$

To compute the error probabilities we need to define the downlink signal to noise ratio R_d^2 . In a DPSK system this is conveniently taken as the SNR at the direct channel input to the multiplier. In our notation,

$$R_d^2 = h_1^2.$$
 (24)

Also, since we are considering the case of SNR imbalance at the multiplier inputs, it is convenient to define an SNR difference measure by

$$\lambda^{2} = \frac{h_{2}^{2}}{h_{1}^{2}} = \frac{(SNR)_{2}}{(SNR)_{1}}.$$
 (25)

5. ERROR PROBABILITY EXPRESSIONS

Carrying out the integrations indicated in (23a) and (23b) (see Appendix C) and using the definitions in (24) and (25) to replace h_1^2 by R_d^2 and h_2^2 by $\lambda^2 R_d^2$ we obtain the following rather formidable-appearing expressions for the conditional error probabilities:

$$P(e;\rho,\lambda|space) = \pi\left(\frac{1-\rho}{4}\right) \exp\left[-\frac{2R_{d}^{2}}{1-\rho^{2}}\right] \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \sum_{k=0}^{m} \sum_{s=0}^{n} \sum_{\mu=0}^{\frac{s-\nu(s)}{2}} \sum_{\mu=0}^{\infty} \sum_{\mu=0}^{n} \sum_{\mu=0}^{\frac{s-\nu(s)}{2}} \sum_{\mu=0}^{n} \sum_{\mu=0}^{\frac{s-\nu(s)}{2}} \sum_{\mu=0}^{\frac{s-$$

and

$$P(e_{;p,\lambda}|mark) = \pi \left(\frac{1+p}{4}\right) \exp \left[-\frac{2R_{d}^{2}}{1-p^{2}}\right] \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \sum_{k=0}^{m} \sum_{s=0}^{m} \frac{\frac{s-u(s)}{2}}{\sum_{\mu=0}^{p}}$$

$$= \frac{e_{k}e_{\mu+u(s)}(-1)^{k}}{m!n!\left[r\left(\frac{k+1}{2}\right)\right]^{2}} \binom{m+n}{n}\binom{m}{s}$$

$$= \left(\left[s-u(s)^{-2\mu}\right]/2\right)\binom{R_{U}}{2}^{2k} \left(\frac{\lambda}{1+\lambda^{2}}\right)^{s} \left[\frac{1}{4}\left(\frac{1-p}{1+p}\right) R_{d}^{2}(1+\lambda^{2})\right]^{m}$$

$$= \left[\frac{1}{4}\left(\frac{1+p}{1-p}\right) R_{d}^{2}(1+\lambda^{2})\right]^{n} \left[I_{2\mu+u(s)-k}\left(\frac{2p\lambda R_{d}^{2}}{1-p^{2}}\right)\right]$$

$$= 2F_{1}\left(-m,1;-m-n;\frac{2}{1-p}\right) 2F_{1}\left(-n,-s;m-s+1;-1\right)$$

$$= \left[\frac{1}{4}\left(\frac{k}{2};k+1;-R_{U}^{2}\right)\right]^{2}.$$
(26b) and (26b), we have made use of the relation (2z)!=r(2z+1)=

In writing (26a) and (26b), we have made use of the relation $(2z)!=r(2z+1)=2^{2z}r(z+\frac{1}{2})r(z+1)/\sqrt{\pi}$ to simplify the coefficients arising from b_k^2 in (21a) and (21b). For alternate ways of writing (26a) and (26b), see Appendix E.

Making use of the relation $I_j(-z)=(-1)^j I_j(z)$, j an integer, and making a change of notation in (26b) by replacing m by n and vice versa, we observe the interesting symmetry property

$$P(e;p,\lambda|space)=P(e;-p,\lambda|mark).$$
(27)

The total unconditional error probability is the weighted sum of (26a) and (26b) given by

$$P(e;\rho,\lambda)=P_{s}P(e;\rho,\lambda|space)+P_{m}P(e;\rho,\lambda|mark)$$
(28)

where P_s and P_m are the <u>a priori</u> probabilities of space ("0") and mark ("1").

6. COMPUTATIONAL RESULTS

We have computed the total error probability for the case of equal <u>a priori</u> symbol probabilities, i.e. $P_m = P_s = 1/2$. In doing the computations, the direct numerical computation of (26a) and (26b) proved to be quite difficult due to the manner in which the multiple series converge and the effects of finite word length in the computer. We found that numerical integration of (19) in conjunction with (18), (23a) and (23b) proved to be a more computationally efficient scheme for obtaining numerical results, and this was the procedure used in our computations. The program listing is contained in Appendix G.

Our numerical evaluations of the total error probability were performed for several values of power imbalance* λ^2 and noise correlation ρ . We have observed the result that the computed total error probabilities are independent of ρ for all values of λ^2 considered. However, the conditional error probabilities were dependent upon the noise correlation. When these conditional error probabilities were added with equal weights ($P_m = P_s = 1/2$), the results coincided with the value of the error probability for $\rho=0$, as shown in Figure 3. A similar numerical result was obtained for a terrestrial link [5] (see also Appendices H and I). As in the case of the terrestrial link, the mathematical complexity prevented analytical verification of this result. It should be stated here that when one observes the conditional probabilities of error as given by (26a) and (26b), it appears certain that the total unconditional probability of error should depend on noise correlation ρ . In fact, it has been remarked in the previous publications [6], [7] that the error probability of a binary DPSK system depends upon the correlation

*The power imbalance can arise from intersymbol interference and other effects, as discussed in Appendix F. 15

FIGURE 3 INFLUENCE OF NOISE CORRELATION ON CONDITIONAL ERROR PROBABILITIES FOR POWER IMBALANCE $\lambda^2 = -1.5$ dB AND DOWNLINK SNR $R_d^2 = 7$ dB

if there is intersymbol interference (a case of SNR imbalance). The remarks, it should be pointed out, were based on the observations of the equations rather than on the proofs.

Figure 4 shows the total error probability versus uplink SNR R_u^2 for several values of λ^2 and R_d^2 . For comparison, the case of infinite downlink SNR ($R_d^2 = \infty$) is also plotted; this is identical to the terrestrial link with no power imbalance ($\lambda^2 = 0$ dB).

The curves shown in Figure 4 corresponding to $\lambda^2=0$ dB for each case of R_d^2 (downlink SNR) represent the ideal case of no power imbalance at the phase detector input. Our curves for these special (ideal) cases are identical to the results reported by Weinberg [8].

FIGURE 4 TOTAL ERROR PROBABILITY AS A FUNCTION OF UPLINK SNR WITH DOWNLINK SNR AND POWER IMBALANCE AS PARAMETERS

CONCLUSIONS

In this report we have presented the error behavior of a binary DPSK system over a hard-limiting satellite channel under the influence of an SNR imbalance at the phase detector (multiplier) inputs and noise correlation. The graphically presented curves for error probability are applicable to evaluation of system performance when the SNR imbalance at the phase detector is known.

Our numerical results show that the performance of binary DPSK over the hard-limiting satellite channel does not depend upon noise correlation when the <u>a priori</u> symbol probabilities are equal, regardless of SNR imbalance. The noise correlation has an effect only when the symbol probabilities are unequal.

The mathematical complexity of the error rate expressions has, thus far, prevented an analytical verification of the numerical results that the noise correlation has no effect on performance when the symbol probabilities are equal. The mathematical formulation for the error rate, however, is possibly amenable to further investigation. Appendix E points out a few first steps which may lead to further analytical investigation of the error rate properties; however, the mathematical relations involved are in an area of mathematics, e.g. generalized multiple hypergeometric functions, which is not yet fully developed. Further investigations may be mathematically interesting, but the directions of such investigations and the immediacy of practical results of such investigations are by no means clearly evident at this time.

19

APPENDIX A

DERIVATION OF PROBABILITY DENSITY FUNCTION OF $\phi = \phi_1 - \phi_2$

The pdf of ϕ_i , i=1,2, is given by equation (7) of the main text. We must evaluate

$$f_{\phi}(\beta|\theta_{1},\theta_{2}) = \int_{-\infty}^{\infty} f_{\phi_{1}}(\beta+\alpha|\theta_{1}) f_{\phi_{2}}(\alpha|\theta_{2}) d\alpha.$$
 (A-1)

In view of the restricted range over which the f_{ϕ_i} 's are non-zero, (A-1) must be treated as four separate cases (see Figure A-1). If $-B+\theta_1+\pi<\theta_2-\pi$, or $\theta_1-\theta_2+2\pi<\beta$, then there is no overlap of the two f_{ϕ_i} 's and $f_{\phi}\equiv 0$. In the second case, we have $\theta_2-\pi<-B+\theta_1+\pi<\theta_2+\pi$, which implies that

$$f_{\phi}(\beta|\theta_{1},\theta_{2}) = \int_{\theta_{2}^{-\pi}}^{\theta_{1}^{+\pi-\beta}} f_{\phi_{1}}(\beta+\alpha|\theta_{1}) f_{\phi_{2}}(\alpha|\theta_{2}) d\alpha, \quad \theta_{1}^{-\theta_{2} \leq \beta \leq \theta_{1}^{-\theta_{2}^{+2}\pi}}$$
(A-2)

In the third case, $-B+\theta_1-\pi \le \theta_2+\pi \le -B+\theta_1+\pi$, which implies that

$$f_{\phi}(\beta|\theta_1,\theta_2) = \int_{\theta_1^{-\pi-\beta}}^{\theta_2^{+\pi}} f_{\phi_1}(\beta+\alpha|\theta_1) f_{\phi_2}(\alpha|\theta_2) d\alpha, \quad \theta_1^{-\theta_2^{-2\pi \leq \beta \leq \theta_1^{-\theta_2^{-2}}} (A-3)$$

In the fourth case $-\beta+\theta_1-\pi>\theta_2+\pi$, or $\beta<\theta_1-\theta_2-2\pi$, there is no overlap and $f_{\phi}(\beta|\theta_1,\theta_2) \equiv 0$.

Substituting (7) into (A-3) and (A-2), we find

$$f_{\phi}(\beta|\theta_{1},\theta_{2}) = \left(\frac{1}{2\pi}\right)^{2} \sum_{k=0}^{\infty} \sum_{q=0}^{\infty} b_{k} b_{q} \int_{\theta_{1}-\pi-\beta}^{\theta_{2}+\pi} \cos[k(\beta+\alpha-\theta_{1})] \cos[q(\alpha-\theta_{2})] d\alpha,$$

$$\theta_{1}-\theta_{2}-2\pi \leq \beta \leq \theta_{1}-\theta_{2}$$

(A-4)

b) Case 2

A MALE TA MERINA

FIGURE A-1

θ2

c) Case 3

-B+01

DETERMINATION OF INTEGRATION LIMITS FOR PROBABILITY DENSITY OF $\phi_1 - \phi_2$ AS A FUNCTION OF B

and

$$f_{\phi}(\beta|\theta_{1},\theta_{2}) = \left(\frac{1}{2\pi}\right)^{2} \sum_{k=0}^{\infty} \sum_{q=0}^{\infty} b_{k}b_{q} \int_{\theta_{2}-\pi}^{\theta_{1}+\pi-\beta} \cos[k(\beta+\alpha-\theta_{1})]\cos[q(\alpha-\theta_{2})]d\alpha,$$

where

$$p_{k} = \varepsilon_{k} \frac{R_{u}^{k}}{k!} r\left(\frac{k}{2}+1\right) {}_{1}F_{1}\left(\frac{k}{2}; k+1; -R_{u}^{2}\right).$$

Now consider the integral in (A-4):

$$I = \int_{\theta_1^{-\pi-\beta}}^{\theta_2^{+\pi}} \cos[k(\beta + \alpha - \theta_1)] \cos[q(\alpha - \theta_2)] d\alpha.$$
 (A-6)

We have three cases, determined by the parameters k and q. When k=q=0, the integrand of (A-6) becomes equal to one, and we have

$$I = 2\pi + \beta + \theta_2 - \theta_1, \quad k = q = 0. \tag{A-7}$$

The second case is $k=q\neq 0$, for which we apply a trigonometric identity to write (A-6) as

$$I = \frac{1}{2} \int_{\theta_1 - \pi - \beta}^{\theta_2 + \pi} \cos(k_\beta + k_{\theta_2} - k_{\theta_1}) d\alpha + \frac{1}{2} \int_{\theta_1 - \pi - \beta}^{\theta_2 + \pi} \cos(2k_\alpha + k_\beta - k_{\theta_1} - k_{\theta_2}) d\alpha.$$
(A-8)

Integrating (A-8) we obtain

$$1 = \frac{1}{2} \cos(k\beta + k\theta_2 - k\theta_1) (\theta_2 + \pi - \theta_1 + \pi + \beta)$$

+ $\frac{1}{4k} [\sin(2k\theta_2 + 2k\pi + k\beta - k\theta_1 - k\theta_2) - \sin(2k\theta_1 - 2k\pi - 2k\beta + k\beta - k\theta_1 - k\theta_2)]$
= $\frac{1}{2} \cos [k\beta + k(\theta_2 - \theta_1)] (2\pi + \beta + \theta_2 - \theta_1)$
+ $\frac{1}{4k} [\sin(k\beta + k\theta_2 - k\theta_1) + \sin(k\beta + k\theta_2 - k\theta_1)]$ (A-9a)

which can be written as

the second second second states and second se

$$I = \frac{1}{2} (2\pi + \beta + \theta_2 - \theta_1) \cos [k\beta + k(\theta_2 - \theta_1)] + \frac{1}{2k} \sin [k\beta + k(\theta_2 - \theta_1)],$$

$$k = q \neq 0. \qquad (A-9b)$$

In the third case, we have $k \neq q$. Using a trigonometric identity, (A-6) can be written as

$$I = \frac{1}{2} \int_{\theta_1 - \pi - \beta}^{\theta_2 + \pi} \cos[(k-q)\alpha + k\beta + q\theta_2 - k\theta_1] d\alpha + \frac{1}{2} \int_{\theta_1 - \pi - \beta}^{\theta_2 + \pi} \cos[(k+q)\alpha + k\beta - k\theta_1 - q\theta_2] d\alpha$$
(A-10)

Integrating (A-10) yields

$$I = \frac{1}{2(k-q)} \{ \sin[k\theta_2 - q\theta_2 + (k-q)\pi + k\beta + q\theta_2 - k\theta_1] \\ - \sin[k\theta_1 - q\theta_1 - (k-q)\pi - k\beta + q\beta + k\beta + q\theta_2 - k\theta_1] \} \\ + \frac{1}{2(k+q)} \{ \sin[k\theta_2 + q\theta_2 + (k+q)\pi + k\beta - k\theta_1 - q\theta_2] \\ - \sin[k\theta_1 + q\theta_1 - (k+q)\pi - k\beta - q\beta + k\beta - k\theta_1 - q\theta_2] \} \\ = \frac{1}{2(k-q)} \{ \sin[(k-q)\pi + k\beta + k(\theta_2 - \theta_1)] - \sin[-(k-q)\pi + q\beta + q(\theta_2 - \theta_1)] \} \\ + \frac{1}{2(k+q)} \{ \sin[(k+q)\pi + k\beta + k(\theta_2 - \theta_1)] - \sin[-(k+q)\pi - q\beta - q(\theta_2 - \theta_1)] \}$$

which simplifies to

$$I = \frac{1}{2(k-q)} \{ \sin[(k-q)\pi + k\beta + k(\theta_2 - \theta_1)] + \sin[(k-q)\pi - q\beta - q(\theta_2 - \theta_1)] \} + \frac{1}{2(k+q)} \{ \sin[(k+q)\pi + k\beta + k(\theta_2 - \theta_1)] + \sin[(k+q)\pi + q\beta + q(\theta_2 - \theta_1)] \}.$$
(A-11)

Making use of the identity $sin(x+y) = sin x \cos y + \cos x \sin y$, and recognizing that $\cos (K\pi) = (-1)^K$, (A-11) can be written as

$$I = \frac{(-1)^{k-q}}{k-q} \sin\left[\left(\frac{k-q}{2}\right)_{\beta} + \left(\frac{k-q}{2}\right)(\theta_2 - \theta_1)\right] \cos\left[\left(\frac{k+q}{2}\right)_{\beta} + \left(\frac{k+q}{2}\right)(\theta_2 - \theta_1)\right] + \frac{(-1)^{k+q}}{k+q} \sin\left[\left(\frac{k+q}{2}\right)_{\beta} + \left(\frac{k+q}{2}\right)(\theta_2 - \theta_1)\right] \cos\left[\left(\frac{k-q}{2}\right)_{\beta} + \left(\frac{k-q}{2}\right)(\theta_2 - \theta_1)\right].$$
(A-12)

Noting that $(-1)^{k-q} = (-1)^{k-q+2q} = (-1)^{k+q}$ and that $2 \sin x \cos y = \sin\left(\frac{x+y}{2}\right) + \sin\left(\frac{x-y}{2}\right)$, (A-12) can be written in the form $I = \frac{(-1)^{k+q}}{k^2 - q^2} \{k \sin[k\beta + k(\theta_2 - \theta_1)] - q \sin[q\beta + q(\theta_2 - \theta_1)]\}, \quad k \neq q.$ (A-13)

We now substitute (A-7), (A-9), and (A-13) into (A-4) to obtain, replacing $(\theta_2 - \theta_1)$ by $-(\theta_1 - \theta_2)$,

$$F_{\phi}(\beta|\theta_{1},\theta_{2}) = \left(\frac{1}{2\pi}\right)^{2} \left[2\pi + \beta - (\theta_{1} - \theta_{2})\right]$$

$$+ \left(\frac{1}{2\pi}\right)^{2} \sum_{k=1}^{\infty} b_{k}^{2} \left\{ \left[\frac{2\pi + \beta - (\theta_{1} - \theta_{2})}{2}\right] \cos[k\beta - k(\theta_{1} - \theta_{2})] \right\}$$

$$+ \frac{1}{2k} \sin[k\beta - k(\theta_{1} - \theta_{2})] \right\} + \left(\frac{1}{2\pi}\right)^{2} \sum_{k=0}^{\infty} \sum_{q=0}^{\infty} b_{k} b_{q} \frac{(-1)^{k+q}}{k^{2} - q^{2}}$$

$$k \neq q$$

$$\cdot \left\{ k \sin[k\beta - k(\theta_{1} - \theta_{2})] - q \sin[q\beta - q(\theta_{1} - \theta_{2})] \right\},$$

$$\theta_{1} - \theta_{2} - 2\pi \leq \beta \leq \theta_{1} - \theta_{2}. \quad (A-14)$$

In (A-14) the first term in square brackets accounts for the k=q=0 term of (A-4), the single summation accounts for the main diagonal k=q, and the double sum encompasses the remaining terms of (A-4).

We observe from (A-13) that for $q \neq k$, $I(k=k_0, q=q_0) = I(k=q_0, q=k_0)$. Thus the double sum in (A-14) can be reduced to one infinite sum and one finite sum:

$$2 \sum_{k=1}^{\infty} \sum_{q=0}^{k-1} b_k b_q \frac{(-1)^{k+q}}{k^2 - q^2} \{k \sin[k_\beta - k(\theta_1 - \theta_2)] - q \sin[q_\beta - q(\theta_1 - \theta_2)]\}.$$

Thus (A-14) becomes

$$F_{\phi}(\beta|\theta_{1},\theta_{2}) = \left(\frac{1}{2\pi}\right)^{2} \left[2\pi + \beta - (\theta_{1} - \theta_{2})\right] \\ + \left(\frac{1}{2\pi}\right)^{2} \sum_{k=1}^{\infty} b_{k}^{2} \left\{ \left[\frac{2\pi + \beta - (\theta_{1} - \theta_{2})}{2}\right] \cos[k\beta - k(\theta_{1} - \theta_{2})] \right. \\ + \frac{1}{2k} \sin[k\beta - k(\theta_{1} - \theta_{2})] \right\} \\ + 2\left(\frac{1}{2\pi}\right)^{2} \sum_{k=1}^{\infty} \sum_{q=0}^{k-1} b_{k}b_{q} \frac{(-1)^{k+q}}{k^{2} - q^{2}} \left\{ k \sin[k\beta - k(\theta_{1} - \theta_{2})] \right\} \\ - q \sin[q\beta - q(\theta_{1} - \theta_{2})] \right\}, \\ \theta_{1} - \theta_{2} - 2\pi \le \beta \le \theta_{1} - \theta_{2}.$$
 (A-15)

いいというというのないないというという

$$J = \int_{\theta_2^{-\pi}}^{\theta_1^{+\pi-\beta}} \cos(k\alpha + k\beta - k\theta_1) \cos(q\alpha - q\theta_2) d\alpha \qquad (A-16)$$

which differs from (A-6) only in the limits of integration. Again there are three cases to consider.

If k=q=0, then (A-16) becomes

$$J = \int_{\theta_2^{-\pi}}^{\theta_1^{+\pi-\beta}} d\alpha, \ k=q=0$$
 (A-17)

which yields

$$J = 2\pi - \beta - (\theta_2 - \theta_1), k = q = 0.$$
 (A-18)

If $k=q\neq 0$, then (A-16) becomes

$$J = \int_{\theta_2^{-\pi}}^{\theta_1^{+\pi-\beta}} \cos(k\alpha + k\beta - k\theta_1) \cos(k\alpha - k\theta_2) d\alpha. \qquad (A-19)$$

and the second s

Using the identity $\cos x \cos y = \frac{1}{2} [\cos(x+y) + \cos(x-y)]$ we can write (A-19) as

$$J = \frac{1}{2} \int_{\theta_2^{-\pi}}^{\theta_1^{+\pi-\beta}} \cos[k_\beta + k(\theta_1^{-\theta_2})] d\alpha + \frac{1}{2} \int_{\theta_2^{-\pi}}^{\theta_1^{+\pi-\beta}} \cos[2k_\alpha + k_\beta - k_{\theta_2}^{-k_{\theta_1}}] d\alpha.$$
(A-20)

Integrating (A-20),

$$J = \frac{1}{2} [2\pi - \beta - (\theta_2 - \theta_1)] \cos[k\beta + k(\theta_2 - \theta_1)] + \frac{1}{4k} \{\sin[2k\theta_1 + 2k\pi - 2k\beta + k\beta - k\theta_2 - k\theta_1] \} - \sin[2k\theta_2 - 2k\pi + k\beta - k\theta_2 - k\theta_1] \} = \frac{2\pi - \beta - (\theta_2 - \theta_1)}{2} \cos[k\beta + k(\theta_2 - \theta_1)] + \frac{1}{4k} \{\sin[-k\beta - k(\theta_2 - \theta_1)] - \sin[k\beta + k(\theta_2 - \theta_1)] \}$$
(A-21)

which simplifies to

$$J = \frac{1}{2} \left[2\pi - \beta + (\theta_1 - \theta_2) \right] \cos[k\beta - k(\theta_1 - \theta_2)] - \frac{1}{2k} \sin[k\beta - k(\theta_1 - \theta_2)], \ k = q \neq 0.$$
(A-22)

If $k \neq q$, then (A-16) becomes

$$J = \frac{1}{2} \int_{\theta_2^{-\pi}}^{\theta_1^{+\pi-\beta}} \cos[(k-q)\alpha + k\beta + q\theta_2 - k\theta_1] d\alpha + \frac{1}{2} \int_{\theta_2^{-\pi}}^{\theta_1^{+\pi-\beta}} \cos[(k+q)\alpha + k\beta - k\theta_1 - q\theta_2] d\alpha$$
(A-23)

「「「「「「「」」」

which integrates to

$$J = \frac{1}{2(k-q)} \{ \sin[k\theta_1 - q\theta_1 + (k-q)\pi - k\beta + q\beta + k\beta + q\theta_2 - k\theta_1] \\ - \sin[k\theta_2 - q\theta_2 - (k-q)\pi + k\beta + q\theta_2 - k\theta_1] \} \\ + \frac{1}{2(k+q)} \{ \sin[k\theta_1 + q\theta_1 + (k+q)\pi - k\beta - q\beta + k\beta - k\theta_1 - q\theta_2] \\ - \sin[k\theta_2 + q\theta_2 - (k+q)\pi + k\beta - k\theta_1 - q\theta_2] \} \\ = \frac{1}{2(k-q)} \{ \sin[(k-q)\pi + q\beta + q(\theta_2 - \theta_1)] - \sin[-(k-q)\pi + k\beta + k(\theta_2 - \theta_1)] \} \\ + \frac{1}{2(k+q)} \{ \sin[(k+q)\pi - q\beta - q(\theta_2 - \theta_1)] - \sin[-(k+q)\pi + k\beta + k(\theta_2 - \theta_1)] \} \\ = \frac{1}{2(k-q)} \{ \sin[(k-q)\pi + q\beta + q(\theta_2 - \theta_1)] + \sin[(k-q)\pi - k\beta - k(\theta_2 - \theta_1)] \} \\ + \frac{1}{2(k+q)} \{ \sin[(k+q)\pi - q\beta - q(\theta_2 - \theta_1)] + \sin[(k-q)\pi - k\beta - k(\theta_2 - \theta_1)] \} \\ + \frac{1}{2(k+q)} \{ \sin[(k+q)\pi - q\beta - q(\theta_2 - \theta_1)] + \sin[(k+q)\pi - k\beta - k(\theta_2 - \theta_1)] \} \\ + \frac{1}{2(k+q)} \{ \sin[(k+q)\pi - q\beta - q(\theta_2 - \theta_1)] + \sin[(k+q)\pi - k\beta - k(\theta_2 - \theta_1)] \} \\ + \frac{1}{2(k+q)} \{ \cos[(k-q)\pi] \sin[q\beta + q(\theta_2 - \theta_1)] - \cos[(k-q)\pi] \sin[k\beta + k(\theta_2 - \theta_1)] \} \\ + \frac{1}{2(k+q)} \{ -\cos[(k+q)\pi] \sin[q\beta + q(\theta_2 - \theta_1)] - \cos[(k+q)\pi] \sin[k\beta + k(\theta_2 - \theta_1)] \}$$
 (A-24)

which simplifies, recognizing $\cos .n\pi = (-1)^n$, to

$$J = -\frac{(-1)^{k+q}}{k^2 - q^2} \{k \sin [k\beta - k(\theta_1 - \theta_2)] - q \sin [q\beta - q(\theta_1 - \theta_2)]\}, k \neq q. \quad (A-25)$$
Putting (A-18), (A-22), and (A-25) into (A-5) yields
$$f_{\phi}(\beta | \theta_1, \theta_2) = \left(\frac{1}{2\pi}\right)^2 \{2\pi - [\beta - (\theta_1 - \theta_2)]\} \\ + \left(\frac{1}{2\pi}\right)^2 \sum_{k=1}^{\infty} b_k^2 \left\{ \left[\frac{2\pi - [\beta - (\theta_1 - \theta_2)]}{2}\right] \cos [k\beta - k(\theta_1 - \theta_2)] \right] \\ - \left(\frac{1}{2k}\right) \sin [k\beta - k(\theta_1 - \theta_2)] \right\} - \left(\frac{1}{2\pi}\right)^2 2 \sum_{k=1}^{\infty} \sum_{q=0}^{k-1} b_k b_q \\ \cdot \frac{(-1)^{k+q}}{k^2 - q^2} \{k \sin [k\beta - k(\theta_1 - \theta_2)] - q \sin [q\beta - q(\theta_1 - \theta_2)]\}, \\ \theta_1 - \theta_2 \leq \beta \leq \theta_1 - \theta_2 + 2\pi \quad (A-26)$$

where we have again used the symmetry property of the double summation to introduce a finite upper limit on the inner summation.

In (A-15), we can rewrite the limits of applicability as

$$-2\pi \leq \beta - (\theta_1 - \theta_2) \leq 0$$

and in (A-26) we can rewrite the limits of applicability as

$$0 \le \beta - (\theta_1 - \theta_2) \le 2\pi$$
.

Thus (A-15) and (A-26) apply to adjacent regions, depending upon whether $B_{-}(\theta_{1}-\theta_{2})<0$ or $B_{-}(\theta_{1}-\theta_{2})>0$, respectively. Letting $\psi = B_{-}(\theta_{1}-\theta_{2})$ in (A-15) and (A-26), we can see that (A-15) is merely (A-26) with ψ replaced by $-\psi$. Since (A-15) applies for $\psi<0$, $-\psi=|\psi|$ over the range of applicability. For $\psi>0$, $|\psi|=\psi$ and thus (A-15) and (A-26) can be combined to give

f

$$\left(\beta | \theta_{1}, \theta_{2} \right) = \begin{cases} 0, & -\infty < \beta \le \theta_{1} - \theta_{2} - 2\pi \\ \left(\frac{1}{2\pi} \right)^{2} \left\{ \left[2\pi - \left| \beta - \left(\theta_{1} - \theta_{2} \right) \right| \right] \\ + \sum_{k=1}^{\infty} b_{k}^{2} \left\{ \left[\frac{2\pi - \left| \beta - \left(\theta_{1} - \theta_{2} \right) \right| \right] \\ - \sum_{k=1}^{\infty} b_{k}^{2} \left\{ \left[\frac{2\pi - \left| \beta - \left(\theta_{1} - \theta_{2} \right) \right| \right] \\ - \frac{1}{2k} \sin \left[k \left| \beta - \left(\theta_{1} - \theta_{2} \right) \right| \right] \right\} \\ - 2 \sum_{k=1}^{\infty} \sum_{q=0}^{k-1} b_{k} b_{q} \frac{(-1)^{k+q}}{k^{2} - q^{2}} \left\{ k \sin \left[k \left| \beta - \left(\theta_{1} - \theta_{2} \right) \right| \right] \\ - q \sin \left[q \left| \beta - \left(\theta_{1} - \theta_{2} \right) \right| \right] \right\}, \\ \theta_{1} - \theta_{2} - 2\pi \le \beta \le \theta_{1} - \theta_{2} + 2\pi \\ 0, \qquad \theta_{1} - \theta_{2} + 2\pi \le \beta < \infty. \end{cases}$$

(A-27)
APPENDIX B

EVALUATION OF EQUATION (19)

We will evaluate (19) for two cases: $|\theta_1 - \theta_2| = 0$ ("space") and $|\theta_1 - \theta_2| = \pi$ ("mark"). First we treat the case of "space" being transmitted.

B.1 "SPACE" $(|\theta_1 - \theta_2| = 0)$

We use the binomial theorem twice to write (19) of the main text

$$V_{m,n} = \int_{-2\pi}^{2\pi} \exp\left[Y\cos\beta\right] f_{\phi}(\beta|0) \left[\sum_{\ell=0}^{m} {m \choose \ell} Z^{\ell}\cos^{\ell}\beta\right] \left[\sum_{r=0}^{n} {n \choose r} (-Z)^{r}\cos^{r}\beta\right]_{(B-1)}^{d\beta}$$

where we have taken into account the finite range over which $f_{\phi}(\beta|0)$ does not vanish. Interchanging the order of summation and integration, which is clearly permissable due to the finite limits,

$$v_{m,n} = \sum_{\ell=0}^{m} \sum_{r=0}^{n} {\binom{n}{\ell} \binom{n}{r} (-1)^{r} z^{\ell+r} \int_{-2\pi}^{2\pi} \exp[Y \cos\beta] \cos^{\ell+r}\beta f_{\phi}(\beta|0) d\beta} (\beta|0) d\beta}$$
(B-2)

Denoting the integral in (B-2) as $W_{S}(\ell+r)$, using (16) of the main text for $f_{\phi}(\beta|0)$, and splitting the range of integration into two subintervals for positive and negative β to enable us to eliminate the absolute value signs from the integrands, we have

$$W_{S}(M) = \int_{-2\pi}^{0} \cos^{M} \beta e^{Y \cos \beta} \left(\frac{1}{2\pi}\right)^{2} \left\{ (2\pi + \beta) \cdot + \sum_{k=1}^{\infty} b_{k}^{2} \left[\left(\frac{2\pi + \beta}{2}\right) \cos(k\beta) + \frac{1}{2k} \sin(k\beta) \right] \right\}$$

B-1

$$+ 2 \sum_{k=1}^{\infty} \sum_{q=0}^{k-1} b_{k} b_{q} \frac{(-1)^{k+q}}{k^{2} - q^{2}} \left[k \sin(k\beta) - q \sin(q\beta) \right] \right\} d\beta$$

$$+ \int_{0}^{2\pi} \cos^{M} \beta e^{Y \cos\beta} \left(\frac{1}{2\pi} \right)^{2} \left\{ (2\pi - \beta) + \sum_{k=1}^{\infty} b_{k}^{2} \left[\left(\frac{2\pi - \beta}{2} \right) \cos(k\beta) - \frac{1}{2k} \sin(k\beta) \right] \right\}$$

$$- 2 \sum_{k=1}^{\infty} \sum_{q=0}^{k-1} b_{k} b_{q} \frac{(-1)^{k+q}}{k^{2} - q^{2}} \left[k \sin(k\beta) - q \sin(q\beta) \right] \right\} d\beta \qquad (B-3)$$

where we have defined M=l+r for notational simplicity. If we make the change of variable $\gamma=-\beta$ in the first integral of (B-3) we find that it equals the second integral. Interchanging the order of summation and integration, we have:

$$\begin{split} H_{S}(M) &= 2 \left(\frac{1}{2\pi}\right)^{2} \left\{ \int_{0}^{2\pi} 2 \pi \cos^{M} \beta e^{Y \cos \beta} d\beta - \int_{0}^{2\pi} \beta \cos^{N} \beta e^{Y \cos \beta} d\beta \right. \\ &+ \sum_{k=1}^{\infty} b_{k}^{2} \left[\pi \int_{0}^{2\pi} \cos k \beta \cos^{M} \beta e^{Y \cos \beta} d\beta - \frac{1}{2} \int_{0}^{2\pi} \beta \cos k \beta \cos^{M} \beta e^{Y \cos \beta} d\beta \right. \\ &- \frac{1}{2k} \int_{0}^{2\pi} \sin k \beta \cos^{M} \beta e^{Y \cos \beta} d\beta \right] \\ &- 2 \sum_{k=1}^{\infty} \sum_{q=0}^{k-1} b_{k} b_{q} \left. \frac{(-1)^{k+q}}{k^{2} - q^{2}} \left[k \int_{0}^{2\pi} \sin k \beta \cos^{M} \beta e^{Y \cos \beta} d\beta \right. \\ &- q \int_{0}^{2\pi} \sin q \beta \cos^{M} \beta e^{Y \cos \beta} d\beta \right] \bigg\}. \end{split}$$

$$(B-4)$$

B-2

In (B-4) we make the change of variable $\alpha = \beta - \pi$ and make use of the identities

$$cos(Q\alpha + Q\pi) = (-1)^{Q} cosQ\alpha sin(Q\alpha + Q\pi) = (-1)^{Q} sinQ\alpha$$
 Q integer (B-5)

to write

$$H_{S}(M) = 2\left(\frac{1}{2\pi}\right)^{2} \left\{ 2\pi(-1)^{M} \int_{-\pi}^{\pi} \cos^{M} \alpha e^{-Y\cos\alpha} d\alpha - \int_{-\pi}^{\pi} \alpha(-1)^{M} \cos^{M} \alpha e^{-Y\cos\alpha} d\alpha - \pi \int_{-\pi}^{\pi} (-1)^{M} \cos^{M} \alpha e^{-Y\cos\alpha} d\alpha - \pi \int_{-\pi}^{\pi} (-1)^{M} \cos^{M} \alpha e^{-Y\cos\alpha} d\alpha \right\}$$

$$+\sum_{k=1}^{\infty}b_{k}^{2}\left[\pi\int_{\pi}^{\pi}(-1)^{k}\cos k\alpha(-1)^{M}\cos^{M}\alpha e^{-Y\cos\alpha}d\alpha\right]$$

$$-\frac{1}{2}\int_{-\pi}^{\pi}\alpha(-1)^{k}\cos k_{\alpha}(-1)^{M}\cos ^{M}_{\alpha}e^{-Y\cos\alpha}d_{\alpha}$$

$$-\frac{1}{2}\int_{-\pi}^{\pi}\pi(-1)^{k}\cos k\alpha(-1)^{M}\cos^{M}\alpha e^{-Y\cos\alpha}d\alpha$$

$$-\frac{1}{2k}\int_{-\pi}^{\pi}(-1)^{k}\sin k\alpha(-1)^{M}\cos^{M}\alpha e^{-Y\cos\alpha}d\alpha$$

$$-2\sum_{k=1}^{\infty}\sum_{q=0}^{k-1}b_{k}b_{q}\frac{(-1)^{k+q}}{k^{2}-q^{2}}\left[k\int_{-\pi}^{\pi}(-1)^{k}\sin k\alpha(-1)^{M}\cos^{M}\alpha e^{-Y\cos\alpha}d\alpha\right]$$

$$-q\int_{-\pi}^{\pi}(-1)^{q}\sin q\alpha(-1)^{M}\cos^{M}\alpha e^{-Y\cos\alpha}d\alpha\right]\left\{.$$
(B-6)

In (B-6) the second, fifth, seventh, eighth, and ninth integrals vanish because the integrands are odd functions and the limits are symmetric about zero. Also, we may write the integrals of even functions as twice the integrals over $[0,\pi]$ to give

$$W_{S}(M) = 4 \left(\frac{1}{2\pi}\right)^{2} (-1)^{M} \left\{ \pi \int_{0}^{\pi} e^{-Y \cos \alpha} \cos^{M} \alpha d\alpha + \sum_{k=1}^{\infty} b_{k}^{2} (-1)^{k} \right\}$$
$$\cdot \frac{\pi}{2} \int_{0}^{\pi} e^{-Y \cos \alpha} \cos^{M} \alpha \cos k \alpha d\alpha \left\}.$$
(B-7)

Combining formulas for the even and odd powers of the cosine [9,1.320.5 and 1.320.7] we can expand the power of the cosine in terms of cosines of multiple arguments:

$$\cos^{M}\zeta = \frac{1}{2^{M}} \sum_{\mu=0}^{\frac{M-\upsilon(M)}{2}} \varepsilon_{\mu+\upsilon(M)} \left([M-\upsilon(M)-2\mu]/2 \right) \cos\{[2\mu+\upsilon(M)]\zeta\} \quad (B-8)$$

where

$$\mu_{\mu} = \begin{cases} 1, \ \mu=0 \\ 2, \ \mu>0 \end{cases}$$

and

$$p(M) = \begin{cases} 0, M even \\ 1, M odd \end{cases}$$

Using the identity

$$\cos z \cos \zeta = \frac{1}{2} \left[\cos(z+\zeta) + \cos(z-\zeta) \right]$$
(B-9)

in connection with (B-8) allows us to write (B-7) as

$$W_{S}(M) = 4 \left(\frac{1}{2\pi}\right)^{2} (-1)^{M} \left\{ \pi \int_{0}^{\pi} e^{-Y\cos\alpha} \frac{1}{2^{M}} \sum_{\mu=0}^{2} \epsilon_{\mu} \left(\frac{M}{[M-\upsilon(M)-2\mu]/2} \right) \cos\{[2\mu+\upsilon(M)]_{\alpha}\} d\alpha \right\}$$

+
$$\sum_{k=1}^{\infty} b_k^2 (-1)^k \frac{\pi}{2} \int_0^{\pi} e^{-Y \cos \alpha} \frac{1}{2^M} \sum_{\mu=0}^{\frac{M-\nu(M)}{2}} \epsilon_{\mu+\nu(M)} \left([M-\nu(M)-2\mu]/2 \right)$$

B-4

$$\cdot \left[\frac{1}{2}\cos\left\{\left[2\mu+\upsilon(M)+k\right]\alpha\right\} + \frac{1}{2}\cos\left\{\left[2\mu+\upsilon(M)-k\right]\alpha\right\}\right]d\alpha\right\}.$$
 (B-10)

Interchanging the order of summation and integration in (B-10), we obtain

$$\begin{split} \mathsf{w}_{S}(\mathsf{M}) &= 4 \left(\frac{1}{2\pi}\right)^{2} (-1)^{\mathsf{M}} \begin{cases} \frac{\mathsf{M} - \upsilon(\mathsf{M})}{2} & \sum_{\mu=0}^{2} \varepsilon_{\mu} + \upsilon(\mathsf{M}) \left([\mathsf{M} - \upsilon(\mathsf{M}) - 2\mu]/2 \right) \\ & \cdot \int_{0}^{\pi} e^{-\mathsf{Y} \cos \alpha} \cos\{ [2\mu + \upsilon(\mathsf{M})]\alpha \} d\alpha \\ & + \sum_{k=1}^{\infty} b_{k}^{2} (-1)^{k} \frac{\pi}{2} - \frac{1}{2^{\mathsf{M}}} & \sum_{\mu=0}^{2} \varepsilon_{\mu} + \upsilon(\mathsf{M}) \left([\mathsf{M} - \upsilon(\mathsf{M}) - 2\mu]/2 \right) \\ & \cdot \left[\frac{1}{2} \int_{0}^{\pi} e^{-\mathsf{Y} \cos \alpha} \cos\{ [2\mu + \upsilon(\mathsf{M}) + k]\alpha \} d\alpha \right] \\ & + \frac{1}{2} \int_{0}^{\pi} e^{-\mathsf{Y} \cos \alpha} \cos\{ [2\mu + \upsilon(\mathsf{M}) - k]\alpha \} d\alpha \end{split}$$
 (B-11)

All of the integrals remaining in (B-11) are of the form [10, 9.16.9]

$$\int_{0}^{\pi} e^{-Y\cos\alpha} \cos N_{\alpha} d_{\alpha} = \pi I_{N}(-Y). \qquad (B-12)$$

Also noting that $I_N(-Y) = (-1)^N I_N(Y)$ for N integer, (B-11) becomes

$$W_{S}(M) = 4 \left(\frac{1}{2\pi}\right)^{2} (-1)^{M} \left\{ \frac{\pi^{2}}{2^{M}} (-1)^{\upsilon(M)} \frac{\sum_{\mu=0}^{M-\upsilon(M)}}{\sum_{\mu=0}^{2}} \epsilon_{\mu+\upsilon(M)} \left(\frac{M}{[M-\upsilon(M)-2\mu]/2} \right)^{1} 2\mu+\upsilon(M)^{(Y)} + \sum_{k=1}^{\infty} b_{k}^{2} (-1)^{k} \frac{\pi}{2} \frac{\pi}{2^{M+1}} \sum_{\mu=0}^{2} \epsilon_{\mu+\upsilon(M)} \left(\frac{M}{[M-\upsilon(M)-2\mu]/2} \right) \\ \cdot \left[(-1)^{2\mu+\upsilon(M)+k} I_{2\mu+\upsilon(M)+k}^{2} (Y) + (-1)^{2\mu+\upsilon(M)-k} I_{2\mu+\upsilon(M)-k}^{2} (Y) \right] \right\}$$
(B-13)

B-5

Since $(-1)^{k} = (-1)^{-k}$ and $(-1)^{2\mu} = 1$, (B-13) becomes

$$W_{S}(M) = 4 \left(\frac{1}{2\pi}\right)^{2} (-1)^{M} \left\{ \frac{\pi^{2}(-1)^{\cup}(M)}{2^{M}} \sum_{\mu=0}^{\frac{M-\cup(M)}{2}} \epsilon_{\mu+\upsilon(M)} \left(\frac{M}{[M-\upsilon(M)-2\mu]/2} \right)^{I} 2_{\mu+\upsilon(M)}(Y) \right\}$$

+
$$\sum_{k=1}^{\infty} b_k^2 \frac{\pi^2(-1)^{\upsilon(M)}}{2^{M+2}} \sum_{\mu=0}^{\frac{M-\upsilon(M)}{2}} \epsilon_{\mu+\upsilon(M)} \left([M-\upsilon(M)-2\mu]/2 \right)$$

$$\cdot \left[I_{2\mu+\upsilon(M)+k}(Y) + I_{2\mu+\upsilon(M)-k}(Y) \right] \right\}.$$
 (B-14)

State of the state

Noting that $b_0 = 1$, the single summation in (B-14) can be brought inside the double summation by introducing the factor $1/\epsilon_k$ since for k=0 the two modified Bessel functions are identical. Thus,

$$W_{S}(M) = \frac{(-1)^{M+\upsilon(M)}}{2^{M+1}} \sum_{k=0}^{\infty} \sum_{\mu=0}^{\frac{M-\upsilon(M)}{2}} \frac{1}{\varepsilon_{k}} \varepsilon_{\mu+\upsilon(M)} b_{k}^{2} \left(\frac{M}{[M-\upsilon(M)-2\mu]/2} \right)$$

•
$$\left[I_{2\mu+\upsilon(M)-k}(Y) + I_{2\mu+\upsilon(M)+k}(Y)\right]$$
. (B-15)

Putting (B-15) into (B-2) we arrive at the form

$$V_{m,n} = \sum_{\ell=0}^{m} \sum_{r=0}^{n} \sum_{k=0}^{\infty} \sum_{\mu=0}^{\infty} \binom{\ell+r-\upsilon(\ell+r)}{2} \binom{m}{\ell} \binom{n}{r} Z^{\ell+r} (-1)^{\ell+\upsilon(\ell+r)} \\ \cdot \frac{b_{k}^{2} \varepsilon_{\mu+\upsilon(\ell+r)}}{2^{\ell+r+1} \varepsilon_{k}} \binom{\ell+r}{[\ell+r-\upsilon(\ell+r)-2\mu]/2} \\ \cdot \left[I_{2\mu+\upsilon(\ell+r)-k}^{(Y)} + I_{2\mu+\upsilon(\ell+r)+k}^{(Y)} \right] .$$
(B-16)

Noting that

$$\binom{a}{b} = 0$$
 if b<0 or b>a, (B-17)

we can extend the limits of the summations over ℓ , r, and μ in (B-16) to infinity. Then we can interchange the order of summations and use Bailey's theorem [11,pp. 58-59] to replace the doubly infinite sums over ℓ and r with one infinite sum and one finite sum. Thus, with $s = \ell + r$ and $t = \ell$, (B-16) becomes

$$v_{m,n} = \frac{1}{2} \sum_{k=0}^{\infty} \sum_{\mu=0}^{\infty} \sum_{s=0}^{\infty} \left(\sum_{s=0}^{s} (s_{-\nu(s)-2\mu]/2} \right) \left(\frac{7}{2} \right)^{s} (-1)^{\nu(s)} b_{k}^{2} \frac{\varepsilon_{\mu+\nu(s)}}{\varepsilon_{k}} + \frac{1}{\varepsilon_{k}} + \frac{$$

It can be shown [12,p. 17] that the finite sum over t in (B-18) is a Gauss hypergeometric function with a negative numerator parameter,

$$\sum_{t=0}^{s} {\binom{n}{t}} {\binom{n}{s-t}} {(-1)}^{t} = {\binom{n}{s}} {}_{2}F_{1}(-m,-s;n-s+1;-1).$$
(B-19)

Putting (B-19) into (B-18) and again using (B-17) to introduce finite limits in the transformed summations, we have finally that

$$V_{m,n}(space) = \frac{1}{2} \sum_{k=0}^{\infty} \sum_{s=0}^{n} \sum_{\mu=0}^{\frac{s-\upsilon(s)}{2}} \left(\frac{s}{[s-\upsilon(s)-2\mu]/2} \right) \left(\frac{z}{2} \right)^{s} (-1) \upsilon(s) \frac{b_{k}^{2} \varepsilon_{\mu+\upsilon(s)}}{\varepsilon_{k}}$$

$$\left[I_{2\mu+\upsilon(s)-k}(Y) + I_{2\mu+\upsilon(s)+k}(Y)\right]\binom{n}{s}_{2}F_{1}(-m,-s;n-s+1;-1) \quad (3-20)$$

which is (21a) of the main text.

B.2 "MARK" $(|\theta_1 - \theta_2| = \pi)$

Again we use the binomial theorem twice and interchange the order of integration and summation to obtain, for "mark",

$$V_{m,n} = \sum_{\ell=0}^{m} \sum_{r=0}^{n} {\binom{m}{\ell} \binom{n}{r} (-1)^{r} z^{\ell+r} \int_{\theta_{1}^{-\theta} z^{-2\pi}}^{\theta_{1}^{-\theta} z^{+2\pi}} \exp\left[Y_{\cos\beta}\right] \cos^{\ell+r} \beta f_{\phi}(\beta||\theta_{1}^{-\theta} z|=\pi) d\beta.}$$
(B-21)

Equation (B-21) is identical to (B-2) except that $|\theta_1 - \theta_2| = \pi$. Denote the integral in (B-21) as $W_M(\ell+r)$. Since $|\theta_1 - \theta_2| = \pi$ we have two cases, namely $\theta_1 - \theta_2 = -\pi$ and $\theta_1 - \theta_2 = \pi$, which occur with equal probability. Therefore,

$$W_{M}(\ell+r) = \frac{1}{2} \int_{-3\pi}^{\pi} \exp\left[Y\cos\beta\right] \cos^{\ell+r}\beta f_{\phi}(\beta|\theta_{1}-\theta_{2}=-\pi)d\beta$$

$$+\frac{1}{2}\int_{-\pi}^{3\pi}\exp\left[Y\cos\beta\right]\cos^{\ell}r_{\beta}f_{\phi}(\beta|\theta_{1}-\theta_{2}=\pi)d\beta. \qquad (B-22)$$

A DECEMBER OF A DECEMBER OF

Using (16) of the main text for $f_{\phi}(\beta|\theta_1 - \theta_2)$, letting M = ℓ +r, we can write for the first integral in (B-22)

$$\cdot \left\{ (\pi - \beta) + \sum_{k=1}^{\infty} b_k^2 \left\{ \left(\frac{\pi - \beta}{2} \right) \cos \left[k(\beta + \pi) \right] - \frac{1}{2k} \sin \left[k(\beta + \pi) \right] \right\} - 2 \sum_{k=1}^{\infty} \sum_{q=0}^{k-1} b_k^{-1} b_k^{-1} \left\{ k \sin \left[k(\beta + \pi) \right] - q \sin \left[q(\beta + \pi) \right] \right\} \right\} d\beta$$
(B-23)

and for the second integral in (B-22)

$$W_{M}^{+}(M) = \left(\frac{1}{2\pi}\right)^{2} \int_{-\pi}^{\pi} e^{Y\cos\beta}\cos^{M}\beta \left\{ (\pi+\beta) + \sum_{k=1}^{\infty} b_{k}^{2} \left\{ (\frac{\pi+\beta}{2})\cos\left[k(\beta-\pi)\right] + \frac{1}{2k}\sin\left[k(\beta-\pi)\right] \right\} \right\} d\beta$$

$$+ 2 \sum_{k=1}^{\infty} \sum_{q=0}^{k-1} b_{k}b_{q} \frac{(-1)^{k+q}}{k^{2} - q^{2}} \left\{ k \sin\left[k(\beta-\pi)\right] - q \sin\left[q(\beta-\pi)\right] \right\} d\beta$$

$$+ \left(\frac{1}{2\pi}\right)^{2} \int_{\pi}^{3\pi} e^{Y\cos\beta}\cos^{M}\beta \left\{ (3\pi-\beta) + \sum_{k=1}^{\infty} b_{k}^{2} \left\{ (\frac{3\pi-\beta}{2}) \cos\left[k(\beta-\pi)\right] \right\} - \frac{1}{2k} \sin\left[k(\beta-\pi)\right] \right\} - 2 \sum_{k=1}^{\infty} \sum_{q=0}^{k-1} b_{k}b_{q} \frac{(-1)^{k+q}}{k^{2} - q^{2}}$$

$$- \left\{ k \sin\left[k(\beta-\pi)\right] - q \sin\left[q(\beta-\pi)\right] \right\} \right\} d\beta. \qquad (B-24)$$

the terminet

If the change of variable $\gamma = -\beta$ is made in (B-23) we find that $W_{M}^{-}(M) = W_{M}^{+}(M)$. Thus the equally weighted sum of the two integrals in (B-22) equals the unweighted value of either integral.

Using the form in (B-24) for $W_M(M)$, we make the change of variable $\gamma=\beta-\pi$. Since $\cos(\gamma+\pi) = -\cos\gamma$, we have

$$W_{M}(M) = \left(\frac{1}{2\pi}\right)^{2} \int_{-2\pi}^{0} e^{-Y\cos\gamma}(-1)^{M}\cos^{M}\gamma \left\{ (2\pi+\gamma) + \sum_{k=1}^{\infty} b_{k}^{2} \left[\left(\frac{2\pi+\gamma}{2}\right) \cos(k\gamma) + \frac{1}{2k} \sin(k\gamma) \right] \right. \\ \left. + 2 \sum_{k=1}^{\infty} \sum_{q=0}^{k-1} b_{k}^{b} b_{q} \frac{(-1)^{k+q}}{k^{2} - q^{2}} \left[k \sin(k\gamma) - q \sin(q\gamma) \right] \right\} d\gamma \\ \left. + \left(\frac{1}{2\pi}\right)^{2} \int_{0}^{2\pi} e^{-Y\cos\gamma}(-1)^{M} \cos^{M}\gamma \left\{ (2\pi-\gamma) + \sum_{k=1}^{\infty} b_{k}^{2} \left[\left(\frac{2\pi-\gamma}{2}\right) \cos(k\gamma) - \frac{1}{2k} \sin(k\gamma) \right] \right. \\ \left. - 2 \sum_{k=1}^{\infty} \sum_{q=0}^{k-1} b_{k}^{b} b_{q} \frac{(-1)^{k+q}}{k^{2} - q^{2}} \left[k \sin(k\gamma) - q \sin(q\gamma) \right] \right\} d\gamma. \quad (B-25)$$

Comparing (B-25) with (B-3) we see that the only differences are a multiplicative factor of $(-1)^{M}$ and a change of sign in the argument of the exponential. This latter difference will lead to a change in sign of the arguments of the modified Bessel functions, allowing us to write the results of (B-25) by analogy to (B-15) as

$$W_{M}(M) = \frac{(-1)^{2M+\upsilon(M)}}{2^{M+1}} \sum_{k=0}^{\infty} \sum_{\mu=0}^{\frac{M-\upsilon(M)}{2}} \frac{\varepsilon_{\mu+\upsilon(M)}}{\varepsilon_{k}} b_{k}^{2} \left(\frac{M}{[M-\upsilon(M)-2\mu]/2} \right)$$

$$\left[I_{2\mu + \upsilon(M) - k}^{(-Y)} + I_{2\mu + \upsilon(M) + k}^{(-Y)}\right] . \qquad (B-26)$$

Since $I_n(-x) = (-1)^n I_n(x)$, for n an integer,

$$W_{M}(M) = \frac{(-1)^{2[M+\upsilon(M)]}}{2^{M+1}} \sum_{k=0}^{\infty} \sum_{\mu=0}^{\frac{M-\upsilon(M)}{2}} (-1)^{2\mu} \frac{\varepsilon_{\mu+\nu(M)}}{\varepsilon_{k}} b_{k}^{2} \left([M-\upsilon(M)-2\mu]/2 \right)$$

$$\cdot \left[(-1)^{-k} I_{2\mu+\nu(M)-k}(Y) + (-1)^{k} I_{2\mu+\nu(M)+k}(Y) \right]. \qquad (B-27)$$

B-10

Furthermore, since an even power of -1 is equal to 1, and $(-1)^{-k} = (-1)^{k}$, (B-27) becomes

$$W_{M}(M) = \frac{1}{2^{M+1}} \sum_{k=0}^{\infty} \sum_{\mu=0}^{M-\nu(M)} \frac{\epsilon_{\mu+\nu(N)}}{\epsilon_{k}} (-1)^{k} b_{k}^{2} \left(\frac{M}{[M-\nu(M)-2\mu]/2} \right)$$

$$\cdot \left[I_{2\mu+\upsilon(M)-k}(Y) + I_{2\mu+\upsilon(M)+k}(Y) \right].$$
 (B-28)

Therefore, from (B-21) and (B-28) when a "mark" is transmitted

$$V_{m,n} = \sum_{\ell=0}^{m} \sum_{r=0}^{n} {\binom{m}{\ell} \binom{n}{r} (-1)^{r} z^{\ell+r} \frac{1}{z^{\ell+r+1}} \sum_{k=0}^{\infty} \sum_{\mu=0}^{\frac{\ell+r-\upsilon(\ell+r)}{2}} \frac{\frac{\varepsilon_{\mu+\upsilon(\ell+r)}}{\varepsilon_{k}}}{\varepsilon_{k}}}{\left[\frac{(\ell+r-\upsilon(\ell+r)-2\mu)/2}{\varepsilon_{k}} \right]} \cdot \left[I_{2\mu+\upsilon(\ell+r)-k}(\gamma) + I_{2\mu+\upsilon(\ell+r)+k}(\gamma) \right].$$
(B-29)

We again use (B-17) to introduce infinite limits on the summations and interchange the order of summations, summing first over k and μ then over ℓ and r. Then we apply Bailey's theorem to diagonalize the sums over ℓ and r. Letting s= ℓ +r and t=r, (B-29) becomes

$$V_{m,n} = \frac{1}{2} \sum_{k=0}^{\infty} \sum_{\mu=0}^{\infty} \sum_{s=0}^{\infty} \sum_{t=0}^{s} {n \choose s-t} {n \choose t} (-1)^{t} {\left(\frac{7}{2}\right)^{s}} (-1)^{k} \frac{\epsilon_{\mu+\upsilon(s)}}{\epsilon_{k}} b_{k}^{2}$$
$$\cdot \left([s-\upsilon(s)-2\mu]/2 \right) \left[I_{2\mu+\upsilon(s)-k}(Y) + I_{2\mu+\upsilon(s)+k}(Y) \right] . \quad (B-30)$$

B-11

The summation over t in (B-30) becomes a Gauss hypergeometric function [12, p, 17] as was shown in (B-19). Therefore,

$$\begin{aligned} v_{m,n} &= \frac{1}{2} \sum_{k=0}^{\infty} \sum_{s=0}^{m} \sum_{\mu=0}^{s} \left(\sum_{s=0}^{s} (s_{-\nu}(s) - 2\mu) \right) \left(\frac{Z}{2} \right)^{s} (-1)^{k} b_{k}^{2} \frac{\varepsilon_{\mu+\nu}(s)}{\varepsilon_{k}} \\ &\cdot \left[I_{2\mu+\nu}(s) - k^{(\gamma)} + I_{2\mu+\nu}(s) + k^{(\gamma)} \right] \\ &\cdot \left(\sum_{s=0}^{m} 2F_{1}(-n, -s; m-s+1; -1) \right) \end{aligned}$$
(B-31)

where we have interchanged the order of summations over s and μ and have again used (B-17) to introduce finite summation limits.

APPENDIX C

EVALUATION OF EQUATIONS (23a) AND (23b)

C.1 EVALUATION OF (23a)

Using (20a) of the main text in (23a) of the main text,

$$P(e;\rho|space) = \int_{-\infty}^{0} \frac{1}{\sigma_{d}^{2}} \exp\left[-\frac{h_{1}^{2} + h_{2}^{2}}{1 - \rho^{2}}\right] \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \frac{1}{m! \, n!} V_{m,n} \left[\frac{1}{4}\left(\frac{1 - \rho}{1 + \rho}\right) \left(h_{1}^{2} + h_{2}^{2}\right)\right]^{m} \\ \cdot \left[\frac{1}{4}\left(\frac{1 + \rho}{1 - \rho}\right) \left(h_{1}^{2} + h_{2}^{2}\right)\right]^{n} \exp\left[\frac{2y}{\sigma_{d}^{2}(1 - \rho)}\right] G_{n}^{m}\left[-\frac{4y}{\sigma_{d}^{2}(1 - \rho^{2})}\right] dy$$

$$(C-1)$$

いいというないので

where $V_{m,n}$ is not a function of y (see Appendix B) and the function $G_n^m(\cdot)$ is defined by

$$G_{n}^{m}(x) = \sum_{j=0}^{n} {\binom{n+m-j}{m} \frac{x^{j}}{j!}}$$
 (C-2)

Interchanging the order of summation and integration in (C-1) we obtain

$$P(e;\rho|space) = \frac{1}{\sigma_{d}^{2}} exp\left[-\frac{h_{1}^{2}+h_{2}^{2}}{1-\rho^{2}}\right] \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \frac{v_{m,n}}{m!n!} \left[\frac{1}{4} \left(\frac{1-\rho}{1+\rho}\right) \left(h_{1}^{2}+h_{2}^{2}\right)\right]^{m} \cdot \left[\frac{1}{4} \left(\frac{1+\rho}{1-\rho}\right) \left(h_{1}^{2}+h_{2}^{2}\right)\right]^{n} U_{m,n}$$
(C-3)

where

$$U_{m,n} = \int_{-\infty}^{0} \exp\left[\frac{2y}{\sigma_d^2(1-\rho)}\right] G_n^m \left[-\frac{4y}{\sigma_d^2(1-\rho^2)}\right] dy. \qquad (C-4)$$

Using (C-2) in (C-4) and interchanging the order of summation and integration,

$$U_{m,n} = \sum_{j=0}^{n} {\binom{n+m-j}{m}} \frac{(-1)^{j}}{j!} \left[\frac{4}{\sigma_{d}^{2}(1-\rho^{2})} \right]^{j} \int_{-\infty}^{0} y^{j} \exp\left[\frac{2y}{\sigma_{d}^{2}(1-\rho)} \right] dy.$$
 (C-5)

Making the substitution x=-y in (C-5) and using [9, eq. 3.381.4] we can evaluate the integral in (C-5) to obtain

$$U_{m,n} = \left(\frac{1-\rho}{2}\right) \sigma_d^2 \sum_{j=0}^n \binom{n+m-j}{m} \left(\frac{2}{1+\rho}\right)^j .$$
 (C-6)

Equation (C-6) can be summed using [12,p.17] and [10,eq. 15.4.1] to yield

$$U_{m,n} = \left(\frac{1-\rho}{2}\right) {}_{od}^{2} {\binom{n+m}{m}} {}_{2}F_{1}\left(-n,1;-n-m;\frac{2}{1+\rho}\right) . \qquad (C-7)$$

Substituting (C-7) into (C-3) and rearranging terms gives (26a) of the main text.

C.2 EVALUATION OF (23b)

Using (20b) of the main text in (23b) of the main text,

$$P(e; \rho | mark) = \int_{0}^{\infty} \frac{1}{\sigma_{d}^{2}} \exp\left[-\frac{h_{1}^{2} + h_{2}^{2}}{1 - \rho^{2}}\right] \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \frac{1}{m! n!} V_{m,n} \left[\frac{1}{4} \left(\frac{1 - \rho}{1 + \rho}\right) \left(h_{1}^{2} + h_{2}^{2}\right)\right]^{m} \\ \cdot \left[\frac{1}{4} \left(\frac{1 + \rho}{1 - \rho}\right) \left(h_{1}^{2} + h_{2}^{2}\right)\right]^{n} \exp\left[\frac{-2y}{\sigma_{d}^{2}(1 + \rho)}\right] G_{m}^{n} \left[\frac{4y}{\sigma_{d}^{2}(1 - \rho^{2})}\right] dy.$$

(C-8)

Interchanging the order of summation and integration in (C-8) we obtain

$$P(e;\rho|mark) = \frac{1}{\frac{2}{\sigma_{d}}} exp \left[-\frac{h_{1}^{2} + h_{2}^{2}}{1 - \rho^{2}} \right] \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \frac{V_{m,n}}{n!m!} \left[\frac{1}{4} \left(\frac{1 - \rho}{1 + \rho} \right) \left(h_{1}^{2} + h_{2}^{2} \right) \right]^{m} \cdot \left[\frac{1}{4} \left(\frac{1 + \rho}{1 - \rho} \right) \left(h_{1}^{2} + h_{2}^{2} \right) \right]^{n} T_{m,n}$$

$$(C-9)$$

where

$$T_{m,n} = \int_{0}^{\infty} exp\left[\frac{-2y}{\sigma_{d}^{2}(1+\rho)}\right] G_{m}^{n} \left[\frac{4y}{\sigma_{d}^{2}(1-\rho^{2})}\right] dy . \qquad (C-10)$$

Using (C-2) in (C-10) and interchanging the order of summation and integration,

$$T_{m,n} = \sum_{j=0}^{m} {\binom{m+n-j}{n}} \frac{1}{j!} \left[\frac{4}{\sigma_d^2(1-\rho^2)} \right]^j \int_0^{\infty} y^j \exp\left[\frac{-2y}{\sigma_d^2(1+\rho)} \right] dy. \qquad (C-11)$$

Using [9, eq. 3.381.4] to evaluate the integral in (C-11) we obtain

$$T_{m,n} = \left(\frac{1+\rho}{2}\right) \sigma_d^2 \sum_{j=0}^m {\binom{n+m-j}{n}} \left(\frac{2}{1-\rho}\right)^j . \qquad (C-12)$$

Equation (C-12) can be summed in the same way that (C-6) was summed to yield

$$T_{m,n} = \left(\frac{1+\rho}{2}\right) \sigma_{d}^{2} {\binom{m+n}{m}} {}_{2}F_{1} \left(-m,1;-m-n;\frac{2}{1-\rho}\right) .$$
 (C-13)

Substituting (C-13) into (C-9) and rearranging terms gives (26b) of the main text.

APPENDIX D

ALTERNATE DERIVATION OF ERROR PROBABILITY EQUATIONS

This appendix presents an alternate derivation of the conditional error probability expressions. For brevity, only the case of a "space" being transmitted is considered.

The probability density function of the decision variable conditioned on the phase difference between the two inputs to the multiplier is given by (14) of the main text.

The phase difference ϕ is a random variable with some density function $f_{\phi}(\beta)$. Thus the unconditional p.d.f. of the decision variable is determined from

$$p(y) = \int_{-\infty}^{\infty} f_{y}(y;\rho|\phi=\beta)f_{\phi}(\beta)d\beta. \qquad (D-1)$$

Our task, then, is to find $f_{\phi}(\beta)$ so that (14) and (D-1) may be used to find the pdf of y, which may then be integrated to determine the error rate performance of the DPSK system.

PROBABILITY DENSITY FUNCTION OF PHASE DIFFERENCE ¢

The probability density function of ϕ can be obtained from the p.d.f.'s of ϕ_i , i=1,2:

$$f_{\phi}(\beta) = \int_{-\infty}^{\infty} f_{\phi_1}(\beta + \alpha) f_{\phi_2}(\alpha) d\alpha. \qquad (D-2)$$

In reality, the functions $f_{\substack{\phi_1 \\ \phi_2}}$ and $f_{\substack{\phi_2 \\ \phi_2}}$ depend upon the transmitted signal phases, θ_1 and θ_2 , respectively, and hence should be written as conditional

densities $f_{\phi_1}(\alpha|\theta_1)$ and $f_{\phi_2}(\alpha|\theta_2)$. Then $f_{\phi}(\beta)$ becomes $f_{\phi}(\beta|\theta_1,\theta_2)$ and, as expected, the result must be averaged over the <u>a priori</u> symbol probabilities.

The phases ϕ_1 and ϕ_2 are identically distributed random variables, with density function [2], [3]

$$f_{\phi_i}(\alpha|\theta_i) = \frac{1}{2\pi} \sum_{k=0}^{\infty} b_k \cos\left[k(\alpha-\theta_i)\right], \ i=1,2, \quad |\alpha-\theta_i| \le \pi \quad (D-3)$$

where

$$b_{k} = \epsilon_{k} \frac{R_{u}^{h}}{k!} r\left(\frac{k}{2} + 1\right)_{1} F_{1}\left(\frac{k}{2}; k + 1; -R_{u}^{2}\right)$$

$$R_{u}^{2} = uplink \text{ signal to noise ratio (at input to bandpass limiter)}$$

$$\epsilon_{k} = \begin{cases} 1, k=0 \\ 2, k>0 \end{cases}$$

and $_{1}F_{1}(a;b;z)$ is the confluent hypergeometric function.

The p.d.f. of the decision variable conditioned on $\theta_1 - \theta_2$ is then

$$p(y) = \int_{-\infty}^{\infty} f_{y}(y;\rho|\phi=\beta) f_{\phi}(\beta|\theta_{1}-\theta_{2}) d\beta$$
$$= \int_{-\infty}^{\infty} \int_{\infty}^{\infty} f_{y}(y;\rho|\phi=\beta) f_{\phi_{1}}(\beta+\alpha|\theta_{1}) f_{\phi_{2}}(\alpha|\theta_{2}) d\alpha d\beta . \qquad (D-4)$$

The p.d.f. of ϕ_i , i=1,2, is given by (D-3). We first determine the limits of the integration

$$f_{\phi}(\beta|\theta_1-\theta_2) = \int_{-\infty}^{\infty} f_{\phi_1}(\beta+\alpha|\theta_1)f_{\phi_2}(\alpha|\theta_2)d\alpha. \qquad (D-5)$$

In view of the restricted range over which the f_{ϕ_i} 's are non-zero, (D-5) must be treated as four separate cases (see Figure D-1). If $-\beta+\theta_1+\pi<\theta_2-\pi$, or $\theta_1-\theta_2+2\pi<\beta$, then there is no overlap of the two f_{ϕ_i} 's and $f_{\phi}\equiv 0$. In the second case, we have $\theta_2-\pi<-\beta+\theta_1+\pi<\theta_2+\pi$, which implies that

$$f_{\phi}(\beta|\theta_{1}-\theta_{2}) = \int_{\theta_{2}-\pi}^{\theta_{1}+\pi-\beta} f_{\phi_{1}}(\beta+\alpha|\theta_{1})f_{\phi_{2}}(\alpha|\theta_{2})d\alpha, \quad \theta_{1}-\theta_{2} \leq \beta \leq \theta_{1}-\theta_{2}+2\pi.$$
(D-6)

In the third case, $-\beta+\theta_1-\pi\leq\theta_2+\pi\leq-\beta+\theta_1+\pi$, which implies that

$$f_{\phi}(\beta)\theta_{1}-\theta_{2} = \int_{\theta_{1}-\pi-\beta}^{\theta_{2}+\pi} f_{\phi_{1}}(\beta+\alpha|\theta_{1})f_{\phi_{2}}(\alpha|\theta_{2})d\alpha, \quad \theta_{1}-\theta_{2}-2\pi \leq \beta \leq \theta_{1}-\theta_{2}.$$
(D-7)

In the fourth case $-\beta+\theta_1-\pi>\theta_2+\pi$, or $\beta<\theta_1-\theta_2-2\pi$, there is no overlap and $f_{\phi}(\beta|\theta_1-\theta_2) \equiv 0$.

Accordingly, the range of α and β over which the integration (D-4) should be performed is as shown by the shaded area in Figure D-2:

$$p(y) = \int_{\theta_2^{-\pi}}^{\theta_2^{+\pi}} \int_{\theta_1^{-\alpha-\pi}}^{\theta_1^{-\alpha+\pi}} f_{\phi_2}(\alpha|\theta_2) f_y(y;\rho|\phi=\beta) f_{\phi_1}(\beta+\alpha|\theta_1) d\beta d\alpha. \quad (D-8)$$

To calculate the error probability, consider the case where a space is transmitted, i.e., there is no change of transmitted phase from one symbol to the next, $\theta_1 - \theta_2 = 0$. Thus an error is made if the decision variable y<0, and we have

$$P(e;\rho|space) = \int_{-\infty}^{0} p(y)dy$$

=
$$\int_{-\infty}^{0} \int_{\theta_{2}-\pi}^{\theta_{2}+\pi} \int_{\theta_{1}-\alpha-\pi}^{\theta_{1}-\alpha+\pi} f_{\phi_{1}}(\alpha|\theta_{1})f(y;\rho|\phi=\beta)f_{\phi_{1}}(\beta+\alpha|\theta_{1})d\beta d\alpha dy$$

(D-9)

D-3

.

FIGURE D-1

DETERMINATION OF INTEGRATION LIMITS FOR PROBABILITY DENSITY OF $\phi_1 - \phi_2$ AS A FUNCTION OF B

FIGURE D-2 INTEGRATION RANGE OF a AND B

Putting (14) of the main text into (D-9) we have, after some algebraic manipulation,

$$P(e;\rho|space) = \frac{1}{\sigma_{d}^{2}} \exp\left[-\frac{h_{1}^{2}+h_{2}^{2}}{1-\rho^{2}}\right] \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \frac{1}{m!} \frac{1}{n!} \left[\frac{1}{4}\left(\frac{1-\rho}{1+\rho}\right)(h_{1}^{2}+h_{2}^{2})\right]^{m} \\ \cdot \left[\frac{1}{4}\left(\frac{1+\rho}{1-\rho}\right)(h_{1}^{2}+h_{2}^{2})\right]^{n} \int_{-\infty}^{0} \exp\left[\frac{2y}{\sigma_{d}^{2}(1-\rho)}\right] G_{n}^{m} \left[\frac{-4y}{\sigma_{d}^{2}(1-\rho^{2})}\right] dy \\ \cdot \int_{\theta_{2}-\pi}^{\theta_{2}+\pi} \int_{\theta_{1}-\alpha-\pi}^{\theta_{1}-\alpha+\pi} e^{Y\cos\beta} \left[1+Z\cos\beta\right]^{m} \left[1-Z\cos\beta\right]^{n} \\ \cdot f_{\phi_{1}}(\alpha|\theta_{1})f_{\phi_{1}}(\beta+\alpha|\theta_{1})d\beta d\alpha \qquad (D-10)$$

where

$$r = \frac{2\rho h_1 h_2}{1-\rho^2}$$

and

$$Z = \frac{\frac{2h_1h_2}{h_1^2+h_2^2}}{\frac{h_1^2+h_2^2}{h_1^2+h_2^2}} .$$

Let us denote the double integral in (D-10) by I_2^S . Then $I_2^S = \int_{\theta_2 - \pi}^{\theta_2 + \pi} f_{\phi_1}(\alpha | \theta_1) I_3^S(\alpha) d\alpha \qquad (D-11)$

where

$$I_{3}^{S}(\alpha) = \int_{\theta_{1}-\alpha-\pi}^{\theta_{1}-\alpha+\pi} \exp[Y\cos\beta] \left[1+Z\cos\beta\right]^{m} \left[1-Z\cos\beta\right]^{n} f_{\phi_{1}}(\beta+\alpha|\theta_{1})d\beta.$$
(D-12)

We can use the binomial theorem to write (D-12) as

$$I_{3}^{S} = \sum_{\ell=0}^{m} \sum_{r=0}^{n} \binom{m}{\ell} \binom{n}{r} (-1)^{r} Z^{\ell+r} V(\ell+r)$$
(D-13)

where

$$V(M) = \int_{\theta_1 - \alpha - \pi}^{\theta_1 - \alpha + \pi} e^{Y \cos \beta} \cos^M_{\beta} f_{\theta_1}(\beta + \alpha | \theta_1) d\beta \qquad (D-14)$$

and M = l + r.

Substituting (D-3) into (D-14) we have

$$V(M) = \frac{1}{2\pi} \sum_{k=0}^{\infty} b_k \int_{\theta_1^{-\alpha-\pi}}^{\theta_1^{-\alpha+\pi}} e^{Y \cos \beta} \cos^M_{\beta} \cos[k(\beta+\alpha-\theta_1)] d\beta. \qquad (D-15)$$

Using [9, 1.320.5 and 1.320.7] we can expand the power of the cosine in terms of cosines of multiple arguments

$$\cos^{M} \zeta = \frac{1}{2^{M}} \sum_{\mu=0}^{\frac{M-\upsilon(M)}{2}} \varepsilon_{\mu+\upsilon(M)} \begin{pmatrix} M \\ [M-\upsilon(M)-2\mu]/2 \end{pmatrix} \cos\left\{ [2\mu+\upsilon(M)]\zeta \right\} (D-16)$$

いいというないのでのない

where

and

the second se

$$\varepsilon_{\mu} = \begin{cases} 1, \ \mu = 0 \\ 2, \ \mu > 0 \end{cases}$$

 $\upsilon(q) = \begin{cases} 0, \ q \ even \\ 1, \ q \ odd \end{cases}$

Using the identity

$$\cos z \cos \zeta = \frac{1}{2} \left[\cos(z + \zeta) + \cos(z - \zeta) \right]$$
 (D-17)

in connection with (D-16) allows us to reduce the integral in (D-15) to the form [13]

$$v = \int_{\phi}^{2\pi+\phi} e^{Y\cos\alpha}\cos N\alpha \, d\alpha = 2\pi I_N(Y)$$
 (D-18)

where ϕ is an arbitrary angle.

Substitution of (D-16), (D-17), and (D-18) into (D-15) yields, after some algebraic manipulation,

$$V(M) = \frac{1}{2^{M+1}} \sum_{k=0}^{\infty} \sum_{\mu=0}^{\frac{M-\nu(M)}{2}} \cos[k(\alpha-\theta_{1})]\epsilon_{\mu+\nu(M)}b_{k}(M(M)-2\mu]/2)$$

$$\cdot \left[I_{2\mu+\nu(M)-k}(Y) + I_{2\mu+\nu(M)+k}(Y)\right]$$
(D-19)

いたのであるのでのである

where b_k , ϵ_k , and v(k) are as defined previously. Using (D-13), (D-19) and (D-3) in (D-11) yields

$$I_{2}^{S} = \frac{1}{4\pi} \sum_{p=0}^{\infty} \sum_{k=0}^{\infty} \sum_{\ell=0}^{m} \sum_{r=0}^{n} \sum_{\mu=0}^{n} \frac{\frac{\ell + r - \upsilon(\ell + r)}{2}}{2^{\ell + r}} {m \choose \ell} {n \choose \ell} (-1)^{r} Z^{\ell + r} {\ell + r \choose \ell + r - \upsilon(\ell + r) - 2\mu} \\ \cdot \left[I_{2\mu + \upsilon(\ell + r) - k}^{(Y)} + I_{2\mu + \upsilon(\ell + r) + k}^{(Y)} \right] {}^{b}{}_{p}{}^{b}{}_{k} \int_{\theta_{2}^{-\pi}}^{\theta_{2}^{+\pi}} \frac{\cos\left[p(\alpha - \theta_{1})\right] \cos\left[k(\alpha - \theta_{1})\right] d\alpha}{(D - 20)}$$

The integral in (D-20) is equal to 2π for p=k=0, π for $p=k\neq 0$, and disappears for $p\neq k$.

Thus we have

$$I_{2}^{S} = \frac{1}{2} \sum_{k=0}^{\infty} \sum_{\ell=0}^{m} \sum_{r=0}^{n} \sum_{\mu=0}^{n} \frac{1}{\epsilon_{k}} {m \choose \ell} {n \choose r} Z^{\ell+r} (-1)^{r} \frac{b_{k}^{2} \epsilon_{\mu+\nu(\ell+r)}}{2^{\ell+r}} \cdot \left(\frac{\ell+r}{[\ell+r-\nu(\ell+r)-2\mu]/2} \right) \left[I_{2\mu+\nu(\ell+r)-k} {(\gamma) + 1 \choose 2\mu+\nu(\ell+r)+k} {(\gamma) \choose \ell} \right] . (D-21)$$

Making use of the property of the binomial coefficients,

$$\begin{pmatrix} a \\ b \end{pmatrix}$$
 = 0 if b<0 or b>a,

to extend the limits of the finite sums to infinity and then applying Bailey's theorem [11,pp. 58-59] to the sums over <code>g</code> and <code>r</code>, we can write (D-21) as

$$I_{2}^{S} = \frac{1}{2} \sum_{k=0}^{\infty} \sum_{s=0}^{\infty} \sum_{\mu=0}^{\infty} \left(\sum_{[s-\nu(s)-2\mu]/2}^{S} \frac{b_{k}^{2} \varepsilon_{\mu+\nu(s)}}{\varepsilon_{k}} (-1)^{s} \right)^{s} + \left[I_{2\mu+\nu(s)-k}^{(\gamma)+I_{2\mu+\nu(s)+k}} (\gamma) \right] \sum_{t=0}^{s} {m \choose t} {n \choose s-t} (-1)^{t}.$$
(D-22)

Sa the the state of the second

It can be shown [12, p. 17] that the summation over t in (D-22) can be expressed as a Gauss hypergeometric function with a negative numerator parameter. Making use of this, we have

$$I_{2}^{S} = \frac{1}{2} \sum_{k=0}^{\infty} \sum_{s=0}^{n} \sum_{\mu=0}^{\frac{S-\upsilon(s)}{2}} ([s-\upsilon(s)-2\mu]/2) (\frac{Z}{2})^{S} \frac{b_{k}^{2} \varepsilon_{\mu+\upsilon(s)}}{\varepsilon_{k}} (-1)^{\upsilon(s)}$$

$$\cdot [I_{2\mu+\upsilon(s)-k}^{(\gamma)+I} Z_{\mu+\upsilon(s)+k}^{(\gamma)}]$$

$$\cdot (\binom{n}{s} Z_{F_{1}}^{F_{1}}(-m,-s; n-s+1; -1)$$
(D-23)

where we have again used the properties of the binomial coefficients to introduce finite summation limits and have used $(-1)^{S} = (-1)^{U(S)}$.

Letting I_1^S denote the first integral in (D-10), from the definition of the polynomial $G_n^m(x)$ we have

$$I_{1}^{S} = \sum_{j=0}^{n} {\binom{n+m-j}{m} \frac{1}{j!} (-1)^{j} \left[\frac{4}{\sigma_{d}^{2}(1-\rho^{2})} \right]^{j} \int_{-\infty}^{0} \exp\left[\frac{2y}{\sigma_{d}^{2}(1-\rho)}\right] y^{j} dy. \quad (D-24)$$

The integral in (D-24) may be evaluated by making the substitution x = -y and using [9, eq. 3.381.4] to obtain

$$I_{1}^{S} = \left(\frac{1-p}{2}\right)\sigma_{d}^{2}\sum_{j=0}^{n} \binom{n+m-j}{m} \left(\frac{2}{1+p}\right)^{j}.$$
 (D-25)

「「「「「「「「「「「「「「」」」」」

Using [12], we can sum (D-25) to yield

$$I_{1}^{S} = \left(\frac{1-\rho}{2}\right)\sigma_{d}^{2} \binom{n+m}{m}_{2}F_{1}\left(-n,1; -n-m; \frac{2}{1+\rho}\right). \tag{D-26}$$

Substituting (D-23) and (D-26) into (D-10), and rearranging terms for clarity, yields:

$$\begin{aligned} P(e;\rho|space) &= \pi \left(\frac{1-\rho}{4}\right) exp\left[-\frac{2R_{d}^{2}}{1-\rho^{2}}\right] \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \sum_{k=0}^{\infty} \sum_{s=0}^{n} \sum_{\mu=0}^{\frac{s-\upsilon(s)}{2}} \\ &-\frac{\frac{\varepsilon_{k}\varepsilon_{\mu+\upsilon(s)}(-1)^{\upsilon(s)}}{m!n!\left[\tau\left(\frac{k+1}{2}\right)\right]^{2}} \binom{n+m}{m} \\ &\cdot \binom{n}{s} \binom{s-\upsilon(s)-2\mu}{2}\binom{2}{2}\binom{k}{1+\lambda^{2}} \frac{\lambda}{2} \left[\frac{1}{4}\left(\frac{1-\rho}{1+\rho}\right)R_{d}^{2} (1+\lambda^{2})\right]^{m} \\ &\cdot \left[\frac{1}{4}\left(\frac{1+\rho}{1-\rho}\right)R_{d}^{2}(1+\lambda^{2})\right]^{n} \left[I_{2\mu+\upsilon(s)-k}\left(\frac{2\rho\lambda R_{d}^{2}}{1-\rho^{2}}\right) + I_{2\mu+\upsilon(s)+k}\left(\frac{2\rho\lambda R_{d}^{2}}{1-\rho^{2}}\right)\right] \\ &\cdot \left[2F_{1}\left(-n,1;-n-m;\frac{2}{1+\rho}\right)2F_{1}(-m,-s;n-s+1;-1) \\ &\cdot \left[1F_{1}\left(\frac{k}{2};k+1;-R_{u}^{2}\right)\right]^{2} \end{aligned}$$
(D-27)

where

and

and

$$u(q) = \begin{cases} 0, q even \\ 1, q odd \end{cases}$$

 $\varepsilon_q = \begin{cases} 1, q=0\\ 2, q>0 \end{cases}$

and where we have defined the signal-to-noise ratio parameters

 $R_d^2 = h_1^2$ = direct channel SNR into the multiplier

 $\lambda^2 = \frac{h_2^2}{h_1^2} =$ power imbalance between multiplier inputs

and we have used the relation (2z)! = $\Gamma(2z + 1) = \frac{2^{2z}}{\sqrt{\pi}} \Gamma(z + \frac{1}{2}) \Gamma(z+1)$ to

simplify the form arising from the coefficients $(b_k)^2$ which occur in (D-21). Equation (D-27) is identical to (26a) of the main text.

APPENDIX E

ALTERNATE FORMS FOR ERROR PROBABILITY EQUATION

The error probability equations (26a) and (26b) of the main text may be written in several alternate forms. Although these alternate forms do not appear to be any more computationally efficient, they are presented here for the benefit of those readers who may wish to pursue further the mathematical properties of the error behavior of a DPSK system. For brevity we present only the forms for a "space" being transmitted; the forms for "mark" can easily be written by analogy.

First, we consider the inner-most summation of (26a):

$$\Delta = \sum_{\mu=0}^{\frac{s-\upsilon(s)}{2}} \epsilon_{\mu+\upsilon(s)} \left(\sum_{[s-\upsilon(s)-2\mu]/2}^{s} \right) \left[I_{2\mu+\upsilon(s)-k}(Y) + I_{2\mu+\upsilon(s)+k}(Y) \right]$$
(E-1)

where $Y = 2\rho\lambda R_d^2/(1-\rho^2)$. The expression in (E-1) may be summed as shown below.

From [10, eq. 9.6.29] we find that $I_{\nu}^{(p)}(z) = \frac{1}{2^{p}} \left\{ I_{\nu-p}(z) + {p \choose 1} I_{\nu-p+2}(z) + {p \choose 2} I_{\nu-p+4}(z) + \dots + I_{\nu+p}(z) \right\}, p=0, 1, 2, \dots$ (E-2)

where

$$I_{v}^{(p)}(z) = \frac{d^{p}}{dz^{p}} I_{v}(z) .$$

For p=0, $I_v^{(0)}(z) = I_v(z)$. Also, from [10, eq. 9.6.6]

 $I_{-n}(z) = I_{n}(z)$ (E-3)

where n is any integer. Since

$$\binom{\mathbf{p}}{\mathbf{j}} = \binom{\mathbf{p}}{\mathbf{p} - \mathbf{j}} \tag{E-4}$$

we can use (E-3) to re-arrange (E-2). If p is even, we begin with the term

$$\binom{p}{p/2}I_{v}(z)$$
 (E-5a)

and proceed with terms of the form, using (E-3) and (E-4),

$$\binom{\mathfrak{p}}{\mathfrak{p}/2-\mathfrak{j}}\left[I_{\nu-2\mathfrak{j}}(z) + I_{\nu+2\mathfrak{j}}(z)\right]$$
(E-5b)

with all the terms of (E-2) being accounted for by the time we reach j=p/2. If p is odd, then the first term is

$$\binom{p}{[p-1]/2} \left[I_{\nu-1}(z) + I_{\nu+1}(z) \right]$$
 (E-6a)

and we proceed with terms of the form, again using (E-3) and (E-4),

$$([p-1/2]-j)$$
 $[I_{2j+1-v}(z) + I_{2j+1+v}(z)]$ (E-5b)

for $j=1,2,\ldots,(p-1)/2$.

- 1.1

We now notice that (E-5b) and (E-6b) can be combined by use of the function $\upsilon(\cdot)$ which we introduced in the main text. However, (E-6a) yields twice the quantity of (E-5a) if we attempt to combine them through use of the $\upsilon(\cdot)$ function. To circumvent this problem, we can double all the other terms by introducing the Neumann factor $c_{j+\upsilon(p)}$ which is 1 when p is even and j=0 and is 2 otherwise. The entire result is then halved. Thus

$$I_{v}^{(p)}(z) = \frac{1}{2^{p+1}} \sum_{j=0}^{p-1} \epsilon_{j+v(p)} \binom{p}{[p-v(p)-2j]/2} \left[I_{2j+v(p)-v}(z) + I_{2j+v(p)+v}(z) \right].$$
(E-7)

Using (E-7) in (E-1), we find that

$$\Delta = 2^{s+1} I_k^{(s)}(Y) . \qquad (E-8)$$

Putting (E-8) into (26a) of the main text, we have the alternate expression

$$P(e;\rho,\lambda|space) = \pi \left(\frac{1-p}{2}\right) exp\left[-\frac{2R_{d}^{2}}{1-p^{2}}\right] \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \sum_{k=0}^{\infty} \sum_{s=0}^{n} \frac{\varepsilon_{k}(-1)^{\upsilon(s)}}{m!n! [r(\frac{k+1}{2})]^{2}} {n+m \choose m} {n \choose s} \\ \cdot \left(\frac{R_{u}}{2}\right)^{2k} \left(\frac{2\lambda}{1+\lambda^{2}}\right)^{s} \left[\frac{1}{4} \left(\frac{1-\rho}{1+\rho}\right) R_{d}^{2}(1+\lambda^{2})\right]^{m} \left[\frac{1}{4} \left(\frac{1+\rho}{1-\rho}\right) R_{d}^{2}(1+\lambda^{2})\right]^{n} \\ \cdot I_{k}^{(s)} \left(\frac{2\rho\lambda R_{d}^{2}}{1-\rho^{2}}\right) {}_{2}F_{1}\left(-n,1;-n-m;\frac{2}{1+\rho}\right) \\ \cdot {}_{2}F_{1}\left(-m,-s;n-s+1;-1\right) \left[1F_{1}\left(\frac{k}{2};k+1;-R_{u}^{2}\right)\right]^{2}$$
(E-9)

for the error probability given that a "space" was transmitted.

Another formulation for the error probability may be written by using the relationship [14]

$${}_{1}F_{1}(n+\frac{1}{2};2n+2;-R_{u}^{2}) = \frac{\exp(-R_{u}^{2}/2)r(n+1)2^{2n}}{(R_{u}^{2})^{n}} \left[I_{n}\left(\frac{R_{u}^{2}}{2}\right) + I_{n+1}\left(\frac{R_{u}^{2}}{2}\right)\right]. \quad (E-10)$$

Setting $k/2 = n + \frac{1}{2}$, the confluent hypergeometric function in (26a) of the main text may be expressed as

$${}_{1}F_{1}\left(\frac{k}{2};k+1;-R_{u}^{2}\right) = \frac{\exp(-R_{u}^{2}/2)r\left(\frac{k+1}{2}\right)2^{k-1}}{\left(R_{u}^{2}\right)^{(k-1)/2}}\left[I_{(k-1)/2}\left(\frac{R_{u}^{2}}{2}\right)+I_{(k+1)/2}\left(\frac{R_{u}^{2}}{2}\right)\right].$$
(E-11)

Putting (E-11) into (26a) yields a second alternate formulation for the error probability

$$P(e;\rho,\lambda|space) = \pi R_{u}^{2} \left(\frac{1-\rho}{16}\right) exp\left[-\frac{2R_{d}^{2}}{1-\rho^{2}}\right] exp\left[-R_{u}^{2}\right]$$

$$\cdot \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \sum_{k=0}^{\infty} \sum_{s=0}^{n} \sum_{\mu=0}^{\frac{5-\nu(s)}{2}} \frac{e_{k}e_{\mu+\nu(s)}(-1)^{\nu(s)}}{m!n!} \binom{n+m}{m}\binom{n}{s}\binom{\lambda}{(\frac{1+\lambda^{2}}{1+\lambda^{2}})^{s}}$$

$$\cdot \left[\frac{1}{4} \left(\frac{1-\rho}{1+\rho}\right)R_{d}^{2} (1+\lambda^{2})\right]^{m} \left[\frac{1}{4} \left(\frac{1+\rho}{1-\rho}\right)R_{d}^{2} (1+\lambda^{2})\right]^{n}$$

$$\cdot \left[I_{2\mu+\nu(s)-k}\left(\frac{2\rho\lambda R_{d}^{2}}{1-\rho^{2}}\right) + I_{2\mu+\nu(s)+k}\left(\frac{2\rho\lambda R_{d}^{2}}{1-\rho^{2}}\right)\right]$$

$$\cdot \left[I_{(k-1)/2}\left(\frac{R_{u}^{2}}{2}\right) + I_{(k+1)/2}\left(\frac{R_{u}^{2}}{2}\right)\right]^{2}$$

$$\cdot 2^{F_{1}}(-n,1;-n-m;\frac{2}{1+\rho}) 2^{F_{1}}(-m;-s;n-s+1;-1). \quad (E-12)$$

A third alternative form may be derived by using both (E-8) and (E-11) in (26a) to yield

$$P(e;\rho,\lambda|space) = \pi R_{u}^{2} \left(\frac{1-\rho}{16}\right) exp\left[-\frac{2R_{d}^{2}}{1-\rho^{2}}\right] exp\left[-R_{u}^{2}\right]$$

$$= \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \sum_{k=0}^{\infty} \sum_{s=0}^{n} \frac{\epsilon_{k}}{m!n!} \binom{n+m}{m} \binom{n}{s} \left(\frac{-2\lambda}{1+\lambda^{2}}\right)^{s}$$

$$= \left[\frac{1}{4} \left(\frac{1-\rho}{1+\rho}\right) R_{d}^{2} \left(1+\lambda^{2}\right)\right]^{m} \left[\frac{1}{4} \left(\frac{1+\rho}{1-\rho}\right) R_{d}^{2} \left(1+\lambda^{2}\right)\right]^{n} I_{k}^{(s)} \left(\frac{2\rho\lambda R_{d}^{2}}{1-\rho^{2}}\right)$$

$$= \left[I_{(k-1)/2} \left(\frac{R_{u}^{2}}{2}\right) + I_{(k+1)/2} \left(\frac{R_{u}^{2}}{2}\right)\right]^{2}$$

$$= 2F_{1}^{(-n,1;-n-m;} \frac{2}{1+\rho}) 2F_{1}^{(-m,-s;n-s+1;-1)} . \quad (E-13)$$

where we also have used $(-1)^{S} = (-1)^{U(S)}$.

An interesting fourth transformation arises from the use of Bailey's theorem [11] to replace the infinite sums over n and m in (E-13) with one infinite sum and one finite sum. Letting v=n and w=n+m we obtain from (E-13), after a little algebra,

$$P(e;\rho,\lambda|space) = \pi R_{u}^{2} \left(\frac{1-\rho}{16}\right) exp\left[-R_{u}^{2}\right] exp\left[-\frac{2R_{d}^{2}}{1-\rho^{2}}\right]$$

$$\cdot \sum_{k=0}^{\infty} \sum_{w=0}^{\infty} \sum_{v=0}^{w} \sum_{s=0}^{v} \frac{\varepsilon_{k}}{w!} \left[\binom{w}{v}\right]^{2} \binom{v}{s} \left(\frac{-2\lambda}{1+\lambda^{2}}\right)^{s} \left[\frac{1}{4} \left(\frac{1-\rho}{1+\rho}\right)R_{d}^{2} \left(1+\lambda^{2}\right)\right]^{w}$$

$$\cdot \left(\frac{1+\rho}{1-\rho}\right)^{2v} I_{k}^{(s)} \left(\frac{2\rho\lambda^{R_{d}^{2}}}{1-\rho^{2}}\right) \left[I_{(k-1)/2} \binom{R_{u}^{2}}{2} + I_{(k+1)/2} \binom{R_{u}^{2}}{2}\right]^{2}$$

$$\cdot 2^{F_{1}}(-v,1;-w; \frac{2}{1+\rho}) 2^{F_{1}}(v-w,-s;v-s+1;-1). \quad (E-14)$$

The form in (E-14) begins to resemble summation formulas for generalized hypergeometric functions, for example [15] or [16]. This is an area of mathematics which is not yet fully explored; hence the implications of forms such as (E-14) cannot be fully stated at this time.

Other forms can be written by applying various transformation formulas to the Gauss hypergeometric functions in (26a), (26b), (E-9), (E-12), (E-13), and (E-14). Examples of applicable transformation can be found, for example, in chapter 15 of [10]. It seems of little value, though, to write out in full the multitude of forms thus derivable.

APPENDIX F

A FURTHER CONSIDERATION ON POWER IMBALANCE

The power imbalance between adjacent pulses arises due to such effects as delay line attenuation, phase error, and intersymbol interference. The power imbalance may also arise from sources other than the receiver itself such as fading. The effect of delay line attenuation or fading on power imbalance is straightforward and need not be mentioned. The phase error can arise, for example, from an improper delay length in the delay circuit of a phase detector. The intersymbol interference is, however, a complicated problem resulting from the combined effects of the delay circuit and the transfer function (filter characteristics) of the system under consideration.

In this appendix we want to enhance our understanding of the possible relationships between power imbalance, intersymbol interference, and phase error associated with non-ideal delay lines in the differential phase detector.

Hubbard [17] analyzed the effect of intersymbol interference on the probability of error (for the case of no noise correlation) under the assumption that the intersymbol interference comes only from adjacent pulses, and showed that the probability of error is a function of power imbalance (between direct and delayed channel) caused by intersymbol interference [17, eq. 14].

Another way of viewing the power imbalance is to relate it to phase error. The intersymbol interference is assumed to manifest itself in the form of a perturbation in the phase of the signal at the

F-1

sampling instant. More precisely, the intersymbol interference introduces a phase shift $\Delta \phi$ so that the phase change in a time slot is $\phi \pm \Delta \phi$ instead of ϕ ($\phi=0$ for a "space" and $\phi=\pi$ for a "mark"). The value of $\Delta \phi$ depends on the details of the signal waveform and the filter characteristics of the system. The determination of the $\Delta\phi$'s (for a particular system) which describe the intersymbol interference phenomena in a complicated manner is a rather difficult problem, and even if it is theoretically possible (see [18] for example), the actual measurement of this quantity will be a formidable task. For this reason we will establish an analytical background to replace $\Delta \phi$ by an easily measurable quantity, power (or equivalently SNR) imbalance λ^2 which is used as a basic parameter throughout the report. By relating $\Delta \phi$ to λ^2 , all the possible degradation factors mentioned above (attenuation, fading, phase error, and intersymbol interference) which otherwise appear to be different attributes are merged into one quantity λ^2 . The statistics of λ^2 may then be experimentally determined for a particular system.

We now show the relation of $\Delta\phi$ to λ^2 . To do this we note from the definitions following (14) in the main text that the parameters h_3^2 and h_4^2 are all that we need in describing the error performance in terms of power imbalance. For simplicity, consider the case of no noise correlation ($\rho=0$). We may write then

$$H_{3}^{2} \stackrel{\Delta}{=} 2h_{3}^{2} = h_{1}^{2} + h_{2}^{2} + 2h_{1}h_{2}\cos\phi \qquad (F-1a)$$

$$H_{4}^{2} \stackrel{\Delta}{=} 2h_{4}^{2} = h_{1}^{2} + h_{2}^{2} - 2h_{1}h_{2}\cos\phi. \qquad (F-1b)$$

and

Let us define the average SNR (or equivalently average power)* R² by**

$$R^{2} = \frac{h_{1}^{2} + h_{2}^{2}}{2}$$
 (F-2)

and a differential phase (or phase error) $\Delta \phi$ such that

$$\cos \Delta \phi = \frac{2h_1h_2}{h_1^2 + h_2^2}$$
 (F-3)

Then (F-1) can be written

$$H_{3}^{2} = h_{1}^{2} + h_{2}^{2} + (h_{1}^{2} + h_{2}^{2}) \frac{2h_{1}h_{2}}{h_{1}^{2} + h_{2}^{2}} \cos\phi$$

= $2R^{2} + 2R^{2} \cos\Delta\phi \cos\phi$ (F-4a)

and

$$H_4^2 = 2R^2 - 2R^2 \cos \Delta \phi \cos \phi. \qquad (F-4b)$$

Also, defining the power imbalance λ^2 by

$$\lambda^2 \stackrel{\Delta}{=} \frac{h_2^2}{h_1^2}$$
,

we can write (F-3) as

$$\cos\Delta\phi = \frac{2\lambda}{1+\lambda^2}$$

or

$$\lambda^2 = \frac{1 - \sin \Delta \phi}{1 + \sin \Delta \phi} \quad \cdot$$

(F-5)

*In binary communication systems, error performance of a correlation receiver (optimum) depends only on the average signal energy $E=(E_0+E_1)/2$ where E_0 and E_1 are energy associated with bits "0" and "1" respectively provided the level of noise spectral density is the same in two inputs and the two input signals are uncorrelated [19, p. 163]. ** This definition of R differs from that used in Appendix H of this report. We note that (F-1) describes H_3 and H_4 in terms of h_1 and h_2 (two different input SNR's), while (F-4) describes the very same parameters by R and $\Delta \phi$ (constant average power and differential phase error). We may call the former a "power imbalance model" (since $h_1 \neq h_2$ in general), and the latter a "phase imbalance model." The important fact is that the two models are equivalent under the constraints of (F-2) and (F-5). A geometrical interpretation will be more instructive in grasping physical understanding of the relationships between the parameters involved.

Let us consider, for simplicity, the case that a "mark" is transmitted; $\phi=\theta_1-\theta_2=\pi$. Then since $\cos\phi=-1$ and $\sin\phi=0$, we may write (F-1) and (F-4) as

$$H_3 = h_1 - h_2$$
 (F-6a)
 $H_4 = h_1 + h_2$ (F-6b)

and

$$H_3 = \sqrt{R^2 + R^2 - 2R \cdot R \cos \Delta \phi}$$
 (F-7a)

$$H_4 = \sqrt{R^2 + R^2 + 2R \cdot R \cos \Delta \phi} . \qquad (F-7b)$$

We now show that the geometry in Figure F-1 satisfies all the relationships given by (F-6), (F-7), and also (F-2) and (F-5). Noting that $\overline{CP}=\overline{EP}=h_1$, we have (F-6a), while (F-6b), (F-7a) and (F-7b)* are obvious from the figure. Equation (F-2) follows from the fact that $\overline{CD}^2=\overline{CP}^2+\overline{DP}^2=h_1^2+h_2^2$; and $\overline{CD}^2+\overline{AD}^2=2\overline{CD}^2=\overline{AC}^2=(2R)^2$. The validity of (F-5) can be shown as follows: $\lambda = \frac{h_2}{h_1} = \frac{\overline{DP}}{\overline{CP}} = \text{tangent of angle DCP} = \text{tan } (45^\circ - \Delta\phi/2).$

* (F-7a) and (F-7b) are from the law of cosines.

Thus

$$\lambda^{2} = \tan^{2}(45^{\circ} - \Delta\phi/2) = \frac{\sin^{2}(45^{\circ} - \Delta\phi/2)}{\cos^{2}(45^{\circ} - \Delta\phi/2)} = \frac{1 - \cos(90^{\circ} - \Delta\phi)}{1 + \cos(90^{\circ} - \Delta\phi)}$$

$$= \frac{1 - \sin\Delta\phi}{1 + \sin\Delta\phi} \quad . \quad (F-8)$$

Equation (F-8) or (F-5) is significant in that it bridges, under the constraints of constant average power (F-2), the gap between the power imbalance model and the phase imbalance model. The relationship between λ and $\Delta\phi$ as a function of the degree of imbalance can also be shown from the figure. When point "P" is close to point "O", we can see that $h_1 \approx h_2 \approx R$ and $\Delta\phi \approx 0$ which represents an ideal situation. As the point "P" moves toward point "D" along the arc OPD, the value of $\lambda = h_2/h_1$ decreases (power imbalance increases) and accordingly $\Delta\phi$ increases. As "P" approaches "D", λ becomes zero (large power imbalance) and $\Delta\phi$ becomes 90°. Thus we can see that change of λ from 1 to 0 corresponds to change of $\Delta\phi$ from 0° to 90°.

APPENDIX G

COMPUTER PROGRAM LISTING FOR ERROR RATE PERFORMANCE OF DPSK OVER HARD-LIMITING SATELLITE LINK WITH POWER IMBALANCE AND CORRELATED NOISE AT THE PHASE DETECTOR

A STATE OF A

				Unit	. 19036	10/55/5/	PAGE 0001
	C CTMP	UTE PIE) FOR	HART LINITER DPS	K BY NUPERI	CAL INTEGRATI	ICN.	
C001	D J 1 DF	MENSION RUSO	DB(16), KDSODP(3),	FAC(53),8(53	3). V1(53). V2	53).	
C002	RI	AL OR RETPIST	1.71(51).72(51)			16,3,21	
CCC3	DE	TA P1/3.1415	9264/				
0004	(1	IL FCTRL (FAC					
0005	NO	PNT=51					
6006	NP	TS2=2#INDPNT	-11				
0007	NZ	NODNI-2					
0008	DE	IR.2. #PI/FID	AT (NODAT-11				
0009	03	ADELA/3	arthorn 1-11				
	C	NUM-NUMBER O	TERME				
0010	NI	H=50	I TERAS				
0011	EF	P=1E-4					
0012	BOCC DE	AD/6 301 END					
0012	9000 RE	ND-10 DALEND	THU, RAMUUE .	NFD.NKU			
0014		AND-CODTIDAM	008/10.1	•			
0015		AM-1 ADAMD					
0016	Dr.	ADIE 333 END	- 0000 10000000 0100				
6010	PE	ADIE 302 END	- 4998 JIRUSOUF (IN)	.IN=J. NPUJ	allow when an	-	
018	NC.	10 11-1 NDU	* 9998 J (RUSUDE (IN)	. IN= 1 , NKU)			
0019	PU	10 11-1,NKU					
0070	C.	11 DENETINDE					
0021	16	INDOF SO CLO	ATTONP ISZ, DELE , RUS	W.DENS.WURK 1	WUPK2 .KODE		
0022	U.C.	ITE /4 3051 W	010798	1			
0022		TO 10,2021 K	UVE				
6024	906 14	057-1					
0025	101 00	PHO-1 APHO					
0026		PHO-1 -PHO					
0027		P2-1 -PHOAPHI					
0078	PHI	02-3 /000H0	0				
0029		LL ADDY (CHD)					
0030	(2)	-OPONOAODONO	IONEND IONENO				
0031		ADDAILS	21				
0032	00	11 11=1.NPD	.,				
0033	PD	50-10. ARIPDS					
0036		POSCAPPIAR/DI	wp3				
0035	(1)	- 25 BONEHOER	SOCIELAN (ODENO				
6636	Y	7. SPHOS CPAND	+PDSO/DVE2				
0037		2. ESPAND /ODI	AM				
0038		I APPYICS					
0039		I COCENINODI	T OFIE V 7 DEVD				
	CSIMM	TIONS	ATTELETTTE FEAF				
C040	SIN	HaD.					
C041	00	20 # 1+ 1. MUM					
042		1-1					
C043	Suit						
C044	00	25 1 1+1-11					
0045	11	1-1					

Contraction of the second s

FCFTRAN	JV G	LFVEL	21	MAIN	DATE = 79038	16/55/57
0047			DI: 30 J1=1			
6048			J=J1-1			
C049		30	SUNJ=SUPJ+	FAC(K-J+1)/FAC(K-L+1)	/FAC(L-J+1)+B(J+1)	
C050			DD 40 N=1.	NDPN1	c .	
0051			710-1.			
C052			1F (TINT. FO. OTC. AND	C. (1)710-71 (N)	
6043			720-1.	Traffic Croit Campir -Lit	CICITZIF-TI (M) COLK-LI	-
C054			1F(.NOT.()	ZINI. FO. COC AND . FC	(11720-72/N1#4	
0055	1000		FINISPETD	N 1 = 7 1 D = 7 26 + 0 = 1 5 (A-1)	CITEP-TECHICOL	
00.5			INDSON'S PI	HE NUMERICAL INTECONT	104	
			(11-1-D34/F	ALL NUMERICAL INTEGRAT	11 M	
0057			15 (NOPNI I	E 4100703		
			SI-O	1.4700105		_
00.0			57-5/71			
0040			52			
0000			51-51AE/11	ic e c		
0047			51-51-5111			-
0013			52-52 +F 11 +			
0044	-		CUNTINUE			
0004			SINI=03+(F	(1)+2.+51+4.+52+F(N))		
COES		3	CUNTINUE			
COCC			TERML=V2(L	+ 1) / FAC (K -L+1) / FAC(L +	11#SUMJ#2.#SINT	
ccer			SUML = SUML 4	TERML		
0068		25	CUNTINUE			
COCY			TERMK=AICH	ATTESONE		-
6070			SUM=SUM+TE			
	-		IE CHODING			-
			TEND. SEA			
1.00			UBITEIA			-
****		000	WRITELD.Z	COSTR , RATIC, IEFP		
0073		20	CONTINUE	TRI.LE.EFFELES(SUM))G	C1022	
0074		20	UNITE IA 30	4 10100		
0074			ANC- SALL			_
0075		"	AN3	THUI TEAP (-A) SUN		
0070			001(11,33,	INDEAJEANS		_
0077			10011111.3	J, INDEA JOK		
0078			LUNITAUE			
0019			IF CIMUCASE	0.21601012		
0000	-	-	INDEX-3	0.1001010		
COE 2			INDEA-2			
0052			KHUI-KHU			
OCE 3			6010 101			
0004		12	PHU=-KHU			
0085		10	CUNTINUE			
6080			IF TRHU.NE .	0.101 10102		
		L SI	PELJAL CASE	RHU=0.		
CCHI			DC 110 KOP	1-1, . KU	and the second second second second	
0082			00 110 KOP	IATI NEO		
0089			TUUTTROPY	,RUPJA,2)=ICUTT(KOPY,	K(P14,1)	_
6640			DUT (KOPY.K	OF 1 . 2) = DUT (KOPY . KOP)	A,1)	

PAGE 0002

the second second

FOFTRAN	1V (LEVEL	21	PAIN	DATE . 79038	16/55/57	PAGE 0003
0091		110	OUT (KOPY .K	0P14.3)=017(KOPY.KOP1			
0052			6010 103				
6093		102	DC 120 140	-1.NPU			
CC94			DD 120 140	-1.NRD			
0095		120	OUT (TAU. TA	D.3)=0.5+(DUT(1AU.1AD	.1)+DUT(1AU.1AD.2))		
0096		103	00 50 100-	.NED			
0097			WE ITE 16.20	S) RHD-RAMODA .RDSODB (100) . (RUSODB(10).		
			10UT(10.100	.1).10011(10.100,1).0 .3).10=1.NFU)	UT(10,100,2),10UTT(10,10	DD.2).	
9600		50	CONTINUE		and the second s	and the second	
0099			GC10 9000				
		C P	REMATURE ED	F EXITWEITE MESSGE.	STOP		
0100		9998	WRITE (6.2C	7)			
		C F	ORMAT STATE	MENTS			
		C203	FORMATCIX	"K=".13.3K. "RATIO. T	ME P(F) = 1.192F15.61		
[212		204	FORMAT(. E	RPDR TEST NOT SATISFI	ED IN TEPHS		
0162		205	FORMAT(. E	RRDR CODE = . 14)			
0103		206	FORMAT(///	* RHD = *. F5. 2.51. "LAM	PD4642 = +. F5.2. * DB*.51		
			20043.5	.F5.1. DE'/' SNE (UPL	INK) (DB) . 125. PIE/SPAC	F)*.740.	
			C'TERMS'.15	0. "P(E/MARK)". 165. "TE	RMS*. T77. "P(E)"/16(61.0F	F5.1.125.	
			#1PE11.4.14	1.13.15C. 1PE11.4.166.	13.175.1PF11.4/11		
0104		207	FORMAT(* 1	SUFFICIENT DATA ENTE	RED. ')		
C105		301	FORMAT12F5	.1.2131			
0106		302	FORMAT(16F	5.1)	the second second second second second		
0107		9999	STOP				
0108			END				

FOFTRAN.	11	. 1	EVEL	21	FCTRL	DATE	- 70038	16/55/57	PIGE	0001
(001				SUPROUTINE FETALEX						
0002				DIMENSION X(53)						
0003				A(1)=1.						
0005				DO 10 J=3.53						
0006		1	0	X(J)=X(J-1)*(J-1)				the second	-	
C007				RETURN						
8000				END		•				

State of the state

FCPTRAN	14 C	LEVEL	21	APPY	DATE	= 7º03P	16/55/57	PAGE	1000
(000			SUFROUTINE AR	RY(C1.V1)					
2333			DIMENSION VIC	531			and an and a second		
CCC3			¥1(1)=1.						
C004			00 10 1-2.53						
C005		10	V1(1)=V1(1-1)	•()					
0006			RETURN				and the second s		
0007			END						
and the second second				and a set of the set o					

FOFTPAN	14	6	LEVE	L 21	COSEN	DATE	- 79038	16/55/57	PAGE	0001
cccs				SUF ROUT I	NE COSENINUPRI, DELB, Y, Z,	FEXP, 71, 27	,			
0002				RFAL#8 PI	EXP(NOPNT), 21(NOPNT), 77(NOPNT), PE1/	A, DCPETA. IM	41		
(((3				00 10 1-1	,NOPN1					
0004				121=1-1						
0005				BETA-DEL	41M1					
0006				DCPFTA=DO	OS (BETA)					
C007				REXP(1)=	DEXP(YOCRETA)					
6000				21(1)=1.0	DC+2+DCBETA					
CCCS				72(1)=1.0	DO-Z*DC BETA					
0010			10	CONTINUE				the second second second second second second second		
0011				RETURN						
C012				END						

ORTRAN J		21	FINST	DATE .	79038	16/55/57	PAGE	000
1001		SUBROUTINE DEN	STENCENT,NPTS2.DELP	FT.RUSO.PEN	5. 5NN . P . KOD	r)		
500		DIMENSION SNN(NPTS2), E(NPTS2), DEN	S(NOPNT)				-
004		KODE=0	52057 . INUPI70.20510	- 30/27,11-50	134.4164110	17		-
005		RU-SORT (RUSC)						
006		RUSON=-RUSO						
007		PP=2.0RU						
ove	C CEN	ERATE TABLE DE	B (M)					
009		et1)=PB+GF+DNE	F1(.5.2., RUSCN)		-			
010		NP153=NP152-1				SEE APPEND	TYT	
011		DC 850 18=3.NP	153.2					
013		PE=PBeRUSC/(Fe	(F-1.))		-	FUR LISTIN	16	
014		GP=GB+F+.5				OF FUNCTIO	DN	
115	850	P(1B)=PB#GP#ON	EF1(FC.5,F+1.,RUSON	,		SUBPROGRAM ON	IEF1.	
017		PE=2.			L			
810		GF=1.			_			
019		DC 860 18=2.NP	152.2					
021		PP=PB+RUSC/(F+	(F-1.))					
072		GE=GR#F#.5						
023		B(1B)=PE+GE+DN	EF1 (F#.5,F+1.,RUSON)				
025	000	DE 700 18FTA=1	NOPNT					
026		JEMJ=IBETA-1						
027		BETA=DELBET#18	M]					
028	C GEN	FRATE TABLE DE	SIN(PEFFTA)					
029		DC 701 15U=1,N	PTS2					
030		F=1SU						
C32	101	SUM=0.	PEETA)					
033		COEF=TWOP1-BET	·					
034		DC 600 M=1,100						
036		BETAM=FM#PETA						
037		TERM== (H) += (H)	.5+ COFF+C OS (BETAM)-SNN(M)/FM)			
038		SUM=SUM+TERM	-					
040	600	CONTINUE		0055				
041		WEITE (6,2)						
042	2	FORMAT(* FIPST	SUP DID NOT CONVER	GE.")				
044		RETURN			-			
045	630	P=P+SUM						
040		SUMMED.						
048		DC 500 #=1,100						
FTRAN I	V G LEVEL	21	DENST	DATE .	79038	16/:5/57	FAGE	0002
049		FP=M						
050		PHIM=-PHIM						
C: 1		SOM FMEFM						
	C HAN	TELE N=O SPECIAL	LY					
053		N=0						
054	·	SUMN=SNN(M)/FM						
055	- 30	1F (M.EQ.1)GOTO	5 3 0					
056		PHIN=1.						
057		MM1=H-1						
050		FA-N						
060		SON=FNOFN						
Cf 1		PP]N=-PH]N						
063		TEPHN=B(N)=FF1	NO(SPZP-FNOSNN(N))/	(SOM-SON)				
064		SUMN= SUMN+TERM	N					
	400	CONTINUE	A CIINN					
067	550	SUPH=SUMM+TERM	C SUPN					
068		IF CABS(TERM).L	E.AES(SUPP)#1E-5160	10540				
069	500	CONTINUE						
071	. 3	FERMAT(COUNT	E SUN CID NOT CONVE	FGE . *)				
072		KODE I BE TA						
073		RETURN						
075	540	P=P/TPSO						
076		IFIP.LT.IE-7)P	•0.					
077		DENS(IBETA)=P						
079	100	RETURN						
080		END						

APPENDIX H

ERROR BEHAVIOR OF A BINARY DPSK SYSTEM DUE TO INTERSYMBOL INTERFERENCE AND CORRELATED NOISE*

It is well known that the classical result of the error probability for differentially coherent detection of binary PSK applies only to the ideal situation where the received symbol signal energy from pulse to pulse is assumed <u>equal</u> and the noises at the sampling instants <u>uncorrelated</u>. The purpose of this appendix is to show the error behavior of a differential phase shift-keying (DPSK) system under practical assumptions where the signal powers at sampling instants between the adjacent pulses are <u>unequal</u> and the noises <u>correlated</u>. Error performance is presented graphically for different levels of power imbalance. A significant result observed is that the probability of error is independent of noise correlation for all degrees of intersymbol interference (power imbalance). This result (based on our computations) is clearly a departure from the previous beliefs.

ANALYSIS MODEL

The binary DPSK system under consideration is depicted in Figure H-1. The primary objectives of this appendix are the considerations of the error performance calculations under the assumptions where $(SNR)_1 \neq (SNR)_2$ and the noises $n_1(t)$ and $n_2(t)$ are statistically dependent (see Figure H-1). The situation where $(SNR)_1$ is different from $(SNR)_2$ is brought about by unequal signal powers at the phase detector of the DPSK demodulator, due to

^{*} This appendix is based largely on [5] with a change in the definition of the SNR parameter. Minor typographical errors in [5] have also been corrected.

SAMPLING DECISION FILTER BLOCK DIAGRAM OF BINARY DPSK SYSTEM UNDER CONSIDERATION y(†) ZONAL LOWPASS FILTER $E\{n_{1}(t) n_{2}(t)\} = \sigma^{2}\rho(T)$ MODULATOR $u_{2}(t) = s_{2}(t) + n_{2}(t)$ (SNR)₂ X(E) $-u_{l}(t) = s_{l}(t) + n_{l}(t)$ PHASE DETECTOR (MULTIPLIER) DIFFERENTIAL ENCODER BIT (SNR) GAUSSIAN NOISE G(0,02) FIGURE H-1 BINARY DATA SOURCE BANDPASS FILTER

and the second

A TANK A TANKA A TANKA

J. S. LEE ASSOCIATES, INC.

H-2

+

such phenomena as intersymbol interference, phase errors in the delay circuit and/or delay circuit attenuation. Thus, the error performance analysis based on the unequal signal powers over two consecutive symbol signal pulses would constitute an upper bound of error probability in the presence of intersymbol interference. The noise correlation is a practical assumption since the noise is necessarily bandlimited in practice.

In Figure H-1, the two inputs at the phase detector (multiplier), $u_1(t)$ and $u_2(t)$, represent the noisy received waveforms for two consecutive source symbols:

$$u_1(t) = S_1(t) + n_1(t)$$
 (H-1)

$$u_2(t) = S_2(t) + n_2(t)$$
 (H-2)

where $S_i(t)$, i=1,2, are the bandpass information carrying signals; and $n_i(t)$, i=1,2, bandpass noises. Assume that the "present" and the "preceding" source symbols are identified with carrier phases θ_1 and θ_2 , respectively. Then we may write

$$S_{1}(t) = \sqrt{2P_{1}} \cos (\omega t - \theta_{1})$$
(H-3)

$$S_{2}(t) = \sqrt{2P_{2}} \cos [\omega(t-T) - \theta_{2}]$$

$$= \sqrt{2P_{2}} \cos (\omega t - \theta_{2})$$
(H-4)

where the carrier frequency is assumed to be chosen such that $\omega T = 2\pi k$, k integer, and P₁ and P₂ are the carrier powers at the phase detector. We shall be primarily concerned with the case where P₁ \neq P₂.

The bandpass Gaussian noises are expressed in the forms:

$$n_{1}(t) = X_{1}(t) \cos \omega t + Y_{1}(t) \sin \omega t$$
(H-5)

$$n_{2}(t) = X_{1}(t-T) \cos [\omega(t-T)] + Y_{1}(t-T) \sin [\omega(t-T)]$$

$$\equiv X_{2}(t) \cos \omega t + Y_{2}(t) \sin \omega t$$
(H-6)

and the noise correlation is defined by

$$E\{n_1(t)n_2(t)\} = E\{n_1(t)n_1(t-T)\} = \sigma^2 \rho(T)$$
(H-7)

where $\rho(T)$ is the normalized correlation with T equal to symbol duration, and the noise power is given by

$$\sigma^{2} \triangleq E\{n_{1}^{2}(t)\} = E\{X_{i}^{2}(t)\} = E\{Y_{i}^{2}(t)\}; i=1,2.$$
 (H-8)

The decision variable Y(t) at time t is the output of the zonally low pass filtered version of

$$X(t) = u_{1}(t) \times u_{2}(t)$$

= $[\sqrt{2P_{1}} \cos (\omega t - \theta_{1}) + X_{1}(t) \cos \omega t + Y_{1}(t) \sin \omega t]$
. $[\sqrt{2P_{2}} \cos (\omega t - \theta_{2}) + X_{2}(t) \cos \omega t + Y_{2}(t) \sin \omega t]$. (H-9)

Since $\theta_1 - \theta_2$ is either 0 or $\pm \pi$ in a binary DPSK system, the binary decision is based on the comparison of the decision variable Y(t) with "zero" threshold, for, when noises are assumed to be absent at the input, the decision variable is given by

$$Y(t) = \sqrt{P_1 P_2} \cos \left(\theta_1 - \theta_2\right). \tag{H-10}$$

DECISION VARIABLE STATISTICS

The problem of obtaining the probability density function (pdf) of the lowpass filter output for the system model that fits our situation, depicted in Figure H-1, was solved by Miller and Lee [4] in great generality. Our need here is a special case of the problem treated in [4] . From [4, eq.(25)] we have the pdf for the decision variables y(t) as follows:

$$f(y;\rho|\theta_{1}-\theta_{2}) = \frac{1}{\sigma^{2}} \exp\left[-(H_{3}^{2}+H_{4}^{2})\right] \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \frac{1}{m!} \left[\frac{1}{2}(1-\nu)H_{3}^{2}\right]^{m} \frac{1}{n!} \left[\frac{1}{2}(1+\rho)H_{4}^{2}\right]^{n} \\ \cdot \left\{ \exp\left[\frac{-2y}{\sigma^{2}(1+\rho)}\right] G_{m}^{n} \left[\frac{4y}{\sigma^{2}(1-\rho^{2})}\right], y \ge 0 \\ \exp\left[\frac{2y}{\sigma^{2}(1-\rho)}\right] G_{m}^{m} \left[\frac{-4y}{\sigma^{2}(1-\rho^{2})}\right], y < 0 \end{cases}$$
(H-11)

where

$$H_{3}^{2} \stackrel{\Delta}{=} \frac{1}{2(1+\rho)} \left[h_{1}^{2} + h_{2}^{2} + 2h_{1}h_{2}\cos(\theta_{1} - \theta_{2}) \right]$$
(H-12a)

$$H_{4}^{2} \stackrel{\Delta}{=} \frac{1}{2(1-\rho)} \left[h_{1}^{2} + h_{2}^{2} - 2h_{1}h_{2}\cos(\theta_{1} - \theta_{2}) \right]$$
(H-12b)

$$S_m^n(z) \stackrel{\Delta}{=} \sum_{k=0}^m \binom{m+n-k}{n} \frac{z^k}{k!}$$
(H-12c)

and where

$$h_i^2 \stackrel{\Delta}{=} \frac{P_i}{\sigma^2} \equiv (SNR)_i; i=1,2$$
 (H-12d)

and P_i , σ^2 , $\rho \equiv \rho(T)$, are the signal power, noise power and noise correlation, respectively, as defined earlier.

If we assume that the reference phase θ_2 is 0, then θ_1 is either 0 or π , depending upon whether the symbol following the reference symbol is 0 (space) or 1 (mark), so that $\theta_1 - \theta_2 = 0$ or $\theta_1 - \theta_2 = \pi$. The conditional pdf's are thus obtained as follows:

$$f(y;\rho|space) = f(y;\rho|\theta_1 - \theta_2 = 0) \qquad (H-13a)$$

 $f(y;\rho|mark) = f(y;\rho|\theta_1 - \theta_2 = \pi).$ (H-13b)

CONDITIONAL ERROR PROBABILITIES

From (H-13a) and (H-13b) one can obtain the conditional probabilities of error from the expressions

$$P(e;\rho|space) = Prob\{y<0|\theta_1-\theta_2=0\} = \int_{-\infty}^{\infty} f(y;\rho|\theta_1-\theta_2=0) dy \quad (H-14a)$$

and

$$P(e;\rho|mark) = Prob\{y>0|\theta_1-\theta_2=\pi\} = \int_0^\infty f(y;\rho|\theta_1-\theta_2=\pi)dy.$$
 (H-14b),

Carrying out the integrations indicated by (H-14a) and (H-14b) using the density functions given in (H-11), one obtains the following results:

$$P(e;\rho|space) = \frac{1-\rho}{2} \exp\left[-\frac{1}{1-\rho^2} (h_1^2 + h_2^2 - 2\rho h_1 h_2)\right]$$

$$\cdot \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \sum_{k=0}^{n} \frac{2^{-(m+n)}}{m!n!} \binom{n+m-k}{m}$$

$$\cdot \left[\frac{1}{2} \left(\frac{1-\rho}{1+\rho}\right) (h_1 + h_2)^2\right]^m \left[\frac{1}{2} \left(\frac{1+\rho}{1-\rho}\right) (h_1 - h_2)^2\right]^n \binom{2}{(1+\rho)^k} (H-15a)$$

and

$$P(e;p|mark) = \frac{1+p}{2} \exp\left[-\frac{1}{1-p^2} \left(h_1^2 + h_2^2 + 2ph_1h_2\right)\right]$$
$$\cdot \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \sum_{k=0}^{m} \frac{2^{-(m+n)}}{m!n!} \binom{m+n-k}{n}$$

$$\cdot \left[\frac{1}{2}\left(\frac{1-\rho}{1+\rho}\right)(h_1 - h_2)^2\right]^m \left[\frac{1}{2}\left(\frac{1+\rho}{1-\rho}\right)(h_1 + h_2)^2\right]^m \left(\frac{2}{1-\rho}\right)^k \cdot (H-15b)$$

It is interesting to observe a "symmetry" property of

 $P(e;\rho|space) = P(e;-\rho|mark). \qquad (H-16)$

ERROR PROBABILITY EXPRESSIONS

To compute the error rates using the equations (H-15a) and (H-15b), we need to define an important variable. In a DPSK system, a single symbol decision is made using two symbols. Since we are considering a situation where each symbol signal energy is not equal (due to intersymbol interference, for example), it is appropriate to define the signal-to-noise power ratio per pulse (or symbol) as follows:

$$R^2 = h_1^2$$
 = direct channel SNR. (H-17)

when $h_1^2 = h_2^2$ (a classical case), there is no difference between this definition and the conventional SNR definition per symbol.

Define, further, an SNR difference measure by

$$\lambda^{2} = \frac{h_{2}^{2}}{h_{1}^{2}} = \frac{(SNR)_{2}}{(SNR)_{1}}.$$
 (H-18)

In terms of R^2 and λ^2 , the conditional error probabilities of (H-15a) and (H-15b) are given by

$$P(e;\rho;\lambda|space) = \frac{1-\rho}{2} \exp\left[-\frac{R^{2}}{1-\rho^{2}}\left(1+\lambda^{2}-2\rho\lambda\right)\right]$$

$$\cdot \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \sum_{k=0}^{n} \frac{2^{-(m+n)}}{m!n!} \binom{n+m-k}{m} \binom{1-\rho}{1+\rho}^{m-n}$$

$$\cdot \left[\frac{1}{2} (1+\lambda)^{2}\right]^{m} \left[\frac{1}{2} (1-\lambda)^{2}\right]^{n} \binom{2}{1+\rho}^{k} (R^{2})^{m+n} \qquad (H-19a)$$

and

Ρ

$$(e;\rho;\lambda|mark) = \frac{1+\rho}{2} \exp\left[-\frac{R^{2}}{1-\rho^{2}}\left(1+\lambda^{2}+2\rho\lambda\right)\right]$$

$$\cdot \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \sum_{k=0}^{m} \frac{2^{-(m+n)}}{m!n!} {m+n-k \choose n} \left(\frac{1-\rho}{1+\rho}\right)^{m-n} \left[\frac{1}{2}(1+\lambda)^{2}\right]^{m} \left[\frac{1}{2}(1-\lambda)^{2}\right]^{n} \left(\frac{2}{1-\rho}\right)^{k} {R^{2}}\right]^{m+n}. \quad (H-19b)$$

The total unconditional probability of error is the weighted sum of (H-19a) and (H-19b) given by

$$P(e;\rho;\lambda) = P_{S}P(e;\rho;\lambda|space) + P_{M}P(e;\rho;\lambda|mark)$$
(H-20)

where P_{S} and P_{M} are the <u>a priori</u> probabilities of space (0) and mark (1).

ERROR BEHAVIOR UNDER SPECIAL CONDITIONS

If
$$\lambda^2 = 1$$
 is substituted into (H-19a) and (H-19b), we obtain
P(e;p|space) = $\frac{1-\rho}{2} \exp(-R^2)$ (H-21a)

$$P(e;\rho|mark) = \frac{1+\rho}{2} exp(-R^2)$$
 (H-21b)

and the unconditional error probability of (H-20) becomes

$$P(e;\rho) = \frac{1}{2} \left[1 + (P_{M} - P_{S})\rho \right] e^{-R^{2}}.$$
 (H-22)

This is the identical result given by Lee and Miller [7]. The significance of the result given by (H-22) is that the probability of error depends on noise correlation ρ only if <u>a priori</u> probabilities are unequal. When $P_S = P_M = \frac{1}{2}$, (H-22) reduces to the classical error rate expression of $P(e) = \frac{1}{2}e^{-R^2}$.

Now, let us assume that mark and space are equi-probable: $P_M = P_S = \frac{1}{2}$. When one observes the conditional probabilities of error as given in (H-19a) and (H-19b), it appears certain that the total unconditional probability of error given in (H-20) still depends upon noise correlation p. In fact, it has been remarked in the previous publications [6], [7] that the error probability of a binary DPSK system depends on the correlation if there is intersymbol interference and that, in the absence of intersymbol interference, the error probability is independent of the noise correlation provided that $P_M = P_S = \frac{1}{2}$.

We have computed the probability of error expression (H-20) with $P_M = P_S = \frac{1}{2}$ for various values of λ^2 (different degrees of intersymbol interference) and ρ . We have observed the surprising results that the computed probabilities are independent of noise correlation ρ for all values

H-8

of λ^2 considered! The conditional probabilities, however, were dependent upon noise correlations. When these conditional error probabilities were added with equal weighting $(P_M = P_S = \frac{1}{2})$, the result converged to the values of error probability for the case p=0. To show the error mechanism, we have plotted in Figures H-2 and H-3 some specific cases of conditional error probabilities. Figure H-4 shows the error probabilities of a DPSK system for $\lambda^2 = 0$ dB (no intersymbol interference), -1 dB, -2 dB, and -3 dB. Note that $\lambda^2 = 0$ dB corresponds to the ideal classical case. Our results indicate that the probability of error for a binary DPSK system depends on noise correlation p only when the message symbol probabilities are unequal. Whenever the prior probabilities are equal the error rate is independent of noise correlation whether or not there is intersymbol interference. As stated earlier, this is a departure from the previous beliefs. It must be stressed, however, our findings are based on the computational results. The mathematical complexities of the error rate expressions did not lend themselves to an analytical verification of the computational results observed.

ALTERNATE FORMS FOR THE ERROR RATE EXPRESSIONS

The error rate expression in (H-19a) and (H-19b) may be written in several alternate forms. First, we can use the relation

$$\binom{n+m-k}{m} \stackrel{\Delta}{=} 0, \ k>n \tag{H-23}$$

to replace the finite upper limit of the summation over k in (H-19a)and (H-19b) by infinity. If we then let l=n-k in (H-19a) we obtain

H-9

「日本の一日本

FIGURE H-2 INFLUENCE OF NOISE CORRELATION ON CONDITIONAL ERROR PROBABILITIES FOR POWER IMBALANCE $\lambda^2 = -1$ dB

FIGURE H-3 INFLUENCE OF NOISE CORRELATION ON CONDITIONAL ERROR PROBABILITIES FOR POWER IMBALANCE $\lambda^2 = -3$ dB

INFLUENCE OF POWER IMBALANCE (DUE TO INTERSYMBOL INTERFERENCE) ON PROBABILITY OF ERROR

$$P(e;\rho,\lambda|space) = \frac{1-\rho}{2} exp\left[-\frac{R^2}{1-\rho^2}(1+\lambda^2-2\rho\lambda)\right]$$
$$\cdot \sum_{m=0}^{\infty} \sum_{k=0}^{\infty} \sum_{\ell=0}^{\infty} \frac{1}{m!(k+\ell)!} {m+\ell \choose m} \left[\frac{R^2}{4} \left(\frac{1-\rho}{1+\rho}\right)(1+\lambda^2)\right]^m$$

$$\left[\frac{R^2}{4}\left(\frac{1+\rho}{1-\rho}\right)(1-\lambda)^2\right]^{\ell+k}\left(\frac{2}{1+\rho}\right)^k.$$
 (H-24)

A similar form can also be obtained from (H-19b) for the case of a mark being transmitted; for brevity we will not go into the details of that case in the following discussions.

Interchanging the order of summations over k and L in (H-24), the summation over k is recognized as a confluent hypergeometric function:

$$\sum_{k} = \frac{1}{\ell!} {}_{1}F_{1} \left[1; \ell+1; \frac{R^{2}}{2} \frac{(1-\lambda)^{2}}{1-\rho} \right] . \qquad (H-25a)$$

Applying Kummer's transformation [10, eq. 13.1.27] to (H-25a), we obtain

$$\sum_{k} = \frac{1}{2!} \exp\left[\frac{R^{2}}{2} \frac{(1-\lambda)^{2}}{1-\rho}\right]_{1} F_{1}\left[2;2+1;-\frac{R^{2}}{2} \frac{(1-\lambda)^{2}}{1-\rho}\right]. \quad (H-25b)$$

We next interchange the order of the summations over \mathfrak{l} and \mathfrak{m} and recognize the summation over \mathfrak{m} as a confluent hypergeometric function:

$$\sum_{m} = {}_{1}F_{1}\left[\ell+1;1; \frac{R^{2}}{4}\left(\frac{1-\rho}{1+\rho}\right)(1+\lambda)^{2}\right], \qquad (H-26a)$$

Applying Kummer's transformation [10, 13.1.27] to (H-26a) we find that (H-26a) can also be written as a Laguerre polynomial [10, 13,6.9]:

$$\sum_{m} = \exp\left[\frac{R^2}{4}\left(\frac{1-\rho}{1+\rho}\right)(1+\lambda)^2\right] L_g\left[-\frac{R^2}{4}\left(\frac{1-\rho}{1+\rho}\right)(1+\lambda)^2\right]$$
(H-26b)

H-13

Using (H-25b) and (H-26b) in (H-24) we find the alternate form

$$P(e;\rho,\lambda|\text{space}) = \frac{1-\rho}{2} \exp\left[-\frac{R^2}{4}(1+\lambda)^2\right] \sum_{k=0}^{\infty} \frac{1}{k!} \left[\frac{R^2}{4}\left(\frac{1+\rho}{1-\rho}\right)(1-\lambda)^2\right]^k L_k \left[-\frac{R^2}{4}\left(\frac{1-\rho}{1+\rho}\right)(1+\lambda)^2\right] + \frac{1}{1} \left[\frac{R^2}{2}(1+\lambda)^2 - \frac{R^2}{2}\left(\frac{1-\lambda}{1-\rho}\right)^2\right] + \frac{1}{1} \left[\frac{R^2}{2}(1+\lambda)^2 -$$

Similarly for mark we can derive the form

$$P(e;\rho,\lambda|mark) = \frac{1+\rho}{2} \exp\left[-\frac{R^2}{4}(1+\lambda)^2\right] \sum_{k=0}^{\infty} \frac{1}{k!} \left[\frac{R^2}{4}\left(\frac{1-\rho}{1+\rho}\right)(1-\lambda)^2\right]^k L_{g}\left[-\frac{R^2}{4}\left(\frac{1+\rho}{1-\rho}\right)(1+\lambda)^2\right]$$
$$\cdot {}_{1}F_{1}\left[k;k+1; -\frac{R^2}{2}\frac{(1-\lambda)^2}{1+\rho}\right]. \qquad (H-27b)$$

The forms (H-27a) and (H-27b) are more computationally efficient than (H-19a) and (H-19b) and are the forms implemented in the computer program listing contained in Appendix I.

Returning to (H-24), we can write another alternate form for the error rate expressions. Using the relation [2, eq. A.1.44c]

$$n! = (1)_n$$
 (H-28)

where $(z)_n$ is Pochhammer's symbol [10, eq. 6.1.22] the triple summation in (H-24) can be recognized as a confluent hypergeometric function of three variables [16, eq. 2.13] and we find that

$$P(e;\rho,\lambda|space) = \frac{1-\rho}{2} \exp\left[-\frac{R^2}{1-\rho^2} (1+\lambda^2-2\rho\lambda)\right] \, {}_{3}\Phi_{F}^{(3)}(1,1,1;1,1,1;X_{s},Y_{s},Z_{s})$$
(H-29a)

where .

$$X_{s} = \frac{R^{2}}{4} \left(\frac{1-\rho}{1+\rho} \right) (1+\lambda)^{2},$$
$$Y_{s} = \frac{R^{2}(1-\lambda)^{2}}{2(1-\rho)} ,$$

and

$$Z_{\rm s} = \frac{R^2}{4} \left(\frac{1+\rho}{1-\rho} \right) (1-\lambda)^2 .$$

Similarly we can derive the other case

$$P(e;p,\lambda|mark) = \frac{1+p}{2} \exp\left[-\frac{R^2}{1-p^2} (1+\lambda^2+2p\lambda)\right]_{3} F^{(3)}(1,1,1;1,1,1;X_m,Y_m,Z_m)$$
(H-29b)

where

$$X_{\rm m} = \frac{R^2}{4} \left(\frac{1+\rho}{1-\rho}\right) (1+\lambda)^2,$$
$$Y_{\rm m} = \frac{R^2(1-\lambda)^2}{2(1+\rho)},$$

and

$$Z_{m} = \frac{R^{2}}{4} \left(\frac{1-\rho}{1+\rho}\right) (1-\lambda)^{2}.$$

The forms (H-29a) and (H-29b) are more compact than other notations, but their full analytical importance is unknown at this time since the mathematical properties of these functions have not been fully explored.

CONCLUSIONS

In this appendix we have presented the error behaviors of a binary DPSK system under influences of intersymbol interference and noise correlations. The graphically presented error probability curves are applicable to system performance evaluations when SNR imbalance at the phase detector is known. Our results show that in a DPSK system, the error probability does not depend on noise correlation when the symbol probabilities are equi-probable regardless whether there is intersymbol interference or not. The noise correlation affects the error probability only when the message symbol probabilities are unequal.

APPENDIX I

COMPUTER PROGRAM LISTING FOR ERROR RATE PERFORMANCE OF DPSK OVER A TERRESTRIAL LINK WITH POWER IMBALANCE AND CORRELATED NOISE AT THE PHASE DETECTOR

DRTRAN	IV G LEVE	21	MAIN	DATE - 79040	08/53/58	PAGE 0001
0001		IMPLICIT R	EAL +81 A-H.L.D-21			
0002		DIMENSION	RSOLISIIO			
0003	1000	READ(5.1.E	ND=9000) RHO.LSODB.NRS	0		
0004	1	FORMAT12FS	.1.13)			
0005		READI 5.200	I) IRSOLISIINPL.INP+1.N	RS Q)		
0006	2001	FORMATILEF	5.1)			
0007		WRITEIS.2)	RHD.LSODB			
0008	2	FORMATI///	* RHO= *. F5. 1.5% .* LANBD	A++2='.F5.1.' DB'/		
		** R++2 1DB	1. T23. PIEI'. T40. PIE	MARKI . TOD. PLEISPACE	•••	
0009		150-101++1	LSODB/1D1)			
0010		LAMBDA=DSO	RTILSO			
0011		OPRHD=1D0+	RHO			
0012		OMRHD=100-	RHO			
0013	and a construction of	OPDOM=UPRH	D/DNRHD			and the second s
0014		OH DOP= DARH	D/OPRHO			
0015		OPL=1.D0+L	ANBOA			
0016		OPL2=OPL+O	PL	•		
0017		DHL=1.00-L	AMBDA			
0018		OHLZ=OHL+O	ML			
0019		DD 900 1RS	= 1 . NRS 0			
0020		RSODB=RSOL	ISCIRSI			
0021		R 50= 101++1	RSQDB/1011			
0022		XARG=-0.25	CO*RSQ+OPL2			
0023		TP =. 2500 0	HCOP+OHLZ+RSQ			
0024		TN=.2500+0	POOM+UNL 2+RSQ			
0025		LP=2500+	RSO+OPOON+OPL2			
0026		LN=2500+	RSQ+DHOOP+OPLZ			
0027		FP = 500+R	SQ+ONL 2/OPRHO			
0028		FN=500*R	SQ+OML2/OMRHO			
0029		XX=DE XPI XA	RGI			
0030		CALL DOSUM	(TP.LP.FP.SP)			
0031		PEP=. 500*X	X*OPRHO#SP			
0032		CALL DOSUN	(TN.LN.FN, SN)			
0033		PEN=.500*X	X+ONRHO+SN			
0034		PE =. 500+ (P	EP+PEN)			
0035		WRITE (6.31	RSOCB, PE, PEP, PEN			
0036	3	FORMAT (3X.	F4.1.T20.1PD10.3.T40.1	PD10.3.T60.1PD10.31		
0037	900	CONTINUE				
0038		GOTO 1000				
0039	9000	STOP				
0040		END				

FORTRAN 1	V G LEVE	L 21	DOSUM	DATE = 79040	08/53/58	PAGE 0001
0001		SUBROUTINE	DUSUNIT, ARGL, ARGF, SUN	u		
0002		IMPLICIT RE	AL +8(A-H.L.0-2)			
	C M=	O TERM				
0003		SUM=100				
0004		COEF=100				
0005		TERM=100				
0006		HSTOP=501+0	ABS(T)			
0007		IF INSTOP.LT	- 1021 MSTOP=102			
0008		DU 100 M=1.	MSTOP			
0009		FREM				
0010		FHP: -FH+100)			
0011		CDEF=CDEF=1	T/FMI			
0012		DTERM=TERM				
0013		LG R=LAGERR	N.ARGLI			
0014		DFD=DNEF1(F	M.FMP1. ARGEL			
0015		TERM+COFF+1	GROGED			
0016		SUN=SUN+TEI	M			
0017		TELDARSITER	NI-GT .DARSIDTERNILGOT	0000		
0018		TEIDARSITER	MI .IT .DARS/ SUNIAID-A	0100		
0019	100	CONTINUE		0010200		
0020		WRITE IA. 11.	STOP			
0021		FORMATE! TA	E SUM DED NET CENVER	E. METOR-1. 1101		
0022	•	STOP	a son ore ner centere			
0023	200	RETURN				
0024	200	END				

FORTRAN	1 v	G	LEVEL	21	LAGERR
0001				REAL FUNCTIO	ON LAGERR+BIN.X
0002				IMPLICIT RE	AL+B(A-H. 0-7)
0003				IF(N)1.1.2	
0004			1	LAGERR=100	
0005				RETURN	
0006			2	5=100	
0007			-	IF (1) 3.4.3	
0008		-	3	T=100	
0009				DO 100 Mal-	
0010				A=H	•
0011				T=T+IN-H+100	
0012				T=T+X	
0013				T=-T	
0014				S=S+T	
0015			100	CONTINUE	
0016			4	LAGERR -S	
0017				RETIIRN	
0018				END	

FORTRAN I'V G LEVEL 21

CATE -	79040
--------	-------

08/53/58

PAGE OCO1

PAGE OCOL

FORTRAN I'V G LEV	EL 21	ONEF1	DATE = 79040	08/53/58
0001	REAL FUNCT I	ON ONFE 14814-8-71		
0002	IMPLICIT RE	AL +8(A-H. D-7)		
0003	T= 100			
0004	S=100			
0005	AM1=A-100			
0006	BH1=8-100			
0007	DO 100 1=1.	100		
0008	C=1			
0009	T=T+2/C			
0010	T=T+LLAM1+C)/(BM1+(1)		
0011	S=S+T			
0012	IFIDABSIT/S	-LT. 10-81 GOTO200		
0013 100	CONTINUE			
0014	WRITE(6.1)A	B. Z		
0015 1	FORMATE 1F	11 .D15.8		
	#8 ACCURACY		IJ. O. T NUT EVALUAT	EC TC 10++-
0016 200	ONEF1=5			
0017	RETURN			
0018	END			

ONEF1

I-3

REFERENCES

- J. S. Lee, R. H. French, Y. K. Hong, "Effects of Correlated Noise and Power Imbalance on the Detection of a DPSK Signal Transmitted Through the Hard-Limiting Channel," presented at Tenth Annual Pittsburgh Conference on Modeling and Simulation, April 25-27, 1979 (to appear in conference proceedings).
- [2] D. Middleton, An Introduction to Statistical Communication Theory, New York: McGraw-Hill, 1960.
- [3] T. Mizuno, N. Morinaga, and T. Namekawa, "Transmission Characteristics of an M-ary Coherent PSK Signal Via a Cascade of N Bandpass Hard Limiters," <u>IEEE Trans. on Commun.</u>, Vol. COM-24, No. 5, pp. 540-545, May 1976.
- [4] L. E. Miller and J. S. Lee, "The Probability Density Function for the Output of an Analog Cross-Correlator with Correlated Bandpass Inputs," <u>IEEE Trans. Inform. Theory</u>, Vol. IT-20, No. 4, pp. 433-440, July 1974.

- [5] J. S. Lee and R. H. French, "Error Behaviors of Binary DPSK System Due to Intersymbol Interference and Correlated Noise," <u>NTC 78</u> <u>Conference Record</u>, Vol. 2, pp. 27.2.1-27.2.5.
- [6] O. Shimbo, M. I. Celebiler, and R. J. Fang, "Performance Analysis of DPSK Systems in Both Thermal Noise and Intersymbol Interference," IEEE Trans. Commun. Technol., Vol. COM-19, No. 6, pp. 1179-1188, Dec. 1971.
- [7] J. S. Lee and L. E. Miller, "On the Binary DPSK Communication Systems in Correlated Gaussian Noise," <u>IEEE Trans. on Commun.</u> (Concise Paper), Vol. COM-23, No. 2, pp. 255-259, Feb. 1975.
- [8] A. Weinberg, "Effects of a Hard Limiting Repeater on the Performance of a DPSK Data Transmission System," <u>IEEE Trans. on Commun.</u>, Vol. COM-25, No. 10, pp. 1128-1133, October 1977.
- [9] I. S. Gradshteyn and I. M. Ryzhik, <u>Table of Integrals</u>, <u>Series</u>, and <u>Products</u>, New York: Academic Press, 1965.
- [10] M. Abramowitz and I. A. Stegun (eds.), <u>Handbook of Mathematical</u> <u>Functions</u>, Washington: Government Printing Office, 1964.
- [11] L. J. Slater, <u>Generalized Hypergeometric Functions</u>, Cambridge: Cambridge University Press, 1966.
- [12] B. C. Carlson, <u>Special Functions of Applied Mathematics</u>, New York: Academic Press, 1977.

2

- [13] G. N. Watson, <u>A Treatise on the Theory of Bessel Functions</u>, 2nd ed., Cambridge: Cambridge University Press, 1966.
- [14] P. C. Jain and N. M. Blachman, "Detection of a PSK Signal Transmitted Through a Hard-Limited Channel," <u>IEEE Trans. on Inform.</u> <u>Theory</u>, Vol. IT-19, No. 5, pp. 623-630, September 1973.
- [15] H. Exton, <u>Multiple Hypergeometric Functions and Applications</u>, New York: John Wiley & Sons, Inc., 1976.
- [16] R. N. Jain, "The Confluent Hypergeometric Functions of Three Variables," <u>Proc. Nat. Acad. Sci. India Sect. A</u>, Vol. 36, pp. 395-408, 1966.
- [17] W. M. Hubbard, "The Effect of Intersymbol Interference on Error Rate in Binary Differentially-Coherent Phase-Shift-Keyed Systems," <u>Bell System Technical Journal</u>, Vol. XLVI, No. 6, pp. 1149-1172, July-August 1967.

いていたいのであるというで

- [18] E. Bedrosian and S. O. Rice, "Distortion and Crosstalk of Linearly Filtered, Angle-Modulated Signals," <u>Proc. IEEE</u>, Vol. 56, No. 1, pp. 2-13, January 1968.
- [19] A. D. Whalen, <u>Detection of Signals in Noise</u>, New York: Academic Press, 1971.

DISTRIBUTION LIST

Copies

Statistics and Probability Program (Code 436) Office of Naval Research	
Arlington, VA 22217	3
Defense Documentation Center Cameron Station Alexandria, VA 22314	12
Office of Naval Research	
New York Area Office 715 Broadway - 5th Floor New York, New York 10003	1
Commanding Officer	
Branch Office	
Building 114, Section D	
Boston, MA 02210	1
Commanding Officer	
Branch Office	
536 South Clark Street	
Chicago, Illinois 60605	1
Commanding Officer Office of Naval Research	
Branch Office	
1030 East Green Street	
Pasadena, CA 91101	1
ARI Field Unit-USAREUR	
c/o ODCSPER	
HQ USAREUR & 7th Army APO New York 09403	• 1
Naval Underwater Systems Center	
Attn: Dr. Derrill J. Bordelon Code 21	
Newport, Rhode Island 02840	1
Library, Code 1424 Naval Postgraduate School	
Monterey, California 93940	1
Technical Information Division	
Washington, DC 20375	,

Office of Naval Research San Francisco Area Office One Hallidie Plaza - Suite 601 San Francisco, CA 94102 1 Office of Naval Research Scientific Liaison Group Attn: Scientific Director American Embassy - Tokyo APO San Francisco 96503 1 Applied Mathematics Laboratory David Taylor Naval Ship Research and Development Center Attn: Mr. G. H. Gleissner Bethesda, Maryland 20084 1 Commandant of the Marine Corps (Code AX) Attn: Dr. A.L. Slafkosky Scientific Advisor 1 Washington, DC 20380 Director National Security Agency Attn: Mr. Stahly and Dr. Maar (R51) Fort Meade, MD 20755 2 Navy Library National Space Technology Laboratory Attn: Navy Librarian 1 Bay St. Louis, MS 39522 U.S. Army Research Office P.O. Box 12211 Attn: Dr. J. Chandra Research Triangle Park, NC 27706 1 Naval Sea Systems Command (NSEA 03F) Attn: Miss B. S. Orleans Crystal Plaza #6 Arlington, VA 20360 1 Office of the Director Bureau of The Census Attn: Mr. H. Nisselson Federal Building 3 Washington, DC 20233 1 OASD (I&L), Pentagon

Copies

and the second s

Attn: Mr. Charles S. Smith Washington, DC 20301

1

DL-1

DISTRIBUTION LIST CON'T

Сор	ies	c	opies
Col. B. E. Clark, USMC Code 100M		Professor W. R. Schucany	
Office of Naval Research		Southern Nethodist Usi	
Arlington, VA 22217	1	Dallas, Texas 75275	1
Library		Professor P A W Lewis	
Naval Ocean Systems Center		Department of Operations Porces	
San Diego, CA 92152	1	Naval Postgraduate School	rcn
		Monterey, CA 93940	
Professor G. S. Watson			
Department of Statistics		Professor F. Masry	
Princeton University		Department of Applied Physics	
Princeton, NJ 08540	1	and Information Science	
		University of California	
Professor T. W. Anderson		La Jolla, CA 92093	1
Department of Statistics			•
Stanford University		Professor N. J. Bershad	
Stanford, CA 94305	1	School of Engineering	
		University of California	•
Professor M. R. Leadbetter		Irvine, California 92664	1
Department of Statistics			
University of North Carolina		Professor I. Rubin	
Chapel Hill, NC 27514	1	School of Engineering and Appli Science	ed
Professor M. Rosenblatt		University of California	
Department of Mathematics		Los Angeles, CA 90024	1
University of California, San Diego		• • • • • • • • • • • • • • • • • • • •	•
La Jolla, CA 92093	1	Professor L. L. Scharf, Jr.	
		Department of Electrical Engine	erina
Professor E. Parzen		Colorado State University	
Department of Statistics Texas A&M University		Fort Collins, CO 80521	1
College Station, Texas 77840	1	Professor R. W. Madsen	
		Department of Statistics	
		University of Missouri	
		Columbia, Missouri 65201	1
			•

and the second se

and the second s

DISTRIBUTION LIST CON'T

	Copies		Copie
Professor M. J. Hinich Department of Economics Virginia Polytechnic Institute and State University Blacksburg, Virginia 24061	1	Professor L. A. Aroian Institute of Administration and Management Union College Schenectady, New York 12308	1
Naval Coastal Systems Center Code 741 Attn: Mr. C.M. Bennett Panama City, FL 32401	1	Professor Grace Wahba Department of Statistics University of Wisconsin Madison, Wisconsin 53706	1
J. S. Lee Associates, Inc. 2001 Jefferson Davis Highway Suite 201 Arlington, VA 22202	1	Professor Donald W. Tufts Department of Electrical Enginee University of Rhode Island Kingston, Rhode Island 0288]	ering 1
Naval Electronic Systems Command (NELEX 320) National Center No. 1 Arlington, Virginia 20360	1	Professor S. C. Schwartz Department of Electrical Enginee and Computer Science Princeton University Princeton, New Jersey 08540	ring 1
Professor D. P. Gaver Department of Operations Research Naval Postgraduate School Monterey, California 93940	1	Professor Charles R. Baker Department of Statistics University of North Carolina Chapel Hill, NC 27514	1
Stanford Electronics Laboratories Stanford University Stanford, California 94305	1	Mr. David Siegel Code 210T Office of Naval Research Arlington, VA 22217	1
Defense Communications Agency Defense Communications Engineering Center 1860 Wiehle Avenue Reston, Virginia 22090	1	Professor Balram S. Rajput Department of Mathematics University of Tennessee Knoxville, Tennessee 37916	1
Professor S. M. Ross College of Engineering University of California Berkeley, CA 94720	1	Dr. C. H. Chen Dept. of Electrical Engineering Southeastern Massachusetts Univ. N. Dartmouth, Mass. 02747	1

e