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20. Abstract

lb achieve high performance, large capacity, and high

availability, the INS data base canputer takes the awroac~’i

of implementing the logical information management functions

by means of a pipeline of parallel microprocessors and makes

use of a storage hierarchy with distributed control for the

physical storage and manipulation of very large databases.

The data storage hierarchy (I~ H) of IMS provides a very

large byte addressable vir tual address space accessible by

the large nunber of processors that implement the logical

information management functions of IMS. A highly parallel

structure is used by the CSH to support asynchronous pro—

cessing of a large nLm~ber of data requests in order to

• attain very high throughput. Use of multiple block sizes

across the storage levels and use of efficient data movement

algor ithns contribute to the high performance of tGH. The

u~e of distributed control as well as multiple data redun-

dancy gives rEH the capability to tolerate hardware failures

without suffer ing data loss or availability of service.

This report describes the design objecti ’es and the struc—

ture of a general data storage hierarchy (ESH—l). Research

issues in r~H—l are also discussed.
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Preface

The Center for Informat ion Systems Research (CISR) is a

research center of the M. t .T. Sloan School of Management. It

consists of a group of management information systems specialists

including : faculty members, full—time research staff , and

student research assistants. The Center’s general research

thrust is to devise better means for designing, implementing, and

maintaining application, software, information systems, and

decision support systems. 
- -

Within the context of the research effort sponsored by the

Naval ~~ectronics Systems Cc*iinand under contract

N00039—78-G -0l60, CISR has proposed to conduct basic research on

the Intelligent Memory System (INS) . The INS is a high

performance , high availability information management system for

supporting future Coninand, Canmunication and Control Systems.

Current advances in LSI and Multi-Chip Integration technology

off er the potential for develo~xnent of modular multi—processor

building blocks for information management, as well as for

intelligent memory controllers. Mvances in information

management technologies have made it possible to hierarchically

organize the information management functions so as to facilitate

pipeline and parallel processing. The INS attempts to integrate

the above hardware and software advances. In the INS, all the

information management functions are decaçosed into a functional
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hierarchy. Each level of the functional hierarchy is implemen ted

using modular multi—processor building blocks. An automatic

storage hierarchy is used by the INS for storage and retr ieval Of

very large databases. Each level of the storage hierarchy is

implemented using modular multi—processor controllers and their

associate’~ storage devices.

The proposed research descr ibed in Contract N00039—78-G—0160

focuses on the concept develcpnent, architectural design and

evaluation of the INS storage hierarchy. Specific research tasks

to be accarplished are : (1) design of a general structure of

the IMS storage hierarchy, (2) design of a revised structure of

the IM~ storage hierarchy, (3) develop algorithns for the INS

storage hierarchy, (4) per formance evaluation of the INS storage

hierarchy.

Technical Report tb. 1 introduces the concepts of IMS and its

research directions. This report discusses the concepts of data

storage hierarchies fran a practical point of view. A design of

£~H—l , the data storage hierarchy of the INS database caTputer,

is described.
Acce3s ion F-o r

~T IT GRAY. 1
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lb achieve high performance , large capacity, and high

availability, the INS data base canputer takes the approach

of implementing the logical information management functions

by means of a pipeline of parallel microprocessors and makes

use of a storage hierarchy with distributed control for the

— physical storage and man ipulation of very large databases.

The data storage hierarchy (1~ H) of 1MB provides a very

large byte addressable vir tual address space accessible by

the large number of processors that implement the logical

informat ion management functions of 1MB . A highly parallel

structure is used by the LSH to support asynchronous pro— 
—

cessing of a large number of data requests in order to

attain very high throughput. Use of multiple block sizes

across the storage levels and use of efficient data movement

algorithus contribute to the high per formance of I~ H. The

use of distributed control as well as multiple data redun—

dancy gives ~SH the capability to tolerate hardware failures —

without suffer ing data loss or availability of service.

This report descr ibes the design objectives and the~ struc—

ture of a general data storage hierarchy (ESH—l) . Research

issues in ~SH—l are also discussed~~~~~ 
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Section I

INT~~D(X TI(Z~

The need for efficient storage a;~J processing of very

large data bases coupled with advances in Very large Scale

Integration (VLSI) technology have motivated various propo-

sals to develop specialized computers dedicated to database

processing . Four basic approaches to develop specialized

data base processors are discussed in (Lam and Madnick ,

1979a; Lam and Madnick , l979c) . These approaches are : (1)

new instructions through microprograaming, (2) intelligent

controllers, (3) dedicated conventional computers for data

base processing, arid (4) special ized data base computers.

INS is a specialized data base computer. ~~e of its

objectives is to provide significant performance improvement

over conventiOnal database processors. For example, it is

aimed at supporting transaction rates up to 10,000 transac—

tions per second. Another objective of INS is to support

very large databases in a cost effective fashion. For exam-

ple, it is designed to suppor t data bases in excess of a

trillion bytes of online data. A third objective of INS is

to provide a highly available system even in the event of

— 1 —
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individual component failures. IMS is designed from the

start to be able to maintain continuous operation without

data loss even in the event of such failures.

lb meet tnese objectives , INS makes use of the techniqucs

of hierarchical decomposition to structure the logical

information management functions as a hierarchy of modules.

Each level of this functional hierarchy is implemented by

multiple microprocessors. Thus concurrent processing of

transactions is obta ined through pipeline and parallel oper— - r

ations of the functional hierarchy, The technique of hier-

archical decomposition is also applied to organize the sto—

rage subsystem to obtain a modular storage hierarchy capable

of supporting the storage requirements of the functional

hierarchy. The conceptual organization of INS is illus-

trated in Figure 1.1.

Research activities on the decci~position of the informa-

tion management functions into hierarchical levels and the

develo~inent of a modular storage hierarchy are currently

being carried out . C~ the functional decaiposition , a tech-

nique is being developed to obta in an opt imal functional

decaiposition. This particular approach is called Syste-

matic Design Methodology (Huff and Madnick, 1978) .
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This report describes a general structure of the 1MB data

storage hierarchy , called £SH—l . In the following sections,

we discuss the design objectives of rSH—l. Then the struc-

ture of ESH—l is descr ibed . ~ey research issues of ESH—l

are also br iefly outlined.

— 4 —
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Section II

DESI(~ OBJECTIVES OF E&I-l

In reviewing the currently available and anticipated sto-

rage device technologies we notice that economically viable

low cost , high capacity storage devices have high access

time while high performance storage devices have high cost.

Storage hierarchy systems have been developed to take advan-

tage of locality of references (Denning , 1970) to obtain

high performance storage systems with high capacity and low

overall cost by using a range of storage devices with dif-

ferent cost/per formance characteristics arranged in a hier-

archy . The effective capacity and cost of the storage hier-

archy are close to those of the slower storage devices. As

long as there is a high probability of accessing the high

performance storage devices , the effective access time to

the storage hierarchy will be close to that of the high per-

formance devices.

There are a large number of practical storage hierarchy

systems today. However , the functionality provided by each

is quite different and often falls short of our cxpectations

(for use as the storage subsystem of the INS data base can—

— 5 —
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puter) . In the following , we discuss the underlying design

goals of [EH—l . The structure of CSH—l will be descr ibed in

a fol lowing section.

2.1 VIRIUAL ADDRESS SPACE -

0611—1 prov ides a virtual address space for data storage.

Every data item in 0611—1 is byte addressable using a gener-

alized vir tual address. A key advantage of a vir tual

address space is that an user (a processor) of 0611—1 is

relieved of all physical device concerns. In fact , the pro—

cessor accessing 0611-1 is not aware of how the virtual

address space is implemented. This latter characteristics

is quite unique since most current vir tual memory systems

are simulated, at least partially , by software executed by

the processor , e.g., the IBM OS/VS system (Scherr , 1973) .

2.2 VERY LA~~E ADDRESS SPACE

Early virtual memory systems were developed pr imarily for

program storage, hence their address spaces were quite lim-

ited , e.g., in the order of one million bytes. The MULTICS

(Greenberg and Webber , 1975) vir tual memory and the IBM Sys—

tenV38 (Dataination , l978a ; Soltis and Hoffman, 1979) logical

storage were developed for program as well as data file sto-

rage. These systems support a large virtual address space.

However , the size of an individual data file in MULTICS is

— 6 —  H
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limited to 2**l8 bytes and that in System/38 is limited to

2**24 bytes. Though these are very large address spaces, it

is expected that future systems will require online storage

4 capacities that are much larg~r. 06H—l uses a 64—bit vir—

tual address. Each byte is directly addressable , hence

there is virtually no limit on the size of a logical entity

such as a data file.

2.3 PERIIANENT DATA S1DRAGE

Accesses to permanent data is performed by special soft-

ware routines and a special I/O processor in most virtual

-; memory systems (e.g., IBM ’s OS/VS). The 1,0 processor

brings the data into the vir tual memory and writes the data

back to permanent storage when the data is updated . Systems

like MULTICS and SysteW38 prov ide a permanent virtual data

storage. Any data in virtual memory is also in permanent

storage. 0611—1 also provides a permanent virtual data sto—

rage. Special data integrity schemes are used to ensure

that as soon as a processor completes a write operation to a

virtual location, the effect of the wr ite becomes permanent

even in the event of a power failure.

— 7 —
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2.4 su~rowr MULTIPLE PRJCESSORS

Most current virtual memory systems have been limited to

supporting 2 or 3 processors. It is necessary that 0611—1

support a large number of processors due to the requirements

for high performance and high availability to be discussed

below. All these processors share the same virtual data

address space. Appropriate synchronization and protection

schemes are used to ensure data integrity and security.

2.5 GENERALIZED MULTI-LEVEL SI~RAGE SYSTEM

lb provide a large capacity storage subsystem with low

cost and high performance, a spectrum of storage devices

arranged in a hierarchy is used. Previous storage hierarchy

systems have been specially designed for a specific 2 or 3

levels hierarchy (e.g., cache and main memory, or main

memory and secondary storage device) . In these cases, it is

extremely difficult to add or remove a storage level. 0611—1

is designed to• incorporate any type of storage device and

support reconfiguration of storage levels. This character—

istic is particularly impor tant in respond ing to new device

technologies.

.

. 

- 
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2.6 DIRECT INTER-LEVEL DATA TRANSFER

In most current storage hierarchy systems, data movement

among storage levels is performed indirectly. For example,

— to move data from drum to disk in the MULTICS system, data

- - is read from drum into main memory by the processor which

then’ writes the data from main memory to disk. Recent

develop~ents in storage systems make it possible to decen—

tralize the control of data movement between storage devices

and incorporate it into intelligent controllers for the sto-

rage devices. For example, the IBM 3850 Mass Stor age (John-

son, 1975) uses an intelligent controller to handle data
— transfer between mass storage and disks, making the 3850

appear as a very large number of virtual disks. 0611—1

incorporates intelligent controllers at each storage level

to implement the algor ithms for data movement among the sto-

rage levels. Special algorithms are developed to facilitate

efficient broadcasting of data from a storage level to all

other - storage levels as well as movement of data between

adjacent storage levels.

2.7 HIGH PERFORMANCE

lb support the data requirements of the functional pro-

cessors in INS, 0611—1 is designed to handle a large number

of requests simultaneously. The operation of 0611—1 is

highly parallel and asychronous. Thus , many requests may be

— 9 —
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in different stages of completion at var ious storage levels

of 0611—1. Each processor accesses 0611—1 through a data

cache where the most frequently used data items are stored.

2.8 PD)ULARITY

Hig” availability of 0611—1 is a result of a combination

of the design strategy used, hardware cciiinonality, and spe—

cial algor ithms. Key design strategies in 0611—1 include the

use of distribut ed controls and simple bus structures , both

of which contr ibute to the high availability of ESH—1. Mul-

tiple identical hardware cczrponents are used in parallel to

provide high performance and to ensure that no single c~ tço—

nent is cr itical to system operation . Integrated into the

design are certain algorithms that exploit the structure of

0611—1 to allow data redundancy and perform automatic data

repair in the event of component failure, thus diminishing

the danger s of multiple failures. These mechaniems are

further discussed after the structure of 0611—1 is described .

•2.9 PrID(JLARITY

0611—1 is modular at several levels. This provides con—

siderable flexibility in system structuring. The number of

processors to be supported by 0611-1 can be var ied. The ninn-

- ber of storage levels and the type of storage devices can be

chosen to meet the particular capacity and performance— 10 —
A
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requirements. All the storage levels have very similar
— structures and the same algor ithm is used by the intelligent

controllers at each storage level .

Flexibility in system structuring is extended in 0611—1 to

allow for dynamic system reconfiguration. For example , a

defective storage device or storage level can be amputated

without loss of system availability.

• An example of a system that incorporates modularity as a

key design goal is the PLURIBW (Katsuki et. al., 1978) sys-

tem. In PLURI&S, the basic building block is a bus module.

The number of components on a bus module as well as the num-

ber of bus modules can be easily var ied to meet different

system requirements.

2.10 I~~ COST

A storage hierarchy is the lowest cost configuration to

meet the requirement of provid ing a large storage capacity

with high performance. 0611—1 also makes use of coninon hard—

ware modules as the intelligent controllers at each storage

level , thus reducing hardware developuent cost. The modu-

larity features of 0611—1 discussed above also facil itate

system upgrad ing with minimum cost.

— 11 —
J



Cum~ona1ity of hardware modules and flexibility of system

upgrade have been employed in many computer systems as an

effective approach to reduce cost. However , these techni-

ques are rarely appl ied to storage hierarchy systems. 0611—1

is a step in this direction.

Advances in storage device and processor technologies

provide great potentials for developnent of very effective

data storage hierarchies that incorporate the above charac—

teristics. In the next section, we describe a general

structure of such a system as a basis for further research

into this impor tant subject.

— 12 —
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Section III

G~~ERAL STR~~ URE OF DSr~-l

The structure of 0611—1 is illustLated in Figure 111.1. A

key design decision in [SH—l is to make use of an asynchro-

nous time—shared bus for interconnecting multiple components

(pcocessors and memory modules) within a storage level and

to make use of an asynchronous t ime—shared bus for intercon-

necting all the storage levels. A key advantage of the

time-shared bus is its simplicity , flexibility , and through—

put. Two approaches are used in 0611—1 to increase the

effective bandwidth of the t ime—shared bus. First , a new

pended—bus protocol is used (Haagens , 1978) . This asynchro—

nous bus protocol is more efficient than the usual time—

shared bus protocols with the result that a much larger num-

ber of components can share a single bus. Second , multiple

logical buses are used to partition the load on the t ‘ -

shared bus.

In the following subsections, we shall descr ibe the

interface to DSH—l as seen by a functional hierarchy proces—

sor (see Figure 1.1). Then the structur e of 0 6H l  is des-

cr ibed by examining its highest per formance storage level

and then a typical storage level. Finally, the approaches

— 13 —
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Level ~~~~~~ [~~].~~~1~
•••}

LU) ‘) physical buses
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1(0) logical buses •

Cach hat b (0) physica l buses

- System Struèturé
• • component abbreviation ~~antity

data cache controller DCC (k one per memory port)
data cache duplex DCD (2 per DCC) 

-

storage level controller SLC C S(i)  )
memory request processor MRP ( PCI) )

• storage device module SDM ( D(i) )
H Flgure 111.1 DSH-l System Structure
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that 0611—1 utilizes in handling read and write operations

are then descr ibed .

3.1 ThE 0611—1 INThRFACE

lb the functional hierarchy processors connected to

1.611—1, 0611—1 appears as a large multi—port main memory.

There are K memory por ts, hence K processors can simultane-

ously access 0611—1.

The functional processors use a 2**V (V=64 ) byte virtual

address space. The instructions for each functional hier—

archy processor are stored in a separate 2**I byte program

memc:y. The program memor ies are not part of 0611—1. Thus ,

2**I bytes of the processor ’s address space is mapped by the

program memories , leaving 2**V_2**I bytes of data memory to

be managed by LEH—l. This is depicted in Figures 111.2(a)

and 111.2(b) .

Each processor has multiple register sets to support

efficient multiprogranlT~ing. Some of the more impor tant

registers for interfacing with DSH—l are : (1) a V—bit

Ma~ory Mdress Register (MAR ) for holding the vir tual

address, (2) a Memory Suffer Reg ister (MBR) for stor ing the

data read from 0611—1 and to be written into 0611—1, (3) a

M~~~ry (~eration Register (t4DR) ind icates the particular

operation to be performed by 0611—1, (4) an (~ eration Status

— 1 5 —

-_ ±

~ 

_ _ _  _ _



________ - - - - __

[ CPU~~~~~M1 
• ..  CPU

~H~
Mk j

-

~
DSH-l

Figure 111.2(a) DSFI-1 Interface

Program 2 1

__ . _~~~ p•~~
c I g _ _ __ _ •  

)

2~ R
Total 

Data

Address I
Space

• Figure 111.2(b) DSH-l Address Space

-16- 

I ____



• 
- - 1~~

Register (OSR) which indicates the result of a operation

perf ormed by WH—l , and (5) a Process Identifier Register

(PIR) which contains the Process Identifier (PID) of the

process that is currently using the processor.

A number of memory operations are possible. The key ones

are the read and write operations and the primitives for

locking a data item (such as those supporting the ~~st—and —

Set type of operations) .

All read and write operations to C€H—l are performed in

the highest performance storage level , L(1) . If a refer-

enced data item is not in L ( l ) ,  it is brought up to L(l)

from a lower storage level via a read—through (Madnick ,

1979) operation. The effect of an update to a data item in

L(l) is propagated down to the lower storage levels via a

number of store—behind (Madnick , 1979) operations. The

read—through and store—behind operations are further dis—

cussed in a later section. Here we focus on the asychronous

operation of the processor—ESH interface.

In a read operation, two results c~n occur depending on

the state of 0611—1. First , if the requested data is already

in L(1) , the MBR is filled with the data bytes starting at

location (MAR ) and the processor continues with the next

operation. Alternatively, the addressed data may not be

— 17 —
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available in L(l). In this case, the processor is inter-

rupted, the CSR is set to indicate that it may take a while

for the read operation to complete, and the processor is

switched to another process. Eventually, the addressed data

is retrieved from a lower level and copied into L(l) from a

lower storage level. When this is r~mpleted, the processor

is notified of the completion of the original read opera-

tion.

L Similarly, a write operation may result in two possible

responses from 1.611—1. First, if the data to be updated is

already in L(l), the bytes in MBR are written to the virtual

address locations starting at (MAR), and the processor con-

tinues with the next operation. Second, a delay similar to

the read operation may occur (when the data to be updated is

not in L(l)), while 06H—l retrieves the data fro~n a lower

storage level.

This concludes a brief description of the asynchronous

06H—1 interface, as seen by a functional hierarchy proces-

sor. Next, we examine the detailed operation of rSH—1.

3.2 ThE HIGHEST PERFORMANCE S’IORAGE LEVEL = L( 1)

There are h storage levels in ESH—l, labelled L(l), L(2),

L(h). L(1) is the highest performance storage

level. L(i) denotes a typical storage level. The structure

— 18 — 
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• - of all storage levels are the same, except fer level L(l)

which has a unique structure.

A distinction must be made between the conceç~. of a phy-

sical bus and a logical bus. The former refers to the

actual hardware that implements coninunications among levels

and within a level. A logical bus may be implemented using

one or more physical buses. Logical buses represent a par-

titioning, based upon the virtual address referenced, of the

physical buses.

Referring to Figure 111.1, L(l) consists of K memory

ports and 5(1) storage level controllers (SLC ’s) on each of

B(l) logical local buses (i.e., S(l)*B(l) SLC’s in total for

this level). Each memory port consists of a data cache con—

troller (DCC) and a data cache duplex (DCD). A DCC inter-

faces with the functional hierarchy processor that is con-

nected to the memory port. A DCC also per forms mapping of a

virtual address generated by the processor to a physical

address in the DCD. Another function of DCC is to interface

with other DCC’s (e.g., to maintain data cache consistency),

and with SIC’s on the logical bus (for ccinmunications with

other storage levels).

At L(l), a SIC accepts requests to lower storage levels

from the DCC’s and forwards them to a SIC at the next lower

— 19 —
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storage level. When the responses to these requests are

ready, the SIC accepts them and sends them back to the

appropriate DCC ’S. The SIC’s also couple the local buses to

the global buses. In essenc~, the SIC serves as a gateway

between levels and they contend among themselves for use of

the ccxm-~unication med ia , the logical buses.

At L( 1), there are B(l) logical local buses. Each logi-

cal local bus consists of b(l) physical buses. Each logical

bus handles a partition of the addresses. For example, if

two logical buses were used, one might handle all odd num-

bered data blocks and the other would handle all the even

numbered data blocks.

0611—1 has B(ø) logical global buses. Each logical global

bus consists of b(ø) global physical buses. The use of

address partitioning increases the effective bus bandwidth.

The use of multiple physical buses for each logical bus

enhances reliability and performance.

3.3 A TYPICAL S’IORAGE LEVEL = L(I )

A typical storage level, L(i), is divided into 8(i)

address partitions. Each address partition consists of S(i)

SW’s, P(i) memory request processors (MRP’s), and D(i) sto-

rage device modules (SDM’s), all, sharing a logical bus. A

logical bus consists of b(i) physical buses.

— 2 0 —  
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An SIC is the coim’tunication gateway between the

MRP’s/SDM’s of its level and the other storage levels.

An MRP performs the address mapping function. It con-

tains a directory of all the data maintained in the address

partition. Using this directory, an MRP can quickly deter—

mine if a virtual address corresponds to any data in the

address partition, arid if so, what the real address is for

the data. This real address can be used by the correspond—

ing SDM to retrieve the data. Since each MRP contains a

ccpy of this directory, updates to the directory have to be

handled with care, so that all the MRP’s see a consistent

copy of the directory.

An SDM performs the actual reading and writing of data.

It also ccnnunicates with the MRP’ s and the SIC’s.

The SLC’s, MRP’s, and SDM ’s cooperate to handle a memory

request. An SIC coimTiunicates with other storage levels and

passes requests to an MRP to perform the address transla-

tion. The appropriate SDM is then initiated to read or

write the data. The response is then sent to another SIC at

another storage level. -
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3.4 READ ~ND WRITE OPERATIONS

As discussed earlier, a processor at the 1.611—1 interface

that has issued a read or write request may find the request

delayed if the data is not ir the cache and it is necessary

to retrieve it from a lower storage level.

0611—1 uses the read—through strategy for reading data

from lower storage levels. Figure 111.3 illustrates the

read—through operation for a storage hierarchy with three

storage levels, L(l), L(2), and L(3). Suppose the block

size of L(l) is b, the block size of L(2) is 2b, and the

block size of L(3) is 4b. Consider a request to read a data

item ‘a’. The data item ‘a’ is ~~sumed to be within a L(l)

block boundary (if a data item crosses block boundaries,

multiple read requests will be used). The request is propa—

gated down the storage levels until the data item ‘a’ is

found in a storage level. Suppose ‘a’ is found in L(3). A

block of size 2b containing ‘a’ is broadcast to L(2) and

L(1) simultaneously. L(2) will accept the entire block and

place it in a storage device. L(l) will only accept a block

of size b that contains ‘a’ and place it in its storage dev—

ice. The data block containing item ‘a’ is simultaneously

returned to the functional hierarchy processor .

C~e reason for using the read—through strategy is, that

as a result of the read—through operation , a small locality

of the addressed data item is found in the highest

— 22 —
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performance storage level , and a larger locality of the

addressed data item is found in the next storage level, and

so on. Thus , subseauent references to the locality can be

handled effict ~ntly. Another reason for using the read—

through strategy is that , as a result of the read—through

operation, copies of the addressed data item are found in

several different storage levels, thus providing multiple

data redundancy for the data item to protect against any

storage level failure.

0611—1 uses the two—level—store—behind strategy for writ-

ing data. This strategy is also motivated by performance

and .,eliability. Using this strategy, a write operation

does not require an inunediate store—through operation, which

will reduce performance. At least two copies of the written

data are always maintained at all times using this strategy,

thus reliability is enhanced.

In a write operation , we shall assume that the data item

• to be written is already in L(l) (‘This can be realized by

reading the data item into L(1) before the write operation).

The data item is written to the data cache duplex, and the

processor is notified of the completion of the write opera-

tion. The block in L(l) that has just been updated is

marked with a count of 2. A store—behind operation is next

generated by the data cache controller and sent to the next
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- lower storage level . This is illustrated in Figure

111.4( a) .

When a store-behind operation is received in L(2) , the

addressed data is written, and marked with a count of 2. An

acknowledgement is sent to the next upper storage level ,

fr L(l),  and a store-behind operation is sent to the next lower

- storage level, L(3). When an acknowledgement is received at

L(l) , the counter for the addressed data item is decrenented

by 1 resulting in a count of 1. This is illustrated in Fig-

ure 111.4(b) . -

The store-behind is handled in L(3) by updating the

appropriate data block . An acknowledgement is sent to L(2) .

At L(2),  the corresponding block counter is decrenented by 1

resulting in a count of 1. The acknowledgement is also for-

warded to L (1). At L (1), the corresponding block counter is

decrenented by 1 which now becomes 0, hence the block is

eligible for replacement. This is illustrated in Figure

111.4( c) .  
-

Thus we see that the two—level store-behind strategy

maintains at least two copies of the written data at all

times. Furthermore, lower storage levels are updated at

slack periods of system operation, thus enhancing perfor—

mance.
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Secti3fl IV

RESEAW~H ISSUES

The previous section descr ibes the general structure of

0611—1 and the strategies for reading and writing data . From

this general structure , a number of interesting alternative

configurations can be obtained . For example , if all the

data caches are taken away , L( 1) becomes a level with only

the SIC s for conmunicating the requests from the processors

to the lower storage levels and for obtaining responses from

these lower storage levels. This configuration eliminates

the data consistency problems associated with multiple data

caches.

If we let the number of logical buses be equal to one, we

obtain the configuration without address partitioning.

Another intersting configuration is when there is only

one 1’IRP and one SEtI on a given logical bus. This configura-

tion eliminates the need for multiple identical directory

updates.

Thus, by varying the design parameters of 0611—1, a large

ntmter of alternative configurations with quite different

— 28 — 
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characteristics can be obtained. The general structure is a

valuable vehicle for investigating various design issues.

Sane of the key issues that are being investigated are

briefly introduced in the fol lowing sectionc.

4.1 SUP1O1~ OF READ AND WRITE OPErATICt.)S

Key problems in supporting the read and write operations

in [SR—i include : (1) data consistency in multiple data

caches, (2) protocols for cc*mnunicating over the shared

bus, (3) algoritlins for updating the redundant directories,

(4) algorithns for arbitrating among usage of identical

resources, such as buses, SIC ’s and MRP ’s, and (5) specify-

ing the various steps (transactions) that have to be accc*n—

plished to handle the read and write operations.

4.1.1 Multiple Cache Consistency

As illustrated in Figure 111.1, each 0611—1 memory port is

a data cache directly addressable by the processor at the

port. It is possible then, that a data item may be in sev-

eral different data caches at the same t ime. When the data

item gets updated by a processor , other processors may

reference an inconsistent copy of the data item. The multi—

pie cache consistency problem and possible solutions are ‘1
discussed in (Tang, 1976; Censier and Feautrier, 1978).
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Three basic approaches are being explored in resolving

this problem in 0611—1. The first approach is to send a

purge request to all other data caches whenever a processor

updates data 1r~ its cache. The second approach is to main—

tam status information about the data cache contents. Whe-

never there is an update to a data item, this status infor-

mation is consulted and purge requests are sent only to

those caches that contain the data item being changed. The

third approach is to make use of knowledge of how the data

in [511—1 is to be used so that the inconsistency problem can

be avoided. For example, knowledge about the interlocking

scheme used to ensure safe data sharing may be used to avoid

unecessary purge requests to other caches.

4.1.2 Bus Coinnunication Protocols

In 0611—1, the buses may be used for point—to—point conmu—

nication as well as for broadcast type of corm~unications.

It is necessary to ensure that messages are sent and

received correctly. For example, L(i) broadcast data to -the

upper levels and one or more of these levels may not be able

to accanodate the data to be received, possibly due to the

lack of buf fer space. Ccinnunications protocols to handle

these situations are important.

- 

— 3 0 — 

—•- -•---

~

— -

~

--•- _-----

~

--

~

- - - - - 

-

- ••



__________ - — — — — -————._—-——
~~~

—.—-- .---—---—-- —-—•—----— -.------ -.———-----— ,

4.1.3 Multiple Directory Update

Each MRP contains a directory of all the data in the

SDM’s on the same bus. Multiple requests may be handled by

the MRP ’s. When a MRP update3 its directc’r~ , other MRP s

may still reference the old copy of the directory. This is

similar but not identical to the muitiple cache consistency

problem discussed above. It is necessary to maintain con-

sistency of the MRP directory states.

4.1.4 Multiple Resource Arbitration

Multiple identical resources (e.g., buses, MRP’s, and

SIC’s) are used in [511—1 to provide parallel processing

while at the same time providing redundancy against failure.

A request for a resource can be satisfied by any one of the

resources. An arbitration scheme is required to control the

assignment of resource.

4.1.5 Transaction Handling

A read or a write request may go through a number of

asynchronous - steps through a number of storage levels to

completion. A complication to these transactions is that

for high througiput, a request (or response) may be divided

into a number of messages when the request (or response) is

being transpor ted within the hierarchy. Thus, a request (or

response) may have to be assembled, which may take an amount
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of t ime dependent on the traffic within EEFi—l. Partial

r equests (responses) at a storage level r equire special han—

du ng.

4.2 MULTIPLE DATA REDUNDANCY PI~)PERTIES

As a result of the read—through operation , several copies

of a referenced data item exists in the t$H—l storage 1ev—

els. The two—level store—behind operation also maintains at

least two copies of any updated data item in [611—1. In (Lam

and Madnick, l979b), several important properties associated

with multiple data redundancy of storage hierarchies are

analyzed in some detail. It is found that with proper

choices of the sizes of the storage levels, and using cer-

tain classes of read—through and replacement algorithms, it

is possible to assert that a storage level contains all the

data items in the upper storage levels. We would like these

properties to be preserved in [SR—i.

4.3 ATJIOMATIC DATA REPAIR ALGORITh~~

C*~e of the benefits of maintaining redundant data in

[SR—i is that lost data due to component failures can be

reconstructed on a spare component from a copy of the lost

data. By using automatic data repair in [SR—i the probabil-

ity of multiple data loss can be reduced.
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Two classes of automatic data repair algor ithms are pos-

sible. c*te strategy is to make use of the multiple data

redundancy properties of rSH—l and to reconstruct the lost

data from its copy in a different storage level. The other

approach is to maintain duplicate copies of the data item

- - within a storage level and to reconstruct the lost data from

its copy in the same storage level. The latter approach is

particularly attractive for low performance devices such as

mass storage.

4.4 PERFORMANCE EVALUATIC~I

A key issue in the [611—1 design is predicting its perfor—

mance. In order to accomplish this, a simplified design of

0611—1 and its algorithms is being developed . A simulation

model can then be developed for this design. Various basic

performance statistics can then be obtained under various

load assumptions. This experiment will provide insights and

directions for further design and performance evaluation

efforts. -
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Section V

SUMMARY

The IMS storage hierarchy is a high performance high

availability virtual memory data storage hierarchy with dis-

tributed controls for data movement and address translation.

It is designed specifically to provide a very large perman—

ent vir tual address space to support multiple functional

hierarchy processors.

A general structure of t$H-1, the ThIS storage hierarchy

has been described in this paper. This general structure

can be used to derive a large number of alternative configu—

rations which can be used to explore various algorithms for

data storage hierarchy systems. -

A number of impor tant research issues associated with

[211—1 are outlined. These issues are currently under

further investigation.
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