
AD—A073 370 YALE IMIV IC HAVEN COMI DEPT O~ cOSftfl ic mitt F/s gfl
TIC TRANSFER CF INFORMATION AIC AUTHORITY IN A PROTECTION SYSTE—tic (U)
At fl N SWIOP. I SNYDER NSOOI* fl C—075$

~*CLASSIF ISO M—Uo II.
I c f !~~~~~~~

END
DAIF

F~L~ F a
[0 — 79

DDC



I f~ ~~~~ 
IPI ~U2 . 5

I.V L
_ _  

L L  2.2

I . I H~

IIIII~.25 
~~~ oni~

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OP STANOA ROS-1963-A 

- ,.~~~ --~~~~~~~~~~~~~~~~ - .



H

C-)
w

=
1~~~ C.3

This dc~i~~~~~~~~~~~~~~~~~~~~ —1
~°~

‘ PUb~ic T~~~~ c.: C~~3 ~~~~~~~~ j~thstnbutio~ is Urt I~~i~~d

YALE UNIVERSITY
DEPARTMENT OF COM PUTER SCIENCE

79 0 8  3 Li

~~~~~~~~



i

~ L

The Transfer of Information and Authority
in a Protection System

Matt Bishop

Lawrence Snyder .

Research Report #166, July 1979

This research was sponsored in part by the Office of Naval Research Grant
N00014—75—C—0752 and by National Science Foundation Grant MCS77—12517.

_  _ 
_ _

~ 

~~~~~~~

‘ -~~~~~.- -_ -~~~~



t~ ~~~~ 
-: 

-

~ECUft I Tv CLASSI FICATION OF THIS PAGE (Wh.n D.ea EnI.r.d) 
____________________________________

b 1 ~~~~~ ~~II~~~~~~~~~~?&~~~I DA (~~ READ INSTRUCT ION S
~~~~

It l U~~~~UM~~I~ ~~ I ~~~~~~~ BEFORE COMPLETING FORM
I. REPORT NUMBER ~~. GOVT ACCESSION NO. 2. *ECIPIEN rs CATALOG NUMBER

166 
1 _______________________________

4. TIt LE (mtd subtlll.) 
- 

S.\TY PE OF REPORT S PeRIOO gOVERED

/ / ,  \ The Transfer of Information and Authority ( 
. Th~hnica1,

in a Protection System~. 
— - 6. PERFORMING ORG. REPORT NUMBER

7. A UT HOA(s~ ..~~~~~~ . ._  S. CONTRACT OR GRA T N R(i)

L Tha~~TBiShoP.~~~~ 
Lawrence/Snyder ~ ~~ / ,  ~~~~~~~~~~~~~~~

S. PERPORMING ORGAN IZATION NAM E AND AD DRESS 10. PROGRA M ELEMENT, PROJECT , TASK

Yale University . —-~ 

Department of Computer Science . .‘
~~ 7. ~ — i (C 1 I

10 Hillhouse Ave., New Haven, CT .06520
II. CONTROLLING OFFICE NAME AND ADDRESS ~~ ‘II—4EPORT 0

Office of Naval Research ‘ J, ~‘A Jul?’~~~79 
-

Information Systems Program - 
..~4.~~wouI~~tRo F PAGEs7~~~.. )) .. LI

Arlington, VA 22217 29 — 

~.i ‘1
14. MONITORING AGENCY NAME & AODRESS(II dSlt.,.n t from Controttht4 OIlIc.) IS. SECURITY CLASS. (~?‘!RVI~ , ,.or ) ——

Unclassified

15.. DECLASS IFICATION/OOWNG RAO ING
SCHEDULE

IS. DISTRIBUTION STATEME NT (of (Ill . Rbpor&)

Distribution of this report is unlimited.

17. DISTRIBUTION STATEMENT (ol ffi. .b.t,.cf snt•t.dln Block 20, Sl dllf.r.n~ from R.poil)

I S. SUPPLE MENTARY NOTES

IS. KEY WORDS (CanUnu. on rø,~r~• .id Sln.c... ~~~ aid ldon~lfr by block nga,b.r)

information explicit edge
transfer implicit edge
Take-Grant Model right
de jure acquisition
de fac to

20. A~~S~T~~ACT (Can Ifru. on ,.,ir. • .Id. II n.c. .*ay aid IdinUty by block n.aib r)

We distinguish between the transfer of information and the transfer of
authority, and extend the Take—Grant Model to describe the former . The
conditions under which information (but not authority) might be transferred
are given, one characterization using the rules for transferring information
alone, and another combining them with the previously—developed rules for
transferring authority.

DD ~~~
:II

~~ 1473 EDITION OF I NOV 45 IS OBSOLETE
S/N 0102.LF.014.6601

SECURITY CLASSIFICATION OF THIS PAGE (Ih.n 0.,. IIftSP d)

_ _ _  

Li” / ‘ /
— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — . ~~~~~~~~~~~~~~~~~~

—~ 
-

~~~ 
. .- 

~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ p -
~~~~ 

-,.~
J-.-., 

~~~~~~~~~~ ..- ., - - . .— -~~~ -



1.

1. Introduction

Although formal models have contributed to our understanding of

capability—based protection systems, they have been properly criticized

for concentrating on the movement of “authority” or “access privilege”

within the system , rather than on the movement of the information. For

example, the Take/Grant Model [1,2] describes the exact conditions under

which a particular user can get the authority to access a file. If the

conditions are satisfied, then the user can access the information. But

if they are not satisfied, it does not follow that the user cannot get at

the information. There may be some way to transfer the information with•-

out the use r ever getting direct authority to access it. The Take/Grant

Model gives no information and other models are similarly mute.

In this paper we take a modest step towards elucidating the problem.

Specifically, we distinguish between two types of information acquisition*:

de jure (DJ) acquisition means a user acquires information by

invoking direct authority within the capability system;

de facto (DF) acquisition means a user acquires inf ormatio n , usually

with the assistance of others, without necessarily acquiring

the direct authority to access it within the capability system.

Thus , do j ure acquisition implies de facto acquisition, but not vice versa.

This distinction can be illustrated diagramatically. In Figure la,

the users have read and write capabilities (r,w) to their personal files.

User Abel also has “take” authority over user Baker. This latter authority

allows Abel to take the read access authority to File 2 from Baker —— an
action that would result in the diagram shown in Figure lb. Abel can now

*Oijr use of de jure , “rightful, by right” [5] and do facto “(existing) in
fact, whether by right or not” [5] is intended to avoid the pejorative
connotations of the authorized/unauthorized distinction.

—
‘ f - ; . ~~~

-.
~~~~

—- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 1 -- - -r-~~~~ - —



2.

t t
user -, user user -, user

Abel Baker Abel “~~~~~ Baker

r,w r,v r,w r,w

file 1; ~file 2 file 1’., ..file 2

(a) (b)

Figure 1: A de jure acquisition.

user ser user ser

Baker Charlie Baker Charlie

r,w r, ,w r,v

r,w r,w r ,w \ r,w

file 2 file 3 file 2 - 
file 3

mail r ’-
box

(a) (b)

Figure 2: A de facto acquisition.

_ _ _ _  
_ _ _ _ _

~DD

o~~~~-~~~r-1~~~

.,., 
~4

_ _ _ _  ~~~~~~~~~~~~~~~~ 
-——.-— --

~~~~~~~~~~~~~~~~~~
--

Ei~i____ 
_ _ _  

—

~~~~~~~

-

~ ~~~~~~~~~~~~

----- -

~~~~~~~

. - — 

~~
~—



3.

invoke this read authority resulting in a do jure acquisition.

Figure 2 illustrates a situation when two users have “read” and

“write” capabilities to their personal files as well as a common mail

box file. Baker can request that user Charlie write the information from

File 3 into the mail box. Assuming Charlie complies fully, Baker can then

read the information from the mail box resulting in do facto acquisition.

Baker never has the “read” capability to File 3 although he can read a

copy of it. Having the capability to read a file and being capable of

reading a copy of it are not the same thing because (a) the latter relies

on the transmission of a complete and accurate copy and (b) any updates

to File 3 are not automatically reflected in the copy. We use a dashed

line to denote the de facto transmission.

Obviously, more complex situations can arise. In the graph formed

by combining Figures la and 2a, we can illustrate both types of transfer.

In Figure 3, Abel takes the “read” capability to the mail box. Then,

after Charlie writes File 3 into the mail box, perhaps in the belief that

he is making it available only to Baker, Abel can make a de facto acquisition.

Our objective in this paper is to characterize the use of do facto

and de jure acquisition in a protection system. Since de jure acquisition

is already well understood in the Take/Grant Model, we build on that under-

standing to develop conditions under which information can be transferred

by de facto transfers only or by a combination of do facto and do (lure

transfers.

We shall organize our presentation as follows. (Note that no previous

knowledge of the Take/Grant System is presumed.)

-
~~~ 

~
--c: -- -—- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -_ _ _ _ _ _ _



4.

Section 2: Definition of the model and the class of do facto rules,
Section 3: Characterization of do facto acquisition,

Section 4: De jure acquisition and previous results,

Section 5: Characterization of combined do facto and do jure

acquisition.

The final section is devoted to a summary and discussion.

I

T 
~~~~~~~~~~~~~ 

- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ , - T ETT - -

~~

.__ .



5.

userl — user user
Abel aker Charlie

r,w r ,w
S

r,w r,w r,w

f ile l~. file 3
file 2 mail

box

(a)

r,w 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

(b)

,w

~~~~~~~~~~~~~~~~~
wVr 

,w

(c)

Figure 3: Combination of do jure and do facto
transfers.

~
1

~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~ . .. ~~~~~ - . , . — - 

-~~~~~~~ -~~~~~~~~— ~~~~~~~~ . -  - ~~~~

—. -- - .  - __ _ _



6.

2. De Facto Information Transfers

As suggested in the previous section, a capability—based protection

system will be modeled by a finite directed graph called a protection

graph. The vertices of the graph will be of two types: aubjecta (denoted

by •) will represent “active” entities such as users, and object8 (denoted

by 0) will denote “passive” entities such as files. (There are ususally

many other entities in a system , e.g. load modules, directories, etc.,

that are hard to categorize by such vague terms as “active” or “passive.”

One might argue that a load module is “active” in the sense that it could,

when executed , cause information to move. Alternatively, if one knows that

the module is “secure,” i.e. doesn’t disseminate information, it might be

called “passive.” These and other interpretations depend upon what system

is being modeled, and because of our general approach, they are beyond the

scope of this study. We simply provide two classes of entities and depend

on the user to make the appropriate classification for his system.)

The edges between the vertices are labeled with elements from a finite set

R of rights. For specificity, we use R — {r ,w,t,g}, mnemonic for read, write,

take and grant. (Other rights could be included, but we regard this as a

minimal set.) The edge from vertex a to vertex b

a
a

labeled by some a ~ R indicates that within the protection system, a has

the a rights to b. This edge is called an expli cit edge.

L~ addition to these solid edges, we will use dashed edges (labeled by

an r) to represent do facto acquisitions. These edges are called implicit

edges. They are not actually part of the protection graph since they

.~ —S ~~~ 
‘• , 

- 

-, 

~~~~ x c - ’~ 
.- -

w 

- 

- -



7.

represent information that is not part of the protection system. But we

add them to the protection graph for pedogogical reasons to specify the

existence of a potential do facto transfer.

In the Introduction we illustrated how information might be trans—

f erred in a system by means of a mail box construction, but may be other

means as well. We identify four distinct methods of de facto acquisition

and formulate them as rewriting rules on protection graphs. (Note , in the

following definitions “edge” refers to either an explicit or implicit

edge. In the diagrams, a denotes a vertex that can be either a subject

or object, edge labels may contain additional rights, set braces are elided.)

Post: Let x, y and z be distinct vertices of a protection
graph G such that x and a are subjects. Let there be
an edge from x to y labeled a, r c a, and an edge from z
to y labeled 13 , w e 8. Then pO8t defines a new graph G’
with an implicit edge from x to a labeled r. Graphically,

- 
r

r w ~~- r  ~,
x y z x y z

Pass: Let x, y and z be distinct vertices in a protection
graph C such that y is a subject. Let there be an edge
from y to x labeled by a, w c a, and an edge from y to
a labeled by 13 , r e 6. Then pass defines a new graph
C’ with an implicit edge from x to z labeled r.
Graphically,

v r 
•x y z x y z

Spy: Let x, y and z be distinct vertices in a protection
graph G such that x and y are subjects. Let there be an
edge from x to y labeled a, r e a, -and an edge from y to z
labeled 6 , r € 8.  Then the spy rule defines a new graph
G’ with an implicit edge from x to z labeled r.
Graphically , we write

r
r r ,r r is-x y z x y z

.5 
~~~-V . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~ ~~~~~~~~~~~~~ 
--- - - 

~~~~~

- .—- -



/ 8.

Find: Let x, y and z be distinct vertices in a protection
graph G such that y a:~c1 z are subjects. Let there be
an edge from y to x lab~léd a, v C c~, and an edge from
z to y labeled 8 , w € 8. Then find defines a new graph G’
with an implicit edge from x to a labeled r. Graphically,

--

V w V w
x y a x y a

We will refer to these rules, collectively, as the DF rules.

The rules are intended to abstract possible ways in which information

can be read in a system by the cooperative effort of one or more subjects.

The subjects invoke authority that they own within the system (de jure

acquisition) in order to effect do facto transfer. This transfer, or

more accurately, the potential for this transfer, is summarized by the

implicit edge from x to z, labeled r. We can then apply these rules to a

protection graph (see example below) to- summarize the do facto transfer

in the entire system.

Clearly, the Post rule abstracts the operation described in the Intro-

duction. In the Pass rule y acts as a conduit through which data travels

from a to x. The Spy rule abstracts the case where y reads data from a

and x “watches” y read the data. More often, however, it is used to

“compose” transfers (see graph G
5 
in the example below). The Find rule

abstracts the case where a deposits data In y and y in turn passes it

along to x.

We regard these four rules as a representative sample of the potential

de facto transfers that might arise m a  protection system. In some actual

systems only a subset of these transfers might be possible while in other

systems there may be transfers not captured by these rules. In either

case the development that follows may have to be modified. Our purpose is

q ~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~ , ~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
. — --- - -.- -

~~~~~~ 
- _____ . -



________________________________________________________________

9.

to illustrate how the Take/Grant Model can be used to assess the potential

do facto transfers of a protection system.

Finally, note that we have ~oncerned ourselves only with the trans-

fer of information to x via read. We might also have considered trans-

mission of information from x by the addition of rules that add edges

labeled with a “w.” We shall discuss this apparent limitation in Section 6.

The rewriting rules enable us to illustrate the potential de facto

transfers by augmenting a given protection graph C with new implicit edges.

Let G
0 
be the protection graph

and consider whether or not p can read q. We note that the Post transfer

rule matches so it can be applied where the variables of the rule defini-

tion (x,y,z,a - and 3) match p,s,t , { r}  and { w} , respectively. Thus, we

summariae the potential for this transfer by adding an implicit edge from p to t

labeled r. The result is G
1. 

-

G
1

Usually, we denote such a rule application by G
oI~ ~t 

C
1
.

The sequence of rule applications that illustrate that p could

acquire the contents of q are illustrated below.

—
‘ “- ~~~~:. 

-

~~ 

- ---- - 

~)4 r 1  ~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~ 

-- 

~

— — . - .-- -, .- - -  - - -



/ 10.

r r

~~~~~~~~~~

Gl i pass ,. r ~~ -.
~~
- -- ~~~~ 

~~~~~~~ 

~~~~ 

x
-

::-;--’
~
° q

r r

‘pass ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

‘

r

r - r

r

r --- _ ’
~~.

r

So we conclude that there is a potential for de facto transfer to p.

Note that all of these added edges are implicit -- they do not represent
added authority, only potential de facto access.

Tortuous though the example may be, it illustrates that rather complex

transfers can be realized. It is just as important (perhaps more important)

to know what do facto transfers cannot be realized. For example, it is

not possible for p ’ to read q by a transfer along the “lower” path in C0.

~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



11.

This is because of the two consecutive objects which form a “barrier” to

indirect transfer. (See Theorem 3.1.)

To illustrate another subtlety, note that t plays a pivotal role

in the transfer. We might have tried to skip past t by applying the
L.

Find rule to G
0
.

::~ : 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

But s is an object, and our rule definitions do not permit the

application of a Spy to define a read edge from p to u. One might argue

that a Spy should be allowed here because the s—to— u read edge is implicit

and thus s receives the information passively. Subjecthood appears restric-

tive. Our decision to force the second vertex in a Spy rule to be a

subject guarantees the existence of an agent when needed. It will be

clear from our results that this limitation is not serious.

Finally , we must make one cautionary remark concerning the interpre-

tation of protection graphs. This is a general study that will be applica-

ble (we hope) to a wide class of protection systems. As such we must

consider all protection graphs even if they do not have a sensible interpre—

tation in the context of a particu lar protection system. For example, -we -

allow constructs such as ~~ r 
in our protection graphs. If one

thinks of objects as files, this may be meaningless. But if objects

include “secure” processes, then this is more reasonable. We cannot limit

a priori the class of interpretations, so we allow f o r  any protection graph

consistent with our original definitions. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -

q 
.~~~~~~~ ~~~~~~~~~~~~~~~~~~ — 

~~~~ — — —i,---- - — - —- —



12.

.3. The Conditions of De Facto Transfer

Having abstracted potential do facto transfers as a set of four rewriting

rules and having illustrated that these rules compose in complex ways, we

now formulate an exact statement of what it means for a potential de facto

transfer to exist within the model. This will be done by defining a predicate

can.know f ( p , q , G) of three parameters. The predicate is true if vertex

p of C can acquire the information from vertex q of G by some sequence of

rule applications. Then, we define conditions on G that determine when

the predicate is true.

Define for a protection graph G0 
and arbitrary distinct vertices

p and q of G
0

can .know.f (p , q, G) to be true if and only if there exists a

sequence of graphs C
1
,... ,C (n � 0) such that Gj+1 follows

from G by one of the DF rules 0�i<n and in C there is a
i n

p—to—q edge labeled r.

Thus, the predicate can.know f (p,q,G
0
).is true if and only if  do jure

authority exists or an implicit edge from p-to-q can be added by means of

the four DF rules.

Now, we formulate conditions under which can~know•1
’ holds. To aid

in this endeavor, define an rw—path in a protection graph C as a sequence

of distinct vertices VO,Vl,..•~
V
k 
(k > 1) such that v~ is connected to

v
i+1 by an edge (in either direction) labeled with r or w (c,r both) for

all i, O~i<k. We say that the rw—path is between v
0 

and v
k
. For example,

in the graph

r r ,w w
t u v

the sequence s,t,u,v is an rw—path.

: s -q  ~~~~~~~~~~~ 
- ------ - 

~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~



13.

Not all rw—paths will permit de fac to transfer of information.

(F or example , s,t,u,v above does not!) So we limit our attention to a

certain subset of them. To do this, we associate with each rw—path one

or more words over the alphabet ~~~~~~~ in the obvious way; for example,
L +4-) +4-4

the sequence st ,u,v given above has assoc iated words , namely rrw and rww .

Def ine an rw—path vO, vl,...,vk (k > 1) to be an admissible ru-path if  and

only if

(i) it has an associated word a1a2 
... a.~ in the regular

+ 4*
language (r u w) and

(ii) if a
i 

= then v~_1 is a subject and if ai 
= then v~

is a subject.

There are two immediate consequences of this definition. First, since

k > 1, there are always at least two letters in the word associated with

any admissible path. Second, there cannot be two consecutive objects on

any admissible path.

The first result concerning do facto transfers can now be stated.

Theorem 3.1: Let p and q be vertices in a protection graph

C. Then oan•know.f(p,q,G) is true if and only if there

is a p—to—q edge labeled r or there is an admissible rw—

path between p and q.

Proof: ( “)  By induction on the length 2. (i.e. number of edges) of the

admissible rw—path.

- 
(Bas is) :  Clearly , when £ 2 (the shortest non—trivial length) there are

four distinct tv—paths and each of these is handled by a separate rule.

(Induction): Let the hypothesis be that for each 2., 2�2~�k, if

p — v0, v1,...,v2. — q is an admissible tv—path then can•know f (p,q,G) is true.

Observe that for every admissible tv—path of length 2.> 2 either it is an

q- 
~
ç-- - - — 

~~~~~~~~~~~~~~~~~~



14.

extension by ~ of an admissible tv—path terminating in a subject or it

terminates in a subject and is the extension by ~ of an admissible tv—path.

Let p — v
0
,. 
~
.
~
Vk, Vk+l q be an admissible tv—path. By hypothesis

can.know.f(p ,v~,G) is true and hence a p_to—v
k 
edge labeled can be

constructed. By the observation either a Spy or Post rule can be applied

to give a p—to—q edge labeled ~ and can.know.f (p,q,G) is true, extending

the induction.

( .)  By induction on the number £ of times any of the four rules are applied

to produce a witness to can.know.f. -

(Basis): By inspection of the rule schemata, if only one rule is applied

then the path between the vertices is an admissible tv—path.

(Induction): Suppose that all witnesses to can know~f requiring £ > 1

or fewer rule applications have admissible tv—paths, and let a witness to

can•know•f (p,q,G) require t+l rule applications. Since edges labeled with

cannot be introduced, the 2.+1
8t 

rule could not have been the Find rule. If

the £+l~~ rule was a Pass or Post rtile then the edge of the rule schema

4
labeled w is explicit and the edge labeled r was constructed between, say,

x and y with £ rule applications. Then can.know.f(x,y,C) is true and by

hypothesis there is an admissible tv—path between x and y. The extension

of this path by w leads, by inspection, to an admissible path. Finally,

St -)

if the £+l rule was a Spy then there are edges labeled r between some x

and y,  and y and z. If one of these is explicit, say the x—to—y edge, then

can.know.f(y,z,G) Is true and the edge found in 2. rule applications. By

hypothesis there is an admissible tv—path between y and z and by inspection

the extension is an admissible tv—path between x and z. If both the x—to—y

and y—to—z edges are implicit then by analogous reasoning they are admissible.

Since the concatenation of admissible paths is admissible, the induction

-, 

- 

TT~~~~’~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
‘

~~
—

‘--

~~~
:-

- —-—--- --— - - - -



15.

is extended. 0

We emphasize that thiscondition is necessary and sufficient (i.e.

if and only if); it exactly characteriaes the way DF rules can cause

do facto transfers. It is also clear that using standard breadth—first
L.

gra ph traversal techniques , this condition is easy to test, f o r  any

given pair of vertices.

Corollary 3.2: For vertices p and q of a protection graph G,

there is a linear—time (in the size of the graph), algorithm

for testing can know f (p,q ,G).

The reader is encouraged to return to the graph C~ in Section 2

to verify our claim that there can be no transfer along the “lower” path;

that is, can•know.f(p ’,q,G0) is false.

q ~~~~~~~-- - ‘~~~~~
‘
~~~~~— ‘ ~~~~-~~~ --w-~ -~ — —~~~~~~ - - —--s--- 

--



16.

4. Review of De Jure

Up to this point we have concentrated on the four rules that imple-

ment de facto transfers. Although these rules specify the addition of an

edge in the graph, we have agreed that these are only implied edges ——
no new access authority has been created. Now, we review the way in

which do jure acquisition takes place in the Take/Grant Model.

Recall that in addition to r and w, there are two other rights:

t and g. In [1,2] the following rules were introduced for changing

access authority. All edges referred to in these rules are explicit.

Take: Let x, y and a be three distinct vertices in a
protection graph G such that x is a subject. Let there
be an edge from x to y labeled y such that t € y, an
edge from y to a labeled 13 and a £ 13. Then the take
rule defines a new graph C’ by adding an edge to the
protection graph from x to z labeled a. Graphically,

a

3 _is-x y z x y z

The rule can be read: “x takes (a to z) from y.”

Grant: Let x, y and z be three distinct vertices in a -

protection graph G such that x is a subject. Let there
be an edge from x to y labeled- y such that g €

an edge from x to a labeled. 3- , and a E 8. The grant
rule defines a new graph G’ by adding an edge from
y to a labeled a. Graphically,

3 13

The rule can be read: “x grants (a to a) to y.”

Create: Let x be any subject vertex in a protection graph G
and let a be a subset of R. Create defines a new
graph C’ by adding a new vertex n to the graph and an
edge from x to n labeled a. Graphically,

~~~ ~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- ______



17.

• • a
x x n

subject- The rule can be read: x creates (a to) new { } n.
object

Remove: Let x and y be any distinct vertices in a protection
graph C such that x is a subject. Let there be an edge
from x to y labeled 3-, and let a be any subset of rights.
Then remove defines a new graph C’ by deleting the a
labels from 8. If 8 becomes empty as a result, the edge
itself is deleted. Graphically, I

~~
- x y x y

The rule can be read : “x removes (a to) y.”

We refer to these four rules collectively as the LW rules.

The edges added by these rules represent explicit changes in the

access authority. Thus, when “x takes (r to a) from y, ” x only acquires

the read rights to the information. It must invoke the right to read the

information. In addition to adding edges, Create allows the addition

*of new vertices. As Figure 4 illustrates, Create adds an important

dimension to the model since without Create one cannot add g to the

a-to-b edge in this example.

En order to report on previous results [1 ,2] we define tg—path

(analogous to an tv—path) as a nonempty sequence v0,.. •‘~k 
of vertices such

that for all i, O�i<k, v1 is connected to v~~1 
by an edge (in either direction)

with a label containing a t ot g (or both) . Vertices are tg—connected if

there is a tg—path between them and we call any maximal, tg—connected

subject—only subgraph an island .

Associate with tg—paths words over the alphabet {t ,t~~,~~) analogous

to the words associated with tv—paths . (If k—l in the tg—path , then the

*Note , even though there is only one directed edge from any vertex a to
any vertex b , we occasionally draw two to emphasize changes in labelling.

• ~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .~~~~~~~~~~~~~ _ _ _ _



- - - 

18.

asz~~~~~~~~~g Fcreate 

t:r

IIII

~~~
:

‘grant

tg1~ZI~
g

t~~~~~~~~~~

g

Figure 4: Vertex a acquires g rights to b, i.e., g is added to the
label on the a— to— b edge. The rule applications may be read :

a creates (tg to) new object d ,

a grants (g to d) to c,

c grants (g to b) to d,

a takes (g to b) from d. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~-~~~• -

~~~~~~~—w  ~~~~~~~~~~~~~~



19.

associated word in c .) A tg—path v0,. .  .,V~~ with v0 being a subject is an

initia l span if it has an associated word in the language (t *~~} u

it is a term-ina / • span If it has an associated word in {t*}; and it is a
bridge if vk is a subject and it has an associated word in

-)* 4* -)*~)4-* 4*4 -4*
(t ,t ,t gt , t gt } .  Note that initial and terminal spans have orienta-

tion, i.e. v0 is the Bource of the spans . We say v
0 
initially or terminally

spans to v
k.

Restricting our attention only to Take, Grant, Create and Remove, we

define for a right a and distinct vertices p and q of a protection graph C0,

the predicate

can•share(a ,p,q ,G) cs there are protection graphs G
1
,...,G

such that G0F~±~ C using only DJ rules and in C there

is p-to— q edge labeled a.

Note that a can be any right in R — {r ,w, t ,g) .

We may nov state when the can share p redicate is true . Let p and q

be arbitrary, distinct vertices in protection graph C0 and let a £ R.

Theorem 4.1 [2] :  The predicate can•ahare(a,p ,q,G0) is true if
and only if the following hold simultaneously:
(I) there is a vertex s e G0 with an s—to—q

edge labeled a ,
(ii) there exist subject vertices p ’ and s’ such that

(a) p ’ initially spans to p,
(b) a’ terminally spans to s,

(iii) there exist islands ‘l’” ”v and there is a
bridge from I~ to ~~~~ (l~j <v) .

Figure 5 illustrates the cond itions of the theorem . Although these condi—

tions appear to be complicated , we can test a protection graph in linear

time to see if it satisfies the conditions . 

. - ~-~.-, ~~~ --—---.• - - -.

—4 -q--t~
-- - - —ar--— - - - -~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



20.

Clearly , if one is restricted to the DJ rules, then p can get do juz’e

access to q in if and only if can.ehare(r,p,q ,G0) is true. The crucial

question is: how do the DJ and DP rules interact? We describe that in

the next section.

t ~ r
I,, 8 ’r —‘o —‘oq

gi fg
t g g t

v w x y

Islands : I~ = (p,u}, 1
2 

= (wI, 13 
= {y, s’}.

Bridges : u ,v ,w and w ,x ,y.

Initial span : p; associate word: € .

Terminal span: s’,s; associated word: t.

Can~share ( r ,p,q,G
0
) is true as the following rules attest.

1. s’ takes (r to q) from s.

2. a’ grants (r to q) to y.

3. y takes (g to w) from x.

4. u takes (g to w) from v.

5. u grants (g to p) to w.

6. y grants (r to q) to w.

7. w grants (r to q) to p.

The resulting graph appears as follows:

g

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

g

~~~
r

r

~~~~~~~~~~~~• 

i
l~~

Figure 5: Illusttation of the conditions of
can •ahare.

- -~~ w 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ 

____



21.

5. Combined transfers

We begin by illustrating a simple case where both do j ure and

do facto transfers are needed to share information. Consider the pro-

tection graph G

and notice that can.share(r,p,q,G) is false since a (the only owner of the

read right to q) is not tg—connected to p. Also, can.know .f(p,g,G) is

fa]ge since there is no admissible tv—path between p and q. Furthermore,

by our Theorem 4.1, no matter what changes we make to C using Take, Grant,

Create and Remove, can •share (r ,p ,q,G) remains f a l se, and by our Theorem

3.1 no matter what changes we make to C using Spy, Post, Pass and Find,

can.know .f(p ,q,G) remains false. But, it is possible using DJ and DF

rules to construct a graph G’ in which oan.know.f(p,q,C) is true.

In fact, there are two ways to change the graph that are conceptually

different. First, x can grant (r to y) to p and a can take (r to q) from

a. This results in the graph G’

which now contains an admissible tv—path. Alternatively, in G x and a can

create r ,w rights to new objects and “read” rights to these objects can

be acquired by p and z to “straddle” the t and g edges . The result is G” 

. _ .II_:— ~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ . 1• - 
~~~~~~~~~~~~~

--

~~~~~

- • -  

~~~~~~~~~~~~~~ 
-



22.

p
. •T\~’

~ Ig t i )
r w

x y z

which contains an admissible rw—path. Thus, we can either transmit

existing rights or create new rights to build an tv—path.

We refer to the use of any combination of the DJ and DF rules as

combine4 transfer. (Recall that the DJ rules can only match explicit

edges while the DF rules can match explicit or implicit edges.) •1

Following our paradigm, we define a predicate that introduces a

read edge by any of the combined transfers. Let p and q be arbitrary ,

distinct vertices in a protection graph G
0
, then

can.know(p,q,G0) is true if and only if there is a sequence

of protection graphs C1,... ,G such that C
0~
—~— C

and in G there is a p—to—q edge labeled r.

Note that the p—to—q edge can be either implicit or explicit.

Define rwtg—path in the obvious way and associate words over the
+ 4- 9~ 

.4 94 4~ +alphabet {t,t,g,g,r,r,w,w} as usual. We define a second class of spans.

Let v0,. . .,Vk (k > 0) be an rwtg—path where v
0 
is a subject. This path is

an iv—ini.ti~al span if its associated word is in the regular language {t w}

and it is an zv—terminal span if its associated word is in {~~* }• Again we

observe that spans have orientation and we say that v
0 
tv—initially (or

tv—terminally) spans to vk. -

Define the regular languages: -

~ * 4* -)*4.4-* -).*44- *Bridges: & = {t u t u t gt u t gt ]- ,
.4*4. ++* +*+++*

Connections : C — {t r u wt u t rwt I.

Note that the bridges language is the same set defined in Section 4.

.q—&
~
;- ~~~~~

-—-- 
_ _ _  _ _ _



23.

We can now characterize the can .know predicate. Let p and q be

arbitrary , distinct vertices in a protection graph G.

Theorem 5.1: can~know(p,q,G) is true if and only if

(1) can.share(r,p ,q,G) is true or,

(ii) there exists a sequence of subjects u1,...,u

such that the following conditions hold:

(a) p = u
1 
or u1 

tv—initially spans to p,

(b) q = u or u
n 

tv— terminally spans to q, and

(c) for all i, l�i<n there is an rwtg—path between

u
1 
and u~~1 

with associated word in B U C.

Proof: (=) If can.know (p,q,G) is true and a witness can be found by

application of DJ rules only then obviously can share(r,p,q,G) is true.

So suppose that at least one application of a DF rule is required to

construct a witness G . for can•know (p,q,G). Because DJ rules do not

manipulate implicit edges, we can without loss of generality, arrange the

rule applications so that all DJ rules are performed before any DF

rules are applied. Let G~ denote the protection graph resulting from the

application of only DJ rules. Further, note that among the DJ rules, all

*Creates can be performed before any of the Take, Grant or Remove rules.

Let C
c 
denote the result of applying all Creates to C. Clearly, the

following relations hold among the graphs. -

* * *GI G 
~

- c c .
Create c other j only w
only DJ DF

rules rules

Next, notice that each of the newly created vertices in Cc is in a

created subgraph that is connected to the C aubgraph of C via exactly

one original subject vertex. If v is a created vertex, call this subject

*Clearly ,  Remove rule applications are never useful in this context since
additional edges are not harmful.

q L~~ — 
—



24.

vertex the father of v. (Of course, the father need not have actually

created v, but it must have created one of the vertices in the created

subgraph in which v resides.)

Since only DF rules are applied after the creation of G., it

follows by Theorem 3.1 that there exists in C~ an admissible tv—path

p = v0,v1,.. . ,vk 
= q between p and q. We shall reason about how this

path was constructed by means of the DJ rules.

The following three facts, derived from Theorem 4.1, will be

helpful in the argument. Suppose for arbitrary, distinct vertices x and

y in a protection graph G’ can~share(r,x ,y,G’) (resp. can share (w ,x ,y ,G ’)

is true.

Fact 1: Either there is an x— to— y edge in C’ labeled r (resp. w)

or there is a subject s in G’ and~an rwtg—path in C’ from s• 
9*9.

to y with associated word in ( t  ri (resp. (t  wI).

Fact 2: If a witness can be found using islands 
~~~~~~~~ 

then

can.share(r,z, y ,C’) (reap. can.share(w,a ,y,G’)) is- true for

any subject z C 

~~ 
l�j�t.

Fact 3: If there is no x—to—y edge labeled r (resp. w) then there

is a sequence of subjects x = w0,w1
,. . . ,

~~~ 

= s such that W
j

is connected to w
j+l by a bridge.

Proceeding with the analysis of the admissible tv—path, let v~ and

v
1 be consecutive vertices along the path. Suppose v~ and v~÷1 

are both

in C then can.share(r,v1,v1÷1,G) (resp. can.8hare(w,v
~+1,

v1,G)) is true.

Then Fact 1 assures that they are connected by an edge in C or there is

an a connecting to v~~1 (reap. v1) by an rwtg—path in C. If v~ and

are both subjects, and a — v~ (reap. a = v
i+1
) then v~ and vj+l qualify as

subjects u
j 

and u
j+l 

for some j. If vi 
and v

i+1 are subjects but s ~

~~~~ 
— -  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-_ ____  

____



H 25.

(resp. v
1+1
) then Fact 3 guarantees the existence of bridge connected

subjects v1 
= w0,. . .,w s which qualify as ~~~~~~~~~~ for some j and m .

By admissibility , only v
1~1 

(resp. v~) can be an object. If v
i+i 

= q

- (reap. v~ = p) then Fact 1 guarantees an rw—terininal span (resp. tv—initial

span) from s to q (resp. p). Then a qualifies as subject u (resp. u
1
).

Assume v1+1 # q (reap. vi # p) is an object and let s be defined by

Fact 1. By admissibility, the next vertex v
1~2 

(resp. vi...1) must be a

subject. Suppose this next vertex is in C. Then can.oharé(w,vi+2,
v
~+1,G)

(resp. can.ahare(r,v
~_1

iv
~~
G) is true and by Fact 1, s’ exists connecting

to v~~1 
(resp. v.) by a word in C. Now s and s’ qualify as u. and u.~ 1

(resp. u. and u. 1 ) for some j  since they are connected by a word in

9. *94 4- *

ft rwt } .  Moreover, by Fact 3 if v~4~ ~ a ’ (reap. v~~1 # s’) there are

subjects s’ = w0,. . .,w = v~42 (resp . v~~1 
w0,. . .,w = s’)  which are

bridge connected and thus qualify as u
j+l~

...
~
u
j~~+l (reap.

Now suppose that one or more vertices v~~1,vj~vi~~~ or v~~.2 mentioned

in the preceding paragraphs are not in C. Then the preceding argument

applies without modifications in G .  In the application of the can ~share

predicate in that argument, the fathers of the new ver tices must be in

islands witnessing the sharing since these new vertices are connected to

the C subgraph via the father. Thus, f or example, if v~ is a new vertex

and v~~1 
is an existing vertex and can.Bhare(r,v1,v1+1,C )  is true, then

by Fact 2 , can.ahare(r ,father(vj) , v1+1,G) is true. Thus the father(v1)

acts as a surrogate for v1. In particular, the bridges that were shown to

exist for v~ in the original argument, must exist for the father of v1
. If

is also a new vertex, both fathers are surrogates and they are connected

by bridges over 0 or more islands. The details are left to the reader.

~~~qr4 - -- 
___ 

_ _

~

--- -- -



26.

Finally,  we observe that for each pair of consecutive vertices,

we established the existence of subjects . . for somc .i and m.

Since adjacent pairs will have subject sequences with a common element,

the existence of the entire sequence has been established.

(‘~~) If can .share(r ,p ,q, G) is true, can.know(p,q,C) is trivially

true. So suppose it is false and- let u
1
,...,u be the subjects required

in condition (ii) of the Theorem. It is sufficient to convert this to

an admissible tv—path and then invoke Theorem 3.1. If u
i 
and uj+1 are

connected by a word in C or conditions (a) or (b) apply, then use the

Take rule in the obvious way until no further applications are possible.

P~n r or w connecting edge results. Otherwise u
1 
and u

~+i 
are connected

by a bridge. Apply Take in the obvious way until no further applications

are possible. Then u~ and ui+1 are connected by an edge with word

in ~~~~~~~ Now one of the vertices can Create (rw to) a new object

and the other can acquire the appropriate right so that u
1 
and u~~1 

are

connected by a path with a word in {~~~~} .  The result is an admissible -

tv—path, and Theorem 3.1 can be applied. I]

Corollary: For arbitrary, distinct vertices p and q in a

protection graph G, the predicate can.know(p,q,G) can be

tested in linear time in the siae of the graph.

Although the proof is quite involved, the conditions are quite

straight—forward. The reader is encouraged to return to the graph pre-

sented at the beginning of the section to verify that they do apply.

~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — 

-

~~ 

-- 

-=



27.

6. Concluding Remarks

Two issues remain to be discussed: “two—way” do facto transfers and

the “worst—case” assumption.

In the foregoing sections we have concerned ourselves with do facto

transfers in which p can read the contents of q —— a one—way transfer of
information. Suppose p would like to communicate back to q, i.e. establish

two—way communication. Must we repeat this entire development for the

write right? Not at all! 
-

Observe that by interchanging the r and w labels on our DF rule

schemata we obtain the following:

• 
w ,~ 

v~~~~ ~~~~~~~~ ~~~~~

- 
- - - - 

V

post—V • 
v r ~ - w  ~~~ r~~-~~

-- -. w

pasa—w r w ~~‘r • 
w ”~~

- - V

find—v r r ~~~~~ ~~

These new DF—w rules reflect the symmetry of read and write and are

*intuitively consistent. Moreover , the directionality of the edges and

the subject/objec t distinctions are all preserved . Thus , by interchanging

r and w in the foregoing section , all substantive aspects of the arguments

are preserved I

To emphasize this symmetry, define for arbitrary, distinct vertices

p and q of a protection graph C

*The names are not at all suggestive , however.

- - -
~~~

-
~

. -- 
•

~~ ~~~~~~~~~~~~~~~~~~~~~~~ ~~~~ --~~~~~ — - —~~--. —~~~~ . _ —- - -



28.

can t e l l ( p, q, G) to be true if and only if there is a sequence
of protection graphs C

1
,.. .,G such that G

i+l 
follows from

C
i 
by application of one of these new rules or the DJ rules

(O�i<n) and in G there is a p to q edge labeled w.

Then we have from Theorem 5.1.

Corollary 6.1: can~tell (p,q,G) is true if and only if -

(1) oan•share(w ,p, q, G) is true or,

(ii) there exists a sequence of subjects u1,. .. ,u such

that the following conditions hold:

(a) p u
1 
or u

1 
wr—initially spans to p,

(b) q = u or u Vt—terminally spans to q, and

(c) f or all i, l�i<n there is an rwtg—path between
u~ and u with associated word in B u C’, -

3 j+1

where wr—initial or yr—terminal spans are defined by interchanging r and w

in the definitions of tv—initial and rw—terminal spans respectively and

9*9 ++* 9*9+4 *C’ = {t w u rt u t wrt } . Of course, ca n . t e l l .f ( p, q , G) can be

similarly defined.

The second issue is our -“worst—case” assumption. We have assumed perfect

cooperation throughout this paper. It may be a prudent assumption but perhaps it

is not very realistic. This assumption can be relaxed at the cost of

further analysis in a way analogous to the way can ~share was relaxed to

can.stea l in [3,4]. There, the owners of the information are assumed not

to cooperate while all other subjects do. Alternatively, the number of

cooperating subjects required for a transfer, called conspirators in [3],

could be counted. This number could then be used as a measure of the proba-

bility that the transfer would actually be effected since a large number of
I

collaborators are likely to be more difficult to enlist then a small number.

The problem requries further study.

~~~-,-- - —-.- ~~~~~~ -

- .-‘ .~~ - - w~-’- - - - ________________



F’ .29

7. References

El] A. K. Jones, R. J. Lipton and L. Snyder.
A linear—time algorithm for deciding security.

‘ Proceedi ngs of the 17th Annual Symp . on Foundations of Computer
Science, 1976.

[2] R. J. Lipton and L. Snyder.
A linear—time algorithm for deciding subject security.
JACM 24(3):455—464 , 1977.

[3] L. Snyder.
Theft and Conspiracy in the Take—Grant Protection Model.
Yale Department of Computer Science Technical Report #147, Nov. 1978.

[4] L. Snyder.
Synthesis and Analysis of Protection Systems.
Proceedings of the 6th Symp . on Operating Systems Princ ip les,
1977.

[5] The Concise Oxford Dictionary , Oxford University Press, Sixth
Edition, 1976. 

~~~~~~~~~~~~~~~~~~ - -~~~~~~~~~~.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- -

~~ ~~- . - . -.~~--



OFFICIAL DISTRIBUTION LIST

Defense Documentation Center 12 copies
Cameron Station
Alexandr ia, VA 22314

Of f ice of Naval Research
4 

Arlington, VA 22217

I nf ormation Sys tems Program (437)  2 cop ies
Code 200 1 copy
Code 455 1 copy
Code 458 1 copy

Office of Naval Research 1 copy
Branch Office, Boston
Bldg 114, Section D
666 Summer Street
Boston, MA 02210

Office of Naval Research 1 copy
Branch Office , Chicago
536 South Clark Street
Chicago , IL 60605

Office of Naval Research 1 copy
Branch Office , Pasadena
1030 East Green Street
Pasadena, CA 91106

Naval Research Laboratory 6 copies
Technical Information Division, Code 2627
Washington, D.C. 20375

Dr. A. L. Slafkosky 1 copy
Scientific Advisor
Commandant of the Marine Corps (Code RD—l)
Washington , D.C. 20380

Naval Ocean Systems Center 1 copy
Advanced Software Technology Division
Code 5200
San Diego , CA 92152

Mr. E. H. Gleissner 1 copy
Naval Ship Research and Development Center
Computation and Mathematics Department
Bethesda , MD 20084

T~~ II~ ~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



Captain Grace M.Hopper (008) 1 copy
Naval Data Automation Command
Washington Navy Yard
Building 166
Washington, D.C. 20374

Defense Advanced Research Projects Agency 3 copies
Attn: Program Management/MIS
1400 Wilson Boulevard
Arlington, VA 22209

p - a a n- ~~~-’-
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~ ‘ - ~~~~~ ~~~~~~~‘~~ - -~~ -~~~~-~~~~ — -


