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SUMMARY

The application of decision theory often involves assessing sub-
jective probabilities, and procedures for assessing them are quite well
developed. But such procedures are based on assessments by a single
person. Often multiple individuals are called on to provide the prob-
abilistic judgments. Unanimity in judgments among the multiple individ-
uals cannot be expected, thereby creating the problem of how to arrive at
a single probability distribution that can be used in applying decision
theory.

Two general approaches to this problem exist. The individuals can
interact as a group to reach a consensus, or the individual judgments
can be mathematically aggregated to produce a single probability distrib-
ution. Each of these approaches has advantages and disadvantages. Group
interaction allows the exchange of information, but may be susceptible to

dominance by certain individuals or pressure for conformity. Mathematical

aggregation is simple to use and ensures that a single distribution will
result, but theoretical difficulties are encountered in specifying an
appropriate aggregation model.

Using several forms of group interaction and mathematical aggrega-
tion models, this research investigated the quality of probabilities pro-
duced by interaction versus mathematical models, and by the various forms
of interaction and various mathematical models. "Quality"” was measured
by proper scoring rules, calibration, and extremeness on two types of
probability assessments: discrete assessments for two-alternative ques~
tions and beta probability density functions for questions about percen-~

tages. Ten four-person groups comprised primarily of graduate students




assessed probabilities for twenty questions of each type in each of five
types of group interaction: no interaction, Delphi, Nominal Group Tech-
nique (NGT), a mix of Delphi and NGT, and discussion to consensus. The
mathematical models used to aggregate the individual assessments included
the linear model, the weighted geometric mean, and the pari-mutuel model
for discrete assessments; and the linear model and conjugate model for
densities; each with various weighting procedures.

Applying proper scoring rules to the group probabilities indicated
that simple mathematical aggregation without any interaction, e.g. linear
aggregation with equal weights, generally produced group probabilities
as good as those assessed after interaction. Interaction did produce more
extreme but less well calibrated assessments, with the type of interaction
having little effect. Generally, the calibration of mathematically ag-
gregated group probabilities prior to any interaction was quite good,

clearly better than the calibration of individual assessments.

These results may appear relatively uninteresting from a psycho-
logical perspective because of the lack of differences in assessments |
after different types of interaction. But the implications for appli-
cations of decision theory are important. In many instances, simple,
mathematical aggregation of individual probability assessments may be
adequate without resorting to more elaborate, praétically difficult,
and time consuming interactive processes or modeling efforts.
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INTRODUCTION

One of the cornerstones oi decision theory is the concept of
subjective probability. The theory of subjective probability (e.g.,
Savage, 1954) provides a basis for quantifying the subjective opinions
of a decision maker or experts whose opinions are used by a decision
maker in the probabilistic terms which can then be used explicitly in
the decision making process. 1In order to use subjective probabilities,
techniques have been developed for assessing subjective probabilities
(Spetzler and Stael von Holstein, 1975). The development of the theory
and the assessment techniques has led to the use of subjective probability
in a wide variety of real decision contexts (Beach, 1976).

But the applications of subjective probabilities in real-world
contexts have also illuminated a gap between the theory and assessment
techniques, and the technology needed in certain decision situations.

[ Often groups rather than individuals are the decision makers or the
experts providing input to the decision makers. And research has shown
that the type of judgments required are generally more valid when made
by groups rather than individuals (Seaver, 1976). Yet both the theory
and the assessment techniques of subjective probability have been
primarily oriented toward quantifying the uncertainty of a single indi-
vidual. Although as Savage (154, p. 8) points out, the theory is not

limited to the single person case, extensions to the multi-person case
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depend on some sort of unanimity of action among the group members.
Such unanimity rarely exists in decision making groups uptil some
process specifically aimed at achieving it is undertaken.

One possible way in which to create a form of unanimity is for
the group to interact to reach a consensus. But social pychological
research suggests that several aspects of the interaction process may
reduce the quality of the resulting consensus (Collins and Guetzkow,
1964; Davis, 1969; Van de Ven and Delbecqg, 1971). Fbér example, inter-
acting groups will often expend considerable time and effort simply
structuring the group and the interacting process, both explicitly and
unknowingly. Additionally, dominance by individuals because of status
or personality may decrease the effectiveness of the group. Or,
pressure for conformity may cause the group to, in effect, make simply

reaching an agreement more important than the substantive value of the

consensus.

Elaborate interactive processes that attempt to circumvent
these factors have been the subject of extensive research. Typically,
such processes rely on strictly controlled interaction and do not
actually produce a consensus, but rather necessitate some type of
aggregation of individual judgments to produce the group judgment.
Since these processes are often gquite time-consuming and their effec-
tiveness is questionable, simpler approaches to the problem of deter-
mining group probabilities should be considered.

One obvious simple approach is to average the individual
probabilities; or use some other mathematical aggregation rule. Theo-
retical difficulties with mathematical aggregation do exist, however,

as shown by Dalkey (1972). He proved, in the spirit of Arrow's (1951)
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Impossibility Theorem, that there is no rule for aggregating individual
probabilities into a group probability distribution that satisfies a

set of seemingly reasonable conditions. Additionally, the more

rigorous and theoretically appealing mathematical aggregation models

are difficult to apply in practice because an inordinate amount of

data or extremely complex judgments are required as inputs to the models.
Simplifying, although unrealistic, assumptions can be made that allow
use of these models.

Although it has some problems, mathematical aggregation of
individual probabilities does have two advantages over interaction:
the group probability will always be produced, and it will be obtained
using less of the decision makers' or experts' time. Whether or not
mathematical aggregation should generally be advocated for obtaining
group probabilities should and/or would depend on two, probably related,
factors: the quality of the resulting probabilities, and the accept-
ability of the procedure to the group. In fact, should the group agree
to use some mathematical aggregation rule to determine the group prob-
abilities, it is in effect producing the unanimity necessary for the
theory of subjective probability.

Thus, the question of what is the best way to reach unanimity
is an empirical question. Will the quality of group probabilities
produced by mathematical aggregation of individual probabilities be
good enough so that such a procedure can be advocated rather than the
much more cumbersome interaction processes? If so, what mathematical
model lﬁould be used for aggregation? If not, is there a specific
interactive process that works best? The experimental research reported

here explores the answers to these gquestions.
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However, before describing the experiment and presenting the
results, some additional information is presented. First, several
concepts concerning probability and its use in this research are de-
fined and explained. Then the specific nature of the different types
of both interaction processes and mathematical aggregation models are
described, along with the scant empirical research on the relative
merits of the various means of determining group probabilities. Sub-
sequently, the experiment and the obtained results are presented. And,
finally, the implications of the research for groups faced with the task

of determining probabilities are discussed with special emphasis on

applications in realistic situations.




CONCEPTS IN ASSESSING AND EVALUATING

SUBJECTIVE PROBABILITIES

Assessing Subjective Probabilities

Procedures for both assessing and evaluating subjective prob-
abilities depend on the nature of the propositions or events for which
probabilities are assessed. If the events under consideration are
discrete--that is, the space of possible events is represented by a
finite number of mutually exclusive and exhaustive events--then
assessments can take the form of a probability between 0.0 and 1.0.

If, however, the events are represented by a continuum with an infinite
number of possibilities, then the assessments must be probability

density functions. Procedures for eliciting probability density func-

tions often produce only approximations (cf. Seaver, von Winterfeldt,

and Edwards, 1978). Spetzler and Stael von Holstein (1975) discuss particular
procedures for eliciting appropriate judgments for both types of

assessments.

When complete probability density functions are needed, often
a particular family of distributions (e.g., normal or beta distributions)
can provide enough flexibility by varying parameters to represent sub-
jective opinion. This is especially useful in certain instances when
information from a variety of sources is to be combined; e.g., subjective

prior probability with objective data, or, in some instances, multiple
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subjective prior probabilities, Bayes' Theorem provides the appropriate
mechanism for combining information, 1If the information being combined
is represented by distributions that are members of a conjugate family

of distributions, the distribution resulting from the application of

Bayes' Theorem will also be a member of the same family of distributions
(DeGroot, 1970). For example, beta distributions can be combined to
produce another beta distribution, or combining normal distributions
produces a normal distribution, And use of conjugate distributions

greatly simplifies the computation necessary in applying Bayes' Theorem,

Evaluating Subjective Probabilities

In a philosophical sense, subjective probabilities by their very
nature cannot be externally evaluated, They are judgments or opinions,
and as such can only be evaluated in terms of how well the elicited
judgment represents the internal opinion, But in a practical sense,
certain criteria characterize properties subjective probabilities should
have. Seaver, von Winterfeldt, and Edwards (1978) have identified five
such desiderata:

1. Assessments should be consistent with the laws of probabil-
ity theory.

2, Assessments should be extreme, For discrete assessments,
this implies that probabilities assigned to events that occur should be
near 1,0, while those assigned to non-occurring events should be near
0,0, Continuous assessments should have a high density at the true
value and a density near 0,0 elsewhere,

3, Assessments should be well-calibrated, This means that

multiple assessments should have the property that the events for which

s - = e NIRRT ST e




the probabilities are assessed occur with a relative frequency equal to
the assessed probability, For example, discrete events for which the
assessed probability is ,75 should occur about 75 percent of the time,
And about 50 percent of the true values should fall below the medians
of assessed probability densities, or within the interquartile ranges,
4. Assessments should produce high scores when evaluated with’
proper scoring rules (see Murphy and Winkler, 1970; Stael von Holstein,
1971). These scores measure a combination of criteria 2 and 3, which
typically will conflict. The defining property of proper scoring rules
is that the expected value of the score is maximized if and only if the
assessor reports his or her true opinion, An often used proper scoring

rule for discrete assessments is the quadratic scoring rule:

po 2
S, =2p(0,) - I p(0O.) (1)
k k s j

=1
where Sk is the score if Ok occurs, The continuous form of the ranked
probability score is an example of a proper scoring rule for continuous

assessments (Matheson and Winkler, 1976):
t ® 2
S==f P@)AG=S 1 =-=P(0)) 4a@ (2)
- t
where P(Q) is the cumulative assessed distribution and t is the true
value of O,
S. Assessments should be responsive to evidence, Seaver
et al, suggest this means probabilities should be revised as evidence

accunulates as specified by Bayes' Theorem, In a formal sense, this

tfollows from the laws of probability (criterion 1,),
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In any given situation, probability assessments are usually
not evaluated using all five desiderata. Elicitation procedures often
do not allow properties 1 or 5 to be violated. Most investigations of
procedures for assessing subjective probabilities have focused on
properties 3 and 4. Lichtenstein, Fischhoff, and Phillips (1977) have
reviewed the research on the calibration of (individual) assessments,
most of which indicated assessments are usually not well-calibrated.
Scores tend to vary depending on the assessor's expertise and training
(cf. Stael von Holstein, 1971, 1972; winkler, 1971), but often scores are
only slightly better than would be achieved with uniform probabilities.
Thus, clearly, assessments can be improved, and using multiple persons

is a possible means of improvement.




ASSESSMENT APPROACHES

Mathematical Aggregation Procedures

A variety of mathematical models for combining individual
probabilities into a composite or group probability have been suggested.
Depending upon the particular model, these models may be applicable for
aggregating either discrete probabilities or density functions, or
both. Some are quite simple mathematically, although the underlying
theoretical justification may be quite complex; while others are quite
complicated and often unusable in realistic situations. Although
unusable in their general form, still these more complex models are
practically beneficial because they can be simplified with certain
assumptions.

Weighted linear combination. This procedure, sometimes called

the "opinion pool," can be used with both discrete probabilities and
density functions. It takes the form

m
PG(O) =7 w

p. (O) (3)
=1 i*i

where Pg is the group probability (density function) and w, and p; are the

i
weight and the probability (density) respectively of individuals i=1,
« « « o m. Stone (1961) was the first to present a formal justification
for this model when, assuming a convex utility function common to all

individuals, he proved the rather weak result that the utility of the

| decision made on the basis of an opinion pool was greater than or equal
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to the minimum utility of a decision based on the probability distri-
bution of any individual. Stronger results were obtained by Bacharach
(1975) using stronger assumptions. Again, given a common utility
function, and a group preference ordering satisfying forms of indepen-
denice of irrelevant alternatives and Pareto Optimality, along with a

- couple of technical assumptions; then the group maximizes expected
utility given a probability distribution in the form of linear combina-
tion of the individual probability distributions.

DeGroot (1974) has taken a different approach to formalizing
the justification for weighted linear combination of probabilities.
Individuals are assumed to revise their own probabilities as weighted
linear combinations of the revealed probabilities of other group members.

In a group with m individuals, each individual i assigns weight w, . to

1]
m
individual j, with all “1j3° and zwij = 1 for all i. This revision- process
i=1

is assumed to be iterative with a constant matrix of weights W and a
vector of initial individual probability distributions, P, with elements

pl""'pm' Then, after n iterations the vector of probabilities is

P‘n)-WP(n'l)-wnp.

(n)

The elements of P will converge to the same limit; i.e., a consensus

*® *
is reached, if and only if there is a vector W'-(wl,...,wm) such that

n
lim w,  =w*
o g

for all i and j, where w: is an element of !?. DeGroot proved that

3

W* exists if there is at least one person in the group who receives non-

2zero weights from all group members. The elements of W* can be found

|
i
I
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by solving the set of linear equations w*W=w* subject to the constraint

m
I wi=l,
=1 3

The group probability distribution is then the linear combination of the
initial individual assessments weighted by the w;'s.

One specific advantage of the DeGroot formulation is that it
explicitly reveals how weights are to be determined. Other justifica-
tions leave this question completely open. However, several procedures
for assigning weights have been suggested and empirically tested, but
will be discussed later since they pertain to other aggregation methods
as well as the linear combination.

The linear combination is the only mathematical aggregation rule
that has received much empirical attention as a means of generating
composite probabilities. Several studies have shown that weighted linear
combinations of individual probabilities are generally superior to in-
dividual assessments as evaluated by proper scoring rules (Brown, 1973;
Stael von Holstein, 1971, 1972; Winkler, 1971). However, since proper
scoring rules are concave functions on the probability simplex, the
score of the average of individual probabilities will necessar: r be
better than the average of the individuals' scores. Nevertheless, the
evidence is quite striking since usually only 10 percent or fewer of the
individual subjects out-perform the group assessments.

Other evaluations also argue for the superiority of weighted

linear combinations. Winkler (1971) made hypothetical bets based on

both individual and weighted linear combinations of individual probability

assessments for football game winners. For various betting schemes, bets

based on the weighted linear combinations won from 2¢ to 47¢ more per
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dollar bet than did bets based on individual assessments. This economic
evaluation is rather impressive support for weighted linear combina-
tions of individual probability assessments.

»
Bayesian models and approximations. Since probability assess-

ments may be considered information pertaining to a set of hypotheses,
a natural procedure for combining such assessments would be to use
Bayes' Theorem, the formally correct procedure for combining prob-
alistic information. Somewhat similar treatments of this problem have
been suggested by Dalkey (1975) and Morris (1974, 1977).

Morris derived results applicable from the point of view of a
decision maker faced with the task of combining the probabilistic judg-
ments of multiple experts with his or her own judgment. However, with
some very minor adjustments, his model is applicable to the general
problem of combining probabilistic judgments. Drawing on Bayes' theorem
the most general form of the model is

pG(O) = k-C(O)-pl(O)-~°--pm(0)~po(0)
where k is a normalization constant and po is the prior probability, in
most cases probably assumed to be uniform, but possibly derived from
other sources; e.qg., historical data and pi (0) is the distribution
assessed by expert i. C(0), the "Joint Calibration Function" (Morris,
1977), reflects both the lack of independence among the individual
judgments in the sense that knowing the judgment of one individual
provides information about the probable judgment of another individ-
ual; and the lack of calibration of the individual judgments. This
function is generally impractical to derive because of the necessity

for inordinate amounts of data or very complex judgments. Therefore,

simplifying assumptions must be made to utilize this model.
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The same problem occurs with Dalkey's (1975) development of the
"probabilistic approach," which deals only with discrete probability
assessments. In this model, the group probability of event C& is

derived as

m
nr (elp, (o))
; i"7Vk1%1i vk
p.(0) = i=) .
G k n m
D, (0, |p, (0,
j£1 3*121 '1(93'91‘93”

Rather than aggregating pi(e), the assessed probabilities, this formu-

lation aggregates ri(oj‘pj(ej)), the value of individual i's calibration
function at pi(G). For example, if for some assessor only 80 percent of
the propositions assigned a probability of .9 occur, then r would be .8

when p is .9. The D,

3k terms reflect the lack of independence of the in-

dividual judgments and the prior probabilities. These terms would often
be very difficult to determine, and in many instances, the ri's might
also not be readily available.

Two major assumptions are necessary to make either of these models
easily usable: independence among assessors and perfect calibration, i.e.,
ri=pi. Then, in the discrete case with uniform prior probabilities either
model reduces to

m
pley) = R A (4)

n m

f 1nop.le.)
j=1 i=1 * I

If n, the number of hypotheses, is two, this model is eguivalent to the

likelihood ratio form of Bayes' Theorem, with each individual's odds as
the likelihood ratio inputs. If the prior probabilities are not uniform, _

in Morris's model, the prior probability would simply be treated equivalently




14
to the assessment of another individual, but in the Dalkey model, the
prior distribution enters into the calculations in a much more complex
manner (see Dalkey, 1975, pp. 252-255).

With assess;ents of density functions, assumptions of independence
and perfect calibration, and the additional requirement that all indi-
vidually assessed densities be members of the same family of conjugate
distributions; Morris' model becomes the natural-conjugate model sug-
gested by Winkler (1968). Using conjugate distributions is not necessary
for the Morris model, but does greatly simplify the mathematics.

Winkler generalized the conjugate model somewhat by allowing
each individual's distribution to be weighted. Differences in weights
should represent differences in the validity of the assessed distribu-
tions, while the sum of the weights (in this case not required to be
one) should represent in some sense the independence of the assessments.
Thus, Winkler argued for the sum of the weights to be between one and m,
the number of assessors, because a sum of one represents complete de-
pendence, while a sum of m represents complete independence. However,

a type of dependence in which the entire set of distributions provides
more information than do the single distributions by themselves might
lead to sums greater than m, so such a restriction is really not justified.

The idea of weighting the individual assessments in the discrete

case extends the model (eq. 4) to:

w,
(0.) = i£1pil(e“) (5)
pG k n m :
SR p:i(e.)
j=1 i=1 J

where w1 is the weight assigned to individual i's assessment. If the

weights are required to sum to one, the group probability is then the

e
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normalized weighted geometric mean of the individual assessments. This
model is then the multiplicative parallel to the linear combination

model which is the weighted arithmetic mean. In considering the weighted
geometric and arithmetic means, it is useful to keep in mind Dalkey's
(1972) result showing that aggregation by addition generally destroys the
multiplicative properties of the probabilities, whereas aggregation by
multiplication destroys additive properties.

Pari-mutuel model. An ingenious and appealing aggregation model

has been suggested by Eisenberg and Gale (1959) bac-? on the pari-

mutuel betting system used at race tracks. The pari-mutuel betting
syster. provides a natural set of track or consensus odds (or equivalently,
probabilities). Eisenberg and Gale investigated the conditions under
which similar consensus probabilities could be explicitly determined from
a set of individual assessments. They formulated the problem as follows.
Suppose there are m individuals and n mutually exclusive and exhaustive

events, and each individual i has amount b, to bet, with the bi's nor-

i

malized to sum to one. Each individual i bets Bij on event j,

so as to maximize his or her subjective expected value and the final
consensus probabilities are proportional to the total amount bet on each
event. That is

m
pG(ek) =I B

joy *o

where equality holds because of the normalization of the bi's. Individual

i will maximize expected value by betting only on those events for which

Pi(ej)/pc(ej) is maximum.
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At this point the reasoning appears to be circular: individuals
cannot bet without knowing Pg' and Pg cannot be determined until the bets
are made. Eisenberg and Gale do not give a solution to this circularity.
Rather,. they simply prove that a set of bets and a unique set of con-
sensus probabilities exist that are consistent with this model. The
consensus probabilities are

b.p, (6))

pG(Ok) = m:x = .

I p,(0.)x,
j=lpi( J)xxj

The values ;ij are the values that maximize the function

m n
F(x..,...yx_ ) = I b.log I p,(0.)x,.
11 mn j=1 & jm1 i 737743
m
with x.. >0 and I x,,6 =1, for all i and j.
VS jo1 13

Norvig (1967) has proved the same result with a more intuitively
appealing mathematical approach. He formulated the problem as an
interactive process in which individuals place bets which lead to con-
sensus probabilities, which then allow individuals to place new bets,
etc. The consensus probabilities will then converge on the same prob-
abilities specified in the Eisenberg-Gale model.

Weighting procedures. Most of the mathematical aggregation

models allow the individual assessments to be differentially weighted.

Even the pari-mutuel model, although not explicitly referring to weights,
allows weighting via the amount each individual can bet. Therefore, the
specification of weights is a necessary part of the use of these models.

Several procedures have been suggested and empirically tested with linear
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combination models, including both theoretically developed procedures
and strictly ad hoc methods. In empirical tests, the theoretical pro-
cedures have not shown any superiority to ad hoc methods of assigning
weights. An informal test (Hogarth, 1977) of weights derived using

the DeGroot (1974) model showed it led to predictions that were slightly
inferior to those of a simple average (equal weights).

Roberts (1965) has suggested another weighting procedure based
on the predictive probability of previous assessments. However, because
the weights for most individuals will rapidly approach zero, this pro-
cedure has proved to be impractical (Winkler, 1971).

The more ad hoc weighting procedures, usually based on past
performance, self-ratings, or ratings by others, have received consider-
able attention. Stael von Holstein (1972) compared several weighting
procedures based on prior performance and found little or no difference
among them. Similar results have been obtained with self-ratings and
ratings by others (Gough, 1975; Rowse, Gustafson, and Ludke, 1974;
Stael von Holstein, 1971; Winkler, 1971).

These results are not surprising given the "flatness" of linear
models (von Winterfeldt and Edwards, 1973). This flatness ensures that
relatively large changes in weights will produce only small changes in
the output of the model. Since both the aggregation procedure (linear
combination) and the evaluation procedure (proper scoring rules) are
linear models, flatness is doubly ensured. Whether or not this in-
sensitivity to weights also holds for nonlinear aggregation models and
othet'types of evaluations remains to be investigated.

Behavioral Interaction

An alternative to mathematical aggregation of individual
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probabilities is some kind of behavioral interaction. This can be used
either in conjunction with mathematical aggregation or simply by itself.
Interaction here refers to any form of communication or transfer of
information and ideas among the individuals making the assessments, so,
= therefore, is not limited to face-to-face discussions.

The most obvious reason for allowing interaction among group
members is that each may have information that is useful to the others
in making their assessments. By sharing this information the assessment
of each individual, and, therefore, the group assessment may be improved.
This need not necessarily happen, however, because the information may,
in fact, produce worse assessments. However, if the potential can be
exploited, the interaction should be beneficial. 1In fact, consensus

probabilistic judgments determined through interaction have been shown

empirically to be superior to individual judgments (Goodman, 1972;
Stael von Holstein, 1971).

Social psychological research suggests some other reasons that
favor interacting groups in a wide variety of judgmental tasks. Inter-
b action is likely to make group members feel more responsible for the
group judgment, and, therefore increase their motivation. This also
has a practical beneficial side effect: the group members are more
likely to accept a judgment arrived at in this manner as the basis for
making a decision (Collins and Guetzkow, 1964; Davis, 1969).

Given these potential positive benefits of behavioral interaction,
considerable interest has developed in finding ways to take advantage
of them without the group being exposed to the known negative aspects
of interaction such as dominant individuals and pressure for conformity

that typically accompany uncontrolled interaction. 1In particular, two
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procedures that control interaction have been developed and widely
utilized in a variety of contexts: Delphi, developed by Dalkey and Helmer
at The Rand Corporation; and the Nominal-Group-Technique (NGT) developed
by Delbecq and Van de Ven at the University of Wisconsin. Both proce-
dures rely on controlled interaction, and neither actually leads to a
group consensus; therefore, necessitating the use of some type of
mathematical aggregation. The procedural details and empirical support
for these methods are reviewed in the following subsections.

Delphi. Delphi was first used in 1951 to elicit expert judgments
about the number of A-bombs needed to reduce U.S. munitions output to a
certain level (Dalkey and Helmer, 1963). Since then it has achieved
wide-spread use, particularly in industry for predicting technological
development (Linstone and Turoff, 1975; Sackman, 1974). Many different
procedures have been used under the name "Delphi,” but as originally
conceived, Delphi includes three bagic features: (1) anonymity of group
members; (2) iteration of responses with controlled feedback between
iterations; and (3) statistical aggregation (unspecified as to type) of
individual judgments to form the group response (Dalkey, 1969b).

These characteristics are designed to reduce some of the poten-
tial problems associated with face-to-face discussion groups. The
anonymity ensures that no individuals can dominate the group because
of status. 1Iteration and controlled feedback allow the exchange of
information without the value of the information being affected by its
source. Finally, the statistical group response lessens the pressure
for conformity and takes advantage of the error variance reduction of
statistical aggregation.

The validity of responses obtained using Delphi was studied in
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a series of experiments at The Rand Corporation (Dalkey, 196%9a, 1969b;
f Dalkey, Brown and Cochran, 1970a, 1970b). In the only study that
compared Delphi responses with the consensus of face-to-face discussion
groups (Dalkey, 1969b), Delphi yielded more iccuxate answers on 13 of
20 questions, marginal support at best for Delphi. Additional support
came from a second part of the study in which groups used Delphi between
rounds one and two of responses, and face-to-face discussion between
rounds two and three. There was slightly more improvement between rounds
one and two, but again this support is gquite weak given the small dif-
ference and the obvious design flaws. The Delphi procedure does lead
to improved judgments with successive rounds, but the convergence of
judgments is much larger. 1In fact, generally the judgments converge
much more than is justified by the improvement (Dalkey, 196%a, 1969b).
The use of Delphi as a technique for generating guantitative
assessments of unknown quantities from multiple experts seems to be much
more extensive than can be justified by the empirical research (Sackman,
1974). sSeveral features of Delphi can be questioned: the multiple
iterations apparently produce more convergence than is justified; and

the anonymity of respondents suppresses a potentially important feature

of the feedback information; namely, its source.
Clearly, the value of Delphi has not been firmly established,
. particularly as a tool for assessing group probabilities. There have
been enough positive results, however, to justify further investiga-
tions. A few studies have used the Delphi method to assess growp

probabilities. They will be discussed following the presentation of the

Nominal-Group-Technique.
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Nominal-Group-Technique. Van de Ven and Delbecq (1971) reviewed

the literature on the effectiveness of nominal groups (groups with no
spontaneous interaction) versus interacting groups on problem-solving
and decision-making tasks, and concluded that a process combining the
attributes of these two processes should be more effective than either
alone. On this basis, they developed and tested the NGT. The specific
procedure, described in Delbecq, Van de Ven, and Gustafson (1975), in-
cludes (1) silent judgments by individual group members in the presence
of the group; (2) presentation to the group without discussion of all
individual judgments; (3) group discussion for clarification and evalua-
tion controlled by a group leader to prevent dominance and to focus on
relevant issues; (4) individual reconsideration of judgments; and (5)
mathematical aggregation of final individual judgments.

Thus, like the Delphi method, NGT may reduce pressure for
conformity by not forcing a consensus. The controlled discussion also
reduces the chance for dominance by individuals, although perhaps not
to the extent Delphi's anonymity does. Both procedures eliminate the
need for the group to provide structure since it is implicit in the
procedure. The primary differences in Delphi and NGT are that NGT re-
quires that group members actually be together physically and allows
face-to-face discussion. NGT also provides knowledge of the source of
any and all information. Additionally, NGT requires an active leader.
Delbecq et al. (1975) discuss the advantages and disadvantages of this
type of leadership role.

‘Much of the empirical support for the NGT comes from a problem-
solving study with rather weak evaluation criteria (Van de Ven and

Delbecq, 1974). Groups using Delphi, NGT, and uncontrolled interaction
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were compared on the number of alternatives generated and the perceived
satisfaction of group members. NGT clearly led to more satisfaction,
while NGT and Delphi groups both produced more alternatives than the
interacting groups. Neither of these measures has much relevance to
the quality of the group judgments, but the satisfaction may be
practically important.

Experimental comparisons with probabilistic judgments. Although

neither Delphi nor NGT were developed for assessing probabilities, both
obviously could be applied in this capacity. 1In fact, three studies have
specifically compared these procedures with interacting groups and
mathematical aggregation without any interaction. Gustafson, Shukla,
Delbecq, and Walster (1973) compared groups making judgments about the
likelihood ratios of male versus female given certain heights. Four
types of groups were used: mathematical aggregation without inter-
action; NGT; Delphi; and modified interacting groups. The modification
to the interacting groups was that no actual consensus was required
prior to individual judgments after the interaction. Thus, interacting
groups differed from NGT groups only in that NGT groups mgde individual
judgments before the interaction. Geometric means were used to aggregate
the individual likelihood ratio judgments. Using the average deviations
of the group judgments from the true likelihood ratios, NGT groups pro-
duced the best assessments and Delphi groups, the worst.

A study by Gough (1975) used the same four types of groups as
used by Gustafson et al. with the exception that the interacting groups
made 1néividua1 assessments prior to interaction and actually had to
reach a consensus during the interaction. The assessments were five

fractiles of the individuals' cumulative subjective probability
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distribution for,general information questions and a linear aggregation
model was used. A quadratic proper scoring rule was applied to evaluate
the probability distributions. Although Gough's results indicated
that NGT groups produced the best assessments, the differences were
quite small and probably did not justify his conclusions favoring the
NGT.

The third study (Fischer, 1975) used the same types of groups
as Gough with a different type of assessment. Subjects were asked to
assess the probability of freshmen GPA's falling into four mutually
exclusive and exhaustive categories given information about gender, high
school GPA, SAT math, and SAT verbal scores. Fischer's evaluation method,
a logarithmic proper scoring rule was similar to Gough's, as were his
results. There was virtually no difference among the groups. Fischer
attributes much of the difference between his results and those of
Gustafson et al. to the dependent variable used to evaluate the assess-
ments. His basic argument is that large differences in likelihood
ratios may be only small differences when transformed into probabilities,
particularly at the extreme ends of the probability scale. Thus, it

appears results may very much depend on the way in which they are

evaluated.




AN EXPERIMENTAL COMPARISON AND EVALUATION

As suggested in the Introduction, several questions about how
group probabilities should be assessed need to be answered empitically.'
The previous section outlining the mathematical and behavioral inter-
action approaches to assessing group probabilities and related litera-
ture indicates that these questions have yet to be answered. This
experiment attempts to answer these questions.

The first question is whether interaction of some kind will
improve the group probabilities compared with probabilities derived by
mathematically aggregating the individual assessments. If interaction
does improve assessments, what type of interaction allows the most
improvement? 1In this study four types of interaction were used, along
with a no interaction condition. They represent the interaction processes
typically found in previous research: Delphi, NGT, and interacting
groups forced to reach a consensus (hereafter called consensus or CON
groups), along with a fourth process (MIX) that is somewhat a mixture
of Delphi and NGT. This process, like NGT, has individuals make judgments
and present them to the group, but allows only presentation of specific
reasons for the judgment without open discussion. 1In this respect, it
is more similar to Delphi. These interaction processes represent a con-
tinuum with respect to the latitude the groups have for interacting

ranging from none to complete freedom.

24
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Another issue investigated is the differences in group prob-
abilities caused by use of different mathematical aggregation models.
Because different models can be used depending on whether the assessed
probabilities are discrete or continuous, both types of assessments
were obtained. The basic aggregation models that were used included
the linear combination model for both discrete and continuous ptobabilij
ties, the conjugate model with weights summing to one and to m (the number
of group members), for continuous probabilities, the discrete counter-
parts of the conjugate model--weighted normalized geometric mean and
aggregation by likelihood ratios--and the pari-mutuel model for discrete
probabilities. Additionally, three sets of weights were used with each
model that allows for differential weighting: weights obtained from
the DeGroot (1974) model; weights reflecting each individual's self-
rating relative to the self-ratings of other individuals; and equal
weights. Group probabilities derived by aggregating individual prob-
abilities with these models can also be compared with the consensus
probabilities decided upon by CON groups.

An additional product of this study is a comparison of indivi-
dual and group probability assessments using primarily extremeness,
calibration, and proper scoring rules. A quadratic scoring rule was
used for discrete assessments. Continuous assessments were evaluated

with a linear transformation of the continuous ranked probability score,

S* = (Su - S)/suo

vhere S is the usual score (eq. 2) and Su is the score for a

uniform distribution; i.e. p(0) = ©. This permissible transformation

makes the scores easier to interpret since S* does not depend on the




26

true value as S does. The range of S* is from -4.0 to 1.0 with a
uniform distribution receiving a score of 0.0.

Experimental Method

-Subjects. Eleven four-person groups were used. Ten groups
participated in the assessment of discrete probabilities, but one of
these groups was unavailable to assess continuous probabilities so was
therefore replaced. This causes no problem in data analyses since the
data from the two types of assessments are analyzed separately. The
subjects were predominantly graduate stu&ents at the University of
Southern California or their friends. Each subject was familiar with
the other three members of the group. Subjects were paid $20 plus
bonuses based on evaluations of some of their responses with the proper
scoring rules for each of the two sessions, bringing total payment to
approximately $5 to $6 per hour.

Stimuli. For the discrete assessments, the stimuli were 100
two-alternative general information questions randomly sampled from a

1

collection of about 700 such questions.” These questions were réndomly

divided into five sets of 20 questions.

The continuous stimuli wefe general information questions about
percentages. A set of these questions was developed with five true values
falling into each range of 5 percent from 10 percent to 40 percent and
from 60 percent to 90 perceﬁt and two true values in each 5 percent
range between 40 percent and 60 percent. These questions were randomly
assigned to five sets of questions so that each set had one true value

in each § percent range from 10 percent to 40 percent and from 60 percent

11 wouléd like to thank Sarah Lichtenstein for making these
questions available.
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to 90 percent and two true values in each 5 percent range between 40
percent and 60 percent. This was to ensure that differences in the
quality of probabilities assessed for the different question sets were
not due to the true values of the questions. The very extreme percent-
ages were avoided because of the large biases usually found in assessed
distributions for these questions (Fujii, Seaver, and Edwards, 1977).

Procedure. Each group of subjects participated in two sessions:
the first assessing discrete probabilities and the second, continuous
probabilities. Sessions lasted from three to four and a half hours with
the continuous assessment session taking about an hour longer than the
first session because additional training was needed. Each group answered
a different set of questions in each of the five interaction conditions.
The question sets and the order of interaction conditions were balanced
in a 5 x 5 Greco-Latin square.

For the discrete assessments, subjects were required to choose
the answer they thought was most likely to be correct and then asséss
the probability (p > .5) that the choice was correct. Also, for each
question they were instructed to assign weights to each group member
reflecting their belief about how much each group member's opinion should
contribute to the "group opinion." These weights were to reflect sub-
jects prior beliefs about the expertise of the group members with respect
to the question under consideration. Each individual whose opinion
should contribute nothing was assigned a weight of zero. Of the re-
maining group members, a_weight of 10 should be assigned to those
whose opinion should contribute the least. Any remaining individuals
should be assigned weights reflecting their contribution relative
to those receiving weights of 10. For example, if another individual's
opinion should contribute five times as much, that individual wculd

receive a weight of 50. Weights were assigned for each question
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during both the initial and final probability assessments in all inter-
action conditions.

Subjects were then given a sheet of paper showing the quadratic scoring
rule that would be used to evaluate their assessments. In addition to a fixed
payment of $20, subjects could win or doose money based on applying the scor-
ing rule to judgmgn;s on two randomly selected questions from each set of
20. The paper included the amount to be won or lost for probabilities between
.5 and 1.0 in steps of .05 plus .99. The quadratic scoring rule (eg. 1)
was linearly transformed-so that any assessment of .5 would mean nothing
won or lost, while an assessment of 1.0 would result in a win of one
dollar if the choice was correct, or a loss of three dollars if the
choice was wrong. Four sample questions were answered by each subject
and the answers to these questions were scored to illustrate the scoring
rule.

The procedure for the initial individual assessments was the
same for each interaction condition. The subjects answered each of the
20 questions without any discussion among themselves. After all group
members had completed these questions, the procedure varied depending on
the interaction condition. Table 1 shows the major differences in the
interaction conditions.

TABLE 1

MAJOR DIFFERENCES IN TYPES OF INTERACTION

Reconsider with |Knowledge of Verbal

Type of |Information about| Judgment ([Information |Uncontrolled (Consensus
Interaction | Other Judgments Source Exchange Discussion |Necessary
None
Delphi Yes
MIX Yes Yes Yes
NGT Yes Yes Yes Yes
CON Yes Yes Yes Yes Yes

"‘g:'f -
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In the no interaction condition, the subjects were simply told
the answers and scored two pre-selected questions.

In the Delphi condition, the experimenter collected “he assess-
ments and explained that the subjects would have two subsequent chances
to reassess their probabilities, each time with additional information
about the assessments of the other group members. For each question
the subjects were given the four assessments of the group without any
information about who made which assessment. On the basis of this in-
formation they reconsidered their judgments. 1In addition, they were
instructed to write any information that might be useful to other group
members in space provided on the answer sheets. 1In particular, if some-
one's judgments differed radically from other group members, that person
should attempt to explain the reasoning behind the judgment. After all
20 questions were again answered, the same process was repeated with
the feedback, including any written information provided by the subjects.
After the final set of responses was completed, the answers were given
and two questions were scored from each of the initial and final
assessments.

In the MIX condition, each group member presented his or her
assessment for the question under consideration to the group verbally.
After each assessment had been presented, any group member was allowed
to state any reasons underlying the assessment or any information that
might be useful to other group members. Each individual then reconsidered
the assessment for that question. After all questions had been considered
a second time, the answers to all questions were given and two assess-

ments from each of the initial and subseguent assessments were scored for

pay.
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The NGT groups were the same as the MIX groups except after
presentation of the individual assessments, a general face-to-face dis-
cussion was allowed with only the restriction that it be relevant to the
question under consideration.

The CON groups differed from the NGT groups in that the presen-
tation of individual judgments was not required and the groups had to
reach consensus (agreement) about the assessment.

The second session, in which continuous probabilities were
assessed, was similar in most respects to the first except considerably
more training for the assessments was provided. For these questions sub-
jects were requested to assess two parameters of a beta distribution
representing their opinion about the possible answers to gquestions in-
volving percentages. Rather than asking for a and B, the usual beta
parémeters, the parameters of m = (a - 1)/(a + B - 2), the mode, and
n=a+ B - 2, which reflects the tightness of the distribution and can
be considered as a sample size, were assessed. To teach the subjects
the correspondence between these parameters and the actual shape of the
probability distributions, each subject was given a book containing graphs
of the density and cumulative distribution functions of beta distribu-
tions with values of m beginning at .05 and increasing by steps of .05
to .95, and values of n equal to 0, 2, 5, 10, 15, 20, 25, 30, S0, 75, and
100 for each m. Each of the graphs also included the corresponding numeri-
cal quantities of density and cumulative probability for each .05 incre-
ment. Subjects kept these books for reference throughout the session.

After the meaning of the graphs and the correspondence between
the parameters and the shape of the distributions was explained, a test

was made to ensure that the subjects knew this correspondence. Subjects
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were presented graphs of various beta densities and cumulative distri-
butions together and asked to estimate the parameters of the distribu-
tions. Actually, only the parameter n was estimated since subjects had
no trouble with the correspondence between m and the distributions.

These graphs were presented to the subjects individually until 12 conseac-
utive estimates (each subject three times) of n were between 2/3 and

3/2 of the true value. The total number of graphs presented ranged from
B89 to 208 for the various groups.

After the training, subjects were instructed about the scoring
rule to be used for these assessments, given four practice questions and
answers, reminded of the procedure for assessing weights, and began the
task with the interaction conditions. Following the completion of the
second session, subject§ were questioned as to which procedure they would
prefer to use if they were in a real decision making group which needed
to determine some relevant probability.

Results

Discrete assessments. The average quadratic scores of various

aggregation models both before any interaction and after each of the
types of interaction are presented in Table 2(a), along with the avexagé
individual scores and the average score of the actual consensus assess-
ments. The aggregation models are the linear model (eg. 3), the
geometric mean model (eq. 5), and the likelihood ratio:model (eq.:8).
The three weighting procedures are equal, DeGroot (1974), and self-
rating, derived by first normalizing the weights assigned by each indi-

vidual to sum to one and then again normalizing the (normalized) weights

individuals assigned to themselves.
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L wij
w, = J
i
I ii
i wij %
{7}

where v, is the derived self-weight for individual i and wij is the
weight assigned by individual i to individual j.
The most notable result in Table 2(a) is that the likelihood ratio

model does quite poorly. The linear and gemoetric mean models differ only

slightly as do the weighting procedures. Also, interaction does not generally

seem to have much effect on the group scores, although the NGT scores
tend to be somewhat higher, but it increases the individual scores. An
analysis of variance with five repeated measures factors: interaction
type, questions, repetition (before or after interaction), aggregation
model (only linear and geometric mean), and weights, generally confirmed
these conclusions. Other than the questions factor, which is of little
interest here, no main effects were significant and only two interaction
terms were significant: the aggregation model by weights interaction,
F(2,18)=11.7, p <.001, and the repetition by aggregation model by weights
interaction, F(2,18)=8.48, p <.003.

Although the evaluation with the scoring rule shows little differ-
ence among the group probabilities, other characteristics show more dis-
tinct effects. Table 2(b) shows the average probabilities assigned to
the correct response, a measure of the extremeness of the assessments.
The group probabilities are more extreme than the individual probabil-
ities, the likelihood ratio model produces the most extreme probabilities
and interaction leads to more extreme probabilities. An analysis of
variance confirmed the effects apparent in the means showing the proba-
bilities to be more extreme after interaction, F(1,9)=30.5, p <.001,

more extreme with the geometric mean than the linear model, F(1,9)=29.2,
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TABLE 2(a)

AVERAGE QUADRATIC SCORES

Linear Geometric Mean Likeli-{Actual |[Indi-
Self- De- Self- De- hood Consen- |vidual
Eqaal rating|Groot Equal rating |[Groot Ratio sus
-
Before| .562 .565 .572 .570 .551 .568 .495 .494
After .577 .569 .573 .557 .545 .549 .449 .556 .541
Delphi| .573 .557 .577 .541 .529 .542 .447 .529
MIX .565 .558 .554 .547 .528 .527 .429 .526
NGT .599 .595 .599 .584 .576 .582 .465 .556
CON .572 .564 .562 .555 .547 .544 .454 .551
TABLE 2 (b)

AVERAGE PROBABILITY ASSIGNED TO CORRECT ANSWER

e —————— i)

Linear Geometric Mean  |Likeli- |Actual [Indi-
Equal Self— De- Equal Self— De- hoog Consen- |vidual
rating|Groot rating |Groot Ratio sus
Before}] .552 .575 .568 .590 .604 .601 .636 «552
After .613 .623 .620 .631 .634 .633 .655 .635 .613
Delphi| .605 .611 .614 .621 .621 .626 .655 .605
MIX .594 .607 .602 .617 .620 .616 .638 .594
NGT .627 .639 .638 .648 .653 .654 .667 .627
CON .626 .633 .627 .637 .641 .635 .660 .626




34
P £ .001, and less extreme with equal weights, F(2,18)=12.5, p < .001.
s In addition, the three two-way interactions among these three factors
were significant. However, neither the main effect due to interaction
type, nor any of the interactions with that factor were significant.

Calibration, another desirable feature of probabilities, also

#_ showed some differences. Figure 1 shows the calibration curves for
group and individual probabilities, both before and after interaction.
The group probabilities are aggregated over both the linear and geo-

metric mean models, all three weighting procedures, and all interaction

types. Group probabilities are clearly better calibrated than indi-
vidual probabilities before interaction, but interaction causes the
calibration of the group probabilities to get worse while improving
the calibration of the individual probabilities.

Neither weighting procedures nor type of interaction had any
notable effect on calibration, so the calibration curves for the
aggregation models shown in Figure 2 before interaction, and Figure 3
after interaction are aggregated over those variables. The linear
model leads to quite well-calibrated probabilities before interaction,
while the likelihood ratio model produces very poor calibration.

The use of the pari-mutuel model for aggregating individual
probabilities had to be limited for cost reasons. To aggregate the prob-
abilities of all groups for all questions using all weighting procedures
would have required over 100 hours of cpu time. To reduce this computa-
tion to a more realistic level, one of the ten groups was randomly selected
and the pari-mutuel model was used to aggregate the individual assess-
ments of that group. Table 3 gives the mean quadratic scores and mean

probabilities assigned to the correct response for the assessments of this

group only. The pari-mutuel model generally produced lower scores and

less extreme probabilities than the linear or geometric mean models. The
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Figure 1

INDIVIDUAL VERSUS GROUP CALIBRATION : DISCRETE ASSESSMENTS
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{ Figure 2

CALIBRATION OF DIFFERENT AGGREGATION MODELS BEFORE
INTERACTION: DISCRETE ASSESSMENTS
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Figure 3

CALIBRATION OF DIFFERENT AGGREGATION MODELS AFTER
INTERACTION: DISCRETE ASSESSMENTS
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TABLE 3(a)

AVERAGE QUADRATIC SCORES FOR SINGLE RANDOMLY SELECTED GROUP

s o R
e

Before Interaction After Interaction
Weights Weights
Model Egual Se}f- DeGroot Model Equal Se%f— DeGroot
rating rating
Linear .612 .643 .618 Linear .658 .668 .663
Geometric] sae | .e38 | .63 Gometrdcl 613 | om | 6w
Mean Mean
Pari- Pari~-
Mutuel .546 .596 .556 Mutuel .605 .630 .608
TABLE 3(b)
AVERAGE PROBABILITY ASSIGNED TO CORRECT ANSWER FOR
SINGLE RANDOMLY SELECTED GROUP
Before Interaction After Interaction
Weights - Weights
Model Equal Se%f- DeGroot Model Equal FONE DeGroot
rating rating
Linear .578 .622 .586 Linear .634 .650 .643
Secmstricl 626 | .55 | el wemecric] ese | s | w1
Mean Mean
Pari- Pari-
Matusl .532 .576 .539 Mutuel .588 .611 .594

At
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relatively higher scores and more extreme probabilities using self-
rating weights are apparently an anomaly of this particular group.
Figure 4 shows the pari-mutuel calibration curves for this
group, along with the calibration of the linear model for reference
curves. Given the irregularity of the curves and the small samples
on which they are based (each point represents about 40 to 60 assess-
ments), the calibration resulting from the use of the pari-mutuel model
does not appear to be systematically different from the linear model.
Since assessments tended to become more extreme after interaction,
some of the factors that might affect changes in probability assessments
were examined. Four types of qualitative changes were considered:
switches to the other answer; less extreme assessments; no change;
and more extreme assessments. The factors considered were the split of
initial individual answers, all agree (4-0), 2-2, and 3-1 for both the
three individuvals and the single individual; the type of interaction;
the individual's probability relative to those given by group members
selecting the other answer; and the individual's probability relative
to those given by group members selecting the same answer. The latter
two factors were divided into three categories, larger than all the
other probabilities, between or equal to the other probabilities, or
smaller than all the other probabilities. Table 4 presents the con-
ditional percentages of changes for the given levels of each of these

factors.

Changes generally display the intuitively expected patterns.
The more other group members agree with an individual, the less likely
that individual is to switch answers, and the judgment is more likely to
become more extreme. Switches are more likely for individuals with prob-

. abilities smaller than those both with whom they agree and with whom they
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Figure 4

CALIBRATION OF SINGLE RANDOMLY SELECTED GROUP INCLUDING PARI-MUTUEL MODEL:
DISCRETE ASSESSMENTS
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TABLE 4

CONTINGENCY TABLES FOR CHANGES IN INDIVIDUAL JUDGMENTS
(Percentages)

Change

Split of Initial Less More
Individual Judgments Switch Extreme Same Extreme N
4 - 0 1.2 4.8 35.9 58.0 808
3-~-1 15.3 8.9 34.4 41.4 1134
l1-3 47.9 12.4 27.5 14.0 378
2~ 2 31.9 13.2 33.1 21.8 880
Marginal Mean 20.2 9.5 33.8 36.5 3200
Type of Interaction
Delphi 20.4 11.9 25.8 © 41.9 800
MIX 17.3 7.6 41.8 33.3 800
NGT 20.1 7.8 37.0 35.1 800
CON 23.0 17.31 29.0 30.9 800
Marginal Means 20.2 9.5 33.8 36.5 3200
Compared to '
Probabilities for
Other Answer
Larger 10.1 15.8 45.7 28.4 810
Between or Egual 35.0 11.5 28.3 26.2 820
Smaller 35.0 5.6 23.1 36.3 762
Marginal Means 26.6 11.0 32.5 29.9 2392
Compared to
~Probabilities for
Same- Answer
larger 17.0 28.1 45.5 9.4 814
Between or Equal 12.3 5.2 36.2 46.3 1237
Smaller 22.7 3.9 19.8 53.6 771
Marginal Means 16.5 9.1 34.4 40.0 2822
PP p——————— e o ST o G
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disagree. Among individuals who agree, there is a tendency toward
averaging with the largest assessments remaining the same or getting
less extreme, while the middle assessments remain the same or become
more extreme, and the smallest assessments become more extreme,

These aggregated tables mask some of the more striking
effects. For example, with a 4-0 split, 92 percent of the subjects with
the smallest assessments became more extreme. Or with a 3-1 split, 68
percent of the single individuals switched if their probability was smaller
than those of the individual with whom they disagreed, while only 20 per-
cent switched if their probability was larger. These tables also conceal a
non~intuitive interaction: among the three agreeing individuals in a 3-1
split, individuals with assessments less than or equal to the assessment
of the individual who disagreed were more likely to switch if their assess-
ment was larger than the assessments of the agreeing individuals (32%) than
if it was equal to or between (22%) or smaller (21%).

Overall, interaction did produce a convergence in judgments.
The standard deviations of individual judgments were reduced by an average
of 25 percent, 26 percent, 27 percent, and 53 percent after Delphi,
MIX, NGT, and CON interactions respectively.

Continuous assessments. Table 5(a) shows the mean scores of

both individual and group assessments with the various aggregation models,
weighting procedures, and types of interaction. The two aggregation
models are the linear model and the conjugate model with weights summing
to one. The linear model group probabilities were calculated by averaging
the distributions at each step of 5 percent. All scores were computed

by assuming a linear cumulative distribution between each 5 percent step.

These approximations were necessary to reduce computation time.
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TABLE 5(a)

AVERAGE SCORES FOR CONTINUOUS ASSESSMENTS

Linear Conjugate Actual Indi-
e Self- De- Equal Self- De- Consen- .S al
i rating Groot - rating | Groot sus v
| Before .005] -.011 .003 -.058 -.080 | ~.064 -.186
P After | -.063] -.077 | -.072| -.122| -.120 | ~.119| -.016 | -.035
Delphi -.036| =-.057 -.036 -.075 -.099 ~.079 -.011
MIX -.094 -.100 | ~-.113 -.160 | -.147 ~.172 -.114
NGT -.012 -.026 -.016 -.066 -.078 ~.072 .006
CON -.112 -.125 -.123 -.146 -.158 ~.155 -.022
TABLE 5(b)
AVERAGE DENSITY FOR CORRECT ANSWER
Linear Conjugate Actual Indi-
Equal Self- De- Equal Self- De- Consen- v'g al
- rating | Groot i rating | Groot sus o
Before 1.71 1.72 1.74 2.05 2.06 2.07 1.73
After 2.03 1.99 1.99 2.08 2.07 2.09 2.20 2.00
Delphi 2.20 1.98 1.98 2.15 2.04 2.14 2+ 0L
MIX 1.84 1.87 1.83 1.85 1.93 1.84 1.85
NGT 1.97 1.96 2.00 2.09 2.10 2.12 1.99
CON 2.13 2.13 2.15 2.23 2.23 2.24 2.16
TABLE 5(c)
AVERAGE IQ RANGE FOR CONTINUOUS ASSESSMENTS
Linear Conjugate Actual Indi-
Equal Self- De-~ Equal Self- De- Consen~ wifaal
u rating Groot u rating | Groot sus 1
Before . 266 .254 .254 .126 .124 .124 .140
After .157 .152 .152 .113 112 .113 .096 ALS
Delphi .161 .155 .155 .113 .113 .113 .115
MIX .182 .175 .176 .118 .116 .119 .118
NGT .162 .157 .156 117 .114 .115 .120
CON .121 .120 .119 .104 .104 .105 .108
?
%
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L‘f B e e ——



44

Subjects did not generally do well on this task as shown by the
scores being negative; i.e., worse than the score obtained with a uniform
distribution. Correlations between the individual assessed modes and the
true values were only .37 before interaction and .50 after interaction,
at best a moderate relationship. In addition, the assessed values of
n and the error measured by the absolute difference between the mode and
the true value were not related (r=-.06 before interaction and -.03 after
interaction).

Interaction lowered the scores of the group probabilities
F(1,9)=6.19, p < .035, while raising those of individuals. 1In fact,
after interaction, the individuals had higher scores than the groups. The
best scores were received by the actual consensus judgments. However, in-
spection of the means indicates the differences are rather trivial in size.
The repetition by model interaction was also significant, F(1,9)=32.3,

P < .001, but again the differences were rather small. As for discrete
assessments, neither the type of interaction nor the weights used made a
difference in the scores.

Table 5(bd shows the mean densities at the true values. Again,
the assessments became more extreme after interaction, F(1,9)=13.3,

p < .005, and aggregation with the conjugate model leads to higher densi-
ties, F(1.9)=130.0, p < .001. The interaction between these factors was
also significant, F(1,9)=34.0, p < .00l.

Another characteristic of the continuous probability assessments
that reflects their extremeness, but not necessarily their accuracy, is
their dispersion. Table 5(c) shows the mean values of one measure of

dispersion, the interquartile (IQ) range. Group distributions derived
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with the linear model ovbiously have larger dispersion than those from
the conjugate model, F(1,9)=161.2, p < .001. And interaction considerably
reduces the IQ range, F(1,9)=164.2, p < )01, particularly with the
linear model (repetition x aggregation model interaction, F(1,9)=130.2,
P < .001). Additionally, the CON interaction produced smaller ID ranges
(type of interaction main effect, F(3,27)=5.51, p < .004), indicating
generally more agreement as a result of this type of interaction. Also
here, surprisingly, the weights made a significant, F(2,18)=8.73, p < .002,
although not substantial difference: equal weights produced more dis-
persed distributions. All the two-way interactions among repetitions,
aggregation model, and weights were significant, although all except the
repetition by aggregation model were relatively less substantial than
the main effects.

How well calibrated are the continuous assessments? Figure 5
shows the calibration curves for the individual assessments before inter-
action and the group assessments both before and after interaction aggregated
across weighting procedures, linear and conjugate models, and all types of
interaction. 1Individual calibration after interaction is not shown be-
cause it differs little from the calibration before interaction (maximum
vertical difference in curves = ,013). These curves plot the percentage
of true values (ordinate) falling below the specified value of the cumulative
distribution (abscissa). Perfect calibration would result in a straight
line from (0,0) to (1,1). The specific percentages of true values falling
in the tails (less than .0l or greater than .99) and in the IQ range of the
distributions are tabulated in the figure. These values are often used to
measare the calibration of continuous assessments when the entire distri-

butions are not assessed. All the distributions tend to be too tight with
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. Figure 5
INDIVIDUAL VERSUS GROUP CALIBRATION: CONTINUOUS ASSESSMENTS
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too many true values in the tails and too few in the IQ ranges. The
group distributions, however, are better calibrated than the individual
distributions, although as with the discrete probabilities, interaction
leads to poorer calibration for the group distributions. Also, inter-
estingly, the curves are not symmetric: the assessed distributions

are displaced to the left of the true value more often than to the righﬁ.

The type of interaction again had little effect on calibration:
percentages of true value in the tails ranged from 18 percent for NGT
groups to 27 percent for QON groups; and IQ range percentages ranged
from 29 percent for CON groups to 35 percent for Delphi. But as shown
in Figures 6 and 7, the aaaregation model did affect calibration both‘
before and after interaction. The calibration curves are vlotted onlv
for egual weiaghts since the curves for other weighting procedures are
verv similar (see Figures for maximum discrepancies). The group prob-
abilities derived with the linear model are clearly better calibrated
than those from the conjugate model. In fact, before interaction the
linear model probabilities are very well calibrated, except for a slight
underestimation displacement. Otherwise, the group distributions are
too tight (too many true values in the tails and too few in the IQ range)
and all are generally displaced tc the left (underestimation).

Analyses were not performed on distributions resulting from
aggregation with the conjugate model and weights summing to four, the
number of individuals in the group. The result of larger weights
would be only to decrease considerably the dispersion of the already

too tight distributions without changing the accuracy (as measured by

the mode).
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CALIBRATION OF DIFFERENT AGGREGATION MODELS AND WEIGHTING PROCEDURES
CONTINUOUS ASSESSMENTS

Cumulative Probability
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Figure 7

CALIBRATION OF DIFFERENT AGGREGATION MODELS AND WEIGHTING PROCEDURES

AFTER INTERACTION:

CONTINUOUS ASSESSMENTS
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When questioned at the end of the experiment as to which
t procedure they would prefer to use in a real decision making situation,
subjects exhibited a clear preference for interaction with some open,

face-to-face discussion. Twenty subjects prefered the NGT procedure,

19 the CON procedure, and 1 the MIX procedure.
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DISCUSSION

As is the case with all studies of the size and complexity of
this one, some "significant” results can always be teased out of the
data. Rather than focusing on particular significant results, or non-
significant ones for that matter, I will discuss some fairly general

- conclusions and their implications for assessing gqroup probabilities in
actual decision making contexts.

The results of this study can be viewed from two perspectives.
From the psvchological viewpoint, the results are relatively uninterest-
ing. The type of interaction groups are allowed seems to have little
effect on subsequent judgments such as those in this study, although all
types produce some effects. But the implication for applications of
decision theory are important: use simple, mathematical aggregation
procedures. Simple procedures, such as combining individual probability
assessments linearly with equal weights, produce group assessments that
are as good as or better than those produced by more complicated pro-
cedures involving interaction or complex aggregation models. Interaction
among the assessors produces only a feeling of satisfactign, and not
any overall improvement in the quality of the assessed probabilities.
Naturally, the results of this study are not as simple and straight-for-
ward as these two viewpoints imply, but they do capture the spirit of
this research. '

These conclusions are not new or unique to this research. Fischer
(1975) concurs with the lack of effect on group probabilities due to the

type of interaction, and Gough (1975) presents results that appear to

51
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support this lack of effect, although he does not explicitly adopt
such a position. Dalkey (1969b), Gustafson et al. (1973), and Van de
Ven and Delbecq (1974) have argued in favor of specific interaction
procedures; Dalkey for Delphi, and Gustafson et al. and Van de Ven and
Delbecq for NGT. But Dalkey's conclusion is supported by very weak
evidence, and the latter two studies rely on suspect evaluation criteria.

On the model side of the question, the literature indicating
little differeﬁce in aggregation models due to weighting procedures is
becoming extensive (cf. Dawes and Corrigan, 1974; Wainer, 1976) . And
in contexts other than aggregating probabilities (e.g., multiattribute
utility models), linear models have been shown to produce results quite
similar to those of non-linear models (Fischer, 1972; Newman, Seaver,
and Edwards, 1976). This study has confirmed the lack of effect of
different weighting schemes and, at least in the case of discrete
assessments, the similarity of results from linear and multiplicative
aggregation models for the particular case of aggregating individual
probabilities to form a group probability.

The result of interaction among assessors is quite clear for
both discrete and continuous assessments--it produces more extreme
and less well calibrated assessments. If all of the members of the
group agree on an answer, or if even three agree, the individual assess-
ments tend to become more extreme. Apparently, subjects treat
the information provided by other group members' assessments as some-
what indeperident of their own information, rather than redundant. With
the particular type of questions and subjects used in this study, this

assumption of independence is probably unwarranted, as shown by an analysis
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of the data., Since the sum of weights in the multiplicative aggregation
model (eq. 5) can be used as an indication of the degree of independence
of the individual assessments, the initial individual discrete assess~
ments were aggregated for each group by the multiplicative model with
the sum of the weights varying from 1.0 to 4 in steps of .1 and from 4
to 10 in steps of .5. The aggregated assessments were scored with

the quadratic scoring rule. The best average score was obtained with
the weights summing to 1.0, indicating little independent information

in the assessments of different individuals.

Situations where different assessors can be expected to possess
somewhat independent information clearly cannot be assumed to produce
results similar to those of this study. More extensive modeling may be re-
quired in such situations, unless subsequent research shows some type
of interaction can be beneficially used. But practical considerations
can be used to guide selection of a procedure for determining a group
probability when there is no a priori rationale for distinguishing among
multiple assessors. Use of a simple mathematical model to aggregate
initial individual assessments rather than any type of interaction can
lead to considerable savings in time and effort on the part of decision
makers or other experts. Linear aggregation is particularly attractive
because of its computational simplicity which makes it easily understood,
and, therefore, possibly more acceptable. However, simple mathematical
aggregation of any sort may not be an acceptable procedure to decision
makers. As indicated by the subjects in this study who overwhelmingly
preferred some type of interaction with open face-to-face discussion,

procedures involving interaction may be desired. If this is true, the
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NGT procedure would appear to be the procedure of choice. Although it
was generally not "significantly" better than other procedures in this
study, it was somewhat better, as it has been in other studies (Gough,
1975; Gustafson et al., 1973).

Snapper and Seaver (1978) provide an example of a situation
where mathematical aggregation is a preferable alternative to an inter-'
active process. As part of the evaluation of a national criminal justice
program, probabilistic judgments about expected program outcomes are
being obtained from experts. Simply averaging these judgments rather
than bringing the experts together to interact reduces the logistical
complexity and the cost of obtaiﬂing the judgments. And as shown by
this study,does so with no real loss in the quality of the resulting

probability assessments.
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‘can interact as a2 group to reach a consensus, or the individua) Jugments can be
mathematically aggregated to produce a single probability distribution. Each of
these approaches has advantages and disadvantages. Group interaction allows the
exchange of information, but may be susceptible to dominance by certain indivi-
duals or pressure for conformity. Mathematical aggregation is simpie-to use and
ensures that a single distribution will result, but theoretical difficulties are
encountered in specifying an appropriate aggregation model. Using several forms
of group interaction and mathematical aggregation models, this research investi-
gated the quality of probabilities produced by interaction versus mathematical
models.~"Quality" was measured by proper scoring rules, calibration, and ex-
tremeness on two types of probability assessments: discrete assessments for
two-alternative questions and beta probability density functions for questions J
about percentages. Ten four-person groups comprised primarily of graduate studen
assessed probabilities for twenty questions of each type in each of five types
of group interaction: no interaction, Delphi, Nominal Group Technique (NGT)

a mix of Delphi and NGT, and discussion to consensus. The mathematical models
used to aggregate the individual assessments included linear model, the weighted
geometric mean, and the pari-mutuel model for discrete assessments; and the
linear mode) and conjugate model for densities; each with various weighting
procedures. Applying proper scoring rules to the group probabilities indicated
that simple mathematical aggregation without any interaction, e.g. linear
aggregation with equal weights, generally produced group probabilities as good as
those assessed after interaction. Interaction did produce more extreme but less
well calibrated assessments, with the type of interaction having little effect.
Generally, the calibration of mathematically aggregated group probabilities
prior to any interaction was quite good, clearly better than the calibration of
individual essessments. These results may appear relatively uninteresting from
a pscyhological perspective because of the lack of differences in assessments
after different types of interaction. But the implications for applications

of decision theory are important. In many instances, simple, mathematical
aggregation of individual probability assessments may-be adequate without
resorting to more elaborate, practically difficult, and time consuming interactiv
processes or modeling efforts.
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