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SUMMARY

In this report an approach to the concept of error in utility
assessment is proposed. Three components of error are considered and
each component is related to four separate elicitation methods -- all in
the context of a general multiplicative multiattribute utility model.
The methods are a Keeney-Raiffa (1976) procedure, SMART (Edwards, 1977),
a social judgment theory (SJT) based regression model (Hammond, Stewart,
Brehmer and Steinmann, 1975) and a new method called Holistic Orthogonal
Parameter Estimation or HOPE (Barron and Person, 1978).

If a general multiplicative model can be assumed to be an appropri-
ate representation of the decision maker's basic preference structure,
error can occur in the direct estimation of the scaling constants and
univariate utility functions for decomposition methods (Keeney-Raiffa
and SMART), or in the holistic assessments for holistic methods (SJT and
HOPE). Individual estimates may be merely noisy or may be fundamentally
incorrect. Furthermore, the utility model may be incorrectly specified;
for example, an additive model, rather than a multiplicitive model, may
be used. The four assessment methods are considered in conjunction with
errors of each kind.

The most serious error-method combination is the case of a sub-
stantial degree of error occurring in a single holistic judgment which
is being used in a HOPE procedure. This concern leads to a major em-
phasis of this report -- an expanded HOPE procedure used in conjunction
with a convergent validation strategy to estimate error in individual

holistic judgments and thus guide consistency checks.
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The discussion is organized into four sections. The HOPE procedure

is summarjzed in Section I. In Section II, three components of assess-

ment error are considered in conjunction with the four elicitation pro-

cedures. In Section III, an expanded HOPE procedure for detecting judg-

ment error and guiding consistency ct ks is proposed. In Section IV,

application considerations are outlined.
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Introduction

In this report an approach to the concept of error in utility
assessnent is proposed. Three components of error are distinguished;
these components are then related to four separate elicitation methods
-- each of which is consistent with at least special cases of the gen-
eral multiplicative multiattribute utility (MAU) model (below). Two
methods, Keeney-Raiffa (1976) and SMART (Edwards, 1977) are pure decom-
position approaches; a third, the social judgment paradigm (Hammond,
Stewart, Brehmer, and Steinmann, 1975) is a regression approach which
relies on holistic judgments.

The fourth approach is a decomposition procedure for assessing
multiplicative MAU functions which relies solely on a few holistic
assessments of utilities. The procedure's acronym is HOPE for Holistic
Orthogonal Parameter Estimation. Consistent with the procedures of
Keeney and Raiffa (1976), the HOPE procedure exploits the basic pref-
erences of the decision maker to specify the utility function. HOPE
differs in that it uses a response mode more familiar to laymen than
those of other methods of MAU elicitation -- holistic assessment of (a
few) profiles ~- to determine the scaling constants and univariate
utility functions comprising the multiplicative utility function.

The larger question behind any analysis of error in assessed util-
ity functions concerns validation. There are three basic approaches to
validation of assessed utility functions: (1) use of an external
criterion; (2) validating the basic preference structure of the decision
maker; (3) convergent validity. Of these, the most straightforward is

use of an objective, externally defined, criterion, if one is available.
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Edwards (1974) has suggested two instances of available criteria --
diamonds and bank credit. The American Gemological Institute ''diamond
model" formally evaluates diamonds based on the four attributes: color,
cut, clarity, and carats. Banks evaluate applicants for credit cards on
the basis of attributes contained on standard application forms (e.g.,
disposable income, own versus rent, debt, employment history, etc.);
while actual probability and amount of default, if any, are known
empirically.

Edwards and his associates have suggested a variant of the multiple
cue probability learning paradigm (Hammond, Stewart, Brehmer and Stein-
mann, 1975) as a means of creating an external criterion. Subjects are
first trained to use a weighted additive utility functions; this is
followed by eliciting learned utilities. This procedure has been pilot-
tested ac SSRI.

The purpose of studies using an external criterion is to compare
and evaluate the performance of elicitation techniques. The usefulness
of such studies rests on the assumption that comparative efficacy of
elicitation methods generalizes from situations where an external
criterion exists to situations where one does not. Of course, external

criteria do not generally exist in de novo assessment of utilities in

-

laboratory or field settings. Furthermore, elicitation is unnecessary
when such a criterion exists. Thus, in application as opposed to ex-
perimental settings, validity necessarily depends on either validation

of the basic preference ..odel itself or on convergent validity.
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Validating the basic preference model requires verifying qualitative
properties of preferences which are sufficient for representing prefer-
ences by a particular mathematical model. Iu the decomposition approach
of Keeney and Raiffa (1976), the qualitative properties of preferential
independence and utility independence are explicitly examined. Prefer-
ential independence requires that preference orders over attribute pairs
be independent of the fixed levels of the remaining attributes. Utility
independence requires that preferences for lotteries involving a single
attribute be independent of the fixed levels of the remaining attri-~
butes. If these qualitative properties of preferences hold, then the
preference structure can be represented by either a multiplicative
model, equation (1), or by an additive model, equation (2).

n

1+ KU(xl,xz, AROE] xn) = 121 (1 + Kkiui(xi)) (1)
where, for 1 =1, 2, ..., n

x, 1s level i of attribute X

i i

0 uj(-) s )1 is a utility function

A

0

A

ki < 1 is a scaling constant
-1 €< K 1s a parameter
U(*) is overall utilicy.

Upon writing equation (1) simply as an expression for U(+) and taking

- limits as K goes to 0, the resulting model is the additive model, equa-

tion (2):
n
U(xl, Xgs tees xn) = Z kiui(xi) (2)
i=1
L 4
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The basic preference model is validated by checking the conditions of
preferential and utility independence. For an especially informative
assessment protocol in which the conditions are checked, see Keeney
(1977).

The choice between models 1 and 2 in an application setting is not
necessarily a simple choice. The choice can be viewed as an empirical
question, in which the parameter K = 0 if and only if E ki = 1. The
choice can be based behaviorally on the marginalicy c:;;ition (Fishburn,
1965). Model 2 is appropriate only if the decision maker's preferences
for multiattributed risk consequences depend only on the marginal dis-
tribution associated with each attribute. Experimental studies (e.g.,
both conducted and surveyed by von Winterfeldt (1976)) have often found
violations of the marginality condition. Finally, the choice can be
made on more pragmatic grounds. Additive models are simpler, provide
excellent predictions, and can be used in conjunction with simpler
procedures (e.g., the SMART procedure discussed in this report). In
fact, referring to the same experimental studies von Winterfeldt states:

The message that these experiments convey seems contradictory:
in spite of obvious model violations (tests of marginality and

tests of risky additivity failed), additive models . . . predict
subjects' preferences and utility judgments very well (p. 24).

Convergent validation assumes that logically equivalent elicitation
procedures will assign comparable utilities to the same multi-attributed
outcome. In his convergent validation study Fischer (1977) elicited
utilities for 27 hypothetical jobs from each of 10 subjects in three
different ways: (1) direct holistic assessments, (2) via a Keeney-

Raiffa decomposition, and (3) via the SMART procedure. The utilities




=

predicted for the 27 jobs (within subject) by the Keeney-Raiffa anl
SMART procedures exhibited high correlations with each other and were
highly correlated with the holistic assessments.

Slovic, Fischhoff and Lichtenstein (1977) have criticized using
correlation between predictions of MAU models and holistic judgments as
evidence that the MAU model is valid. Their criticism is based on the
use of unaided holistic preference as a criterion. They further state,
". . . a decade or more of research has abundantly documented that
humans are quite bad at making complex unaided decisions (Slovic [1972]);
it could thus be argued that high correlations with such flawed judg-
ments would suggest a lack of validity" [p. 22].

At face value the remarks of Slovic et al. are damaging to the HOPE
procedure described in this report. In fact, a major emphasis of this
report is the use of an expanded HOPE procedure in conjunction with a
convergent validation strategy to estimate prediction (of utilities)
error, and to thus identify outliers in the set of holistic judgments.
Thus, the view represented by the remarks of Slovic et al. must be
considered.

I believe decision makers can provide useful holistic assessments
of (a few) multiattributed consequences, especially in cases involving a
small number of attributes, say fewer than ten. Furthermore, there is
considerable evidence to support my belief. Two research traditions,
heavily based on hollistic assessment, are social judgment theory (Hammond
et al.) and information integration theory (Anderson [1974]). Numerous

empirical studies in these traditions alone constitute examples of
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judges providing holistic judgments. Of course, neither the cognitive
processes which produce holistic judgments are well understood, nor are
the exact parameters of such judgments known. It is generally accepted
that such judgments are often systematic, but noisy (Fischer, 1977); in
fact, bootstrapping (Dawes and Corrigan, 1974) capitalizes on these
features. It is also presumed that noise increases as the number of
attributes increases. Finally, it is plausible to presume that noise
increases as the number of required holistic evaluations increases.

The HOPE procedure requires direct holistic assessment of the
utility of each of a small number of multiattributed consequences com-
prising a highly fractionated experimental design. By small number, I
mean fewer than fifty consequences, a number suggested by both Keeney
and Raiffa (1976, p. 222) and Fischer (1977). My basic assumption is
that decision makers can provide the requisite holistic assessments;
furthermore I recognize that these assessments will be noisy. Moderate
noise, per se, does not materially reduce the efficacy of the HOPE
procedure. A previous paper (Barron and Person, 1978) demonstrated that
the HOPE procedure could recover known MAU functions from simulated
noisy holistic judgments. Recovery was excellent in the presence of
moderate amounts of noise -- defined as norwmally distributed additive
error having a standard deviation of .05. Model specification error -- i
defined as the use of an additive model fitted to error-free holistic
judgments computed from known multiplicative models -- produced higher
prediction error than did moderate noise in conjunction with an appro-

priate multiplicative model using an estimated K value.

P L e
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The HOPE procedure generalizes a procedure for estimating main
effects in an additive model (Green, 1971), to the assessment of the

nmultiplicative utility functions of Keeney (1974). Multiplicative (and

additive) utility functions are of interest for three reasons. First,
the multiplicative model represents the decision maker's preference
structure if certain preferential and utility independence conditions
are satisfied. In those cases in which these conditions have been
verified, the multiplicative model is valid. Second, the multiplicative
utility function is of practical importance, even if the requisite
assumptions do not hold precisely (Keeney and Raiffa, 1976, p. 298).
Third, formally the general rultiplicative model encompasses the kinds
of utility functions resulting from each of the four assessment ap-
proaches considered in this paper.

This report is organized into four sections. The HOPE elicitation
procedure is described in section I. In section II, three components of
utility assessment error are considered in conjunction with the four
elicitation procedures. In section III, a method for detection of judg-
ment error is proposed and illustrated by application to the data of

Fischer (1977). In section IV, application considerations are outlined.

I. HOPE: A Utility Elicitation Procedure+

*
Th. HOPE and Keeney-Raiffa procedures differ only in the parameter

estimation phase. HOPE estimates the parameters -- the univariate

1-Sect;ion I is a revised version of section I of Barron and Person
(1978).

*Unless noted otherwise, by "a Keeney-Raiffa procedure" is meant
their general approach to assessing a multiplicative utility function as
described in Keeney and Raiffa, 1976, pp. 297-304.
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utility functions and scaling constants -- of the multiplicative family
of utilicy functions from holistic judgments of utility. The estimates
are derived; they are inferences which are completely based on the
appropriateness of the underlying preference structure. A Keeney-Raiffa
procedure, while relying on the appropriateness of the same underlying
preference structure, differs, primarily in that scaling constants and
utility functions are individually assessed.

The HOPE procedure consists of three phases: (1) preparation,
meaning those aspects common to both HOPE and Keeney-Raiffa approaches
(necessary preliminaries, identification and definition of attributes,
determination of value ranges, verification of appropriate independence
conditions); (2) eliciting direct holistic assessments for the specific
multiattributed consequences of an appropriate orthogonal design; (3)
performing the arithmetic on the holistic assessments required to deduce

scaling constants and utility functions.

Preparation

All approaches to multiattribute utility assessment involve certain
necessary preliminaries. Clearly the stage must be set, the respondent
must realize the purpose of the exercise, and mutual understanding suf-
ficient for effective communication must be established. Following pre-
liminaries, both approaches would identify and define value-relevant
attributes. For each attribute, both would determine an appropriate
range of values, including which level is worst and which is best.

Finally, both would check to see that necessary preferential independence

.-

PURPAT R P S RS ORI N o LV L S

; S S T R S S P
% . ‘ e S
’ .y r . 3




g

-9 -

and utilicy independence assumptions are met.* As a consequence of the
independence conditions, both would conclude that Keeney's general
multiplicative model, equation (1), 1is an appropriate MAU function. At
this point, a Keeney-Raiffa procedure differs from the HOPE procedure by
assessing utility functions and scaling constants individually. The
utility functions, ugs are assessed via standard gambles in the usual
way (Keeney and Raiffa, Chap. 4). The parameter ki ig interpreted and
often in practice assessed as an indifference probability in the stand-
ard gamble which yields consequence BEST (defined as all attributes at
their best levels) with probability ki and consequence WORST (all attri-
butes at their worst levels) with probability 1 - ki’ versus the certain
consequence with attribute x1 at its best level and all other attributes
at theilr worst levels. Scaling constants can also be assessed in other
ways. In the HOPE procedure, neither the utility functions, u;, nor the
scaling constants, ki’ are directly assessed. Rather, the HOPE pro-
cedure infers utility functions and scaling constants from holistic

assessments of consequences defined by an appropriate orthogonal design

as described below.

Orthogonal Arrays Define Consequences for Holistic Assessment

Orthogonal experimental designs generally require the lowest number
of holistic consequence assessments for additive main-effect non-confounded
parameter estimation. A catalog of useful orthogonal designs and varia-

tions is provided by Addelman (1962).

*

The qualitative properties of preferential and utility independence
are described succinctly in Keeney (1977, p. 271) and amplified in
Keeney and Raiffa (1976, Chap. 6).
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An example of a particular design appropriate for up to 5 attributes
with up to 4 levels per attribute is Addelman's "Basic Plan 3" shown in
Table 1. For example, consequence 3 in Table 1 is defined as level 1 of
attribute 1, level 3 of attributes 2 and 3, level 4 of attribute 4, and
level 2 of attribute 5. This consequence, along with the 15 others of
Table 1, plus one additional consequence defined in Appendix 1 and used
to estimate the parameter K, would then be holistically evaluated. Note
that consequence 1 represents the worst level of each attribute, and
would be assessed to have zero utility in the preparation phase. A
worst referencez outcome is common to the orthogonal designs on which
HOPE is based.

Holistic responses may be either direct ratings, appropriate for
riskless utilities, or standard gamble indifference probabilities,
appropriate for risky utilities. For riskless utility assessment one
reference case consisting of the best level of all attributes is as-
signed 100 points; a second reference case defined as the worst level of
all attributes is assigned O points. The remaining consequences defined
by the experimental design are then rated individually along the 0 to
100 point scale., Rating data, normalized by dividing by 100, are then
treated as if they were interval-scaled responses. For lottery-type
utility assessments the design consequences could be considered as sure-
thing consequences in a standard gamble with the same two reference

cases as uncertain outcomes. Related riskless procedures using 6-to-11

3 1
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®
point direct rating scales have been used in marketing applications

such as hospital promotion (Wind and Spitz, 1976).

Analysis (Arithmetic) of Holistic Responses

Succinctly stated, the HOPE procedure receives m noisy holistic
judgments as input. Using 2 judgments, the parameter K is estimated
(step 1, Appendix 2). Depending on the value of K, either m - 1 judg-
ments are subjected to the arithmetic of the additive model (steps 2-5
of Appendix 2), or m - 1 transformed judgments are subjected to the
arithmetic of the multiplicative model (steps 6-10 of Appendix 2). The
result or output is a complete set of ki and ui(xi) values, the latter
for each level of each attribute specified by the design.

The analysis of the holistic evaluations is made extremely simple
by the use of an orthogonal design. It merely involves arithmetic. The
main effect of any given level of any given attribute is then the sum of
the holistic values of all consequences containing the attribute at the
given level (divided by the number of such consequences), minus the
corresponding sum of the holistic values of 211 consequences containing
the worst level of the same given attribute (again divided by the number
of such consequences). If the procedure described in Appendix 1 yields
an estimated K = 0, then the additive model, equation (2), is appro-
priate, and the estimated main effects must be normalized by dividing
each estimate by the sum of the estimated best levels. For each attri-

bute, this procedure estimates kiui(xi) in general and k1 vhen X1 is at

*Carnone, Green and Jain (1977) cite a figure of over 200 indus-
trial applications of additive (conjoint measurement) models ranging
from use of full factorials and ranking responses to use of orthogonal
arrays and rating responses. These applications assume equation (2) to
be an appropriate model.
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its best level since 0 < ui(xi) < 1. Otherwise, the multiplicative
model, equation (1), is appropriate. In this case each holistic value,
U, is first transformed to ln(l + KU), where 1ln is the natural log-
arithm. The above analysis without normalization is then simply carried
out on the transformed holistic values. For the multiplicative model
this procedure estimates the quantity 1ln(l + Kkiui(xi)) in general, and

In(l + Kki) when X, is at its best level. Since K is estimated sepa-

i

rately it is then possible to compute all k, and ui(xi) values.

i

II. Error in Assessed Utility Functions

Assuming the general multiplicative model is an appropriate repre-
sentation of the basic preference structure, error can occur in the
direct estimation of the scaling constants and utility functions for
decomposition methods or in the holistic assessments for holistic methods.
The individual estimates may be merely noisy, or may be fundamentally
incorrect. In predicting utilities, the analyst may further mis-specify
the model (e.g., may choose equation (2) rather than equation (1)).
Thus, prediction errors may be related to one or more of the following
errors: (1) model specification error; (2) noisy subjective estimates;
(3) substantial random error.

It is difficult to characterize substantial errors of judgment.
Surely, a substantial error is a judgment which would be altered upon
reflection. It would exhibit low test-retest reliability. In a statis-
tical sense a substantial error 1s an outlier.

Examples of the three types of error occurred in my recent field

study of professional audit judgments. In that study audit partners
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considered hypothetical client firms described by sets of financial
statements. For each firm a dollar amount defining material error was
estimated to guide statistical sampling procedures. Some dollar amounts
were used to estimate the parameters of a judgment model; the remaining
estimates constituted a holdout sample to be predicted from the model.
Several sources or error could have contributed to prediction error.
First the assumed additive prediction model could have been an incorrect
specification. Second, the original estimates were stated to the nearest
$25,000. With this type of rounding, a "true" value of say, $190,000
would sometimes have been assessed as $175,000 and sometimes as $200,000.
Or sometimes, the estimate would have been "either $175,000 or $200,000."
Third, any of the judgments to be predicted or the judgments used to
estimate the parameters could have been either merely noisy or substan-
tially wrong. Test-retest cases and deviations from additive predic-
tions indicated the general level of noise. In instances where there

was substantial prediction error, participants were asked to reexamine
cases whose estimated dollar amounts either influenced parameter esti-
mates or represented holdout cases. For many firms the original dollar
amount was deemed "correct,'" but in a few cases judged dollar amounts
were substantially revised. Comments like "I don't know what I could

' accompanied such revisions. Yet clearly there was

have been thinking,'
no definitive criterion for "noise" versus 'substantial error."

In the remainder of this section we examine the four elicitation
procedures, designated KR (for Keeney-Raiffa), SMART, SJT (for social
judgment theory) and HOPE, in conjunction with the possible effect on

each of specification error, noise, and substantial random error.
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Model Specification Error

All four methods estimate univariate utility functions and scaling
constants for either the additive model equation (2), or the multiplica-~
tive model equation (1). SMART and SJT consider only additive models.
Thus, a priori, SMART and SJT models are incorrectly specified for all
true values of the multiplicative parameter K ¥ 0.

There are several studies which indicate the effect of specifica-
tion error within elicitation methods. Fischer (1977) observed high
correlations (median = ,982) between KR additive predictions and KR
multiplicative conditions. Simulating the HOPE procedure using known
multiplicative models with extreme K values (K = -,94 or K = 4.11) with
two levels of response noise (normally distributed, mean 0 and standard
deviations of .025 and .05), Barron and Person (1978) found larger
errors of predictions for incorrectly specified additive models (with or
without noise) than for correctly specified models with noise. Further-
more, as the standard deviation of response error was decreased from .05
to .025 prediction error for correctly specified multiplicative models
was cut in half, while for incorrectly specified additive models with
noise, prediction error persisted at 80%Z and 90X of its former level.
Analysis of Fischer's risky data by HOPE procedures shows for 8 of 10
subjects multiplicative models produce a lower root mean square error in
predicting the entire set of holistic judgments than do additive models.
A statistical analys!s of the same risky data by Fischer found 6 of 10
subjects departed significantly (a = .05) from additivity and for each

of the 6 cases, multiplicative models produced a lower standard error of
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estimate. Finally, all 30 estimates of K (3 estimates for each of
Fischer's 10 risky data sets) using the procedure described in Appendix
1 were found to be different from O.

Analysis of the laboratory data of Fischer and the simulation data
of Barron and Person suggest that model specification error increases
prediction error. The HOPE method provides a simple direct estimate of
K. The KR method computes K as a function of the scaling constants,
while SMART and SJT work directly with relative weights assuming K = 0.

The individual methods differ in their respective approaches to
specification of the univariate utility functions, ui(°). KR and SMART

assess the u, directly. SMART asks respondents to assign ui(xj) values

i
directly to selected levels xj of attribute 1, i =1, 2, ..., n. KR
assess a univariate utility via standard gambles -- finding a few cer-

tain equivalents, followed by fairing in a curve. Direct assessment of
certain equivalents is especially vulnerable to Tversky's (1977) sug-

gested certainty effect bias.

The HOPE and SJT methods infer the u, statistically from the holis-

i
tic responses. SJT uses multiple linear regression; candidate uy func-
tions are polynomial functions of xj. The ability of linear models to
account for substantial proportions of variance (e.g., Yntema and Torgerson,
1961; Slovic and Lichtenstein, 1971) often leads to u, functions which

are linear in Xy The HOPE procedure provides a single point estimate

for ui(xi) for each Xy specified by the design. Since there are no de-
grees of freedom for error estimation in the single design HOPE pro-

cedure, a substantial error in a single holistic judgment could produce

erroneous ui functions.
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With respect to weights, and more generally, scaling constants,
SMART directly assesses relative weights which are then normalized; KR
assesses scaling constants directly via standard gambles or sets of
equations reflecting specific tradeoffs (Keeney and Raiffa, p. 267);
HOPE infers scaling constants consistent with the ex ante model speci-
fication; and SJT infers beta weights from the regression., SJT weights
are influenced by both model specification error (additive only) and
univariate utility function specification error (usually linear).

Tradeoffs between judgment error and modeling error are complex.
SMART weights are simpler to assess than are KR scaling constants.
Simpler judgments (relative weights) may cutweigh the disadvantage of
model specification error (assuming K = 0). By contrast, SJT and HOPE
procedures use equivalent holistic judgments. In this case assuming an

additive model, i.e., K = 0, serves as a constraint.

Noise
KR and SMART procedures estimate scaling constants or weights and
univariate utility functions separately. Thus noise in the estimate of
one set of parameters should not effect estimates of the other set. Of
course, the values of the scaling constants depend on the attribute
ranges. SMART weights are normalized by the sum of the estimated values.
Thus SMART estimates are sensitive only to errors in the relative values
of these estimates. Keeney (1977, p. 284 ff) first ranks attribute
(ranges) by importance and then assesses specific values via standard

ganbles and/or tradeoffs. Standard gambles will underestimate scaling

constants to the extent they are subject to Tversky's certainty effect.
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Using direct tradeoffs, noise in the univariate utility function values
will lead to noise in scaling constant values.

SJT infers the scaling constants assuming linear utility functions
via regressing standardized attribute levels against holistic judgments.
The assumption of linear conditional utility functions introduces error;
a second source of error is noise in the holistic judgments. The usual
error theory of regression analysis provides estimates of the sensitiv-
ity of the inferred scaling constants (beta weights).

HOPE simultaneously infers conditional utility functions and scal-
ing constants from holistic judgments. The orthogonal arrays utilized
by this procedure are extremely efficient regression designs. There
are, in fact, zero degrees of freedom., If the value of a single holis-
tic judgment is changed, the estimated value of at least one scaling
constant, and several uy values will change. If the holistic judgment
is merely noisy, the effect on ki and ui(') are minimal; if the judgment
reflects "substantial random error," the effects will be substantial.
Fach of these last two statements finds support in the individual simu-

lation runs of Barron and Person (1978).

Substantial Random Error

"Holistic evaluative judgments are characterized by a substantial
degree of random error," states Fischer (1977, p. 296). If so, the SJT,
HOPE, and KR assessments are affected. SJT and HOPE use only holistic
assessments as data; KR assessments of scaling constants in a standard

gamble context require a holistic assessment of outcomes having one
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attribute at its best level and all other attributes at their worst
levels. In this latter case, Tversky's certain effect bias is con-
founded with the predicted "substantial degree of random error.”

Judgment error per se is not a part of the formal theory of MAU.
Error may be handled implicitly via sensitivity analysis. In the as-
sessment stage, the careful analyst performs numerous consistency checks
in an attempt to prevent substantial error. For example, in SMART, if
the relative values of attribute ranges I, II, and III are 10, 30, and
60 respectively, i.e., II i8 3 times as important as I, while III is 6
times as important as I; then as a consistency check, III should be
judged 2 times as important as II. For KR procedures, numerous con-
sistency checks are illustrated in a detailed protocol (Keeney, 1977).

The most serious error suggested thus far is a single holistic
judgment exhibiting a substantial degree of error being used in a HOPE
estimation procedure. Since there are zero degrees of freedom, the
error affects several ki or u, values individually. Since the error is
substantial the impact, though moderated by other judgments, is also
substantial. Thus, it is essential to identify, if possible, individual
holistic judgments exhibiting substantial random error.

In the next section a modified HOPE procedure is described. The
modified procedure guides consistency checks ove: the original set of
holistic judgments and provides a means for detecting substantial random

error.
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III. Detection of Error in Holistic Judgments

The HOPE procedure can be easily extended to detect substantial

random error over the set of holistic judgments. The extended HOPE

procedure uses two orthogonal designs with minimal overlap in one of two

possible ways. First, the data .f both designs is pooled to estimate ki

and ui(xi) values. This serves to increase the degrees of freedom in
the HOPE procedure to approximately the number of design points unique
to one design. Noise is then defined by the root mean square error,

i.e., of pooled prediction minus actual judgments, while arbitrarily,

substantial error is defined to be a deviation exceeding twice the root

mean square error.

A second approach using two designs is to build two separate
(utility) prediction models -- one for each design. The utility pre-
dictions of design 1 (2) are used to predict the actual judgments of
design 2 (1). Substantial error is again arbitrarily defined by pre-
diction errors exceeding twice the root mean square error.

Either of the above procedures can be used to "detect" excessive
deviations from model predictions, although it may be more reasonable
consider these procedures as guides for checking consistency over the
original set of holistic judgments. One set of judgments which are
candidates for consistency checks are those judgments which deviate
substantially from predicted values. A second set of candidates are
equal judgments for which the predicted values diverge. For example,
two consequences, a and b, have judged utilities u(a) = u(b) = .6 but
the predictions differ; say u'(a) = .64 and u'(b) = .57; then a and b

may also be presented to the subject for reconsideration.
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Each error detection procedure can be illustrated using the data of
Fischer (1977). Fischer's subjects provided holistic evaluations for 27
hypothetical offers of employment. Each job was (completely) described
by 3 attributes -- salary, location (city), and type of work. Each
attribute had 3 possible levels, designated in the tables and discussion
as W, for worst level; I, for intermediate level; and B, for best level.
The 27 jobs represent all combinations of each level of each attribute.
Fischer (1977) provides a detailed description of the elicitation task.
These data have been analyzed via conjoint measurement (Fischer, 1976),
have been subjected to convergent validation tests in conjunction with
several elicitation methods (Fischer, 1977), and have been subjected to
various HOPE procedures (Barron, 1978). For illustrative purposes, we
consider the (risky) responses of subject 2, a subject for whom the
additivity hopotheses (i.e., equations 1 and 2) were rejected by con-
joint measurement analysis (Fischer, 1976, p. 139).

A double design appropriate for the analysis of subject 2's re-
sponses is presented in Table 2. Predicted values for each design are
based on pooling data from both designs. Design 1 indicates two points
for consistency checks (I,W,I) and (B,I,W). Point (I,W,I) is also a
design 2 point; except for (I,W,I), design 2 has no points indicated for
consistency checks. These two points should now be reconsidered by the
person making the original judgments. (Of course, using these data
supplied by Fischer, this is impossible.)

At this point, let us assume that upon reconsideration subject 2

agreed to reduce the judged (B,I,W) from .6l' to .50. If this one change
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is made, and the predictive model for the revised pooled data is obtained,
several things happen as shown in Table 3. The new predictions for
(B,I,W) and (I,W,I) are both brought into better agreement with stated
values -- (B,I,W) because the stated value was revised and (I.W,I) be-
cause the predicted value based on the revised (B,I,W) value increased.
All values are brought into better agreement as measured by root mean
square error (RMSE). Revised RMSE over all 16 pairs is smaller than the
prior RMSE either including or excluding the (B,I,W) pair.

Consistency checks should also be performed for sets of equal judg-
ments as guided by model predictions. 1In design 2 cells (B,I,I) and
(B,B,W) were each assigned a value of .65. The predicted values are .70
for (B,I,I) and .59 for (B,B,W). The subject should be asked to recon-
sider these judgments. Is (B,I,I) really preferred to (B,B,W)? A
similar comment does not apply to design 2 cells (W,I,B) and (W,B,I),
each assigned original values of .70. The predicted values differ, .66
and .69 respectively, but do not diverge.

Using the two designs to estimate separate predictive models pro-
duces similar results. Cells (I,W,I) and (B,I,W) of design 1 are iden-
tified for consistency checks. Revising the (B,I,W) utility suggests
the original (I,W,I) value is not substantially wrong. Furthermore,
design 1 predictions of the equal value cells (B,I,I) and (B,B,W) sug-
gest the former's utility should be increased and the latter's should be
decreased.

The use of double designs provides a mechanism for detecting sub-

stantial error in judgment and further guiding consistency checks. The
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error detection feature comes at the cost of requiring approximately
twice as miny judgments as originally required. Its advantage is that
it provides a within-elicitation method for convergent validation of

field assessed utility judgments.

IV. Application Considerations

Proponents of each elicitation method described can point to an
impressive number of applications. Illustrative of KR are Xeeney (1973,
1976, 1977); of SMART, Edwards (1977), Gardiner and Edwards (1975); of
SJT, Hammond and Adelman (1976) and of HOPE, Wind and 5pitz (1976), and
those cited in Carmone et al. (1977). This section will provide neither
an extensive analysis of each method nor an applications critique of
each method. Instead, practical considerations will be highlighted.

Keeney has reported two applications, Keeney (1976, 1977) that
provide special insight into the process of elicitation itself -- a
process which is intensive, demanding and dynamic. In each case,
respondents are highly motivated professionals who had thought deeply
about the respective problems, and Keeney is an especially skillful
assessor. Generalizing from these reported applications, a KR procedure
is expensive in terms of both respondent and assessor time. It is also
an intensive process requiring a rather skilled assessor. Respondents
are often required to be conversant with probability concepts. There is
no estimate of "noise," and no particular procedure guides consistency
checks. When the assessment is finished, the result is a utility func-

tion. Random error may implicitly be considered via sensitivity analyses.
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The procedure's advantages are its obvious tie to underlying theory, its
attention to model specification, and the likely independence of noise

in the scaling constants and univariate utility functions. Its disad-
vantages are the requirements that possibly unfamiliar constructs (scal-
ing constants and univariate utility functions) must be directly assessed
in a possibly unfamiliar language (probability theory).

The primary advantage of the SMART procedure is its simplicity.
Based on simple rating procedures to deduce weights and utility func-
tions, it has the further advantage of being easy to teach to (proba-
bilistically) naive decision makers. It is easily adapted to hierarch-
ical utility structures. Although the procedure is believed to be
robust, a disadvantage is its sole reliance on the additive model. An
error detection procedure for relative weights consists of a triangular
matrix of ratios as described earlier in this report.

SJT and HOPE procedures rely on holistic judgments. It is gen-
erally acknowledged that people are capable of assigning values holis-
tically in a consistent and meaningful fashion provided the number of
attributes is, say, less than 10 and the total number of evaluations is,
say, less than 50, although occasional judgments are subject to sub-
stantial error. Thus, it can be argued that each procedure uses psy-
chologically meaningful and familiar judgments., The disadvantages of
SJT include reliance on the additive model, equation (2), and a tendency
to infer linear utility functions. There is also the difficulty of

detecting error in individual judgments.
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HOPE has been characterized as a '"decomposition procedure which
relies solely on holistic assessments' (Fischer, personal communica-
tion). It includes procedures designed to both aid correct model spec~
ification and detect substantial error in individual judgments. Its
obvious limitations are that it requires credible orthogonal attribute
combinations and it does not apply to value hierarchies.

The HOPE procedure seems to have certain advantages when probing
utilities of large numbers of people. For example, first a few repre-
sentative individuals can be subjected to an intensive process. Here
the reasonableness of preferential and utility independence properties
can be checked and unimportant attributes can be discarded. Next, a
larger sample of respondents can be assessed via questionnaire. Sub-
sequently questionnaire assessments could be checked through a small
sample of follow-up interviews.

The HOPE procedure is an extension of an additive conjoint measure-
ment approach to modeling consumer preferences for multi-attribute al-
ternatives (Green and Rao, 1971). Early applications of the conjoint
methodology, e.g., Green, Carmone, and Wind (1972), relied on full fac-
torials, rank-order responses, and nonmetric scaling procedures. Green,
et al., have subsequently simplified the basic approach considerably.
Orthogonal designs significantly reduce the number of consequences to be
evaluated from a prohibitive to a feasible number. Direct rating of a
few consequences is often perceived as less tedious than ranking.

Metric recovery requires substantially less computational capacity.
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The efficacy of these simplifications has been supported in the recent
simulation studies of Carmone, et al. (1977), and Barron and Person
(1978). That there have been over 200 industrial applications of
conjoint analysis (using both full factorials and, more recently, or-
thogonal arrays) attest to HOPE's practicability. The refinements of
correct model specifications and error detection can only enhance its
usefulness.

Having practical alternatives to KR and SMART provides obvious
advantages. Assessment can be more easily tailored to the specific
situation -- considering costs, nature of respondents, and importance of
the contemplated decision. The particular strengths and weaknesses of
different procedures can be further determined through actual practice

and empirical research.
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Appendix 1: Estimation of the Parameter K

Consequence 13 (Table 1) denoted below by "a," consists of the
highest levels of attributes 1, 3, 4, 5 and the lowest level of attri-
bute 2. If one additional consequence, denoted '"b," is defined to have
attribute 2 at its highest level and attributes 1, 3, 4, 5 at their
lowest levels and is included with the orthogonal design, then ratings
of these complementary consequences a and b can be used to estimate K.
If the MAU is additive, then the sum of the observed utilities for
the complementary consequences is 1.0. Otherwise define consequence "c"

to have all attributes at their highest levels. By regrouping terms

from the right side of equation (1), we have the following:

1+ ku(c)=(@Q+ Kkz) e (1 + Ku(a)) (3)
k, = u(b) %)
u(c) = 1 (5)

Substituting (4) and (5) into (3) and solving gives
K= (1 - u(a) - u(b))/(u(a) uld)).
In practice, the ratings u(a) and u(b) are estimates, so K is also an

estimate,
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Appendix 2: Illustration of the Arithmetic

of the HOPE Procedure

Assume the decision maker has provided holistic assessments for the
16 consequences of Table 1. Designate these values hl' h2’ AN h16'
Designate by h17 the assessment of consequence (1, 4, 1, 1, 1), that is,
the consequence having attribute 2 at its best level and all other

attributes at their worst levels. The arithmetic proceeds as follows:

Step 1. Following Appendix 1, compute h13 + h17. 1f h13 + h17 =1,
then K = 0 and we estimate the parameters of the additive

model (steps 2~5). If h, ., + h17 $# 1, proceed to step 6 to

13
estimate the parameters of the multiplicative model.
Step 2. Al = (h1 + h2 + h3

A2 (h5 + h6 + h7 + h8)/4

(h9 + hlo + h11

+h,)/4

>
]

+ hlz)/a

(h

>
[]

13 ¥ By Fhyg F /4

Step 3. k, = A -A

klu1 (level 3 of xl) = A3 - Al

klu1 (level 2 of xl) - A2 - Al

Step 4. Repeat steps 2 and 3 for each attribute. Note the definition

of Al, Az, A3, Ak changes for each attribute, as defined by

the design. For example, for attribute 2

A - (h1 + hs + h9 + hn)/a
A, = (h2 + h6 + hm + hu)/a etc.
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Step

6-10 describe the estimation process for a multiplicative model.

Step

Step

Step

Step

Step

5.

5 completes the estimation process for the additive model.

6.

10.
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Compute the sum k., + k, + ... + k_. If this sum does not

1 2 5

equal one, then normalize all values computed in step 3 for

each attribute by dividing each value by this sum.

Steps

First calculate K', an estimate of K, using the following

relationship derived in Appendix 1:

'. - -
K' = (1 = hy5 = hy;)/h by )

Define hi = 1n(l + K'hi)’ i=1, 2, ..., 16

Repeat step 2 (additive model) using h! values.

i
1+ K'k, = s By S A
1 + K'k,u, (level 3 of x.) = e(AJ - Al)
11 1
' e A -A)
1+K Klu1 (level 2 of xl) e 2 1

Repeat steps 8 and 9 for each attribute. As before, the

definition of Al, A2, A3, Aa are giver. by the design and

differ for each attribute.
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Table 1

Attributes
Consequence

1 2 3 4

1 o 1 1
2 1 2 2 B
3 1 3 3 4
4 1 4 4 2
5 2 1 2 2
6 2 2 3 4
7 2 3 4 3
8 2 4 1 1
9 3 1 3 3
10 ) 2 4 1
11 3 ) 1 2
12 3 4 2 4
13 4 1 4 4
14 4 2 1 2
15 4 B) 2 1
16 4 4 B b

'Y
Level 1 is worst; level 4 is best.
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Table 2
Attribute Level Combinations, Stated Holistic Judgments

and Predicted Judgments for Two Orthogonal Designs

Design 1 Stated Predicted Design 2 Stated Predicted

Coubitaation 1* 2 3 Value Value 1 2 3 Value Value
1 W W W .00 .00 W W W .00 .00
2 w I I .60 .57 I W 1 47 . 38%
3 W B B .85 .78 B W B .55 .55
4 I W 1 47 . 38%% I I W .39 .40
5 I 1 B .75 .73 B I I .65 .70
6 1 B W .50 .53 W I B .70 .66
7 B W B .55 .55 B B W .65 .59
8 B I W .60 A W B I .70 .69
9 B B I .82 .89 I B B .85 .84

10 W B W .60 W B W .60

#

Attributes are designated 1, 2, 3. Levels are denoted W, for worst;
I, for intermediate; B, for best. Parameter K is estimated using combina-
tion 10.

ki
Stated value differs from predicted value by at least .077, twice
the estimated root mean square error.
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Table 3
Stated Holistic Judgments, Original Predictions and

Revised Predictions for Two Orthgonal Designs

Design 1 Design 2
Combinat ion Stated Revised Original Stated Revised Original
Value Prediction Prediction Value Prediction Prediction
1 .00 .00 .00 .00 .00 .00
2 .60 .57 .57 47 .40 .38
3 .85 .79 .78 .55 .55 .55
4 47 .40 .38 .39 .38 .40
) 5 .15 .73 .73 .65 .68 .70
6 .50 .53 .53 .70 .66 .66
7 .55 .55 .55 .65 .57 .59
8 . 50% .43 .46 .70 .70 .69
9 .82 .81 .89 .85 .85 .84

*
Revised from .60 by assumption.
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If a general multiplicative model can be assumed to be an appro-
priate representation of the decision maker's basic preference
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ing constants and univariate utility functions for decomposition
methods (Keeney-Raiffa and SMART), or in the holistic assessments
for holistic methods (SJT and HOPE). Individual estimates may be
merely noisy or may be fundamentally incorrect. Furthermore, the
utility model may be incorrectly specified; for example, an addi-
tive model, rather than a multiplicative model, may be used. The
four assessment methods are considered in conjunction with errors

of each kind.

The most serigﬁskerror-method combination is the case of a sub-
stantial degree of error occurring in a single holistic judgment
which is being used in a HOPE procedure. This concern leads to
a major emphasis of this report--and expanded HOPE procedure
used in conjunction with a convergent validation strategy to
estimate error in individual holistic judgments and thus guide
consistency checks.,

The discussion is organized into four sections. The HOPE pro-
cedure is summarized in Section I. In Section II, three compo-
nents of assessment error are considered in conjunction with the
four elicitation procedures. In Section III, an expanded HOPE
procedure for detecting judgment error and guiding consistency
checks is proposed. In Section IV, application considerations
are outlined.
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