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SUMMARY 

In this report an approach to the concept of error in utility 

assessment is proposed. Three components of error are considered and 

each component is related to four separate elicitation methods — all in 

the context of a general multiplicative multlattribute utility model. 

The methods are a Keeney-Raiffa (1976) procedure, SMART (Edwards, 1977), 

a social judgment theory (SJT) based regression model (Hammond, Stewart, 

Brehmer and Steinmann, 1975) and a new method called Holistic Orthogonal 

parameter Estimation or HOPE (Barren and Person, 1978). 

If a general multiplicative model can be assumed to be an appropri- 

ate representation of the decision maker's basic preference structure, 

error can occur in the direct estimation of the scaling constants and 

univariate utility functions for decomposition methods (Keeney-Raiffa 

and SMART), or in the holistic assessments for holistic methods (SJT and 

HOPE).  Individual estimates may be merely noisy or may be fundamentally 

incorrect. Furthermore, the utility model may be incorrectly specified; 

for example, an additive model, rather than a multiplicltive model, may 

be used. The four assessment methods are considered in conjunction with 

errors of each kind. 

The most serious error-method combination is the case of a sub- 

stantial degree of error occurring in a single holistic judgment which 

Is being used in a HOPE procedure.  This concern leads to a major em- 

phasis of this report — an expanded HOPE procedure used in conjunction 

with a convergent validation strategy to estimate error In individual 

holistic judgments and thus guide consistency checks. 

— .-^--•r..-»»    - ■ - -a 



The discussion is organized into four sections.    The HOPE procedure 

is summarized in Section I.    In Section II,  three components of assess- 

ment error are considered in conjunction with the four elicitation pro- 

cedures.    In Section III,  an expanded HOPE procedure for detecting judg- 

ment error and guiding consistency cV   IKS is proposed.    In Section IV, 

application considerations are outlined. 
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Introduction 

In this report an approach to the concept of error in utility 

assessment is proposed. Three components of error are distinguished; 

these components are then related to four separate elicitation methods 

— each of which is consistent with at least special cases of the gen- 

eral multiplicative multiattribute utility (MAU) model (below). Two 

methods, Keeney-Raiffa (1976) and SMART (Edwards, 1977) are pure decom- 

position approaches; a third, the social judgment paradigm (Hammond, 

Stewart, Brehmer, and Steinmann, 1975) is a regression approach which 

relies on holistic judgments. 

The fourth approach is a decomposition procedure for assessing 

multiplicative MAU functions which relies solely on a few holistic 

assessments of utilities. The procedure's acronym is HOPE for Holistic 

Orthogonal Parameter Estimation.  Consistent with the procedures of 

Keeney and Ralffa (1976), the HOPE procedure exploits the basic pref- 

erences of the decision maker to specify the utility function. HOPE 

differs in that it uses a response mode more familiar to laymen than 

those of other methods of MAU elicitation — holistic assessment of (a 

few) profiles — to determine the scaling constants and unlvariate 

utility functions comprising the multiplicative utility function. 

The larger question behind any analysis of error in assessed util- 

ity functions concerns validation. There are three basic approaches to 

validation of assessed utility functions:  (1) use of an external 

criterion; (2) validating the basic preference structure of the decision 

maker; (3) convergent validity. Of these, the most straightforward Is 

use of an objective, externally defined, criterion, jlf one is available. 

■ ;»-i»"*vV■.>'■ il.,,*■•«-•'s^ltf '--■ -« ■-' ^ ■ ■ Mff fc 
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Edwards (1974) has suggested two Instances of available criteria — 

diamonds and bank credit.    The American Gemological Institute "diamond 

model" formally evaluates diamonds based on the four attributes:    color, 

cut, clarity, and carats.    Banks evaluate applicants for credit cards on 

the basis of attributes contained on standard application forms (e.g., 

disposable income, own versus rent, debt,  employment history, etc.); 

while actual probability and amount of default,  if any, are known 

empirically. 

Edwards and his associates have suggested a variant of the multiple 

cue probability learning paradigm (Hammond,  Stewart, Brehmer and Stein- 

mann, 1975) as a means of creating an external criterion.    Subjects are 

first trained to use a weighted additive utility functions; this Is 

followed by eliciting learned utilities.    This procedure has been pilot- 

tested at SSRI. 

The purpose of studies using an external criterion is to compare 

and evaluate the performance of elicltation techniques.    The usefulness 

of such studies rests on the assumption that comparative efficacy of 

elicltation methods generalizes from situations where an external 

criterion exists to situations where one does not.    Of course, external 

criteria do not generally exist in de novo assessment of utilities In 

laboratory or field settings.    Furthermore,  elicltation is unnecessary 

when such a criterion exists.    Thus,  in application as opposed to ex- 

perimental settings, validity necessarily depends on either validation 

of the basic preference -odel itself or on convergent validity. 
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Validating Che basic preference model requires verifying qualitative 

properties of preferences which are sufficient  for representing prefer- 

ences by a particular mathematical model.     In the decomposition approach 

of Keeney and Ralf fa  (1976),   the qualitative properties of preferential 

independence and utility independence are explicitly examined.    Prefer- 

ential Independence requires that preference orders over attribute pairs 

be independent of the  fixed  levels of the remaining attributes.    Utility 

independence requires  that  preferences for lotteries involving a single 

attribute be Independent of  the fixed levels of  the remaining attri- 

butes.    If these qualitative properties of preferences hold,  then the 

preference structure can be  represented by either a multiplicative 

model, equation  (1),   or by an additive model,  equation  (2). 

1 + KlUx-.x,,,   ..., x )  -    n    (1 + Kk.u.(x.)) (1) 
12 n        i-l ill 

where,  for  1 -  1,  2,   ...,  n 

x.   is  level  1 of attribute X 

0 S u. (') Ä 1   is a utility function 

0 < k    <  1  is a scaling constant 

-1 < K is a parameter 

U(')   is overall utility. 

Upon writing equation (1)  simply as an expression for U(«) and taking 

limits as K goes to 0,  the resulting model  is the additive model,  equa- 

tion (2): 

n 
UUj^ x2,   ....  yn) -    I k^U^ (2) 

W—i——M»«»!1 I» Iill*»i>i    im />, vJ»i<.a^titU^r^£»W,**--'5Nt<i»'%li*»<iW<fc ' •i.-.'-»'"*»•«*>••»' 
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The basic preference model Is validated by checking the conditions of 

preferential and utility Independence.    For an especially Informative 

assessment protocol In which the conditions are checked,  see Keeney 

(1977). 

The choice between models 1 and 2 In an application setting Is not 

necessarily a simple choice.    The choice can be viewed as an empirical 
n 

question,  In which the parameter K ■ 0 If and only If ][ k.  ■ 1.    The 
1-1 1 

choice can be based behavlorally on the marglnallcy condition (Flshburn, 

1965).    Model 2 Is appropriate only If the decision maker's preferences 

for multlattrlbuted risk consequences depend only on  the marginal dis- 

tribution associated with each attribute.     Experimental studies  (e.g., 

both conducted and surveyed by von Ulnterfeldt   (1976)) have often found 

violations of the marglnallty condition.    Finally,  the choice can be 

made on more pragmatic grounds.    Additive models are simpler, provide 

excellent predictions,  and can be used In conjunction with simpler 

procedures (e.g.,   the SMART procedure discussed In this report).    In 

fact, referring to the same experimental studies von Ulnterfeldt states: 

The message that these experiments convey seems contradictory: 
In spite of obvious model violations (tests of marglnallty and 
tests of risky additlvity failed),  additive models  .   .   . predict 
subjects' preferences and utility judgments very well  (p. 24). 

Convergent validation assumes that logically equivalent ellcltation 

procedures will assign comparable utilities to the same multi-attributed 

outcome.    In his convergent validation study Fischer  (1977) elicited 

utilities for 27 hypothetical jobs from each of 10 subjects In three 

different ways:     (1) direct holistic asseasments,   (2) via a Keeney- 

Ralffa decomposition, and (3) via the SMART procedure.    The utilities 

^ •■ —»-»- i w • ■ .*-.  .- -.>..— ■■--to'iifAiia^iM^a^i^^iiteia 
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predicted for the 27 Jobs  (within subject)  by the Keeney-Raiffa anJ 

SMART procedures exhibited high correlations with each other and were 

highly correlated with the holistic assessments. 

Slovic,  Fischhoff and Lichtenstein (1977)  have criticized using 

correlation between predictions of MAU models and holistic Judgments as 

evidence that the MAU model is valid.    Their criticism is based on the 

use of unaided holistic preference as a criterion.     They  further state, 

".   .   .a decade or more of research has abundantly documented that 

humans are quite bad at making complex unaided decisions   (Slovic   [1972]); 

it could thus be argued that high correlations with  such flawed Judg- 

ments would suggest a lack of validity"  [p.   22]. 

At  face value the remarks of Slovic et al.  are damaging to  the HOPE 

procedure described in this report.    In fact, a major emphasis of this 

report is the use of an expanded HOPE procedure in conjunction with a 

convergent validation strategy to estimate prediction  (of utilities) 

error, and to thus identify outliers in the set of holistic Judgments. 

Thus,  the view represented by the remarks of Slovic et al. must be 

considered. 

I believe decision makers can provide useful holistic assessments 

of  (a few) multiattributed consequences,  especially  in cases involving a 

small number of attributes,  say fewer than ten.     Furthermore,  there is 

considerable evidence to support my belief.    Two research traditions, 

heavily based on holistic assessment, are social Judgment theory (Hammond 

et al.) and information integration theory (Anderson [1974]).    Numerous 

empirical studies  in these traditions alone constitute examples of 

■*•'•>*%Vl'^O    *■ ■■ "r   it' Mi A r    - ■— "■    - ii im     l in    Hi« « .■ if i 
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Judges providing holistic Judgments. Of course, neither the cognitive 

processes which produce holistic Judgments are well understood, nor are 

the exact parameters of such Judgments known. It is generally accepted 

that such Judgments are often systematic, but noisy (Fischer, 1977); in 

fact, bootstrapping (Daves and Corrlgan, 1974) capitalizes on these 

features. It is also presumed that noise Increases as the number of 

attributes increases. Finally, it is plausible to presume that noise 

Increases as the number of required holistic evaluations Increases. 

The HOPE procedure requires direct holistic assessment of the 

utility of each of a small number of multi^ttributed consequences com- 

prising a highly fractionated experimental design. By small number, I 

mean fewer than fifty consequences, a number suggested by both Keeney 

and Ralf fa (1976, p. 222) and Fischer (1977). My basic assumption is 

that decision makers can provide the requisite holistic assessments; 

furthermore I recognize that these assessments will be noisy. Moderate 

noise, per se, does not materially reduce the efficacy of the HOPE 

procedure. A previous paper (Barren and Person, 1978) demonstrated that 

the HOPE procedure could recover known MAU functions from simulated 

noisy holistic Judgments. Recovery was excellent in the presence of 

moderate amounts of noise — defined as nonrally distributed additive 

error having a standard deviation of .05. Model specification error — 

defined as the use of an additive model fitted to error-free holistic 

Judgments computed from known multiplicative models — produced higher 

prediction error than did moderate noise in conjunction with an appro- 

priate multiplicative model using an estimated K value. 

• - t- 1 
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The HOPE procedure generalizes a procedure for estimating main 

effects  In an additive model  (Green,   1971),  to the assessment of the 

multiplicative utility functions of Keeney (1974).    Multiplicative  (and 

additive)  utility functions are of  Interest for three reasons.    First, 

the multiplicative model represents  the decision maker's preference 

structure if certain preferential and utility Independence conditions 

are satisfied.    In those cases  In which these conditions have been 

verified,  the multiplicative model  Is valid.    Second,   the multiplicative 

utility function is of practical  Importance,  even If the requisite 

assumptions do not hold precisely  (Keeney and Ralffa,   1976,  p.  298). 

Third,   formally the general r.ultlpllcatlve model encompasses  the kinds 

of utility functions resulting from each of the four assessment ap- 

proaches considered In this paper. 

This report  is organized  into four sections.    The HOPE elicltatlon 

procedure is described In section I.     In section II,  three components of 

utility assessment error are considered in conjunction with the four 

elicltatlon procedures.     In section III,  a method for detection of judg- 

ment error is proposed and Illustrated by application to the data of 

Fischer  (1977).     In section IV,  application considerations are outlined. 

I.    HOPE:    A Utility Elicltatlon Procedure1" 

Th.i HOPE and Keeney-Raiffa    procedures differ only in the parameter 

estimation phase.    HOPE estimates the parameters — the univariate 

+ 
Section I is a revised version of section I of Barron and Person 

(1978). 

Unless noted otherwise, by "a Keeney-Raif fa procedure" is meant 
their general approach to assessing a multiplicative utility function as 
described in Keeney and Ralffa, 1976, pp. 297-304. 

>'■.■: ■■' ■■-•ia^j, ^„rn i»ti ^-■■«^—- ^-~- ->i^-^aiM*i 
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utility functions and scaling constants — of the multiplicative family 

of utility functions from holistic judgments of utility.    The estimates 

are derived; they are Inferences which are completely based on the 

appropriateness of the underlying preference structure.    A Keeney-Raiffa 

procedure, while relying on the appropriateness of the same underlying 

preference structure, differs,  primarily in that scaling constants and 

utility functions are individually assessed. 

The HOPE procedure consists of three phases:     (1) preparation, 

meaning those aspects connon to both HOPE and Keeney-Raiffa approaches 

(necessary preliminaries,   identification and definition of attributes, 

determination of value ranges, verification of appropriate independence 

conditions);   (2) eliciting direct, holistic assessments for the specific 

multiattributed consequences of an appropriate orthogonal design;   (3) 

performing the arithmetic on the holistic assessments required to deduce 

scaling constants and utility functions. 

Preparation 

All approaches to multlattribute utility assessment involve certain 

necessary preliminaries.    Clearly the stage must be set,  the respondent 

must realize the purpose of the exercise, and mutual understanding suf- 

ficient for effective comnunlcatlon must be established.    Following pre- 

liminaries, both approaches would identify and define value-relevant 

attributes.    For each attribute,  both would determine an appropriate 

range of values,  including which level is worst and which is best. 

Finally, both would check to see that necessary preferential independence 
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* 
and utility Independence assumptions are met.      As a consequence of the 

Independence conditions,  both would conclude that Keeney's general 

multiplicative model,  equation  (1),   is an appropriate MAU function.    At 

this point, a Keeney-Raiffa procedure differs from the HOPE procedure by 

assessing utility functions and scaling constants individually.    The 

utility functions,  u,,  are assessed via standard gambles  in the usual 

way  (Keeney and Ralf fa.  Chap.  4).     The parameter k    is  Interpreted and 

often In practice assessed as an indifference probability in  the stand- 

ard gamble which yields consequence BEST (defined as all attributes at 

their best levels) with probability k    and consequence WORST  (all attri- 

butes at their worst  levels) with probability 1 - k., versus  the certain 

consequence with attribute X    at  its best level and all other attributes 

at  their worst levels.    Scaling constants can also be assessed  in other 

ways.     In the HOPE procedure,  neither the utility functions,  u  ,  nor the 

scaling constants,  k.,  are directly assessed.    Rather,  the HOPE pro- 

cedure Infers utility functions and scaling constants from holistic 

assessments of consequences defined by an appropriate orthogonal design 

as described below. 

Orthogonal Arrays Define Consequences for Holistic Assessment 

Orthogonal experimental designs generally require the lowest number 

of holistic consequence assessments for additive main-effect non-confounded 

parameter estimation.    A catalog of useful orthogonal designs and varia- 

tions is provided by Addelman  (1962). 

The qualitative properties of preferential and utility independence 
are described succinctly In Keeney  (1977, p. 271) and amplified in 
Keeney and Ralffa (1976,  Chap.  6). 

.»-.' k.-i.ii^j'.jiKtAjÄ L -V.;.J^_!.«..V*J^*^. --   • ■ -    ' ^-■^■'-•:-^^~' 
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An example of a particular design appropriate for up to 5 attributes 

with up to 4 levels per attribute  Is Addelman's "Basic Plan 3" shown In 

Table  1.    For example,  consequence  3  In Table 1  Is defined as  level  1 of 

attribute 1,  level 3 of attributes 2 and 3,  level 4 of attribute 4, and 

level 2 of attribute 5.    This consequence,  along with the 15 others of 

Table  1,  plus one additional consequence defined In Appendix 1 and used 

to estimate the parameter K,  would  then be hollstically evaluated.     Note 

that consequence 1  represents the worst  level of each attribute,   and 

would be assessed to have  zero utility  in the preparation phase.     A 

worst  reference: outcome  is conmon to the orthogonal designs on which 

HOPE is based. 

Holistic responses may be either direct ratings,  appropriate  for 

riskless utilities, or standard gamble Indifference probabilities, 

appropriate for risky utilities.     For riskless utility assessment  one 

reference case consisting of  the best  level of all attributes  is as- 

signed 100 points; a second reference case defined as the worst  level of 

all attributes is assigned 0 points.    The remaining consequences defined 

by the experimental design are then rated individually along the 0 to 

100 point scale.    Rating data, normalized by dividing by 100,  are  then 

treated as if they were  interval-scaled responses.    For lottery-type 

utility assessments the design consequences could be considered as sure- 

thing consequences in a standard gamble with the same two reference 

cases as uncertain outcomes.    Related riskless procedures using 6-to-ll 

v 

J a. 
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point direct rating scales have been used in marketing applications 

such as hospital promotion (Wind and Spitz, 1976). 

Analysis (Arithmetic) of Holistic Responses 

Succinctly stated, the HOPE procedure receives m noisy holistic 

Judgments as Input. Using 2 Judgments, the parameter K is estimated 

(step 1, Appendix 2). Depending on the value of K, either m - 1 Judg- 

ments are subjected to the arithmetic of the additive model (steps 2-5 

of Appendix 2), or m - 1 transformed Judgments are subjected to the 

arithmetic of the multiplicative model (steps 6-10 of Appendix 2). The 

result or output is a complete set of k. and u. (x.) values, the latter 

for each level of each attribute specified by the design. 

The analysis of the holistic evaluations is made extremely simple 

by the use of an orthogonal design.  It merely involves arithmetic. The 

main effect of any given level of any given attribute is then the sum of 

the holistic values of all consequences containing the attribute at the 

given level (divided by the number of such consequences), minus the 

corresponding sum of the holistic values of all consequences containing 

the worst level of the same given attribute (again divided by the number 

of such consequences). If the procedure described in Appendix 1 yields 

an estimated K ■ 0, then the additive model, equation (2), is appro- 

priate, and the estimated main effects must be normalized by dividing 

each estimate by the sum of the estimated best levels. For each attri- 

bute, this procedure estimates k.u. (x.) In general and k. when X. is at 

Carmone, Green and Jain (1977) cite a figure of over 200 indus- 
trial application* of additive (conjoint measurement) models ranging 
from use of full factorials and ranking responses to use of orthogonal 
arrays and rating responses. These applications assume equation (2) to 
be an appropriate model. 
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Its best level since 0 < uf(x.) < 1. Otherwise, the multiplicative 

model, equation (1), is appropriate.  In this case each holistic value, 

U, is first transformed to ln(l + KU), where In is the natural log- 

arithm. The above analysis without normalization is then simply carried 

out on the transformed holistic values. For the multiplicative model 

this procedure estimates the quantity ln(l + Kk.u (x.)) in general, and 

ln(l + Kk.) when X is at its best level.  Since K is estimated sepa- 

rately it is then possible to compute all k. and u, (x.) values. 

II.  Error in Assessed Utility Functions 

Assuming the general multiplicative model is an appropriate repre- 

sentation of the basic preference structure, error can occur in the 

direct estimation of the scaling constants and utility functions for 

decomposition methods or in the holistic assessments for holistic methods. 

The individual estimates may be merely noisy, or may be fundamentally 

incorrect.  In predicting utilities, the analyst may further mis-specify 

the model (e.g., may choose equation (2) rather than equation (1)). 

Thus, prediction errors may be related to one or more of the following 

errors:  (1) model specification error; (2) noisy subjective estimates; 

(3) substantial random error. 

It is difficult to characterize substantial errors of judgment. 

Surely, a substantial error is a judgment which would be altered upon 

reflection. It would exhibit low test-retest reliability. In a statis- 

tical sense a substantial error is an outlier. 

Examples of the three types of error occurred in my recent field 

study of professional audit judgments. In that study audit partners 

-  . • '• x 
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considered hypothetical client firms described by sets of  financial 

statements.    For each firm a dollar amount defining material error was 

estimated to guide statistical sampling procedures.    Some dollar amounts 

«rere used to estimate the parameters of a judgment model;  the remaining 

estimates constituted a holdout  sample to be predicted from the model. 

Several sources or error could have contributed to prediction error. 

First  the assumed additive prediction model could have been an Incorrect 

specification.     Second,  the original estimates were stated to the nearest 

$25,000.    With  this type of rounding,  a "true" value of say,  $190,000 

would sometimes have been assessed as $175,000 and sometimes as $200,000. 

Or sometimes,   the estimate would have been "either $175,000 or $200,000." 

Third,  any of the judgments to be predicted or the judgments used to 

estimate the parameters could have been either merely noisy or substan- 

tially wrong.    Test-retest cases and deviations from additive predic- 

tions  indicated  the general  level of noise.     In instances where there 

was substantial prediction error,  participants were asked to reexamine 

cases whose estimated dollar amounts either Influenced parameter esti- 

mates or represented holdout cases.    For many firms the original dollar 

amount was deemed "correct," but in a few cases judged dollar amounts 

were substantially revised.    Comnents like "I don't know what  I could 

have been thinking," accompanied such revisions.    Yet clearly there was 

no definitive criterion for "noise" versus "substantial error." 

In the remainder of this section we examine the four ellcltatlon 

procedures, designated KR (for Keeney-Raiffa), SMART, SJT (for social 

judgment theory) and HOPE, in conjunction with the possible effect on 

each of specification error, noise, and substantial random error. 

v«* 
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Model Specification Error 

All four methods estimate unlvarlate utility functions and scaling 

constants for either the additive model equation (2), or the multiplica- 

tive model equation (1). SMART and SJT consider only additive models. 

Thus, a priori, SMART and SJT models are Incorrectly specified for all 

true values of the multiplicative parameter K ^ 0. 

There are several studies which Indicate the effect of specifica- 

tion error within ellcitatlon methods. Fischer (1977) observed high 

correlations (median ■ .982) between KR additive predictions and KR 

multiplicative conditions. Simulating the HOPE procedure using known 

multiplicative models with extreme K values (K ■ -.94 or K ■ 4.11) with 

two levels of response noise (normally distributed, mean 0 and standard 

deviations of .025 and .05), Barron and Person (1978) found larger 

errors of predictions for Incorrectly specified additive models (with or 

without noise) than for correctly specified models with noise.  Further- 

more, as the standard deviation of response error was decreased from .05 

to .025 prediction error for correctly specified multiplicative models 

was cut In half, while for Incorrectly specified additive models with 

noise, prediction error persisted at 80% and 90% of Its former level. 

Analysis of Fischer's risky data by HOPE procedures shows for 8 of 10 

subjects multiplicative models produce a lower root mean square error In 

predicting the entire set of holistic judgments than do additive models. 

A statistical analysis of the same risky data by Fischer found 6 of 10 

subjects departed significantly (a « .05) from addltlvlty and for each 

of the 6 cases, multiplicative models produced a lower standard error of 

. S-^^n,^*.? ij,,.^ 
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estimate. Finally, all 30 estimates of K (3 estimates for each of 

Fischer's 10 risky data sets) using the procedure described in Appendix 

1 were found to be different from 0. 

Analysis of the laboratory data of Fischer and the simulation data 

of Barron and Person suggest that model specification error increases 

prediction error. The HOPE method provides a simple direct estimate of 

K  The KR method computes K as a function of the scaling constants, 

while SMART and SJT work directly with relative weights assuming K ■ 0. 

The individual methods differ in their respective approaches to 

specification of the univariate utility functions, u (•)• KR and SMART 

assess the u directly.  SMART asks respondents to assign u (x ) values 

directly to selected levels x of attribute 1, 1 > 1, 2, ..., n. KR 

assess a univariate utility via standard gambles — finding a few cer- 

tain equivalents, followed by fairing in a curve.  Direct assessment of 

certain equivalents is especially vulnerable to Tversky's (1977) sug- 

gested certainty effect bias. 

The HOPE and SJT methods infer the u statistically from the holis- 

tic responses.  SJT uses multiple linear regression; candidate u. func- 

tions are polynomial functions of x,. The ability of linear models to 

account for substantial proportions of variance (e.g., Yntema and Torgerson, 

1961; Slovic and Lichtenstein, 1971) often leads to u functions which 

are linear in x.. The HOPE procedure provides a single point estimate 

for u. (x.) for each x. specified by the design. Since there are no de- 

grees of freedom for error estimation in the single design HOPE pro- 

cedure, a substantial error in a single holistic judgment could produce 

erroneous u functions. 

i» i.^.^.^ 
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With respect to weights, and more generally,  scaling constants, 

SMART directly assesses relative weights which are then normalized;  KR 

assesses scaling constants directly via standard gambles or sets of 

equations reflecting specific tradeoffs  (Keeney and Ralffa, p.  267); 

HOPE infers scaling constants consistent with the ex ante model speci- 

fication;  and SJT infers beta weights fro-^ the regression.     SJT weights 

are influenced by both model specification error  (additive only) and 

univariate utility function specification error  (usually linear). 

Tradeoffs between judgment error and modeling error are complex. 

SMART weights are simpler to assess than are KR scaling constants. 

Simpler judgments  (relative weights) may outweigh the disadvantage of 

model specification error  (assuming K = 0).     By contrast,  SJT and HOPE 

procedures use equivalent holistic judgments.     In this case assuming an 

additive model,   i.e., K ■ 0,  serves as a constraint. 

Noise 

KR and SMART procedures estimate scaling constants or weights and 

univariate utility functions separately.    Thus noise in the estimate of 

one set of parameters should not effect estimates of the other set.    Of 

course,  the values of the scaling constants depend on the attribute 

ranges.    SMART weights are normalized by the sum of the estimated values. 

Thus SMART estimates are sensitive only to errors in the relative values 

of these estimates.    Keeney (1977,  p.  284 ff)  first ranks attribute 

(ranges) by importance and then assesses specific values via standard 

gambles and/or tradeoffs.    Standard gambles will underestimate scaling 

constants to the extent they are subject to Tversky's certainty effect. 
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Using direct tradeoffs, noise In the unlvarlate utility function values 

will lead to noise In scaling constant values. 

SJT infers the scaling constants assuming linear utility functions 

via regressing standardized attribute levels against holistic judgments. 

The assumption of linear conditional utility functions introduces error; 

a second source of error is noise in the holistic judgments. The usual 

error theory of regression analysis pnvides estimates of the sensitiv- 

ity of the inferred scaling constants (beta weights). 

HOPE simultaneously infers conditional utility functions and scal- 

ing constants from holistic judgments. The orthogonal arrays utilized 

by this procedure are extremely efficient regression designs. There 

are, in fact, zero degrees of freedom.  If the value of a single holis- 

tic judgment is changed, the estimated value of at least one scaling 

constant, and several u, values will change.  If the holistic judgment 

is merely noisy, the effect on k. and u,(•) are minimal; if the judgment 

reflects "substantial random error," the effects will be substantial. 

Each of these last two statements finds support in the individual simu- 

lation runs of Barren and Person (1978). 

Substantial Random Error 

"Holistic evaluative judgments are characterized by a substantial 

degree of random error," states Fischer (1977, p. 296). If so, the SJT, 

HOPE, and KR assessments are affected. SJT and HOPE use only holistic 

assessments as data; KR assessments of scaling constants In a standard 

gamble context require a holistic assessment of outcomes having one 

-- -,•--■,' ^.^u.,^^^ 
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attribute at Its best level and all other attributes at their worst 

levels. In this latter case, Tversky's certain effect bias is con- 

founded with the predicted "substantial degree of random error." 

Judgment error per se is not a part of the formal theory of MAÜ. 

Error may be handled implicitly via sensitivity analysis.  In the as- 

sessment stage, the careful analyst performs numerous consistency checks 

in an attempt to prevent substantial error. For example, in SMART, if 

the relative values of attribute ranges I, II, and III are 10, 30, and 

60 respectively, i.e., II is 3 times as Important as I, while III is 6 

times as important as I; then as a consistency check, III should be 

judged 2 times as Important as II. For KR procedures, numerous con- 

sistency checks are illustrated in a detailed protocol (Keeney, 1977). 

The most serious error suggested thus far is a single holistic 

judgment exhibiting a substantial degree of error being used in a HOPE 

estimation procedure. Since there are zero degrees of freedom, the 

error affects several k. or u. values individually.  Since the error is 

substantial the impact, though moderated by other judgments, is also 

substantial. Thus, it is essential to identify, if possible, individual 

holistic judgments exhibiting substantial random error. 

In the next section a modified HOPE procedure is described. The 

modified procedure guides consistency checks ovev the original set of 

holistic judgments and provides a means for detecting substantial random 

error. 

mm 
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III. Detection of Error In Holistic Judgments 

The HOPE procedure can be easily extended to detect substantial 

random error over the set of holistic judgments. The extended HOPE 

procedure uses two orthogonal designs with minimal overlap in one of two 

possible ways. First, the data „f both designs is pooled to estimate k 

and u (x ) values. This serves to increase the degrees of freedom in 

the HOPE procedure to approximately the number of design points unique 

to one design. Noise is then defined by the root mean square error, 

i.e., of pooled prediction minus actual judgments, while arbitrarily, 

substantial error is defined to be a deviation exceeding twice the root 

mean square error. 

A second approach using two designs is to build two separate 

(utility) prediction models — one for each design. The utility pre- 

dictions of design 1 (2) are used to predict the actual judgments of 

design 2 (1). Substantial error is again arbitrarily defined by pre- 

diction errors exceeding twice the root mean square error. 

Either of the above procedures can be used to "detect" excessive 

deviations from model predictions, although it may be more reasonable to 

consider these procedures as guides for checking consistency over the 

original set of holistic judgments. One set of judgments which are 

candidates for consistency checks are those judgments which deviate 

substantially from predicted values. A second set of candidates are 

equal judgments for which the predicted values diverge. For example, if 

two consequences, a and b, have judged utilities u(a) ■ u(b) • .6 but 

the predictions differ; say u'(a) ■ .64 and u* (b) • .57; then a and b 

may also be presented to the subject for reconsideration. 

• ■»-• -« ,a , , ^ . . , _._ 
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Each error detection procedure can be illustrated using the data of 

Fischer (1977). Fischer's subjects provided holistic evaluations for 27 

hypothetical offers of employment. Each job was (completely) described 

by 3 attributes — salary, location (city), and type of work. Each 

attribute had 3 possible levels, designated in the tables and discussion 

as W, for worst level; I, for intermediate level; and B, for best level. 

The 27 Jobs represent all combinations of each level of each attribute. 

Fischer (1977) provides a detailed description of the elicitation task. 

These data have been analyzed via conjoint measurement (Fischer, 1976), 

have been subjected to convergent validation tests in conjunction with 

several elicitation methods (Fischer, 1977), and have been subjected to 

various HOPE procedures (Barron, 1978). For illustrative purposes, we 

consider the (risky) responses of subject 2, a subject for whom the 

additivity hopotheses (i.e., equations 1 and 2) were rejected by con- 

joint measurement analysis (Fischer, 1976, p. 139). 

A double design appropriate for the analysis of subject 2's re- 

sponses is presented in Table 2. Predicted values for each design are 

based on pooling data from both designs. Design 1 indicates two points 

for consistency checks (I,W,I) and (B,I,W). Point (1,W,I) is also a 

design 2 point; except for (I,W,1), design 2 has no points indicated for 

consistency checks. These two points should now be reconsidered by the 

person making the original judgments. (Of course, using these data 

supplied by Fischer, this is impossible.) 

At this point, let us assume that upon reconsideration subject 2 

agreed to reduce the Judged (3,1,U) from .61' to .50.  If this one change 

>«—»^»i i' urn    - ■ « » 
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is made, and the predictive model for the revised pooled data is obtained, 

several things happen as shown in Table 3.    The new predictions for 

(B,1,W) and (I,U,I) are both brought into better agreement with stated 

values — (B,1,W) because the stated value was revised and (I.W.I) be- 

cause the predicted value based on the revised (B,I,W) value increased. 

All values are brought into better agreement as measured by root mean 

square error (RMSE).    Revised RMSE over all 16 pairs is smaller than the 

prior RMSE either including or excluding the (B,I,W) pair. 

Consistency checks should also be performed for sets of equal judg- 

ments as guided by model predictions.    In design 2 cells (B,I,l) and 

(B,B,U) were each assigned a value of .65.    The predicted values are .70 

for (B,I,I) and .39 for (B.B.W).    The subject should be asked to recon- 

sider these judgments.    Is (B,I,I) really preferred to (B,B,U)?    A 

similar comment does not apply to design 2 cells (W,I,B) and (W,B,I), 

each assigned original values of  .70.    The predicted values differ,   .66 

and .69 respectively, but do not diverge. 

Using the two designs to estimate separate predictive models pro- 

duces similar results.    Cells (I,W,I) and (B,I,W) of design 1 are iden- 

tified for consistency checks.    Revising the (B,I,U) utility suggests 

the original (I,W,I) value is not substantially wrong.    Furthermore, 

design 1 predictions of the equal value cells (B,I,I) and (B,B,W) sug- 

gest the former's utility should be increased and the letter's should be 

decreased. 

The use of double designs provides a mechanism for detecting sub- 

stantial error in judgment and further guiding consistency checks.    The 
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error detection feature coaea at the coat of requiring approximately 

twice aa «any judgments aa originally required. Its advantage is that 

it provides a within-elicitation method for convergent validation of 

field assessed utility Judgments. 

IV. Application Considerations 

Proponents of each elicitation method described can point to an 

impressive number of applications. Illustrative of KR are Keeney (1973, 

1976. 1977); of SMART, Edwards (1977), Gardiner and Edwards (1975); of 

SJT. Hammond and Adelman (1976) and of HOPE, Wind and Spitz (1976), and 

those cited in Carmone et al. (1977). This section will provide neither 

an extensive analysis of each method nor an applications critique of 

each method. Instead, practical considerations will be highlighted. 

Keeney has reported two applications, Keeney (1976, 1977) that 

provide special insight into the process of elicitation itself — a 

proceaa which is intensive, demanding and dynamic. In each case, 

respondents are highly motivated professionals who had thought deeply 

about the respective problems, and Keeney is an especially skillful 

assessor. Generalising from these reported applications, a KR procedure 

is expensive in terms of both respondent and assessor time. It is also 

an intensive process requiring a rather skilled assessor. Respondents 

are often required to be conversant with probability concepts. There is 

no estimate of "noise," and no particular procedure guides consistency 

checks. When the assessment is finished, the result is a utility func- 

tion. Random error may implicitly be conaidered via sensitivity analyses. 
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The procedure's advantages are its obvious tie to underlying theory,  its 

attention to model specification,  and the likely independence of noise 

iu the scaling constants and univariate utility functions.     Its disad- 

vantages are the requirements that possibly unfamiliar constructs  (scal- 

ing constants and univariate utility functions) must be directly assessed 

in a possibly unfamiliar language  (probability theory). 

The primary advantage of the SMART procedure is its simplicity. 

Based on simple rating procedures to deduce weights and utility func- 

tions,  it has the further advantage of being easy to teach to  (proba- 

bilistically) naive decision makers.    It is easily adapted to hierarch- 

ical utility structures.    Although the procedure is believed to be 

robust, a disadvantage is its sole reliance on the additive model.    An 

error detection procedure for relative weights consists of a triangular 

matrix of ratios as described earlier in this report. 

SJT and HOPE procedures rely on holistic judgments.    It is gen- 

erally acknowledged that people are capable of assigning values holis- 

tically in a consistent and meaningful fashion provided the number of 

attributes is,  say,  less than 10 and the total number of evaluations is, 

say,  less than 30, although occasional judgments are subject to sub- 

stantial error.    Thus,  it can be argued that each procedure uses psy- 

chologically meaningful and familiar judgments.    The disadvantages of 

SJT include reliance on the additive model,  equation  (2),  and a tendency 

to infer linear utility functions.    There is also the difficulty of 

detecting error in individual judgments. 

■"-CO      ......,-,4., .„ 
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HOPE has been characterized as a "decomposition procedure which 

relies solely on holistic assessments" (Fischer, personal conmunica- 

tion).  It includes procedures designed to both aid correct model spec- 

ification and detect substantial error in individual Judgments.  Its 

obvious limitations are that it requires credible orthogonal attribute 

combinations and it does not apply to value hierarchies. 

The HOPE procedure seems to have certain advantages when probing 

utilities of large numbers of people. For example, first a few repre- 

sentative individuals can be subjected to an intensive process. Here 

the reasonableness of preferential and utility independence properties 

can be checked and unimportant attributes can be discarded. Next, a 

larger sample of respondents can be assessed via questionnaire.  Sub- 

sequently questionnaire assessments could be checked through a small 

sample of follow-up interviews. 

The HOPE procedure is an extension of an additive conjoint measure- 

ment approach to modeling consumer preferences for multi-attribute al- 

ternatives (Green and Rao, 1971). Early applications of the conjoint 

methodology, e.g.. Green, Carmone, and Wind (1972), relied on full fac- 

torials, rank-order responses, and nonmetric scaling procedures. Green, 

et al., have subsequently simplified the basic approach considerably. 

Orthogonal designs significantly reduce the number of consequences to be 

evaluated from a prohibitive to a feasible number. Direct rating of a 

few consequences is often perceived as less tedious than ranking. 

Metric recovery requires substantially less computational capacity. 
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The efficacy of these simplifications has been supported in the recent 

simulation studies of Camone, et al. (1977), and Barron and Person 

(1978). That there have been over 200 industrial applications of 

conjoint analysis (using both full factorials and, more recently, or- 

thogonal arrays) attest to HOPE's practicability. The refinements of 

correct model specifications and error detection can only enhance its 

usefulness. 

Having practical alternatives to KR and SMART provides obvious 

advantages. Assessment can be more easily tailored to the specific 

situation — considering costs, nature of respondents, and importance of 

the contemplated decision. The particular strengths and weaknesses of 

different procedures can be further determined through actual practice 

and empirical research. 
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Appendix 1:    Estimation of the Parameter K 

Consequence 13 (Table 1) denoted below by "a," consists of the 

highest levels of attributes 1, 3, 4, 5 and the lowest level of attri- 

bute 2.     If one additional consequence,  denoted "b," is defined to have 

attribute 2 at its highest level and attributes 1, 3, 4, 5 at their 

lowest levels and is included with the orthogonal design, then ratings 

of these complementary consequences a and b can be used to estimate K. 

If  the HAU is additive, then the sum of the observed utilities for 

the complementary consequences is 1.0.    Otherwise define consequence "c* 

to have all attributes at their highest levels.    By regrouping terms 

from the right side of equation (1), we have the following: 

1 + k u(c) • (1 + Kk2)  •  (1 + K u(a)) (3) 

k2 - u(b) (4) 

u(c) - 1 (5) 

Substituting (4) and (5) into (3) and solving gives 

K- (1 - u(a) - u(b))/(u(a) u(b)). 

In practice,  the ratings u(a) and u(b) are estimates, so K is also an 

estimate. 
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Appendix 2:     Illustration of  the Arithmetic 

of the HOPE Procedure 

Assume the decision maker has provided holistic assessments for the 

16 consequences of Table 1.    Designate these values h.,  h»,   ...,  h.,. 

Designate by h. _  the assessment of consequence  (1, 4,  1,   1,   1),  that  is, 

the consequence having attribute 2 at  its best  level and all other 

attributes at  their worst  levels.    The arithmetic proceeds as follows: 

Step 1.     Following Appendix 1,  compute h.- + h.7.    If h.- + h.7 ■ 1, 

then K • 0 and we estimate the parameters of the additive 

model (steps 2-5).     If h.- + h._ ^ 1,  proceed to step 6 to 

estimate the parameters of  the multiplicative model. 

Step 2. ti^ - (h. + h2 + h3 + h4)/A 

A2 - (h5 + h6 + h7 + h8)/4 

A3 -  (h9 + h10 + hu + h12)/4 

A4 -  (h13 + h14 + hl5 + hl6)/4 

Step  3.     k.   "A,   - A. 

k.^ (level 3 of x.) • A- - A 

k.u- (level 2 of x.) ■ A- - A. 

Step 4, Repeat steps 2 and 3 for each attribute. Note the definition 

of A , A«, A-, A, changes for each attribute, as defined by 

the design. For example, for attribute 2 

A1 - (h1 + h5 + h9 + h13)/4 

A2 - (h2 + h6 + h10 + h14)/4 etc. 
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Step 5.  Compute the sum k. + k» + .., + k». If this sum does not 

equal one, then normalize all values computed In step 3 for 

each attribute by dividing each value by this sum. 

Step 5 completes the estimation process for the additive model.  Steps 

6-10 describe the estimation process for a multiplicative model. 

Step 6.   First calculate K', an estimate of K, using the following 

relationship derived In Appendix 1: 

K' - (1 - h13 - h17)/h13h17) 

Step 7.  Define h' - ln(l + K'h^, i - 1, 2, .... 16 

Step 8.  Repeat step 2 (additive model) using h' values. 

Step 9.   1 + K'k - e(A4 " V 

1 + K'kjUj^ (level 3 of x^ - e(A3 " V 

1 + K'KjU, (level 2 of x ) - eA2 " V 

Step 10. Repeat steps 8 and 9 for each attribute. As before, the 

definition of A., A-, A_, A, are given by the design and 

differ for each attribute. 

ak 

*> * I    ■ 'wiw*ifinihffc'^^>'-^ >-*^   '*-—'•*-^*-^^--A^iw'.^'1>,tt^. "Wi iViiii'kmiiiMiiBaii 



- 29 - 

References 

Addelman, S.  Orthogonal main effect plans for asynnetrlcal factorial 
experiments. Technometrtcs, 1962, 4^, 21-46. 

Anderson, N. H.  Information integration theory:  a brief survey, in D. 
H. Krantz, R. C. Atkinson, R. D. Luce, and P. Suppes (Eds.). 
Contemporary Developments in Mathematical Psychology, Vol. 2, San 
Francisco:  Freeman, 1974. 

Barron, H. F. & Person, H. B. Assessment of multiplicative utility 
functions via holistic judgments.  Bayesian Research Conference 
Paper, Los Angeles, 1978. 

Carmone, F. J. , Green, P. E., & Jain, A. K.  The robustness of conjoint 
analysis:  some Monte Carlo results.  Journal of Marketing Re- 
search, 1978, XV, 300-303. 

Dawes, R. M. & Corrlgan, B.  Linear models in decision making. Psycho- 
logical Bulletin, 1974, 81, 95-106. 

Edwards, U.  Social choice In a raultiattribute utility environment. 
AIDS Decision Analysis Workshop Paper, Atlanta, 1974. 

Edwards, W.  Use of multiattrlbute utility measurement for social deci- 
sion making in D. E. Bell, R. L. Keeney, & H. Ralf fa (Eds.), Con- 
flicting objectives in decisions. New York: Wiley, 1975. 

Fischer, G. U. Multidimensional utility models for risky and riskless 
decisions. Organizational Behavior and Human Performance, 1977, 
18, 295-315. 

Fischer, G. W. Convergent validation of decomposed multiattrlbute 
utility assessment procedures for risky and riskless choice. 
Organizational Behavior and Human Performance, 1976, 17, 127-146. 

Fishbein, P.  Independence in utility theory with whole product sets. 
Operations Research, 1965, 13, 28-45. 

Gardiner, P. & Edwards, W. Public values:  multiattrlbute utility 
measurement for social decision making, in M. Kaplan and S. Schwartz 
(Eds.), Human Judgment and Decision Processes, New York: Academic 
Press, 1975. 

Green, P. E., Carmone, F. J., & Wind, Y.  Subjective evaluation models 
and conjoint measurement. Behavioral Science, 1972, 1£. 288-299. 

Green, P. E. & Rao, V. R. Conjoint measurement for quantifying judg- 
mental data. Journal of Marketing Research, 1971, 8, 355-363. 

■>^--WU-<nr^. . ■   ._.  . . .^.      . -■—JJ^..  .._ 



- 30 - 

Green, P.  E.  & Wind, Y.    New way Co measure consumers'  Judgment. 
Harvard Business Review.  1975,  53,  107-117. 

Hammond, K.  R.  & Addelaan, L,    Science:    values and human judgment. 
Science,   1976,  194.   389-396. 

Hammond, K. R.,  Steward, T.  R., Brehmer,  B.,   & Steinmann, D.    Social 
Judgment theory,   in M. Kaplan & S.  Schwartz  (Eds.).    Human Judg- 
ment and Decision Process, New York:    Academic Press.  1975. 

Keeney, R.  L.    A decision analysis with multiple objectives:     the Mexico 
City Airport.    Bell Jo'irnal of Economics and Management Science, 
1973,4,   101-117. 

Keeney. R.  L.    A utility function for examining policy affecting salmon 
in the Skeena River.     International Institute for Applied Systems 
Analysis Research Memo.    RM-76-5  (1976),   42 p. 

Keeney,  R.  L.    The art of asses^ug multiattribute utility functions. 
Organizational Behavior and Human Performance,   1977,  19,  267-310. 

Keeney,  R.  L.    Multiplicative utility functions.    Operations Research, 
1974,  22.   22-34. 

Keeney. R.  L.  &  Kaiffa. H.    Decisions with multiple objectives;    pref- 
erences and value  tradeoffs.    New York:     Wiley Press.  1971. 

Krantz. D.. Luce,  R.  D., Suppes, P.,  & Tversky, A.     Foundations of 
Measurement   (Vol.   1).    New York:    Academic Press,   1971. 

Slovic, P.    From Shakespeare to Simon:    speculations — and some evi- 
dence — about man's ability to process  information.    ORI Res. 
Mon..   1972.   12(2). 

Slovic. P.. Fischhoff.  B., & Lichtenstein.  S.     Behavioral decision 
theory.    Annual Review of Psychology,   1977. 

Slovic, P.  & Lichtenstein.  S.    Comparison of  Bayesian and regression 
approaches Co the study of information processing in Judgment. 
Organizational Behavior and Human Performance,   1971,  6^  649-744. 

Tversky, A.    On Che ellcltatlon of preferences:    descriptive and pre- 
scriptive considerations,  in D.  E.  Bell.  R.  L.  Keeney, and H. 
Raiffa (Eds.),  Conflicting objectives  in decisions.    New York: 
Wiley, 1977. 

von WinterfeldC.  D.    ExperinenCal Cests of  independence assumptions for 
risky nultlaCCribuCe preferences.    Research Reporc 76-8,  Social 
Science Research Institute. University of Southern California. 
1976. 

I  k.   ,   ^~»*JgSMM£i 



- 31 - 

Wind, Y & Spitz, L. K. Analytical approach to marketing decisions in 
health-care otianiiations. Operations Research, 1976, 24, 972-990. 

Yntema, D. B. & Torgerson, W. S. Man-computer cooperation in decisions 
requiring connon sense. IRE Trans, on Human Factors in Elections, 

1961, HFE-2, 20-26. 

E ?„_ —— 



- 32 - 

Table I 

Attribute Levels for a 4 Orthogonal Design 

Attributes 

Consequence              — 

1 
* 

2 

3 

4 

5 

6 

7 

8                   : 

9 

10 

11 

12                            3 

13                            i i              1 

14                                4 2 

15                             < 3 I 

16                                4 4 3 

Level 1 Is worst; level 4 is best. 

------ - ■ ■ i 
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Table 2 

Attribute Level Combinations, Stated Holistic Judgments 

and Predicted Judgments for Two Orthogonal Designs 

Combination 
Design 
1* 2 

1 
3 

Stated 
Value 

Predicted 
Value 

Dei 
I 

sign 
2 

2 
3 

Stated 
Value 

Predicted 
Value 

U W W .00 .00 U U W .00 .00 

U I I .60 .57 I w 1 .47 .38** 

W B B .85 .78 B w B .55 .55 

U I .47 .38** I I U .39 .40 

I B .75 .73 B I I .65 .70 

B W .50 .53 W I B .70 .66 

U B .55 .55 B B U .65 .59 

I U .60 .46** U B I .70 .69 

B B I .82 .89 I B B .85 .84 

10 W      B      U        .60 U      B      W        .60 

Attributes are designated 1, 2,  3.    Levels are denoted U, for worst; 
I,  for Intermediate; B,   for best.    Parameter K Is estimated using combina- 
tion 10. 

** 
Stated value differs from predicted value by at least .077, twice 

the estimated root mean square error. 

i 
.f -.».»■ *.___ 
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Table 3 

Stated Holistic Judgments, Original Predictions and 

Revised Predictions for Two Orthgonal Designs 

Design 1 Design 2 

Combination Stated 
Value 

Revised 
Prediction 

Original 
Prediction 

Stated 
Value 

Revised 
Prediction 

Original 
Prediction 

.00 .00 .00 .00 .00 .00 

.60 .57 .57 .47 .40 .38 

.85 .79 .78 .55 .55 .55 

.47 .40 .38 .39 .38 .40 

.75 .73 .73 .65 .68 .70 

.50 .53 .53 .70 .66 .66 

.55 .55 .55 .65 .57 .59 

.50* .43 .46 .70 .70 .69 

.82 .81 .89 .85 .85 .84 

Revised from .60 by assumption. 

»L- A ^_^U ■it«I- ...•..•.._._,,. 
**'■"*>• '  - -  . . 
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all in the context of a general multiplicative multiattribute 
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gression model (Hammond, Stewart, Brehmer and Steinmann, 197S) and- 

DO i JAM"»i 1473     lemoN or i MOV •» is OMOLCTC 
l/M fl«}-*l4>tMI i 

mtumrr CIäWUCA* mm o> rim W*u imSm »SSmmm* 

M^M»*aaa"*»> 

■ii.i 



unclassified 

-^ 
üWITV CL^tsi^iCATiQH or THIS mnatrwh»» Om» em»i»d) 

a new method called Holistic Orthogonal Parameter Estimation or 
HOPE (barron and Person, 1978T. 

If a general multiplicative model can be assumed to be an appro 
priate representation of the decision maker's basic preference 
structure, error can occur in the direct estimation of die scal- 
ing constants and univariate utility functions for decomposition 
methods (Keeney-Raiffa and SMART), or in the holistic assessments 
for holistic methods (SJT and HOPE).  Individual estimates may be 
merely noisy or may be fundamentally incorrect. Furthermore, the 
utility model may be incorrectly specified; for example, an addi- 
tive model, rather than a multiplicative model, may be used. The 
four assessment methods are considered in conjunction with errors 
of each kind, ^c- 
The most serious error-method combination is the case of a sub- 
stantial degree or error occurring in a single holistic judgment 
which is being used in a HOPE procedure. This concern leads to 
a major emphasis of this report--and expanded HOPE procedure 
used in conjunction with a convergent validation strategy to 
estimate error in individual holistic judgments and thus guide 
consistency checks« 
The discussion is organized into four sections. The HOPE pro- 
cedure is summarized in Section I. In Section II, three compo- 
nents of assessment error are considered in conjunction with the 
four elicitation procedures. In Section III, an expanded HOPE 
procedure for detecting judgment error and guiding consistency 
checks is proposed. In Section IV, application considerations 
are outlined. 
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