' 4 AD=AO073 357 RAYTHEON CO WAYLAND MA EQUIPMENT DIV F/6 9/2
PAVE PAWS MODERN PROGRAMMING DATA COLLECTION SYSTEM.(U)

JUN 79 B H SCHEFF» W B VODGES:, N R HALL F30602=7T=C=0141 |I

UNCLASSIFIED RADC=TR=79=137 NL i

- R
P—'
= 122 s
2 e
T

Il Ll S e
— W
I it nee

i
3

RADC-TR-79-137

C3+ ROME AIR DEVELOPMENT CENTER |
Air Force Systems Command
Griffiss Air Force Base, New York 1344|

29 08 51 VUY

et - - g T, PSR

Final Technical Report
June 1979
Lo
A PAVE PAWS MODERN PROGRAMMING
o~ DATA COLLECTION SYSTEM
Raytheon Company Sty
<o
=T SQn;onvﬂédeScheff ‘:}-.rp @ ?ﬂﬂ_g}[ﬂ
2 &r Hal) Lf S a e m
]}LBCb US
C
=
Q
[
=
a2

we N\ |
| = . i

This report has been reviewed by the RADC Information Office (0I) and
is releasable to the National Technical Information Service (NTIS). At NTIS
it will be releasable to the general public, including foreign nations.

RADC-TR-79-137 has been reviewed and is approved for publication.

APPROVED

Aﬂluil.‘};ﬁ{T::_‘
DEANE F. BERGSTROM
Project Engineer

e , / 7/;4»»«/“4«.—
ALAN R. BARNUM

Assistant Chief
Information Sciences Division t'

FOR THE cmny% o %_4_/

JOHN P. HUSS
Acting Chief, Plans Office

If your address has changed or if you wish to be removed from the RADC
mailing list, or if the addressee is no longer employed by your organization,
please notify RADC (ISIE) Griffiss AFB NY 13441. This will assist us in
maintaining a current mailing list.

Do not return this copy. Retain or destroy.

UNCLASSIFIED
SECURIZM-GLASSIFICATION OF THIS PAGE (When Date Entered)

) REPORT DOCUMENTATION PAGE e e

2. GOVY ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER

ED

- ? Final chnicaldrépllt .
Q‘ RAVE PAWS MODERN PROGRAMMING DATA [Jul®77 - keb 7
] [COLLECTION SYSTEM. ... e e ewromSoRT IR ORT UM SER
' ¥ — N/A
b B NVE 3 > 8. CONTRACT OR GRANT NUMBER(s)
,C Benson H./ Scheff 4
W, B./Vogdes ‘ F36692-77-C-ﬂ141"- :
N. R./Hall willl | SRR
ATION NAME AND ADDRESS 10. ::ggt‘:xosnl.xsuenT.NPUDLOBJEE';:;, TASK
Raytheon Company, Equipment Division g !
Wayland MA 01778 \ 63728F 17 } [‘ J
- Cif2528p301 - S
T TE

11. CONTROLLING OFFICE NAME AND ADDRESS

~
—
(o]
i
~
o
«

Rome Air Development Center (ISIE) ;
Griffiss AFB NY 13441 91

4 MONITORING AGENCY NAME & ADORESS(if different fr 1S. SECURITY CLASS. (of this report)

PAGES

UNCLASSIFIED

15a. DECL ASSIFICATION/ DOWNGRADING
SCHEDULE

Same

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited. . .

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

../‘ } »
Same by /‘7
v /,
v id
18. SUPPLEMENTARY NOTES T AT E/\\J,‘ /|
RADC Project Engineer: Deane F. Bergstrom (ISIE) C L~, ’.,/ 1

P A

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)
Software Engineering

Modern Programming Techniques

Computer Software

0. ABSTRACT (Continue on reverse side If necessary and identily by block number)

This report describes the software development technologies which were utilized
on the PAVE PAWS project and the techniques which were implemented to collect
data to support on+going independent technoiugy studies. At the request of the
contracting agency, the emphasis of this report is on describing the software
technology used on PAVE PAWS and providing an assessment of the effectiveness
of those techniques.

FORM
DD | jan 72 1473 UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

2 P7201 N

e 2 e e ———

%
4
5

TABLE OF CONTENTS

Section Title

BACKGROUND AND INTRODUCTION

PAVE PAWS System Description
Software Development Technology Requirements
Software Hierarchy (CPCI/CPCG Formulation)
Real Time Monitor (RTM)

Mission Control (MCTL)

Radar Manager (RAM)

Track (TRCK)

Displays and Controls (DISP)
Communications (COMM)

Satellite Catalog Management (SCM)
CONTRACT FOR DATA COLLECTION
Contract Purpose

Contract Scope

Manual Data Collection

Automatic Data Collection

PAVE PAWS PROGRAMMING ENVIRONMENT
Top-Down Programming/Segmentation
Structured Coding

Indented Listings

Hierarchical Library
Authorization Checking in PSL

PSL Directives

e o o o o o o
COUNMPFAWNFHEONNNMNMFEHOWWWWWLWWWWN~=O
o o e o o

.
NOVMESWN -~

. . . . L] .
. L)
N

.

FEPPLPPLPIPLLLLLLLLLWLVLLVLLLWWLWWWWWWERNN NN P e e

.6.1 ADD
6.2 MODIFY
6.3 COMPILE
6.4 LOAD
6.5 COPY
«6.6 XMIT
6.7 LIST
6.8 REPORT
6.9 PURGE
.6.10 PUNCH
.6.11 CHECKPOINT
.6.12 RESTORE
o7 Management Statistics Reporting
.0 PAVE PAWS DATA COLLECTION ENVIRONMENT
.1 PSL Changes in Support of Data Collection
o2 TR Data Base Reports
.3 Data Collection CPCIs ‘—-GCEZ:;"‘;;,“‘ o
4 Manual Data Collection Form BRRRAERe
o5 Products NTLS Giveud
DDC TAB
‘ Unanneunced
\ Justificetion__ SR
R o
By R AT,
_Distriputien/ .. '
Avan_qbi.li’" -
i Availn

Dist spe~1al

?(*

"

£

O WO \WOoOOOWWOWONDWU £ =

TR0 TR

S Re 12 E N T AL

— e e
. ’ ’) ac) S - !

Section

e 8 e e ¢ e & s o

O~mVWNOOULULLVLULULULULULPLEWN -O
S W e s B W
NoOwLmPEWwN —~

o

(= AN IRV I RV RV RV Y R RV T RO v T R R S e

Appendix

I1
I11
IV

TABLE OF CONTENTS (Cont'd)

Page
TECHNOLOGY ASSESSMENT 41
Top-Down Design and Development 41
Structured Coding 43
Indented Segment and Program Listings 44
Program Design: HIPO and PDL 46
Hierarchical Library 54
Usage of the PRG Level 58
Usage of the CPT Level 58
Usage of the INT Level 58
Usage of the FIX Level 59
Usage of the TST Level 59
Usage of the FRZ Level 59
Usage of the DEL Level 59
Chief Programmer Team/Librarian Operations 59
Structured Design/Structured Code Walkthroughs 60
Management Statistics Collection/Reporting 60
Qualification Test Program 61
Programming Communications 74
CONCLUSIONS AND RECOMMENDATIONS 78

LIST OF APPENDICES

Page
General Contract/Project Summary 80
Management Methodology Summary 82
Design and Processor Summary 84
Personnel Profile (Chief Programmer Team) 86

LIST OF FIGURES

Number Title Page
1 PAVE PAWS System Block Diagram 3 i
2 PAVE PAWS CPCI Breakout 6 ‘
3 CPCG Structure for CPCI 2 7
4 IF_THEN_ELSE Logic Form 13
5a DO WHILE Logic Form 13
5b DO UNTIL Logic Form 14
6 DU LOGIC FORM (Indexing) 14
/. CASENTRY Logic Form 15
8 Example of Indented Segment Listing 16
8a Explanatory Notes for Figure 8 17
i 9 PSL Library Levels 18
10 SEGMENT Summary 24
10a Explanatory Notes for Figure 10 25
11 PROGRAM Summary 26
lla Explanatory Notes for Figure 11 27
12 LIBRARY Summary 28
13 Progression/Durability Report 29
14 COMPILE REASON CODES 32
15 Data on PSL Data Collection Statistics File 34
16 PSL Data Collection CPCGs 35
17a Sample TR Form 36
17b Error Categories 37
18 Sample PSL Report - Compiler Summaries 39
19 Sample TR Report 40
20 Program Segment Structure 45
21 Visual Table of Contents - Example 47
22 HIPO Chart Example 48
23 Indented PDL Program Listing 49
24 Program Configuraiion After Entry of Initial Segment 55
25 Program Configuration After XMIT to CPT Level 55
26 Program Configuration After Entry of Segments A and B 56 |
27 Program Configuration After Subsequent XMITs 56 i
28 Program Configuration After Further Changes 57 i
29 Code Development Curves 62 1
30 Code Progression Chart - CPCI 2 63 t
31 Code Progression Chart - COMM CPCG 64
32 Code Progression Chart - DISP CPCG 65
33 Code Progression Chart - MCTL CPCG 66
34 Code Progression Chart - RAM CPCG 67
35 Code Progression Chart - RTM CPCG 68
36 Code Progression Chart - SCM CPCG 69
37 Code Progression Chart - TRCK CPCG 70
38 Code Progression Chart - CPCI 3 71
39 Code Progression Chart - RTSM CPCG 72
40 Code Progression Chart - TSG CPCG 73
41 Example of PAVE PAWS Green Sheet 75
iii

T

EVALUATION

The PAVE PAWS is a phased array warning system designed to detect
submarine launched ballistic missiles. In addition to real time mission
requirements for the detection and characterization of SLBM's, the PAVE PAWS
system implementation provides capabilities for simulating the mission
functions, generation of scenarios for simulation, and a data reduction
system. All the above system functions necessitated the development of
computer software for both real time and non-real time capabilities.

A system requirement called for the use of modern programming and
software engineering tools and methods for all system software development.
In response to this requirement, Raytheon/IBM selected and employed a
complete set of modern programming techniques for PAVE PAWS software
development and management. These tools and procedures included a Program
Support Library (PSL), pre-compilers to translate structured source code,
use of graphic design methods and Program Design Language (PDL), Chief
Programmer Team operations, structured design and code reviews, coding
conventions, and top down design and implementation. The PSL provided
extensive data collection and reporting capabilities for use by management
in making timely assessments of status. This complement of software
engineering techniques will be utilized during the yperation and maintenance
phase of the PAVE PAWS system. Thus, software maintenance personnel will
utilize the tools and methods employed during development.

The PAVE PAWS Modern Programming Data Collection System effort
described in this report was initiated as part of an effort to determine

the utility and effectiveness of software engineering technology as applied

402

R —

i

e et il et 0 R

to large system implementations. Furthermore, the PAVE PAWS programming
environment was examined to obtain data on PSL software management functions
and how the PSL reporting function affected management visibility into the
software development process. A combination of manual and automated methods
were used for the data collection. Manual data collection forms were used
to characterize the programming environment and a software module was added
to the PSL which gathered error and change data and produced summarizations
of the change activity.

The data collection effort described herein has been supplemented by
a technology assessment of the tools and methods used. The modern programming
B techniques and development tools won widespread acceptance by programmers and
managers alike. Although the technology does not, in and of itself, guarantee
success it must be credited with establishing an environment to support

project success and the early identification of real or potential problems.

o)

This report supports ongoing efforts under RADC technical program

objectives under the Software Cost Reduction thrust of TPO 5, C3 System

.__..4_‘1 .4

Availability. The conclusions and recommendations contained in the report

and the data obtained under this effort will be utilized by efforts in the

Software Engineering Tools and Methods area. The report should be of
significant value to all personnel involved in system acquisition and software

development and the application of modern programming techniques.

géggéangtlzggéiOH

Project Engineer

1.0 BACKGROUND AND INTRODUCTION

The PAVE PAWS system acquisition is a fixed-price acquisition by the Electronics
Systems Division (ESD) of the Air Force to Raytheon's Equipment System Division
requiring system design, development, and integration leading to Initial
Operating Capability (IOC) within three years of contract award. It includes

several different types of software system development, among them -

a. A real-time early warning system.
b. A real-time simulation system.
¢c. A non-real-time simulation scenario generator-

d. A non-real-time data reduction system.

This section describes the tactical system, the software development technologies
required, and the allocation of system requirements to Computer Program Configu-

ration Items (CPCls).

1.1 PAVE PAWS System Description. The PAVE PAWS is a fixed base Phased Array
Warning System utilized for the detection and attack characterization of Sub-
marine Launched Ballistic Missiles (SLBM's) which penetrate the radar coverage.
It consists of two Phased Array Warning Sensors located at Otis AFB, Mass. and
Beale AFB, Calif. The primary mission of PAVE PAWS includes SLBM detection

and tracking in order to provide the NORAD Cheyenne Mountain Complex (NCMC)
with credible warning of SLBM attacks, including estimation of Launch and
Impact (L&I) points, and times of IL&I. As a secondary mission the PAVE PAWS
supports the USAF SPACETRACK System with Earth Satellite Vehicle (ESV)
sgrveillanée, tracking, and data collection as requested by NCMC. SPACETRACK

functions include:

a. Maintenance of a catalog of known ESVs.

b. Detection, recognition, and data reporting (either cross-section or
position data) for ESVs specified by NCMC or by local system operators.

c¢. Detection, tracking, and data reporting (cross-section, position, and

orbital element set data) for unknown ESVs.

—— R 41 W TR MR T

Message communication, both to and from NCMC/SAC/NMCC/ANMCC, is performed in
accordance with the American National Standard for Advanced Data Communication

Control Procedures (ADCCP) over Government data links. The system also includes
six display consoles which are used for Systems Operations, Monitoring and
Control, Missile Warning Operations, SPACETRACK Operations, Training, and
Maintenance Control. Over thirty different display formats are independently i
selectable at the display consoles in order to provide complete flexibility in
monitoring and controlling the system. Because the PAVE PAWS is an on-line
system which is intended to be operational 7 days per week, 52 weeks per year,
the data processing system contains redundant hardware throughout. In the

event of a hardware or software fault, hardware is automatically reconfigured

to eliminate the fault and resume the primary mission within 8 seconds. The
data processor (duplex CDC CYBER 174's) communicates with one of two MODCOMP
mini-computer which interface directly with the radar hardware (signal pro-
cessor, et al). The hardware configuration is shown in Figure 1. The MODCOMP
computer controls and directs reconfiguration of the radar hardware, the
real-time system resident in the on-line CYBER controls MODCOMP reconfiguration,

and the PAVE PAWS Operating System (CYBER) directs CYBER reconfiguration.

In addition to the software to perform the primary and secondary missions of
PAVE PAWS, the system includes a simulation facility capable of operating
concurrently with the operational software and providing the full range of
mission, threat, communications, and radar stimuli to that software. Object
trajectories, radar cross sections, launch and impact points, communications
messages, radar environmental effects, and event timing can be simulated
under user specification. The system also records real-time data pertinent
to the performance of the primary and secondary missions and provides data

reduction capabilities for a wide variety of recording formats.

The structuring of these requirements into Computer Program Configuration Items
(CPCIs) and Computer Program Configuration Groups (CPCGs) is discussed in
Section 1.3.

€

ki

L ARRAY
FREQUENCY BEAM RADAR S5IGNAL
TIME STEERING EXCITER PROCESSOR
STANDARD UNIT
MODCOMP CENTRAL MODCOMP
1 MEMORY 2
CHANNEL
COUPLERS
CYBER
B
TACTICAL
DISPLAYS
NETWORK PRO- NETWORK PRO-
CESSING UNIT CESSING UNIT
\/ i/
W
COMMUNICATION LINES
Figure 1. PAVE PAWS System Block Diagram

RADAR
HARDWARE

RADAR
CONTROLLER
(RCL)

DATA
PROCESSOR
(DRR)

1.2 Software Development Technology Requirements. The software development

technology utilized on PAVE PAWS was specified in general terms in the PAVE
PAWS System Specification:

Computer Programming. '"All software shall be developed in a logi-
cal modular manner utilizing techniques of top-down structured
progranming as defined in Subsection 2.2, 2.4, 3.2 and 4.3 of
RADC TR-74-300 Vol 1, Programming Standards (produced under
Contract #F30602~74-~C-0186) with clear interface specifications
to provide management visibility. All software developed under
this contract shall where practical be coded in JOVIAL in
accordance with AFR 300-10. The use of the JOVIAL statements
DIRECT/JOVIAL shall not be permitted. Exceptions in the use of
JOVIAL shall be allowed for highly used algorithms, I/0 Inter-
face routines and the Operating System/Operating System Inter-
face routines which may be coded in low level language such as
micro code, machine, or assembly for more efficient usage of
the data processing hardware. FORTRAN shall be allowed for

use in the Radar Controller. The JOVIAL compiler to be used
by the contractor shall be in accordance with AFM 100-24, shall
operate on the system computer, and shall be subject to valida-
tion by the procuring activity using the RADC JOVIAL Compiler
Validation System (JCVS) and any specific additional test pro-
grams required."

This requirement was addressed in the PAVE PAWS Computer Program Development
Plan by a Program Support Library (PSL) which would provide the Top-Down
Structured Programming facility and by the use of additional modern program-
ming practices and software organization concepts which have evolved in

recent years. Key capabilities provided are:

a. Implementation of a PSL to provide Top-Down program segmentation.

b. Implementation of a '"pre-compiler' to translate Structured Programs
into compiler compatible statements.

c. Use of Hierarchy Input-Process-Output (HIPO) charts and Program Design
Language (PDL) as design tools.

d. Use of Chief-Programmer Team/Librarian concepts.

e. Use of Structured Design/Code Reviews.

f. Collection aﬁd reporting of software development data by the PSL fer

use by management in making timely and objective assessments of status.

g. Creation of a Test organization separate from the software development
group responsible for developing all test documentation and for conducting the
tests.

h. Organizational separation of the group responsible for developing
the Quality Assurance Program, including the establishment of project-wide
procedures, implementation of a Trouble Report system, and providing regular
assessments of status and forecasts for management consideration and action,
from the software development group within each implementing organization

(IBM, CDC, Raytheon).

The technical scope and content of the PAVE PAWS PSL is discussed in Section 3.
Section 5, the Technology Assessment, addresses key elements of the PSL together

with the other procedural and organizational practices mentioned above.

1.3 Software Hierarchy (CPCI/CPCG Formulation). The allocation of system

requirements to individual Computer Program Configuration Items (CPCIs) is
an important function because from that point forward each CPCI will be
managed with a certain degree of autonomy. The term 'managed" in this con-

text includes -

a. estimating and planning the effort involved,
b. allocating resources,

c. assessing and reporting status,

d. financial management and reporting, and

e. the resolution of technical problems.

Clearly it is important that these functions provide control and visibility
below the total system level, but the danger of subdividing too much is that
"all the pieces work but the system doesn't.” A number of guidelines were

developed for defining CPCIs on PAVE PAWS in order to establish an effective

subdivision of the total software effort:

f. CPCI responsibility should not cross corporate boundaries.

g« CPCIs should not cross computer boundaries.

h. Software systems which are executed separately should be separate
CKCIs.

The resultant CICL definftions are presented tn Figure 2.

CICL litle corp. Comp. Size (Lines)
1 PAVE PAWS Operating System | CDC CYBER N/A
2 lactical Sottware I1BM CYBER 139K
3 Simulation Software LBM CYBER 29K
K Support Software IBM CYBER 16K
5 Data Reduction L BM CYBER 27K
0 Radar Control Software RAYTHEON MODCOMP N/A
i 7 Signal Processor Software RAYTHEON Sig. Proc N/A

Figure 2. PAVE PAWS CHNC1 Breakout

Below the CPC1 level, software ts next broken down into Computer Program
Contiguration Groups (CRCGs) and Computer Program Components (CHis), CRGs
are generally structured along major functfonal lines within a CICT while CICs
represent individual programs. This structuring of the software is important
because it forms the basis for allocating system requirements to software,
fdentifying interface control definitions, subdividing design and development
responsibilities, and making personnel assigmments. In short, a well under-

stood software structure allows a software project to be effectively managed.

The CPCG structure for CRCL 2 is shown graphically in Figure 3. 1In this tigure

each CICG is scaled to show its relative size (source cavds).

l.3.1 Real Time Monitor (RTM). The Real Time Monitor (RTM) acts as the single

interface between the PAVE PAWS Opevating System (PPOS) and the tactical or
migssion software of CAC1 2, 1t performs interrupt handling, cyclic and demand
task schedulings, task dispatching in accordance with system priorvities, Input/

Output resource management, and dynamic storage management.

1.3.2 Mission Control (MCTL)., Mission Control performs the high level control

functions of CPClL 2, including {nftialization, recontiguration, and termination.
It also provides disk file, recording, and errorlog services, and checkpointing

of tactical data in support of system recontiguration,

|
RTM
(13.2K)
MCTL
(5.2K)
—-—-—-’—"“-’ - e —————————-
SCM RAM COMM
(10, 3K) (12.9K) (8.7K)
L_______-a DISP
(45.9K)
! TRCK
(16, 1K) TOTAL: PROGRAMS = 102K
GLOBAL DATA - _27K
129K
P NOTE: SIZING IS IN
f
SOURCE CARDS

Figure 3. CPCG Structure for CPC1 2
7

1.3.3 Radar Manager (RAM). The Radar Manager plans and controls all radar T_

subsystem usage. It consist of three parts -

1. The Long Term Scheduler (LTS) plans radar energy usage over a four-
second period to accommodate surveillance, track, and SPACETRACK users. It
develops the plan based upon a priority table which indicates how energy is
to be allocated to the various system functions. It attempts to maximize
radar utilization without exceeding energy template constraints.

2. The Short Term Scheduler (STS) operates on the schedule prepared by
LTS, formats the radar commands and initiates radar operation every 54 milli-
seconds.

3. The Returns Processor (RTP) handles radar returns each 54 milliseconds,

checks radar status, and passes the radar reply data on to the user.

1.3.4 Track (TRCK). The Track CPCG performs track initiation on objects
detected in surveillance, track prediction and accuracy determination, classi-
fication of objects as satellites or wmissiles, launch and impact point pre-
diction, and "known object' correlation. It requests additional radar data on

objects in track via the RAM CPCG.

1.3.5 Displays and Controls (DISP). This CPCG collects and processes various

types of system data in order to provide operator alerts, static and dynamic
display images, and printed reports for man for current or historical system
events, system performance, and status. It manages up to six display consoles

independently.

1.3.6 Communications (COMM). This CPCG processes incoming communications

messages, unblocks, error checks, and converts the message data, and passes the !
messages on to other CPCGs for processing. It also gathers data required for

outgoing messages, formats those messages in ASCII, and transmits the messages !
to external sites. COMM performs line trunking, line status review, line :

error statistics maintenance, and message retransmission as necessary.

1.3.7 Satellite Catalog Management (SCM). All SPACETRACK functions are performed
in this CPCG, including maintenance of a catalog of known satellites, SPACETRACK

data collection planning in accordance with inputs from NCMC or the local operator,

and position and cross-section data collection and transmission (via COMM) to NCMC.

2.0 CONTRACT FOR DATA COLLECTION

Realizing that the PAVE PAWS software development effort represented a unique

opportunity to collect information and experience relative to '"modern
programming technology', Raytheon/IBM submitted an unsolicited proposal to
Rome Air Development Center (RADC) proposing that such data be collected for
CPCI's 2 through 5 and provided to RADC for their use in on-going technology

evaluation studies. This contract was awarded in August 1977.

2.1 Contract Purpose. The purpose of the Data Collection contract was to

validate the special tools used, to provide guidance on programming environ-
ments for large system acquisitions, and to provide insights into new experiences
in software engineering using modern programming tools and methods. Specific

areas of interest on PAVE PAWS were:

a. Use of a comprehensive Program Support Library system (the PAVE PAWS
PSL).

b. Structured coding, including the use of language precompilers.

c. Top-down design and implementation.

d. Use of Program Design Language (PDL).

e. The use of transaction data collection and reporting to management.

f. Chief~Programmer Team Operations.

g. Use of a Programmer Librarian.

h. Effective programming standards and conventions.

2.2 Contract Scope. The intent of the Data Collection effort was to provide
data which characterized the nature and environment of the software development
activity together with information about the reasons underlying software change.
This would allow ongoing software technology studies at RADC to correlate
software change activities with project characteristics such as the size,
complexity, and schedule of the project, the type of contract, the programming
technology utilized, the management organization and methodology, the pro-
gramming language utilized, the data processor availability and capacity, the
system documentation structure and availability, etc. The collection of this

data was effected in three ways:

— b R - - . - AT T T I 7 -

D ey gy P

a. Manual collection of project and personnel characteristics.

b. Automatic collection of software change data by the PAVE PAWS PSL.

c. Automatic recording and summarization of software change activity
as part of a project-wide Trouble Report/Change Request (TR/CR) system.
Because the bulk of the software design and development had been completed by
the time of contract award, the "automatic" collection of data was augmented

by a one-time manual reconstruction of the existing TR/CR data base.

2.2.1 Manual Data Collection. The following types of data were provided

through the completion of forms by project personnel:

a. General Contract/Project Summary (see Appendix I). This form provides
general information about the size of the project (cost, people, software,
and documentation) together with a high level technical description of the
project.

b. Management Methodology Summary (see Appendix II). This identifies
management procedures utilized, the schedule for PDR's and CDR's and an
enumeration of the AF and Military Standards which apply.

c. Design and Processor Summary (see Appendix III). This identifies
the data processor configuration, the programming languages used, the standards
followed, and the software technology utilized.

d. Chief Programmer Team Profiles (see Appendix IV). These forms
characterize the educational and work experiences of each of the teams on

PAVE PAWS.

2.2.2 Automatic Data Collection. Changes were made to two existing PAVE PAWS

systems in order to automate the collection and reporting of software change
data. The first of these was an extension to the PSL to require that
programmers specify a '"reason code' for each program compilation. The
second was a change to the Trouble Report/Change Request system which
similarly required the specification of a "reason code" at the time the

TR or CR was closed. It should be noted that the PSL data will include
programming effort which does not fall under the TR/CR system and that one
TR (or CR) may result in many PSL operations before the problem is solved.
Thus the two systems collect data which overlaps but is in no way the same.

These systems and the data they collect are further described in Section 4.0,

3.0 PAVE PAWS PROGRAMMING ENVIRONMENT

The PAVE PAWS Program Support Library (PSL) is a programming system speci-
fically designed to support and enforce Top-Down and Structured Programming
technologies. This requires a program storage and maintenance capability
which is oriented toward a high degree of program segmentation and a pre-
compiler which has the effect of extending the commercial JOVIAL, COMPASS,

and IFTRAN languages to include the necessary structured forms. Additionally,
the PSL has been designed to accommodate a structured Program Design

Language (PDL). Although similar to most compiler languages, PDL is com-
pletely unconstrained in syntax, thus allowing natural English-like description
of program design. This section describes the PSL implemented and utilized
on PAVE PAWS. A subjective evaluation of its most effective features is

provided in Section 5.

3.1 Top-Down Programming/Segmentation. Top-Down programming is based upon
a technique of designing (and implementing) software by specifying the

top level functions first. The details of each of those functions and the
specification of additional subfunctions are then developed through successive
iterations until the entire problem is fully developed. Throughout this
process the amount of design (or code) which is being developed is purposely
kept fairly small in order to allow it to be dealt with effectively. This can
only be accomplished by referring to total functions or sub-functions as

"black box'" modules with known input and output requirements. This modulariza-
tion is reflected in the PSL through program segmentation. A segment of
program code can identify a needed function by using an INCLUDE statement:

INCLUDE function name

This named function can then be dealt with independently, and it may itself
utilize INCLUDE statements to identify and define even lower level functions.
In this way a program is developed as a set of single page segments which fit
together in a program structure or hierarchy. The PAVE PAWS PSL is designed to

handle such highly segmented programs. The Top-Down aspect of software

development is enforced by identifying each segment placed in the library as
either a top-segment (i.e., the top-level of an independently compiled program)
or as an INCLUDE'd segment (one which is simply a lower-level part of some
program). As top-level segments are entered into the library and INCLUDE
statements are encountered, stubs are generated to act as position holders
until real-code is provided. A program stub identifies the need for code to
perform the named function, it reserves the name for that function, and since
it is part of some already existing program, it specifies the implementation
language for that function. The Top-Down ordering of software development is
enforced by requiring that INCLUDE'd segments cannot be added into the PSL
library unless they are replacing a stub. 1In addition, since stubs represent
unimplemented software segments, the number of stubs in a CPCG or a program
can be used as a measure of status or progress. Section 3.6 describes the

PSL tools available for dealing with these program segments.

3.2 Structured Coding. Structured Coding requires the use of a standard set
of program control statements and at the same time precludes the use of
explicit branching statements. In order to provide the standard set of
control statements for JOVIAL, COMPASS, IFTRAN and PDL programmers, the PSL
includes a pre-compiler which accepts the structured source statements and
converts them into traditional control forms which are processed by the
appropriate compiler. Figures 4 through 7 show both the logical form and

the coded form of each of the PAVE PAWS standard control forms. It should
be’ noted here that the requirement to provide a separate statement to end
each of the forms provides an ideal closure mechanism for the generation of

indented listings which are discussed in the next section.

..,4«4‘.
,‘L@ I} %

e 2

“-.__ﬂ._.._._,w
RO W e

LOGIC FORM CODED FORM

IF predicate

function block 1

ELSE
i function block 2
|

ENDIF
3

Figure 4. IF_THEN_ELSE Logic Form
LOGIC FORM CODED FORM

L I DO WHILE predicate

function block

ENDDO

FALSE

Figure 5a. DO WHILE Logic Form

13

SRR 120 ST RN

o —

““r'n"
e o,

A —

TURPTRGERVANS | RN IE A, Sy ot o i

LOGIC FORM CODED FORM
:I DO UNTIL predicate
function block
ENDDO
Figure 5b. DO UNTIL Logic Form
LOGIC FORM CODED FORM

AJZT_________.

DO X = I,

ENDDO

J, K (index parameters)

function block

Figure 6 - DO Logic

14

Form (Indexing)

LOGIC FORM CODED FORM

CASENTRY parameter

fL v CASE 1

L X-1-

function block 1

CASE n

function block n

ENDCASE

Figure 7 - CASENTRY Logic Form

3.3 Indented Listings. One of the principal advantages accruing from top-down
structured programming is the ability to generate program listings which
physically identify logic structure by pairing the statements which open and
close a logic form and indenting all intervening statements. Figure 8 is
illustrative of an indented segment listing as prepared by the PSL.

Figure 8a is an explanation of the data displayed in Figure 8.

15

AN m T NO~
MO m

O

Ve TPOmN™mIT Ao~
At NN NN oy

\

DARE 2
e

.

~

-

-
-

NGO~ OO
—

¥14491 A8 €2°82°21

Y1/6074¢

181127

CIENTHD

3
s .ZQthunwc<mtou..xucdmnagx—zou‘amavun

4

944

QvQ@m4 47

ANININ33I08Ne° ¥VSOSS° 159 » LNINO3S

3utrist] juswsag pP33juapuy jo ayduexy

#2%iV0 3[(373Car

$ I = (39V¢r924))ININ «

*g 2an81g

(Adysviuce
$ 0 CN

$ 3990°9363°3%¢Ng* VS

T ¢ (39vdr5

(($1¢G8)39Vdr90ad)INT = ((86%)39Var9342

T

0%°98°61

L I ¢

(3976993620 4N3"

14

Vv 89 (39%dr

$ (SVS1a3ININeslInNnsgl4T =

(1v34)A

$r1SeIviae]
H

£ N 6% 1 4

$ (SYS)IIIAIVALINIPT3cT «
$ (SVS)I3AIILINNI,9343 33 (3C8) 13A3
$ (SYSIIAVNONDI#IINNSDDe¢D 23 (10%)

$ T = {3%
3 3¢ve
IN3W313°398Nd ¥vS0SS°I5¢ en4 IN3h
212107222 CveNOISesn T281e 3441

*82/20/LL-%01

(35

2ED)UININ =
Tl3re3rvdn
LRRIFS NI

-
= SAYNONT e

3
AR EF AT

N

jon
Sladmznin 2
Aivevyvr =
N€S*I%d 11¢
LR PGS

42904

1% =
J1ans

N
jou

Y o) e

.

wr

O A~

O s >

Y -

~

€3¢

JICN?

Vi47SN1YLS »

351

3

7

NELE®&s DA N an

B e TR IO I S
L IR I

SN~
“

RASE RV T R IS N R N T

.

-

IR

.

-

VA N A A

R R e]

Top Line - Date and Time of computer run producing this listing
- Version ID (date) of the PSL
- Name of the segment being listed
- Library level at which the segment was found

- Edition number of the segment (incremented for each change) ?

Second Line - Segment Language =~ JOV = JOVIAL
- PDL = PDL
- COMP = COMPASS
- IFTR = IFTRAN
- LEL = LEL (loader statements)
- Segment Type - INCL = INCLUDE
- MAIN = MAIN PROGRAM
¥ - SUBR = SUBROUTINE
- LOCL = LOCAL PROCEDURE
- COMP = COMPOOL
- Segment Version (established by the user)
- Date, Time, and User ID when segment was created

- Date, Time, and User ID when segment was last changed

Third Line - Request type and library level
(LIST PROGRAM or LIST SEGMENT)
(For the example shown, a segment listing was requested
for PSL.DATA.STORAGE.AND.RETRIEVAL at the PRG level;
this particqlar segment was drawn down from the TST level,

as indicated on Line One.)
Left, Right Margins - Line sequence numbers used for directing modifications

Body of Listing - Card images left justified then indented to show logical
structure. (Periods are used as a visual connector for

indentation.)

Bottom Line =~ Repeat of Top Line

Figure 8a: Explanatory Notes for Figure 8

G Rt i L e e o inde s kil e il S ¢ - S

3.4 Hierarchical Library. The PAVE PAWS PSL is designed to support an orderly

and well controlled progression of software from a development enviromn t

through integration and test into a delivered status. This is implemented as

a multi-level program support library or hierarchy. Software segments are

entered into the library using a user-specified name (up to 40 characters

long) at a user specified level, (By convention, the first four characters ;
of each software element name represent the Computer Program Component Group

(CRCG) to which it belongs; the remainder of the 40 character name may be

constructed of multiple alphanumeric syllables separated by periods.) Since I
each level of the library is separate and distinct from all other levels,
the same software element may appear in the library at several different ?

levels. Thus, to completely identify an item in the library it is necessary

to specify both the name and level. This provides a simple mechansim for
parallelism in development, error correction, and version modification. Within
the PSL seven library levels are defined in a progressive hierarchy. These

levels are shown in Figure 9, starting with the highest.

Level Usage Convention £
DEL software which is in the field

FRZ software which has been qualified s
TST software undergoing qualification test

FIX software corrections for TST level

INT ; software undergoing integration test

CPT software undergoing group test

PRG software under development/unit test |

Figure 9. PSL Library Levels

Basic to the PSL level hierarchy are the concepts of control level and the
migration of program elements from one level to another. A program element

is ready to change control level when it has satisfied a predefined qualifi-

cation criteria and is to be placed under more stringent change control.

R

e

This is effected within the PSL by use of an XMIT directive (see Section 3.6).
All segments of a program which is being XMIT'ed will be moved to the specified
level. In order to facilitate changes to segments once they have been XMIT'ed
from one library level to another, the PSL includes a feature called "automatic
drawdown'. This feature allows library operations to be addressed to a
specific library level and if the element does not exist at that level,
successively higher levels will be searched until the element is found. Once
found, it will be treated as if it were found at the originally requested
level. This is based upon the upward migration of software through library
levels and the recognition that all elements above the requested level have of

necessity already satisfied the functional benchmark associated with that level.

3.5 Authorization Checking in PSL. The hierarchical nature of the PSL library
system readily lends itself to the systematic application of change control
procedures. Since the migration of programs from level to level requires that
successively more stringent benchmarks have been satisfied, the software
stability (and the corresponding authorization required to effect change)
continually increases from the lowest level to the highest. This is addressed
in the PSL through an authorization verification scheme which recognizes

users (by an input ID) and restricts the operations and the library levels
which they may use. The scheme is based upon a combination of user identity

and organization and it disallows:

a. Operations on software which is not in the province of that organi-
zation.
b. Transactions at library levels at which the user is not authorized and,

c. Execution of special PSL verbs for which the user is not authorized.

Among other things, implementation of this authorization check may prevent a
programmer in one department from changing code belonging to another depart-
ment, inhibit the Development organization from making changes to software
which has been delivered to Test, prevent Test from accessing any software
which has not been delivered to them, and disallow any source change activity
(ADD, MODIFY) above the INT level of the library. -

19

R o

3.6 PSL Directives. This section provides a brief description of each of the

3 PSL directives. f

3.6.1 ADD. The ADD directive is used to add a new segment of code to the PSL {

library. It must specify the segment longname and the level at which the [
segment is to be added, in addition to a number of other items which define the t'
segment. Following a successful ADD an indented segment list is produced

automatically.

3.6.,2 MODIFY. The MODIFY directive is used to make updates to code segments {
which are already in the PSL library. It must specify the segment longname, ﬂ
level, and edition number. The MODIFY directive is immediately followed by
sub-directives which describe the changes to be made. Following a successful
MODIFY operation the segment edition is incremented, the updated segment is
written into the requested library level, and an indented segment list is

generated.

3.6.3 COMPILE. The COMPILE directive initiates the pre-compiler of the PSL

which performs source segment merging and forms translation before invoking
the appropriate commercial compiler (JOVIAL, COMPASS, or IFTRAN). At the
completion of this step the program statistics are updated in the library !

and a compilation listing is printed.

3.6.4 LOAD. This directive specifies that a user program consisting of NOS
and LOADER CONTROL cards be precompiled and then executed. The directive f
must specify the longname of the user program and the library level. This
‘function is identical to the COMPILE directive with the exception that the

pre-compiled program will be executed rather than compiled.

3.6.5 COPY. The COPY directive specifies that a code segment at a specific

level be copied to another segment and level. The names of the '"from" and

"to" segments may be different.

3.6.6 XMIT. This directive is used to deliver programs from one level to

another. It specifies a program name (top-segment name), a "from" level,

and a "to" level. XMIT will use the drawdown feature of the PSL to construct

20

T ——
P—

i o it

the entire source program hierarchy. It will then move all of those segments §
up to the specified '"to'" level. (Segments which were drawn down from that !
level or above are not moved unnecessarily, however.) At the same time a

full set of source listings for the program will be printed.

3.6.7 LIST. The LIST directive is used to request an indented listing. 1t Uj
must specify either a SEGMENT list (one segment only), a PROGRAM list (the
full set of segment listings for the specified program plus a hierarchy
listing which shows the program structure), or a HIERARCHY list (which
generates the program structure without any segment listings). During list
processing a number of error conditions are tested and if detected the

segment statistics will be updated appropriately. These conditions include:

a. source segment exceeds one page limit (56 lines - an F flag),
b. protocol errors due to improper coding of control forms (a P flag),

c. mixed language error if an INCLUDE'd segment is a different language
(M flag)

d. branching error if explicit branch statements are detected (B flag), i |

% |

e. COMPOOL access error if the stated ACCESS requirements do not P
match the design access (a C flag),

f. syntax errors (S flag).

The indentation of each segment listing shows the direct relationship between

control forms. Each line also contains a line number for reference when
making MODIFY's.

3.6.8 REPORT. The REPORT directive requests that summary data be extracted
from the PSL library and prepared in report format. There are three different
types of reports which may be selected - SEGMENT summary, PROGRAM summary,

and LIBRARY summary. (These reports are discussed in Section 3.7).

3.6.9 PURGE. This directive is used to delete segments from the library. It
does not use the drawdown feature.

21

3.6.10 PUNCH. This directive provides a mechanism for getting card image

representation of a segment out of the PSL. It is a convenient mechanism for

maintaining procedure or data files.

3.6.11 CHECKPOINT. This directive causes PSL to create a checkpoint file
containing every segment in the PSL.

3.6.12 RESTORE. The RESTORE directive allows the user to restore elements
to the PSL library from a checkpoint file.

22

SE

- T N Y

e W ne

e 1

R O 7 7

5

3.7 Management Statistics Reporting. The PSL maintains statistical data for T
each segment and each program in the library. Segment data is derived from
the user specified values when the segment was ADD'ed (longname, shortname, :
language, segment type, version) or computed automatically by the PSL }j

(creation date, date and time of last change, number of lines, ID of the

user making the last change, etc.). Program data, which is associated with

the top segment of each program but is distinct from its segment statistics,
is computed at the time the program is either LIST'ed or COMPILE'd. It
includes the date and time of the most recent segment change, the total
number of segments, lines of code, and stubs in the program, the date and
time at which the program was compiled, and the program object size. The
REPORT directive may be used to prepare tabular summaries of either SEGMENT
statistics or program statistics, examples of which are in Figures 10 and 11.
(Descriptions of the contents of these reports are given in Figures 10a

and lla.) These reports are subdivided by CPCG and then by library level.

Each level also contains totals as shown at the bottom of these examples.

In addition to the SEGMENT and PROGRAM REPORTS mentioned above, a LIBRARY
report may be requested. This report provides very basic summary data as
shown in Figure 12 as well as the Code Progression/Durability report shown in

Figure 13. This latter report addresses 'effective code" in the PSL library

by eliminating the double-accounting which arises from multiple versions of

the same segment appearing at different levels and simultaneously accommodating
the drawdown feature for code which exists at a higher level. The Code &
Progression part of the report, which is organized as a CPCG/level matrix,
indicates how much effective code exists (using drawdown as necessary) at
each level of the library. Thus code (segments) which exist at the INT level
of the library, "effectively'" exist at the PRG and CPT levels as well. Since
each of the library levels represents some sort of testing benchmark, this
report allows management to answer questions like “How much code has reached
functional test?", "How much code has been integrated?," '"How much code has

been written?"

23

AL1euung INFWOAS 0T 2and1g

w
W
i

2¢¢ 8L 06 Ge21 H2L 2
N31S23A NDISA3A S3IONVHI 3ZIS 371¢ SINIWO2
=, SINI - S3IINTHI H3gw NN $SCa9 L3N A=Al o ¥3 8
¥weN V10l *3N V101L Ivicl vici
9CA r7lgHa O1 # L] L] 0V %€°94°1l 90/60/7LL €€ ST #0/207L2 ACP 93S1¢S SINTFROIC AF LAY LN ST M
Ins H713Hd R £ € £ OV 22°LE*9f 60/760/7LL 82 91 ®OI2202L2 AOT 98d1SS Sa¥oS0ed *An 2 *Yunrs*37 AR S
93A HY18Hd O 1 2 0 08 ET*GG°ET HT/90/2L 22 02 80720700 ace GV 3r AJCYRBC IS S04 i LT
S0 H718Md € t L3 0 06 L0°04°CT €T/%0/722 92 02 &80r207LL ACE U B AT B BN - P
Aze HY13Hd EE L L L OV €E°S0°1T 117230/2L GOI 99 80720718 ACP SSedeh e R e R B s A B o R TS
AEm rileke 9 4 3 S OV 22°€Z2°1Y 9Z/BO/EL %L 2% 90220671 ACT 35c3%a R BT O NS AR ST A S &
Az V¥ Takg 2 L S € 08 09°60°T0 S1/L0/¢L 65 2% 40/120/LL AP AT W IRT IS PACREIC TR ©
Anm HYland 91 9 9 9 OV #2°90°21 S1/4°C/LL 09 9% €2/20/71L1L ALT d43d22nh ZESS3INPE AU AP O® NSNS dorn ﬂw
Agm HYlake 6% € 3 £ 0V €€°90°TL 11/90/LL 26 2% 90420402 ACr WGTUNICS S LTINS I azEN -
AsA n713Hd LE L L P Ov £€E°90°T1 T1/3C/LL €OT 65 ©0/20/722 ATl addzeh PGAVESNACP QAT AT P Sy D pab g =y mN
AGa 3 #713Kd 26 6 6 5 OV ST°*RE°4Y CU/80/LL 12T 99 as/2uril ACT dod3=n WYL T C N2 IGTAS AT A4S0y m
AGM P lare LTS S G OV R2°Hu°2T LTI/IGO/LL 29 &Y wD/2071L ATP dddita ESE EIPATANSET IRITE AVEGD >4 %4 5 b QH
AGu H¥IBHE & € € € OV 0%°60°10 5120422 26 %€ 30720/22 4465 ACH 148154 aa
50A K7 lerd ¢ € € € OV CU°GG°ET ST/90/722 82 LY §0/20/2L 1307 ACP 9%edxi 1%° H =
Aum COAEHd & € € € OB SR LT ST 12200/ %2 &2 . EVs507&L TIRT - ALT i 24 U
=3 hv1aHd 21 2 » 1 08 &E°60°%T 60/60/L.4 8% %€ 80720721 10V ALL 4165%w e HN |
LEL HY?16He GG & 9 5 08 4%°LT°21 T2rL0rLL 60T 06 ©0/2C/LL 13V ACP 2ld3%wm ttm B s
93A HYYEHA O 1 1 1 OV 9€°9L°61 LT1/€E0/7LL 02 LY @O#2C/7IL 130 ALP 93SHKSS 50 Sre S
Anm AR I g 3 T 08 LE°B2°El €2/6C/LL €2 €Y ©0/2072¢ 0T AUP 98¢KSS ey e HnOu
93A HYlEHd € 1 1 OV GE°9T°6l LT/EG/LL €T XX 80220722 1307 ACLF SI1IHSS) S . n =
AGM 3 HYlard ET 2 .. 1 08 0%°60°10 4T/7L0/7LL %11 46 80/72074L 1INT ACP WYL Cm -
H7lakd O [v] C [QV S0°0T°YT 80/2074L O QT ©0/207LL Y3INTI AGP “ra “m
r716kHd 0 0 Q o] OV 60°0T°1T 80720742 L A 80720/72L 13071 ACE €O%SSS e
H7lgHd C Q] o OV GO0°0T°1T ®0220/LL L A 80720722 13071 ALPL TL%S5SS r ite
W N~ " -~ -~ - - - - - -
AH) S9YI4 B3INMO NA NA 9HD NC3I NA G39NHD 3FWIL7319G 2SS IS G31934) 3441 9NV WNLI¥PKS SREY LIsn
%4 SN 9HD ¥uN S89 L3N 31v30 1IND
1577 2N 86BN L01L
784 =323 d3eW *33d) SINZWG3S AB ABVWWNS *B2/720/6L NOI1SA3A 1S¢ SPVd “3AVL 258191 cCrsforel

Top Line -

Tabular Data

Summary Data

Date and Time of computer run producing this listing.
Version ID (date) of the PSL

Type of report requested

CPCG for this page of the report

Library Level for this page of the report

Segment longname
Segment shortname (for MAIN, SUBR, LOCL, and COMP types)
Segment type - INCL = INCLUDE
- MAIN = MAIN PROGRAM
- SUBR = SUBROUTINE
- LOCL = LOCAL PROCEDURE
- COMP = COMPOOL
Date segment was created
Current number of lines in the segment
Gross size of segment (includes all lines which have been deleted)
Date and time segment was changed
Segment Version (established by the user)
Segment Edition (incremented for each change)
Total number of times segment has been changed
Number of changes made to the current version
Number of lines (gross) for the current version
User ID of the person who created the segment
Special Flags - F = Segment exceeds one page
= P = Protocol error
- § = Syntax error
- B = Branching Statements
“« M

Mixed languages

User ID of person who last changed the segment

Totals for the above figures

Figure 10a: Explanatory Notes for Figure 10

25

R Ee e,

£1euung WVY90¥d 11 2an814

€ 2816¢E L1621 626 £t , m
-
senis 37158 3715 SIN3WOIS SWYE9C vd &
JIEWNN 123780 Ivi0L d3HANN 23GWNAN sSaAY LN
viol Ivi01 aviol aviol
&8
121 Ol*6nel ol/2178L 42 6T O0v O S 2 G2°66° 1T ¢t1/2172L ACP 1WX1Sd rdyeira e~
E9LE O1°6%°6T1 AI22178L 6L W 08 0 1%¢ 8¢ 80°8E*60 G2/60/8L ACT ¢1S4d At B L) mm
66¢ £€2°6%°%1 Bl/10/76L 22 Geg 0V O 162 21 €2°69°91 wT1/10/4L dWC)D 0ISS GIYS® 554 Qm
0tE SE*GE°TO0 OT/10/7EL %2 62 0V O Lr4 L 0E°T0°ST €0/1073L dWU)D %154 GILa%n* = .
228 %0°%6° 9T HI/10/76L 92 by 08 T G526 8T $0°%S°91 wl[/10/6L ACP 135¥1Sd 3e0153r°5z4 ny U3
669€ 0T1°6»*61 61721760 tE Ge ©08 O 112 91 16°€6°21 0 /40/8L ACT G13d AINCECY22* 154 u M
2h 01°G%°El H12T1/6L B 0 ov 0 fE 1 B9 °L2°LT 1L/%0/LL ACP XxG¥1Sd A SRS GELARE & & F S de i3 o m
6L1 01°6%°61l A12217/6L LT &2 08 0 1T 9 92°L5%6l 91721721 ACP 8iia1Sd 3 eNe® 14 -
422 Y LY°LY LT4T0/6L 91 %2 0OV O Ldx f L0°8%°ET G1/10/6L ACP HJ41S¢ 4* 144 oo !
261 0T* 6561 6172178, LI Cl ov 1 09 € 21°66°02 GU/eN/iL ACP NVW0OSS i a30VNYR" L B muu -
|4 2] ZE*SYEL 02/21/8L 9¢ Ge OV O 61¢ €1 2EGHET 02/21/6¢ ACP 107154 SCHYQ*ICHLN! a, o i
29592 GH°*locLl LT/si076L 06 61T 08 O 1€6 GE GH* LY LT LI/T1N16L ACP GuWlSeé P a 0 =
0BT RG°GL°22 E1/21/8L €S 0y ov 1 LG9 €l 86°61°22 €L/21/4L dW0D nailsd Ehid d .5 mm :
L1299 GU*e%°El sl72178L L2 fte 08 O 912 06 TI*HC° LT w2/ 11/ %L AOF 151184 11T 1Ay B
9€ 6 OT*6%°¢6l 6lr21/76L C2 RT 0V 0 292 21 K%°*2%° 51 20/117/4¢L ACP 3977Se PICSEIc e !
92 dE°6H°EY NZ/2Tr8L 1T R 06 0 €T by ZECGY"ET C2/21/3L ACP INISé AR INTAREa }
oL oOt*65°6l sls2t17kL O1 L cv 0 14 1 20°22°61 91 /10742 ACP GNIJSS SIS NSRS o hd e SRR
466 GH*Lo* Ll LT/10/6L LY 6% 08 0 LbY g1 LO®65°ET GL/10/6L AQP #3S»vd EVA* MY IS FATE DR e 0y
b9E 01°6%°6l 61/21/48L & 2 oY 0 5L1 11 GU*E9* 21 927607200 ACP V15154 15 3MRAS Dl chyrpreaiza
519 2e°G%°El 02721782 02 1€ ¢v O 122] PE°GYET 02/21/ WL ACP VICISe et e Rl Bl)
2969 65°15°€2 51720/0L 9 25 oy © GL2Y 26 99 °6T°LT H1/720/6L dW0D 248%23C LE FEM s ToBoled 3 od SR A dd bl I
0021 9%°11°22 51/1G6/6L €1 2 0oV 0 289 12 ©H°T1T1%22 GL/T0/6L ADC »*vSQOSS IYAITNI3ECLYS FSVED vi*3¢s
LY AL*9E°9T ST1/217/8L 91 01 Cc8 0 PR by BT*9E°91 6L /72178L AOF AoJiSc rYS Ry
GHH2 69°L%°LT Ll/l0/6L uE 16 08 0 oLy 61 LOHY ET GL/TIC/62 ACT 114 e
LL6% BT*HE°GT 61/2T18L 62 Gl 64 0 526 L9 KT1*HE*9T bl/2178L ACE J1Sa rs°%¢
619 SU*6%°El 6142178l 9¢ t2 0840 EEE 8 00°*6E*61 11/21/8L ACP ¢wdlSec C3* 354
29% GU°L%° €l 61/721/84L €2 22 08 © 4°%4 21 L1°82°30 60/H0/4L AUP %HJ1S4 N1 2l ol A
92 GI°6%°el wl/21/78L O 2 cv o te)1 LY*BELT 027%017LL ACE J3Cu KIS0 YH*\%a
418 GL %G1 KL/21758L %E 96 €Y 0 126 Lt L0°2T1°22 10/11/4L ACP 1NVISé FINDTHICNOTLVYZ £y 3Cd
€ oL iy 2vrevinE 1 0 ov 0 T T YT L2%LY 2172t rne. dwDI GrvsS Y e B
06 A1°9E°9T 6172178l & 2 cY o 16 1 B1°9€°91 €1/21/8¢L AC® =1ViSa i
062 B1°%E°GT1 61/2178L & et QY O h6e 6 #T*9E°9T 61/21/74¢L ACP COVISe, GrY*Nts
91 GT*69°€Tl 61221/8L 61 £ ov 0 L T 02°6%°51 9L /710742 AGPF 1EV1Sd 1*C eV e
WYV VYVVIVVYVYYVYVYVYVVVYVVYVVYVYVYVYVVYVVVYVVY ecsceoaasas bttt d S ——————— - - - ——— -~
o 3215 0371ew0) 3WEL/31VA LSNI NG3 NA 8N1S 32IS 93S Q39NVHD 3IWIL/3Liv0 ONVY WNLI®KS 34¥N 1IND
reo ¥EN 7101 d8N
1S1L =33A37 °*15d =93¢) SWVYE9Ced AE ABVAWNS *82/2026L NOISHE3A 1Sd SMVd 3AVe 26°ET19Y 2CIEnTHL

Top Line

Tabular Data -

Summary Data -

Date and Time of computer run producing this listing
- Version 1D (date) of the PSL

- Type of report requested

- CPCG for this page of the report

- Library level for this page of the report

Program longname

Program shortname

Language =

JOV = JOVIAL

PDL = PDL

COMP = COMPASS

IFTR = IFTRAN

LEL = LEL (loader statements)

Date and Time of most recent segment change

Total number of segments, lines, and stubs

Program Version (max of all segment versions)

Program Edition (sum of all segment editions)

Program Instance (incremented for each compile)

Date and Time Compiled

Object module size (decimal words)

Totals for the above figures

Figure lla:

Explanatory Notes for Figure 11

27

Axeuung xYvI9IT °2] ?An814

b 5 z (]) 123
502 18Le 6 2 &9 dWl3
6601 LO6TT EE L 6649 AT

==S3INVHI==SINIT~=SHVHI0Yd==S8NL S==SINIWIIS==59VNINY 1=~

ol 692 €1 0 €t 133
L f 06LT S 0 £C cn03
LS 006 Ct] 921 AOT

==S3IINVHI==SINII~=SWYBIDRd==SBNLS~=SiNIWOIS==FOVNINY 1=~

L] ot 0 0 T enwi o
(] a51 1 0 5 aCr

==539NVHI-=SINT 1==SuVEINBd==58NLS==SINIWD3IS==39VN Y 1=~

61 611 8 { L] 131
"L 3¢ erern 8 L] GE 402
6LL AbRE 91 € 561 AGr

~=S3ONVHI==53INI1==SnV29CHd=-=S8NLS=~51NINI3IS==ISVNONY 1=~

L2 201 S) 5 137
0 1] ¢ 1 1G4
22 %61 4 0 S 6wl
9 26 0 9 S ACP

==S3ONVHI==SINT V1=~ SWV¥90ad==SBNL S==SINIWOIS==39VNONY -~

AMVEGIT AS AWMYWWNS *€272076L NUISa3A 1S5d SMVe 3AV4

il e il

led =

1Ty =

1INy -

cs*e1" 9l

REREREFELE TS O]

124371 Aa74€10

13457 A2VEEID

12A37 Axvagld

ELER RN T TR &

20/7E0/782

(Poad ol A v oy

v

-

310d3y £3T11qRang/uoyssaiBoigd °¢] 2an31J

TR AP

S
[*] oseL 8209 17 0 0 291 0 L1221 96151 96191 GeTol LTRED ¢ 01241 o b
0 069 L1 0 o 0 "] (o} 92L YL v2L 52L $Zl 2L EER
0 2ast 92t 0 "] 0 0 0 5691 (A PR¢ RV 21L1 cyy oTLx e
[} 0 0 0 0 0 st (] 2 0 J 2 e 61 ‘r=g
c 0 691 0 L1246 0 Lt 0 0 %2 592 5L56 Sins €164 *Ts
] 0 Q (134] 0 0 [0 0 o5l LA b5t e”l Hiry

-

==130== -=Za3d-= <==iSl== ==A]4== ==INl== ==]d)== ==Osde= ==130== =-184== ==1§l== ==flfe= e=Nle= ==] de= —=Omemm
see ALITIBVENG 300 eee see NOISSI290ed 300D oee

ABVEE1) A6 ABVWWNS *82/20/6L NDISA3A 1S¢ SPVe 3AVd 2% F1°9T 20/e0/¢L

The Code Durability report acknowledges the fact that segments which have
already been changed at lower library levels represent a discount to the
figures of the Progression report. The accounting mechanism employed in
the Durability report ignores segments which have already undergone further
change at a lower level, i.e., the Durability report shows management that
it is dangerous to consider a segment as having been successfully integrated
when it has passed the INT level of the library if it is simultaneously
undergoing change at the PRG level. The value of this report lies in
complementing the Progression report in allowing management to answer
questions such as '"How good is the code that has been developed?' and '"How
f much effort remains to be done?'". To consider an extreme example, if the

library only contains ten unique segments and they have all progressed to the

TST level but nine of them have new changes introduced at PRG, the code is
clearly not very 'durable' and the progression numbers are apparently (but
not necessarily) misleading. These discrepancies can only be resolved by
management understanding of the technical status of the software at the higher
level and the reasons behind the changes at the lower level. To calculate

""durable'" lines of code, the PSL counts each unique segment only once, and

that at the lowest level of the library at which it appears.

4.0 PAVE PAWS DATA COLLECTION ENVIRONMENT

The controls inherent in the Program Support Library (PSL), and in the automated
Trouble Reporting (TR) System provided for ease of automatic data collection,
with a minimal amount of manual effort. Program modifications were made to the
Program Support Library and Trouble Reporting System to provide for data

collection reports. These were provided to RADC on a periodic (monthly) basis.

4.1 PSL Changes in Support of Data Collection. The Program Support Library

programs were modified to read the compiler list output and determine compiler
detected errors. A special data file was added to the PSL for the purpose of

saving compiler detected errors. The contents of this data file were used as

inputs to a report program on a weekly basis to produce the PSL Error Reports

which were provided to RADC as part of the Data Collection Effort. Impact

on the PSL users was minimal, with one additional field required for compila-

tion (compile reason code). The compile reason codes are described in

Figure 14. A list of the PSL Report Data is shown in Figure 15.

4.2 TR Data Base Reports. Using the TR Data Base maintained for PAVE PAWS,

special TR reports were written for the purpose of data collection. The
modified TR form (described in section 4.4) was used to provide input data for
these reports, which were produced on a weekly basis. There were three reports
used for TR Data Collection: CPCI, CPCG, and originating organization. The

number of errors by error category was provide in the TR reports.

4.3 Data Collection CPCIs. A subset of the PAVE PAWS CPCIs was used for Data
Collection (CPCIs 2, 3, 4, 5). Specific CPCGs are listed in Figure 16.

4.4 Manual Data Collection Form. The Trouble Report/Change Request form was

modified to support Data Collection. This was accomplished by adding the
Error Category field to the form. Figure 17a shows the sample TR form, and

Figure 17b the Error Categories.

Il

COMPILE REASON CODES

143

1.2

L3

2.1

2.2

2.3

3.1

3ed

4.2

INITIAL PROGRAM COMPILE INITIAL

This code should be used until the program compiles without
compiler detected error.

KEYPUNCH ERROR KEY

This code should be used when keypunching errors are being
corrected.

DECK SETUP ERROR SETUP

This code should be used when the compile is to correct
a deck setup error such as using the wrong COMPOOL.

COMPUTATIONAL ERROR CcomMpP

This code should be used when correcting computational errors
such as the wrong sign or wrong trigonometric function.

LOGIC ERROR LOGIC

This code should be used when correcting logic errors such as
NQ instead of EQ.

DATA BASE ERROR DATA

This code skould be used when correcting data base errors
such as tables not correctly initialized.

1/0 ERROR 10

This code should be used to correct errors in using the
10 facilities such as changing reads to puts or adding
necessary WAIT statements.

SPECIFIED FUNCTION NOT IMPLEMENTED SFNI

This code should be used to insert functions whose implementation

has been deliberately delayed.

SPECIFIED INTERFACE NOT IMPLEMENTED SINI

This code should be used to insert interface code which has
been deliberately deferred.

UNSPECIFIED FUNCTION FUNCHG

This code should be used to implement new or changed
functions.

UNSPECIFIED INTERFACE INTCHG

This code should be used to implement new or changed
interfaces.

Figure 14. COMPILE REASON CODES

32

=

souarap

s

" 2 Wi
%

.

M ¥ ‘.”

iy
1.4

R ¢ - N

5.1 MEMORY OPTIMIZATION MEMOPT

5.2

5.3

6.1

6.2

This code should be used to compile changes made to improve
core memory utilization.

CPU TIME OPTIMIZATION CPUOPT

This code should be used to compile changes made to improve
CPU utilization.

LOGIC SIMPLIFICATION LOGOPT

This code should be used to compile changes made to the program
to make the logic easier to understand.

COMMENT COMMENT

This code should be used when the compile is to verify the
legality of comments.

EXTRA LISTING REQUIRED LIST

This code should be used when the compile is to obtain an

extra listing or an additional listing feature e.g., generated
code.

OBJECT MODULE VERIFICATION VERIFY

This code should be used when the purpose of the compile
is to guarantee that the object and source code match.
This code should also be used when a common include has
been changed in another program.

COMPILER ERROR COMPILER

This code should be used when investigating or correcting
internal computer errors.

OPERATING SYSTEM ERROR PPOS

This code should be used when correcting operating system
errors.

PSL INTERNAL ERRORS PSL
This code should be used when correcting PSL internal errors.

Figure 14. COMPILE REASON CODES (Continued)

33

DATA ON_PSL DATA COLLECTION STATISTICS FILE

t
—————— Lo Ty

LONGNAME OF PROGRAM)
FIRST TWO COMPILER ERRORS rJ
SHORTNAME OF PROGRAM : ‘
COMPILER CPU TIME
PRECOMPILER CPU TIME 3
PROGRAM SIZE IN LINES
PROGRAM OBJECT MODULE SIZE
PROGRAM EDITION

COMPILE REQUESTOR

JULIAN DATE AND TIME
COMPILE TIME ERROR COUNT
PROGRAM (TOP SEGMENT) OWNER
PROGRAM LANGUAGE -

USER PROVIDED COMPILE REASON

Figure 15. Data on PSL Data Collection Statistics File

34

et i

CPCI 4

CPCls
2 and 3

CPCI 5

MREP

COMM
DISP
DECS
MCTL

RTM
RTSM
SGDB
TGDB
TRCK
TSG

DTRD
PRNT
STRP
SORT

PSL DATA COLLECTION CPCGs

= Program Support Library
= PreCompiler

= PSL Management Reports

- Communications |
- Displays

~ Data Processing Data Base

- Mission Control

= Radar Manager

- Real Time Monitor

- Real Time Simulation

- SIMEX Global Data Base (CPCI 3)
- TIMEX Global Data Base (CPCI 2)
- Track

- Target Scenario Generation

- Data Reduction
- Print
- Strip

- Sort

’

Figure 16. PSL Data Collection CPCGs

35

= z A SRS S

s |

w104 Yl ardwes - eyT 2an8rg

ET 932 ETC N 344 ETC 891 300 | 8W9dd 431H) i £
m, _ j o T T d
4
1 3A0¥davSIC] 3r0¥dav[] 3A0uddvsIo] 3a0ddav]) 3M04ddvsIa[] 3A0¥dav (] 3M0¥ddvSIO] 3n0yddv (] ¥
NG e, A i T, ¥3H10] (43¥) 3VIIdNa[T viva IN3IOT44nsNI[] W3180ud-NON[J (/) NOSY3¥ 17303y n*l
60~ (3p1Ls Bs4anzy 333) .I..._ AE093LYD ¥0WY3 | |
Ly 3
W ey . »
SO hay | 1
R :
SO T v
P SRR L N
r R 0
10- M
3003 | 9343 2
i <
‘l LINn4) :
¥39ANN D35 300000 10d[J 1.900[0 :Q319YdWI 41 A *NOILdI¥IS30 NOILIY 3AILI3NNO0D |$| 2
ETC IR 13A37
A SR X k| g3ee3304 000 | 30 990 @D 810 U | J3NOISSY NOLLOV o
AR RENEEEED NSRS R ETT T T Tnor1q1wds3a 33108
| :
¥3H10[J oN1LSII] awna(T] aNI1-No[:SINIWHOVLLY
31v¢ WAQ¥ddY ¥IW VT TENE
x r
0 ,
1
]
N
1
9
I
*NOILGI¥IS30 3IONVHO/W3I180ud | y
0
)
A g T (S)ON J9NVHD 43¥ 0313344V 1SOW 1,200/Wrd904d |13A37 al Q1IN WILSAS _H_
INTLnoy(]J tN39un(] _..H_ ot
A [] ;| 1yoryd] 9949/NO1LINNG | 194 | 3LvO ¥OLYNIOI¥O

153nd3Y 39NVHI/LY0d3Y 31900YL WYHI0¥d SMYd 3AVd

11.
12.
13.
14.

ERROR CATEGORIES

Computational Ervor - Error in implementation of equations
Logic Error - Error in decision logic

Data Base Error - Error in data base definition

Input/Output Processing Error - Error in processing data items
Specified function not implemented - Missing code

Specified interface not implemented correctly - This could apply
to hardware, operating system, other programs, common data areas, etc.

Unspecified function required - Additional problem definition needed

Unspecified interface not satisfied - This could apply to hardware,
operating system, other programs, common data areas, etc.

Memory/throughput optimization

Design modification/enhancement

Documentation change only - type C spec change/user manual/PDL
Keypunch error

Deck setup - JCL/Pracedure error

Configuration Error - i.e. Build uses mismatched code, wrong IGS
package in Build, etc.

Figure 17b. Error Categories

37

4.5 Products. Samples of the TR reports and PSL Reports are shown in
Figure 18 and 19 respectively. The compiler summary report presents tabular
information for each compilation, including the CPU time of the pre-compiler
and the compiler, the number of compiler errors, etc. The TR report shows
the number of TR's of each error category broken down by originating
organization (development, RAYTHEON, etc.) or TR series (JOVIAL, data

dictionary, etc.).

2599
98L°S
210°¢
620°¢
2€0°S
998°y
286°%
EL6°9
ELlL
LA
g3l*s
9L0°5
LLL°IS
£E96°%
€20°L
1936
g0L°8
£95°9
2L5°S
63001
€E66°6
5993 °6
Lus5°9
gL0°g
fot°e
LLE"
§te*
65¢ec°
ik § 4
S0t
gnre
930°12
%3°02
293°5
€co*0tl
151°s
8Lh°2
2994
L2s5°e
699°%
296°5
Le6°s
9L8°*s
6€9°§
cLats
921°5
341
1

CMOO~O®WO DO

Lt

11

tt

1t

Lt

1t

Lt

ct
3714403
3411 NdI

14r8Hd
14rBHd
INFBH4
141844
IO ETED
14rand
VAC BHA
X1 4844
dIirwal
dirnil
X1 484d
14844
dirugl
XI14d4l
X14481
X14451
X1 4431
XT4a51
XI4491
X14w8]
AG"Wa]
LELPER]
AR%431
AG¥da1
AR
SdSwWdl
SASAAI
S4SWYI
S4Sa31
S4SA31
SASWa1
XIdddl
AB%s531
A8%491
A94.4al
AG%AE1
ABMLT1
ASMnYl
AGYAEl
ABYATG]
AG™AET T
ABuH4al
LELPER
XT4Wa1l
X14W31
X13431
¥3714W0D

sataeumng 13771dwo) - 3Jaoday sqg 21dwes

14r3Hd
147 8Hd
14r3Hd
14l 8Hd
904 8Hd
OCA3Hd
90ARHd
QV323Hd
C70QGHd
14rghd
90A3Hd
90A aHd
656Ha1]
q4reHd
VU BHd
CvlgHe
Q70 6He
V4raHd
1ari3kd
QvQ3Hd
T4r K4
QvGand
VAL Gitd
90A M4
TAr&Hd
14r gHd
147344
140 8Hd
Iulwidg
Tel GHd
AHC3Hd
bhiail
666A81]
147 grid
QV0R44
90AEHA
14rsHd
SIrghd
IArIHG
90A8BHd
T4rEHd
187 8Hd
GvasHd
147 3Hd
Q70HH4
93A3Hd
4INMO

— 0G0 Ol CEHSIKNNA) 700 KON
WIOWITIDVAL 11 TYn® 1536 SI I0Vd SIHL

dani3s
dni3s
dNn13s
dani3s
SHINNY
dni13s
dn13s
31901
4ni3s
ant3s
INILSIT
A3183A
4nL3is
J1901
31901
9HINNA
IHINNA
JI901
9HINNA
9HINN4
oNTLSI
INILSINT
ONTILSIT
ONTiISID
21901
31901
21901
21907
31901
31901
31901
31901
21901
dni3s
dnii3s
anit3s
1901
I11dW3D
31901
ONILISI
9HINNS
9HINN4
31901
9HINNA
9HINNS
31901
aI NOSv3d
¥0¥¥3 311dwW0d

LOOAT

LLTAT

205%00
9264500
€T1L000
91,309
5%9%100
L1%100
5%%9100
295100
245100
203400
%5%1C0
65100
$59110
€22 100
9034900
2€2200
22200
%C9%00
L38100
052200
$0%100
092200
203%00
265100
%6¢000
9610600
901000
501600
€20000
€20600
e2C000
913110
£59110
6045100
032200
265100
CE0T00
ce%210
LL5100
9%L 100
%5160
t%%100
092200
G0%100
¢E2200
26910

Su¥l 37218

dW0) 123reg

OCO0O0O0OQPNOHOOO0O0O0O0O0O0N0DO0O0O00DVDO0O0O0DO0OOO0OO0LOOOOOLOODODODOODOOVODOOCOO

*g1 2an31g
ST 26
659 G4
8ls 22
914 22
028 3
2hL 3%
028 5
€36 29
26t 29
sl 25
€28 3
c2? 26
[T4 21
£08 o
21L 15
Ly2l L7
8921 SL
L2¢3 26
623 113
1921 sl
Le3 43
1921 "L
91L 56
229 Y5
292 02z
48 | §
Y8 1
%8 1
92 7
G2 3
92 €
G9L2 %21
56L2 221
LE8 £e
1921 6L
223 96
69¢€ R¢
2901 353
216 5z
€L 99
188 2t
19823 o%
1921 08
LER 2t
L4621 L
229 %45
NOTLCH

SINIT Wod

91

15
st
66
3c
16

.

-
3

134
3t

)
PO

.

124
223
22:
L2®
$2:
g2
124
23
(27
69

by

"oee

22:91 &L9N70¢
gc: 6l ALONYOC
€6:21 8L9NVOE
GG6:46 RLINTOE
01:C1 &L9Nv0%
§G36 8LINT0E
€6:21 ALINTOHE
92:51 8.9NVIE
1¢:91 22413159
T2:%1 8L431°%
8 3 RLAZ .y
8 :01 814359
12:91 #1429
8%:91 6243511
99:91 s5Lci3S7T1
19:8 &1d)3°5¢
E1:21 »L143502
E1:20 B8L43S0C2
2 391 BLd4isSt2
9e:Ll 8243547
Ge:12 8143562
€12 #L43962
58312 sLA3%02
Ge:l2 RLLISHL
62:L1 52137352
9 L1 €2133¢C2
62:LT 8L11202
LE:91 BL122C2
LE:9T 521323062
9 L1 BLLIZNGZ
62:¢1 81135002
Te:nl 82130582
€ 12 #L130L2
21:22 8LASNTY
21:22 GLADNI
21:22 8LADN1
£1:02 PLACNZ
#1:02 ELAGNZ
§L:41 ALANNE
& 291 QLACH
€Ll QLADMD
FEI6T RLADNCI
16:L1 BLAGHST
1%:9 e243S22
1%:8 6Ld43522
I9:% 6143522
3114403 40

WIl OGNV 31VC

- > 3
SRS I & |
2™

>

S~ S
Yy

> >
S e e

s
i, K

> s

=
VoedwuwuauduwuonOouuwuuaouae
b e e B A

b i e

IS0

2 >IN D
QW WL WL G
i e e i S B B e e)

>

> >
WO O OO

>
oy 2 Y

o>

.
AP
oNY1

Sed

GOV
x X
o o

OO WM R MU ROV X OO X

R R L I s SR I S O I S)

x e S
L A I T T S U T SR U

o o

WD OO WD e b

x o
IS

LU ol o S 4

) b e
“oa

L, 4

o

Lol T U S

[l B S RS

o
«

-

X b=

v o

i

T B S]

ot ol

-

=~

SN A

“t
e

3

5
“

-~
RS SIS

<
-
.
v

i o
o
’

o
«f q <
ol o wit

"

wl -

wd

“
SRR Y

YA o
0
od o

o

N &
o 4.
B e}

CAEY ALY A YUY Y Y A O Y A

.

A R YY)
Sty

e A Y L e

L R L

U % MYV

o

-er

LY ALY L

A Yy
W

TN I

(LN

o

5

oo

RCRREEE L U N

A aadvaa o aaanaan

39

. I AP i el
AP A

U.HOQOM. ML QMQE@M *61 GHSNHh

M COr Y PSHRISHAD TO B0

v

THIS PAGE 15 BEST QUALITY PRAGEIMELE

40"R

<
—~

521

I3 6 €S 62 LY 92 V1ol

» t L€ 1 2 6 1 X f3» &%

21 0 s9 9 0 6 0 N M3y oSy

2 0 1 0 0 0 0 I r3¥ 21X

S 0 99 2 4 1 0 g r3z 91

P4 0 8L 8 0 2t S N340 G1

V]] 02 0 0 0 1 914%1) &1 |
0 Q L 0 0 0 b} 41135 €1 A
o 0 1 0 1 0 0 HON4A3N 21 |
0 0 1% 0 0 0 0 INKA920 T |
b4 0 (134 0 0 9 0 N1S3G3a ©1 |
1 0 62 0 [¢] 0 (¢] ZIWT143 80 |
1 0 6 0 0 0 [¢] INY ~:iN RO |
0 1 €T 0 0 0 0 INNIM3IN 20

» 0 LS 0 2 1 0 INIS 5¢C |
9 0 L9 0 2 S 4 IN4S %

0 0 € 0 0 1 0 YIY0 %0

0 0 61 0 1 L 21 ar1 se

Lt € 6t2 0 184 6 0 21931 20

0 0 €T - 0 0 1 c NIVINdWITO0

6 5t 0%2 9€ 1 €1 2 NMONWNA 00

1My NO3IHLAVY A3Q 90¥¢ IviAoe AY14S10 033 vivo 1210 viva

5.0 TECHNOLOGY ASSESSMENT

This section discusses the utility and effectiveness of the development tools
and techniques which were used on PAVE PAWS. For the most part, the assessment
of these tools is subjective, for although PAVE PAWS has been a very successful
project, the apportionment of that success to the programming team, the

project management, and the technology is very imprecise. Each of the major
software engineering tools which was employed is discussed separately and
includes an assessment of the acceptance of that tool by the software develop-

ment organization.

5.1 Top-Down Design and Development. The top-down discipline, which really
becomes established during the project design stage, requires that all thought
processes start by addressing system-wide issues first and then flow down-
ward from that point. This in turn requires that system designers do their
work and make their decisions before work proceeds at the subsystem level or
lower. Consequently, the total system design gains visibility and credibility
right from the start; all subsequent design work is viewed as refinement,
clarification, or addition of detail to what has gone before. By adhering

to this discipline throughout subsystem and program development, global
questions are resolved first, structure and interfaces are established, and
additional detail is added through a natural process of step-wise refinement.
(In traditional, or bottom-up thought processes, global questions are addressed
much later in time and tend to be resolved in keeping with the sum of all the
micro-decisions which have already been made. Unfortunately this rarely

turns out to be the best solution and some breakage of existing design or

code is likely.)

Because top-down development uses a "macro' perspective and functions are
initially identified by reference (an INCLUDE statement which names the
desired function), a high degree of design and program code segmentation
is required. In general, it is desirable to restrict each segment of

code to a single page. In this way programs grow through the inclusion of
new pages in an already established structure. Design updates may thus be
more readily communicated and understood while program development proceeds

in similar steps.

A major advantage of top-down program implementation is that the program can

be compiled and executed on the day that the first segment is written!

Although this segment by itself may not actually do much more than initialize
program variables, name the functions which are to be performed in that pro-
gram, and exit, the program can be debugged of errors in syntax and compiler
control statements immediately. It can be integrated with other programs in
the system to test their interaction as well. Since the subsequent develop-

ment of lower-level segments is only a refinement to an existing structure

program testing can be accomplished continually, providing a regression test
of existing code and incremental testing of new segments. Additionally,
since control sections and data paths will be established early in the top-

down approach, much less emphasis is placed on test driver programs.

The system perspective afforded by top-down techniques was very advantageous
throughout the design phase of PAVE PAWS. Not only is this the proper per-
spective for software designers, but it is probably the single most effective

E perspective from which to present design to systems engineers, management, and the
customer. Furthermore, since successive levels of design represent greater
and greater degrees of detail, design reviews or presentations may be quite
readily tailored to suit the needs of the audience by eliminating those
levels which are too detailed.

During code development on PAVE PAWS most programmers began a series of

compilations as soon as the first two or three segments were coded. In
addition to providing early identification of syntax and data usage errors,
this provided a welcome divérsion from endless hours of coding, The com-

‘ piler cross-reference listings also provide a very convenient point of

reference for data item utilization when coding additional segments. Unit

testing was begun as soon as a complete function was coded and testing

results thus began to accrue much earlier than in traditional projects.

i

42

One last and very significant advantage accruing from top-down development is
the easing of software development schedule interdependencies. Since the

top level of each program is written very early in the game, interface testing
is begun immediately and individual programs may be fully developed and tested

while using only rudimentary versions of related programs.

5.2 Structured Coding. Although structured coding has been a controversial

subject in the past, it is currently well accepted by the programming community.
The requirement to restrict program logic statements to a standardized set of
control forms and the prohibition against programmer generated branch instruc-
tions is one of the most significant advances in recent years. Suddenly
programs can be read, understood, and debugged by someone other than the

author! Additionally, because the code must be straight-forward in its logic
flow, there are not as many hiding places for program bugs as there once were!
Both of these are very important advantages of structured coding although it

is again very difficult to quantify their effect. The benefits of standardi-
zation are felt very strongly during the project design phase when non-programmers
form a significant part of the audience, and again in the maintenance period

of the project, when a small number of people are assigned to maintain a large
amount of code. The improved software quality assurance which derives from

a lower incidence or program bugs due to the use of structured coding is a

phenomenon which begins with the software design and stays with the software

throughout its lifetime. It should also be pointed out here that part of the |
value attributed to structured coding comes about from program segmentation '
-and the use of indented segment listings, which together serve to make

program logic very apparent to the reader.

As one last rejoinder to the standard argument against structured coding,

it must be noted that PAVE PAWS successfully met stringent real-time memory
and throughput criteria. Although this did require the use of assembly
language coding for a few very highly used subroutines, in no case was an
argument put forth to violate structured coding techniques in order to achieve

better performance. It is suspected that unstructured programs which are

43

tricky in an attempt to improve performance are likely to incur a performance
reduction because of the overhead involved in making the tricks work. It is
widely acknowledged that such programs will be extremely difficult to debug

and maintain by other than the original program author.

5.3 Indented Segment and Program Listings. Given a highly segmented program

and the use of structured programming, indented listings which graphically
show the logic of a program are a valuable addition. (Refer to Figure 8 in
Section 3 for an example.) The primary virtue of these listings is the almost
instant comprehension of program logic structure, particularly in “either -
or'" cases. Note that by limiting segment sizes to 56 lines (one page), the
likelihood of nested indentation pushing a card image too far to the right to

be printed is almost neglibible (in fact, this has never occurred on PAVE PAWS).

Indented program listings are constructed by the PAVE PAWS PSL as an ordered
collection of indented segment listings. Figure 20 represents a typical
segment structure of a program where each block represents a segment and the
order of printed segment listings is indicated. As an additional convenience,
an indented "hierarchy" listing is printed in the front of each indented
program listing. The hierarchy simply shows the relationship between the

segments of the program and any subroutines which are called.

The physical structure of an indented program listing makes it an effective
medium for design and code reviews. The limitation of segment size to a
single page allows complete review of a single segment before selecting

the path to be followed and essentially increasing the "magnification" being
used. Surprisingly enough, these same features make indented program
listings equally effective for debugging. Referring back to Figure 20,

it can be seen that a bug in the lowest level segment in this structure can
be reached from the top segment by going through no more than four segments.
Assuming that the program is structured along functional lines, isolating a
program logic bug to a single segment of code is usually a very straight

forward procedure.

44

9In30Nni13g Juswsag meidoid ‘(g 2an3Tg

Z1 °8egq 11 28eq 9 33eq G 28eq

———

Ny v T

1 9%8eg 01 28eq L 9%8eg 4 98eg ¢ 98eg

45

e L L i

€1 98eq 6 2%eq g 28eg Z 98eg

1 338eq

|
:
|
|

1
|
|

e

5.4 Program Design: HIPO and PDL. Hierarchy plus Input-Process-Output

(HIPO) is a documentation technique consisting of a set of diagrams which
graphically describe a function from the general level to the very detailed
level. Initially each major function is identified and then repeatedly sub-
divided into more detailed functions. A Visual Table of Contents (see
Figure 21) is used to establish the organization and structure of the HIPO
charts themselves. Each HIPO chart portrays a functional process, where
processing steps dre enumerated in a block in the center of the page while
inputs and outputs are shown on the left and right respectively. Figure 22
provides an example of a HIPO chart. Note the top-down orientation of HIPO's
and that by limiting each chart to one entry point and one exit point, a

HIPO function can be mapped into a structured program!

Although HIPO charts were used during the design phase of PAVE PAWS, a
companion tool, Program Design Language (PDL), was being utilized at the
same time. PDL is a syntax-free language which recognizes th. same
structured logic forms referred to in Section 3 (see Figure 23). Because

of its great similarity to program code, program designers need virtually no
training to use it. At the same time, because it is not constrained by rules
of syntax, normal Engiish may be used to express design concepts. By
implementing PDL as a separate language in the PAVE PAWS PSL, all aspects of
top-down design, segmentation, and indented listings are immediately
available. Thus PDL is a natural tool for programmers to use, exerts a

well defined structure or hierarchy over the design documentation, and

provides a readable, visible medium for communicating the design.

In comparing the utility of HIPO charts versus PDL, it should be noted
that they share the same virtues of top-down organization, step-wise
addition of detail, and understandability. There are several additional
advantages offered by PDL, however -

a. PDL requires no additional programmer training,
b. Support facilities (PSL) are available for PDL maintenance, and

c. PDL bears a very close resemblance to the resulting program code.

46

PR
E

N N Y

T

T —————
.

o b Bl R e ok B it e TN -l I i e it i ' i

21dwexy - sS3u33U0) Jo ITqEL JENSIA °IZ 2In31j

9 HOHV3S L?9 AVIgsIO T J0N3 1L dON3
sSagoIew 40 IR (013IIWWOD e (eUOssA0
1) yoseag indino Aeidsiq poouy poou3
, ~
5
119 1vnNdOd Zv9 1L _<onwm_ 1?9 AVIdSIO 119 Lvwe04 (4 TXHD Ti9 AdSC
useos
indu sBurjja0s U INCur Qe aueec
PIIRLIO) AndsiQ ANeuiale 1330044 1ngino Aedsig pauew.o; ARdsig 32103 1p3 Annbui Aegsig
259 W3IN33Y 159 39vd i JIN3 119 IS TTeF) 1e dON3 Z19 Ad4SC {18 LvweOd
ey 42928 Indus ey
suondo 1012 MWW paew o) jewos a0 #qei saiawesed U8 InCur
VXD Iy $uoHOO abey spou3 Aedng Wpooul Annbu: Aerisig PaLew.ic) ARDsg
99 L1VNINY3IL s9 3ISNOJS3IH v9 HOHV3S £9 83130 z9 ¥31v 19 PO
wonoesuen
. indinc o1 saydew o) L) 19e; J31awe 0
Nnevwia | #U00%I; 1832044 ¥4 yoseag Yo Ivwag Annbur sairy LI SR

L | _ %4 ~ i |

09 AHINONI
Ay e
eude

isuebe 2,nby

S0dd

a7dwexy 33eYy) OJIH ‘g7 2an31d

S140d3¥ OS \.I“nlu.w 40 SI¥0dTd XJOOQIVH FLVdA3ANID °¢
——

1S3N0AY ¥3ISN LV SIATI4 LNINIL¥Ad

£ UIIW 114 VIVa
< . _ : Ula¥ad0s OhIAIVA DL FHL ILVEENID % -
7 114 SAIVIS ¥vavd ILVvEED -9 48
114 104100
FIYSSTW SNOILVOINAWWOD ZLVAED ‘B °¢
. 78 L
v ¥3SN A4 G3IQIAO¥A ILTTTALIVS/XITAROD
<p<wuwmm HOVE NO SISATYNY LI9¥VLI Wd0d¥dd 7
et DIOANT OL
NOILONA 9SI HOIHM UNIW43IZA 9
" $3114 VIVQ 9S1 AZITVILINI °® e
AM - - 0L SIS3N0FY ¥aASN $SIOMd T |
inding s5900:4 s0dd
1 30 1 9% el o 504D ¥OLV¥ANIO OTYVNIOS L39¥VI :3@eN

SINIWA1VIS
L1NdNT ¥3sn

ntuy;

Z'%'¢ :0I wmeiBeig

1

L O N
A NN N

-~
e~

NN OO A O Mm T N
R e R RS

1

4558vd

* 3974

ARG ENCEECLT 90/60/LL

0

oNG:

Z34=A%

Bur3sT] weadolg 7ad Pa3udpul gz Ind1g

f
¥
'
HISUVE GrVYI*ILILTSFIC* 1S4 £ 3 22 !
Are - 13
 Alakel - A = 2
T ¢ BIANNLONYSIg0 » RIfnl weCh¥r3en . * 02 M
Luﬂ.’& . . hu “
8313dVavd ONISSIW = DIISINOVIC iNlae 1 zownc 15e V3I%3 g E g % {
DEON = RPE . . B & "
N, GIXIToze 37 U veteh ag > > 9% !
(3ON3NB3S INITITIVI ONINIVYRIe SS3IS0Fa) 1SIsdleruT 7% 31Yie oc . e §
STCLT2 240 SuDL 3% KTHY - COOAS b 5¥ |
07313 LX3N LI3VELAI L] AVIS°Ca?.°15a 1Ivd * = U {
(Q%vH2340 SIHL 4034) T & (NFr2eivici» s X » . . 21 ;
I ¢ 21vaillo{t%¥3el a » f) . -1
BESBEVC*INTIDZAICY ¥ha FUAHT%] . » Sl
Q3¥INC3IA SI ONYZ23@D 0 6 29 SaytlpdnNgmie,rs 41 . > ¥
GNV23d0 Sinl 205 INACZeIvZesn = 3300 5 =
(SIQEVI LIfighT NC SANYRIET ‘ *g
IININOIS ONITNIVS NI GNVe3d0 03153NnC%e J°a° : e
Y = e L
(MC¥INDI®ISd A8 C3ILVILINI NVIS) 1C0d~0) wB>4 Sasi:ine e I
(S193d3% SAONIV = 3cAl 8313W7474 KIV3 204 SINIW3INT €) Shv=»v J[41r : Bl
e3SBTe*GEIS°3AILC: 20938
944 83SHV4°QHVI*IATLIIINIT IS »C4 wVeSed 32 1517
GIONVHI AEMEHd A8 ES°EE LT 90/60/LL 031¥3E) OveNOISeZA #BNS= 3¢l ACde=97N9NY
¥3ISVVA*C2VI3AILIINIC 1S » INIWDIS °*82/20/6L-NDICa3A SP7g 3IAYA GO°L2°GT ZCIE0/sd

SRR

“NMTOCrRwe o

(P,3u0p) Bur3syg weifoag 1aq P33juapuy ‘€Z 2ang1y

400
3ININC 38 ININIWY)

900Y 3ivn1ae3;
S07313 fneny Q3123 4u38n - 1L

INYNL20KS GITvas IT1soNsYIg

vy

NOISa3a CIivan: -

3C0) #3sn GItveny -

3d41 w0 wcqnozqq-qw>wq Glivan:

3n9p G3141334¢

(3da1 2o 397090774130 3 503) SIINCHING

INTNONDY CITVANT -

¥ SI ®I3IHI WVhdly an
SINIA3x

s 3%ve S%e a«.vca.o;qu.myuhu %

A8 E%*eg st 90/60/7¢LL GioNTH) AB%8Hd A A AR 90/¢074e C31v3ie) CvenZise

0 eng3 TR T

uwmmdacm>~»uua~n.uno * IN3A93S .xwxwr\ortxwaavua

PR BRI T o ERe - B — g

(p,3uo)) Bur3isT] weaBoad Tqd PIIUdpUT *¢Z 2an3T4

62 CxC*A3»°=5=va* 754 OIS 2 £ 2
42 412K2 o
L2 USCN = 0T JeNen) 2n »]
92 Q30MA3IN OTIVANI = JTLSONYVIC INTAd 3L 3F9VECIW*TAS4 11v) " > o2
§2 3512 > 2
92 471003 2 * 9¢
€2 1TGu*" . SR
22 9Tk = 3CaZ*%erias 5 of i > 2
194 Q31VNIW¥3L AT¥3d0¥aWwl 071314 = DIJSONSVIQ INI&d 01 397¥SC3W*IS4 17y = # P o 452
02 0832 S1 INNDD 431J3VH¥HD 1v10L ¥0 Ue3Z ION ST INFUDon¥ve 4] 2 g > 02 =
61 INNDOD ¥312V29HD VIOL = (X3ONI#LrdIN0)HLCN3Nrle s oy * * AR T)
Qﬂ »l\nﬁ.-.ﬂ . L . fN
43 071314 INA4N] JSX3N LOVelX3 08 NV2S*0¥vI*1Sd 112 . . . VR
91 AYAUE 8 R e oY
51 G90N = “CHJoN#rg3e 2 . 2 e s g
5T ONI¥LS IX3) OWOMA3IXN GITVANI = JILSONSVIO INIad Ol 39V5°3a°1%e¢ 13¥32 > . » . S
€1 ol B ® » i a2 7 1
2t INN0Y #312vavms WVLIC) p1vien ® = . v g4 ¢
Tt 131 20%GRAIN DINT ANWAOFS CTHY ALK ® i E i . §
ot (SINIW93S T1IV) IVIOL AxX31#CH0%ATw NI SHILIVEVAD 09 “vml 3ala (% 41 . . " > By
6 SISIHINZEVA L1HOL? 204 IN(IZeNZavd wlrd4 N0 JIVein0s 2 . ¥ =
] SIHINGYVE 1437 605 INALI#r 394 (1 381 70V . 4 . g
¢ INIHSIS IXILrQEOMAIS NI Se=i3¥aviid nwde ~ o o o s
9 090N = 30CI#N¥NL3¥ 20 3INVIVE S3ISIHINIEVE &0 VIvA 3arw 7N 1iL%r 0 » 7 <
S INSW93S LX3120#0%A3% LOValX3 0) AY2S°(evi®1S¢ 30rION] » i i 4
L] (s) SIvAC3 SV¥ A11aT3re)SgY 41 4 .
€ G313 o (230N17L0 LN ICRIPS3S i o %
4 0T CNV 1 N33™1z@ 51 Ta¥ATe4M 7y36alN 3l bR
4 CRC%ASY*3SPVA®ISe (23003 C T
01 = 39vd 9%d 83SHVE QAVI*SAILI3AIN ¢ T4 AVeSira 4% 1SIT

A8 E9°€E°LT 90/60/8L QIONVHD ABMEBHd AB E%°EE°LT 90/60/LL (Q31V3ED OVENGiSaZA ONleséal as3S¥nenY

0 =NQ3 ¥4 CEOMAIN®ISYVA*ISd » INIWS3IS *g2/720/62=N01Cr3P SPVe 3IAVe GC*22°ST 20/€EN7¢&L

_, (P,3u0)) Burast weaSoag 7ad PaIuldpul ¢z 2an81j

o
wn
A NYIETCRYITISS 1
L1] és
9t ONISS3J0%¢ 31VNIWa3l 0J NOLLICH0D SCHVEZIel# 3 ¥ enN [3§ ST
51 <7
L2 (110N 38 AVW) GI304 VLIVG LX3N 1Ivelx3 Cf CV3Ie*lI2S7°hKvI5°T%4 11v) A g
€1 4163 of il %2
21 431TN3 » ® ik & !
1t YILIVIVHI YNVIB-NCON L1S¥I1d Ol INIGE (1 Se3iSavevd LVIS L1353 S d " 4 4
ot YILIVEVHI WNVIG=NON 1S»1d 71V301 01 SANIPLIS TI2CV avIC*1%¢ v 2 < ® » 74
3 Cdv) NOTIVANTINDGD INlZce 0L 2S9SS3n®l5a 17VD i %) g, -
8 3¢713 ® a . %
L OO0k = SCUZeNaf]3w ~ : a A
9 Q¥YI) NOILVNANILINID GIIVANT = 239YESIW®15a 1IV2 3 . 4 =9
$ T NKAIGD NI ¢ SNIVAINDD) Axy) K] 41 . - il
L] G3VI LIX3N NO d3NNILNOD SI 3IAILI3%IC - Qe73°Ln 1 7 & & i
€ CHYI=40=0N3 30 »* " | ¥ 31 . o =
2 (VAAC3D = 23LIW4T130 1S%T5 HEEITNY 33 %
T *A8s 1REa935 3
11 = 39v¢ 94d 9354Yd QUVI IATLIOINIC 14 *0d AVECQ¥e A8 1S11
AD ES°EE°LY 90/60/LL Q39NVHI ABMEHd A8 E%°EE°LT 90/60/2L Q31V3IE) OvVesNGISe2A I07=3¢at Tld=39vnany
LER D) 0 eNO3 233=3M) NVIS°Q¥VI°1Sd s IN3IWO3S °*82/720/¢EL=NOISa3h SPVE 3IAVA GOL2°CT 27/807%2

Although this suggests that PDL be used exclusively instead of HIPO, a more
temperate conclusion is appropriate - don't use PDL and HIPO to meet the
same objectives. Experience on PAVE PAWS indicates that HIPO charts can be
used effectively at the system and subsystem level but become cumbersome

and redundant with PDL when taken more than the first few levels deep.

It is also appropriate to comment on the maintenance of design documentation.
Experience on PAVE PAWS indicates that HIPO's and PDL (or their equivalent)
are not only useful but necessary for the software design, development,
management, and procurement communities during the design phase of the pro-
ject. It provides the technical foundation for the entire development period
while simultaneously serving as the means by which technical direction and
scope are communicated and understood throughout the project. As the imple-
mentation cycle begins, however, questions and changes arise which require
deviation from the documented design. This is a natural phenomenon which
should not cause undue concern as long as the basic design intent is still
intact. Under these circumstances there is no immediate need to update the
design documentation - the procuring agency and the project management
understand the design on a conceptual level while the programmers reflect
design variations directly in the code. When and why, then, is the software
design documentation ever updated? The only apparent reason to update and

reissue software design documentation are -

a. To correct the documents of record.

b. To establish an effective mechanism to communicate design to a pro-
ject newcomer.

c. To provide a bridge between system concepts and implementation for

a maintenance group.

Assuming that one or more of these conditions holds, it is the author's
opinion that the cost of updating design documentation is minimized by per-
forming that function as seldom as is necessary to satisfy the users.

This includes a "hands-off' approach while the software is developed or
changed, followed by a periodic review, update, and republication to bring
the design and the product back together again.

53

5.5 Hierarchical Library. The hierarchical library implemented in the

PAVE PAWS PSL (see Section 3.4) was extremely useful throughout the development
and test phases of the project. The separation afforded by the various levels
provided stability at the upper levels with complete freedom of change at
lower levels. Figures 24 thru 28 give an example of the progress of a single
program through the lowest three levels of the library. In Figure 24, the
program top segment has been coded and entered into the library at the PRG
level. In the example shown, this segment references (via INCLUDE) four other
segments, for which stubs (placeholders) are created. Following successful
compilation of this program it was XMIT'ed to the CPT level where it was to
undergo group testing under the control of the Chief Programmer. This is
reflected in Figure 25. Figure 26 portrays the ongoing code development being
done by the programmer at the PRG level. Note that this in no way affects

the group testing being done at a higher level. Figure 27 indicates that the
Chief Programmer was able to perform satisfactory group testing despite the
fact that the majority of the function of this program was not yet implemented.
With the concurrence of the integration team the program has been moved from
CPT to INT and subsequently the program at PRG was moved to CPT. Figure 28
now shows the entry of two new segments at the PRG level, but more ominously,
also shows changes to existing segments. Happily enough, these changes are
still segregated from users of higher levels - they retain full control over

the program configuration for the library level at which they are working. At

this point it is helpful to point out the effective configuration at each level
of the library - !

at INT - To/stub/stub/stub/stub {é
at CPT - TO/AO/Bo/stub/stub

at PRG - T /A /B_/C_/D_ F

54

Ty

LEVEL TOP SEGMENT SEGMENT A l SEGMENT B SEGMENT C SEGMENT D
INT

CPT

PRG To STUB STUB STUB STUB

Figure 24. Program Configuration After Entry of Initial Segment

LEVEL TOP SHEGMENT SEGMENT A SEGMENT B SEGMENT C SEGMENT D
INT

CPT T, STUB STUB STUB STUB
PRG

Figure 25. Program Configuration After XMIT to CPT Level
55

LEVEL TOP SEGMENT SEGMENT A SEGMENT B SEGMENT C SEGMENT D
Tc') STUB STUB STUB STUB
A B
o o
5
Figure 26. Program Configuration After Entry of Segments A and B
LEVEL TOP SEGMENT SEGMENT A SEGMENT B SEGMENT C SEGMENT D
To STUB STUB STUB STUB
A B
o o
Figure 27. Program Configuration After Subsequent XMITs

& '.;‘Aﬂ‘;‘

56

T

LEVEL ' TOP SEGMENT | SEGMENT A SEGMENT B SEGMENT C SEGMENT D
LA STUB srun STUB STUB
: -;___,

TR

|
|
B |
!
E)

Figure 28. Program Configuration After Further Changes

V._,,__<
A

3 X g

BTN LN N S A

The concept of library levels and their usage ties in very closely with

change control authorizations. Note in the example above, thnat neither

the programmer (sender) nor the Chief Programmer (receiver) can unilaterally
decide to do an XMIT - this must be a joint decision where the sender offers
a product (together with assurances and disclaimers) and the receiver agrees
to forego the stability (or instability) of his current product and accept a
new one. This need to establish change authorization by level is effectively
carried out as described in Section 3.5. The following sections describe how

each of the seven library levels is utilized on PAVE PAWS.

5.5.1 Usage of the PRG Level. This level of the library is essentially used

for program development. No special authorization is required either to enter
new segments of code or to make changes to existing segments. Code in this
level is subject to both frequent and extensive change, consequently this is

the least stable level of the library.

5.5.2 Usage of the CPT Level. The CPT level is under control of the Chief

Programmer and is generally used to provide more stability than is offered

at the PRG level. It may be used as the first point of program integration

or it may be used to make high confidence or localized changes separately from
the code at PRG. The authorization scheme in the PSL allows each Chief Programmer
to perform XMIT's to the CPT level. No additional procedural constraints are
placed upon this transaction due to the close working relationships within a

Chief Programmer Team.

5.5.3 Usage of the INT Level. A separate integration team was utilized

on PAVE PAWS to perform basic integration testing at the system level.
Their responsibility was to establish stable and rational system operation
in order to allow the functional test team to begin their testing.
Although the integrators were authorized to XMIT code to the INT level,

a formal procedure was followed to ensure documentation of software
deliveries, including a list of all problems which had been corrected.
This procedure required that the Chief Programmer list all the programs

to be XMIT'ed together with a list of all problems corrected on a

Software Change Release Notice (SCRN). The SCRN was then signed by the

manager (leader) of the integration team before the delivery was performed.

58

—sT

5.5.4 Usage of the FIX Level. This level, which is controlled by the Functional

Test Group, is a low-traffic level containing specific corrections for software
at the next higher level (TST). Changes can be made directly at this level if
necessary to fix specific urgent problems. XMIT's of individual programs may
also be performed following the SCRN procedure with the concurrence of the
Functional Test manager. This level is separate from the TGT level to avoid

those situations where '"the cure is worse than the disease'.

5.5.5 Usage of the TST Level. This is the primary level of interest for the

Functional Test group. It is highly stable and is the level from which the
Qualification Tests are normally run. The emphasis at this level is to push

the entire system to its next functional performance benchmark.

5.5.6 Usage of the FRZ Level. The FRZ level, which on PAVE PAWS is under

control of the prime contractor, is used for deliveries from TST following
successful completion of Qualification Testing. Software at this level is

under ECO/ECP control.

5.5.7 Usage of the DEL Level. This level contains the software configuration

which is operational. It is controlled by the acquiring agency.

5.6 Chief Programmer Team/Librarian Operations. As implemented on PAVE PAWS,

Chief Programmer Teams require a very heavy technical involvement on the part
of the Chief Programmer in software design, implementation of key programs,

and review of the design and code of other members of the team. In general
this included one or two key Backup Programmers who developed their own areas
of specialization. Although the management responsibilities of the Chief
Programmers detracted somewhat from their technical efforts, it seems important
that the person making schedule and resource decisions (the manager) be as
technically involved as possible. This makeup of a Chief Programmer Team was

successful on PAVE PAWS and would be recommended for use on other projects.

Although Programmer Librarians were used on PAVE PAWS, they were not used
in the classical role. Current literature calls for the Librarian to
perform all the keypunching, job submittal, and filing of listings for
a single Chief Programmer Team. The Librarian's role is to act as the

central clearing house for all these operations. On PAVE PAWS although

59

the Librarian performed all of these services they did not act as the
single focal point. This came about in part because the number of librarians
could not keep up with heavy keypunch demands and as second and third shift

operations increased, programmers were left more and more to their own devices.

Contrary to popular opinion, it is not a total waste for a programmer to perform

his own keypunching (within reason). It gives him the chance to simultaneously

review his coding and correct coding or logic errors on the spot.

5.7 Structured Design/Structured Code Walkthroughs. Structured Walkthroughs

were used extensively on PAVE PAWS with great success. Segmented, structured
code with indented listings are an excellent vehicle for communicating design
or implementation. An important distinction should be made, however, between
the purpose of a design review and the purpose of a code review. A design
review should be oriented toward presenting program design to a team of people
(including systems engineers, customer personnel, and testers) and soliciting
their comments on its validity, completeness, etc. A code review on the other
hand should involve at most two people other than the author and should be
done with a great deal of attention to detail, even going so far as to detect
snytax and data usage errors. Done in this fashion, code reviews are not only
informative but highly productive. In both types of reviews, indented
listings are provided for each member of the audience and the author acts

as a moderator in explaining the design or code. The author should maintain

a record of all unanswered questions and discrepancies which then becomes

an action item list at the conclusion of the review.

5.8 Management Statistics Collection/Reporting. The reporting capabilities
of the PAVE PAWS PSL as described in Section 3.7 were of limited use to

the programmers and Chief Programmers. Reports were used as a confirmation
following a major delivery but were only rarely referred to in other

instauces. Middle and upper management made religious use of the

Progression and Durability reports however. This is a natural phenomenon

. 8.

* ™

-

MERIN

w

IR R

R

when you recognize that programmers view progress in terms of solving technical
problems while management is less concerned with '"the problem of the day" and

is more interested in demonstrated rates of progress. Coding and testing rates

can be realistically measured by plotting the outputs of these reports.

Figure 29 shows prototype software development curves for the theoretical case
and for phased deliveries. Figures 30 through 37 present actual data for CPCI 2
as experienced on PAVE PAWS. Figures 38 through 40 similarly provide data for [+
CPCI-3. The major Qualification Test dates have been added to these figures and

clarifying foot notes have been added wherever possible.

5.9 Qualification Test Program. The Qualification Test program for PAVE PAWS [
followed Military Standards for Preliminary Qualification Tests (PQT's) and yﬂ
A

Formal Qualification Tests (FQT's) and was carried out by a separate Functional
Test organization. Each CPCI had one or more PQTs and an FQT. Performance
requirements were mapped from the Part I Development Specification into Test [
Procedures for each test and then test scripts were developed to guide the «
conductance of each test. One early mistake on PAVE PAWS was to structure the =
PQTs along CPCG lines. This was not practical for several reasons: CPCGs don't
normally execute all by themselves, and software development plans call for
parallel development, which would result in PQTs being bunched at the end of

the program. This approach was corrected by using the software development

plan to determine what functions would be completed at various times and

then defining a Test Procedure to address those functions. This allowed

fairly even spacing of fully integrated functional tests.

The advantage offered by having a separate test organization is considerable.
A comprehensive test program requires a considerable amount of planning,
organization, and documentation as well as the tasks involved in actually
running the tests and performing post-test analysis. These efforts can

thus be accomplished without detracting from the programmer's day to day
activities while at the same time a separate organization provides an
independent outlook with respect to test plans and results. It is clear
from PAVE PAWS experience that this is a key ingredient to a successful

program.

61

sanan) juawdoyaaaq 3po)y °*6¢ 2an31g
|
i
i
{
1e2T1323109Yy]L t
2poo 31qeanp-uoN ¢ i
03 anp uo1soag A |
> !
$a119A1T2Q _

e i

s

paseug

62

.\‘.

Z 124D - 33ey) uoissaiBoag apo) °(f 2and1g Z 10d ~
.
!
t
i

% 1bd

S 1dbd

9 1bd

L 1dd
1dd Ll LLbI

63

e e s i i AL G e~ 56 Y R . i s e A T, o Pl i ous — P ——
3 -Ai
!
i
|
90d0 WWOD - 3IeY) uorssaiBoig apo) *1¢ 2an81g
% 1dd
S 1dd
9 1dd
L 1dd
4
sLoul LLpl
P A o e o> <4/ #fot ifor % sh /3 A
19A27 1S1 3® 3pod
M
12A3T 944 3B 3pod>
WWO u
I TR

b4

A

90dD dSIQ - 33aey) uoissaaBolg 3apo) g 2andij

% 1bd
T 5 e
7 e segand apod aarsualxy _
TS M
LSL/INI 3® sagand ape ATSUAIYT

d | *

L 1dd _
ey LL 5/
Lth i % ¥ " H Yy ») P » :

S B /

13437 9¥d 3Ie 3pod

65

v S—

w
|
|

-

90d0 TLOW - 11eYy) uotrssaiBoiry 3pony °gg 2and1g

£ % 10d
S 1dd

9 1dd
L 10d
104

K77 U 3 ge ey Yer o L/ 1)] VA b

P33331102 sem elep uorssaiZoad 21033q palajdwod Sem apod STY3I JO YINKY :HION

19A2] ISI 3® 2pod w
/.\II

19437 944 3® 2pod

TITIW

e S -

90dD WYY - 31eYp uoissaiaBoig apon

*Hg 3an81g

R A SRR

90d) WI¥ - 31ey) uorssaiBoiag apo) °G¢ 2and1g

B h 4 k£ bk T i p

*ejep uoissaiBoiad Jo UOIIVBT[OD 3y3 03 Iojad pa3ajdwoo A]]BIIUSSSD SeM PpOd SIYL :IION

12A97 IS1L 3® 3pod

19A31 984 3® 3pod

90d0 KOS - 31eYD uolssailorg 3pop *9¢ 2and1g

% 1bd

S Idd

9 1bd

j L 1bd

1d4 _
17 5 Y 7 e o ~fer oy Lfor % \h\ 4 n\ ok o

69

TEAE. AL 3% BpOS /

T3aAd] D44 3e 2pod

o Gah S LRI ue 2 ™ -~ . s d e

90dD ADYL - 3IIeYD uolssaiaBoag 2pony */¢ 2anBig

| % Idbd

8uT3Tnsax apoo ssa1 ‘ueiload auo JO 93Tamay
S Idd
Idd 30 uoT3aTdwod [1Iun 9¥g 3Iv PIdY 2po)
9 4
L 1dd
104
% U i i " w ot " % g e o % o

70

13A31 1IS1 38 2p0d —

19437 994 3e 3pod

5t s R . SEGIG S e L L o o~

‘4, y G i o
3 E 7 1
S TR B e = UUN U

€ I0dD - 3aey) uorssail8oig apo) °*gE 2an8rg

10d |

104 “

eLbl LL bl
7 ok & oh o Ho Lpr % EL)"

+

12491 1S1 3® 0ﬂou/

PPy ——p—y LA aumn g

12A31 94 3®

apod

71

90dD WSI¥ - 31BY) UOTSsaiBoag apo) “*g¢ 2andrg

(dn-uea7o) sa8and apod aATsualIXy

104

12491 9¥d 3e 2pod

L fe b e R R e bl e e
e o) "

i S, SRIRR AR R e

90dD 9S1 - 3aeY) uorssaiBoig apon ‘0% 2an81g

$Lbl T

SR 0 ORI S R ERE D oy SR e R S S e

73

19491 1S1L 3® 3apod //

19431 D¥d 3e 3pod

5.10 Programming Communications. Communications to programmers has been a

longstanding problem in software development projects. All toc frequently
programmers fall into known pitfalls, re-invent a solution to a problem, or
fail to follow a standard because it was not communicated to them. On large
software projects the failure to develop and adhere to software standards

for names, calling sequences, data formats, file handling, etc., results in
significant problems during system integration. These problems are invariably
costly to correct, in terms of both effort and schedule. In an attempt to
overcome this problem, a series of newsletters/memos was initiated called

PAVE PAWS Green Sheets. They were all sequentially numbered, could be authored
by anyone, and were printed on green paper. This made them distinctive enough
to attract a programmer's immediate attention so that communications spread
quickly and effectively. This technique not only informed the programmer

but resulted in a compendium of useful information wh.ch could serve as a
reference for the life of the project. Figure 41 provides an example of a
PAVE PAWS Green Sheet.

s S S SSSSSSSSSSSSS

*4i% PAVE PAWS' GREEN SHEET *¥%

NUMBER ©

DATE : 30 June 1976

AUTHOR : W. B. Vogdes

SUBJECT: Software Standard for PAVE PAWS Library Usage

This Green Sheet defines the software library hierarchy for PAVE PAWS
and establishes the standard to be followed in its usage. Examples
are provided for clarity.

The PAVE PAWS program library hierarchy is designed to support an
orderly and well controlled progression of software from a develop-
ment environment through integration and test and into a dellvered
status. Basic to this hierarchy are the concepts of control level
and the migration of program elements from one level to another.

A program element {s ready to change control level when it has
completed a predetined qualification criteria and i{s to be placed
under more stringent change control. It is common practice for such
a control structure to be established and the PAVE PAWS PSL maps
that approach into the library hierarchy.

Seven levels of software control are utilized for PAVE PAWS (although
additional levels can be readily created). See Figure 1 for a defini-
tion of those levels and the change authority associated with each one.

With this hierarchy, the programmer is able to retain access to
multiple versions of a software element without losing any stability.
Because the same program element may exist at more than one control
level, it is necessary to specify both LONG.NAME and control level
when referencing any library element (e.g., COMPILE LONG.NAME, LVL).

When programs are ready to enter the next change level they are

XMIT'ed to that level. This is effected within the library by

simply changing the control level associated with the software.

The change authorization of the software is automatically changed

at the same time. The process of software migration through develop-

went, Integration, and test can thus be conceived as a "bubble-up"
currence .

ln order to facilitate changes to software which has already been
M1 "ed from one level to another, the PAVE PAWS PSL provides a
sture called "automatic drawdown'. This feature allows references
resolved fn the library efther at or above the specified level.
requests are always pertormed at the specified level. An
illustrative.

SANRARARNANRRRNGRNRRRNNRRNNNNN

A
7
/
=
7
Z
Z
Z
%
Z
Z
Z

~

Crs i s

Flgure 1. Example of PAVE PAWS Green Sheet

N\

PAVE PAWS' GREEN SHEET (Page 2)

NUMBER 6

Consider program LONG.NAME which consists of a top segment (T) and
two INCLUDE'd segments (LONG.NAME1(S1) and LONG.NAME2(S2)). This
program was developed at the PRG level and then XMIT'ed to CPT.
The PRG and CPT levels appear as follows:

(Contents)
GPT T SI §S2

PRG empty

Assume now that an error is detected in S1 which requires that it
be corrected and undergo test at the PRG level. The segment may
be updated and the program compiled using directives as follows
(formats are for illustration only).

MODIFY LONG.NAMEL,PRG
COMPILE LONG.NAME,PRG

During the MODIFY step, the PRG level will be searched to find S1.
When it is not found, successively higher levels will be searched
until it is found. In this case it is found at CPT and that will
form the input source for the MODIFY. The updated source will be
placed at the PRG level. Similarly, during the COMPILE step, both
T and S2 will be ''drawn-down" for input purposes. The object

module output by the compiler will be stored at the PRG level.

The combination of control level hierarchy and automatic drawdown
combine to make the PAVE PAWS PSL an easy to use yet hightly con-
trollable system.

Figure 41. Example of PAVE PAWS Green Sheet (Continued)

76

T ” ..
~~
o
o
3
|
XHOYVIATH XYVEEIT SMVd FAVd T 21n813 -]
3
e
E=]
o
)
£
w
]
H
1oumex801g jJuaudoT3aap 13pun ai1em3JoOS Qmu S
12ume18ox L RN 2
d 3°TYD Toa3uo) s,1oumei8oig 3JaJYy) I12pun 3iem3jos 1d 2
. jusmdoTaaaqg ~
*a8W uoyaea8ajuy uojjeadsjuy BujoBiapun aiemzjos INI| P
g
*3daq 31891 IS1L Ul @21em130s 031 SUOTIIX1Q) 5} s°13Ieaqy] -~ g
*3daq 3s91 104/1dd 8uro8i1spun aiem3jog Hm.J 3891 5 i
o
uoayifey uoaylkey 03 KEI Aq p2IdAT[IP ‘pa3say A12397dwo) Nxh S3taeaqy] e
av dV 03 uodyjley £q paiaAT[ap ‘paisay L1233rdwo) 13d K1aayt12q m
(4]
TO4LNOD FINVHO SOILSIYALOVIVHD FWVMIAOS T2A37
TOYLNOD|

b i

Figure 41 .

6.0 CONCLUSIONS AND RECOMMENDATIONS

The software engineering and modern programming technology employed on the L

PAVE PAWS consists of an integrated set of tools and techniques. Utilization ;f

of this technology does not, in and of itself, guarantee the success of any
program development, but does establish an environment to support project
success. Top dawn design and implementation is effective in assuring that
all system functions have been accounted for in the software design and assists
in the tracing of system requirements from the highest level of mission

% functions to the lowest component of code produced. Benefits from commonality

and standardization of coding techniques, naming conventions, and uniform

presentation by indented listings contribute to programmer understanding
within and among the groups established to code major system functions. This
commonality enhances design and code reviews by providing a common frame of
reference for discussion and continuity. Thus, program concepts and structure
can be communicated between programmers and offers the greatest improvements
to efficiency and effectiveness. The disciplined programming environment
embodied in the modern programming technology used on the PAVE PAWS has
measurably improved the transition of software development from the mysterious

and arty to the clear and cohesive world of software engineering.

The PAVE PAWS hierarchical program support library represents an important

technological improvement. The PSL itself is used by the programmer to enter,

store, manipulate and transition software from design through development, i
test and integration, and delivery. At the same time, the PSL provides reports b
to management with the necessary visibility into the process. Thus, commonality
exists between management and software production and further improves the
probability of successful program completion by providing an environment for

software stability and unhampered software development. |

78

Two of the reports produced from PSL data merit further discussion. The
Code Progression and Durability reports are of significant value to management.
By examining these figures over a period of a week or month, code generation,
integration and testing rates can be measured. Thus, when faced with a
problem and an estimate of the resources needed for the solution, management -
is armed with objective measures to assess program impact. The report is a i
] direct indicator of software quality and can be used to pinpoint areas where ;}
code is progressing too slowly or quickly. As far as is known, these measures 5

of software quality are unique in the industry.

In summary, a number of modern programming techniques were utilized on

PAVE PAWS and supplemented by software development tools which won widespread
acceptance by programmers and managers alike. Although it must be realized
that availability and use of this technology does not, in and of itself,
guarantee success, it must be credited with establishing the environment to
support project success. The experience gained is being fed back into both
Raytheon and IBM business areas for consideration and potential inclusion in

all future efforts.

79

APPENDIX I

SYSTEM __PAVE PAWS (Data Collected Against) DATE _ 10/07/77

1.

6.

7.

GENERAL CONTRACT/PROJECT SUMMARY

Type of Contract: FFP CPFF OTHER _FPIF

Total Cost (Actual or Estimated) $5.0M (CPCI's effort only)

Level of Subcontracting _None

Project Environment

Dev. Team Collocated with User? No
Dev. Team Collocated with Computer? Yes
Dev. System Same as Operational System? Yes
Test & Integration Separate Organization? Yes

Project Description

Engineering support plus software design, fabrication, and test for
(1) PAVE PAWS Tactical Software (CPCI 2) which is a real-
time system including input and output interfaces with the
PAVE PAWS Radar Controller (RCL-CPCI 6) via the
PAVE PAWS Operating System (PPOS-CPCI 1). The system
has strict storage and throughput goals.

(2) PAVE PAWS Simulation Software (CPCI 3) which is a real-
time system with the same interfacing requirements as
above.

(3) PAVE PAWS Tactical Scenario Generator (CPCI 3) which
is a non-real-time data base maintenance tool used to
prepare scenario files used to drive Simulation.

(4) PAVE PAWS Data Reduction (CPCI 5) which is a non-real-
time reduction system for a large variety of recording
which is done by both CPCI 2 and CPCI 3.

(5) PAVE PAWS Program Support Library (PSL-CPCI 4) which
provides the basic software library services in a topdown

structured environment.

Project Start Date _ 04/12/76 Est. End Date _ 04/12/78

Estimated Number of Project Personnel

Management Systems Engineering
Chief Programmer Functional Test
Support Dev. Programming

80

e 3

g3

s
=

s AT R

8.

10.

11.

12.

13.

~

Estimated Number of CPC's _48

Estimated Number of Pages of Documentation

Requirements (Part I) 1460 Test Reports 1200

Specifications (Part II1)3400 User Manuals 900

Test Specifications 2000 Other 600
Estimated Total Number of Instructions _N/A Cards 135K

Estimated Number of Different Input Formats _N/A
Estimated Number of Different Output Formats _N/A

Estimated Total Man/Months

Management __ 85 Programming 630
Support 102 Test 170
Engineering_102

Estimated Total Computer Time (HRS) 7000 Hours
(wall clock on dedicated computer)

Contact _ B. Scheff (Raytheon)

81

AA.,

- -
]

MW o SN

Rt 1N T

g
o, TR T

APPENDIX II

SYSTEM __PAVE PAWS (Data Collected Against) DATE _ 10/07/77

MANAGEMENT METHODOLOGY SUMMARY

1. Management Procedures/Tools Used

PAVE PAWS Program Support Library (PSL) reporting
PAVE PAWS Trouble Report Procedures

Program Control Management System (PCMS - Financial)
2. Documentation Available at CDR:

a. Development Specification (Part I) - CPCI 2
b. Development Specification (Part I) - CPCI 3
c. Development Specification (Part I) - CICI 4
d. Development Specification (Part I) - CPCI 5
e. Product Specification (Part II) - CPCI 2
f. Product Specification (Part II) - CPCI 3
‘l‘ g. Product Specification (Part II) - CPCI 4
: h. Product Specification (Part II) - CECI 5

Note: All above documents provided to customer.

3. Formal Reviews and Schedule

i Date
‘ a. CPCI 2 PDR 8/76 CDR 1/77
b. CIKCI 3 PDR 8/76 CDR 1/77_
c. CKCI 4 PR 7/76 CDR 9/77_ 1
d. CECI 5 PDR 8/76 CDR 1/71_ %gp
4. AF Regulations, Manuals, and Military Standards Under Which Development I 9
Will Be Conducted ;‘
MIL-STD-483 E
! MIL-STD-490
i MIL-STD-1521 '

il ook el s N K iy i

Description of Deliverable Software

Refer to GENERAL CONTRACT/PROJECT SUMMARY, Item 5, for an overview
of the technical content of deliverable software. All software will
be delivered in a PSL form (either disk or checkpoint tape).

Reference Measurement Gathering Procedures

Clarification required.

Contact B. Scheff (Raytheon)

83

- - e ——

APPENDIX III

SYSTEM PAVE PAWS (Data Collected Against) DATE _ 10/07/77

DESIGN AND PROCESSOR SUMMARY

1 1 Target Computer(s) CDC CYBER 174-12
(same as development computer)

2. Processing Environment

1 Card Reader (CDC 405)

2 Line Printers (CDC 580-12)
3 Disk Drives (CDC 844-21)

6 CRT's (CDC 774-1)

1 Plotter (Gould)

6 Tape Drives (CDC 669-2)

¥ 2 T 2

AEFA TN T

i 3. Configuration: Hands on _X Batch _ _ Remote ___ On-line__ £

i% 4, Operating System(s) Version Nos. 1.0 as modified (PPQOS)

1 & 5. Compiler Version(s) JOVIAL J3

~§ 6. Assembler(s) COMPASS

'ﬁ Pa Est. Percent: JOVIAL _85 COMPASS _15 E%
8. Automated Software Tools Used: _PAVE PAWS PSL 53
9. Design Standards i;

- MIL-SID-483, Appendix VI
- IBM FSD Software Standards (33-09)

10. Programming Standards

- PAVE PAWS Green Sheets
- PAVE PAWS Computer Development Plan i

11. Programming Techniques Employed:

Topdown Design X HIPO X
Chief Programmer y Structured Code X
Librarian X Structured Walk Thru X f
Topdown Test X Other - PDL X

§ A List Existing Programs/CPC's to be Used Standard commercial software

155 Estimated Turnaround Time (HRS): Batch 2 Hours

Contact B. Scheff (Raytheon)

85 9

T —
™ e -
/ i S

- = o Sy
iy i s MR d b

m‘. *Sujumueaforg painyoniyg Buppniouy
4 ‘8981n0> paiosuods HE] Jo A1d1iwA = paiajdwod Aj[euojIjppe Iaey
A3yl " pIijy 313a A3y) 2193)® 281n0> 3ujujea] iawmswiBoig dyseg
N23A uju ¥ pIajdmod IAsy WEI) SJYI JO 612quim []v A][e}Iuasel :ALON

0791 ‘o191
‘1091 ‘0LE/s ‘09¢€/S - 114 ‘’ad ‘0T 4| 4 x x |sg 9 L 4n¥ove L
|
719 ‘oLe/s ,
“09€/S - XNS'NVMIND'OISVE‘du‘NLd S L] € x |ve L4 L] LELLE 9 V8
1
— '’
N J10 - XNS/NVWINID | 2 z 2 o |% LENTE N IS 8
> g '
W.. J1D ‘0L€/S - TVE/XNS/NVHINZD/1'1d 4 € x |ve ” » VAR] v Ve !
y o |
m U1 ‘0LE/S - XNS ‘NVMINID/TVM/ 14 4 z z x x (w |z |9 vaansd | ¢]
" ’
00058 “LO11 DVAINA'VU91 = |
20D ‘09€/S - WFIIHIASSY/114/10800 | o1 < z ¢ (4] x fay | v |9 anxova z w
219° %604 °060L° 09€/S-1VN/SOS/d V4/NLE " 1 " x |se < v 441HD 1 1
SHALAJWDD OGNV SZOVNONYI | WIS | Aor | SON | ¥agA) | wilo | Tvay | owad | s8do | dwod | wor 1930 | 110 | sul i
JONITWAd X3 AONITuad N3 AONITWAdXE AIVAONYT NOTIVONG3
130uvL

(umopyeaig [183I3Q 103 MOTag 31qel 23S)
T# WVIL JTNWVIO0Nd JAIHD
T11408d TINNOSHId

LL/LO/0O1 dlva (3sute8y pa309110) ®IBQ) SMYd IAVd WALSAS

Lk anel

‘9303102 paiosuods WUl JO K33TieA w pai1ajdwod A[{wuoyajppe Iaey
Aoyl -paajy siaa K3yl 193j® 282n0> Sujujral 1wwsi801d djseq
133 uju ¥ palajdwod SARY WYA) #JY) JO S1aquam []¥ A[|wjIulesz :ZION

s

“ *Sujmwe 18034 peinid>nilg Bujpnyoug

gt

T
el e

000Z OTIHd :

‘0206 ‘0L€/S ‘09C/s - vA‘117d°NL4 9 4 (174 x |va v 9 WANHIA L 3
|

€/s ‘o€l m

*09€/S - AN “IVe°10800° 14 N1 | 2°1 1 x | sg "y 9 PEUDE | 9 ¥
710 “09€/S - XNS ‘NVMINID'1Td | §°1 sl L x " VTR 1] < i

913 ‘0ce/s ‘09C/S

= XNS‘NVHINTD'OISVE’ OdN° NLA 1 L) € x |va " v WA I L) ~
0
1% ‘11
‘09C/S - XNS‘MVMINZD'NIA‘1IVE' 14 4 - 8 x |w g |w WA €

008 ‘¢OL1 DVAINA ‘VO91

202 ‘09€/S - WIeWsSY' 11d 1080 ol S z L 4} x |ay 9 0} dmiove z
- —
212 '09¢/S * 114 XNS'NVHINDD | 6] .9 6 6 x lsa | v |o 43140 1
SWALAIHDD ONY 53ovnonvl | wins | aor | son Jumao | wnao Jvev | wiod | snao | awoo | sor | 94a [1100 | s Il
[RITETE] FONATH X N (¥4I AOVIIONY] NO1lvDndd
1304Vl

A

(umopyieaag 171832Q 103 Mmo(3g 31Qel 23S)
%} WVAL YINWAVEO0Yd JAAIHD
T1140dd TIANNOSHAd

LL/L0/0T dlvd (ute3y pe309110D ®BIBQ) SMVd IAVd WILSAS

*SujmiwiBoly painionals Jujpnyouy

‘8281003 paaosuods WII JO A1212%A ¥ pajajdwod K{[wuUO]Ijppe AWy

Aoy -paayy 213a Aay3 133w ®sinod Sujujeay Jeusue1801g oyseg
A39A uju v pIId[dmod IABY WS Y Jo eidqu-a []¢ A[[w3Iuaesl :ZION

) ‘09C/§ - XNS'NVMINID'17d°‘1ve < z ¢ x x 4 L] CELITE S

0206 '%60¢ ‘0Ell ‘0291

‘09€/S - IVE'IdV S 17d ‘NLd 9 6 x |sqg » v PEIE v
no ‘oLc/s .
‘09€/5 - XNS'NVMINDD'11d‘NL | 9 8 x lsa | v |o» LECLEC I
= o191
‘1071 ‘09¢/S - WV NMLI‘T10€0D° 1 st 111 x € v dnxove z

06% OVAINA ‘71D ‘1071

“09¢/S - XNS'NVMINID'SJIN'17d°'N14 9 ctl x 't |» 43t 1
SUILOWOD OGNV _SIOVAONYL | WIRS | AOC | SON | WA | WHIO | TVNY | oMM |sndo |dwo0 | sor |93a | 110D | sK nrL
dON41¥3dX3 FONALEAdXd ERIPITE R E] ASVNONVI NOIIVDNQd

12%8v1

(umopyeaag 17e33q 103 MmoTag ayqer CETY)
€# WVIL YIWWNVEOOUd JATHD
T1I40¥d TINNOSHAJ

LL/Lo/0t arva (3sutedy pa3daiion B3Bd) SMVd FAVd RALSAS

88

AD=AO073 357 RAYTHEON CO WAYLAND MA EQUIPMENT DIV F/6 9/2 \.
PAVE PAWS MODERN PROGRAMMING DATA COLLECTION SYSTEM.(U)

JUN 79 B H SCHEFF» W B VODGES: N R HALL F30602=77=C=0141
UNCLASSIFIED RADC-TR=79-137 NL
2% 2 END

10-79

ADT73

|

LB "m

 E¥

I
I

g

o
E
s i

s

r
i
is B

—
rree
-
s
=
B
o

I
i

> lI=

N
O

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 1963 A

*SujemwiBolg peinjaniag Sujpnisuy

‘088103 pasosuods WEI O L39jirA w PIIdTdwod A11RPUOTITPPE BARY

Ayl paaly 239 Kay) 293j¢ 203n0d Bujuls3] 2awsei8o1g djeeg
RIA WU ¢ PRIIdwod BARY WEII STY) JO Siaquaw (1w A[jejIusesz IALON

710 ‘09€/S - XNS'NVMIND'TH‘IVE | € 4 € x x T | LELLE L <
I°09C/S - XNS'NVMIND'TIIIVE | 9 (3] x x|lsuf| 9 |» dnxove v
J12°09C/S - XNS'NVMINDD'TU IV | € ol 4 4 L x 1 L] VHIHIA €
710°09¢/S
- MNS NVALNZD‘ 244 °T040D ‘ M1d] z (94 x x v z [} YIANM 2
N ‘occ/s
- JISVE'10800°NVMINGD' 1Td°‘NLd | ¥ u x x Isuf v |v 43l |
SUALAIWOD NV $IOVNIMVT_| WIKS | AOr | SON | wasko | wi1o | IvNv | 9wdd | sndo | dw0D | Aor | 93a | 1100 | su| un
e ETF] DNATIUXY DNITNAXI FDVNWNYT | NOIIVOMNZ
13%uv

(umopyeaag 1793IaQ 103 MOT3g 3qel 23§)
V4 WVIL WDOIVIOOUd ATTHO |
T1140ud TANNOSYHAL

LL/Lo/o1 dLva (3sutedy pa3oa11o) ©IBQ) SMVA dAvd WILSAS

‘Sujmealorg painianiag Suypnioug
‘8304n05 pesosucds RET1 jo A3eTisA ¥ parajdms A1jvuotijppe daey
Ayl *pasTy B13a A7 . 20330 evaned Sujuyeay asawvifioly d)eeg

A9 UTY ¥ pPRIBjdwod ARy wWEI) S}YI)O SIaymwas [0 Ai1ejavaseg :dloN

712 ‘09C/8 - NVEINI'TUIVE | ¢ X E! S1gH|9 |y WAHAN

J1I 0LC/S - VR XNS aVMINZD' Tl € t x|lva]y 9 WH
00CS OVAINA ‘0009 20D

-"990L ‘90 - WIKSSY'OISVE L4 ()] " slsnls v WU
0791 ‘0099 207 ‘1D ‘09¢/S

- XNS‘NVIINDD‘T0R00°NLI WV T (4 S vivalg L LEELE

I3 ‘09¢C/S - ANS'NVIINDDIVE WS] v (] = fwls L wIUHD

J1D ‘0LC/S - TVE°1'ld XNS NVINDD 4 ot = lsujs] dnaove

D 0uc/s “OvC/S - TV aNs uveind | @ J 4 L =lss]ly |o 431IKD

SUAMUDO UNY SIVAMYT | WINS | AOF | som | uauAd | wito | avav | o |smao | awon | a0r | oGO | e UL

o Dhaad F¥ H I TF] FNAdEXT ZWNONVT 1vonaa

130uv1

(umopyeaag 17w33q 103 mofag a31qe) 33s)
S# RVIL YAWWVYO0¥d J4IHD
TI130Wd TANNOSUId

LL/L0/01 alva

(3suredy pa3oar1o) ®IBQ) SMVA IAVd

HWILSXS

90

AR Sl i o

]éﬂ e e s e i AR N ST B i ot Pt Bl

*SujmsviSnl] paanianiyg Sujpniouy

‘890105 paaosuods Ny 3O £107aWA w palajded A11"uo}31ppe samy

Aoyl *pasty 239m Loy3 203)8 esinod Vujujvil asmmsesdory d)eeg
N30 3uju ® pRlIajdaud sAry wWea) #jY) JO e3aquam (v Aj]vjIvess3 :ZAlON

$011 OVATNA
‘S1-dad 320 ‘0LE/S - 0V0O'NLd | 9 L] x sk | ¢ |y N | ¢
213 ‘09¢/$ - 1'xNs‘NVEINGD | S°2 (41 1 |s x jsg | ¢ |o L Lr L 2
(<)}
71D *0LE/S - XNS'NVNIND'IVE'1d | ¢ : z t4 L] x lw]z |y WIINB [4
N5 ‘L wols
‘09¢C/S - XNS ‘NVMINDD'1TdNL | €°¢ $0 j<'§ : X JSKH | 9 L 41DOvE. z
7o
‘09C/8 - Xns‘NVMANZO'TU'RLIIVE | 3 = (i[9 (o 43140 {
aNY_SIOVRINVL | WINS | AOC | SON | ¥ v | 6 | SNJO L gWnd | Aor | 994 | 1903 muu
....tmul = SoNaldaIx hﬁn...n.?s_: AOVIIONVT | !Bg-m_._.
1303

(umopiyeaxg 17833Q 103 mol3g 3ITqel 33S)
9# WVIL YAWWAVYO0dd JAIHD
TI1408d TANNOSHIL

LL/to/or ALva (3sute8y pa3da1Jo) ®I®Q) SMVd IAVa WALSAS

- nen e e Se=— C T

MISSION
of
Rome Atr Development Center

RADC plans and executes aumdu development, test and

delected acquisition programs in Agppoa.t of Command, Control
Communications and Intelligence (C31) activities. Technical
and engineening support within areas 0f Lechnical competence
48 provided to ESD Program az‘wu (P0s) and other ESD
elements. The principal cal mission areas ane
communications, electromagnetic guidance and control, sur-
veillance of ground and aerospace objects, wtel,ugence data
collection and handling, information dysiem technology,
Lonospheric propagation, solid state sciences, microwave

ndam nab. and
Zhyuua nic neliability, maintai ity

A SR S el 7 o i i i o v i o St i Lo

:
Ao

e -
ficad i B Dt i e e i W i e

- e

