
A0 A073 351 RAY TH EON Co WAY LAND MA EQUIPIENT DIV F/S 9/2PAVE PAWS MODERN PROGRAISIINS DAtA COLLECTION SYSTEM. (U)
JUN 79 9 H SCICFF. W fl VODGES. N R HALl. F3O6O2—?7—C~ o1~ j

L*ICLASS I I IL r’ RADC—TR—79—137 ‘a

_
_ D ! I~~~-U I

U
_ _

U I:ii~ I

_fltu I~u~i1U I

•

I . ~~~

______ L ~ ? 2.2
tO ==

2.0I I ~~~

11111’ .25 tIUhi~ UIII~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 1~T~ CHART



LEVft~~�1
RADC.TR.79.137
RnaI Technical Report
Jun. 1979 c

~~ PAVE PAWS MODE RN PROGRAMMING

j DATA COLLECTION SYSTEM

Rayth.on Co any 
D D c

~~ Benson H. Scheff r~
~~~~~~

APPROVED POE PUBLIC RELEASE; DISTRIBUTION UNUMITED

Th’181
~t~1

‘ ROME AIR DEVELOPMENT CENTER
Air Force Syst.ms Command
Griff iss Air Force Base, New Yor k 13441

79 ~1)b
—..~~— V .——— ’ ~~~~~~ ~~~

4,

This r.port has been reviewed by the RADC Information Office (01) and
is releasable to the National Technical Information Service (NTIS) . At NTIS
it will be r.l.asable to the general public, including foreign nations.

RADC—TR—79—137 has been reviewed and is approved for publication.

APPROVED:
~*Mi

~
1L1~tZ._.

DEANE P . BERGSTROM
Project Engineer

APPROVED:
~~~~~~~~~ i
ALAN R. BA1~NUM
Assistant Chief
Information Sciences Division

POR THE COMMANDER ~~~~~j(2 , Z~IL.d .....

~~~~
IoHN P. RUSS
Acting Chief , Plans Office

If your address has changed or if you wish to be removed from the RADC
mailing list, or if the addressee is no longer employed by your organization,

please notify RADC (ISlE) Griffiss APB NY 13441. This will assist us in
maintaining a current mailing list.

Do not return this copy. Retain or destroy.

L -
~~~~~~



UNCLASSIFIED
S(CURI AS S , F ICA TION OF IsIS PAGE (*71 0 Oat. Enr.,.d)

~~~ E ~~~~~~~~~ 
READ INSTRIJCTIONSREPORT uv ..UM N i A l IUl~ ~~~~~ BEFORE COMPLETING FORM

I. R A~F ~j4M8EJI 2. GOVT ACCESSIO N NO. 3. RECIPIENT S C A T A L O G NUMBER

~~~~~~ R-79-~~~~
[ 

I (7 S~- T.. D

Final 7 chnica1/~p~~~~~~( ~ ~~~~ 
$ODERN Pg0GRAIQ4ING DATA I Jul~~77 - leb 7

COLLECTION ~YST~ L .~~~~~~~~~- —~~~~~~ NuMBER

____________________________________________ N/A
S. CONTRACT OR GRANT NUMB ER(S)

Benson H./Schef 
F~~6~~-77-~~~l4l~

ATION NAM E AND ADDRESS 10. PROGRAM ELEMENT . PROJECT . TASK

Raytheon Company, Equipment Division~’
Wayland MA 01778 

~~~~ 
~~~~~~~

II . CO NT ROL L ING OFFI CE NAME AND ADD RESS 

/ Jun~~~~~~ 79 
TE

Rome Air Development Center (ISlE) . PAGES

Griffiss AFB NY 13441 
_ _ _ _ _  

91
14 MONITORING AGENCY NAME & ADDR ESS(II dilf.t.nt ho IS. SECURITY CLASS. (.1 thl. ~~por1) r
Same /~ I / ~ 

UNCLASSIFI ED
IS. DEC LASSIF ICAT ION .  DOWNGRADING

________________________________________________ N/A
IS. DISTRIBUTION STATEMENT (of this R.p,,I)

Approved fo r  public release; distribution unlimited .

17. DISTRIBUTION STATEMEN T (of th. .b.tracl .nt.r.d In Block 20. II dlll .,.nt from R.po~t) C
Same 3)~; 

~~~~~~ ) p
~.

IS. SUPPLEMENTARY NOTES / IRADC Project Engineer: Deane F. Bergstrom (ISlE) C

IS. KEY WORDS (Contino. on t.o.c. . .id. if n.c.. ..ry ~d id.nIlfy by block nttmb.,)

Software Engineering
Modern Programming Techniques
Computer Software

— to. ABSTRACT (Conhin... on ~~~~~~ aid. II n.c.a.a?., and id.ntily by block ntnnb.,)

This report describes the software development technologies which were utilized
on the PAVE PAWS project and the techniques which were implemented to collect
data to support on~going independent technolugy studies. At the request of the
contracting agency, the emphasis of this report is on describing the software
technology used on PAVE PAWS and providing an assessment of the effectiveness
of those techniques./ \z~FbIW FOAM ia~~iI/li 1 JAN 73 iq1j UNCLASSIFIED

SECURITY CLASSIF ICATION OF TI4IS PAGE (N~t•n Oat. EnIa,ad)

_ _ _ _ _ _ _ -~~
- ~~~~~ T~~~ ~i:~~~ ~~~~~~~~~~~~ ~~~~~

-

~~~~~~~~



TABLE OF CONTENTS

Section TJ..ti~

1.0 BACKGROUND AND INTR(~)UCTION 1
1.1 PAVE PAW S System Description 1
1.2 Software Development Technology Requirements 4
1.3 Software Hierarchy (CPCI/CPCG Forimilation) 5
1.3.1 Real Time Monitor (RTM) 6
1.3.2 Mission Control (lCTL) 6
1.3.3 Radar Manager (RAN ) 8
1.3.4 Track (TRCK) 8
1.3.5 Displays and Controls (DISP) 8
1.3.6 Coimnunications (COMM) 8
1.3.7 Satellite Catalog Managenient (SCM) 8
2.0 CONTRACT FOR DATA COLLECTION 9
2.1 Contrac t Birpose 9
2.2 Contrac t Scope 9
2.2.1 Manual Data Collection 10
2.2.2 Automatic Data Collection 10
3.0 PAVE PAWS PROGRANMI ~ ENVIRONMEN T 11
3.1 Top-Down Programming/Segmentation 11
3.2 Structured Cod ing 12
3.3 Indented Listings 15
3.4 1~ierarchical Library 18
3.5 Authorization Checking in PSL 19
3.6 PSL Directives 20
3.6.1 ADD 20
3.6.2 M(~)IFY 20
3.6.3 COMPILE 20
3.6.4 LOAD 20
3.6.5 COPY 20
3.6.6 XMI T 20
3.6.7 LIST 21
3.6.8 RE PORT 21
3.6.9 PURG E 21
3.6.10 PUNCH 22
3.6.11 CHECKPOINT 22
3.6.12 RESTORE 22
3.7 Management Statistics Re porting 23
4.0 PAVE PAWS DATA COLLECTION ENVIRONMENT 31
4.1 PSL Changes in Support of Data Collection 31
4.2 TR Data Base Reports 31
4.3 Data Collection CPCIs — ----- -:~

-
~~T,  :r 31

4.4 Manual Data Collection Form ~~~~~~ - -——--— 31
4.5 Products , i ,

~ ~‘ . ‘
~~~ 

.; 38
~i~’C T~$
unaxin. mced
j~~tiftc~tien

__ . --

—
--..-- -

By— —— -. -.- -

-~~~~ stt~~~~~ L..
A~.tlSbt~.i”~

.

_ --

1. 1,iit ~~
iist

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

-~~~——-- _ _ _ _ _ _ _ _
_ _

TABLE OF CONTENTS (Cont ’d)

Section Tit le

5.0 TECHNO LOG Y ASSESSMEN T 41
5.1 Top-Down Desi gn and Development 41
5.2 Structured Coding 43
5.3 Indented Segment and Program Listings 44
5.4 Program Design~ HIPO and PDL 46
5.5 Hierarchical Library 54
5.5.1 Usage of the PRG Level 58
5.5.2 Usage of the CPT Level 58
5.5.3 Usage of the INT Level 58 (
5.5.4 Usage of the FIX Level 59
5.5.5 Usage of the TST Level 59
5.5.6 Usage of the FRZ Level 59
5.5.7 Usage of the DEL Level 59
5.6 Chief Prog r ammer Team/Librarian Operations 59
5.7 Struc tured Design/Structured Code Walkthroughs 60
5.3 Management Statistics Collection/Reporting 60

• 5.9 Qualification Test Program 61
5.10 Progranining Communications 74
6.0 CONC LUSIONS AND RECOMMENDATIONS 78

LIST OF APPENDICES

Appendix Title

I General Contract /Project Summary 80
II Management Methodology Summary 82
Ill Design and Processor Summary 84
IV Personne l Profile (Chief Programmer Team) 86

ii

-— - . ~~~~ -— .— :.: ..: ~~~ .. .== ____ .~~~~~~~~~~~~~~~~~~~~~
.
~~~~~~~~



LI ST OF FiGURE S

Number Title

1 PAVE PAWS System Block Diagram 3
2 PAVE PAWS CR~I Breakout 6
3 CR.~G Struc ture for CPCI 2 7
4 IF_ 1HEN_ELSE Logic Form 13
Sa DO WHILE Logic Form 13
Sb DO UWIIL Logic Form 14
6 DO LOGIC FOR)1 (Indexing) 14
7 CASENTR Y Logic Form 15
8 Example of Indented Scginent Listing 16
8a Explanatory Notes for Figure 8 17
9 PSL Librar y Lev els 18
10 SEGMENT Summary 24
lOa Explanatory Notes for Figure 10 25
11 PROGRAM Summary 26
h a  Explanatory Notes for Figure 11 27
12 LIBRARY Summary 28
13 Progression/Durability Report 29
14 COMPILE REASON CODES 32
15 Data on PSL Data Collection Statistics File 34 H
16 PSL Data Collection CPCGs 35 F-i
17a Sample TR Form 36 j
l7b Error Categories 37
18 Sample PSL Report - Compiler Summaries 39
19 Sample TR Report 40
20 Program Segment Structure 45
21 Visual Table of Contents - Example 47
22 HIPO Chart Example 48
23 Indented PDL Program Listing 49
24 Program Configurac ion After Entry of Initial Segment 55
25 Program Configuration After XMIT to CPT Level 55
26 Program Configuration After Entry of Segments A and B 56
27 Program Configuration After Subsequent XMITs 56
28 Program Configuration After Further Changes 57
29 Code Developmen t Curves 62
30 Code Progression Char t - CPCI 2 63
31 Code Progression Chart - COMM CPCG 64
32 Code Progression Chart - DISP C PCG b 5
33 Code Progression Chart  - MCTL C PCG 66
36 Code Progression Chart - RAM CPCG 67
35 Code Progression Chart - RTM CItG 68
36 Code Progression Chart - SCM CPCG 69
37 Code Progression Chart - TRCK CPCG 70
38 Code Progression Chart - CPC I 3 71
39 Code Progression Chart - RTSM CPCG 72
40 Code Progression Chart - TSG CPCG 73
41 Examp le of PAVE PAWS Green Sheet 75

iii

~~~~ 

—

~~~ --~~~~~~~



___ -,. , -
~~ 

.

EVALUATION

The PAV E PAWS is a phased array warning system designed to detect

submarine launched ballis t ic missiles. In addition to real time mission

requirements for the detection and characterization of SLEM’s, the PAVE PAWS

system Imp lementation prov ides capabilities f or simu lating the mission

func t ions, generation of scenarios for simulation, and a data reduction

system. All the above system functions necessitated the development of

computer software for both real time and non—real time capabilities.

A system requirement called for the use of modern programm ing and

software engineering tools and methods for all system software development.

In response to this requirement , Raytheon/IBM selected and employed a

complete set of modern programming techniques f or PAVE PAWS sof tware

development and management. These tools and procedures included a Program

Support Library (PSL), pre—compilers to translate structured source code, 1
use of graphic design methods and Program Design Language (PDL), Chief

Hi
Programmer Team operations, structured design and code reviews, cod ing

conventions, and top down design and implementation. The PSL provided

extensive data collection and reporting capabilities for use by management

in ma k ing timely assessments of status. This complement of software

engineering techn iques will be utilized during the operation and maintenance

phase of the PAVE PAWS system. Thus, software maintenance personnel will

utilize the tools and methods employed during development.

The PAVE PAWS Modern Programming Data Collec tion System effor t

described in this report was Initiated as part of an effort to determine

the utility and effectiveness of software engineering technology as applied

- 

~~~~~~
-:-—

v

-- -.-- _ _ _

I
to large system Implem entations . Furthermore , the PAVE PAW S programming

environmen t was examined to obtain data on PSL software management functions

and how the PSI.. reporting function affected management vis ibility Into the .

-

sof tware developmen t process. A combination of manual and automated methods

were used for the data collection. Manual data collection form s were used

to characterize the programming environment and a software module was added

to the PSL which gathered error and change data and produced summarizations

of the change activity.

The data collec t ion e f fo r t described herein has been supplemented by

a technology assessment of the tools and methods used. The modern programming

techniques and development tools won widespread accep tance by programmers and

managers alike . Although the technology does not , in and of itself , guarantee

success it must be credited with establishing an environment to support

project success and the ear ly identification of rea l or potential problems .

This report supports ongoing efforts under RADC technical program

objectives under the Software Cost Reduction thrust of TPO 5, C3 System

Availability. The conclusions and recommendations contained in the report

and the data obtained under this effort will be utilized by efforts In the

Software Engineering Tools and Methods area. The report should be of L

significant value to all personnel involved in system acquisition and software

development and the application of modern programming techniques.

DEAN - F. B RGSTROM
Project Engineer

vi

~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

iS



~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

..

1.0 BAC KGROUND AND INTRODUCTION

The PAVE PAWS system acquisition is a fixed—price acquisition by the Electronics

Systems Division (ESD) of the Air  Force to Raytheon ’s Equipment System Division

requiring system design , development , and integration leading to Initial

Operating Capability (b C) within three years of contract award . It includes

several different types of software system development , among them —

a. A real-time early warning system.

b. A real-time simulation system .

c. A non-real-time simulation scenario generator.

d. A non-real-time data reduction system .

This section describes the tactical system , the software development technologies

required , and the allocation of system requirements to Computer Program Configu-

ration Items (CR~Is). f I
1.1 PAVE PAWS System Description. The PAVE PAWS is a fixed base Phased Array

Warning System utilized for the detect ion and at tack charac terizat ion of Sub-

mar ine  Launched Ballistic Missiles (SLBM ’s) which penetrate the radar coverage.

It cons is t s  of two Phased Array Warning Sensors located at Otis AFB , Mass , and
Beal e AFB , Calif. The primary mission of PAVE PAWS inc ludes SLBM detection

and tracking in order to provide the NOR.AD Cheyenne Mountain Complex (NC~~)

with credible warning of SLBM attacks , inc luding estimation of Launch and

Impact (Lid) points, and times of U1. As a secondary mission the PAVE PAWS

supports the USAF SPACETR.ACK System with Earth Satellite Vehicle (ESV)

surveillance , tracking , and data collection as requested by NCNC. SPACETRACK

functions inc lude:

a. Maintenance of a catalog of known ESVs.

b. Detection , recognition , and data reporting (either cross-section or

position data) for ESVs specified by NCNC or by local system operators.

c. Detect ion , t racking,  and data reporting (cross-section , position , and
orbital element set data) for unknown ESVs.

I

~~~~~~~~~ . ~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 


Me~ sage coimnunicat ion , bot h to and I rom ~CMC I SAC /~ iCC / A r ~~~C is pc r i~~rmed i n

accordance with the Antertcan National Standard for Advanced Data Co~ssuii ication

Control Procedures (ADCCP) over Government data links. The sys tem a l so includes

s i x displa y consoles which are used for Systems Operations , Mon itor ing and

Control , Missile Warning Operations , SPACE TRACK Operations , T r a i n i n g , and

Maintenanc e Control. Over t h i r ty different disp lay formats are independentl y

selectable at the display consoles in order to provide complete 1lexibi li~~v in

monitoring and controlling the system. because the PAVE PAWS is an on-line

system which is intended to be operational 7 days per week , ‘)2 weeks per year ,

the data processing system contains redundant hardware throughout. In the

event of a hardware or software fault , hardware is automaticall y reconfigured

to eliminate the t a u l t and resume the primary mission within 8 seconds. The

data processor (duplex CDC CYBER 174’s) communicates with one of two MODCOMP

mini-com puter which interface directl y with the radar hardware (signal pro-

cessor , et a u . The hardware configuration is shown in Figure 1. The MODCOMP

computer controls and directs reconfiguration at the radar hardware , the 1~real-time system resident in the on-line CYBER controls MODCONP reconfiguration ,

and the PAVE PAWS Operating System (CYBER) directs CYBER reconfiguration.

In addition to the software to perform the primary and secondary missions of

PAVE PAW S , the system inc ludes a simulation facility capable of operating

concurrently with the operationa l software and providing the full range of

mission , threat , communications , and radar stimuli to that software. Object

tra jectories , radar cross sections , launch and impac t points , communications

messages , radar environmental effects , and event timing can be simulated

under user specification. The system also records real-time data pertinent

to the performance of the primary and secondary missions and provides data

reduction capabilities for a wide variety of recording formats.

The struc turing of these requirements into Computer Program Configuration Items

(C~~ Is) and Computer Program Configuration Groups (CPCGs) is discussed in

Section 1.3.

2

~~~~~~~~~~~~~~~~~~~~~ 

—

~~~~~~~~~~~~~~ ~~~~~~
~~~~~~~~ ~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ -



-. . , .
~~~~~~ ~~~~~~

—- -
~~~~~~~~~

. 
____________

I

I ARRAY

FREQU E NC Y BEAN RADAR SIGNA L HARDWARE
TIME STEERING EXCITER PROCESSOR
STANDARD UNIT

4 1

F CENTRAL 

] 

~~ MODCOMP] 
CON TROLLE R Ii

________ 

(RCL) 
F

r _________ 
C HANNEL 

_________

r COU PLERS
CYBER CYBER

A 

L i TACTICAL 

B 
DATA

_ _ _ _ _ _ _  

_ _ _ _ _ _  ~~OCESSOR

NETWORK PRO- NETWORK PRO-
CESSING UNIT CESSI)~ UNIT

COMMUNICATION LINES

Figure 1. PAVE PAWS Sys tem Block Diagram

3 

—~~~~~ rn-- ~---—.- .~~~:



r .
~ 

1.2 Software Development Technolog y Requirements. Fh~ software developm ent

technology utilized on PAVE PAWS was  s p e c i f i e d  in general terms in the PAVI.

PAWS System Specification:

Computer Pro~~anzning . “A ll software shall be developed in a logi-
cal modular manner utilizing techni ques 01 top-down structured
programming as detine d in Subsection 2.2 , 2.4, 3.2 and 4.3 of
RADC TR-74-300 Vol 1 , Progra~::~i~ g Standards (produced under
Contrac t #F30602-74-C-0186) with clear inter face specifications
to provide management visibility. All software developed under
this contrac t shall where practical be coded in J0~IAL in
accordance with AFR 300-10. The use of t h e  JOVIAL s t a t e m e n t s
DIRECT/JOVIAL shall not be permitted. Exceptions in the use of
JOVIAL shall be allowed for highly used algorithms , I/O Inter-
face routines and the Operating System/Operating System Inter-
face routines which may be coded in low leve l language such as
micro code , machine , or assemb ly for more efficient usage of
the data processing hardware. FORTRAN shall be allowed for
use in the Radar Controller. The JOViAL compiler to be used
by the contractor shall be in accordance with AFM 100-24, shall
operate on the system computer , and shall be subject to valida-
tion by the procuring activity using the RADC JOVIAL Compiler
Validation Systc~i (JCVS) and any specific additional test pro-
grams required.’

This requirement was addressed in the PAVE PAWS Computer Program Development

Plan by a Program Support Library (FSL) which wou ld provide the Top-Down

Struc tured Programming facility and by the use of additional modern program-

ruing practices and software organization concepts which have evolved in

recent years. Key capabilities provided are:

a. Implementation of a PSL to provide Top-Down program segmentation.

b. Implementation of a “pre-compiler ” to translate Structured Programs

into compiler compatible statements.

c. Use of Hierarchy Input-Process-Output (HIPO) charts and Program Design

Language (PDL) as design tools.

d. Use of Chief-Programmer Team/Librarian concepts.

e. Use of Structured Design/Code Reviews.

f. Collection and reporting of software development data by the PSL for

use by management in making timely and objective assessments of status

.4



- ~~~~~~~~~~~~~~~ .

g. Creation of a Test organ ’zation separate from the software development

group responsible for developing all test documentation and for conducting the

tests.

h. Organizational separation of the group responsible for developing

the Quality Assurance Program, including the establishment of project-wide

procedures, implementation of a Trouble Report system, and providing regular

assessments of status and forecasts for management consideration and action ,

from the software deve lopment group within each implementing organization

(I BM , CDC, Raytheon).

The technical scope and content of the PAVE PAWS PSL is discussed in Section 3.

Section 5, the Technology Assessment, addresses key elements of the PSL together

with the other procedural and organizational practices mentioned above.

1.3 Software Hierarchy (CPCI/CPCG Formulation). The allocation of system

requirements to individual Computer Program Configuration Items (CPCIs) is

an importan t function because from that point forward each CPCI will be F
managed with a certain degree of autonomy. The term “managed” in this con-

tex t inc ludes —

a. estimating and planning the effort involved ,

b. allocating resources ,

c. assessing and reporting status ,

d. financial management and reporting , and

e. the resolution of technical problems.

Clearly it is important that these functions provide control and visibility

below the total system level, but the danger of subdividing too much is that

“all the pieces work but the system doesn ’t.” A number of guidelines were

developed for defining C~~Is on PAVE PAWS in order to establish an effective

subdivision of the total software effort:

f. CI~ I responsibility should not cross corporate boundaries.

g. CI~ Is should not cross computer boundaries.

h. Software systems which are executed separately should be separate

CR~Is.

S



r 
- .. - —

h. t e  su I t a ut  C 1k 1 ~lt ( t n t  t tons are presented i i  Ft gun ’ 2

Ft t Ic Ct~r ( ’ . Ceiri~i. Sic. (Ll iic$)

(‘AV E PAW S Opurat t~~ S~’ste’m CDC CYHER N/A

Lea I ~~~ ‘ I tw a n ,’ 1 ((N C\’HER I 44K

I S (mu tat on Sot twart ’  (IN CYRER

• ~;iippiirt Sot twar t ’  I ((N C\’ t%ER l t ~K

Dat a l(educ ( ( o n  I RH ( Y((ER .‘ 7K

In h( uI.,t Cout r o t  ~o I wa re  RAY1’(IEON MOl)COMP N/A

7 S (gnat Processor Sol t war e  K.A Y I1LEON g. (‘roe N A 
~~~~~~~~~~~~~~~~~~ -.—- - -. .

I I en re 2 • (‘AVF PAW S C 1k: I (hreak ou t
I.

fle low the t ’ l’i,’ l li v , I , ol t w a l e I s Li e ~ t b rokeit down I n t ii t~oflpiI I .‘ r (‘rog ram

Coa t i gurat inn C r n n n n p n (C R~t n ~ m i d Comput er Program oniponr ~’ n n t s (C Ik~s~ • C Ik~C~
a t e g enie t’~ i liv a true tu~ ed along ma (or func t I ona I (ni.~~ wi th In a C (V.1 Win I ft C iks

r t ’prest ’n t I rid iv i dua 1 programs . ‘liii s a true (tiring ol t h so I twart~ I s Impor t an t
L

bee atmsi ’ I t I onnn the b~ aI~ tot at toe at tug svs t ern rt’qu I rerm•n t s t o ~ot tware , Ii
tdi ’ii t I I y t r i g int er I ace control det liii loris • subdlvhU ug d es i g n ~ nd devi’ Loptuent

ri ’s pous lb I t it I t’~~ , . in i ruak I rig personne l ~ssi grun i ’ In t s. i n sho r t • 8 w e ’ l l tint!,’ r—

•nott no t twart’ at rue tutu a 1 tows .n n o t 4 wart’ pro) ~‘c t to he ’ e I I cc t (y e ’ I v

The C lk~C structur e t o t C t~d I .‘ Is shown gr.Ip li (cal l v lii I i gun ’ 1. i n t h i s I igure

each C IkX is nea l v.1 i n n show I ts re’ (at I ye n i l ze (s t n t i n ’ ce ca rd s

1~ I. 1 ~~~jJ’1r~~jIon(ton (RT~~ . bu t’ Real (‘1 mc Mon I t 01’ (RIM) :le 1 ii an t 1w at rig i t ’

I n t e r t~~ce he twCt’ri h,’ PAVE PAWS (I(ne r a t t rig ~ vs tu tu (PPOS) ~nr,I t hi’ I a c t ! cal n i l ’

n u t ss f u n sot twar e ~(1k I 2 • It pert t ’rnnn ; I mi t .‘rrupt h and It rig • eve I Ic amiti ulemautl

t a s k n e h i e d i m I L rigs , task ills pntt’Ii tug In i iu ’c tnrelanct ’ w i t ii n n v 5 t e r n ‘t’ i iii’ I l i t ’ s , I r i p i r t /

I pitt resource u~lr r 8 g . ’r u v n n I , a rid elynam Ic at orage’ rnanage’men I •

1. 1.2 M i a s i o r r C t n n t r o l ~~~j ’l’~~ . NI .is 1 1)1) Control per (onus the’ h ig h level cou t roi

t u n i c t I in n s n i t CPC 1 2 , Inc luil trig in itt all zat . Ion , tee .i n i I’ I gurat h u t , and t t ’ t ’ n n n l ir ., t Ion.

it at so prov lete~ .11 ak t I Lu , recording , and •‘rrot log st’rv I ci’s , ~ri.I eliet’kpo t n t t u g

.ut tacti cal data in rurppor t 01 ni V nn t ern recont’ igitrat. I . ini

-

—

~

— — ~~~~~~~ —— A S

T~T h 1
\

(l3.2l
~~~~~~

J

t’ETL 1
L (5.2K) ]

~~~~~~~~~~ 

_ _

D1SP

(8~~~)

j

(45 .9K) 1
TRC K

(16. 1K)
TOTAL: NOGRAt’~

- 102K

GLOBAL DATA - .J2J~
129K

NOTE SIZII& iS iN

SOUIICE CARD S

Ft~ure 4. CP~C St r tn . ’I irre for CPCI 2

7

1 ~~~~

~~~~~~~~~~~~~~~ ____________



- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

1.3.3 Radar Manager (RAM) . The Radar Manager p lans and con trols all  radar
subsystem usage. It consist of three parts - -

‘

1. The Long Term Scheduler (LTS) plans radar energy usage over a four-

second period to acconunodate surveillance , track, and SPACETRACK users. It

develops the plan based upon a priority table which indicates how energy is

to be allocated to the various system functions. It attempts to maximize

radar utilization without exceeding energy template constraints.

2. The Short Turin Scheduler (STS) operates on the schedule prepared by

LTS , formats the radar commands and initiates radar operation every 54 milli-

seconds.

3. The Returns Processor (RTP) handles radar returns each 54 milliseconds,

checks radar status , and passes the radar repl y data on to the user.

1.3.4 Track4~~çK). The Track CPCG performs track initiation on objects

detected in surveillance , track prediction and accuracy determination , classi-

fication of objects as satellites or missiles, launch and impact Toint pre-

diction , and “known object” correlation. It requests additional radar data on

objects in track via the RAIl CPCG.

1.3.5 Displays and Controls (DISP). This CPCG collects and processes various

types of system data in order to provide operator alerts , static and dynamic

disp lay images , and printed reports for man for current or historical system

events , system performance , and status. It manages up to six display consoles

independently.

1.3.6 Communications (COMM). This CPCG processes incoming communications

messages, unb iocks , error checks , and converts the message data, and passes the

messages on to other CPCCs for processing. It also gathers data required for

ou tgoing messages , formats those messages in ASCIi, and transmits the messages
to external sites. COMM performs line trunking , line status review, line

error statistics maintenance , and message retransmission as necessary.

1.3.7 Satellite Catalog Management (SCM). All SPACETR.ACK functions are performed

in this CPCG , including maintenance of a catalog of known satellites , SPACETRACK

data col lect ion planning in accordance wi th inputs from NCI’t~ or the local operator,

and position and cross-section data collection and transmission (via COMM) to NCI~~.

8

::~~ T:



2.0 CONTRACT FOR DATA COLLECTION

Rea l i z ing  that  the PAVE PAWS software development effort represented a unique

opportu :mity to collec t information and experience relative to “modern

programming technology”, Raytheon/iBM submitted an unsolicited proposal to

Rome Air Development Center (RADC) proposing that such data be collec ted for

CPC I ’s 2 through 5 and provided to RADC for their use in on-going technology

evaluation studies. This contract was awarded in August 1977. / ‘

2.1 Contrac t Purpose. The purpose of the Data Collection contrac t was to

validate the special tools used , to provide guidance on programming environ-

ments for large system acquisitions , and to provide insights into new experiences

in software engineering using modern programming tools and methods. Specific

areas of interest on PAVE PAWS were:

a. Use of a comprehensive Program Support Library system (the PAVE PAWS

PSL).

b. Structured coding , inc luding the use of 1an~uage precompilers.

c. Top-down design and implementation.

d. Use of Program Design Language (PDL) .

e. The use of transaction data collection and reporting to management.

f .  Chief-Programmer Team Operations.

g. Use of a Programmer Librarian.

h. E f f e c t i v e  programming standards and conventions.

2.2 Contract Scope. The intent of the Data Collection effort was to provide L
data which characterized the nature and environment of the software development

a c t i v i t y  together wi th  information about the reasons underlying software change.

This would allow ongoing software technology studies at RADC to correlate

software change activities with projec t characteristics such as the size,

complexity, and schedule of the project, the type of contract, the programming
technology utilized , the management organization and methodology, the pro-

gramming languag e uti lized , the data processor ava i l ab i l i t y  and capaci ty ,  the

system documentation àtructure and availability, etc. The collection of this

data was e f f e c t e d  in three ways :

9

~~~~~~~~~~~~~~~~~~~~~~


---~ , .~ - . --- --~

a. Manual collection of projec t and personnel character is t ics .

b. Automatic collection of software change data by the PAVE PAWS PSL.

c. Automatic recording and summarization of softwar e change act ivi ty

as part of a project-wide Trouble Report/Change Request (TR/CR) system.

Because the bulk of the software design and development had been completed b y

the time of contract award , the “automatic” collection of data was augmented

b y a one-time manual reconstruction of the exis t ing TR/CR data base.

2.2.1 Manual Data Colleçtio.~~ The following types of data were provided

through the com p letion of forms b y project personnel:

a. General Cont rac t /Pro jec t Suninary (see Appendix I) . This form provides

general information about the size of the project (cost , people , software ,

and documentation) together with a high leve l technical description of the

project. I
,. .

b. Management Methodology Sununary (see Appendix II) . This identifies

management procedures uti l ized , the schedule for PDR ’s and CDR ’s and an

enumeration of the AF and Military Standards which appl y. r
c. Design and Processor Summary (see Appendix ill). This ident if ies

the data processor confi guration , the progr~ mning languages used , the standards

followed , and the software technology utilized.

d. Chief Programmer Team Profi les (see Appendix IV) . These forms

characterize the educational and work experiences of each of the teams on

PAVE PAWS .

2 . 2 . 2 Automatic Data Collection. Changes were mad e to two existing PAVE PAWS

systems in order to automate the collection and reporting of software change

data. The f i r s t of these was an extension to the PSL to require that
progr~~nIners specif y a “reason cod e” for each program compilation. The

second was a change to the Trouble Report/Change Reques t system which

similarly required the specification of a “reason code ” at the time the

TR or CR was closed . It should be noted that the PSL data will inc lude

programming effort which does not fall under the TR/CR system and that one

TR (or CR) may result in many PSL operations before the problem is solved.

Thus the two systems collec t data which overlaps but is in no way the same.

These systems and the data they collect are fur ther described in Section 4.0.

10

.
~~. . ~~~~~~~ ~~~~~~~~~~~~~~~~~~

__
~
_ _ .

. .

-

.~~~~~. ,. . . . ~.. . .

3.0 PAVE PAWS PROG RAMMI NG ENVIRONMENT

The PAVE PAWS Program Support Library (PSL) is a programmning system speci-

f icall y des igned to support and enforce Top-Down and Struc tured Programming
technologies. This requires a program storage and maintenance capability

which is oriented toward a high degree of program segmentation and a pre-

compiler which has the e f f ec t of extending the commercial JOVIAL, COMPAS S ,

and IFTRAN languages to inc lude the necessary structured forms. Additionally ,

the PSL has been designed to accommodate a structured Program Design

Language (PDL). Although similar to most compiler languages, PDL is con-

pletely unconstrained in syntax, thus allowing natural English-like description

of program design. This section describes the PSL implemented and utilized

on PAVE PAWS. A subject ive evaluation of i ts most e f f ec t ive features is

provided in Section 5.

3.1 Tsp-Down Progranuni~g/Segmentation. Top-Down programming is based upon

a technique of designing (and implementing) software by speci fy ing the

top level functions first. The details of each of those functions and the

specification of additional subfunctions are then developed through successive

iterations until the entire problem is fully developed. Throughout this

process the amount of design (or code) which is being developed is purposely

kept fairly small in order to allow it to be dealt with effectively. This can

only be accomplished by referring to total functions or sub-functions as

‘black box” modules with known input and output requirements. This modulariza-

tion is ref lected in the PSL through program segmentation. A segment of

program code can identify a needed function by using an INCLUDE statement:

INCLUDE function name

This ammed function can then be dealt with independently, and it may i t s e l f

u t i l i ze INCLUD E s tatements to iden t i fy and def ine even lower leve l fur ’ctions .

In th is way a program is developed as a set of single page segments which f i t
together in a program s tructure or hierarchy. The PAVE PAWS PSL is designed to

11

~—~ ---- —

.—-. -,- , -
~~~~~~~~~~~~~~~~~~

—- . .

handle such h igh ly  segmented programs . The Top-Down aspec t of software

development is enforced by identifying each segment placed in the library as

either a top-segment (i.e., the top-leve l of an independently compi led program)
or as an INCLUDE ’d segment (one which is simply a lower-level part of some

program). As top-level segments are entered into the l ibrary and INCLUDE

statements are encountered , stub s are generated to act as posit ion holders

until real-code is provided . A program stub identifies the need for code to

perform the named funct ion , i t  reserves the name for that function , and since

it is part of some already existing program, it specifies the implementation

language for that funct ion . The Top-Down ordering of software development is

enforced by requ ir ing that INC LUD E ’d segments cannot be added into the PSL

library unless they are replacing a stub. In addition , since stubs represent

unimplemented software segments , the number of stubs in a C~~G or a program

can be used as a measure of status or progress. Section 3.6 describes the

PSL tools available for dealing with these program segments.

3.2 Struc tured Coding. Structured Coding requires the use of a standard set

of program control statements and at the same time precludes the use of

explicit branching statements. In order to provide the standard set of I -,

control statements for JOVIAL, COMPAS S , IFTRAN and PDL programmers , the PSL
• includes a pre-compiler which accepts the structured source statements and

converts them into trad i tional control forms which are processed by the

appropriate compiler. Figures 4 through 7 show both the logical form and
the coded form of each of the PAVE PAWS standard control forms. It should

b& noted here that the requirerient to provide a separate statement to end

each of the forms provides an ideal closure mechanism for the generation of

indented listings which are discussed in the next section.

H
12

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  ..— ~— -.-—-.— -.~~
—-.



_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  -~~~~

LOGIC FORM CODED FORM

FALSE 

<>

11K 

functIon b lock 1

r ELS E

_________ 

f unc tion block 2

ENDIF

Figure 4. IF_THEN_ELSE Logic Form

LOGIC FORM CODED FORM

<
~~ DO WHI LE predicate

function block

ENDDO

DO
WHILE

FALSE

Figure 5a. DO WHILE Logic Form

13

• ~~~~~~~~~ 
- - -, • • •‘ .

~~.-
~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~—.— •—~~~~~~~~~~



LOGIC FOi~.M CODED FOR M

~~~~~~~~~~~~~~~~~~~~~~~ DO UNTIL predicate

function block

ENDDO

DI)
UNT IL

FALSE

• Figure Sb. DO UNTIL Logic Form F
LOGIC FORM CODED FORM

~~~~~~~~~~~~~~~~~~~~~ DO X = I, J, K (index parameters)

funct ion bloc k

ENDDO

Figure 6 - DO Logic Form (Indexing)

14

k - ~
--_._.

~~~~~~ ~~~~ -


— t
~

LOGIC FORM CODED FORM

::: parameter

000
funct ion block 1 (

F

:::t:on block n

______________________________________ ENDCAS E

Figure 7 - CASENTR Y Logic Form

3.3 Indented Listings. One of the principal advantages accruing from top-down
structured programming i~ the ab i l i ty to generate program listing s which
physically ident i fy log ic struc ture by pairing the statements which open and
close a logic form and indent ing all intervening statements. Figure 8 is
illustrative of an indented segment listing as prepared by the PSL.

• Figure 8a is an explanation of the data displayed in Figure 8. H

15

• •

1 ~~~~~~~ ~~~ ~~~~~~~~~~~~~~~~~~~~~

—

~~ m--~~~~~

I -. ~. .fl 4 ~~ ~~ 0 .-. C ~~ .1 .. 0 .. .~ .~‘ ~ ~ .~ ~ ~ .-. ~~ ... 4 ~~U)

z .‘~0
I.. U)

I .

-.~~~~
~

0

‘-

.4
r

- Q

__

Top Line - Date and Time of computer run producing this listing
- Version ID (date) of the PSL

- Name of the segment being listed

- Library level at which the segment was found

- Edition number of the segment (incremented for each change)

Second Line - Segment Language - JOy = JOVIAL

- PDL PD L
- COMP - COMPAS S
- IFTR IFTRAN
- LEL LEL (loader statements)

• - Segment Type - INC L = IN CLU DE
- MAIN MAIN PROG RAM

- SUER SUBROUTINE
- LOCL = LOCAL PROCEDURE

- COMP COMPOOL
- Segment Version (established by the user)

- Date , Time , and User ID when segment was crea ted
- Date , Time , and User ID when segment was last changed

• Third Line - Request type and library level

(LIST PROG RAM or LIST SEGMENT)
• (For the example shown, a segment li8t ing was requested

for PSL.DATA.STORAGE.AIID.RETRIEVAL at the PEG level;

this particular segment was drawn down from the TST level,
as indicated on Line One.)

Lef t, Right Margins - Line sequence numbers used for directing modifications

Body of Listing - Card images left justified then indented to show logical

structure. (Periods are used as a visual connector for

indentation.)

Bottoms Line - Repeat of Top Line

Figure 8a: Explanatory Notes for Figure 8

17

~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-

~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 


3.-. ~iierarchica l Li~~~~ y. The PAVE PAWS PSL is desi gned to support an orde r l y
and we l l c o n t r o l l e d p rogress ion of so f tware from a deve lopment env i r ont ~ t

throug h ititt ~~raLion and test into a delivered status. Ihis is imp leme n ted as

a multi- level pro~ ran support library or hierarch y. Software segments are

entered into the library using a user-spec i fjed name (up to 40 characters

lon~~ at a user specified level. (By convention , the first four characters

of ta.h software element name represent the Computer Program Component Group

(C~~ G) to wh ic h it belongs ; the remainder of the 40 charac ter name may be

constructed of ;uuLtiple alp hanumeric syllables separated by periods.) Since

each leve l of the l i b r a r y is sepa rate and d i s t i n c t from a l l other levels ,
the same software element may appear in the library at several different

levels. fhus , to completely identif y an i tem in the library it is necessary

to specif y both the name and level. This provides a simp le mechansim for

parallelism in development , error correction , and version modification. Within

the PSL seven library levels are defined in a progressive hierarchy. These

levels are shown in Figure 9, starting with the highest.

Level Usage Convention

DEL software wh ich is in the f i e l d

FRZ sof tware which has been qual i f ied
TSr software undergoing qualification test

FIX sof tware correct ions for TST level

INT sof tware undergoing integrat ion test

c P’r sof tware undergoing group tes t

PRG software under development/unit test

Figure 9. PSL Library Levels

Bas ic to the PSL level hierarchy are the concepts of control leve l and the

m i g r a t i o n of program elements from one level to another . A program element

is read ’; to change con t ro l level when it has s a t i s f i ed a predefined qual i f i -

cation criteria and is to be placed under more stringent change control.

18

—
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -•—— ~~ 

• • . L A .  â...~t&A . h & . . . .  • • _ I  •_ - . — - . . . ,  — • -— ~••a_._



_ _ _ _  

- ~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ 

This is effected within the PSL by use of an XMLT directive (see Section 3.6).

All segments of a program which is being XMIT’ed will be moved to the specified

level. In order to facilitate changes to segments once they have been XMIT’ed

from one library level to another, the PSL includes a feature called “automatic

drawdown”. This feature allows library operations to be addressed to a

specific library level and if the element does not exist  at that leve l ,

successively higher levels will be searched until the element is found. Once

found , it will be treated as if it were found at the originally requested

level. This is based upon the upward migration of software through library

levels and the recognition that all elements above the requested level have of

necessity already satisfied the functional benchmark associated with that level.

3.5 Authorization Checking in PSL. The hierarchical nature of the PSL library

sys tem read ily lends itself to the systematic application of change control

procedures. Since the migration of programs from level to level requires that

successively more stringent benchmarks have been satisfied , the software

stabili ty (and the corresponding authorization required to effec t change)

continually increases from the lowest level to the highest. This is addressed

in the PSL through an authorization verification scheme which recognizes

users (b y an inpu t ID) and restricts the operations and the library levels

which they may use. The scheme is based upon a combination of user identity

and organization and it disallows:

a. Operations on software which is not in the province of that organi-
• zation .

b. Transactions at library levels at which the user is not authorized and ,

c. Execution of special PSL verbs for which the user is not authorized.

Among other things, implementation of this authorization check may prevent a

programmer in one department from changing cod e belonging to another depart-

ment, inhibit the Development organization from making changes to software

which has been del ivered to Test , prevent Test from accessing any sof twar e
which has not been delIvered to them, and disallow any sourc e change ac tivity
(ADD , MODIFY) above the INT level of the library.

19

~~~~~~~~


1

3 .6 PSL Directives. This section provides a br ief descr ip t ion of each of the

PSL directives.

1 .6.1 AD D . In ADD d i r e c t i v e Is used tc’ add a new segment of code to the PSL

l i b r a ry . I t must speci tv the segment longnaxne and the level at which the

segment i s to h 1~ added , i n a d d i t i o n to a number of other i tems which d e f i n e the

segment. Following a successful ADD an indented segment list is produced

automat ical ly .

3.6.2 MODIFY. ihe MOD I FY di r ec t i ve is used to make updates to code segments

which are alread y in the PSL library. It must specif y the segment longname ,

level , and edition number. The MODIFY directive is immediately followed by

sub-directives which describe the changes to be made. Following a successfu l

MODIF\’ operation the segment edition is incremented , the updated segment is

w r i t t e n in to the requested l ib ra ry leve l , and an indented segment list is

• generated .

w 3 .6.3 COMPI LE. The COMPI LE d i r e c t i v e i n i t i a t e s the pre-compiler of the PSL

• which performs source segment merging and forms translation before invoking

the appropr ia te commercial compiler (JOVIAL , COMPASS , or IFTRAN). At the

com p le t ion ‘I this step the program statistics are updated in the library

a comp i la t i o n l i s t ing is p r i n t ed .

3.6 .4 LOAD . [‘h i~ d i r e c t i v e spec i f i e s that a user program consisting of NOS

and WADER CONTROL cards be precomp i led and then executed . The direct ive

mu st specif y the longname of the user program and the library level. This
‘function is identical to the COMPI LE directive with the exception that the

pre-comp iled program will be executed rather than compiled.

3 .6 .5 COPY. [‘he COPY d i r ec t ive speci f ies that a code segment at a specific

leve l he cop ied to another segment and level. The names of the “from” and

“ to ” segments may be d i f f e r e nt .

•3 .6 .li X~’?T F. I’his d i r e c t i ve is used to deliver programs from one level to

ano ther . It specifies a program name (top-segment name), a “from” level ,

and a “to” level. XMI f will use the drawdown feature of the PSL to construc t

20

________ ~~~ ~~~~~~~~~~
•• -
~~~~~~~~~~~~~~~~ ~~~

-., -

~~~~~~

-

~~~~~
~—



the ent ire  source program hierarchy. It will then move all of those segments

up to the specified “ to ” level. (Segments which were drawn down from tha t

level or above are not moved unnecessarily, however.) At the same time a

full set of source listings for the program will be printed .

3.6.7 ~~~~ 
The LIST directive is used to request an indented listing, it

must specify either a SEGMENT list (one segment only), a PROGRAI’4 list (the

full set of segment listing s for the specified program plus a hierarchy

listing which shows the program structure), or a HIERARCHY list (which

generates the program struc ture without any segment listings). During list

processing a number of error conditions are tested and if detected the

segment statistics will be updated appropriately. These conditions include:

a. source segment exceeds one page limit (56 lines - an F flag),

b. protocol errors due to improper coding of control form s (a P flag),

c. mixed language error if an INCLIJDE’d segment is a different language

(M flag )

d. branching error if explicit branch statements are detected (B flag),

e. COMPOOL access error if the stated ACCESS requirements do not

match the design access (a C flag),

• f. syntax errors (S flag).

The indentation of each segment listing shows the direct relationship between
• control forms. Each line also contains a line number for reference when

making MODIFY ’s.

3.6.8 REPORT. The REPORT directive requests that summary data be extracted

from the PSL library and prepared in report format. There are three different

types of reports which may be selec ted - SEG MENT summary, PROGRAM summary,

and LI BRARY summary. (These reports are discussed in Section 3.7).

3.6.9 PURGE. This direc tive is used to delete segments f rom the library. I t

does not use the drawdown feature .

21



_ _ _ _  • - -- • • •  ~~-• -
~~

• 
~~~—— - r - wwr---

3.6.10 PUNCH. This directive provides a mechanism for getting card image
representation of a segment out o the PSL. It is a convenient mechanism for
maintaining procedure or data files.

3.6.11 CHECKPOINT. This directive causes PSL to create a checkpoint file
containing every segment in the PSL.

1 .6.12 RESTORE. [‘he RESTORE directive allows the user to restore elements
to the PSL library from a chec kpoint file.

22

_ _

—~ • • • - - - - ~~

- - -

3.7 Management Statistics Reporting. The PSL maintains statistical data for

each segment and each program in the library. Segment data is derived f rom

the user specified values when the segment was ADD’ed (longname , shortnaine,

language , segment type, version) or computed automatically by the PSL

(creation date , date and time of last change, number of lines , ID of the
user making the last chang e, etc.). Program data, which is associated with

the top segment of each program but is distinct from its segment statistics ,

is computed at the time the program is either LIST’ed or COMPI LE ’d. It

includes the date and time of the most recent segment change, the total

number of segments, lines of cod e, and stubs in the program , the date and

time at which the program was compiled , and the program object size. The

REPORT directive may be used to prepare tabular summaries of either SEGMENT

statistics or program statistics , examples of which are in Figures 10 and ii.

(Descriptions of the contents of these reports are given in Figures lOa

• and h a.) These reports are subdivided by CPCG and then by library level.

Each level also contains totals as shown at the bottom of these examples.

In addition to the SEGMENT and PROGRAM REPORTS mentioned above , a LIBRARY

report may be requested. This report provides very basic summary data as

shown in Figure 12 as well as the Code Progression/Durability report shown in

Figure 13. This latter report addresses “effec tive code” in the PSL library

• by eliminating the double-accounting which arises from multiple versions of
the same segment appearing at d i f fe ren t levels and simul taneously accommoda ting

the drawdown feature for code which exists at a higher level. The Code

• Progression part of the report, which is organized as a CPCG/level matrix,

indicates how much effective code exists (using drawdown as necessary) at

each level of the library. Thus code (segments) which exist at the INT level

of the library, “effec tively” exist at the PRG and CPT levels as well. Since

each of the library levels represents some sort of testing benchmark, this

report allows management to answer questions like “How much code ha s reached
• functional test?” , “How much code has been integrated? ,” “How much code has

been written?”

23

4

• A~~~~~~ ..~~-‘- - ~~~~~~~
•

—~ •—~ - ‘— - ~~- •-•- —~~~~~~~ ------~-—~~~——- ~~~~3~-• -- ~~~~-.- • __.,___l~ -• -

• ~— r 0’~~~’~
- -

~~~~~~
‘ - ~~~~~~‘ 

—

4 0 > ~) > —, - . C) - . 9 > . a) 0 .4 C’
V.- I r C ) ’ ’J i— 1 t . I J’ 0 . 4 4  ‘V S O  4 . 4  , ‘ l J j I

~~~~~~~~ a > .. s . J ,I , .  . ~~~l> .~~s 4 >
.4 ‘C) I
.4 a a-s I

4..’ ’
4., I

U 14

‘.4 ~a a I M a t ’ 3 C at~~~~~~ J ’ 4 . 4 q .3 4 4 4 4 C .. d a t C ’1
— IS’. I -4 ~~~~~~~~~~~~~~~~~~~~~~~ -4 .4 .4 .a .4 -4 -• .4 .4 -3 ~ 4~~~4 ..I

: I a a. a a a’ F 7 0’ 1’ 4’ 4 s a ., a, a a a a ‘S ’ 04 ‘) -O (t

• ‘II ‘!~~~~~T ’ L t~~ 1’ ~~~~~~ ~~~~~x r) I r i X X r t
.4 C I I a a a a a a a C a a . a a a a~~~~~~s 4 0 a a a a . a

~‘. a,, I O O C ’ ’f l0’N s V O V ’7 T~~4 N * 4 ’-4 ’C ’ N 4~~(~’ ’)O T1 O
.44 C .‘ .‘ 4 — .44 .45 tT~ 4 .4 (45 —
.

a s s I ~~a
544 ZL1~~~~ Ia
~~ b~~~~~~ 5,’~ I O O) , 7 ’ a 7 , . 4 O 4 . . 0 ’ . 4 5 O O N S 4 5~~O s t S N 4 N* (lP

C) ‘4 I
• 4— ? a .I I a I r ‘.4
4.) ‘4 CS C)
44 ‘ I 0 0 0 “ -~ ‘7 “ ‘45 0’~ 0’ 0 .4 V” *S a’ 545 4~ 7” 0 ~~ ‘fl ‘7 ‘C’ ‘a .4 in
a • I 3 ’ I s V
44 ‘44 1

I 0 0 0 C’ C’ 0 0 C) 0’ CV 05 0 0 0 C) fl C) CS C’ 5-4 0 0 0 N .4 >
> I ‘1 at C 51 —: 4’ .2 C a a’ 4 .1 .2 .2 .2 .4 45 4) .2 .1 0’ 0’ .2 .2 (

(ai I .54 aS -1 0 4’ I’. ‘C 7% .55 (5
~ 7 45 ‘ 4 (54 VS *4 01 (54 4

fl I 0 (,) -, ‘45 ‘i AS -: ‘.1 -s — j (~j . a , V 5’) (I i 4 7,4 (45 ~4 ~ 5 *4 545
F (44

•1’ (C) C’ .,) C’ f’ -.‘ • • N c’ 4” .5 a’ a -I “ ‘“ .0 ~) ‘C’ *4 4) ‘S I ‘7
- . I .4 “V .44 L) -1 “4 .4 - . 0 —. .5 0 ‘S AS 3 a-) - , 0 (a 0) .5 15 445 -7 a, C) N

S.’ -r
44) 4) 1 ..4 .4 .’.4 ..4 (5 5’~~Ø t g 4 P a 0’ . ’ a Aj .4 ...‘4 r4j~~ 4 ’-1 _-4 s , 7 ’ ,o .44 44 4..’
I/l .4 74 ~ 4 0 • .4~~ 4 .4 T V c.fl a

144~~~
~ I a ’ a . , -J N O S N . 4’ S . ’ . 4 7 , 74’ - C).. —’ ’4” - t . 0 . 4”4 ’S f l . .) a— SI > I’-.

I C) ‘4 C) 4 . (
~ — r,j 5 53 .4 .4 .~ .4 .4 ‘.4 ..a .4 (54 .4 .4 .4 0 C’ • ‘~ CU

I ~~
... S. ‘5 S . S . S . 4_ 4._i

5. ‘4 (54 -4 (54 N 45 .~ N .5 V.. ‘7 *4 .5 2 5) .5- .(N r 1 4 4 54 45
a a l O - D O C) C ’ ” 1fl -fl ’~~f l C) C V ‘ O O , ’ C S~~ 4 . 0 C C S~~~~0 0
— •~ I ~~

‘t i .* 4 V ., V’,. t . r ” r t . f’. t. (5 . 7 p . N ll . N 7 ’ (. N — t .. f’~~ I’— - N t - -. _J X V V 0
‘fl I N N N 7- *4 *4 N N V’S N 5’. *4 ~~ N (S N V’S 7— N N 4’. 5’- 7’- *4 .2 3’ (44 O~

• -

I (“ 4, 5-)
s.’ aa I N 7—.

~~
4 45 45 5) ~~ a’ .7 a, ‘s_i ~~~~~ ‘45 rs~ C’ as ‘7 54 .0 ‘J ~~ in C) 2 C

0 a I .4 .4 .4 (‘.5 7,4 0 ‘7 554 (‘3 ~(‘ -C ~ 4 0 ~ ‘.
.L) N ~~ in N at

C ’ ”) ‘44 ~4 .4 .4 — ‘ 7 1
$ Q

~— (I”. 45.
~~

N ~at A’S N 0 -7 ‘si N 3 4— , 44 (5- ‘C’ V’51 444 0 C) 0 4 (54 $4_i
-5’ ‘5’ 4-4 I —4 3) “-1 ‘4 7’ 4’) “5 pa — 05 .1 ‘.1 4 4 4 .5 .7 9 (54 CV4 .-4 .-4 CM La’,

“3 a V 5 1
— I
N I 0- 4’ 5 ’ 4,, 0? II ‘V ’ 5 V (45 1 0 ‘ ‘ 4 4 4’ ‘7 5- 4’) 7) a’
0 C’ I 5-) 5) C. ‘ S C) .~s C~ C’ 0 . 4 a-, s , 0) .4 a-’ a_ S a-’ 5 La I’ C) (4 Cl 5-.’) ‘43 ‘Cl C
-‘ U. I -. ‘ 5 .5 .~~~~~~~~~~~~~~~~~~~~~~~~~~ 5.~~~~~~~~~5. ’ . ’ ’5 . 5’. 4..’ V54 in I_S - ‘
(44 — I “4 *4 (‘as (‘4 (53 45 ’ 7 “i P)

~1 l’ 5/ (‘3 ‘0 (‘4 /5. (3 *1 -‘S (54 ~‘,5 (‘3 (5) 0 — 444
4 4.1’ 4 I 4.4 C) C 4 5 ~~~~~ _ ’ , 5 5) (‘ C ’ s) a” O ’ ’ 0 ,) C) ,‘ C) 0 0 0 ‘S 14 05 0)— .5 I 5 . 4 . 4 5 4 5 4 5 4 5. — 5.)
C 4 £ N ‘5, N 4— ‘-. 5 5 7 -~~~~~~~

, 7. — ‘ 0~~ — 5’. N N N N. N 7’— f”. 7-’

C’ 5~~s..I N 7 - S . N* 4 ? ’ N N* 4 N N .~~ . . * 4 5 . N N’ .7-- N .* 4 N NN N

.0S “ .4 , . 4 . 4 5 4 . 4 4 . 4 4 _ . &.3 .3 4 , 1 . 4 . J_1 1 _ J . 4 . 4 . 4 (‘.4
I (-_‘L ’ ’ . 5 ,, t ’ a- ,3u(~~~(t),S s.4 LlS’ ¼) 5 . -’ _’~~,)L” L J L ’ a - ’

C — I 7)0) •. 3 0 ’,) - C) ~~~~~~ : ’ ‘ . C) ‘ J a -, /~~ - ‘I
:3 - I .1 .44 ._. — . _4 C) ~4 ‘.4 .1 .4 —4 - ‘ .4 .4 — . ~_. .4 -‘4 .1 —j -— .4 ,.4 ,_j

S — 4 ’. ‘.7
-J ~“ i ‘44 4-4
.4 .

~~~ 
-., - . ,

~~~~~~
. . • • ‘.:.“- .> . ‘-. > - > . ~S .-. N

‘S .2 4 C ~‘ ‘ S ’ ” ’ ’’ - ’ “ “i”~ - ~~‘,
ç-

~) ‘ f l (~~~% 4 /~~~C) 5 0)

_,a I “4 -‘l ’-S -1 ’-) -) ~,) ‘) 45 ’) , fl -)~~ -1 1 -, , - (- f l -, ”~i - 7 -)

-. $.‘l r’ 4’ I -) (5 3. ‘5 .- 4’ ‘1 Si S (4,
~‘S Cl a-’)

.5 .~~~ I
‘5 5-S T , .) ,I’ ,~_) ,4 ,‘j S~~~~, O l 5 - ’ _ ‘ 1 / (1 44 /

a, — I ‘. v — ‘ ,
~, a -s -‘ -, ‘s s 4. 7, ‘s C) fl~ 5- ’)

‘7 I 5- ’’ v’ 1 1 : ’ . 4 ’ ’ ’ J ._j - ’ (43 4 ’ ’ ” 144 &l 0 — —
UI ‘ T I “ 1” 1, 5) 1 4 ’) , 1 I V T ’4 ‘S ‘ (‘ 4 LO W ’ ’)

4 , l I (/4 .1 L I S I ’ S) I S > 4 1 ’ 4 5 , 2 (4 5 5’’
‘1 I __(I VS -3’
7,, 4 .2 15/ — (54

I 5 ”) ‘S (5
2 ’)~~~~ ~— 0) C) a-a ,’)

4 -. .4 - -‘ 4 ‘S —

34 4 S ’ s I ‘S 4 ‘ 5 (4) - , 0 . ?

.45 ... ,
~~~ ‘ . 4  4~~~~~’ ‘a

a 4 . 5 ”. 1 . ’— ’.— 4 5 a - . 5  ‘4 ,0
• ‘ ‘~~~~~ ‘ •~~~~ 

7 a

. 7 . — —  - ‘ a .  ‘ ‘‘ .— -“ 
-- 4 — - ‘ ‘ V . -- . ’- ~~~~~‘ ‘ — 1 ~~ ‘ ( ‘ - - I a - ’ ’

I . ‘ ‘ ‘  ‘ — 5 5 ,. . .  ,
4 ’  ( ‘ 5 . . ’ & ’_ ” ,,~ I,, ,. ’ . . L 4 _ ’ — , ‘.

I I  ~~~‘ i s , ’ l a . .  . ‘ , . —

TIlLS PAGE IS BLST QUAI~IT! ~I *~G3I ~~’BI&*
YROM CUr Y Ythi*lS1{~~ TO i~ O .._~~~ —

-

,.~~~~~~~~~ ._.é 4- L..4a 4~~ as ~~.i_i- —



________ 
— — “—-‘—---— 

~~m-” ” ’

~~’’ ’~~
’ “ ‘

~~~

‘
- ‘

Top Line - Date and Time of computer run producing this listing .

- Version ID (date) of the PSL

- Type of report requested ‘

- CR~G for this page of the report

Library Level for this page of the report

Tabular Data - Segment longname

- Segment shortnaxne (for MAIN , SUBR , LOCL, and COMP types)
- Segment type - INCL INCLUDE

- MAIN MAIN PROG RAM
- SUBR SUBROUTINE
- LOC L - LOCAL PROCEDURE
- COMP - COMPOOL

- Date segment was created

- Current number of lines in the segment

- Gross size of segment (includes all lines which have been deleted) f .
- Date and time segment was changed I : ’

- Segment Version (established by the user)
- Segmen t Edition (incremented for each change)
- Total number of times segment has been changed

- Number of changes made to the current version

- Number of lines (gross) for the curren t version
- User ID of the person who created the segment

- Special Flags - F Segmen t exceeds one page
- P = Protocol error

- S — Syntax error
- B = Branching Statements

- M a Mixed languages

User ID of person who last changed the segment

Suninary Data - Totals for the above figures

Figure lOa: Explanatory Notes for Figure 10

25

___ ‘ a - “

-
_ _ _ _ _ _ _ _ _

a. ~~~~~~ _. ““a--- ’ - ‘‘ .~~~“~~ ~~~~~~~~~~~~ ‘~~~
‘.‘‘4’.”.

~~~~~~~~~~~~~
“
44



‘
~~~~~~~~~~~

‘
~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .4—-’-~~~~~~~~~~ - 

- -
~~~~~~~~~~ 

- --
~~~
-- -

. 4
4 ‘0 0 (4’ in a *4 0’ s,’ ,J’) -t a-) pa 4- 4)’ . CS .4 .,) *4 4.) pa ‘4 4 “7 .45 *4 0’ *4 0 0 in .4

45 (54 4 .‘4~~~~~0’ — 4 ’ 0 . . N 4’ f —1,S ,.0 — ,iO’ *4 ,C ” 5 p a a’ 4 5 i n 3’S (” , 4 P~- .r0’ 4 43 0 5 c . - .z I”as
0? ‘.4 pa .7 4’) 0’ 9 .‘. *4 .45 4? 44’ 0- ,~ ,‘.“~ .-s .7 4’ — 754 .. . ‘Q a_s ..s i-s N —
0 4 4 i-,. — ‘7 ~“ — pa 4”

I— C
404 0 4 4’s 0? 4. .1 -0 l’s 4” .‘s a’ ‘4’ ‘0 .7 0 pa 0 44 5) I’, 0 4) (1 34 5’. 0 •5-. 0 (3 0 7 .7 44’ 0 0
— 441 4 .4 .7 .7 05 —. .7 — .4 .5 .5 4’ S’s ..l 4 .4 .—. — ‘~

, (5 *4 -4 .4

• — (  0 3 4* 4 9 0-~~ 4 - Q’ 9 7- ’ 7 . 4 . 4 3 , 4 4 7 - 3 4 3 4’ 5 0 - 4 4 7 -34 *4 4 4 4 4 4 4’ 7 a ’ Q ’4 4 4 4
a 4 a ’  4’.’ .5. 4” .7 7 .7 5’) .7 V’s — 7 3 .7 .7 .7 4 4 4 — 7 4 4 9 .7 .7 7 44 5(5 4 .7 .7

544 3,
> 0 ~~l 4’S 4? I” 0 44’ 5(1 4”? •‘( 5” ,5 (54 144 ((4 0’ f” 44 ~ ‘ ‘5- 05 pa 5’. 05 0 5’- /5’ I” 0 C “4 4’ 0’. 0’
43 U S 554 — ..
-‘.4 4

(13 4 00’  ‘) pa 0 ’ C 0 ’ ’ 5 i ’ * 4 J -.. 4 C ’ C’ N :~ _ s 0 0 0 5 N 0 0 - 4 - , ) ’ 0 - 4 C ’ . 0 0 ’0
L 4 .-. ‘a •‘, s,. — . .4

.2 — 4 i’g pa I5. ls~ pa t,, .s. (5 5-a .4 1’. .43 ‘,, (4 5’, — - 754 7’. (44 — ‘  “3 *4 —4 7,4 I’-. 74 — “4 .4 iSj 55,4
(/4 ‘. 4  —4 .-a.’  C — s C’ S’) .. .’  0 ( 40 . 4. ” ’
a ~ , C  ‘ .% ‘ . 5 .  5. 5. 5 . 5 . 5 . 5 .5. 5 . 4 . 5 ..

~~~ 4 4 / 4 4  1 , - r a ’ a / 0 , 4  ‘- 0  1 , 1 7  ‘ r 4 r 0 ?  f l0 ’ 0?~~~~7 r r a Q - !r 4 ’ 0 ? r
• 4 4 (*4 7. N N , N N . 7- . 7’, 7 -_ 5’.. P. 7.- N N . * 4 N 7” F’. N f’.’- P ” N* 4 * 4 P .. I.. P— P” . N N- N N t’.

•4) 0 C
I’,’
ft — ~ 0 0 .4 .7 0 .7 0’ , 05 .7 03 4 7- 0” ’4 CI 7- “ 50 4? 5’- ,0 7- 0? 4 ’ 4 ’ 7 .7 pa 41’) .7
0 4 0 5 4 .4 ~ .. .74 ~_ *3~~ ’(.a _4 45-4 .‘l .4.47.J *4 , 4” 44 in -4~~~~~.4 ~~~ e,j pa r,j l’-’.~ pa

2 . 4 0~~ ’S (‘5
.4 ‘4 544 0?

2 0 5 0 5 p a Q ’ 0 p a p a N . C),) p a p a . 4 p a ’ 5 ’ ’ 7 . 2 a. V o c’s 1) 4 5 ’ 7 4 5 o . 0 ’ 7 0 ’ 4 4 . - a3, 0~~~~~- ‘
I/S 0 .‘4 3’) I’4 444 7’. 4’S “4 0 .5 I” .7 .4 ~ ‘ .7 (45 (.4 454 in .7 I’S’ in 1” ... 0 (/1
1/ ‘43 .4’ .‘4 Z
‘4
0 7 0 C) C)0 0 5 C (C)0 0 0 5) 4 0 0 0 0 0 0 C) 0 00 0 00 0 00 0 0 00 0
~,, > ‘ 4 . 4 .4 4 ‘ 4 * L S’?~~~~~4’ 7 , 5 / 4 4 ‘4 4 45- 4. 7 1 4 . 4 4 . 4 4 4 . 2 7 1 4 . 4 . 4 4 2 . 2 . 4 4
C’)
‘S 0 0 ? 0 0 0 0 0 0 0 0 0 0 (5 00 0 0 00 0 0 0 0 04 0 0 0 0. 4 0 0 0 0
0, .4:)

.,4 I 443 N
1’ 40% ,4 1.3 7,4 0?
45 7’— .7 4’l 0 pa pa -“s . 4 -7 7’- -4) Sn I’.,- 71 I’— —4 0- 0 f” 5 ‘0 .‘4 .4) ‘7 —4 —4 0 5— 44-4 .4 “‘4 C

,,4 944 14 3 4 5 . 4 (5, pa 0- (4’ 7.4 7-- .~ ~~ N. (
~~ 5’. ‘5’ .54 05 .0 -C 4’S in -‘4 ‘0 I” .., Sn — “4 A’I 0’ .t (4~ 5) ‘45 4/1 4’

1’ ((‘43 pa 45 *4 05 0’ ‘7 — ‘0 7.3 .44 .4 4’ ,-a pa “4 ‘0 0’ (‘5 ‘.‘4 .4 554 .7, pa pa I” . — 45 Sn (5
0 0 E.2 I” (.”S E

a, ‘., -. 0 .. .-. 7’- (53 0) 7- 0 .7’~ (‘4 7 1 . 4 . 4. 4 ‘.7 *4 0 in 3, in 05 0 .0 .4 ‘0 45 7- pa 0? 74 C5~
I’S ,

0 0? 54) — — .0 .4 (“3 44 ..1 .‘4 0’ — in —4 .-4 ._4 (‘5
14

O I 0 4’ ‘5 N 7” 7. 0 ~ 7’- 5’ -7 ‘7 ‘44 4” I’. ~-,J 7-4 4’ “4 a) .45 (54 f’~,5 I’— .0 71 .‘4 .7 0 5)1 45 3~% ‘4 *4 I’—
• 444 1 ~~ “ 3)

0? (4) 1 0401 I’s_i
r Z 0 ’ ’ 7 ’ 7 7 - 7 4 7’ 0 0 - . r 7 1 3~~~~0~~4 4 S n 4 5 * 4 4 S 7 4 ’ 7 I L a7- 1 t ’ 0 4 5 7- N i n’ 7 ” 4 0 - 4 5 0 I— —I

5. 4 .7 01 45 (54 ..4 4fl 754 5” 45 4 SI —S . 4 ‘7 .7 .7 Isa .4 ‘7 ‘4 — .7 .3’ 4’) .7 4/, 4¼’. 4’(14’s 5) ‘7 5)5 44
‘4

“4 I
o I.) 41’ 0 .0 7’- 54 I’— 4/ 0’ ,s,, i’s .4’ (44 I”-’ 46 V’4 05 as 4’, a 7’. 74 7’- .4% 4.) 5)~ 0’ pa ‘0 .1’ 4’ 0’ —4

.‘l .4 ,‘ -4 ~~ (44 ~~~~~ .I.’4.I “4 .4 0 .4
0’
5’-’ 1 -0 0- 7” pa “4 Cs 0’ 4 C ./‘ 5’ .54 .7 0 ‘0 .4’ .0 7’, *4 4 46 5’- 0 4’) 44 -7’ — 0 0 0 /5’ (4 (‘3 ,_.

~4-4 .4 ’•(.5 ’4 Q * 4 ‘s .*4 — . 4 i S sO l’3 .4 .’4 pa l”.4 ’4
2 5’ 5 . 5 . 5 . 5 . 5 . 5 . 5 . 5 . 5 .’) . 4 .5 . 5 .* 4 5 . 5 . 5 . 5 . 5 . 5 . 5 .’. 4 . 5 . 5 .’ . . 4 4’ am 0’
O 45 ,4 pa 7.4 7. .l .5’ 4/ 7. (‘4 ‘4 7’, “4 (5.’ na 4,4 CI’ ‘-4 74 4 4 ? .‘4 .‘4 .4 45 (‘.1 4 1(4 — 544 -

‘.4 .14 -‘ T ’ ’ ’ O 0 ’ . ” 4 0 0 0 .) 0 . — 40 0 0 00 C ” —-a 4’~~~~
5/1 7” 5. 5 . 5 . 5 . 5 .’..5 . 5 . 5 . 5 . 5 . 5 . 4 55 .* 4 5 . 5 . 5 . 5 . 5 . 5 . 5 . 5 .* 4 4 . 5 . 5 . 5 . 5 .* 4 5 . O L U S
O a a’ C 5’ -r 7’. 5’ 0? ‘4’ .Y ‘,~~~~ ,~ ‘5 N. /4’ 3. — - 4’ 4/ 0’ 4” N 45’ 4. 5’.. 4) .4’ ,j, 45 45 N. — o a: 00

0 N N N 7” 5” N N. N. 5’. 5’- “ I” N 5. 7. 5”. 7’. 7’. 7- N. 7-’ 4-’ N. *4 *4 7- 1’- 7’- 7-- *4 N. 1” .4’ 4) “~
0’ _4

I, ,
_s s,~ a- a, a, a - a ,
1/4 4’ 4 - > >7 ~~4. .2

—4 45 -, 4 5 (4 . ‘‘4 45 4 5 f l i ‘4 ~l ‘4 (4) ‘5 45 45 “4 ‘5 45 “4 0 45 ‘4 “‘S ~‘) ‘4 45 ‘4 “I ‘4)0 45 45
(/1 . 3 0 1 4 551
4 1’ 4— 0’ 4 4’- ‘ (4. 1- s 0 4 1 ‘5’ C ‘ 11, — ‘7 0 ‘.4 7 = ‘5 5/ — — 4 (1_I S in 5 ,

42 7 7 / 0 , , a C)))) D .5 4” . P’ (4- 0’ P ’ C 1 - ’ ’ S C (’ 4 2 C J~~~~~C Sal C N O ’ -’)
0, — 44 ‘4 42 — C (_) C_I 5-) I_S .4 5- ’ r C) L) VI .. . , .~ — .~~ r I 4. 4- ~ (s a- .7 0 pa — Ci F &

“7 . 4 . 4_I C , j (4 , . 4 _ 3_3 _ J _ ’O t 1 I . 4 , .J ’ C (_ _? . 4 . ,I _4 .3 . J C I ,,,J ,,J ,J , _J _ j ’ ’ .J .J •.‘- =~~_)

‘4 1 401 ~fl VS 5- - fl C) V’S ‘5 1 5 3 4 1 4 ’ ’,’) (.4 (/1 S’S ‘4 (‘7 1-’ (‘7 VS 5”) Sa ‘0 4, 5/5 L’S (a55 4.’, 4 4/4 1/5 VI 04 7 0
-. 5-.a 55- ~ n ~~

, s 7, a 6, r, - -a C a a a. vs n 4’) C. a, a a L’~ ‘~ a, -s, a, a, a, am a 0 0’
42 • 0.
a

_1 ~‘ 4_5

I a .,,j

4 ’ ‘4 . ‘4
-4 ‘7’ -4

-
• ‘5) ‘ 1 4-. c ’ S / I

.4 .4 ‘,, 45 74 V “4 / 1

— ~~~~~
;~~~,1. — V 1—. • “• ‘t ‘4 ,4 4.- ‘I ’S 4

/ 4 .t . 4 ’ Y ’ O 54 /44 4
,~ , _ 0) - : ’. •5, C,

(‘I —(“S 0) 3 — I .44 44 -
“S — .— -SC)) 4 ,) .~~~~ ‘5 7 —
45 .2 3- ‘I • ‘‘ ‘a — ‘4 4 ‘~ 1

.3 I --4 - (3 4 .i _~ 4 —) , , ‘ S , ’ _ / ” ,.) ,‘ • , / .‘ IaI
I • a -‘ _, ‘ ‘ 4 . -) 4 - - 4 5 ’ ’ 5 5 ‘ 4 -

’.
,4 ’) 5

I T . ’ ’ % ’ ” • / . ~~~~“
‘
~

-. ,:. .‘:.,. - ~~~~~~~~~~~~~~~
I 5 4 (’(~~. _ (() ~~~~:‘ ,‘, t . • I . 1 ,/ ’. ‘ ‘~~~“~~~~~~ ‘) ‘~~ ‘4 , 1 ’S 5 4 ” ' .

i ’ ~- . ‘r ‘‘ ‘ - .t~~~ i “ ‘ ‘
.—“ .‘‘ ‘ ‘ - 4 ’) , ’ -‘ ‘ (1 5 1 4 ,14 (1

4 - f I t ” t ’) l ’ ,,,,‘ , , _ s , s ’’, . ’ ‘3 . . - . (, 1 5 ;’ ’S % ,) 5 -.~~~

I _J - a ‘ 4 .4 1 - - I .3 4 — I .3 .3 a ..i 1 - 4 —4 ,,j ~~ ‘‘ ‘ .2 1 .3 — _ 4 .3 — , ~ 1
;

I 0 4 5 .5 a 5, ‘5 5. 4 5 1 5 - S I) . ‘4. 4- iS 5 5, .4’ ,) a- 4 S — 1 5. 4

26

THIS PAGE IS B&ST ~UALI?T PR,&G~Z5O~B~~
I P .$lSH~~D TO E~ O

-
‘

8’~~~~~~.3’ ’a~~ ’ ‘ - ,~~~ ~~ ~~~~~~~ . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-

~~ O~~~~’’~~~ ~~~~~~ ?,.a- ,

_ _ _ _ _ _ _

Top Line - Date and Time of c~ nputer run producing this listing

- Version ID (date) of the PSL

- Type otT report requested

- C}~ G for th i s page of the report
- Library Level for this page of the repor t

Tabular Data - Program longname
- Program shortnam e

- Language - JOV — JOVIAL
- PDL~~~~~~L

~ I- COMP COMPASS
- IFTR IFTRAN 5

- LEL LEL (loader statements) r”,

- Date and Time of most recent segment change

- Total number of segments , lines, and stubs

- Program Version (max of all segment versions)

- Program Edition (sum of all segment editions)

- Program Instance (incremented for each compile)
- Date and Time Compiled

- Object module size (decimal words)

Sun~nary Data - Totals for the above figures

Figure lla~ Exp lanatory Notes for Figure 11

27

L ‘ ‘~~~~~~ ‘~~~~~~~
_ _ _

r

I I I I I
I I I I I S

4.4* ,~ ‘ pa 0 5” ‘a5 ~7’ Cl 0’ s_ i 3’ 4) VS 154 .7 3’ 4-5 0’ ,A 3)
‘4 ‘44 Pa 44 w 5” .F 144 7- ’- 0- (14 0 0
O a’) 5.1 0- .4 (4) (.4 a’S — ‘4) 0 4’.
34 Z Z 7 7 “4
-4 ‘4 ‘4 -4 -4 ‘4
-. I I 1 I I

LI 4.3 5.3 0 4- 1
I I I I I

4/ I I I I I
VI 04 4’ ‘4 454 4.’. 4) 0’ I/S 4) 0 (/4 Cl 0 .54 I’S I’- “4 0’
54’ 0’ 3’ 0 ‘ C” —. “ “.a 44 555 .4 0 0’ ~t ‘44 0 33 ‘.1

0’ 7 “4 .4 7 45 *4 ‘4 7 .4 7 .5’ 7’. 7’S Z ~ I”4 ‘-4 “4 ~5 ’.4 4 ’ ,,• ‘-4 .44’,,
‘.4 -3 _4 _, _J -4
I I I I t

0 I I I I
VS .4, 0 7 4 0 s’S a’) ‘0 4 / 4) VI -‘4 0 5/’ (‘4 44 46 4-41 4 6 0 ’ ‘54

F F -4 F 5 55~ — 5 151

‘4 ‘4 ‘4 -4 ‘4
0’ 17 57 57 57

• 4-) 54 5-4 4,4 54
40 0 Ci 0 0 0
74 57 57 57 57 57

3. 3. 0. 0.
I’. I I I I I
C_i I I I I

VS ‘1 0 0 ~~ an 05 3 — (/4 0 0 5-41 0 0 0 VS .7 (4 4 0
0’ 4/ 14) 4) 3) 4/
7- 0 0 0 0 0— — 5_ 0”- —

I

- - —
- ~~~~~

.
“iS ~~

-
_ _ _

- m~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~

-

r~” - ’
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

I I
I I 0 0 0 0 0 0

1 4 . 1
0 I
I I

I :
I I  0 0 0 74 0 0

1 1 4 1  3, 0’ 0’
3 1  4) .0 0’

—
I I
I :

I I
• I I  0 0’ 0 57 4’ 57

3) 154 155 74
. 7* 1 -4 — 0

s- I  4)
i - I l
— I :

I I
4 / - I l  4/ 0 0 0 0 0
4 8 1 3’ 55’
5 7 4 I  -4

0 - I  I
i i

w I
0 I
C I I
0 1 :  o I’- 0 0 0 0

744 - ‘
4’

57 • I I
4 I I

I I
I ,  0 0 0 0 0 0

- ~- :  n.
I’ I I
4 I 1.1
F I I  ‘s-I
F I I  0 74 4’ 0 0 7141 —
O .4)1 7’— — ‘0
5-51 0 1  -4 ,.4 .0

3 . 1

-
~~~

Cl 0 0 0 0 0 0
3 0 a.I

-44 0 % ‘a

H
I 13

F I 00
C) I I 0
— I I 0 0 4) /5 4’ ‘~. 13
vs p a l 74 74
57 4 1 ‘0 7- 551

i 1 “4 (44
I I “4

I I

57 I I
• I I 0 45 0 0 .7 ‘0 0)

VS •t — I .7 .4 I’S_i 0’ 13
• VI 1 (44 7- 7- .‘l S

‘4 0 ” I “4 4’ 00 - -
57 7 1 1 .4 ‘s-S

D I I

~~ VI I
‘4
57 ‘ 4 4 1 1 a •S 5.2 3) .4’ .4’

7 4 5 7 1 -,.s -t — esa C’
a’ — I ‘ . (‘.4 7’- 7’-’
(5 14, 1 “4 ‘7
5 1 1 “4
a l l

O l I S
C) I I ‘7 *5 .4 s) .4 4)
53)”— I ‘4 7- “4 74

154 - — I -, .7 I” 5’- .
.5 3 . 4 1 3’ -4’
• • I I -.

3 1 1

“4 I I “ 1.’) 0 ‘S ‘7’

5 I 5 ,S •-‘ — -.
L ’ I .“ “4
I I ‘-4
I I

Si I - S
“4 I I - ‘
44 I I s 7’ .‘, 1 .7 0

S _, ,, - . _ 5 —4 . 4 “_ ‘4 “4
0 t I “4 •‘) 7’. 7- 7”)
44 S I .s —, .7
0’ I I -‘-4
7- I I

• • 4 I5
— (‘I I I 5._i — ‘

‘4 1~~ I) ~ 29

LI
_ _ _ _ _ _

——-~~--~

_

The Code Durab i l i ty report acknowledges the fac t that segments which have

already been changed at lower library levels represent a discount to the

figures of the Progression report. The accounting mechanism employed in

the Durability report ignores segments which have already undergone further

change at a lower level, i.e., the Durability report shows management that

it is dangerous to consider a segment as having been successfully integrated

when it has passed the INT level of the library if it is simultaneously

undergoing change at the PRG level. The value of this report lies in

complementing the Progression report in allowing management to answer

questions such as “How good is the code that has been deve loped?” and “How

much effort remains to be done?” . To consider an extreme example , if the

library only contains ten unique segments and they have all progressed to the

TST level but nine of them have new changes introduced at PRG, the code is
clearly not very “durable” and the progression numbers are apparently (but

not necessarily) misleading. These discrepancies can only be resolved by
management understanding of the technical status of the software at the higher

level and the reasons behind the changes at the lower level. To calculate I -

“durable” lines of code, the PSL counts each unique segment only once, and

that at the lowest level of the library at which it appears.

_ _ _ _ _ _ _ ‘a - ,,~ 4 - - - - ---‘ -‘ _____

F’-’ ~~~~~~~~~~~~~~~~~
‘ ‘

-+ .O PAVE PAWS DATA COLLECTION ENVIRONMENT

The controls inherent in the Program Support Library (PSL), and in the automated

Trouble Reporting (TR) System provided for ease of automatic data collection ,

with a minimal amount of manual etfort . Program modifications were made to the

Program Support Library and ‘trouble Reporting System to provide for data

collection reports. these were provided to RADC on a periodic (monthly) basis.

4.1 PSL ChanRe s in Support of Data Co l l ec t ion . The Program Support Library

programs were modified to read the compiler list output and determine compiler

detected errors. A special data file was added to the PSL for the purpose of

saving compiler detected errors. The contents of this data file were used as
I”

inputs to a report program on a weekly basis to produce the PSL Error Reports

which were provided to RADC as part of the Data Collection Effort. Impac t

on the PSL users was minimal , with one additional field required for compila-

tion (compi le reason code). The compile reason codes are described in

Figure 14. A list of the PSL Report Data is shown in Figure 15.

4.2 TR Data Base Reports. Using the TR Data Base maintained for PAVE PAWS,

special TR reports were written for the purpose of data collection . The

modified TR form (described in section 4.4) was used to provide input data for

these reports , which were produced on a weekly basis. There were three reports

used for TR Data Collection: CE~ I, CPCG , and originating organization. The

number of errors by error category was provide in the TR reports.

4.3 Data Collection CR~Is. A subset of the PAVE PAWS CPCIs was used for Data

Collection (CPCIs 2, 3, 4, 5). Specific C~~Gs are listed in Figure 16.

4.4 Manual Data Collection Form. The Trouble Report/Change Request form was

modified to support Data Collection. This was accomplished b y add ing the

Error Category field to the form. Figure l7a shows the sample TR form , and

Figure l7b the Error Categories.

31

_ _ _ _

~~ -.‘- -- - --~~~~~~~~~~~~- “ ‘ -~~~ -

—-- a, -
~~~~~~~~~~~~~~~ — - ~~~~~~~~~~~ ~~~~~~~



COMPILE REASON CODES

1,1 INITIAL PROGRAM COMPILE INITIAL

This code should be used until the program compiles without
compiler detected error. S

1.2 KEYPUNCH ERROR KEY

This code should be used when keypunching errors are being
corrected.

1.3 DECK SETUP ERROR SETUP

This code should be used when the compile is to correct
a deck setup error such as using the wrong COMPOOL.

2.1 COMPUTATIONAL ERROR COMP
p4

This code should be used when correcting computational errors
such as the wrong sign or wrong trigonometric function .

0~

2.2 LOGIC ERROR LOGIC

This code should be used when correcting logic errors such as
NQ instead of EQ.

2.3 DATA BASE ERROR DATA

This code s~ ou1d be used when correcting data base errors
such as tables not correctly initialized .

2.4 1/0 ERROR 10

This code should be used to correct errors in using the
10 facilities such as changing reads to puts or adding
necessary WAIT statements .

3.1. SPECIFIED FUNCTION NOT IMPLEMENTED SThI

This code should be used to insert functions whose implementation
has been delibera tely delayed.

3.2 SPECIFIED INTERFACE NOT IMPLEMENTED SINI

This code should be used to insert interface code which has

been deliberately deferred .

4.1 UNSPECIFIED FUNCTION FUNCHG

This code should be used to implement new or changed
functions .

4.2 UNSPECIFIED INTERFACE INTCHG

This code should be used to implement new or changed
interfaces .

Fi gure 14. COMPILE REASON CODES

32

-— ‘ a,’- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - - “~~ “



_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  

- 

I

‘7

5.1 MEMORY OPTIMIZATION ?€MOPT
This code should be used to compile changes made to improve 

S 
-core memory Util ization.

5.2 CPU TIME OPTIMIZATION CPUOPT
Thj ~ code should be used to compile changes made to improveCPU utilization,

5.3 LOGiC SIMPLIFICATION LOGOPT
This code should be used to compile changes made to the programto make the logic easier to understand.

6.1 COMMENT COMMENT
This code should be used when the compile is to verify thelegality of coaznents .

I”6.2 EXTRA LISTING REQUIRED LIST
This code should be used when the compile is to obtain anextra listing or an additional listing feature e.g., generated 

-‘code.

6.3 OBJECT MODULE VERIFICATION VERIFY
This code should be used when the purpose of the compile
is to guarantee that the object and source code match.
This code should also be used when a common include has
been changed in another program .

7.1 COMPILER ERROR COMPILER
This code should be used when investigating or correcting ~

‘ 

-

internal computer errors.

7.2 OPERATING SYSTEM ERROR PPOS
This code should be used when correcting operating system
errors .

7.3 PSL INTERNAL ERRORS PSL
This code should be used when correcting PSL internal errors .

Figure 14. COMPILE REASON CODES (Continued)

33

- a .——,.—“..‘-‘~a——-” ~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~
-— ‘-4 .—’- a. _‘~~,__ ~~~~~~~~~~~~~~~~~~~~~~~~~~



-, —~ —- - ~~~~~~~~~~~~~~~~~~~~~~~~ “~~~~~~~~ 

-

DATA ON PSL DATA COLLECTION STATISTICS FILE S

LONGNAME OF PROGRAM
— FIRST 1140 COMPILER ERROR S

SHORTNA1’IE OF PROG RAM
COMPI LER CPU TIME
PREC (7IPI LER CPU TIME

PROGRAI I SIZE IN LINE S

PROGRAM OBJECT MODULE SIZE
PROG RAM EDITION
COMPILE REQUESTOR

JULIAN DATE AND TIME
COM PI LE TIME ERROR COUNT
PROGRAM (TO P SEGMENT) (X4NER

PROGRAM LANGUAGE -

USER PROVIDED COMPILE REASON

Figure 15. Data on PSL Data Collection Statistics File

34

- 
a%• 

~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ a,

~~~~~~~~~~~~~



1’- ~~‘~~~~~~~~~~~ ‘ - -

r

PSL DATA COLLECTION C~~~Cs

PSL - Program Suppor t Library
CPCI 4 LI~ - PreCompiler

MR EP - PSL Management Reports

COMM - Coniuunicat ions

DI SP - Displays

DI~~S - Data Processing Data Base

~4~TL - Miss ion  Control

CPCIS RAM - Radar Manager

2 and 3 RTM - Real Time Monitor

RTSM - Real Time Simulation

SGDB - SIMEX Global Data Base (CR ~I 3)
D3DB - TIMEX Global Data Base (CPC I 2) - a

TRC K - Track

TSG - Target Scenario Generation

DTRD - Data Reduction

~~~~ 
PRNT - P r i n t

~ STRP - S t r i p

SORT - Sor t

Figure 16. PS 1~ Data Col lec t ion CR ~Gs

35

— - J~~~~

- -’

‘~~~~.- ~~~~~~~~~~~~
i~

—.-’—
~~

~~~~~~~~~~ -~~~~~~~~ ‘- --.  ~~ a,- .—. —a.-. -’



- - ‘ - a, 
~~~~~~~ ~~~~~~~~~~~~~~~ 

‘
~~~
“ 

~.__ -,__ - -
~~~~~

- - ‘ -, ‘a,- a,—

~~~~ 
.~~~ l i i i  1 1 1 1 1

- 

~.—o l i l I l l I l l  w

~ _ L H H H L  ~~~ S1 1  ‘ ‘ I  ‘ I ’ l lI- i  — I I I I  ~~~~
w tnt~~~~

a -~~~~~~~~ ~~~~~ ‘J 1 1 1 1 1 1 1
~1’. I~4~ I t  1 1 1 ) 1  —

- 
C\4 (~~ ~~ 4-f) 4-0 0”-. ~~ 0’. C) 

a

- ~~~~~ . a a a a a C) a a a — 
~~a I I I I I I I I I I

I- - —  ~~-
0.

LU -

I—I

~~ - w  
~~çp U) C) LU

~~ - U )  I.,)L U . .  I—— - I I aI—.l 
~~~~ 

a o i— L...J
LJ L~J Z

~~~~~~~~~~~~~~~~~~ D~~i- LU a— -
~~~~~ 0.

i- LU
~~ (.) 1_I

-
~~ a.

~~
L) LJ ~~~~~~~ - -

S ~~ ~~~~~~ — 4-,-)

~~~ ~~ ‘

a —~~~~~~
LU ~~~ -

‘
I

- 
~~~~~~~~ ~~~~~~I

I ~~ a ~~ -. ~~ — ~~ ~~ ~-a ~~ ~~ (J
~~~~~~~~~~ (.~ I- — 0  ~~ 

.~~~ UI ifl ~-. W LU ii.~.iii .f~ 0, 0,

—a,—--- . -~~~~~~~~~~ 

~~~~~~

- — ~a,~
__

~
__ .* ~~~~~ a ~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~

—‘-.~a, —’ - ’ ”- —’-a,~~-a,- ’-----a,a --- a,---. --- ’-’

UROR CATEGORIES S

1. Computational Error - Error in implementation of equations

2. Logic Error — Error in decision logic

3. Da ta Base Error — Error in data base definition

4. Input/Output Processing Error - Error in processing data items

S. Specified function not implemented — Missing code

6. Specified interface not implemented correctly — This could apply
to hardware , operating system , other programs , coemon data area., etc . 0’ ’

7. Unspecified function required — Additional problem definition needed

8. Unspecified interfac. not satisfied — Thi. could apply to hardware ,
operating system , othe r program., co on data areas etc . 1’

9. Memory/throughpu t op timization

10. Design modification/enhanc ement

11. Documentation change only - type C spec chanp/u.er manual/PDL
12. Keypunch error

13. Deck letup — JCL/Pracedure error

14. Configuration Error — i.e. Build uses mismatched code , wrong IGS
package in Build , etc .

Figure 17b . Error Categories

‘a— ,- - .,_.~a, ,,,_ —,-~ - ’- .— -~-- -- —‘--~—~—— ~~~~~~~~ ,,,,~~~~
— ~~~~~~~~ ~ L ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .‘.. -

r~~~~~~~~~~~~~ ‘ “~~~~~~~~~~~‘ r -

_ _

I4.5 Produc ts. Samples of the TR reports and PSL Reports are shown in -
Figure 18 and 19 respectively. The compiler suuznary report presents tabular
in fo rmat ion for each compilat ion , including the CPU time of the pre-compiler
and the compiler , the number of compiler errors , etc . The FR report shows
the number of TR ’s of each error category broken down by originating
organization (development , RAYTHEON , etc.) or TR series (JOVIAL, data
dictionary, etc.).

I’—

L __ _ _ _
_ _

38

________ ~~~~~~~~~~~~~~~
f_

~~~~~~~~~~~~~~~~~~~~



- a,-a,a, ~~~- - ’~~~~~--”
,, “~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ ‘~~~~~~~~~~~~~~

A) 0 It’. -ø ~~
a 0’_i ~ 14-- 4¼ U) — In 4¼ .1) 4 ~~ .15 1¼ ‘.5 Na .7 ~~ ‘P. p .4’ a_a. In I’) 1¼ at 4, 4 . 4 . 4 7 . 14 .1 ItS 1¼ .C) .7

4 ¼ 1 ¼ I n 1 ¼ P’ , , Q ’ C N i , OIt” In l’ at aa ’ )~~~~~~ a C ) S 1 ¼ C , C p I t ) 1 ¼’ 0 0 4 1 ¼’ a N - 1 ¼ a , . a . 1 ¼ 1 ¼ _ ,, 0 C) 1 ¼ . J ) . t ,

• 4

4 -~~~ -. I’_i

-I

A ) 0 a O o 1 ¼ O O O0 O O O O O0 O 1 ¼. 4 ” O~~~~1 ¼ a . , p0 O O OO mO0... O~~~~Oa ~~~
— -. — — — .4 — — — . 4 . 4 . 4  .1J I a _ 4 f l~~~~~~~~ 4 . 4. 4  •a4 a-I

‘4.

C a C )

—J )t — ~ > :. > > > > > > > > S’S Vi a* yS tl a-fl a-fl > > > > 4 4 4-4- a. — — ~~ Ga A) 4 Ga A~ 14 a_I _i )t a__i a_i a_i a_i
A) — — — a) a) U) a, ci an 0 3) ,a) a) .. a a a -t ~ a a aa il a a a. — a x a
— I.- b4~ — S aS ~ A 4- 4- .4 S A -s a. .1 - ‘1 a -’ a-fl a-’S a.’ ~a a a . a, _, ., — ‘a, a-, --4 ., a-, ~1 = -‘1 ~l
a ~ s 1 E 4-,, ) 4 3 4, 5. ).. 4, 4, 4, L ~~ E 3, 4- 3, ) )~ 4, 1. L. 4, 4, a ,‘ 4, 1 3-’ a) ‘C’ S a) U) 5’ ~~
3, Ca a_I U) U) Ca U) — Ca a,, Ca Ca ‘a 3-I 4) -a- a. .t -a U) a, U) A) .1_i U) a) a) -a ‘a’ 4) a, a) a. a. 3) a. .~) .1. I ,I I
4-) Ga Ga. — . ‘4. Ca Ca Ca Ga, Ca Ga. S
‘.1

4-) 0 a__i 0 -~~ a_i 5) a_I 5 a__i C) a_I ~ C’- a a_i a_al -3 -) — A) 4-) .3 C) _‘a C) a__i a__i 0 C) .3 _i 5) a.) _i C) C) 0 4 -)  5) -~ ._i a__i A)

— > a-, ‘—. a -, —, > -, —~ -‘-a • ~) —, a-P ‘ 1 J . f l~~~ —, —4 > ‘fl ‘5 ~~ C) —, -‘, LI i —, -‘j 4)~ > -b —~ C,) a,) —_ > > ~~ — ~ —.
Z a, a’ a U) U) 3’ 0 4) U) 4) IL 2) 4) 3 .4) 4) ‘t U) a) a- = a, A) U) IS U) .5’ 0,) 4,’ ‘C ‘0 0 L U,’ a) 45 4-) .4) U) (4) a 4,5 .I( C~ U)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
U)

o a 3. Ga 0. 0. a a at a .s- a a. a-. — a a i. a a a 3. a IL a. a, a a a a Ca- a. a. — a. a. a a. a a, a a a a. a a. Ui
.1-1
I.’

a-., La a., 5) 0 a-.~ ..) a.~ a-) S_) 44_i a-a,; a a a-,., a-_i a.~, 4., I..l 4_I a.l I_l a.) 5) 4-) C) 54- 5)’ 5) 4-_I 5) 4-) ~~ LI Ca 1a- a,~ a a a. a, a-fl a. Ca Ca 3, E r..
~~~ Z t I I — I a . — — : , . a- Z 0 )a - ’ D) X 0 0 D : )  0

E~~~~5 ) L 4 1 0 L I C)~~~~C ) — C )~~~~~~~~~ 0 0 5) S l 0 0 0 0 C )— — -’ L I L I 0 0 L I0I-- -4 .—. P-- I’- 0 ç)
0 U-’ 0 2’ Z C) . 7 a— 0 3- 0 Ca a-a.’ a-a.’ C) C) CD C) C) C) CD C) CD — 4— — a Z CD 7 , La C) a-I_i Q~ 4-— 3) ill CD Ca .4) a-i_i Ca Ui a-i_i

~,, & a: , : ,  ..i ) C’ i~n -_i E A) a--, 4)4- a-al A) a.~i A) A) A) ~~ A) ..-i A) Lfl Lal 4 ) 4 - a - ,  ) ‘_) ~_i 
~) S~ A) .J a-fl a) 4)1 4-, I/I .,J 4)) a-#l C) 4)4- 4)1 4,4- ti I a

a a-a- — ti. — — 4’ * a a-a, a > .-. a-a-
* A) I__a _J a_a ~_, A) A) la_I - - — -

~~

Y ,0 0 0 00nJ O . a . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0  ~~‘ ~~~Ui I-
t.1

~~ 
cv~~~ r

I— ~~~~~~ 
- -

4.) 5) 0’,’ 34- 0 4’) -.) -0 N C” Cl 7,) 4-) 4 5 . 4  ‘0 I”) 1 C) .0 ‘0 .0 ar Ni at 0 .44- CD 1¼ .7 Na- NJ 4 ‘0 .7 4 7,) N- 7_i ~ 4- I”— g4- ‘0 .4 .7 7.1 w U~ 
C.)’)

Ca at’ U’ 4’) 0 0 4 -7 ‘7 N- 71 ‘N ‘C) a.’ 0 afl ~-4 -“-‘a “4 C’. C,~ 0 0 .4 -C’ 0 ‘1’ 0 ‘CS .‘ C) 0” ‘N C’ .7 t’ .15’ 5 )  • ‘C ‘S -“ at a-’ a4 C’_i Cl paa M
0’ .t NJ at N) at -S N- at -1 0 .7 N- a_P .1) 4-,) C) 0 a)’ ‘~~~I — a, at 3) ‘5. 4 Pa 14 -0 ~ N-’ a. ’ a ’)  ,t 4 a . -.‘ ‘S .7 -~ P. Pa- -“ ‘a’ o. ~~. 4 )’)  ‘Ia-2 55a .4 .4 ’4 O0C)0000a- .atNi. ’a1¼ .- 4 1 ¼ 1 ¼ 4  .I C’a C) 4 .t

D t i C f lO 0 0 O C)C ) 0 . 4 0 O0 0 C a . .C ’ 0 , )O O La O C C ) S” C ) 0 0O C~~~~~~~~~~ ” O C ) a - ) O Q O C D C,) 00 O ( )
0 C) 0 0 0 C) 0 C) C) C) 0 2) 0 0 0 C) C) 0 C) C) C) C) C) C) C) 0 0 0 0 C) a.) 0 2) C,) 0 4-) (‘1 C) a-) 0 0 0 5) 0 C) 0

‘.4-
Ca 1¼ 0’. P. a_-a a-’. .4 aN P. Ni U) P_i .4 N i’s 1) .1) -C) C. !  at a? at NJ • a-’I N’ —. (P .7 ‘0 0’- 9 44- 0’~ “I 14- pa. .4 0 14) 0 a) U) 0 I0’~ 

a. L

Z 7,4 415 4’S ‘A) 42’ -4 1¼ “ 15) .0 1’,) Cl 74 .15 a_C ‘si ‘54 Ps. Ca Ca U) .0 N) -“ a) 4’) -0 PSi .4 -.1’ —1 C) .7 7.1 14) .4 4 3-’ 7,4 43~ Ni .—~ a_C ‘7 ‘-4 ‘
U) 14-4 4) 754 -4-1 ) 0’- ~l4- a-) “I i~ 7._i at’ P. N ~~ ~~ P~’ -55 0,) Cs_i Ca N N_i 7,_i N 4) C’-. I) U) N a”' (P ‘C) N’. a, a1 .7 .0 7.- r)  —

A) ..I a-I .4 N_i 754 — “ ..4 ’-’ Psi ‘~~

Ui
z I-I
C) -1 1¼ Ni 0 C’ 0 a) .15 ‘C) 4) aC) 0’ ‘N ~,a 4 .4 IN C) .4 ,-, .~, 0 .1 at X) Ni U) —. 4-_i 414- .7 .~~ C) 1¼ Ni Ni P4_i Ni Ni .a4 .4) ‘-3 Ni N_i .0 PsI

O — a.’, P.. ) I  0 4 4) 4 0) a) .-, Its N C,) fl_i Cs) (5_i a’s at’ N I’) N 4’) 14- N N a 01 N. 15 4)  4’ 15) ‘a) “1 ‘7 -, (4-_i Ni 4 4%
a — a_-a C) .4

7. 1¼ N- N 0 N- N- N’ C” 0 0’. C’. I’- —‘ N C) C” a) 35 0) ) C’) ‘P ~0’ 0 (4 ‘C’ (5) .4) 33 P. 7*_i Ai r’ ‘0 .4-1 C”) 0 7’ .—. a 0 1’ .4 74 A) ‘1

C-, N_i P~_i — .7 7’ )“J .0 .5 3 1,5 - I 4’~~~’ I r ’ ‘-. 0” —4 -3 .3 4 .3 0” 7’s C,) 44-) 1._i (Sj 7.. .15 ‘- —, (5 ,j-. 15 40 is C) .15 .-.

-. -. .~I .4 .‘ i” Ca- .4’) .5’ 3” Ni ta_i ‘s.’ C) • .  7 ,a) C’. 7-. ‘V ‘a) 0’ .1 .4- (5 5* ,C 755 73 C) .4 0 a. .4 -0 -0 a-I .-a a) C) (5 LI _i’S 1’4- U’ Psi
1.4 4 4 -, at’ 71 .4 a” — A) .1 a-’) a’ - ‘5_i P, 0’) Ni Nj 7” a’ 0) a-’ C) — — -7 4 0’ N_i Ni p- ‘a. 415 .4- — aSS at’ (‘3 NJ

— a-_i 

C’ .4, .4 a- i .4 .4 .4 ‘4 NJ ‘a. - ‘-4 N- (a. ‘, a- 4 . 4~~~4 ’4 .”l C’. -“4 a’,) , _ i  

-q 5’ ”t (0’ (4 as ,, I’ t’ ,, ‘5’ 0 IS  SI’ 0’. 1~ 555 ,“ - ‘ ~ 0 35 * 1’ 1’ 4’ ‘C’ 1’ 5’ C’) V ‘ = ‘. V 3 -t 4- 3) 55’ 3* 0 fl U” JO U) 7% 0,4-
a _ I N  N - N N - N - N - N - N N - N N N’ N - NN t~. N ’ N - N - 4 ) N 7’ a N - N N -,N- N N - N  ‘- s a . N- r ’- P a - N NP ’ - N -N N N - N N -N N

w a a -k > a. ‘a 1 > -‘ a. a- . — 4, a_ Ca a- .5 a .4, — .5 at €1, - a a a ~), a- .4, a’s, il CI a-) ,~) a-) Ia) C) a’)

.4 C ) i, _’s .-, .’ a ’ .~~~~~~~~~~ ’ 5 a ) , .~~ ,J , _ I , j a .) C I . , ) ( ) S’ a a’ 4 - - ’ ),f l S ,’J ’ 4 - a ’ )  ~~~~~~~~~~~~ , ‘ ‘ ‘ a ’4 4a . ’ . . 4 I . I t

(4- (5. Pa. NJ .7 ,‘ a S -7 5” (54 N_i .2 a-. 7’. 5* - ‘ a - C )  a- ’) C’) s 5 ’  3 7’ .3’ 5’ “4 C) C) , ‘~~~., a. -C a_ ’ a) .~ ‘~. ,
~ .2) a. ’  a-_I 0 a-I a-)

I_ a - ’,) ‘.j r.. ).- ”,.55) I-a ”, )”J OQ lSa ‘ ‘ . 4.4  7S SO C) 5 1 5 C ) I n C ) 0 ’ 4 -

< a_) IJ L S a - ) a , J O a l a . ) 1 . , 3 0 , .L ) 5 ) a C a L a Li , , , , a ., J a a  , , .j a _ b ., a - )La aj a.J . J L a . _ J a,. a- ,J ,’ , , j , . . 2 ) I L J (J L C 4 - J U L )
a’, a, ’-,’, o ~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~ f l’ ,-’s 1 ’ ) . ’ - ,  , ‘) .~~~ f l ’ -, N

,1

~

,S a - ) L’) a - ) s ’ S f l I.  ~a _ 4 - . 4- 0 % % % a  M a - ’ ) 0 .~~a- ’) a-’ n (i a- 4 - aa) a . ) t C ’a . )
a t j . a a - . -’,. .’ .,’ a_t -. ,s . , a ’ ,’ Z a P ”’h k • f l ’ 4 ,~ a - a , _i’ .~~~.:.’ a-. a. . . . . a . — . n a .’ 4 . , , .. ,a JI .-4 ’k a I C )

—‘ ‘a as, .4 -— — 4, a-. -a- - — a.. a . a -  aa- 44, -5. 5. -a- a -. a--a “a a-. .5 ‘a- (a- 3- ha. a’~ ‘1, — a-~. A. la. 44, 0,, at Cl,

— ‘ -1 — ‘‘ 4 “. a” — “4 — S I L) a - It U, “a, 1 4 -  ‘a a-— - I  — ‘a -t a .t — — — ‘t~ -.‘
I - -  ,~~~~ ‘ a_ -, a. 5 4 3 J a -  .4 a~

S : I . ! . ) a l , ,  a s - ‘ ‘ - ‘ _-i .J a l l  — a t , - .1 a” a . ,. a ’ , s ’ ~~~’ ) - I - ’ C ’ .~ C’ . . )
‘ S  a ,fl , . a ,fl ,, L ( I f l 4 , 1  5 5 4 5 ’S ,. . 4 .1.4 .. .1 4 - * - I ,a mi .• ‘ 4 - , ,  ( , , a a ’ S J ) a l fl

a - . ,,  ‘ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ‘ C ) , -) . 4 ’ )’) ,. “ - I a.) ),, ) . ‘k J  , 5’) . . )
‘ I t ’ i ’ I ’ l a ’  a - a l a- ‘ ‘ l , I a ’ S ’ ) a 4- ,~~~ . S 4 - ’ ) ’ S S A ), I ,  ‘ ‘ ,‘~~a- ’ a - ’ ’ , 4 - ’ f l ~~~ ’ ‘ a

n a--% (t ..~~~~~f t f l  ~a - 5 a .’t a - ”.S”  - _ 4~~~ J J S  ‘S ‘ S I ’. a S O ’ a - ’ S a L I ’ S)a- , . 4 - a S  a - a l  ‘ I t  ‘~~~~‘, J4- - ‘ -. 4 ( 4 - Ca-

39

II. ,a,,a,a,a-,~~~~,s ,,,, bCa ~~~~~~~ a~~~~~~~~~~~ , ‘a ..a’ &a.44 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~



~~~~~~~~~~ ,.j ~~~ ‘~~ “~~~~~~~ 
—

—

‘.4 -4 .0

-I I
‘I

‘ 7 O (f lO O O O - . 00 0 a -) 0 00 0 0 .40’
—a

aM
I
I’.
1¼
.4

0 ~4- 0’ IA 451¼ 1¼ ~%O’ 0’ ‘7 .~* a_a. P.. 0 U). 0 — A I” 415> 4 — Itt .0 4% — *%J II’S ‘7 451 Ia-. .0 .0 I~) C’.45.4 ,4 — 4%)
—

a ‘ 4.
Ca,
0

4.

‘Ci
$4
0‘000 o 0 0 0 0 oo 0 000 0 U)I ’siO ‘ 0 — r n45

4%
Ui

.5‘.1

4

0
Ui

~‘ 1
-,

“4 0 - . 4 0 1’ J esi O ° 0 0 0 . 2 0 0 0 4 % 00 N i 4 %
‘ 4-4 755

‘
U-
‘4

04- C C’)—i
4.

‘a-i
Ui-4

Ii0

bO
5.4

0~~’ a-I 1¼
‘ii
4.

.4
1¼
.4
0

I1 ’ t S l O O t s i O ’ 7 O O O Q Qo Q O, , .. 0 o O o .. .’0C) — Psi
0

.4
1¼
.4

7 7 (J — ~~
_ i 7 X .4Z Z ~~~~ a - a ’a a-j a-,~ 4C 3 4 a-_i ~~~

.
~i X a -t ’) Z aJ.~... 0o~~ _,~~)4- •a.

I ‘a .*~~ “1~~~I U , a - a.a_i 2) 41. 2) .4-, 7 (2)
~ C) 0 C) I— Z 7 _I 4- — .C’) 4,) 3.. — ‘M ~I •‘)

~~ —, N’1(4- Ca ”..) ., ~~ ‘a ’,a5 ,, S. . a s s C J a ’ . Ja . a C) U a i i a._i ,,.~~_i4Z) r. J~~” C) a -~% a - 0 Z L a U) i 3 a s t ’ a_a O (y 4
‘C

O 4. 1,i .N .7 aS .1 *’. 4) 57 5’) — (4-_i .4 .1 .55 A) ra, .0 0’

Th~ ’. ~‘~ a
4~

!.‘LM GOat Y ~ ES~tZ ~~~ I~)O ~~~~~~~~~~~~~

- • “

~

‘ ••a-

~~~~~~~~~~~~~~~~~~~

a- 
I

-a --
. ‘ 

‘ -‘ a- - s ‘,‘ ,

- ,,a’a s ,a.,a- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~r’ 
, -,~~i..aM4..k4a.- ~~~~~~~~‘- ~~~~~~ 4-’.L ‘ _

~~~~~~
4-’

5.0 TECHNOLOGY ASSESSMENT

This section discusses the utility and effectiveness of the development tools

and techniques which were used on PAVE PAWS. For the most part, the assessment

of these tools is subjective , for although PAVE PAW S has been a very successf ul

project, the apportionment of that success to the programming team , the

project management, and the tecnnology is very imprecise. Each of the major

software engineering tools which was employed is discussed separately and

includes an assessment of the acceptance of that tool by the software develop-

ment organizatior .

5.1 Top-Down Design and Development. The top-down discipline , which really

becomes established during the project design stage, requires that all thought

processes star t by addressing system-wide issues first and then flow down-

ward from that point. This in turn requires that system designers do their

work and make their decisions before work proceeds at the subsystem level or

lower. Consequently , the total system design gains visibility and credibility H
right from the start; all subsequent design work is viewed as refinement,

clarification, or addition of detail to what has gone before. By adhering

to this discipline throughout subsystem and program development , global

questions are resolved first, structure and interfaces are established , and

additional detail is added through a natural process of step-wise refinement.

(In traditional, or bottom-up thought processes, global ques tions are addr essed
much later in time and tend to be resolved in keeping with the sum of all the

micro-decisions which have already been made. Unfortunately this rarely

turns out to be the best solution and some breakage of existing design or

code is likely.)

Because top-down deve lopment uses a “macro” perspective and functions are

initially identif ied by reference (an INCLUD E statement which names the

desired function), a high degree of des ign and program code segmentation
is required. In general , it is desirable to res t r ic t each segment of

code to a single page. In this way programs grow through the inclusion of

new pages in an already established structure. Design updates may thu s be

more readily communicated and understood while program development proceeds

in similar steps .

41

L.. ,.. , , - , , . ,,,, ,,~~~~ ,.- ,, a..,,, a,,’, ___a.- ,,_.,a...a-~~ S’~~~~~” ’~~~~~~~’a - J ,.)is)Ji ~~~~, , ,.., ,5.4.,a.,. ,,. , , , , ‘as.

“a.,- ’

A major advantage of top-down program implementation is that the program can

be c~~npiled and executed on the day tha t the f i r s t eglnent is wr i t t en !

Although this segment by itself may not actual ly do much more than ini t ia l ize

prog ram variables, name the functions which are to be performed in that pro-

gram, and exit , the program can be debugged of errors in syn tax and compi ler
control, statements immediately. I t can be integrated with other programs in

the system to test their interaction as well . Since the subsequent develop-

ment of lower-level segments is only a refinement to an existing structure

program testing can be accomplished continually, providing a regression test

of existing cod e and incremental testing of new segments. Additionally, ‘
a

since control sections and data paths will be established early in the top-
down approach , much less emphasis is placed on test driver programs.

The system perspective afforded by top-down techniques was very advantageous

throughou t the design phase of PAVE PAWS . Not only is this the proper per-

spective for software designers , but i t is probably the single most effective

perspective from which to present design to systems engineers , manag ement , and the

customer. Furthermore, since successive levels of design represent greater

and greater degrees of detai l , design reviews or presentations may be quite
readily tailored to suit the needs of the audience 5y eliminating those

levels which are too detailed.

During code development on PAVE PAWS most progr ameers began a series of

compilations as soon as the first two or three segments were coded . In

addition to providing early identif ication of syntax and data usage errors ,

this provided a welcome diversion from endless hours of coding , The com-

piler cross-reference listings also provide a very convenient point of

reference for data item utilization when coding additional segments. Unit

testing was begun as soon as a complete function was coded and testing

results thus began to accrue much earlier than in traditional projects.

42

~~~~~aa .., ,,.saa a a~ig~~a.as. sa,aaas., — “ ~~a.



One last and very s ign i f i c an t  advantage accruing from top-down development is

the easing of software development schedule interdependencies. Since the

top level of each program is written very early in the game, interface testing

is begun immediately and ind ividual programs may be fully developed and tested
while using only rudimentary versions of related programs.

5.2 Struc tured Coding. Although struc tured coding has been a controversial V

subject in the past, it is currently well accepted by the programming community.

The requirement to restrict program logic statements to a standardized set of

control forms and the prohibition against programmer generated branch ins truc-

tions is one of the most s ign i f i can t  advances in recent years.  Suddenly

programs can be read , understood , and debugged by someone other than the C

author! Addi tionally, because the code must be s t ra igh t - forward in its logic

flow , there are not as many hiding places for program bugs as there once were!

Both of these are very importan t advantages of struc tured coding although it (
is again very difficult to quantify their effect. The benefits of standardi- f.

zatiort are felt very strongly during the project design phase when non-prograxmners

form a significant part of the audience, and again in the maintenance period

of the project, when a small number of people are assigned to maintain a large

amount of code. The improved software quality assurance which derives from

a lower incidence or program bugs due to the use of structured coding is a

phenomenon which begins with the software design and stays with the software

throughout its lifetime. It should also be pointed out here that part of the

value attributed to structured coding comes about from program segmentation

‘and the use of indented segment listings , which together serve to make

program logic very apparent to the reader.

As one last rejoinder to the standard argument against structured coding ,

it must be noted that PAVE PAWS successfully met stringent real-time memory

and throughpu t criteria. Although this did require the use of assembly
language coding for a few very highly used subroutines, in no case was an

argument put forth to violate structured coding techniques itt order to achieve

better  performance. I t  is suspected that unstruc tured programs which are

43

- 
- ‘ a. 

-as.--
~~~~ 

~1 X ._ _i~~~(’~~~~~ ’a’~~~ ‘~~~~~~~~~~“
a.&~~~~

Y,

- - a. ~~~~~~~~~~~~~~~

-

tricky in an attempt to improve performance are likely to incur a performance

reduction because of the overhead involved in making the tricks work. It is
widel y acknowledged that such programs will be extremely difficu lt to debug

and maintain by other than the original program author.

5.3 Indented Segment and Pro,gram Listings. Given a highly segmented program

and the use of structured programming, indented listings which graphi call y
show the logic of a program are a valuable addition . (Refer to Figure 8 in —

Section 3 for an example.) The primary vir tue of these l i s t ings is the almost
instant comprehension of program logic structure , particularly in “either -

or” cases. Note that by limiting segment sizes to 56 lines (one page), the
likelihood of nested indentation pushing a card image too far to the right to

be printed is almost neglibible (in fac t , this has never occurred on PAVE PAWS).

Indented program listings are constructed by the PAVE PAWS PSL as an ordered
collection of indented segment listings. Figure 20 represents a typical
segment struc ture of a program where each block represents a segment and the I ~order of printed segment listings is indicated . As an addi t ional convenience ,
an indented “hierarchy” listing is printed in the front of each indented
program l ist ing . The h ierarch y simply shows the relationship between the C

segments of the program and any subroutines which are called . ‘
~

The physical structure of an indented program listing makes it an e f fec t ive
medium for design and code reviews. The limitation of segment size to a

single page allows complete review of a single segment before selecting

the path to be followed and essentially increasing the “magnification” being

-‘
used. Surprisingly enough, these same features make indented program

listings equally effective for debugging . Referring back to Figure 20,
i t can be seen that a bug in the lowest level segment in this struc ture can
be reached from the top segment by going through no more than four segments.
Assuming that the program is structured along functional lines , isolating a
program logic bug to a single segment of code is usually a very straight

forward procedure.

44

-

‘ ,, ‘5 ,a.,)C5 - ~ “ ‘ ~~~~

- ------ .-—— ‘ ‘ - -- -—a .’ ‘- --.,a.~~

_ _ _ _ _ _ _ _ _ _ _ _

p

H_ _ _ _ _ _ _ _ _ _

H_ _ _ _ _

‘
~

H_

—LIi

-
‘

“a..,——— ’-’ -
_ _ _ _ _ _

5.4 Program Design: HIPO and PDL. Hierarchy plus Input-Process-Output

(HIPO) is a documentation technique consisting of a set of diagrams which

graphically describe a function from the general level to the very detailed

level. Initially each major function is identified and then repeated ly sub-

divided into more detailed functions . A Visual Table of Contents (see

Figure 21) is used to establish the organization and structure of the HIPO Ii
char ts themselves. Each HIPO chart portrays a functional process , where

processing steps ~re enumerated in a block in the cen te r of the page while

inputs and outputs are shown on the left and right respective ly. Figure 22

provides an example of a HIPO chart. Note the top-down orientation of HIPO’s

and that by limiting each chart to one entry point and one exit point , a

HIPO function can be mapped into a structured program!

Although HI PO char ts were used during the design phase of PAVE PAWS, a

companion tool, Program Design Language (PDL) , was being utilized at the

same time . PDL is a syntax-f ree languag e which recognizes th~. same

s tructured logic forms referred to in Section 3 (see Figure 23) . Because

of i ts great s imi lar i ty to program code , program designers need v i r t u a l l y no

training to use it. At the same time , because it is not constrained by rules

of syntax, normal En6iish may be used to express design concepts. By

implementing PDL as a separate language in the PAVE PAWS PSL, ~lI aspects of

top-down design , segmentation , and indented listings are immediately

available. Thus PPL is a natural tool for programmers to use , exerts a

well defined struc ture or hierarchy over the design documentation , and

provides a readable , visible medium for communicating the design.

In comparing the utility of HIPO charts versus PDL, it Thould be noted

that they share the same vir tues of top-down organiza t ion , s tep-wise

addition of detail , and understandability. There are several additional

advantages offered by PDL , however -

a. PDL requires no additional programmer training ,

b. Support f ac i l i t i e s (PSL) are available for PDL maintenance , and

c. PDL bear s a very close resemblance to the resu l t ing program code.

46

____ ~~
,, , ,,, ‘a. .a. ~~~~~~~~~~~~~~~~~~~~~

a.a.
~~~~~~~~~~~~~~

, ’a.
~~~~~~~~~~~~~~~~~~

a.
~~~~~~~~~

a. .
~~~~~~~~~

a.a. a. - ‘
~~~~~~

_ _  ~~~~~~~~~~~~~~~ 1

- 

_ _  

_ _  

p

LSJiL !
~~~fl

47

a. ~~
a . a . a. -

r
.‘

-

_

_

I
~~ o n

U -
VI a a ‘

48

a., s._ ,~, ~
a.

P.-
~6

4
~~~Nm a ,~~~t ,~~~pa. 4. ~~~~~~~~~~~~~ 4 .A~~~- f’

— •a4~~,-4 a-4 ~~~~~~~~~ .-4 .-4 ~%4 r,4 N

o .-

• _,
Z a, P.4
o • C’
u_ fl1 4

P~1 ~~

‘-4 p.
a

~~ 0
S. %

0~0
-. C
fa. Vp.

0

I-,
Z
4

r
-.
VI

VI m 
~ a4a 4

4 1.4

~ I a
to .4

C, a
Iv 1. L1
4 ~~ a VI
P., a I.,
to -4

. —.

- en -, to
I )

to P. — to
~ .4 t o P —  U L

P.) 4o z a
-c paa I,4 4

-. 0 •
VI .. Q _ J  f’1
o a 4) UI to w C’ U

~ P.) 0 VI

• —. 1.4 Z .~
I’- 0 ) ~a -~~ -4 CI .~1 V

a. 1 141 4 a’) :, C 0 7 VI C
VI 0 I_I a-. P.-~ —‘ , 1

-‘-I 1~ ~~~~~ -a- 0. .. . 1.
L -~~ 4 4. .~ .~-s -. a-. 0 ..
LI 0. ‘~-~ .1 D ~~ 4 I • t
~ 4 — • 1 4 15 V 1 VI ILl ~~ (fl
VI .1 0 U a-I 7 a ,  a.. a-.. , ‘ -

a ‘4 — ‘a- a ,t 1. I.- -,“~‘ —
Ca C W~~~ •aj fl .- - . I-
p) P.) 7 —. 1’’ -- a--I

II a-I C sfl .. 4. a .~ Ia~)P.4 Itt ( .. . —. . - .. rl ,, ta.. .at S
> .4. 7 41) ‘ - 4. 7 .1 ...)

I-_i — 4 — — -. * ,• C • .4
CI 0 — L ’ I L •  — I”) ~t 1 — (U

a — ,J 1.’ 1 -v 1 - . ‘ CV — LI .j C’) 0
• to - - a— C U I ’ ‘1 1..-

I’- . . - a ‘i U ~I 1 + C UI L- .l,) ‘ -
I LI a-. 1 .4 C t. ’ 5; — y . 3

-
. .. C.  t s r  a . — . a’ — 

‘~~~~ - a a-.
C - ,.fl . I _.J Cfl a . . -  rs r . ~a ,a ,_, - ~‘ .1
5 1  ,

~ •_J ..j I C. 1 t , I,  a( S ~~~~~~ S S -.
I ft f l u ’ )  ( )  a i t ~~~) I .  S -‘ .
SI  al L) ~ ) t  Ia. . 1 1  a~~~S ,’I , _ b -  4 a)

-‘ r, . ‘S I I a . i ).a • I , a . ~ ._a -~- I I - -
VS ~.1 -A. ~

-‘ ~ ~) L~- I , ! I ‘I .1 I, ’ - - I —. I Il ~ ) - -
5 ‘l 5 . I~~~ ‘ . S , ~ % 6  I f l I~~~ ) l a , 1  at P3
4 I., ‘I l  a. 1 ) , p C -  a- a _ 1  I 0 . ) .1
CS • ~~~~Y CI . ’ . 

SI r - - - I a - I a  -

~ ‘ .5,

I a - ;~~~~~~~ - . I a a~~~ ~~~~~~~~ ‘ I l~~~~~~ ,, 1’
fl a.) ~~~~ 1~~~ a. ’) I - )~~~J a.J .1 7  • 1 —

‘t a .~~ — a’ - .‘ . ‘ r  .~~~ —
‘S. , , - —~~.. ! a . p ) ’  - * — •

‘) (‘I .-“ -. I S ‘ - ~~~~~
.‘. S . I l ’ S a - _ ,~~ .5

• • C. 11 . 1 0 5  S C  — -  a a- - , j .~ 
a

)5,, • ~~~~ ~‘ ) a -  5 ). . . •~~ a$ 4 6 . 1 , 4 0
I5) I a — I I S  ‘~~~~ a U a . J  5, ~ 1-t l

- I S t .4 as - , a .,
41 a f  a-I -s l t •  - - .  ‘ U  a I ’ u 4 - .  A. ‘‘

a-I P 1 , l ’~a. ~f a . ’ • ‘1~~s • U ’  ) . .  I ‘ I

p. ‘ . 1 - I -’  • f l_ f’-. I’ ) 54 Na.’ ’? IC F a a.1 P. f’ I , 4 . SI
. — I-. — a~

, C, ,uJ

49

- - - ~~~ ~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~ .-,~~~~ - ..
____ _____ a. 11 !a... ~

a . a . a . ,  ~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ .~~~~~ a- ~~~~~~~~~~



‘U 4 .1 N .u 0 cI — N 4 ~~ N a- (V o a-. a., N a. C a.) a-, ,. a. -‘ N • N J • N ~ 0 0 -,  a., ~,
a- - .  N 64 64 64 N ‘U P., ‘U 64 64 en a , m 4 * • • • • • • 4 .5 .5 .5 .5

03 

p

a 

~~~~~~~ 

!~

a - ,

- S ~~~~~~~~ 4
- ~~~~~~~~~~~~~~~~~~~~ ~~ ______________________________________

— N IC .1 ~s 1- ~, a 0— . N en
~~ ~O P. a a- ot o N In a, ~~ pa- a. a

a4 — In — -‘ -. — -4 (Il P14 (14 64 0403 1,j 414 (14 (14

2
o ~ a

a
• en
a a, ~~0 • C’to In ‘4

In 0.

N P.
a ‘4

-
‘

.4 -o
~~

a 0
.aI —

a
0
S 41
‘a.
~a.

0
U.
C’
a
I’
I
P.) CI

a
.
~~

a

a 1.4
— I- o C

>. P.S VI *44 0
Pa-a I.. Q
Z V. 4

a ‘~~)1 Z
a: U’ —

a. 0 C’ P— a C
Z to a .p.4

0)a- C’ VI 0 to 1.4
a a a 7 —
0 a. .J 0

In to .4 0)’
a, 0 ‘4)- 0 . 4

to I U) *14 0
en P.-4 to C
en ~ 4 1* 4) 3.

S5, . Z a-aa -a4 0 s- Ia
VP P. V. 0 V I P - PC .~ Iv

to Z 3 1440 4) V. CS 0
4 U I P — I I — ‘4 Z P-’ T
3, U) I- > 0) 7 a-. 0
• 0 13 Iv 1 Pa. 4) 0 3 0
-~ 0 to to a a- 544 P.) 03 0
IpS S. 5(1 (5 (V to . -

a a C) 4 Pa. i .4~ 0
0 *— v. 0. u. a — to

• —. 0 U I—. C 0 — I— ~hJ IA-
P. 3. to UP- I — v — .-.

~~ U —
P N at) —. 1 Z V. I P3 51 I~ ~ C Pa) I 0
7 VI U .1 4 .r 15 S 4. La’) Z I C
to 4. Q 4) 3~~ ;., — C S ” a - CA a-. C , Y U a.~

C
1 0 ‘4 ‘ 5’4 1 5 4 .’5C~~ L a ’ U 7 j 4 a a a a ‘4 C,)

to 3. 3 ‘a ~lA . V -~ 15 .t — > ~0phi P— . S VI ‘0 ‘0 V C 4 LI (#1 2 C
VI 4 CI 3 VI 3 £ C) I. ~ P5~ ~. 0 — I-I

4) 4. to W ’_ Pa. LA- — S .,C C ‘7 <~~~ 7U C ‘€ VS 4 15. 5. 0 P. C I ’)
• P.) (.4 — 151 114 — s/I .4 0 P — 0 pa ‘4

1- I V. .4 Z ‘* P.) 7 P.’ ~~~0 a-’ I.) m
N LI ’ Ia) — U I t ‘4 Pa. C — c-i

a C -- - a ‘1 — 9 C C ‘ V.
PP. ‘a- — a U, ‘l ~ 0 I) CI — III 0. P ~~ VI

0 0 0- Pa~ ‘V C - L~, • ‘4 ..~ — — 0 7 Ci ‘I
5 ‘4 P a.) (‘ • 4 4 ‘0 7 ‘V I.) C) SI. IC 1
a • ~ t 7 ~~~ (.4 15 I a P a .~~~~~ 4 .4 0 ’) ’) U~~C ,’ , s.3
P. Z a ‘4 0 - t -. a 3 a.’0 ‘ C) C a ‘S C bO
I Cl .4 V I C) I) — C 4 LI - ‘ ~. 1 l C .4 — ~~ 03

.1.4

2 a-’ 3 0 LA, 4) P-a Ca.) 1 4. -.. 3 .. ‘ — ... 0.. ‘ .3 (5
0 sI ‘ ‘4 LI C) 3 I,) 15 7 * ‘ C’
— c~ ~ 7 U. 3 7 4 ‘ ‘ ~ I 4 - ‘) - - ‘4 — — p5 N
(1 - I ~ % - U fl a.f Is - - ,_J I ~) 5 ‘~) 54 a.) Z
V 64 4. I. ’ .44 5 ’ •1 1.’- at -y - - .1 .1 .1) a 1% 3. 7 C’ 7
U) • ,) 1 • 4, - . — 3 ‘5 • Ia. ,5 4.

P 0 , f l - U 1 ”) .: . -D D . ’I I/I P •.
_,I I’) Ill 5 4 Ia’ ‘I) a-’ C , ‘ - a- a.) I - ‘a ‘ 5 a--p 5

VI C) — C —I 5 ‘I .i (I -
. r s ’ a’ •I a- a.I Ii C)

‘5 7 1a5 .1 -, -1 0” “ U) 14 CS .a- Ca) ‘ A. V. C
) V a ’ ’ 0 P h l - I p ~— a’ a •-— •~

.- LI ,x
a’ ‘ P’ -a- a-a - a) • ‘ C 05 ‘ at 4 ‘~ ,4 -. ~a’ ._J - I LI CI ‘5

a- I 3 C S a-— 1 C — , - I > 1 , - — s/p L a.’ 5 .3 7 A
.0 CL 4 5 — a- . 5 .4 a 4 - 1. - C, u I_I -— ‘ 4
64 5. ‘~ - , - ‘0 -— ‘5 ‘ I —, 1’ 5 1 I p 4. a.? 5 5 1~~ a UI
.1 ‘ a’ P - ‘0 — .4 7 P- 7 ‘II — a.) * .7 4) ‘5 6 ‘a’
‘0 . a. ,) .. . I

~‘- a..h a - C at SI ” 4) 4)
‘p ,a ’ ’) . j f l~~a. . J ’) ’5 4. a., ‘ 4 “a a C & .) r5
S ‘ I ” ’-I .’ •~~~ t~~~ • , pp • I l .) ’) 1 .1 1 . 5 .0’ /1

a a V L a - S _ A ’ ’ 5 1 1 ‘I a.J LI
CI (5 5’ ‘4 ‘5 a-. - _ ,

- —, L ’S a.I S
.5 0 S P I . , -

.
~~~~ r “— ,C C.

N J I ’ f l a - a ’5 . A A V - 4  ‘ a  0 .4. -
~Pd LI .4 1’ ‘0 a.) ‘a- a.) C1 .4

IS 4 to 1~~ 4 .1 ‘0
.0 3 4) ‘,I * aC .44 5.4 5 11,

II a ’ .14 a.’.

7 a- s/p
Psi al ‘* 5  .4 .~~15
0 .4 III .4  

I 411
a., - ,  P’S

-I -.5 , 
‘p
N

a4 s4 a-4 .4 . I a 4 a - I ._~~a 4 . P ” t P ,~~~’l Ia’ 6i PJ Pa. ’ P s .

51

I
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


‘a. “~~~~~~~~~~~ ‘~~~~~~~
a.,. a.0’a. a.0yn.-~~~

a. a-

3
U)

P.)

3. —‘ N P.’ ., 4% P. a) U .0 0.4 In’s .5 41 P. a)— — — a-. I4.0 .4 ~~~~~

‘4
0 3-

a,

~ III
a a, to
0 • C’U PC ‘4

en a

Va) Pa-
Iv -a

-I
CS 0
.aS 5

a
0
0.
P.

O

(3
a
-a
I ,.a-~to .

~~

SI
C

> 0
a. 0
:1 5—
.4 0
I 551 00 I ,
a — C

C’ pp.4 -
‘ -3- (3 0 4 44

a) a a 0 0 —
3. ‘4 ‘4 11) a.? .4

Pa’ P.? I~~
- a-A

2 .4’ LI la) C
‘4 • — ‘4 2
(4 PC 4
s/I IC UP 74 to

‘7 4 3 ‘a
(5 0-’ ._P P_ P 00
0 laP 2 0.1 3- 0
C Ci I ” ‘4
C) Z Z I. C’

a aO 3 a- 7
a.) 0 U) C —
5/I 5 4 3 0 C) a) C) 41’
a, a- i, ~ .1 a 5- I a.t s-~*0 3. a-a- (4 15 UI 7 L.A 551
• 4. ‘5 P ’ 1,.) ‘0 3 0 .~~N ~i Ia-) ‘7 2 -l ‘7 LI. C. w

— 0. ssp 0
~,
‘l 2 IV .14 r.

‘7 P.S P I.) C.) — ‘4 CL - ‘ -

A ’ 0. l.a a- ’ai L’l Pa”
1 (5 .5 ~V -a .4 ‘V C A))
CI to 3. U a-. ‘3 ‘4 .5 a.. C) I-
151 Pa” • — (.1 7 =1 I I U, ‘4
51’I 4 aSS a-. 4. ‘-14 — 7 Ci — 2 ~a.4

aS’ 4. E sC > Pa. a-a 4) ~,) C a-a
‘V C — I~I — 7 ~“ Is - 0 3. $
Ca-) 1,5 a,) I — LI sC 3 a. 0.

a U 1,1. Ia.) - - ¼) C’) Is Ia. LI (fl
0.5 U o 0 LI 3: LI 7 — — (“I ‘S. CS 1, . :’) ,) t ,I a - , Ia.,?
1%) a-i 0-. a.) a-. — — 7 - ‘) ‘4 Cl
Cl C Is I’S I C’S (5 7 a-. 4 It — $4
S. C Ia.P .5 U Ia.) a) 0” ‘5’ V.
It :, -~. ~ 5— r ’ 55 7(a, - V a- IS a .! ‘1 L I — SAl C)
I C t Pa- C) C ’ .- - a--p a a—

a-.. C C’S I’S a.) a-a 50 (‘5 Pa.
11 5 ’) a 5,I ‘.‘ a) — I 1 P~ a.,. 4 — a-C
a-, 4 .4 l ,a - 5) I’S (A

‘4 1 4 . ! • t f l -IJ ’5 L ’ ’t 1
~ (5

• > 4. 5-P . I a- 7 .5 a- 15 .5 .5 0
.0 .‘.~~~ ‘ aa- a4 a) .;, ‘I) La?

‘p .5 a.. -1 ~-1 • .~) -
. 4 II’

a.) C, ,‘ U I 7~~
a . , ‘/Ia4 , •

-‘I U a. a- a ,p a-a .a ’., I. U 9 a I a-a 0
• 5) • _ , - a.’_ I- a a5, -4 a

‘4 —1 1”) 1 - - a-I - ‘ ‘ 1 I C
a’ a- a .51 .4 - .3 1 I a.) a.I PA V

“S a . , 7 f l~~, I l t 1 .’ “0 ,1 I ‘5 -
5, a~ 4 a

~~~~~•~~~ 5 , o 7 ‘ -i
•1 I ’ V a . J LI..I”  . 4 4 )  .5 * 1
5. a,. a.” I a - i ’ ’)  a.A l ”  _i ,J aa. I,- a) I 

~~~~~~~ ‘C~~~~~~~I 1’ V
‘S $ 1 5 I t I . ‘4 1 1 7 1 .5. - “5

6 .1 I’ - 4a- . ‘~~ - - a.) 0’ -- , a. ’)I ‘4 a-.. ,a.A II - ‘ 1 5 at

~ : ~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ ~~

I’ • ‘5 .- IP’ f la -i —
- , a-a 1)~~~

a - It a, ‘I
- , I IC) VI ’I

, — I/i CS

I-I I - -
- I I~ -

a-

I. ‘ I P) U a- ., , Sa l P _ t a - a ‘- I l ’’ P . , Pa a

52

H - -_ _ _ _ _ _ _

I
— ‘ a. Sa’aS,~I_A5C,IL44. 4~ -t a ‘) ‘_ ‘ a--a-0”5”

- , , -- ~~~~~ a-,a) , _ 4 ~~~~~~~~~~~~~~~~~~ p.~ ~~~~a.aa.l~~~~~•~~~~ a~~~~ a.

1

Al though this suggests that I’DL be used exc lusively instead of HIPO , a more

temperate conclusion is appropriate - don ’t use POL and HIPO to meet the

same objectives. Experience on PAVE PAWS indicates that HIPO charts can be

used effectively at the system and subsystem level but become cumbersome

and redundant ‘with PDL when taken more than the first few levels deep.

It is also appropriate to comment on the maintenance ~f design documentation.

Experience on PAVE PAWS indicates that HIPO ’s and PDL (or their equivalen t)

are not only usef ul bu t necessary for the software design , development ,
management, and procurement communities during the design phase of the pro-

ject. It provides the technical foundation for the entire development period P11

while simul taneously serving as the means by which technical direc tion and
scope are communicated and understood throughout the project. As the imple-

mentation cycle begins, however , questions and changes arise which require
deviation from the documented design. This is a natural phenomenon which

should not cause undue concern as long as the basic design intent is still

intact. Under these circumstances there is no immediate need to update the

design documentation - the procuring agency and the project management

unders tand the de sign on a conceptual level while the programmers reflec t

design variations directly in the code. When and why, then , is the software

design documentation ever updated? The only apparent reason to upda te and

reissue software design documentation are

a. To correct the documents of record.

b. To establish an effective mechanism to communicate design to a pro-

ject newcomer.

c. To provide a bridge between system concepts and implementation for

a maintenance group.

Assuming that one or more of these conditions holds , it is the author ’s

opinion that the cost of updating design documentation is minimized by per-

— forming that function as seldom as is nece~~ary to satisfy the users.

This includes a “hands-off” approach while the software is developed or

changed , followed by a periodic review , update , and republication to bring
the design and the product back together again.

53

.—_ . ., ..,,_to,,a,. ~~~ U.a.a.,,—a———,

5.5 Hierarchical Library. The hierarchical library implemented in the

PAVE PAWS PSL (see Section 3.4) was extremely useful throughout the development

and test phases of the project. The separation afforded by the various levels

provided stability at the upper levels with complete freedom of change at

lower levels . Figures 24 thru 28 give an example of the progress of a single

program through the lowest three levels of the library . In Figure 24, the

program top segment has been coded and entered into the library at the PRG

level. In the example shown , this segment references (via INCLUDE) four other

segments , for which stubs (placeholders) are created. Following successful

compilation of this program it was XMIT’ed to the CPT level where it was to

undergo group testing under the control of the Chief Programmer. This is ‘
I

re f lec ted in Figure 25. Figure 26 portrays the ongoing code development being

done by the programmer at the PRC level. Note that this in no way affects

the group test ing being done at a higher level. Figur e 27 indicates that the

Chief Programmer was able to perform satisfactory group testing despite the

fact that the majority of the function of this program was not yet implemented.

With the concurrence of the integration team the program has been moved from

CPT to INT and subsequently the program at PRG was moved to CPT. Figure 28

now shows the entry of two new segments at the PRG level, but more ominously ,

also shows changes to existing segments . Happily enough , these changes are

sti l l segregated from users of h igher levels — they retain ful l control over

the program configuration for the library level at which they are working. At

this point i t is help ful to point out the effective configuration at each level

of the librar ,

at INT — T /stub/stub/stub/stub 5

a t CPT — T / A /B / s tub /s tub

at PRG — T1/A 1/B /C /D

54

________ lIa~’ ~~~~~~~~~~~~~~~~~~~~~~ a, ,.—
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

.a-a- ,a.a.-’a.a.~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ a. ,—‘a- --a.— -

LEVEL TOP SEGMENT SEGMENT A SEGMENT B SEGMENT C SEGMENT D

lIft ‘l

CPT 

Lii

I 
_________________

PEG T STUB STUB STUB STUB0

Figure 24. Program Configuration After  Entry of Init ial  Segment

I

LEVEL TOP S B~I€NT SEGMENT A SEGMENT B SEGMENT C SEGMENT D

INT

CPT T0 STUB STUB STUB STUB -~

H

Figure 25. Program Configuration After XMIT to CPT Level

I L ~~~~~ a- - - a- - 
I

— — --~~~~~ —a._,___a._a.4.~~~~~~~ -.~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~ ~~~~~~~~.‘ — 3



LEVEL TOP SEGMENT SEGMENT A SEGMENT B SEGMENT C SEGMENT D

STUB STUB STUB STUB

[ 

A B

Figure 26. Program Configuration After Entry of Segments A and B 
f:

[LEVEL TOP SEGMENT SEGMENT A SEGMENT B SEGMENT C SEGMENT D ]
T STUB STUB STUB STUB

A B
0 0

Figure 27. Program Configuration After Subsequent ThlTs

56

~~~~~~~~~~~~~~


- ~~~~~~~~~~ ~~~ a.

LEVEL TOP SEGMENT SEGMENT A SEGMENT B SEGMENT C SEGMENT D

T STUB STUB STU B STUB

0

[___

O~~~~~

rTl

_ __ _

~~~~o 

_ _

t~’igure 28. Program Configuration After Further Changes

57

L

‘ a.,, , , - a-~~~~~ a. .)a. a- 
~~~~~~~~~

.—
~~~~~‘

. . a-I a .
~~~~~~~~~~~~~ 

_ _ _ _ _ _ _ _ _ _ _ a .’ ,
1~~~ ~~~

The concept of l ibrary levels and the i r usage t ies In very closely with

change control authorizations . Note in the example above , that neither

the programme r (sender) nor the Chief Programme r (receiver) can un i l at e ra l ly

decide to do an XMIT — this must be a j o in t decision where the sender o f f e r s

a product (together with assurances and disclaimers) and the receiver agrees

t o forego the stability (or instability) of his current produc t and accept a

new one . This need t o establi~th change authorization by level is effectively

carried out as described in Section 3.5. The following sections describe how

each of the seven library levels is utilized on PAVE PAWS.

5.5.1 Usage of the PRG Level. This level of the library is essentially used

for program development. No special authorization is required either to enter

new segments of code or to make changes to existing segments. Code in this

level is subject to both freluent and extensive change , consequently this is

the least stable level of the library .

5.5.2 Usage of the CPT Level. The CPT leve l is under control of the Chief

Progranmie r and is generally used to provide more stability than is offered

at the PRG level. It nay be used as the f i r s t point of program integration

or it may be used to make high confidence or localized changes separately from

the code at PRC. The authorization scheme in the PSL allows each Chief Programmer

t o perform)~1lT ’s to the CPT level. No additional procedural constraints are

placed upon this transaction due to the close working relationships within a

Chief Programmer Team .

~~~~~~~~~~~ 
Usage of the INT Level. A separate integration team was utilized

on ;‘5 A ’,L PAW S t o  perform basic integration testing at the system level.

Their responsibility was to establish stable and rational system operation

in order t - - allow the functional test team to begin their testing .

Although the integrators were authorized to ~~1IT code to the INT level ,

a f- r ~ aJ procedure was followed to ensure documentation of software

deliveries . Including a list of all problems which had been corrected .

This procedure required that the Chief Programmer l ist  all the programs

to he X1IIT’ed together with a list of all problems corrected on a

Software Change Re lease Notice (SCRN). The SCRN was then signed by the

manager ( leader) of the in tegrat ion team before the delivery was per formed.

58

- - - -- . ‘ - ,. -,- - ~~~~~~~~~ ,j,~Iia -~ a. .a- ~~~~~~~~~~~~~~~~~~~~~

- .



_ _ _  .
~~~~~~~~~

a. ,,‘-
~~~~~~~~~

“ a . -
~~~~~~~~

-, - a . -
~~

a . a . .

I

5.5.4 Usage of the FIX Level. This level , which is controlled by the Functional

Test Group , is a low—traffic level containing specific corrections for software

at the next higher level (TST). Changes can be made directly at this level if

necessary to fix specific urgent problems . ~4IT’s of individual programs ma~

also be performed following the SCRN procedure with the concurrence of the

Functional Test manager. This level is separate from the T~T leve l to avoid

those situations where “the cure is worse than the disease”.

a. 5.5.5 Usage of the TST Level. This is the primary level of interest for the

Functional Test group . It is highly stable and is the level from which the

Qua l i f i c a t i on Tests are normally run. The emphasis at this level is to push

the en t i re system to i ts next f u n c t i o n a l per formance benchmark .

5 . 5 .6 Usage of the FRZ Leve l. The FRZ level , which on PAVE PAWS is under

control of the prime contractor , is used for deliveries from TST following

successful completion of Qualification Testing. Software at this level is

under EcO/ECP control.

5.5.7 Usage of the DEL Level. This level contains the software configuration

which is operational. It is controlled by the acquiring agency .

5.6 Chief Programmer Team/Librarian Operations. As implemented on PAVE PAWS ,

Chief Programmer Teams require a very heavy technical involvement on the part

of the Chief Programme r in sof tware design , implementation of key programs ,

and review of the design and code of other members of the team . In general

this included one or two key Backup Programmers who developed their own areas

of specialization. Although the management responsibilities of the Chief

Programmers detracted somewhat from their technical efforts , i t seems important

that the person making schedule and resource decisions (the manager) be as

technically involved as possible. This makeup of a Chief Programmer Team was

successful on PAVE PAWS and would be recommended for use on other projects.

Al though Programmer Librar ians were used on PAV E PAWS , they were not used

in the classical role . Current l i t e ra tu re calls for the Librar ian to

perform all the keypunching, job submittal , and filing of l i s t ings for

a single Chief Programmer Team. The Librarian ’s role Is to act as the

central clearing house for all these operations. On PAV E PAWS a l though

59

-- a.

— -

‘-a. a.’.-,
a.

the Librarian performed all of these services they did not act as the

single focal point. This came about in part because the number of librarians

could not keep up with heavy keypunch demands and as second and third shift

operat ions increased , programmers were l e f t more and more to their own devices.

Contrary to popuiar opinion , it is not a total waste for a programmer to perform

his own l~a.-ypunching (within reason). It gives him the chance to simultaneous ly

review his coding and correct coding or logic errors on the spot.

5.7 Structured DesiZn/Structured Code Walkthroughs. Structured Walkthroughs

were used extensively on PAVE PAW S with great success . Segmented , structured

code with indented listings are an excellent vehicle for communicating design

or imp lementation. An important distinction should be made , however , between

the purpose of a desi gn review and the purpose of a code review . A design

review should be oriented toward presenting program design to a team of people

(including systems engineers , customer personnel , and testers) and soliciting

their comments on its validity, completeness , etc. A code review on the other

hand should involve at most two people other than the author and should be

done with a great deal of a t t en t ion to detai l , even going so far as to detect

snytax and data usage errors. Done in this fashion , code reviews are not only

informative but highly productive . In both types of reviews , indented

listings are provided for each member of the audience and the author acts

as a moderator in explaining the design or code. The author should maintain

a record of all unanswered questions and discrepancies which then becomes

an action item list at the conclusion of the review.

5.8 Management Statistics Collection/Reporting. The reporting capabilities

of the PAVE PAUS PSL as described in Section 3.7 were of limited use to

the prog~aimners and Chief Programmers. Reports were used as a confirmation

following a major delivery but were only rarely referred to in other

ins tat~ces. ~4idd1e and upper management made religious use of the

Progression and Durability reports however. This is a natural phenomenon

60

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- ‘



_ _ _ _ _ _ _ _ _ _ _ _  ~~-a.a. ’--~~---—- .- - —a.,

when you recognize that programmers view progress in terms of solving technical - -
problems while management is less concerned with “the problem cf the day” and

is more interested in demonstrated rates of progress. Coding and testing rates

can be realistically measured by plotting the outputs of these reports.
Figure 29 shows prototype software development curves f or the theoretical case

and for phased deliveries. Figures 30 through 37 present actual data for CPCI 2

as experienced on PAVE PAWS. Figures 38 through 40 similarly provide data for

CPCI—3. The major Qualification Test dates have been added to these figures and

clarifying foot notes have been added wherever possible. H

5.9 Qualification Test Program. The Qualification Test program for PAVE PAWS

followed Military Standards for Preliminary Qualification Tests (PQT’s) and

Formal Qualification Tests (FQT’s) and was carried out by a separate Functional

Test organization. Each CPCI had one or more PQTs and an FQT. Performance

requirements were mapped from the Part I Development Specification into Test

Procedures for each test and then test scripts were developed to guide the

conductance of each test. One early mistake on PAVE PAWS was to structure the

PQTs along CPCG lines. This was not practical for several reasons: CPCGs don ’t F

normally execute all by themselves, and software development plans call for

parallel development , which would result in PQTs be ing bunched at the end of
the program. This approach was corrected by using the software development

plan to determine what functions would be completed at various times and

then defining a Test Procedure to address those functions. This allowed

fairly even spacing of f ully integrated functional tests .

The advantage offered by having a separate test organization is considerable .
A comprehensive test program requires a considerable amount of planning ,

organization, and documentation as well as the tasks involved in actually

running the tests and performing post—test analysis. These efforts can

thus be accomplished without detracting from the programmer’s day to day

activities while at the same time a separate organization provides an

independent outlook with respect to test plans and results. It is clear

from PAVE PAWS experience that this is a key ingredient to a successful

progr am •

61

-- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
4

I.

S

____ —a .

I ~~ S
-
‘ I o~~ S

/ ,-1 0 E
I 0.
/ o~~ a

- /).~~O —

\

J/)

_ _

62

~~~~~~~

: 

III 

a.



-- a. ~~~~~~~~
a...a. a.

k /
~~~~. / ~~~

.

~0

/ H
/ ~~~

.

p.
\ _ . a.

0.
S
‘0

r 0 0,-
‘1 0

A

/ \ L
/ ‘ \ \

\ \c ‘ H
S 0’ I-,-1 0.

H
S \ - 1 .a.y

0.
o -
ci t - ~

—a.-—____

n~ij ‘, CN

~~

1~. H

\~
63

TI
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _ _ _ _ _ _ _ _



-~ - -- ‘—~ ‘~~‘~~~~~~~~~~~~~~~~~ a. ~~~-._~-~~~~ ‘---- I

_ _  

V

I’

—
S H 0

S
— 

0
H 0 p.
0)
H I

4_i Os 1_i

I’ 

~ 0 I
/ 

$

64

- ~~~~~~~~~~~~~~~ - a. - -— a..-.. 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~ ~~~~.,, ~~~‘— - ‘


~~
- -.a..- -.-—-- ——.-_—

~~~~~~~~~~~~~~
—-- ------—-- 

~~~~

a.a.

~~~~~~~~~~ ~~~
-— -

~~~~~~
a.
~~~

,a.a.
~~~~~ 

- .a.a. ’-~~~
a.—.. - ‘~~ .—

0 ~
a.

— H H 0.
~~~
‘ a

H a.’
_____ 

0

\~~
I( ~~~~ 

~ 
‘0 ‘•.
0 -

~ ‘ 0
1 r -a.-

I -
~~- I c~j  -~~~ -

I 4)
I ~I - S

I -
~~ C

‘C ~

/

i

--a . - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

\\ 

“
~ 4.. .~~

65 

1

a. ’ ~~~~‘ 
..

~~~~~~
-
~~~

_ a. - -~~~
- -
~~~~~~~~ ~~~~~~~

a.
~~~~~~~~

__- _
a. - ~~~~~~ ~:~:~~~— —-- - .a.”.. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ a.. ~~a.-a. - 

a. - ‘



-—a.- --- ~~~~~~~~~~~
a.,a.

~~~~~
a.’

I

\ s

-

~~

i_ -I

& C
0

H
S
5 0

-~ -~~~~—4 ‘I H 0

24) 0.
— I

4 4)
H).a 1-i
0) 0 a . &
H — S

w .c1_i ,0 0 --
- t ‘0 54) o

‘0 -.._I
0 4) (C

_ _ _ _ _ _ _ _

I

a.
~

’
~

”, a. —-a...-- —~~~~~
7-

~
.’_’.”- ‘- - - a.-.. -a.- wa.____ _ a.”,

H I

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~

0

41)
>
4) 5

H * ‘C
0

0) 5• H H 0 - ‘S
4)
~4
o

(K~~~
~~~~~~~~~~~

- --

H

67

La. .~~~~~~~~~a. -~~~-- -~~-- a. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



- - - - - ~~~~
--—~~~ -~~ 

a. a.
~~

a.
~~~~~~

:

4_i
S
‘0

S
0

—4
S
U)
S

0
).1
0.

4_I ~~ ,o -‘ 0
-l
S C
> 0 0
4) .,.4 Pa-

— 4) -
~~~~

C)
H ~ 

‘.c~k
Cl) —
H — I

0
i_i U 4_I
(5 1.. c

4) (5
4) •~~ .~~
‘0 4_I 0
0 .1
ci o

I
‘~~.

0 - ‘

ii

41)
‘00
c-I 0

a.

~~~~

68

-. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ - . c -_-
~~

,~:. ~~~ w
--
~~~~~~~~~~ 

- —‘
~~~~~~~~~~


1’ Ui

I

69

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ __________________



- a .rr 
- -a. -. a . a .  -- — - -

pa.. --- - - -

I~~I~ 5

‘0

7-\
-4 4)

I~ 411
/ / ‘0 0

/ 1 H

I ‘ 
I-I

-
~ *3)

S - ‘-~~__ _ _ _ _ _ _ _  0

0
— S

~~~~~~~ ‘

7O

~~~~~~~~~~~~~

- - ~-~~ - -



a.—. . , .  
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ a..’a.a.. —-a. -a.-.. ._—a.-.a. ——‘-a.’——. - ~~~~~~~~~~~~~~~~~~~~~ -—

_ _ I

~~~~~~~~~~~~ 

~~~~~~~~~~~ 

_ _

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

__ __________________ ______ a.~~~~~.*...



t

0.

-‘ -
~~~ S

0
-4 /~S. U

0~— S

— S
S

*3) . .1. ci-4 -
~~~ 0

H 4)
Cl) ,_

~ 
0r H H U)o’ sr~. w(5 

~ . _ _ _ _ _ _  4-I
4) 

-

~~~‘a.—, ‘0 0
0 _ _ _ _ _ _

U - ‘

H I

I
72

... ... ~~~~~~~~ - — ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ‘~‘ - c . ” ~~’~’~~~

H

I

_ _ _

~~~~~~~~~ a. ~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~



5.10 Programming Communications. Communications to programmers has been a
longstanding problem in sof tware  development proje cts . All toc frequently

programmers fall into known pitfalls , re—invent a solution to a problem , or

fail to follow a standard because it was not communicated to them . On large

software projects the failure to develop and adhere to software standards

for names , calling sequences , da ta formats , file handling , etc., results in

significant problems during system integration . These problems are invariably

costly to correct , in terms of both effort and schedule . In an attempt to

overcome this problem , a series of newsletters/memos was initiated called

PAVE PAWS Green Sheets . They were all sequentially numbered , could be authored

by anyone , and were printed on green paper . This made them distinctive enough

to attract ~i programmer ’s immediate attention so that communications spread

quickly and effectively . This technique not only informed the programmer

but resulted in a compendium of useful information wh .ch could serve as a

reference for the lIfe of the project. Figure 41 provides an example of a

PAVE PAWS Green Sheet.

74



- ~~~~~~~~~~~~~ a.—— - ‘ -—-.—-— - ‘.— --a .-—~~~~~~~~ —-,-——~~~~~~~ -— -— __

~~~~~~~~~~~~~~~~~~~~~~ ,r,1,, ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

V - -I

*** PA VE PAWS ’ GREEN SHEET ***

NUMBER

J
r)A1~ : - iy io -

-

~~~~~~~~~ AUTHOR : W . B . Vogdes

SUBJECT: Software Standard for PAVE PAWS Library Usage

~/ ibis ;roen Shot- do ll ccos the - ‘~ t tware library hierarchy for PAVE PAWS
and k - s t a b  i ~ht-s th~ s andard to he fel loved In Its usage . Examp les

/ ire provided for clarity.

/ ‘I~he 1~AVF PAWS program library hierarch y i s  des igned to support an I
:

orderl y ~~~ we 1 1 cont ro I led progress  ion of s o f t w a r e  f rom a deve lop—

/ mont cmvi ronment th roug h integration and -st and Into a delive red
status. Basic t o  this hierarchy a rt ’ the concepts of control level

A p rogrim o I (‘(1100 t Is ready to change cont ol 1 (‘VO l when i t  has/ 
and t h e  m i g r a t i o n  of program elements from one leve l to a no t h e r .

/ complet ed a p rt-dol m o d  q u c i l  I fica t ion criteria and Is to be p laced
cinder more st r i ng e n t  change  coil t ro 1 . It is common practice for such

, 
- ‘ c o n t r o l  st r u c t u r e  t o  he established and the PAV E PAWS PSI. maps
that approach I n t o  the  I Ihr .irv hierarchy. ‘ - 

-

~/ Seven l e v e l s  of sot twar e  co t i t  te l ire utilized for PAV E PAWS (although

/ 
additional levels can be r e a d i ly  c reat ed ) . See Figure  1 for a defini—
t Ion e l  those levels and the change authority cissoc I ated with each one .

/ 
With this hierarchy , the programme r is able to re ta in  access  t o  -

multi p le V e r s i on s  of a software element without losing any stabilit y .

/ 
Because the same program element may ex is t  at more than one control
leve l , it is necessary to specif y both LONG .NAMF . and contro l level

/ 
when reterencing any library element (e.g., COMPILE LON G.NAME , LVL).

When programs a r t - r ,’adv to enter the next  change leve l they are

/ XM1T ’ed t c .c t h a t  level. This Is effected within the library by ~.
-~ i mp l y  ch an g i n g  t h e  -ot ~t ro l  leve l associated with the software .

/ 11*4 . cI*.IIlge author I ~.it Ion of the software is automat Ically changed
it t h e  - ; , i p c .  t int’ . i’ho process of s o f t w a r e  m i g r a t i o n  throug h de velop—

/ -ct - S  • ill ’ (~~ I’ .) C Ion , anti t e st  can thus  he coltce I ved as -i ‘‘bubb le—u p ’
0, . , , )  (‘Il - ‘

/ 1 * 1  e rdi’ r o t a~- l i l t  a t e  t~I ongos to sot twar e  w h I c h  has a 1 ready been

/ ‘‘‘IT ’ .- .I t c , ’m ec~, ’ I ~~~ I t o  a no t h er  , the PAVE PAWS PSI. provides ci I

t •  • ?  I t • ~ - .i l letI ‘‘- ci ’ten~.itic drawdown ’’ . T hi s  feature i i  lows rt’ft’rt-nces
• ., - vt - ti In the It bra rv of thor at or ah oy 4 - th e specified I c’ ~ 1

/ ~ p~.t - u,-s - - ire i I w:iv~ pert ()rme’d a t  t t i e  spe -c it ted I eVe 1 - An
1* i i ltistt U i v , ’ .

/ 
_ , /

S / ~~tg~ i ro- ,~~. Example of PAVE PAWS Green SheLt

—~~ ~~~~~~~~~~~~



PAVE PAWS ’ GREEN SHEET (Page 2)

NUMBER 6

Consider program LONG.NAME which consists of a top segment (T) and
two INCLUDE ’d segments (LONG.NAMEI(Sl) and LONG.NANE2(S2)). This
program was developed at  the PRG level and then XMIT ed to CPT. - ;~The PRG and CPT l evels appear as follows : 4

(Contents)
CPT T Si S2

I

PRC empty

Assume now that an error is detected in Si which requires that it
be corrected and undergo test at the PRG level. The segment may
be updated  and the program comp iled using directives as follows
( f o r m a ts  are for  i l lus t ra t ion  only) .

MODIFY LONG . NAME 1, PRG
COMPILE LONC.NAME,PRG

During the MODIFY step , the PRG level will be searched to f ind Sl.
When it is not found , successively higher levels will be searched
un t i l  it is found . In this case it is found at CPT and that will.
form the input source for the MODIFY. The up dated source will be
placed at the PRG level. Similarly , during t e  COMPILE step , both
T and S2 will be “drawn—down” for input purpoces. The object
module output by the compiler will be stored at the PRG level.

‘a..-

The combination of control level hierarchy and automatic drawdown
combine to make the PAVE PAWS PSL an easy to use yet hightly con—
troliable system.

Figure 41. Example of PAVE PAWS Green Sheet (Continued)

76



TI

‘.4

-~

I-’ C 14
• • 0 0 0 4.4

4J ‘I .,.4 0 H -o C 0. 0. 4.1 14
0 4 1 0 1  40
41 Ii

C., .0 0 0 ’ ~4 1.4
Z 4.1 1.1 4- 0 1 4 1 00

01 4.1 .4 0
00 114 (0 01 41 ~~~.0 14o < 1-’ 0-’ P 4 0  0.,

4.

hi -’01

4~ >-. C.)
40 .4

0o ‘.4
4 1 0  4.’ 111
. 0”  01 i-I
‘4 0

U
4 0 0 0

01

u~ >~ >‘ 5 1 4U .0 .0 I-’ 0 0 1  00
—l ta .4 • I-i
I-i 0 1 4 1  I-’ 4 . 1 1

41 0 1  4 0 4 0
P-I 1.1 14 0 01 14 14

0 1 01 1 1 . . 4  CO CO C 3111 )‘ 5’ ~~.. •~ 0 0 1  -~0-’ . 4 . 4  1-1 41 ~ I 1 4  01U .-4~~~~ 4 0’ $~41 01 0 . 4 0  .4 0 00
00 444 — >.

41 4100 • . 0 1 . 4 5 .  0.C.) 0 1 4 1  . 4 0  . 4 . 0 1 01
4 1 0 1  0 0 1  0

~~ 4.1 4.4 ~~00 01 01 1. 0 Ii 14 14
-~~ 0 1 0 1  01 0 1 0 1 0 1
~~~ ~ 4) ‘01 01 41 ‘01 41

0 0 1 0 0 0 1 14
114 01 5 5 —o ‘-4 — 0 00
Cl) 01 01 0 1 . 4 0 1 4 1 0) .4

4) 4 .1 1.4 1) 14 14 11.
0 1 0 1 40 U 4 0 4 0 4 0- . 4 —

‘44 1.4 ‘4.4 •4-l 444
0 0 0 0 0 0 0
U U e C.) Cl) U) Cl)

I- ,

h _ _ _ _ _ _ _ _ _ _

~~~~~~~~

1)
01

0) 0) 01 01
Cl 4 0 0 1

14 , 4  .4 0 . _ 4
0 1 1 4  14 0 1 4
5 . 4 0  40

-‘-4 14 4 ) 1 4  01 14
‘-4 ,0 01 .0 5 . 0

0 1 . 4  0 1 . 4
~~~~~~ 0-4 ,-) a , - )

Figure 41. Example of PAVE PAWS Green Sheet (Continued)

77

~~~~~~
-—-,— 

~~~~~~~~~~~
—— a ._ -_ a. i 4 . . ~~~~~~~~~~ ~~~~~ “- S_~~a.&ML *~.~~~da.&J ~a . . a.-

‘a.a. —-- ”a.

6.0 CONCLUSIONS AND RECOMMENDATIONS

The software engineer ing and modern programming technology employed on the

PAVE PAWS consists of an Integrated set of tools and techniques . Utflization

of this technology does not , in and of itself , guarantee the success of any

program development , but does establish an environment to support project

success. Top dctwn design and implementation is effective in assuring that

all system functions have been accounted for in the software design and assists ,— -
in the t racing of system requ i rements from the highes t leve l of mission

functions to the lowest component of code produced . Benefits from commonality

and standard iza t ion of coding techniques , naming conventions , and uniform

presenta t ion b y indented listings contribute to programmer unders tanding

within and among the groups established to code major system functions . This

commonality enhances design and code reviews by providing a common frame of

L reference for discussion and continuity . Thus~ program concepts and structure

can be communicated between programmers and offers the greatest improvements

to efficiency and effectiveness. The disciplined programming environment

embodied in the modern programming technology used on the PAV E PAWS has

measurably improved the transition of software development from the mysterious

and arty to the clear and cohesive world of software engineering.

The PAVE PAWS hierarchical program support library represents an important

technological improvement. The PSL itself is used by the progr ammer to enter ’,

store , manipulate and transition software from design through development ,

t,est and integration , and delivery. At the same time , the PSL provides reports

to management with the necessary visibility into the process. Thus , commonality

exists between management and software production and further improves the

probability of successful program completion by providing an environment for

software stability and unhampered software development.

78

~~~~~~~~~~~~~~~~ ~~~~~~~~~~~

___ .“- a.--



—a . ’-— a. a . - -  — - - - a . - - ” ’ Ia.

Two of the reports produced from PSL data merit further discussion. The

Code Progression and Durability reports are of significant value to management.

By examining these figures over a period of a week or month , code generation ,

integration and testing rates can be measured. Thus, when f aced with a

problem and an estimate of the resources needed for the solution, management

is armed with objective measures to assess program impact. The report is a

direc t indicator of sof tware quality and can be used to pinpoint areas where - -

code is progressing too slowly or quickly. As far as is known, these measures

of software quality are unique in the industry.
ri

In sui ary, a number of modern programming techniques were util ized on

PAVE PAWS and supplemented by software development tools which won widespread

acceptance by programmers and managers alike. Although it must be realized

that availability and use of this technology does not , in and of itself ,

guarantee success, it must be credited with establishing the environment to

support project success. The experience gained is being fed back into both

Raytheon and IBM business areas for consideration and potential inclusion in F
all future efforts.

79

a. . , a .  - ‘ ‘- 
- ~~~~~~~~~~~~~~ - -



- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ “-~~~~~~~ 

APPENDIX I

SYSTEM PAVE PAWS (Data Collected Against) DATE 10/07/77

GENERAL CONTRACT/PROJECT SUMMARY

1. Type of Contract: FFP _____ CPFF  OTHER FPIF

2. Total Cost (Actual or Estimated) ~~5.OM (CPCI’s effort only)

3. Level of Subcontracting None

4. Project Environment
Dev. Team Collocated with User? No
Dev. Team Collocated with Computer? Yes
Dev. System Same as Operational System? Yes
Test & Integration Separate Organization? Yes

5. Project Description

Engineering support plus software design, fabrication , and test for
(1) PAVE PAWS Tactical Software (CRI 2) which is a real-

time system including inpu t and output interfaces with the
PAVE PAWS Radar Controller (RCL-CPC I 6) via the I
PAVE PAWS Operating System (PPOS-C}~I 1). The system
has strict storage and throughput goals.

(2) PAVE PAW S Simulation Software (CPC I 3) which is a real-
time system with the same interfacing requirements as
above.

(3) PAVE PAWS Tactical Scenario Generator (CPCI 3) which
is a non-real-time data base maintenance tool used to
prepare scenario files used to drive Simulation.

(4) PAVE PAWS Data Reduction (CE~ I 5) which is a non-real-
time reduction system for a large variety of recording
which is done by both CPCI 2 and CPCI 3.

(5) PAVE PAWS Program Support Library (PSL-CPC I 4) which
prov ides the ba sic sof tware library services in a topdown
structured environment.

6. Project Start Date C4/l2/76 Est. End Date 04/12/78

7. Estimated Number of Project Personnel - ‘

Management _____ Systems Engineering _____

— Chief Programmer 
_____ 

Functional Test 
_____

Support _____ 
Dev. Programing 

_____

80

a.  ; .~~~~ ‘ ~~~~~~~~~~~  

,~. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -



_ _ _ _ _ _ _  ~~~~~ 
,
~~~~‘~~~~- a.a.a.a. a.

~~~~~
a. - --~~~~~~~~~~~ -‘-‘- ~~~~~-~~~~ : ---—-a.’--- - -

i

8. Estimated Number of CPC ’s 48

9. Estimated Number of Pages of Documentation

Requirements (Part I) 1460 Test Reports 1200

Specifications (Part 11)3400 User Manuals 900

Tes t Specifica tions 2000 Other 600

10. Estimated Total Number of Instructions N/A Cards 135K

11. Estimated Number of Different Input Formats N/A -
‘

12. Estimated Number of Different Output Formats N/A
4.

13. Estimated Total Man/Months

Management 85 Programming 630
Suppor t 102 Tes t 170
Engineering 102

14. Estimated Total Computer Time (HRS) 1000 Hours
(wall clock on dedicated computer) f

_
.

F-

Contact B. Scheff (Raytheon)

81

— a. — — —_~~~~~~~~ —a. _i,,__a.i ~ ______________________________________________________ ~~~~ —



I

APPENDIX II

SYSTEM PAVE PAWS (j~ata Collected Against) DATE 10/07/77 - 

-

MANAGEMENT METHODOLOGY SUMMAR Y

1. Management Procedures/Tools Used

PAVE PAWS Program Support Library (PSL) reporting 4

PAVE PAWS Trouble Report Procedures

Program Control Management System (PCMS - Financial) a.’ -

2. Documentation Available at CDR:

a. Development Specification (Part I) - C~~I 2
b. Development Specification (Part I) - CPCI 3

c. Development Specification (Par t I) - C~~I 4
d. Development Specification (Part I) - CPCI 5
e. Product Specification (Part II) - CI~ I 2
f. Product Specification (Part II) - CPCI 3
g. Product Specification (Part II) - CPCI 4

h. Product Specification (Part II) - CPCI 5

Note: All above documents provided to customer.

3. Formal Reviews and Schedule

Da te —

a. CPCI 2 PDR 8/76 CDR 1/77

b. C~~I 3 PDR 8/76 CDR 1/77

c. CPCI 4 PDR 7J76 CDR 9/77

d. C~~ I 5 PDR 8/76 CDR 1/77

4. AF Regulations, Manuals , and Military Standards Under Which Development
Will Be Conducted

MIL-STD-483

MIL-STD-490

MIL-STD—1521

82 

- 
~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


-a. - ~~ - --- .-~ —-- - .--‘-a.—-~~ —--~--- -- - -’

S. Description of Deliverable Software

Refer to GENERAL CONTRACT/PROJECT SUMMARY, Item 5, for an overview
of the technical content of deliverable software. All software will
be delivered in a PSL form (either disk or checkpoint tape).

6. Reference Measurement Gathering Procedures

Clarification required .

Contact B. Scheff (Raytheon)

I

83

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _—- ~~~~~~~~~~~~~~
a.— a. a.—- —

APPENDIX III

SYSTEM PAVE PAWS (Data Collected Against) DATE 10/07/77

DESIGN AND PROCESSOR SUMMARY

1. Target Computer(s) CDC CYBER 174—12
(same as development computer)

2. Processing Environment

1 Card Reader (CDC 405)

2 Line Printers (CDC 580—12)
1

3 Disk Drives (CDC 844—2 1)
,-: ‘

-

6 ~RT ’s (CDC 774—1)

1 Plotter (Gould)

6 Tape Drives (CDC 669—2)

3. Configuration: Hands on X Batch — Remote_ Or~--1ine_

4. Operating System(s) Version Nos. 1.0 as modified (PPOS)

5. Compiler Vers ion(s) JOVIAL J3

6. Assembler(s) COMPASS

7. Est. Percent: JOVIAL 85 COMPASS 15

8. Automated Software Tools Used: PAVE PAWS PSL - ‘

9. Design Standards

— MIL—SrD—483 , Append ix VI
— IBM FSD Software Standards (33—09)

10. Programming Standards

— PAVE PAWS Green Sheets

— PAVE PAWS Computer Development Plan

11. Programming Techniques Emp loyed :

Topdown Design X HIPO x
Chief Programmer x Structured Code x
Librarian x Struc tured Wa lk Thru x
Topdown Tes t x Other — PDL x

-

- 84

a.’— -
- _ _ _ _ _ _ _ _ _ _

- —_‘- -a . —~~~-a.---~~~~~~ ’ ——’— ’

12. List Existing Programs/CPC ’s to be Used Standard commercial software

13. Estimated Turnaround Time (HRS): Batch 2 Hours

Contact B. Scheff (Raytheon)

f _ i ’

F

t-i

85

- - - —-a. a.---’ —-——-—a.—.-
~~~~~~~~~ 

- — — - -—— - ‘ -a. .‘—a.-. a.- a.--—--—-’—.—-- - -- - — a. —-—— 
~~-‘ ~~~~~~~~~~~~~~ -

La.. 
- 

~ 1~-’ — “ 4 ’  
— -



-

~~~

APPENDIX IV

U.
~ U -~~

* e -u - d .-

o . U, . -~~~
‘
~~ o~

1 2 ~ 2
o .0 •~4 ~..i a -. a n —.
o — o, — r

kJ (41 — 4 4 0 V) U,
• CQ •~~~ • z e

~ .0
—~~~ a . 0 4 4 Z -~ a
.0 ~S 04 v~ -~ 5. -

~~

~~ ~? .. - ~
‘ U’

I~~ _) .J Z O Z 44 U U
04 .(UI Z .

0 ~~ ‘ — — H2 ~~ 4~ 5. — ,.4
UI ‘ 4 4 .) 2 Z 44 v~o ~ .‘4 04 ~ 2 ‘4 U 0

44 44 — > 4.? 5 U,
04 — ,J — — 4 — 4.) 2.0
U S. ~ -~ z z ,.~ i- -.

~~ 44~~~~

I

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

____ — — ____

~04 ~ 4 t~ _ _ _  _ _ _

~Ii_III 1 
_ _~I~~~ — —  ~4 f  
_ _0 M~— — —  —i— —  — -

.—. ~~~~~~ ~~ 
r. a t. j~i’~1.I

U? - — — — — —
0~

is ~~ — _ _ _  _ _ _

0 . 0
.~~ 0. . 4 (4

— 4 4 - .
E-i 

~
. 5 — O ~~~~~

5) - ___  ___

-4.) ~~~ Z ’  i ’-’
0 ~~~~~ ~ 44 44 0 0 44

_ _ _  _ _ _  H

U
U, 4 ed .0 0 .i .0

— _(5 4-’ — ——
-0 -S .0 .0 .0 .3 -3

—a. — — —
0?

S. ~~ 44 44 2 0.

4.. — ~.) Z 2 2 2

— ~~ a 4 U~ .0 •~

x
(I,
>4
(I)

86

_ _

- 
- ‘  . _a.a. ~~~~~~~~““~~‘ ‘ ~“ ‘-a.-’-” “- ~~~~ ‘‘ ‘  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~



U
C a u

u u .. - .J a
44 U0 

e 44 • “ 2
• -3 44 . a

W U ,  0 ~~~Q 44 44 -S
0*  .0 S .C  44 • ~~ II U)
2 4-3 44 U, U, 44 . C.
o .5 .  s 44 • ‘4 0) 44
—~~~ 44 . 44
.0 • 5-

2 4 4 4 .  .1 a
S . C  .30 0 4 . 1  44 S.
44 0 — 0—  L 0  44 44 0)
• .3 Z 04 . 44

0 S. ~ U ~~~~ . .1
2 - (40  • — e • 0.4 44 - 4 4 . 4  44 4 4 4 —  44 44 .3

44 •>  4.~ 4 4 4  ‘4U) - - 0. OS.
04 

44 JO.  44 — . 4  —~~~‘4 • 4.0 ~~~~
. 04 .4 .10.1- 44 (.3 ~~~~~. 0 .”

— — — — ~~~~~~~ 1•~~~~~~~~~— — 0 0 . 4 4
0) 43 ~ 1b.

- 4 4  Q U, U, • • .0

U, U
—

-~~~~ a . .

. — — — - - — - -—
o C’I ~ —-— ~~~ _ _

L&~ s-s W ,.s - ~~~~~~~~
~o. ~~~~~~ ~~~~ _ — _____ —— 4.

< 0 2 I
I —  

U, -.
Ii ~~~~ t t  — ___ —

~~ 
—

0) 3* 3 4 4 0
~~~ 

- S S~ a • a . • o — — -.

~ a: ,~~ — — — I . C ~~~
-~~~ (.3 5)

~~ ~.• m
U 4..~~CS p 5) 0

bi — — - — — —— —— — — I ’~0 . 0 0.

4 - 3 4 00) u~~~_
5) ~~~~(1 4) 44 44 44 44 44 44 44 C u5) I

I.- -—— — —
0 3 4 1 4 4

0 ~~~- —
5-s i

(5 ‘ 4 . 3 .1 4 4 .3 0
-4.) -;-- —;-_ -;•--- -;--- _;— —;-- -;-—

C),

0. * 4 44 44

5. U 2 5 2 2 5

— rd a • 04 a

z I
Cl,
>4

87

-~a..a.j , - - - - - -

-

S.
U

•1 —
S S

e a 4, a
3 44 . S. -S

4 4 0 5 — 44 44 44,
0 4 4 44 C4 4 0 4 0 U, • (4 34 4 (- 4 4 4 4
—~~ 4 - 5 44
44 44 44

~
U) 4 4 . U

4 4)) 04~~ -4 44 ..3~~ 44

~~~ 
a

U) Z U -3
r~ ~~ 2 :~0 -3 .1

14-i

— — — 0 0 . 0
N.
N- .0 3, di
a.— .~ — 6 0
N. 5 - —

- _ _  _ _ _ __

~~ 11 .! ~~~~~to .
44 4.

ça s-~~~~i3 ...s
_~~~~ .___ _ __ _ _  ~~~~~~~~~

Is ~~~~~— — — — —;~ o .1Z ~ (4.5 I £~~~ U I

~ B3 ~~ 
.
~~ 

~~ ~~~~~~~~ ~~~~~~~~ ~~~~ 

-

~ ! ~4) — — 4 . 6 0 . 0 .

-~ 
444 ~.. ~~ ___

5-4 4)
4 ~0 . 0  —

•0 0.

4) ~~~~— — —— — —  —

_ _  —-
.0

88

— 
‘ ~,a._a._,a.,_ _ .~~~~‘ ‘-‘- ‘ ““ a.- - ~~~~~~~~~~~~~~~~~~~~~~~~ - ~~~~~~~~~~~ 

‘
~~~~

‘ —
~~~~~~~~~



AD A073 357 RAYTICON Co WAYLA ND MA EQUIPICIT DIV F/S 9/2PAVE PAWS MOOERN PPOSRAPU4INS DATA COU.ECTIOtI SYSTEM. (U)
JIM 79 B H SCHEFF. W s VODGES. N R HALl. F30602—77—C—O1;i

UNCLASSIFIED RADC—tR—79—137 Pt

~:f uul~ t

t



I .0 ~ ~ 2 8 IQll~
5

L

L I  ~ ff~2.O

I~~
.8

11111’ .25 IIIII~ uIII~•~

MICROCOPY R~SOLUIION TEST CHART
N~. ’’ N A I  ~~~~~~~



U U U

g:~~. .

~ I L
•

~ a
~ ~~~~V •

~~~ 
-

~~~ 
j  j  j

— - - ~~- - ~~-

4 4 ~

— — — — • •o
-2 

~ TTIII
a aId . . .___ _ — —

~~ ~~ 0
Z ~ u v l

8 ~
— —

~ fill Id~~
I~~~~~~~S

—

— — -o
H

4

a
4 4 4 4 4

cn

— — S. —

-. d 
~~z

ci,

ci,

89



• .m 5,

~~ ~~• ~- i • ;~ ~
~~ a a

I ~,J _—~~~~~ — - —  — —  — — —

a N

•5~~~~— —~~~~~~~~~ — —  — —  Aa 0 N 4

~ ~~

II. ~~~ 
— — — —— —  — ——I

U .~~ . 5. ~~~~~~~~~~~~

1-4 
~~~~~~~~~~~~_~~~~~~~~~~~~~

_ _ _ _
SI -

~J~j 4 . 4 4 .

— — — —
4 4 4 4 4 4 4

N 4 5, .

0,

90

- -—— -

- 5;

a a
z

~
~~ ~~

- .~~~I~ ~~~~~

k~ ~~ 8•~~

(

I _
—

; — —— — — ,.,jZ~~~Z S
~~~~I-I ~~ — —

Ill -i fs~ .~l

~~ 
~~~~~I4~~~~ — - — — —— —

a :.~a

8 - - — - — —— — e ç ~~~.2±E ±±± thU
!! ~IIi~IiEI iil~ Ii:

ii

— ~4 SI 4 5,

U)

91.

H

S

MISSION
of

Rome Air Development Center
RAVC PLan& and tzegwteo 4UeMdi, deve~opmQJtt, teo t and&dec.tt4 acqcu.o.,2i~on p’togMmA £n 4ijppolt.t o~ CosMand , Co#&tito~Co wAgg.~.~o~ and TnteULgenee (C ’i) a vi.tLu. Tech,u.cc2and engLneeiv2ng 4uppatt suL.tkLn a,tea~ o~ / ~eeJutLcaL competenceL& ptou~ded ~o ESV P&ogMa~ O Jcn~ (PO~) and o.tJ~~t ESVme*t~. The ptLitc2pal teckn..caZ m~uo n a~teuo ateco~m.uMca.t~ono, eZec tomagne guAdance and con2sLoZ, 6ut- fveiZZanu o~ g ’tound and a.e ’toopace object~, A.n.te.Wgence da.&coaect4on and handUng, Jnd0itm~J.2~~ 4q4tem technology,Lono~p hetic pt opag a.t2on, ooli4 4tate 4c.ance~, nkeJIot4uvephy~i~c1~ and eLe~~~opw.c M UabLILty , mc2i LnabWty andcorn a tibW.ty,

4

L~~~~~~1 _ _ _ _ ~~ _ _ _ _
