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I. INTRODUCTION

The purpose of this report is to present the results of an examination of
the thermodynamic performance of the discrete injection transpiration-cooled
nosetip (TCNT) for reentry vehicles. By analyzing the physical model of the
system numerically, predictions for nosetip surface temperatures during
flight may be obtained. Test data indicate that in the case of a reentry vehicle
clear air trajectory, aerodynamic heating alone can cause the temperature of
the nosetip to increase beyond the material's melting point. In an environ-
ment where particles of snow or dust impinge upon the nosetip surface, it has
been found that erosion of the surface is more prevalent. The model which
describes the system must therefore take into account the possibility of a

receding surface.

An underlying assumption in the physical description of the problem is
that the plate-like elements which compose the nosetip may be represented as
individual webs (fins), while the coolant flowing through the nosetip flow
passageways may be considered to absorb energy from the individual fins,
with the coolant then removing heat by flowing out of the system. The energy
balance described in Appendix A results in two coupled, one-dimensional
transient heat conduction equations which involve temperatures of the fin and
the fluid. Surface heat fluxes, which become part of the fin boundary condi-
tions, are taken to be those at the stagnation point of the nosetip. The fin is
represented as a semi-infinite slab, thus implying that the distance from the
nosetip surface to the orifice through which coolant enters is much greater

than the thermal penetration depth.

An implicit finite difference scheme is used to solve the equations
numerically on a computer. Iterative techniques are incorporated to ensure
that dramatic parameter changes (either in boundary conditions or in the
coupling of the equations) do not drive the system unstable. Temperature
distributions for clear air and weather environments are compared with actual

test data recorded in a ballistic range.




II. FORMULATION OF THE PHYSICAL MODEL

The nature of this problem is such that fin and fluid temperatures
influence one another. If the fin temperature TF is a function of time due to

changing surface conditions, it may be concluded that the "bulk" tempera-

ture of the fluid TB also changes with time. Separate energy balances are 3
performed in Appendix A to yield two partial differential equations. For the I
purposes of this analysis, the fin material is assumed to be stainless steel,

and the fluid is considered to be water.

A, ONE-DIMENSIONAL TRANSIENT CONDUCTION
EQUATIONS

The governing equations for fin and fluid temperatures as functions of

time and distance are derived in Appendix A and shown below.

1. FIN EQUATION:

oT oT oT
F.9@ F . g
PeCpr Bt = Ox <KF ax) + (PeCprpd) g% +5- @ =

2 FLUID EQUATION:

oT oT oT
B . O B £ L s -
PECpB Bt ‘6§<KB ax) * (PCrpp® + ™Cpp)a -E° Q@
where |
Q = h(Tyz - Tg), the internal convective heat transfer rate per :
unit lenggx b
s = the recession or erosion rate of fin surface i
m = the mass flow rate per unit area of the coolant i
n The dimensions and other terms refer to the representation of the physical i
model shown in Fig. 1. The dimensions a' and b' are substituted for a and b,
respectively, in the equations when x lies between i - j $ dt and £. Also, )
for this range of x, ' should replace m, where m' =° bm/b'. ]
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It is apparent that in the fluid, energy is transported in the flow direc-
tion by both convection and conduction. The Peclet number (DpUCp/K)
provides a measure of the relative importance of convection to conduction
and, for the conditions of interest, has a minimum value on the order of
several hundred. Calculations done to assess the importance of axial con-
duction have indicated1 that the error involved in dropping the conduction
term is negligible for values of the Peclet number greater than one hundred.

Thus, with the deletion of the conduction term, Eq. (2) becomes

oT oT

_ TR B 2
PsCpp Bt ° (pBCPBs +MCon] = 5« Q (3)

lRalph P. Stein, "Liquid Metal Heat Transfer, " Advances in Heat Transfer,

Vol. 3, Academic Press (1966).




This revised fluid equation simplifies the numerical analysis and aids in the

spatial stabilization of the fluid temperatures.

The source term Q is dependent upon the type of heat transfer mecha -
nism that couples the fin to the coolant. In this case, either heat transfer
without phase change of the fluid or subcooled boiling heat transfer is postu-
lated. When no phase change occurs, that is, when the temperature of the

fin is less than the saturation temperature of the fluid, Q takes the form

Nu . K

Q:T(TB-TF)

where Nu is the Nusselt number, and has been assigned an average value of 4

for the ballistic range and flight cases reported herein; and D_ is the hydraulic

H
diameter, determined as

D. = 2b
H 1 +b/w

where w is the width of the fluid and fin elements. As an estimate for the
subcooled boiling heat transfer rate, an empirical relation postulated by
i hom'2 is used:

~

Q(Btu/ftz-sec) = 0,0536 ep(TF - TSAT)Z (temperatures are in 0R)

where TSAT is the saturation temperature of the coolant (found as a function
of the external pressure and P is defined to be P/630, where P is the external
pressure in psia. For the case where TF is greater than TSAT’ Q should be
calculated using both of the foregoing relations. The larger value is then
chosen to represent the source term, since the heat transfer mechanism for

subcooled boiling is greatly improved over that without phase change.

2z
J.R.S., Thom, et al,, "Boiling in Subcooled Water in Tubes and Anulli, "
Proc. Institute Mech. Eng., 3C180:226 (1965-1966),
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It has been suspected from prior usa, » that the equation for subcooled
boiling heat transfer is overly optimistic, i.e., the equation overpredicts
the amount of heat removed from the fin. For the present, however, this

relation shall be used until new correlations can be formulated.

The erosion rate of the fin § depends upon the free-stream conditions
outside the shock wave. An empirical formula used to obtain the erosion rate

is as follows:

1 3
;e 2PwWC T
Cy Py
where
p[ we the liquid water content of the free stream (the mass of
M water per volume of air
U00 = the free-stream velocity, which is equivalent to the
velocity of the vehicle
(‘.N = an erosion coefficient, herein taken to be a function of
the fin surface temperature
PI., = the density of the fin material

FFor the purposes of this analysis, it is assumed that in a clear air environ-

ment the erosion term is always zero. At present, the formulation does not
model fin material thermally removed when surface temperatures exceed the
material melt temperature. The important information to be obtained in the
clear air case is whether or not the fin surface temperature actually reaches
the melt temperature. The value for mass flux of the coolant m is assumed

to be supplied as a function of time or altitude of the vehicle. Coolant mass

flux will be specificed by design to restrict surface temperature to below

material melt values,




B. SURFACE BOUNDARY CONDITION FOR THE
FIN EQUATION

The second-order partial differential equation which governs the
temperature in the fin indicates that two boundary conditions are needed
for complete solution. The surface condition in the fin is dependent upon

the net heat flux conducted into the fin, The boundary condition takes the

form:
aTF . . :
“Hp Ox el " et T Yaero +qpart ~ 9rad (4)
where
q = the aerodynamic heat flux at the fin surface, taking into
aero AR o :
account injection of the fluid into an air boundary layer
épart = the heat flux due to the impinging of weather particles
(.lrad = the heat flux due to radiation from the fin surface

These heat flux terms may be evaluated by the analysis which follows.

Because some percentage of the coolant vaporizes at the fluid-air
interface, a boundary layer composed of air, HZO liquid, and ”.ZO vapor is

formed over the TCNT surface as shown in Fig. 2.

AIR AND VAP LIQUID DROPLETS WHICH
o . v Stk DO NOT VAPORIZE

% 2
° my my i
7,

0

7,
7
. O

Fig. 2. Surface Mass Transfer Schematic
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Here the relationship holds that
m = mv L m[

whe re

m the total mass flux of the coolant

li\v = the mass flux of the coolant which vaporizes

"

the mass flux of the coolant which does not vaporize at
the liquid-air interface and therefore enters the
boundary layer as a liquid

n.ll

The surface temperatures of both the fluid and fin are sufficiently low
and the pressure sufficiently high to preclude the possibility of gas phase
reactions at the surface. Thus, the only gas phase species present at the

surface are water vapor, molecular nitrogen, and oxygen.

The width of the fin is assumed to be small enough such that the
boundary layer does not relax significantly from its state over the slot.
That is, it is assumed that the aerodynamic heat flux to the fin surface is
essentially the same as the heat flux to the fluid issuing from the upstream
slot, The only difference between the two values is that the heat flux to the
fin surface is corrected to reflect the higher fin surface temperature. In
particular, the same reduction in heat transfer due to vaporization at the
slot surface is presumed to also apply at the fin surface. Thus, the aero-

dynamic heat flux to the fin surface is represented by

. hw CH
qapro(fm surface) = q, 1 - }—{—R c (5)

H,

-14.
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where
<'10 = the cold-wall, non-blown aerodynamic heat flux to the
surface (evaluated at the stagnation point in this
report)
hw = the enthalpy of the mixture of species at the wall surface

(therefore evaluated at the fin surface temperature)

HR = the recovery enthalpy

CII = the Stanton number for heat transfer with blowing

(assumed equal to the Stanton number for mass
transfer)

v, 2. il

. g
o qaero ;‘
H peue (HR z hw) ,
i
C}{ = the Stanton number in the limit for non-blown heat i
o transfer (rhv = 0)
C = _L__
H0 peueHR

The terms in Eq. (5) may be determined in the following manner.

The ratio of Stanton numbers, CH/CHO' is by definition a function of s

the mass transfer driving force, B'. A commonly used expression, with

some theoretical justification3, is given by

o
H _InAB' +1) &
- B (A=1,28)

o

n]v
B M o (6)
LAY

;W, H. Dorrance, Viscous Hypersonic Flow, McGraw-Hill (1962),

-15.




The ratio of Stanton numbers is also known to be the "blowing correction"

for the mass flux of the coolant which vaporizes at the surface, rhv. Follow-
ing the analysis described in Appendix B, the Knudsen-Langmuir equation for
non-equilibrium water vaporization is incorporated to yield the following
equation, which may be solved iteratively for B' for given values of fluid

surface temperature

B' \In(AB' + 1) B' v i v

The variables are defined in Appendix B.

The "wall enthalpy" hw is a function of the enthalpies of the individual

species present at the surface, so that we may write

K K K
Mo S g w2l ® P ud
RT. - 32 \RT 28 \RT 18 \RT
F F F
o, N, H,0

where the species mass fractions (Ki) existing at the fin surface are pre-
sumed to be the same as those at the slot surface and are evaluated in terms
of the mass transfer parameter B' (see Appendix B). The temperature used to
evaluate hW is that of the fin surface, since it is assumed that the gas phase
adjacent to the wall adjusts instantaneously to the step change in temperature
from the fluid value to the fin value. It is recognized that this instantaneous
relaxation in temperature is inconsistent with the previous assumption of slow
relaxation with respect to surface blowing. This inconsistency is tolerated
because it provides a mechanism for the fin aerodynamic heat flux to be

influenced by the fin surface temperature (which seems physically plausible,

at least to some degree). A better approach would be to use weighted averages

of surface temperature and mass transfer parameter, in terms of relaxation

distances, to determine the wall temperature and blowing corrections to the

q
]




fin heat flux. However, in light of the boiling heat transfer and two-phase
boundary layer uncertainties in the analysis, this additional complexity does

not seem warranted.

The parameters HR and éo may be obtained from an analysis of the
boundary layer flowing over the TCNT nosetip. In this report, the values of
recovery enthalpy and cold wall, non-blowing heat flux will be taken as those
values appropriate to a gaseous air boundary layer. That is, the coolant
mass flux entering the boundary layer as liquid water ml is assumed to exert
no influence upon the heat flux to the fin surface. This is obviously incorrect,
but it does provide an upper bound for the surface heat flux and is justified on
that basis. An analysis of the two-phase air-water boundary layer would be
required to accurately define the heat flux and is beyond the scope of the

present effort.

The flux at the fin surface due to particle heating éip will enter the
boundary condition [Eq. (4)] when ambient conditions indicate that a "weather
environment" is present. For particles of rain or snow, the particle heat

flux is a function of the liquid water content of the atmosphere

. 21 3
Qpart = 2 @P welUy) (8}
where
a = accommodation coefficient, which is experimentally
determined (herein assumed to be 0. 7)
P, = liquid water content with units of mass of water per
LWC ]
volume of air
Uoo = free-stream velocity

Since the weather test case that shall be considered later does not include
impingement of dust particles, Eq. (8) will be used to represent particle

heating.

17«
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The radiative term in boundary condition [Eq. (4)] usually will be
much smaller than the aerodynamic or particle heat fluxes, but for com-

pleteness is evaluated as follows:

. o 4
8 ad - i (9)
where
€ = the total hemispherical emissivitv of the fin assumed to be
0.16 (for stainless steel)
0 = the Stefan-Boltzmann constant
T, = the surface temperature of the fin

F

C. BACKFACE BOUNDARY CONDITIONS FOR THE
FIN AND FLUID EQUATIONS

The second boundary condition used for the fin equation and the boundary
condition for the fluid equation are both specified at the backface of the
respective elements. Both elements are con-idered to be semi-infinite
slabs; that is, the length [ is assumed to be much greater than the thermal
penetration depth of either fin or fluid for the time scale of interest. Thus,
the backface temperatures remain at their initial values for the entire time

considered, so that our boundary conditions are formulated to be

Tr| g = TF mitia1 7 Tinitial $o

TBI _g "~ "B initial = Tinitial Rewe)
X=

So that no convective heat transfer occurs at the lower portion of our model,
we assume that the initial temperatures of the fin and the fluid are equal,

Since the reentry vehicle is in storage for a considerable length of time before

being used, the fin and fluid are assumed to be at room temperature initially,

WA 1 G, S

K A




An alternate formulation of these boundary conditions is to consider the
conduction in both the fin and the fluid to be zero at the backface, This
condition is perfectly valid for the semi-infinite slab assumption; however,
since conduction in the fluid is neglected anyway, it provides redundancy as
a backface fluid boundary condition, Since we wish to have the backface
temperatures for both elements in equilibrium, the relations Eq, (l0a) and

Eq. (10b) will be applied to the problem.

D. GLOBAL ENERGY BALANCE

In order to check the validity of the temperature distributions obtained
by solution of the two governing equations, an overall energy balance of the
system should be satisfied, We consider a control volume for the entire sys-

tem (composed of one fin element and one fluid element) as shown in Fig. 3
p g

‘.‘net 'i":PBTBl,(:0

T _,#7 ——1——-]

| %;lu/// % )

=f L chB TB

A e . __f____

Fig. 3. Control Volume for Energy Balance

-19.
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The net energy into the system must be equal to the change in sensible

energy in the fin and in the fluid, yielding the relationship

L aT
f pFT‘d’”bpr Cpp grodx = 2 dy,

aTF
- % _0> ~ % By

+b mCPB <TB _! B
x= x=

Equation (11) shall be used to test the accuracy of the finite difference

solution of the differential equations.

x:l

(11)
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III. NUMERICA L ANALYSIS

The two coupled partial differential equations which govern the behavior
of the fin and fluid temperatures must be solved by numerical methods. An
implicit finite difference scheme shall be used to represent the terms in the
differential equations. An explicit formulation was initially attempted, but
numerical instabilities caused a quick reversion to the method finally em-

ployed.

The basic principle underlying an implicit finite difference representa-
tion of a partial differential equation is that the spatial derivatives are repre-
sented as functions of the dependent variable at the future time. Thus, to
obtain spatially dependent values of the variable from one time level to the
next, a system of equations must be solved. As the time and spatial incre-
ments used in the difference approximation become smaller, the values
approach the true solution.

A, FIN EQUATION AND BOUNDARY CONDITIONS IN
FINITE DIFFERENCE FORM

In order to ensure stability of the solution even with severe heat fluxes
at the fin surface, a variable spatial increment will be incorporated to pro-
duce a tighter mesh at the surfaces of both fin and fluid. The three-point

central difference representations with variable mesh size are

2-n+l 2. ~n+l n+l
3T n+l £ R Tj+1 + (1 - R )Tj - Ti'l
ox i 1+ R)Rdxj
n+l n+l n+l n+l
GZT 3 RTj+1 - (1 + R)Ti + Tl'l
2 T 1 2
Ox 5 5 (1 + R)R(ij)

2.

Sl CRIMIA & W

e AR

2 (o




whe re

j the spatial node

n the time level ]

R ij-l/ij' the ratio of successive spatial increments

An iterative technique shall be employed to determine parameters at future
time levels, Thus, quasi-linearization may be used to represent more
accurately those parameters which change dramatically with time. Quasi-

linearized formulations of these parameters are derived in Appendix C,

The resulting implicit finite difference representation of the fin equa-

tion is as follows:

o Ry M gy opyp YRR M
P _C. . F. F. F.
F EF T ‘1+1 Lpe B gl JHI J j-1
; Fj 5 = S04 R)R(ij)z
aKi RZTF1+1 £ (I - RZ)TF1+1 . TF1+1
N P T jtl j -1l 24itl
F~PF 0x (1 + R)Rij &

where i denotes the level of iteration of the set of equations and

1 5 i

i+l _ i oQ i+l i oQ i+l i

o +<6T ) <TF. , TF.) £ <6T L
F/. j J B/. j J
J J

which is derived in Appendix C. Iteration of the system of equations is per-
formed until the difference between successive temperature iterations is less
than some established convergence criterion. Since some of the properties in
Eq. (12) do not change dramatically as a function of temperature (specifically,

the properties of steel), they may be approximated as values at iteration

level i rather than at i+l,
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The surface boundary condition in the fin may also be represented in
finite difference form because of the conduction term., Yet, if we assume
that the first node (j=1) occurs at the surface of the fin, the temperature
evaluation at the node j-1 has no meaning. Thus, a forward difference repre-

sentation of the derivative shall be used for this boundary condition at j=1:

i+l

ReT. - (+RIT. T 4 a1 s2myr
; F F F "
i 3 2 1 Y (13)
Kp (T + RIRAx, = 9pet
where
i i
<itl i, aqnet T i+l T i + aqnet T i+l T 1
net - Inet "\ 79T F, o JT B R
F/y 1 1 B/, 1 1
which are evaluated in Appendix C,
The backface boundary condition in the fin is represented simply as
i+l
T =T . (14)
Fj:JMAX initial

where j = JMAX refers to the node at which x =£.

B. FLUID EQUATION AND BOUNDARY CONDITION IN
FINITE DIFFERENCE FORM

Since the two equations governing fin and fluid temperatures are coupled
by the source term Q, it follows that the time and spatial increments used to
approximate the fluid equation should be the same as those in the fin equation.
In addition, the sudden increase in Q (when the fin temperature exceeds the
fluid saturation temperature) strengthens the coupling further, and incites
oscillations in the temperature distributions with time. Hence, quasi-

linearization of the source term is used to rectify this situation. Spatial




oscillations also tend to occur when a central difference scheme represents
the spatial derivative in the fluid equation, thus necessitating the incorpora-
tion of a two-point forward difference (i.e., upwind differencing). The
resulting implicit finite difference representation of the fluid equation is
PsCrp
s e

R R S
(mCPB+pBCPB s) 31 seil 2
T i -=0Q
Ax. B. B. by
J jtl J

(15)

whe re QHI is expanded in the same manner as for the fin equation. The
J
parameters pB and CPB are evaluated at increment level i by the assumption

that fluid properties do not vary greatly with temperature,

While the use of the upwind difference scheme for the convective term
eliminates the spatial oscillations, it is only first-order accurate spatially,
whereas the central difference scheme is second-order accurate. However,
sufficient accuracy may be ensured by using a fine mesh near the surface
(i.e., R <1). In any event, excessive concern with higher order accurate
numerical schemes is hardly warranted when the uncertainties in the physical

model drive the solution.

The backface boundary condition in the fluid is represented simply as

i+1
THhae T it Ve

C. SOLUTION OF THE SYSTEM OF EQUATIONS

In examining the system of Eqs. (12) and (15), we find that the two
dependent variables are evaluated at three spatial levels: j-1, j, and j+l.

Thus, since the equations can be written in tridiagonal form, the unknown




+1

1+
future temperatures T and TB? kd may be found using established solution

i
4 ¥
procedures, A system of tridiagonal equations takes the form

A, 1) Uit A(j, 2) Ut AG,3) Uy + A(j, 4) Vgl t
+ A(j, 5) vy + A(j, 6) Vj-l = A(j,7) (17a)
and
B(j, 1) o 7 + B(j, 2) 4, B3 ¥y + B(j, 4) g +
+ B(j, 5) i + B(j, 6) vj-l = B(j, 7) (17b)

where u and v are dependent variables evaluated at time level i+l, the j values
represent the nodal points, in this case varying from 1 to JMAX, and A and B

represent coefficient arrays which are defined in Table 1.

Clearly, the two governing difference equations can be represented in
this manner if the fin equation takes the form of Eq. (17a) with TF replacing u
and TB replacing v and if the fluid equation takes the form Eq. (17b), The
coefficients in the equations are listed on the following pages.

It is apparent that the surface boundary condition in the fin, Eq. (13),
cannot be rearranged into tridiagonal form at j=1 since it contains a variable
at the j+2 level. However, if solved simultaneously with the difference equa-
tion at j=2, the boundary condition can be manipulated to take the form of
Eq. (17a). The backface boundary conditions in both equations are easily

represented in tridiagonal form.

4R. D. Richtmyer and K. W, Morton, Difference Methods for Initial Value

Problems, p. 276, Interscience Publishers (1967).
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D. STABILITY ANALYSIS

To ensure that the difference scheme chosen to represent the equations
will yield stable solutions for fin and fluid temperature distributions, a sys-
tem stability analysis is performed, as described in Appendix D. For
various phase angles (f), unconditional stability requires that the charac-
teristic eigenvalues (A) of the difference equations are less than or equal to
one. The relations for the two eigenvalues derived in Appendix D have been
solved as a function of phase angle, assuming a uniform mesh and typical fin

and fluid properties (i.e., constant values not dependent on temperature),

The results clearly show that the system of equations is unconditionally
stable for all phase angles. As might be expected, when time and spatial
increments are decreased, the eigenvalues become even smaller. The
resulting eigenvalue for various time and spatial increments are shown as a
function of phase angle in Appendix D, The A versus B curves are symmetric
about B = 180 deg.

i




IV. RESULTS

Solutions derived from the analytical formulation are obtained and
compared with experimental data in this section. Two cases of particular
interest are considered. First, comparisons are made with surface tem-
perature data obtained from a clear-air ballistic range shot, Following this,
calculations are presented for a typical flight test trajectory in a weather

environment.

A. BA LLISTIC RANGE TEST CASE

7

The test data for the ballistic range experiment include actual TCNT

surface temperatures located in the stagnation region as a function of time.

Prescribed coolant mass flow rates and environmental conditions are then

compared with measured stagnation temperatures.

)
supplied to the numerical solution so that predicted fin temperatures may be E
:
}
The data shown in Fig. 4 indicates that the surface temperatures :
obtained experimentally are far greater than those determined numerically. :
Several factors could have caused this discrepancy. The most predominant
is the Thom Correlation which represents the source term for subcooled
boiling heat transfer. If the correlation causes too much heat to be removed
from the fin, predicted fin temperatures will lie below the actual values.
Another case was run to establish an upper bound on fin temperatures by
using a constant Nusselt number for the source term. The temperature distri-
bution for Nu = 4, 0 (Fig. 4) lies above the experimental data points. Thus,
it appears that because of the influence of the source term, a more realistic
correlation for the heat transfer mechanism should yield more accurate

results,

The possibility exists that the assumption of a laminar boundary layer
also causes deviation from actual surface temperatures. If the non-blown
aerodynamic heat flux is greater than that assumed (i.e., a turbulent instead

of a laminar heat flux), both fin and fluid temperatures could be higher than

~&9- ...u.n-mu;‘.a‘:-‘-ﬁ
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predicted. However, when a turbulent non-blowing flux is incorporated into
the solution, the increase in fin temperature is not enough to reproduce the
observed temperatures, It may then be concluded that the reported discrep-

ancies are the result of an overly optimistic correlation for the source term,

Even if a realistic correlation for subcooled boiling were incorporated,
the numerical solution for fin temperatures would be higher than that indicated
by ballistic range data. The difference would arise from the assumption of a
gaseous boundary layer. It may be postulated that the liquid particles present
in the boundary layer actually reduce driving enthalpy with phase change,
lessening the effect of the heat flux at the fin surface so that temperatures
are lower. Had this type of result been obtained in the numerical solution,

a type of accommodation factor would have to be included to represent the

aerodynamic heat flux more accurately,

Since coolant mass flow rates are relatively large for the ballistic
range test case, the convective term in the fluid equation may become much
larger than the transient term. A case in which the fluid equation is assumed
steady state has been run, yielding virtually the same temperature distribu-

tions in both fin and fluid as those for the transient case.

B. FLIGHT TRAJECTORY

The computer code was applied to a conventional Kwajalein reentry
into a postulated weather environment using a representative stagnation point
coolant flow rate. The mass flux of the coolant, shown as a function of alti-
tude in Fig, 5, exerts a stronger influence on the temperatures because of
the relatively large range of values it assumes, Fin surface teinperatures
are seen to rise, then fall off as altitude decreases as shown in Fig. 6,

similar to the behavior of coolant flux,

Note that the constant Nusselt number case would predict surface
melting in Fig. 6, presumably setting upper and lower bounds for the

actual fin temperature distribution. The amount of predicted erosion in
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the nosetip dramatically contrasts the two source term correlations, as
seen in Fig. 7. When the fin surface temperatures are high, as in the case
arising from a constant Nusselt number, the erosion coefficient is greatly
reduced, thereby increasing the erosion rate significantly. Even though

the amount of material eroded is highly unrealistic for an actual run (nearly
twice the length of the original fin element is removed), the results indicate
the strong stability of the solution even with drastic parameter variations.
The results also suggest the need to increase flow beyond the given schedule
to maintain surface temperature below the material melt value for the

constant Nusselt number solution.

Figure 8 provides a comparison of fluid surface temperature and
saturation temperature as a function of altitude. The incorporation of a
non-equilibrium vaporization rate to evaluate the mass transfer driving force
B' allows fluid temperatures to exceed the saturation temperature. While
this only occurs for low coolant mass flow rates at high altitudes, it is
apparent that liquid and vapor phases can be present at the surface of the slot.
The assumption of only single-phase flow in the analysis, which generates
two governing equations instead of three, may still be considered plausible,

in light of the relatively short time in which vaporization occurs.

The low mass flow rates for the coolant prescribed for the beginning of
the flight trajectory could indicate a greater importance associated with
the transient term in the fluid equation. However, the test cases exhibited in
Fig. 9 show negligible differences between fluid temperatures obtained by a
steady-state fluid equation and those found by transient analysis. Both
ballistic range and flight test runs indicate that the transient term in the fluid

equation may be justifiably eliminated.
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V. CONC LUSIONS

The thermodynamic behavior of a discrete injection transpiration-cooled
nosetip has been modeled by considering the energy exchange between the
metal matrix and coolant for a simple fin and slot combination., The relevant
partial differential equations governing the energy transfer in the fin and
coolant have been derived and solved numerically using an unconditionally

stable implicit finite difference scheme.

While the heat transfer mechanism between fin and fluid accounts for
the possibility of subcooled boiling, it is maintained that the bulk of the coolant
is in the liquid phase. The analysis treats the governing final equation as
such, but in order not to preclude the possibility of two phases, a non=-
equilibrium vaporization rate of the fluid into the boundary layer is incorpo-
rated. It is further assumed that the boundary layer of the nosetip is solely

gaseous, so that analysis may be simplified and an upper bound on the sur-

face heat flux may be established.

Comparison of nosetip temperature distributions obtained by numerical
means and by experiment indicates that the correlation for subcooled boiling
heat transfer is overly optimistic for indepth energy exchange. A more
realistic representation might yield surface temperatures closer to the actual

values,

While both governing equations are considered to be transient throughout

this analysis, a steady-state postulate in the coolant equation yields virtually ]
the same results as the complete transient representation, thereby validating 3

this commonly used assumption.




APPENDIX A, DERIVATION OF GOVERNING EQUATIONS

A, FIN EQUATION

The physical situation depicted in Fig., A-1 represents a fin volume
element, located at an arbitrary distance z from the original surface of the
nosetip. The coordinate x denotes the distance of the element from the
"actual" surface location at some time t, that is, the location of the surface

after the fin has begun to erode at a rate s,

——r——— 7719;77 — | — FIN SURFACE AT TIME t
(FLUID) (FIN)/ T
/717 / P
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X +4x / l
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Fig. A-1. Fin Volume Element

The TF and TB are used to denote the temperature of the fin and the tempera-
ture of the fluid (or "bulk"”), respectively. Thus, an energy balance on this

volume element will include the following terms

aTF

U = - Kr B
is the rate of heat transfer per unit area due to conduction in the fin (where

KF is the fin thermal conductivity).




g, = MT_ - T

B

is the rate of heat transfer per unit area due to convection.

The change in sensible energy of the system in time At is

’
- | T
% - [ F Fz,tJ

so that an overall energy balance yields

(pF‘CPF ca.w. Az)

J - T

Z, t+At

z

(pFCPF & 3 W Az)[TFI - TF :

z, t+4At

oT - oT F
K -gls a- w, AtZ E_ -KF,?ET SR W At’
Z,E]

-2h. w. Az -At[TF
Dividing by a . w - Azt and taking the limit as At and Az-—0, we obtain

e
z, t 8

the following partial differential equation

GTF

P 61}? h
Prlor e "o \Pr 3l 22y - Ty A=)

In order to incorporate the erosion term in the equation, we perform a

transformation to z-coordinates, using the relation

z=x+fédt (or dz = dx + s dt) (A-2)

dl2.

-




Our goal is to transform temperature TF as a function of z and t to TF as a
€,

function of spatial coordinate x and time Thus, if we wish to have

TF(z, = TF(x,?)

we may then differentiate to obtain

oT oT 6TF aTF

F B ~
—a—z—'dz +—at— dt = de + a? dt
If we let t =t and dt = dt, then using Eq. (A-2) we find that

| aTF 4 aTF aTF oT

2 F
[ BZ—'(dX+Sdt)+6't:—dt-*a;<—dX+——a,{ dt

3
F oT oT oT oT oT
F - F F N F F
‘ [WS+—ar]dt +[az—]dx —[E,—J dat +[EX—J dx

Equating coefficients, the following relations result

orT ot ’2

S
0z = Ox

or, oT.  Or,

t =‘a—{'saz—

Using the transient heat conduction equation for the fin in Eq., (A-1), we obtain

aTF o aTF : aTF h
PrCpr Tt *9x CrOx /) * PrCer®ax 22T -Tp)  (4-3)

where t now replaces t. It should be noted that when no erosion takes place,

s equals zero, and the form of Eq. (A-3) reduces to that of Eq. (A-1),
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When erosion of the nosetip surface occurs, examination of the model
indicates that the entire fin of length £ is shifted downward by the amount
s dt. For the particular application of the transpiration-cooled nosetip,
t}?e length £ is defined to be the distance from the surface of the fin (before
erosion) to the small opening through which coolant is injected, as shown in

Fig. A-2,

— - SURFACE AT TIME o
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7 AV/// ;; SURFACE AT TIME t
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Fig. A-2. Control Volume Geometry

o
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Thus, if the fin is to be considered to have constant length { after erosion
takes place, the dimension a in Eq. (A-3) must be replaced by a' for the
lower portion of the fin (i.e., for x = té dt tox =), The same back-
face boundary condition would apply as if :'sowere zero, since we are

assuming the fin to be semi-infinite,
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B. FLUID (BULK) EQUATION

A similar energy balance may be performed on the fluid volume ele-
ment shown in Fig. A-3, with x- and z-coordinates identical to those of the

fin element so that erosion may be taken into account,
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Fig. A-3, Fluid Volume Element

The terms in the energy balance are
0 oty
e T TR O

is the rate of heat transfer per unit area due to conduction in the fluid.

g™ Mg = Ly

is the rate of heat transfer per unit area due to convection over the fin,
mCPTB

is the rate of heat transfer per unit area due to injection of the fluid, where

m is the specified mass flow rate of the coolant per unit area.
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An overall energy balance yields the relation

oT
B
P.Conbew:Az)|T oL =<-K ——a——.>.b-w.At i
< aTB> : ; A(
- |-K ——a—-b-w' t _ + mC +b. w- At|T 2
st z+Az, t FB z+4hz, t

_>+Zh- w e Az('rF
z,t y

from which the partial differential equation is obtained

oT oT oT
B _0 (KB ) b Ghe B Bep g (A-4)

2 o B .
PsCpp 3t = 9z oz pel B Y4 %

A coordinate transformation similar to that for the fin equation yields our

final result

OTB P 6TB R BTB h
PeClrpat *x\*s3x /)* (pBCPBS . mCPB) Be tigiip-Tgl
(A-5)

Because erosion causes the fin to be "shifted" downward by the amount
f s dt, the region of interest in the fluid, also of length l, must translate
dgwnward as well. Referring to Fig. A-2, it is apparent that the dimension b
in Eq, (A-5) must be replaced by b' for x = L - $dttox =L, Itis clear
that, since m is defined as the mass flow rate ofothe coolant per unit area, a
different value m' should be substituted into the equation for I- sdt< x</h.

From continuity, this new mass flow is found to be m' = r'n(b/b').0

In the derivation of Eq. (A-5), the fluid was assumed to be incompres-
sible such that work due to volumetric changes is negligible. The fluid

velocity is assumed constant such that viscous dissipation can be ignored.
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APPENDIX B, VAPORIZATION FROM A LIQUID WATER SURFACE

The mass transfer parameter B' is required to determine the reduction
in aerodynamic heat flux due to coolant vaporization at the slot surface. The

mass transfer parameter is obtained from the analysis given in this appendix,

The problem is to determine the vaporization from a liquid water sur-
face over which an air boundary layer is flowing. In order to simplify the
analysis, the usual assumptions of unity Prandtl and Lewis number and equal
diffusion coefficients are invoked. With these assumptions, the elemental
mass fractions at the surface are obtained from the wall boundary conditions

for the elemental conservation equations in terms of the mass transfer para-

meter,
~ G
- Koe +-E B -
Y TN s W
w e
a “N, 2
KN L KN = 0,768
w e
2 g
E - I8
H ~ 1+B
B'= T (B-1)
peueCH

where subscripts w and e refer to wall and boundary layer edge conditions,

respectively, and superscript tilde refers to element mass fractions,
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Assuming that the surface temperature is low enough to preclude
dissociation reactions, the gas phase at the wall consists solely of molecular

oxygen, nitrogen, and steam. Elemental conservation at the wall yields

Kn, = En
w 2
o~ 16
o *¥o. "T§%u o
w Z 2
K =2k (B-2)
H 18 "H,O
w 2
The sum of the partial pressures must equal the mixture pressure
P, +P. +P =P (B-3)
N, O2 HZO
The partial pressures are related to the species mass fractions as
follows:
PMKN PMKO
P, = £ P, = 2
N2 28 o, 32
PMKHZO
MO T (Bt

If it is assumed that the vaporization reaction is in equilibrium such that
the water vapor partial pressure is identical to its equilibrium vapor pres-

; - Y 4
sure (i.e., pHZO = PHZO)' the mass transfer parameter may be obtained from

the foregoing expression as

v b oy
1887 o Ky Ko
1 Soperoe s ) ETEe Sl PR, - e o
Peq = 5T ov pmE =S
H,O

where B was defined for notational convenience.
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Since the vapor pressure is a known function of temperature, the
equilibrium value of B' is easily computed for specified values of surface
temperature and pressure. The equilibrium mass transfer parameter is |

undefined for surface temperatures greater than the saturation temperature

3 v
(i.e., pHZO
constrain the solution for the surface coolant temperature to always be less

> P). Thus, the use of the equilibrium assumption would

than the saturation value. In some instances this is physically unrealistic,

and the mass transfer parameter will be obtained from a non-equilibrium

assumption,

The non-equilibrium vaporization rate is modeled using the Knudsen-

Langmuir equation, which is given as

T TR
m =0 RT <pH20-pHZO> (B-6)

where @ is the vaporization coefficient, and M is the molecular weight of

water vapor,

Using the definition of B' and dividing through by the heat flux yields

v

= <pHZO T o>

B' = £
Cu

.o [ M
e Py _Cpy RT ot b
o (4

This equation, along with the previously obtained expressions, yields a

nonlinear algebraic equation for B'.

2

C
B' H GB' v v
' g || e - = -
B (B+ 18> CH + 1 (P PH O) GﬁpH o (B-8)

(o]




Since the ratio of blowing to non-blowing Stanton number is presumed to
be a known function of B', this equation may be solved iteratively for B' for
specified values of surface temperature, pressure, and non-blowing heat
flux (i.e., peueCH ). The Stanton number expression used in this report is

o

given as

“H _ fa+2BY |

1 ’
Cy AB
o

A =128

As equilibrium is approached (i.e., C,;, —0), Eq. (B-8) yields exactly

H
the value of Eq. (B-5) for B'. Furthermore,oEq. (B-8) is well defined at
the saturation temperature, thereby allowing solutions for surface coolant

temperature in excess of the saturation value,.

The required value of vaporization coefficient was obt::\ined5 and is

given as & = 0, 04,

Some typical values for B' are shown in Fig. B-1 for a pressure of

100 atm for both the equilibrium and non-equilibrium case.

5Jo}'m P. Hirth,"Evaporation and Sublimation Mechanisms, " The Characteri-

zation of High Temperature Vapors, Chapter 15, ed. T, L. Margrave,
John Wiley and Sons, Inc., New York (1967),
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APPENDIX C, QUASILINEARIZED FORMULATION OF PARAMETERS

The two parameters in the governing partial differential equations
which are strong functions of temperature are Q, the coupling heat transfer

source term in both equations, and q the fin surface heat flux which

enters into one boundary condition, !V?}:en the governing equations are repre-
sented in finite difference form, it is necessary that these two terms in
particular are evaluated at "future" time levels to ensure consistency. Hence,
a technique is incorporated to evaluate the terms iteratively. The terms Q
and qnet will be represented at future time levels by the method of quasi-
linearization, which consists of simply expanding the terms in a Taylor

series,

N THE SOURCE TERM Q

The source term evaluated at iteration level i+l is

' : i : : i . i
Ak ) ) (] ) e
J J

j : j g
Since Q is represented by two different relations, dependent upon the regime

of the fin temperature, the derivatives take two different forms:

i :
<
If TFj < Tsat (fluid)

gy i ; i
Q. = h<TB. — > where h = 4. KB/DH

S
Q
*H‘O
\_/._.
1
é -
|
~
W

J
S — (C_Z) R
(aTB Py i




i

If TF. >Tsat (fluid)
J
Pl (P/630) i 2 HT PR
Qj = 0.0536 e <TF. ~ Tsat) where P is in psia;
o ¥ . (P/630) i :
<6—T~) = 2(0.0536)e TF. - Tsat :
F /. J
J
and
6TB j

When the fin temperature exceeds the fluid saturation temperature, the rela-
tion which yields the maximum value of Q is chosen to represent the source
term, In this case, the associated derivatives for the particular Q relation

are substituted into Eq. (C-1),

B. THE SURFACE HEAT FLUX Qpet

The net heat flux impinging on the surface of the fin may be divided into
three major components. These are (a) the fluxes due to aerodynamic heating,
(b) particle heating, and (c) radiation. The representation of the surface

boundary condition is

y i : i
& Hroa (%%t | (i1 o B Odpet) (5 i+l i
" BF 8x - 9net oT F. T oT B, ~“'B
¥/ \ T 1 B 1 1

.

(C-4)
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where

net aero qpart rad
o = § < 2 }:i> “n
aero o HR CHo

The particle heat flux is independent of either temperature, but both C.laero and

drad enter into the evaluation of the derivatives

. i . i . i
aqnet £\ aqaero aqrad

1 1
. i . i
aqnet 2 aqaero
1

To obtain the derivatives of aerodynamic heat flux, it must first be

determined how the term is dependent on temperature. For the relation

; =q [1 E"L i
Qero = 9 " H CHO

R




are functions of the local boundary layer conditions and

the terms C.lo and I{l

R
therefore independent of TF or TB’ the term h_ is found by
KO KN KH O
B S RT bl e S e
o 32 RT 28 RT 18 RT
Flo F/N F/u,0
2 2 Z
with
Ko Ky
K, = K. & and K i
) BB N Bt H,O 1 +B'
2 2 2
and
CH _ B+ 1) s Bipes
S T AB' i
L

It is apparent that hW is a function of the fin temperature TF' Since the

mass transfer drivi ‘g force B' is solved iteratively using the relation

(ﬂ+—B—'>——~—-————ln()‘B' s B2 (P- P o> = GBPY,

18 A 18 H2 HZO
where
G = 128. 053600 M
peueCH RTB
o
KN KO

& )
B = 55 t33




It can be seen that both hw and CH/CH are functions of the fluid temperature

TB.

and

PT, 9% oT,

aqae ro

Ty

Thus, the aerodynamic heat flux oderivatives become

C
. o)
aqae re - s Ho

a<__CH >
C
9 h Ho : < CH ) ahw

- == (C-4)
By | ™% TBE CHO T,
-Gy & oh
ot o (cH >6Tw ==
B \"H, F

All of the derivatives in Eqs. (C-4) and (C-5) may be evaluated in closed form.
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APPENDIX D, STABILITY ANALYSIS FOR SYSTEM OF EQUATIONS

Pl GENERA L

A stability analysis for the coupled systems of difference equations
obtained in Section III will provide information about the constraints (if any)
imposed on selection of time and spatial increments. For a system of
equations to be unconditionally stable, it is required that the characteristic
eigenvalues (A) be less than or equal to unity for all values of the coefficients,
The analysis herein has assumed the coefficients in the governing equations
to be extreme "worst case" values, and the spatial increments to be uniform

(R =1),

The fluid and fin difference equations may be represented as follows for

stability considerations.,

8 FLUID EQUATION

n+l i [ n+l n+l n+l n+l
TB. - TB = A [TB. - TB ] + B [TF - TB ]
J j Jt+l J J J
where
> (meB +pBCsz) At
As e ) A>0
B "PB
B = — 2hdt B>0 (D-1)

PRCppd




2.  FIN EQUATION E

J j jtl J j-1
+plT n+l e n+l + el n+l T n+l (D-2)
F. F. B. F.
jtl ol J J
b
whe re E
K_ At |
C = ——F—~—2— C>0
PrCpp(8x)

. oK
sPCpp + 3% /At

D = 5 D >0
2Ax pFCPF
3
| EEF%QTW L
F~PF

Since constant coefficients in the difference equations are assumed, the need
for iterations is eliminated, and the unknown temperatures are to be found at

time level n+l,

In accordance with Richtmyer and Morton4, it may be assumed that the

set of solutions to these simultaneous equations takes the form |

I R
g =G€ and Ty =Gy : |

J J

T

where GT and Grz1 are some functions of x and t raised to the nth power and
€ = cosB +1isin B, a function of the system phase angle 8 (€ is raised to the

1
ﬁ
power j). j;




o A

i s e

Plugging these solutions for temperature into Eqs, (D-1) and (D-2), and

using the identities

1 =k
e-z = 2i sinf
and
1
€ +? = ZCOSﬁ

the following is derived for the fluid and fin equations

L GMH1+B - A(cosB +ising- 1)] -G}
o B (D-3)
+1 ; :
141 Gy [1+E-2C(cosB- 1) -i(2D sinB)] - G,
o By E (D-4)

These equations may be solved simultaneously to obtain relations for the

functions G1 and GZ at time level n+l in terms of the functions at time level n

n+l n
G a1 12| |9
n+l n
G, 21 "] |%
where
P [1 - E-2C(cosB - 1) - i(2D sing)]
) b R - il
a = B
12 - Kad
o
%21 "R-11
a  =[1+B-A(cosB-1) - i(A sinf)]

22 R - il
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with
R=([1+B-A(cosB-1)][1+E-2C(cosp-1)] - (A sinB)(2D sinf) - BE

(A sin@)[1 + E - 2C(cosB8 - 1)] +[1 + B - A(cosf - 1)] (2D sing)

—_
l

The matrix containing the akl coefficients is known as the amplification
matrix. It is the eigenvalues (A) of this matrix which yield the important

information concerning system stabilization

The final polynomial to be solved for the eigenvalues is

x AF—IZLI—:—Z] N [—R?’L—‘!Z—] =0 (D-5)
R ¢t el
where
x; = R[2 +B+E- (2C + A)(cosp - 1)| - 12D + A)sinf
and
x, = -R(2D + A)sinB +1]2 + B + E - (2C + A)(cos - 1)]

If IAN| €1 for all values of A, B, C, D, and E, and for 0°€8 < 360°, then
it may be concluded that the system is unconditionally stable. Since extreme
constant parameters in this system of equations has been assumed, the terms

A - E may be varied by changing the time and/or spatial increments,
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For the case where 8 = 00, Eq. (D-5) reduces considerably, and yields
y Y

the two eigenvalues

Since the coefficients B and E are always greater than zero, the stability

criterion is unconditionally satisfied at 8= 0°,

When B = 00, the solutions for A are found by complex analysis, The

resulting eigenvalues are then

(x2 +xz)
34 1”72 2 ANr 9 in 2
A = 5 (RZ ; 12)2 +r- 5 i (xlcos g+ xzsmi) (D-6)
2 2
1 ("1 *xz) 2 Nt ) )
R H o +r+——————(xcos—+x sin 5 (D-7)
2 2 RZ + IZ 2 RZ : IZ 1 2 2 Z)
where
I
9 = tan_lg f%
& |
. ‘4
with :"‘1
2 g ’}{
a 5 P, 1 g - Z L 4R !’,
(RZ + IZ)Z RZ an IZ
& |
X.X I3
b = 3 = - ’ i

(Rz + 12)2 B a1

and X1 X5, R, and I are the same as previously given.

RIS SRy
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When combinations of At and Ax are substituted into these relations
for Bvarying between 0 deg and 360 deg, a complete picture of the system
stability is obtained. In every instance, the computer solution shows that
each eigenvalue is less than unity, except at 8= 0°, when A, becomes equal
to one, The case when both eigenvalues approach unity closest is for a very
small time increment and a very large spatial increment (At = 0, 00001 sec,
Ax = 0.1 ft). Yet the eigenvalues always remain less than or equal to unity,
indicating that the governing difference equations are unconditionally stable,

A sample plot of Aversus 8 is shown in Fig. D-1,
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Fig. D-1, Eigenvalues versus Phase Angle 8




NOMENCLATURE

a fin width !

B! mass transfer parameter [defined in Eq. (6)]
é b slot width L
Cp specific heat !‘
HR recovery enthalpy ",-:,
(H/RT)i normalized enthalpy of species i i
K thermal conductivity E\
K.1 mass fraction of species i l‘:
m coolant mass flow rate per unit area g
; ’ R universal gas constant %
s fin surface recession rate i’!

T temperature p
t time T
l slot depth ’,1
p density 1&
P.u.Cy cold wall, blowing heat flux parameter = c';/HR

peueCHo cold wall, nonblowing heat flux parameter = c'1o/HR 3

Subscripts

B coolant properties

. F fin properties

w wall values

P




