
AD—A073 290 NAVAL RESEARCH LAB WASHINGTON DC F’S 20/18
MAXIMUM ENIRCPY WAVE**iBER ANALYSIS. (U)
MAR 79 W R k X N G

UNCLASSZFIED 1aL 6296 SSIE—AD—E 000 311 pa.

___ _ U___ _

!rnuUfldfliE r~



I . 
~ ~~ ~j 2.5

~ IIII~~
I ~

hUH ’ ~ UhII~ n~tt~
MR I~ F y  R~ SOLU ON kS! CHAR!

~y A t ~~~~ % ~yUk1AU Gi SFANF)FyHI)S F%3 A



_____________________
- NRL Report 8298

(3-)

Maxim um Entro py Waven umber Analysis
WILLIAM R. KING

Antenna Systems Staff
Radar Dwuion

1EVE~
March 20, 1979

.—
~~ -.~

144
NAVA L RESEARCH LABORATOR Y

Washln*too, D.C.

A ,.. ,,. ~d for public reles.e distribution unlimited.

- ~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~



:~ ,
/

SEC u R I TY  CL ASSI F ICATIO N OF THIS PAGE (Bk .,, DVI. En,.~ .d)

DEDnDT lAACk. ITAr I (S~I DA V E READ INSTRUCTIONS
s, • w~~~~~~~L r ~~i0 ~~II~ PI U BEFORE COMPLETING FORM

I REP ’)RT NUMBER •,_/ 2. GOVT ACCESSIO N NO. 3. RECIPIEN’r S CATALOG NUMBER

NRL Report 8298 I _________ _____________

4 T I T L E  (aid S.,bIIII.) ~~ S TY P E O~ P~~A ’ QI~~ A PERIOD COVERED
Interim report.on..a continuing

MAXI MUM ENTROPY WAVEN IJMBER ANALYSIS 
NRL problem.

~~. PERFORMING ORG. REPORT NUMBER

5- CONTRACT OR GRANT NUMBER(I)

William R. King 53R12-4 6

I. PERFORMING ORGANIZAT ION NAME AND ADDRESS IC. PROGRAM ELEMENT . PROJECT . TASK
AREA S WOR K UNIT NUM BERS

Naval Research Laboratory V’ RRO21.05.41 61153N-21 . -

Washington , D.C. 20375 R12.46.101
_____________________________________  _____________________  fr
II CONTROLLING OFFICE NAME AND ADDRESS IS. REPORT OAT S

Department of the Navy March 20, 1979
Office of Naval Research 13. NUMBER OF PAGES

Arlington, VA 22217 38
II MI7NITORIPI C. AGE NCY •~AME & AOO RESS(II  dIfl.,aiI 1,0., Co,,t,oIlInd OHIo•) IS. SECURITY CLASS. (of tAll po.f)

UNCLASSIFIED
ISa DECLASSIFICATION /DOWNGRADING

SCHEDULE

IS DISTRIBUTIO N STATEMENT (of Ala R.vo,t)

Approved for public release; distribution unlimited.

17 DIST RIBUTION STATEMEN T (of IA. .b.ftacl ..,t.,.d In Block 20. SI dIII .unt Ito., R.potf)

--

IS SUPPLEMENTARY NOTES

IS. KEY WOROS ( CoolS,,... 011 •001•• •1d SI n.c...aVy aid IdoolIly by block ~i.a.b.r)

Antennas
Direction finding
Linear prediction Alters
Maximum entropy processing
Spectral analysis

SO. A~~ YRA C Y (CaIffiIU. 011 ,•~~0,04 •S4s If n.c... aiy aid Id.ntlfy by block nu..b.t)

~~~[2 The maximum entropy spectral analysis (MESA) technique is applied to a linear spatial array of
sensors to obtain wavenumber power spectra. The resultant wavenumber spectra are compared with
conventional beamsteered antenna patterns using simulated signals mixed with Gaussian noise. The
results indicate that the MESA technique, which is an all-pole model , may provide improved accuracy
and improved spatial resolution of signals under varying signal-to.noise conditions. Some difficulties
with MESA are noted, and further investigations are recommended.

DO , ~~~~~~ 1473 IOITION OF I NOV SI IS OSSOLEYS
S/N 0 I02 014 6601

SECURITY CLASSI FICAT ION OF THIS PAGE (Wh at 0.1. IoI.,sd)

,I’. 
‘ 

~~~ 
~~~

. L
~~ ~~~~~~~~ ~~~~~~~~ ~~~~~~~~ . — , , • 0 

~~~~~~~~~~ ~~~~~~~ ~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-



- —-- -~ - .~ -—,- _ _  

1
CONTENTS

INTRODUCTION 1

THEORY 2

Power Spectra 2
Pred iction Error Filter: 5
Signal Simulation 6
Power Spectra Peaks 8 r

APPLICATION S 10

MESA Examples 10
Single Signal 10
Two Closely Spaced Sign als 11
Three Closely Spaced Signals 13
Patte rn Averaging 14
Mixed Signals 17
Relative Signal Phase 20

Summary of Observed MESA Characteristics 20

OPTIMAL FILTER SIZE 23

CONCLUSIONS 25

REFERENCES 28

APPENDIX A — Wiener Prediction Filter 31

APPENDIX B — The Burg Technique 34

~DC ThB 

. - .

~~

, 

In -~



MAXIMUM ENTROPY WAVENUMBER ANALYSIS

Introduction - -

In recent years several methods have been introduced for estimating power spectra
with considerably greater resolution than that provided by the conventional periodogram or
the Blackman-Tukey windowed Fourier transform . Included among such techniques are
max imum entropy spectral analysis (MESA) introduced by Burg [1] , the autoregressive
model (AR) spectral estimation introduced by Parzen [2] , and the method of maximum
likelihood as demonstrated by Capon [3] . Other methods offering high resolution , which
utilize the Fourier transform, are described by Gerchburg [4] and Papoulis [5] . More
recently, another spectral estimator has been introduced by Gray (6) .

While none of these spectral estimators have been thoroughly investigated, there have
been a few comparative examinations of some of the techniques conducted by Lacoss [7],
Ulrych and Bishop [8] , and Nuttall [9] . Of the comparisons investigated, in general , superior
results are achieved by using the MESA method and the Burg technique [10] for estimating
filter coefficients. The results are dramatic , and suggest that investigations of MESA and
other high-resolution techniques be continued. Because of the high resolution and stability
achieved with MESA in such initial investigations, these same properties are investigated
further in this report where MESA is applied to the analysis of simulated, multichannel ,
spatial , phased-array data .

In the initial paper by Burg [1], where the principle of MESA is first suggested , the
prediction error filter coefficients (which maximize the entropy) are specified with knowl-
edge of the autocorrelation coefficients. However, in a second MESA paper , Burg [101
defined the prediction error filter coefficients as a function of a set of uniformly spaced
data samples representative of the function of interest . In addition , Burg simplified the
method for obtaining the filter coefficients with use of Levinson’s recursion equations, and
also noted in the second paper that the mean squared prediction errors may be minimized
in both the forward and backward directions. These suggestions served to greatly facilitate
the implementation of MESA and to significantly enhance the MESA properties. Taken
together, the improvements suggested by Burg [10] are often referred to as the “Burg
technique ”

The concept of estimating power spectra by maximizing entropy appears unique in
the history of science, yet the resultant expression for power spectra is identical to the
representation of the all-pole method or autoregressive model (AR) introduced by Parzen
[2] . In fact , van den Bos [11) and Kaveh and Cooper [12] have noted that MESA ,as out-
lined by Burg [1], is equivalent to the AR method as described by Parzen. Therefore , it is
of consequence to note that the different spectral estimates sometimes predicted with the
two spectral estimation methods are not due to inherent model differences, but rather to

Manuscript submitted December 12, 1978.
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KING

the different methods used for evaluating the corresponding filter coefficients. With this
realization , Ulrych end Bishop (Siconducted a comparativ e analysis of the Burg and Yule-
Walker (13,141 techniques for evaluating MESA and AR filter coefficients. In a comparison
of spectral estimation of harmonic components, Ulrych and Bishop showed that the MESA-
Burg technique provided significantly greater resolution than did the AR-Yule-Walker tech-
nique . They not-ed that the resolution differences are not surprising when it is realized that

the Yule-Walker technique has assumed a zero extension of the data samples, whereas the
Burg technique contains no assumptions concern ing the nonsampled data field .

Since the MESA and AR methods are most significant when processing short data sets,
it is natural to use such methods for processing data collected with multielement electro- . 

-

magnetic antennas or acoustical arrays. Such methods may well make it possible to achieve
high resolution by using unusually short antenna arrays. Consequently, in this report the
resolution property of the MESA-Burg technique is examined as a function of input-data
signal-to-noise ratios (8/17), number of antenna elements , numbers of signals, incident signal . 

-

angle, relative signal amplitudes, and relative signal phase .

THEORY

Power Spectra

The maximum entropy power spectra (MESA), which was introduced by Burg (1) ,
has been derived by Parzen (2] using statistical methods and by van den Dos [11) using an
afl.pole model representation. To further the understanding and acceptance of MESA ,
another derivat ion suggested by Blizard [151 is presented based upon discrete convolution
filtering and minimization of the mean squared error .

Consider the one-step discrete convolution prediction filter described by Levinson
(161 as follows:

= (1)

where x , is the prediction at time t of the function x 1 which is sampled at time intervals
n(~~t) . The N prediction coefficients are given by a1, °2’~~ 

a~~. The error of the one-step
pred iction is e1, given by

Cf 
= X f X f ,

= .~ , 
— 

~~~~~~~ . 
(2)

The filtering and error analysis represented by Eqs. (1) and (2) is illustrated in Fig. 1, where
filter coefficients a,~ are multiplied by values of x~ sampled at time intervals n(~~t) ,  and the
resultant multiplications are summed to obtain the prediction *~. The predicted signal

and the actual signal x~ are subsequently subtracted to obtain the prediction error e
~
.

2 
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Pig. 1 — Predictio n error filter

For convenience, the prediction error filter ‘y is introduced as follows:

= (3)

where, in comparing Eq. (2) and (3), it is observed that

; 1 ; ; = — a ~ , n~~~~l.

Equation (3) is transformed to f requency space with the Fourier transform to obtain the
following equation:

= X(~.)) E 7e 1wP*(~ t)

where the Fourier transform of a function delayed n( At)  units is the exponential

multiplied by the transformed function. The power spectra density function P(~~) is defined
as

= X 2 (c~,)/ W,

where W is the bandwidth defined by the sampling interval At ; i.e.,

W = (~
1
~)

If the signal distribution function X(c~) is given by Eq. (4), the power spectra density func-
tion becomes

~~•~~‘— 
--

~~~~~~~~~~~ 

— ——. - 
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N (5)

~~ -~,~e~
”(

~~
’) 12

PN/W
(6) -

-

11 + 
~~~ 

1~ne1
~~

hl(
~~t ) f 2

where the error power ~~ (~~) is represented by 
~~~ 

A requirement that the spectral error
power ~~ (w) be a minimum results in 

~N being independent of frequency as follows:

d~~ (~ ,)
— = 0do., ‘ 

- -

= constant , (7)

“N = constant.

Then if 
~N is a constant , the prediction error filter -y is a whitening filter , and 

~ N is also the
mean of the total squared error as follows:

2
“N ~~~~~~

= -3- (~~~(w) W J . (8)

The power spectra density function P (w)  given by Eq. (6) is the same MESA equation intro-
duced by Burg (1 J and later derived with detailed steps by Barnard [17].

The power spectra density (Eq. (6)) may also be expressed as a wavenumber power
spectra density by

PN /Kmax 
(9)

N
1 + ~~ ;e

11”(
~~~

) 2
n—I

where the time (t) and frequency (() variables have been transformed to space and wave-
number variables by using the following relations:

t~t = ~~ .x/c,

4
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for

k — (2ir/X) cos O ,

X signal wavelength ,

0 = signal angle of incidence ,

c = signal velocity,

K 2ir/X.

Prediction Error Filter (
Utilization of the MESA power spectra equation ( Eqs. (6) and (9)) requires that the

prediction error coefficients -y~ and the mean error power 
~N be known. These unknown

parameters may be specified by minimizing the average time.dependent prediction erro r
power e2 . The resulting N + 1 equations , which are derived in Appendix A , are presented in
a matrix’ formulation as

‘~o r 1 r 2 r 3 . . r N 
- 

~o1 ~~
r 0 r 1 r 2 . . . r~~ 1 ~~ 

0

r r0 r 1 . . . r~~ 2 ~y 2 0

= , (10)

• • S $
1N rN I  rN 2  rN 3  . r~ 

- 
?‘N 0~

where it is known that = 1 and it is assumed that the autocorrelation coefficients r .
(with lag i~~t) are known for N lags.

The autocorrelation coefficients have the following definition:

r~ 
_
~:.

m
00 2.M + 1 ~~~~Xk X~

’
fl - (11)

But for a finite data set , the autocorrelation coefficients may be computed by approximat-
ing Eq. (11) with a finite summation over M data samples.

5
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For large-sized filters (N Large), solution of the N + 1 equations given by Eq. (10)
becomes very tedious. Fortunately, Burg (101 demonstrated a more expeditious method
for specifying the unknown prediction error coefficients which appear in Eqs. (6) and (9).
He noted that the unknown parameters 

~N and ~~ may be evaluated with repeated use of
Levinson ’s recursion relations

= PN [1 (~~~4) 2] ‘ (12)

for 

= + ~~~~ ~~~ , (13)

P
~ 

r~,

= 1,

N~~~1,

and with knowledge of y~~ ~~, which is shown in Appendix B to have the following
representation:

2 E ( ~~) a ~+n
= M-N -l , (14)

~~~ 
[

~~~2 ( N ~~~2]

where the forward prediction error is and the backward prediction error is (3~. The three
equations, Eq. (12), (13), and (14), comprise the Burg technique as originally demonstrated
by Burg [10] and later generalized in detail by Anderson [181 and Barnard ( 17].

The remainder of this report is concerned with the properties exhibited by the MESA
wavenumber power spectra equation (Eq . (9)) when evaluated using the Burg technique
given by Eqs. (12-14).

• Signal Simulation

• Resolution properties of the MESA-Burg technique are examined by using simulated
antenna data . Input signals to a linear (line), multielement , phased-array antenna are assumed
to be plane waves mixed with white Gaussian noise. The multichannel signals are pre-
processed with narrowband filtering and channel delays which serve to “direct” (or steer)
the antenna in the direction of the incident plane-wave signal . The preprocessing methods
are illustrated in Fig. 2 where the nth channel is depicted as delayed (n — 1) At seconds for

At = Ax sin (0)/c ,

6 
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AX

~~~~~~~~~~~~~~~~~~~~~~~~~~~~
AX

NO 3° f± LT~~~~~~~I J f ~~~~~~~~~~~~~~~~
-O

-

~~~~~~~~~~~~~~~ 
(N-?Ax

NO. No .~~~~~~~~~~o

Fig. 2 — Prepro cessing of a linear phssed arra y
.:

where c is the velocity of the incident signal , Ax is the antenna element spacing, and 0 is
the look angle of the steered array measured relative to the normal to the array .

The signal x,,,( O )  incident to the nth antenna element is represented as

x~ ( 0)  = A exp(i~2~ ( 0) J + Q~ exp(i2,rq~ ), (15)

where A is the signal amplitude, fl ,1(O) is the signal total phase, and is a random number
represen tative of Gaussian noise. Th2 amplitudes A and Q are relative , and are determined
by a Gaussian distribution with variance o2 and a specifie~ signal-to-noise ratio as follows:

A2~~~~~~

=_ _ , (16)
‘7 2a 2

q~ 
= e~~n

2 / 2 0 2 
, (17)

where S/i1 j 5 the input signal-to-noise power ratio , Q2 is the average noise power , and is
a random number between 0 and 1.0 obtained by using a “white” random number :generator.

The signal phase ~l~ ( O)  has three components as follows:

~2~ ( 0)  = 2 l r i [n — 1 J ( A x / X J [ s i n ( O ) — s i n (O )] —
~~~~, (18)

where 0 is the array look angle , O~ is the angle of the incident signal relative to the normal
to the array, 0 is the incident signal initial phase with values between 0 and 2,r , and X is
the signal wavelength given by

X = c/f.

For all signals analyzed in this report , the ratio Ax/?¼ has the value 0.5; i.e.,

Ax/X = 0.5.

7
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In conventional beam fo rming all N a~~e nna elements are summed such that the total X ( 0 )  is

X I 0 )  = ~~~~~A exp ( i SZ~ ( 0 ) I  + Q~~exp( i 21rq~ )~ , ( 19)

and the conventional antenna power pattern is computed in decibels as follows:

dB 10 log (X 2 ( 0) / X 2 (0 ~ ) J .  (20)

However , the MESA technique requires multichann el data which are given by Eqs. ( 15)
and (18).

Conventional antenna patterns are compared with MESA patterns whenever such corn-
parisons are considered worthwhile. It is specifically noted that the S/’7 is defined at the ~

. -

antenna element and is the same for each antenna element. Consequently, the S/’7 does not
include the conventional antenna gain factor.

Power Spectra Peaks

The wavenumber power spectrum given by Eq. (9) may be ex pressed by

P~ /K
(21)

12(k)

where

N
t’(k) 1 +

or

N
I’(k) = ~~~~~~

for

~0 = 1.0,

k = K sin 0 ,

K = 2 s ’ /X .

Spectral peaks of P (k ),  which occur at minimal values of I ’( k ) ,  may be located by solving for
the roots of the function r(z)  in the complex z-plane as follows.

8 
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(~~r isRlt r a pol ynomial I ’ (2 ) defined as

- 

I’(:) = (22 )

where

= F : n ( A x ) .  (23)

9 = irn sin ~I fu r (.~x )  -• 
~ 2

The polynomial l~( : ) ( o f  order \~ nay  also he expressed asa function of the N complex
roots as follows:

= (:  — z i ) ( :  ~2 2 ) . . . ( z — z ~~)i  , ~24 (

whe re z 1 , :. , .. .  z ,~. are the N roots located in the comp lex z-plane . The signi f ica nce of 1(z)
becomes ob~ious f~om the observation that the function of interest 1(k) is actually the
polynomial l’~~ on the unit circle , i.e .,

1(k) = I~(:I for I = 1.0.

Consequently, l’(k )  has a pol ynomial representat ion in the z-plane as follows:

1(k) = - ( e ’
~~ 

— z 1 ) ( e ’~ - . .  (e~ — z~% )I , (25)

where it is recalled that 9 and !~ are fu nctional ly related accordi ng to Eq. (23). The product
term s of 1(k) in Eq. ( 25) aie the complex vectors (e ”~ —z~) which are shown constructed in
the z-plane diagram of Fig. 3. In accordance with Eq. (25), the minimal values of 1(k)
occur at minim al values of the complex vectors (e ’~ — 2 - ) .  And as observed in Fig. 3 the
complex vectors (e~ — z.) are minimal for 9 corresponding to c~, . the argument of the com-
plex roots z1; i.e..

0 = 91 wher e 0~ = arg (z1).

Consequently, stronger spectral peaks , which occur for smaller values of 1(k), occur
for roots z1 lying closer to the unit circle. And as noted by Burg (in private communication),
all roots of Eq. (22) lie outside the u ni t  circle.

9 
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~ , .~~~~, 
~~~~~~~~~~~~~~~~~~~~~~~~~ UNIT CIRCLE

Fig. 3 — Z.plane with root Z 1

APPLICATIONS

MESA Examples

Several examples of MESA antenna patterns are computed in order to demonstrate
MESA characteristics. Antenna patterns are computed for linear antennas containing 8 or 16
elements spaced at half-w avelength intervals, and for various signal-to-noise ratios. Snapshot.
type antenna patterns are presented to demonstra te the explicit MESA characteristics. A
MESA snapshot pattern is a MESA antenna pattern computed by using N discrete data points
representing spatial data collected at one instant of time. In some examples several MESA
snapshot patterns may be averaged to obtain one single represen tative stable antenna pattern.
Some type of averaging is usually recommended when MESA is applied to actual data.
Usually, it is better to use a time average of either the input autocorrelation matrix , the pre-
diction error , or the prediction filte r coefficients. However , in this demonstration of MESA
characteristics it is convenient to obtain pattern stability with the averaging of snapshot
patterns (or postprocessor integration).

The MESA algorithm , used to Compute the examples in this report , utilizes complex
number arithmetic throughout , so that the input-signal and noise data may have a complexrepresen tation. As a result , the prediction filter coefficients computed by the algorithm are
complex coefficients.

Each example MESA antenna pattern is computed for a noise field identified by a
“seed” number required of the random number generator. The exhibited antenna patterns
may be duplicated only with use of the particular seed number (IR) that is identified in
each example .

Single Signal

A MESA snapshot antenna pattern is shown in Fig. 4 for a single signal incident to an
8-element antenna at 00 (broadside to the antenna) with a S/’7 of 0 dB . In this particular
snapshot pattern , which is computed by using a 6-point prediction filter (N= 6) ,  the signal
peak is about 10.5 dB above the largest noise peak . There are N peaks in a MESA snapshotwhich is computed for an N-point prediction filter , and in Fig. 4 there are five prominent

10 
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0 $ ELEMENTS

~675O ~45~~ -2250 000 2250 4500 6750 90.00
ANGLE IN DEGREES

Fig . 4 — One’ ~ignsl ~i U (low S/??)

peaks and one smal l peak located at 900
. ‘the noise peaks would be distributed differently

in a ME SA snapshot computed for a subsequent noise field. ‘the noise field used in comput-
• ing the MESA snapshot pattern consists of eight random (white) comp lex numbers repre .

sen tative of receiver noise . •

The same noise data of Fig. 4 an’ summed with a signal at 0~’ having a S/i~ of 10 dB to ‘

obtain the’ MESA snapshot pattern shown in Fig. 5. Since the noise data are identical in
Figs . 4 and 5, the ’ noise peaks have the same loeation Ifl 1)0th examples , hut the noise peaks
of Fig. 5 are further suppressed (1)0th snapshot patterns are normalized at the signal peak).

A conventional antenna patt.e’rn is also shown in Fig, 5 for comparison purposes, where
the’ conve’ntional pattern is observed to have a heamwidth of about 15” at the ’ half-power
(3.d 14) points on the main lobe. The’ width of the MESA signal peak in Fig. 5 is so narro w as
not to he measurable ’ on the plotted pattern. Since’ points are (‘omputed at I ’ intervals ,
it can only be stated that the ’ MESA signal peak is down by 16 dR at the 1” intervals on
either side’ of the peak occurring at 0” . In the particular MESA snapshot illustrated in Fig. 5

• there’ is also considerable reduction in side’-pe’ak levels in comparison with the conventional
pattern. llowe’ver , side’.peak levels vary sign~ficuntly in subsequent MESA snapshots . Consis-
te ’nt side-peak levels are’ possible only with some type of preprocessor or postprocessor
averaging.

Two Ckniel.v S~nx’ed Signals

Two signals incident at angles of 4 and 4° are readily identified in the MESA snap-
shot shown in Fig. 6 for a complex noise and a S/is of 13 dB , each signal , each element. The’
MESA snapshot is computed for an 8-element antenna and a 6.point prediction filter , which
is denoted by the’ six peaks appearing in Fig. 6. Since particular snapshot patterns are not
n ~essarily repetit ive over a finite time interval , a more representative MESA antenna pat-
tern is obtained by averaging 20 such sna pshot patterns , as shown in Fig. 7.

11
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Fig. 5 — One signal at 00

000 8 ELEMENTS • 
-
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~~-200O

-3000 
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Fig. 6 — Two aigna R at ~_4
0 and 4°
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000 1 8 ELEME NTS /fl\ 
• -

6 FILTER POINTS / ~ ~\~~__coNvENTIoN~~-1000 SUM~2O ,IR’6
COMPLE X N SE

1EH~J~-50O0~ 
- ‘ . ‘ - ,• ‘ , -

-9000 -6750 -4500 -2250 000 2250 4500 6750 90.00
ANGLE I N DEGREES

Fig. 7 — Two signals at —4 ° and 4~ (summed patterns)

While the two signals are resolved in the averaged MESA pattern of Fig. 7 , the resolu-
tion of the averaged pattern is not as favorable as the particular MESA snapshot illustrated
in Fig. 6. However , the two signals are not resolved by the conventional antenna pattern
(also shown in Fig. 7), which is computed as the sum of two conventional patterns obtained
by “steering” the array in the directions of the two signals. It is known that the resolution
of a conventional antenna pattern is given approximately by the function R as follows:

R arc sin (A/ L),

where X is the signal wavelength and L is the array length. For an 8-element antenna having
half-wavelength element spacing,

R are sin (2/7)

16.6 degrees.

For the parameters illustrated in Fig. 7 , the resolution of MESA is at least a factor of two
better than the conventional pattern .

Three Closely Spaced Signals

A MESA snapshot is shown in Fig. 8, computed for three signals incident at ang’es of
- 7 ’, 0°, and 7°, with each signal having a S/~ of 40 dB , each element. The MESA snapshot ,
computed for a 6-point filte r and omnidirectional noise , has four equally strong peaks and
two low-level side peaks. ft is apparent that the central signal at 00 is represented by two
split peak s on either side of the true signal location. The MESA snapshot pattern depicts
“peak splitting, ” which is sometimes observed in MESA snapshots at the larger filter sizes,
hut is encountered less frequently in averaged MESA antenna patterns.

13
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Fig. 8 — Splitting with thr ee signals

For example , an average of 20 MESA snapshots , including the one shown in Fig. 8
• (since the same seed number is used), is shown in Fig. 9 to illustrate that pattern averaging

serves to enhance MESA stability. In comparing Figs. 8 and 9, it is observed that even
though stability is enhanced by averaging, peak widths are increased .

Further examples of three resolved signals are shown in Figs. 10 and 11, where’ the
effect of increased S/i~ is depicted. In Fig. 10 the noise field is omnid irectional and the three
peaks are predicted within 0.5° of the correct incident angles. Also , MESA patterns corn -
puted with omnid irectional noise have an observed symmetry in peak location , whereas
MESA patterns computed for complex noise distributions do not exhibit such symmetry as
demonstrated by the snapshot patterns in Fig. 11.

The MESA snapshot patterns in Figs. 10 and 11 do indicate that resolution is improved
and side-peak levels are reduced with increased S/r i . These benefits are demonstrated in Figs.
10 and 11 for a S/ TI increase of 20 dB. The two examples also illustrate that omnid irectional
noise does not affect the accuracy of peak location , but complex noise may cause such in-
accuracies or distortions. It appears that complex noise (receiver noise) is a more troublesome
noise than the spatial omnidirectional noise field .

Pattern Averaging

While it has been demonstrated that pattern averaging provides stability to MESA
antenna patterns, averaging also serves to broaden peak widths in comparison to MESA
snapshot patterns. The averaged pattern of Fig. 9 demonstrated MESA stability for omni-
directional noise.

Another benefi t of pattern averaging for omnidirectional noise is illustrated in Fig. 12,
where side-peak levels have been substantially reduced . In the example , a MESA snapshot

14
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Fig. 9 — Three signals (summed patte rns)
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Fig. 10 — Three signals (snapshot)
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Fig. II — Three signals (complex noise )
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Fig. 12 — Signal at
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pattern is shown for one signal incident at - 3° to an 8-element antenna. From the number
of peaks in the snapshot it is noted that a 5-point prediction filter is used . An averag e of
20 such snapshot patterns indicates a substantial reduction in side.peak levels that is much
greater than anticipated from the gain due only to a uniform distribution of side peaks in the
20 MESA snapsh ots. For in an ordinary summation of snapshots such a gain is only

10 log ( M ) ,

where M is the number of patterns summed. Consequently, it is an ticipated that side-peak
levels may be reduced by only 13 dB in an average of 20 MESA snapshots . No explanation is
suggested for the gain that is apparent in Fi g. 12, but if the apparent gain is real , then signal
detection may be improved substantially with pattern averaging.

The effect of averaging MESA snapshots computed for complex noise is demonstrated
in Figs. 13 and 14. A MESA snapshot of one signal incident at —3° is illustrated for a 7-point
filter in Fig. 13 where the S/I ? ~5 0 dB. It is apparent from the averaged MESA pattern shown
in Fig. 14 that signal detection in complex noise is improved with averaged MESA patterns ,
but the amount of improvement is not demonstrated by a single MESA pattern . However ,
detection performance may be measured with a large collection of such patterns by con- I”
structing a set of ROC (receiver operating characteristic) curves that illustrate the probability
of detection for specific false alarm rates. In the particular example of Fig. 14 , there’ is an
apparent gain of about 5 dB in S/TI level for a zero false alarm rate . The gain appears even
more substantial in some following examples.

The S/TI gain that is apparent with the previous exam ples of averaged MESA patterns
appears to indicate that the gain is substantially greater with MESA patterns computed for
omnidirectional noise. One obvious reason for this discrepancy is observed in Figs. 10 and
11, where complex noise affects the accuracy of the location of signal peaks, thereby reduc-
ing the effect of pattern summation. There is little or no observable effect upon peak loca-
tion with omnidirectional noise. Consequently, the signal peaks summed in patterns for
omnid irectional noise remain sharply defined , whereas the signal peaks summed in patterns
for complex noise are distorted and broadened and show only a moderate S/TI gain due to
pattern averaging.

To recount the benefits attributable to pattern averaging, the examples presented
indicate that averaging of a sufficient number (maybe 20 or so) of MESA snapshot antenna
patterns provides pattern stability, helps to eliminate peak splitting, and may provide a
significan t gain in signal detection.

Mixed Signals

A MESA snapshot antenna pattern is shown in Fig . 15 for a collection of five signals in
• complex noise having S/r 7 ’s of 0, 10, and 20dB as indicated in the illustration. The example of

Fig. 15 is computed for an antenna with 16 elements and a 13-point prediction filter. Only
two of the signals are clearly identified in the MESA snapshot of Fig. 15, but all five signals
are readily and accurately detected in an average of 20 such MESA snapshots as shown in
Fig. 16. Signal detection is considerably improved in the averaged MESA pattern which con-
sists of signals mixed with complex noise . It is apparent that the particular set of complex
noise samples (I R = 5) has not adversely affected sign al-peak location accuracy as was noted
in the previous examples of Figs. 11 and 14.
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Fig. 13— Signal at _~
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Fig. 14— Signal at —3° (summed patt e rns)
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Fig. 15 — Five signals (snapshot)
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Fig. 16 - - -  Five signals (summed patterns)
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Relat :t ’e Signal Phase

It has been noted by Fougere , et al. I 19J that signals having initial phases other than
zero are not accurately predicted by MESA. In particular , Fougere noted that signal s with
an initial phase of ir/1 are most troublesome for MESA , as peak sp li tting is apparently most
severe for this particular phase .

In Fig. 17 , an averag e of 20 MESA snapshot patterns is shown for the same five signal s
and noise and the same antenna and filter size depicted in Fig, 16. h owever , the signal in-
cident at 60 ’ has a phase of i r / 4  (45 ’) relative to the other four signals , all of which have
zero initial phase. In comparing Figs. 16 and 17 it is noted that the two signals located at
30° and 60’ are considerably broadened by the phase sh ift , w hich suggests that some of the -:summed MESA snapshots either contain inaccurately located peaks or suff er some peak
split t ing at these two sign al locations. Whatever occurs , pattern averaging has again served
to maintain pattern stability so that signal peaks are accurately predicted even though some- •

what broadened .

In a further examination of the effects of signal phase , another averaged MESA
ante n na pattern is shown in Fig. 18 for the same signals and noise and parameters of the two
preceding examples. The except ion is that the signal incident at 60° has a rela tive ph ase of
ir 180’) . There is evidence of severe peak splitt ing at the wider angle signals. It appears that
a signal phase of iT is most troublesome for MESA and is responsible for severe loss in ac-
euracv and peak distortion.

Phase distortion effects are examined further for two closely spaced signals separated
by 6 with a S/TI of 20 dB each , and detected with an 8-element antenna using a 6-point
prediction filter . The resulting averaged MESA antenna pattern for the two signals, bot h
having zero i n i t ial phase , is shown in Fig. 19 where the two signals are separated b y a shal-
low null of only a few dB. The averaged MESA pattern for one signal (the one at +3° )
having an initial phase of ir/2 is shown in Fig. 20. Clearly, the effect of the ir/2 relative (and
initial ) phase is to shif t  the two signal peaks further apart and to enhance resolution at the
loss of accuracy. .-~lso , the signal peaks appear somewhat broadened.

In Fig. 21 an averaged MESA pattern is shown for the same two signals in the two
previous examples , but with the one signal incident at +3° having an initial (and relative)
phase of ii (180° ). The pattern distortion is similar to that depicted in Fig. 20 for a relative
phase of ir/2 , but is not nearly so severe. Distortion effects are also minor (similar to Fig. 21)
for a phase shift of ir/4.

Summary of Observed MESA Characteristics

The illustrations of MESA antenna patterns show that these patterns have substantially
reduced peak widths and consequently have better resolution than conventional antenna
patterns. Also , signal detection with MESA appears to be improved over signal detection
with conventional patterns. Such improvement is indicated by the substantial reduction in
side (noise) peak levels achieved with postprocessor integration (pattern averaging).

Multiple signals of varying power levels may be accurately predicted with MESA ,
although the number of antenna elements must be greater than twice the number of signals
t.o be detected.
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Fig. 18 — Five signals (phase at 60° is ir )
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Fig. 19 — Two signals at —3 ° and 3°
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Fig. 21 — Two signals (relative phase of ir )

Examples of phase distortion are noted for phases ir and ir/2 , which are thought to be
most troublesome.

One type of averaging, postprocessor integration , is shown to be most effective in
providing stability in the computed MESA patterns and in substantially im provmg signal
detection. It is likely that preprocessor integration is equally effective , and may be prefer-
able to postprocessor integration when computational time is considered. I -

OPTIMAL FILTER SIZE

The size N (number of filter coefficients) of a MESA filter is constrained to be at least
one less than the number of data samples M , i.e. ,

N~~~M — 1 ,

so that at least one data sample which is not convolved with the filter coefficients is availabl e
for estimating the prediction error. The lower l~ound on N is dependent upon the total num-
ber of spectral parameters, since some minim al number of filter coefficients is required to
accurately represent all spectral component parameters such as amplitude , frequency, and
phase. For instance, if there are P spectral components , all with the same relative phase,
then N is constrained as follows:

2P~~~ N~~~ M — 1 , (26)

where 2P represents the total number of spectral parameters.
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While N is bounded , the actual filter size is optional within the bounds of Eq. (26).
Anderson [181 and others have noted that the criteria for selecting the filter size depend
upon the intended application or function of the MESA power spectra. For in using MESA ,
it is observed that the spectral characteristics of MESA are a function of the filter size. Both
resolution and peak height are improved at the larger filter sizes, whereas stability and ac-
curacy sometimes are better at the smaller filter sizes.

Some criteria for determining the filter size are required if MESA is to be used in a
completely automated manner to determine unknown power spectra. One criterion , - 

-which is representative of two MESA characteristics, is the output S/a . Peak height and
resolution are two interrelated properties that are optimal with maximization of the output
S/n. King [201 has noted that maximization of the output Sit? at a spectral peak is a reli- , 

-able criterion. Another criterion developed by Akaike [211 has been investigated by Ulrych
and Bishop [81 and found to be only partially satisfactory.

King [201 noted that the output S117 at a spectral peak 
~ o is given by

p...

P(w 0)
(S/~)~, = 

‘ 
(27)

where the power spectra are evaluated at the spectral peak 
~~~

. With use of the power spectra S..

expression (Eq . 6),

(s~ — 1 (28)
\‘l,/~,~ r~(~ 0) ‘

where

= 1 + ~~~~ 7~et’~bo1~~ t) 12 . (29)

A maximum (S/t7)~ requires that rN (w O ) be a minimum. Therefore, an optimal filter size
is the filter size (N0?that minimizes rN ((L) O ).

If the maximum S/?7 is a criterion for determining the filter size, then the MESA
properties of accuracy and stability are not optimized , and remain as inherent MESA
characteristics. Both accuracy and stability (under varying noise fields) have been satisfactory
with use of a maximum S/i’ output. However , when signal relative phase is nonzero, spectral
peaks of the computed power spectra are often instable. Sometimes, averaging of such corn-
puted spectra appears to restore the stability . Examples of MESA antenna patterns of phase-
shifted signals are provided in the previous section.

Of course, maximization of the output S/i? at each spectral peak requires that the peak
locations be known. The peak locations may be determined by solving for the roots of
the function FN (w) at a stable and accurate low-order filter size. Knowledge of the peak
locations is also most helpful in accurately representing computed power spectra.

24
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An example of the value of maximizing the output (S/t? )L, is given in Fig. 22(a-g),
where the MESA wavenumber spectra are computed for a signaPlocat.ed at 00 (b roadside
to the antenna). The antenna has eight elements and the input Sit? is 0 dB per element. The
MESA power spectra are shown computed for all possible filter sizes 2 ~~

- N < 7 in Fig .
22(a -f).

A familiar problem with MESA , line splitting occurs at the larger filter sizes 5 <N < 7.
At the lower filter sizes 2 ~ N < 4, the power spectra having the best resolution and greatest
peak height occur at the filter size N = 4 , Fig. 22(c) . The filter size N = 4 is also the size de-
term m e d  by maximizing the output (Sit? )~,, , and the optimal power spectra for N = 4 are
shown in Fig. 22(g) . Of the six possible filter sizes, the power spectra for N 4 are clearly
those with the best resolution and peak height. Maximization of the output (Sit? )

~, also
serves to avoid such problems as peak splitting as observed with the example given.0

CONCLUSIONS Ps

Examples of MESA an tenna patterns presented in this report are an improvement over
conventional phased -array antenna patterns. Several direct comparisons illustrate the im-
proved resolution and side-peak suppression that are characteristic of MESA. Uowever , it
should be emphasized that these results were obtained from computer simulation modelling
of the antenna elements and the sources. The simulations did not include degrading effects - 

-

such as antenna errors, signal scintillations, etc., so that it is not appropriate to assume that
these remarkable resolution characteristics of MESA will hold under real-life conditions.

The best means of applying MESA to actual radar signals has not been established .
Apparently some form of integration (or averaging) is necessary at some point within the
MESA algorithm in order to gain stability in the computed antenna patterns. Postintegration
(or pattern averaging) demonstrated in this report is one method for obtaining pattern
stability. However , stability may also be obtained by averaging the elements of the covari-
ance matrix , the prediction errors, or the prediction filter coefficients.

While MESA appears to be a useful method for obtaining improved antenna patterns, 
- 

-

it remains to qualify these improvements and to establish the appropriate applications of
MESA to rad ar problems through further analytical and experimenta l investigation.
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APPEND IX A

WIENER PREDICTION FILTER

PREDICTION FILTER

Consider a signal x(t)  with a waveform known only over the time interval (0 ,T). The
waveform may be predicted (or estimated) for points outside the window (0,T) by using the
prediction filter in a convolution with the known signal x(t) as follows (suggested by Wiener *) :

~~~(t )  = fT  a(r) x (t — r) dr, (Al)

where x(t)  is the predicted signal and a(r) is the impulse response of the prediction filter.

If the signal has been adequately sampled within the time interval (0 ,T) such that

.—.-— ~~~~ 7_
~ 

— —

for a sampling interval i~ t, M data samples, and signal frequency f, then the discrete convolu-
tion may be employed as follows:

- ì  = a,~ X k f l , N < M, (A2)

- 
- where the summation is taken over N filter coefficients, N being less than the number of

data samples.

PREDICTION ERROR FILTE R

An erro r €k may be defined for the known set of data samples by

= Xk 
— a

fl
xk f l  (A3)

= 7~X~~~

‘N. Wiener , Extrap oiat~on , Interp ola tion, and Smoothing of Stationary Time Series, John Wi ley and Sons,
Inc., New York , N.Y. 1949.

31 ~~~~~~~~
-

~~~~~~
- -

~~~~~~ - -
.

- - 
-

— -  ~~~~~~~ - ‘ “~~~~
•. 

- . - .-— -5-, 
_______ ~~~~~~~ ~~~- -. I ~~~ —~~ ~~~~~~~~ —~~~



KING

for

where 
~~~~ 

is the nth prediction error filter coefficient.

The squared error is expressed as follows:

= ~~~ tn ’YmX k n X k m  (A4)

Since = 1, there are N remaining unknown prediction error coefficients. These N coeffi-
cients may be determined by minimizing the total mean squared error EN which is defined by

EN =
M~~~l~~~~~~

c
~~

. (A5)

The summation is taken over all errors possible to compute in a forward prediction within
the data window defined by N + 1 data samples. The incorporation of Eq. (A4) into Eq.
(A5) results in the following equation:

N N
1 *EN N + 1 Ld L~~ 

L_ . Tn7,nXk,nXk~m
k~-M m 0  n—O : -

N N M

= 7n 7mj ~f +  1 ~~~~
X k n X k m  (A6)

EN -

~

.. 
~~~ 

~~~~~~~~

where rm -n represents the data set autocorrelation coefficients.

The prediction error coefficien ts are defined with minimization of the total prediction
error as follows:

aEN 
N

. 
‘

~~~~~~~~~ 

= = 0, (A7)

for k = 1, 2, 3,. . . N. The resulting N equations with N unknowns are

- 
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k = 1, -y 0r~’ + -y 1r0 + + . . . + 
~N~N .1 = 0,

k = 2, 70r + “y 1 r 1 + + . . . + 
~N~N .2 0. (A8 )

k = N, -.vorZ + -y 1 r~~1 + + . . . + 
~N~O = 0.

An ‘idditional equation which defines EN results for k = 0 where Eq. (A6) is evaluated as
follows:

EN = for k = 0 , (A9)
n 0

when it is recalled that 
~~~~ 

1.

Burg~ has assumed that the mean squared error power EN ,  as defined by Eq. (A5)
for the time domain , is equivalent to the mean squared error power PJ~J, which is given by
Eq. (8) for the fr equency domain. However, Kings has noted that EN and 

~ N are equivalent
only when the predicted noise power equals the actual noise power or when the noise power . 

-

is negligible. It follows that for high signal-to-noise conditions, it may be assumed that

= EN (AlO)
and 

~N may be evaluated as follows:

N

or 

P1.1 = for k = 0, (All)

+ 
~ 1 + 

~2’2 + . . = “N O (A12)

If Eq. (A12) is combined with the set of equations (A8), the resulting set of equations may
be expressed in matrix formulation as follows:

r0r 1r 2 r 3 .  . . rN ‘VO P

r~r0r 1r2 . . . 0

r r ~
’r0r 1 . . . . 0 (A13)

* *  * *rN rN l rN 2 rN S . . .  r0 7N

f John P. Burg , “Maximum Entropy Spectral Analysis,” presented at the 37th Meet. Soc. Explor . Geophys.,
Oklahoma City, Okla homa, Oct . 1967.

iWilliam R. King , “Some Effects of Noise Upon Maximum Entropy Spectra l Analysis,” NRL Memorandum
Report 3645, Nov. 1977.
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APPENDIX B

THE BURG TECHNIQUE

Burg t has proposed a method for computing a set of N + 1 prediction error filter coef-

ficients as a function of a known set of N coefficients using the Levinsou recursion equation

= + 
~~~~~~ k # 2 ~~ 

( R i )

where the only unknown in Eq. (Ri )  is the last coefficient -y~~~ of the new set. Burg sug-
gested that the unknown coefficient ~ be obtained in a least-square error analysis that
incorporates both the forward and backward prediction of the kth point as follows:

N
= 

~~~~~~~ 
~~~~~~ , (B2) r

= 
~~~ a x ,~~f l , 

(83)
n 1

where the forward prediction X k and the backward prediction X k are ex pressed as discrete
convolutions of the prediction filter set ~~ (of size N) with the set of N +- 1 data samples.

It follows that corresponding forward and backward prediction errors , denoted by
and Li~’ respectively, have the following represen tations:

= ~~~~ ~~~~~~~~ 
f o r N + 1 ~~~k~~~M , (B4)

where M is the number of data samples , and

= ~~~ ~~~~~~~~~ 
f or 1~~~k ’~M — N , (B5)

,l—o

where = 1 and ‘y~ = —a~ .

tjohn P. Burg , “A New Analysi s Technique for Time Series Data ,” presented at- NATO Adv. Study Inst .
Signal Process, with Emphasis on Underwater Acoust., Enechede , Netherlands , 1968.
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Barnard t has noted that the forward and backward prediction errors are interrelated —

through the Levinson recursion relations 
-

= 
0k -N + ~~~ ( N + l ~~~k~~~M) ,  (B6)

a7~’ ~~~~rZ:~ )* aj ’~N ~~13~ (l~<j ~< M - - N) .  (B7)

The prediction errors may be computed with the Levinson recursion relations given by Eqs.(86) and (87) in a bootstrap manner that greatly reduces the number of computations re-quired with use of the matrix forniuiatj on given by Eq. (10).

The total mean squared error may be expressed as the sum of the forward and back-ward mean squared errors as follows:

EN = 
2(M -~N~ 

~~~~~ 

[~~~~

+

~~~~~~~ 

+ (88)

for a filter of size N where N ~~~ M -- 1, with M = number data samples.

In order to use Eqs. (B6) and (B7) as written , the total mean squared error may be ex-pressed for filter size N + 1 as follows: 4
EN + I  = 2(M _1

N 1)~~~~~~[(~
’
~~ +i) ~~~ . (B9)

Incorporation of the Levinson recursion relations, Eqs. (B6) and (87), results in the follow-ing expression for EN C 1 :

EN + j  2(M - _ N _ i ~~~~~~[Q~~~ 
I3~’ + 

~~~+N) 
+ (~~~:~~~

a
~+N 

+ (BlO) 

It Thomaa E . Barnard , “Advanced Signal Processing. The Maximum Entropy Spectrum and the Burg Technique,”ALEX (03)-TR-75-O1. Texas Instruments , Inc. , Equipment Group , P.O. Box 6015 , Dslls*, Texas, June 1975 .
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KING

In order to minimize the mean squared error , the partial derivative with respect to
(the only unknown filter coefficient) is set equal to zero :

aEN+l - 
-
~

= 0
‘Ni- i

2(M ~~~~~~~~~~~~~~~~ ~~ 
+ 

~~~~~~~~~ ~~ ~~ +N + P~a~+N1 = 0 (Bli)

Equation (Bl i )  may be solved for -y~~~ as follows: ~ -J

I

= M—N- 1 

~~ +N 

. 

(B12)

~~~~ 
+ ( ) 2 ]

The new larger set of prediction error coefficients may be evaluated with use of the recursion
relation , Eq. (Bi), and Eq. (B12), which greatly reduces the number of computations re-
quired of the matrix formulation given by Eq. (10).

~1i
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