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1. INTRODUCTION estimation by systematic statistico consists of two pactes (a) the

selection of s set of It order statistics sod (b) the determination1.1 Prelimintries -

of the coefficients for the order statistics selected.
A frequently occuring statistical model is the location and

Definition 1.1.1. Th. qusntile function, Q, corresponding to ascale parameter .odel. In this model , it is assumed that the

distribution function F L. defined to be
~umulative distribution function (c .d . f . )  of independent identically

listr ibuted random variablcg, X • X X is of the for. 
-1 2 n ’ Q(u) — F 1

(u) — in! (x:F(x) ~ is) . (1.1,2)

(1.1.1)F(x) m 
0 

~~• pth quantij e (0 c p C 1) of the distribution is Q(p).

shere is a known diStributional form and a and 0 are respectively Definition 1.1.2. Define the sample qusntiis function , Q. by
snknown location and eCsle parmnst .ts, The maximum ilicelihood

~atimators of a and o are of ten  diff icul t  to compute. Thus prac— ~ (u) — is 3 • I. . (1.1.3)

:ical considerations often dictate the usage of estimators tha t are

The 9
tb sample quantile (0 a p a 1) is ~ (p) ,inefficient when compared to th. Cram r—Rso lover variance bound for

snbiased pa rameter estimation. 
It is often mare convenient to consider linear systematic

A class of eatimatara of a and 0 tha t have good properties are 
statistics as being linea r functions of sample quanti les. By letting

It It;hoae formed as linear functions of the sample order statistics,
— ni/n • it follow. that I bjX ( )  — E b iQ(o

i) and hence the
i—lI a X ~ ,.. X ,, (the random sample N1. X2 two formulations are equiva lent.(1) — (2) — — (ii ,

irranged in increasing order). These estimators have been cslled 
A bsaic result which leeds to the useful~eea of systematic

systematic statistics by liosteller (1946) . Systematic statistics 
statistics is the following theorem due to Noeteller (1946).k

nilt be of the form I b N for N
i—l ~ (n i) (n1)’ Z (n2

)s .... a subset 

Theorem 1.1.1. Lot P be an absolutely continuous di~tribution,f the n sample order statistics. For this reason the problem of

with probability density function (p .d .f . )  denote-i by f .  Let

0 a is
1 

a u 2 .,. C u.~ C 1 be k real nowhere and Q(u 1), Q(u 2) itstions follow the forma t of the Journal of tl,e American Stat is—
:icsl Aaeociation. 

- Q(u,5) the corremponding (population) quantiles. Further assume

-~~~~-~~ m - - ~~ ~~~~~~~~~- - -~~
____ - -~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~ 

-
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that f is different iable  in the neighborhood of x~ Q(u
i
) and distribution of thc It seaplo quantilea is It—vat iatc normal with

that f(Q(u 1
)) a fQ(u ~ ) ~ 0 for i — 1 k. Then the joint 

-

distribution of the k sample quanEilco . ~ (u 1),  ~ (u 2
) ~~~~~~ AE(~ (u1) I  • a + oQ (u

1
) (1.1.7)

tends to a k—variate normal distribution as n tends to infinity

with o2 
u
i
(1_ u )

AGUV(Q(u~).Q(u~)) r n f  Q (u )f . u~ ~~~ . (1.1.8)
0 0  i 0

AZ (u1
)) — Q(u i

) (1.1.4) -
For the purposes of location and seals parameter utimstion,

end

~ 
is~ (l —~~~~~ Corollary 1.1.1 may be intorpretsd as stating that , asymptotically ,

— 
~ 

fQ(u ~ )fQ(u
3

) ‘ ~i ~~ ‘ (~~‘~ •~~~ ) the sample quantiles, ~ (u1),  ~ (u2) ~ (u.5),  satisfy the con-

ditions required icr application of the Gau;s4lsrkov Theorem. Thus

where AZ and ACOV denote asymptotic expectation and covariance asymptotically best linear unbiased estimators (ABWE 5) of p and/or

a say be obtained through generalised leas t squares . Ogaws (1951)respectively .

When the location and scale pa rameter .odel (1.1.1) holds the has given general formulae for these estimators and their asymptotic

p .d .f .  and quantile function have the forms 
- relative efficiencies (ARE’s) when either one or both of the

parameters are unknown.

f(x) 5
~ 

, Letu
.

s 0 ,U~~l
C l s n d f Q (U ) fQ (Uk+l ) O .  Define

0 0  0 0 0

(1.1.6) , -

Q(u) — p + aQ~ (u) 
k+l t f 0Q (u

i
) — f

0Q0
(u1.1)12 -

El — I • (1.1.9)
i—i U

i 
— U

i_i

where f and Q are respectively the p.d.f. and the quant ils function
0 0

corresponding to the known c.d.f. P0. A corollary to Theorem 1.1.1 k+l tQ0
(u
i

)f
0
Q0cui

) — Q0cu~.:1)f 0Q0cu i_ 1))
~ , (1.1.10)

concerning this model follows imeediately using (1.1.6). i—i 
U
i 

— U
i_i

Corollary 1.1.1. In addition to the hypotheses of Theorem 1.1.1,
i—i 0 0 1—1p i o n i 0

assume that f and Q are of the form (1.1.6). Then the limiting 
— 
k~l (f 0Q0(u i

) — 5
0Q0(’s1_1)IIQ Cu )f 5) Cu ) — 5) (u )f CI Cu >1

- 

i—i 
U
i

_ U
i_i

(1.1.11)

_  _

‘ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - - _ . - ______________________
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A — K1
1C2 — K , (1.1.12) with asymptotic relative efficiency

K2ARE(o)

~~l If Q (ui
) - f Q  Cu ) I t f  Q (u )~~(u ) - S Q  (u 1)

~~
(u i i )I  

~~ 
)2] - 

(1.1.18)

o i l  0 0  i 1 0 0  i
Z—  I

i—i 
Uj  —

(1.1.13) (° denoting approximate equality for large values of n).

3. Assume both a and 0 are unknown. ARUJE’s for a and a are

k+l

~~~ 
,s~ 

_
1,,~ {tQ 0 u

~~
f 0Q0Cu

~ 
— Q0(U i_i )f 0Q0(u i_ 1) I  — ~~ (k 2Z — 1c

3
y) s~l.i.l9)Y —  I

1f 0Q0(u i)~~
(ut) — f oQo(u i_l )

~~CUi..l)I } . - — ~~ (K
1
Y — K3Z) (1.1.20)

- (1.1.14) 
-

- 
with asymptotic relative efficiency

In this notation the ABWE s and ARE s derived by Ogsws may be -
ARE(p.o) —

written as followe : ~[1f c ]h111r1~L~ )l] — 1] —
~f( x ) J  J i L t  5(X)

1. Assume o i~ known. Then the ABUCE for p is 
- 

- (1.1.21)

Ic3 (1.1.15) Examination of equations (1.1.15) — (1.1.21) reveals that the

estimators and their asymptotic telative efficiencies ste all

functions of the spacin~o, is1. u
2 U

k• 
Therefore, throughwith asymptotic rolative efficiency

strategic placement of the spacings it is possible to further opti—

El (1.1.16) size asymptotic estimator efficiency, A set of spacings resultingARE C ,)

in a maximum value for one of the efficiency expressions (1.1.16),( f ( X)  J
- - (1.1.18) or (1.1.21) will be termed an optimal spacings set while

2. Assume p is known . Then the ABLUE for a is - the proble. of f inding such sets will be termed the ~p5jps1 spacings

problem.
; — j—~ — a j ~ 

(1.1.17) 
-

S

- -~~ ~~~— - -

~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —~~~~~~ 
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1.2 Review of the Literature For certain distribution types , the asymptotic relative

efficiency expression. become quite complicated. Consequently
1.2.1 Overview

numerical sethods have frequently been employed to f i n d  spacing

- sets resulting in optimal or near optimal efficiencies. The resultsLet -

obtained are usually expressed in th. form of tables of optimal
a, — Q ( u ~ ) , i — 1 It . (1.2.22)

spacings and the Corresponding coefficients for the ABUJE’ s for

various values of It.

The ~la*aical approach to the optima l spacings problem has been to

first show that there exist solutions , x1
5 3c.~*, to 1.2.2 Notma l Distribution

aARE(;) 
Ogava (1951) has considered the optihal spacings problem fot the

— 0 (1.2.23) 
-

- 
ax
~ 

normal distribution, in the event that a Ia known , it was shown

tha t there exists a unique set of optimal spacings for each value of

- 
— a (1,2 .24)  It. These optimal spacings were shown to be symsetric, i.e.

ax 1 u~ + u.
~~i+1 — 1. Numerical techniques were employed to find the

3ARE(ii .;) 
optimal spacings when It — 2(1)10.

— 0 (1.2.25)
For the case of a known loca in, parameter, it was found that

the function AREC;) had many maxima . Although the greatest maximum

which sa t is fy  the order restrictions was not found , of the spacing sets considered those result ing in the

— a x~ a x a .,. a a — (1.2.26) 
largest efficiency values were reported for It — 1(1)6.

Simultaneous est imation of both rho location and scale parameter

and max imize  one of the expressions for asymptotic est imator 
was considered only for an estimator based on two order statistics.

This estimator was derived under the assumption of symmetric spacings.
e f f i c i ency  given in Section 1.1. The next step is to find the optimal

spacings that correspond to these solutions. Much of the literature 
Eisenbergsr and Posner (1965) have extended Ogawa ’s results.

on the optimal spacings probles ii concerned with solutions obtsined 
Assuming a or p to be known, optima l spacings have been calculated

in thLs manner, 
for the cases It — 2(2)20. Suboptimal spacings tha t .inimise the

;‘—~~-.. __.,J’e - .
~ ~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~ ~~~~‘ -w m m -  -, - —~~ - - -—-~

_ 
-- - - - - -~~
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sum of the estimators’ variances , V(u) + v(;) . were also found for was suggested which use the optima l spacings for the estimation of

It — 2(2)20 . a ( when p is known ) with It — 1 sample quantiles.

1.2.3. Exponential Distr ibut ion — 1.2.5 Csuchy Distribution

Sarkan and Greenberg (1958) have considered the estimation of Moth (1966) has considered the estimation of the location

the scale parameter of the exponential distribution under the - parameter of the Cauchy distribution by a linear function of five

3SSU5~ ti0fl that the location parameter w~.s known . Optima l spacings -order statistics,  Numerical techniques were utilized to obtain a

were obtained for linear systematic estimators based on It — 1(1)15 set of spacings that was essentially the opt imum . These spacings

order atat *tics. corresponded to an asymptotic relative efficiency of .95161. A

linear systematic estimator based on thes’e five spacings was found
1.2.4 Pareto Distr ibution

to be superior to the optimum trimeed sCan and the sample median.

For the Pareto distribution the location and scala parameter
1.2.6 logistic Distribution

model takes the form

- Gupta and Gnanadesikan (1966) have considered the optimal
F(x) — 1 —  (1 ~~~_ _ f )~

V 
, x~~~a (1.2.27)

C spacings problem for the logistic distribution. In the case of a

known scale parameter , the optimal epatings for location parameter

where p s 0 is a known shape parameter. Kulldorf and V~nnman (1973)
estimation were found to be the points 

~
—4,—j . i — 1 It. An

have considered the ostination of a and a by linear funct ions  of
explicit form for the estimator based on these optima l spacings

optimally spaced order statistics.
was given as

For p assumed known, opt imal spacings for the estimation of a
It

were obtained when v — .5( .5)5 and It — 1(1)10. When w — 1. the — It(It + l) (It  + 2) 1 i(k + 1’— i)Q (~—~-~) (1.2.28)
1—1

optima l spacings were found to be the points j—f-j . i — 1. I t .

For both p and a unknown , it was shown that optimal spacings with

sets exist for the simultaneous estimation of p and a only if the 
‘ k(k + 2) ( 1.2. 29)ARE(a) — (It + 1)sample is censored to the le f t .  Thus a sot of modified estimators

- ~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — — — ‘w ~~~~~~~~ ‘ .. - .1—.
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Optimal spacings for the estimation of o,in the event that ~ assumpt ion that  the location parameter is known. optimum spacings

kn own ,were obtained for two or three  symmetricall y spaced order for scale parameter estimation were obtained for It — 1(1)4. A.,

statistics. iterative scheme was proposed for simultaneous estimation of p

Hassanein (1969b) has considered suboptimn l simultaneous and o by linear functions of two order s tat ist ics.

location and scale parameter estimation using spacings that minimise The problem of selecting optimal spacings for simultaneous

the sum of the variances of the estimators. The spacings for these location and scale parameter estimation has been considered by

suboptimal estimators were given for the cases It — 2(1)9. Hassanein (l969a . 1972). Spacings that minimise the sum of the

variances of the estimators have been obtained tor It — 2 , 3. 4
1.2.7 Weibull Distribution

and optima l spacings have been obtained for It — 1(1)10.

The location and stale parameter model for the Weibull distri—

1.2.9 C a a  Distribution
bution is of the for.

The location and scale parameter model for the gasna diatri—

F(s) — I — exp (_1~~
1
~). a ‘ a , ( 1.2.30)

0 .1 - bution results in a p.d.f. of the form

1 (~ — p~~P 1 ..(! I t)where y is a known positive shape parameter. Hassanein (1971) has — a a ,  (1.2.31)

obtained optimal spacings for the simultaneous estimation of both

the location and scale parameters of this distribution . The optimal where p > 0 is assumed known . Sarndal (1964) has obtained nearly

spacings are given for estimators based on two , four , or atm order Optimum spacings (in the senae that they result in sear maximum

statistict for the cases y — 3(1)10(5)20., ARE ’s) for the estimation of the scale parameter of the gamma

distr ibution , when p is assumed known for It — 1( 1) 10 w i t h  p — 2 ( 1)5 .
1.2.8 Extreme Value D i s t r i bu t i on

The techniques u t i l ized in the calculation of these spacings are a

I tas sanein (1968) has s tu d ied  the estimation of location and special case of a general approach to optima l spacings se l ec t ion

scale parameters in the extreme value distrib~,tion, Optimum developed by S~ rndal ( 1962). 
-

spacings for the estimation of the location parameter when the scale ~~assnein (1977) has obtained suboptimal spacings for ~isu l—

parameter is known were given for the cases It — 1( 1) 15. Under the taneous location and scale parameter es t imat ion  tha t  maximize the

.-q- ~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~
.-,-- —-- - -

~~~~ 
- - - 

~~~~~~~~~~~~ - -~~~~~~~ 
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sum of the efficiencies of the es t ima tors .  Spac ings  set s were 2. SPACINCS FOIl UNCENSORED SAMPLES

given for es t imators  bas -d on It — 2 (1)5  order s t a t i s t i cs  w i th
2.1 Prel iminaries

p — 3(1)10(5)20.

Aa seen in Chapter 1, the classical approach to optimal location
1.3 Object ives

and/or scale parameter estimation by linear functions of order

The purpose of th i s  research is t h r e e t o l d :  (a)  to f o r m u l a t e  s t a t i s t i c s  has centered upon the e f f i c i e n c y  of the e s t ima to r s .  The

the problem s of location and ecale parameter  es t imat ion  and spacing asymp to t ic  re la t ive  eff ic iencies  of these l inear  sys temat ic  s t a t i s t i c s

se lec t i o n  in a u n i f i e d  f ramework , bias ed on regre saion  anal ys is of are func t ions  of the spacings of the sample quast i ie s  Inc luded in

th e con t inuc .s par amet er  s~~ p le q u a n t i l e  func t ion  Q ( u ) ,  0 u i , the es t ima to r s .  Thus spacings that  maximize expressions for  asymp—

the r eby develop ing a general computa t iona l ly  simple solution to t otic e f f i c i ency  c o r r e  - - . ad to a best set of sample qu a n t i l e s  to be

the op t imal  spa cings  proble m , (b) to app ly this technique to several used for  estimation purposes. Therefore, classicall y, optimal

commo n d i s tr ib u t i o n s , and Ic) to develop guidelines for the selection estimators were obtained by first finding spacings that resulted in

of order s t a t i s t i c  subsets for  the  summar iza t ion  of large data  sets, maximum values for asymptotic  e f f i c i e n c i e s  an d then us ing  t h e

The problems of optimal order s t a t i s t i c  selection fo r  e s t imat ion  - corresponding sample quant i les  to  e s t ima t e  location and scale para—

in censored samples and quantile estimation will also be considered. meters by generalized least squares.

There are several p roblems associated wi th  the c lass ica l

- approach . Two such d i f f i c u l t i e s  are :

1. Finding spacings tha t  r e su l t  in maximum valuzu fo r

tht  asymptot ic re la t ive  e f f i c i enc i e s  is o f t e n  conputa t io rsa l ly

qui te  - i f fi c ult .

2. There is no unified f ramework for solving the prob lem of

optimal estimation . 
-

In this chapter , a new approach to op t ima l  location and scale

parameter estimation is presented which alleviates many of the

—5 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~. ,-.-—.-- —

- - — 
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problems inherent in the classical method. It will be seen in this propertius fot every u in I (where E( ’ ,u) is the function defined
and subsequent chapters that the computational aspects of this new on I whose value at a in I is K(s .u ) ) :

procedure are quite simple. Also by using this approach , the

problem of obtaining optimal linear systematic estimators of the &(‘ ,u) £ H (2.2.1)

loca tion and/or scale parameters may be formulated in a unif ied

regression framevorIt. - (g,K(.u)) — g(u) (2.2.2)

- The principal results of this chapter are contained in Section 
- - 

-

2.5. Sections 2.2 through 2.4 provide the necessary background for every g in H.

for the development of these results. Section 2.2 contains a few
A kernel that  will be seen to be of particular interest is the

preliminary concepts and definitions. Section 2.3 treats the topic
covariance kernel of a Brownian Bridge process.

of regression design for a Brownian Bridge process. In Section 2.4.

it is seen that the problem of location and scale parameter estimation Definition 2.2.2. A Brawnian Bridge process (8(u), u t 10 ,11) is

can be formulated as one of continuous parameter time series regres— a zero sean normal pr ocess with Covatdarzce kernel

sion. The results of Section 2.3 and 2.4 are combined in Section 2.5

to obtain estimators of a and/or a based on asymptotically optimal x1(*~15 t.2 ) — min.(u 15 u2) — u
1
u
2 . (2.2.3)

spacings. Finally in Section 2.6 , the approach taken here is
The Hilbert function space , H8, generated by K

8 consists ofcontrasted with those of thernoff (1971) and Sarndal (1962).

t~ differentiable functions satisfying f(0) — f ( l )  — 0 for every f in
2.2 Definitions add Notation 11

8. The innec product of two function f and g in HZ Ia

This section contains definitions and notation that will be
<f,g> — j

l 
f’(u)g’(u)du . (2.2.4)

used in subsequent sections. 0.

Def in i t ion  2 .2 . 1.  A reproducing kernel Hilbert space (RXHS) , with 
~~ taking g(u) — f(u), it is seen that for any fin

reproducing kernel K, is a Hilbert space, H , of functions defined

on a set I. The kernel K is a function on 1 5 T with the follewing

IIf l~
2 f ( f ’ (u ) ) 2du . (2.2.5)

0

‘
~~~

‘ 
~~
.-‘--— .-, ‘~— -‘v’ —‘ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —  -- . — - -,-, -
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repetition of observations at a part icular  design point , it is2.3 Regression Design for a lirownian Bridge Process

necessary to define what is meant by a k-point design.

Let (8(u) ,  u £ (O .lJ} be the Brownian Bridge process defined
Definition 2.3.1. A k—point design for a Brcwnian Bridle procsasin Section 2.2. Consider the regression model
(and hence for ( 1(u), u c (0 ,1))) is a k— tupl e . (u 1, u 2 u,,1)m

1(u) — + nB(u) . u c (0 .11 , with 0 ~ u~ ~ u2 5 ... < I. Denote by ~ke Ut of 511 such

(2.3.1) It point designs.

COV(Y(s). 1(t)) — n21C8(a ,t) For I c Dk, let 81 denote the BLUE of g — 
~~~ ~~ mS

based on observations taken according to I. Let B denote the

where f 1, f
2 

f are given regression functions , Bl~ ~~ 
estimator of 5 ob tained using observation . over all of 10.11.

a are m + 1 unknown parameters and is given by (2.2.3). For Optima l deaigna are those that minimize the variance of the

this model an infinite observation set is feasible , in which case estimator in the case m — 1 or miniai~ e~ the generalized variance of

parameter estimation may be accomplished using techniques developed the estimators in the case m 2 .  Am a result of the order

by Parzen (1961a,b). It is often more convenient to take obser— restrictions satisfied by design points , is not a compact set.

vations at only a finite number , It, of point. on 10 ,11 as then Consequently, optimum designs frequently do not exist and are usually

parameter estimates may be obtained by generalized least squares. di f f icul t  to construct. This lead. to the consideration of design

Since the point set to be selec ted is at the disposal of the sequences that are asymptotically optimal.

exper imenter , it should be selected in such a manner that the
Definition 2.3 .2 .  For the case m— 1 a desi gn sequence (I

resultant estimators have optimal prope,rtiee over all such estimators i
h
J l TIt t 0k’

is asymptotically optimal for est imating 8
~ 

B if
formed from the same number of observations.

lim~ 
It ‘

— 1 . (2.3.2
The problem of selecting a “best” set of points (for estimation ~

‘ V(B~ ) — v(8) 

}purposes) at which to sample from the process (1(u), u c (0,11) It..— m t  1(8 ) — 1(B)
LIeD I 

-
i. one of design for continuous parameter t ime series regression.

The point sets are called designs and the points themselves are Definition 2.3.3. For the case m ~ 2 a design seq uence

called .jg~l ~~~~~~ 
Since sampling over time obvia tes the I t O It La asymptotically eptimal for estimeting B if

-. - ~~ - - - -
— .P— ----, — ----——

~~

-mm

~ 
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iv ( ii1 )‘~‘t — i v ) ’I Then

11. — 1 , (2.3.3) 1. For • — 1 the density
k- 1sf 1(51

) I — iV (B)  I

- h5(u) — (2.3.6)

Design sequences may be constructed through the use of density f
0 
(f1
”(t))

’
~dt

functions. Let ii be a continuous non—negative density function on

-(0 ,1) with associated distribution function - generates asymptotically optimal design sequences for

estimating 5
~ 

B.
11(u) — 5 h(t)dt . (2.3.4)

0 
2. For s~~~2 let

The density, h, generates a design sequence (Tj
)..i where TIt t 0It 

~(u) — — (f1
’(u), f2’(u) f

•
”(u))’ (2.3.7)

and Tk 
— (I(~~( ~~~~ ) .  H~~ ( __L_ H~~( ~~~~~~~ 

) } .  Find ing an

ssymptoti~a1ly optimal design 
sequence will be seen to be equivalent A — (<f jsfj

)) . i. i — 1 5 . (2.3.8)

to find ing so ~p~juval density, i.e., finding a density that 
generates

an asymptotically optimal density sequence. 
The density

The next theorem gives densities that generate asymptotically _i I,
- 1* (u)A •(u)) ~

optimal design sequences. Its proof cast be found as a straightforward 1i5(u) • 
1 

(2.3.9)

J (5’(t)A~~5(t))
application of results obtained by Sacks and ‘(lyisakor (1966, 1968). 0

Theorem 2.3,1. Let f be twice continuoucly differentiable on (0,11
i - 

generates asymptoticall y opt imal designs for estimating

and have the representat ion — 
~~1’ ~2 

f~ (u) — j
I f i”( )K8(hI .t )dt  , i — 1 a . (2 .3 .5 )
0 Remark 2.3.1. Let I — (u1, u

2 
e,~
) t D~ and m — 1. Denote by

P111 the projection of f 1 onto the linear manifold generated by the

functions K8(’ ,u~ ) .  i — 1 It • It cam be shown tha t

___________________ - -- - - -- - _____

~~~~
- -~~~~ -~~~ -- - 

- -. -- ~~~ 
- 

~~~-—_ ~~~~~~~~~~—~~~~~~~~~~~~ - - -
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‘((B1
) — 11P1t111’

2 
— I 11t 111 2 — j f 1 — r1r 1jj ’  ~~~ (2.3.10) Thus in view of Remark 2.3.1 and equation (2.3.12) the task of finding

an asymptoticolly optimal design sequence can be accomplished by

Finding a sequence satia(ying (2.3.2) is roughly (ap~.rt from coisver— finding a density function that attains the bound (2.3.13). Such

gence rate considerations) the same as finding a sequence (T
k}~~l 

, a density is (2.3.6).

such that

him I II f , _ !51 f 1!j 2_ inf j j f 1
_ p ~f 1j~2 J — 0 . (2.3.11) 

Remark 2.3.3. A multi—parameter version of Remark 2.3.2 may also

It.- ICO
k be made. Sacks end Ylvjsaker (1968) have shown that for

a } a set of positiv~ numbersm

Remark 2.3.2 . Let h be a denmity,end suppose {T
k
).,I is the design m

sequence generated by It. When m — 1,Secka and Ylvissker (1968) lim inf It2 £ aiII
~
’
~

— 9 .~L~~
(j 1t ~ s~C i~ (u) )2 1~~

5L,}3 (2.3.14)
12

k~~ i—i 0 J.1

have shown that

2 for any sequence of designs (TIt} ,,l . Finding an asymptotically

12  — ~~ du (2.3.12) optimal design is equivalent to finding a density h5 that attainsUs k2 j~
f
1 

— 9
~k

t
~ 

12 ~k-u o l  h(u)
a lower bound of the form (2.3.14). Such an optimal denmity is

provided h and f 1 satisfy any of the following condition.: given by (2.3.9). 
-

1. J Ih ( u ) I
2du 5 — and f1

’ is continues. on (0 ,11. Remark 2.3.4. Th. design sequences defined in Theorem 2.3.1 d i f f e r
C.

from those suggested by direct application of the formulae of

2. —i’— is continuous en (0.11 Sack, and Ylvieaker (1666 , 1968). These results may be reconciled

3. There exist a constant C such that 
by noting that no information is obtained from observations taken

b b -

(b — a) 5 h2(u)du C(J h (u )d u l 2  for all (a ,b ) c (0 .11 
at 0 or 1 for regression functions in the RX3IS generated by K8’

a a This is because (as noted in Section 2) such functions are neces—

The authors have also shown that 
ssrily zoro at these points. By taking the (It 4- 2) t~ element of

- the sequences suggested by those authors and disregarding design

lim It2 inf I f 1 — P
1
f
1i~~— -j~ ( 1  I f 1”(u) 1’~~d u J ~ . (2.3.13) points at 0 and 1 Theorem 2.3.1 may be obtsined.

It.— TCD
k 

0

I ’
;—.----~~~~~~~ 

—
‘ ~~~

-:----- 
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Remark 2.3.5. To obtain designs for an interval (p ,q)  and the true quantile function La -

regression functions of the form

Q(u) — p + cQ
0(u) (2.4.2)

q
f~(u) • —f f

i
”(s)

~~~~su)ds + C1K3(u ,p) + C
2
K
3

(u ,q). i — 1, .•., m
p

(2.3.15) where La the quanttl.e function corresponding to F0. Thus the

process
a modification of (2.3 .6) and (2.3.9) is required. Although the

foe. of the optimal densities are not eltered ,all limits of 
- 

(.~~ f 0Q (u) (Q(u) — p — o%(u) ) , is c (0 ,11) (2.4 .3)

integration must be changed from 0 and 1 to p and q. The design

points for the (It + 1)at element in the sequence are than may be considered as a Ircunian Bridge process, (3(u) , u £ 10,11).

), i — 0, ..., It • for large values of n.

Parses (1979) has justified writing the expression
2.4 Location and Scale Paraneter Est imation as

a Cqntinuous Parameter Time Series Regresiion Problem 
f Q (uflQ(u) — p — ag (s) ) — 3(u) (2.4 .4)0 0 0

Parsen (1979) has phrased the problem of linear estimation of

location and scale parameters as a problem in regression analysis which holds asymptotically as n .. — . The estimation of p and a

of a smoothed sample quantile process (f 0Q0
(u)Q(o) , u c (0 ,11). is then seen to be a problem in continuous parameter t ime series

The formulation rests upon a theorem of Csorgo and Revesz (1978) ‘ regression by writing (2.4.4) as

regarding the deviation of Q from the true quantile function Q. 
- 

-

f Q (u)Q(u) — h f  I) (u) + at Q (u)Q (u) + a B(s) (2.4.5)
This theorem may be paraphrased a. saying that , under suitable 0 0 0 0 0 o o *

conditiona on fQ, I~ fQ(u )I ~~(u) — Q(u )] ,  0 u ~ 1, is asymptotically where

a Brownian Bridge process. 03 — 0~,c’ . (2.4.6)

For the location and scale parameter model
The parameter c~ is not constrained to be related to a and is estimated

— p 13... Ji1 (2.4.1) mm a f re, para meter. Therefore its estimate provides a diagnostic
° J

clsecI~ on the goodness of fi t  of the modml.

~~
i’

~~—’- ‘
~~~

‘—
~~! 

- 
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2.5 Selection of Optimal Spacings as a Regression Design sets (design.) may be obtained by an application of Theorem 2.3.1.

Problem for the Quantilp Process This statement La formalized in the next theorem.

The regression model for location and scale parameter matimation Theorem 2.5.1. Let f 0Q0 and Q .f Q be twice continuously differ—

was seen in Section 2.4 to be 
emtiab l* en (0 ,11 and possess th. representations

f Q 0(u)~ (u) — pf 0Q0(u) + oQ0(u)f 0Q0(u) + 03*(u) (2.5.1) f0Q0
(u) — — f (f 0Q0(t) J”ht ~ (u ,t)dt (2.5.3)

where Q (u)f
0Q (u) 

— f
1

(Q
0
(t)f

0Q0(t))” lc~ (u.t)at . (2.5.4)

— (2.5.2) -

The following conclusions hold:

and (B(s), u c (0,11) is a Irownian Bridge process. This model i. The density

is seen ta bs a special case of the model (2.3.1) by making the

identifiesti~~~ f (u) - f Q (u), f
2

(u) - Q (u)f 0Q0 (u),  8
~ 

- ~~. h5 u - 

(f Q ”(u) J ~~ 
(2.5.5)

1 0 0

a and a — a~. Therefore , in an analogous manner to Section 2.3 J ( f 0Q0”(t) 1~~dt

optimal regression designs may be conmideted for wha t , in this case ,

would be location and scale parameter estimation . However , a g~~~ra tes a sequence of asymptotically optimal spacings

comparison of the definition of a design for a Brownian Bridge process sets for the estimation of p when a is known.

(Definition 2.3.1) with the proporties ‘of a sot of spacing. shows 2. The density

tha t such a design is nothing more than a set of spacings for sample -
7/3

quantiles. Thu. for the model (2.5.1), selecting an optimum design ((Q (u) f 0Q0
(u)3”)

h’(u) — — (2.5.6)

for the estimation of location and scale parameters is equivalent 5 (IQ0
(t)f0%(t)1”)~

’3dt
0

to ne1ert is ,3~ an opt im,s~ set of spnchisp .s.

In the light of the previous discussion , it follows that
generates a sequence *f asymptotically optimal spacings

densities which generate sequences of asymptotically optimal spacings sets for the estimation of a when p is known,

~~~~~~~~~~ ~
‘
~~~~~ “-~~~~~ “ - 

~~~ ~~ T~~~- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~- -~ ~~ ~~~ - -— - - - , .  
-
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3. Let bution function U. Define for a specified number of spacings. It ,

the functions
$(u) — — f l f Q (ufl” , (Q (u) f Q ( u) l” ) ’  (2 .5.7)

It+1 (f oQo(E_h 1r~_r) ) —

r (It) — • (2.5.10)
and define the information matrix, A , by •‘

~ i—i — iL _~._J ~~~_ ___L
B 

Lk + l J  t I t + 1

A — 
1’(f0Q0.f0Q0> <f0Q0,~~~0Q0>1 

. (2.5.8) . -

~~)0’f0Q0 5 f 0Q0> ~ ;f0Q05Q0f0Q0)J

Th. density 
g

2
(h) — 

~ t~’r. i....,i ~ 0 Ii..ii
(k + 1J ~I t + l j  

-

b*(u) — (2.5.9) -

— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ } , (2.5.11)

generate. a sequence of asymptotically optimal spacings -

sets for the simultaneous estimation of p and a. R (b) — 
I 

1 
i 1 

~~

~ 
H

Remark 2.5. 1.  The asymptotic optimahi ty of the spacings sets may

be interpreted as meaning that as the number of spacings in a set ,

It , grows large the spacings in Theorem 2.5.1 give r ise to estimators 
— f 0Qo0 ’1[~~ ) ) f oQooI ~~—~ —~~)Q0

(H ’ k;—i)~
wi th  approximately the same efficiency as estimators based on the

opclm.al set of It spacings . — f Q o
(H l(f .~)) Q o

(U h(f ~~~ ) )1.} . (2.5.12)

Given any density function , in particular those in Theorem 2.5.1,

the form of the estimators may be deduced from those in Chapter 1. 
6(h) — 13 (h)K 2 Ch) — 1H3 (h)2 (2.5.13)

It will be us5(ul to adopt a aomewhat different notation than that

employed there. Let It be a density function with associated diatri— ‘

- -

— —‘5 
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~ 
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K (h)

Also define the weigh t functions i’~ (i .h). 11 (1,1,). S~ (i .I~). - 
C (h) — , (2.5,17)
° R~ (h)

and correction factors C,,~(h), C0(u) as follow..

f Q ( H ~~ f~~~ —J ) f Q ( H ”[~~~~r}) .
W9

(i 5h) — 

— ~—‘ r- 1 S~ (i .h) — ~~~~~ (E2 (h)V~ (i .h) — k
3

(h)W
0(i,

h )j  , (2.5.16)

(,I t + l J  ~k + l J  
6 ( )

— 

g.%cHh:1~
_
~

_
~I) 

H
.$ (_ t

1 ] 

, (2.5.14) 
- S ( i ,b) — - — ~~— (X~ (h)Y (i.h) — 5(bW0

(i .h)1 . (2.5.19)

~ b +1 }  k + 1  -

- Escimatore of p and/or a based on sets of It asymptotically

- 
optimal spacing. are given as follows :

h(
3

(h)
C~ (h) — (2.5.15) 1 Let h* be defined as in (2.5.5). An estimator f o r  p

when a is known i.e

I i 
— £ V (i ,h*)~~(H*_h i~~+r)

) — aC (he) (2 5 20)

w0(i ,h) - 

f0%(0 k~-~1j H h f_ i_)_ R_ h I .~~~
)b00 t~~~~~

0 tk4-
~~ 

i—l i

LIt-~1J 1It+lJ with

R (h*)

H~~~~
’
~~ ) H

_1(!~~~)l 
1 — 

1 
, (2.5.21)

— f 0%( 
~~~~ ~~ lk+1J J 

— 

~
_ I 

—

- [f0Q0 u_1 ( ~))Q0
(It_ i (~~~~)) — foQo( R ( ~~~))Qo (H_ h [

~~~))]} 

2. 

:n~~ :: :e:5~ 
in (2.5.6). Lii estimator for a

(2.5.16) 0~ — £V a(i.h*)*(H.
_1 [

~ 1T)) — 5C0
(b5) (2.5.22)

~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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For e sy otric distribution it con be shown that th. ofwith

diagonal elements of the matrix A in (2.5.8) are zero (see Par sen
11
204)AU(a5) — (2.5.23) (1979)). This Iorsmla (2.5.9) may be simplified somewhat in this cess.

( f Q ’ Q  f Q ’ Q )
0 0  O’ O O  0

As a specific ez~~~1c of a ey etric distribution , consider

the normal distribution. The c.dJ. and p . d . f .  of the norma l dist r i—

3. 1st h5 be defined a. in (2 .5 .9 ) .  Simultaneou s estimators bution are of ten denoted by 9 and • respectively . In this notation ,

of p end 0 are - . die functions that have been considered so far are

It
— S S (i.hs)Q(H*~~(j—~—j)) 

(2.5.24) Q (u) — •~~ (u) , (2.5.27)
i—i U

0~ - S S (i,h*)ä0h*~~~ ~ 
f Q (~) - (2~ )~~~ exp (~~ Je~ (u)~2) . (2 .5.28)It

(2.5.25) 0 0 
-- -

1—1

It fol lows from (2.5.28) that

with

— _____1__,,___ (2.5.29)—f0Q0
”(u) f Q ( )

AB1(p*,O’) — . (2.5.26 )
Q Cu)

Q (u)Q (u))” — 2 ° (2 .5.30 )
f0Q0(u)

It should be noted that these formulae may be adapt e-’ spacings

gen.ratsd by an arbitrary density, 1, by subetitut e I~ r It5 in end A — disg (1 , 2) .

equations (2.5.20) through (2 .5 .26) .  Th. optimal density far simultaneous estimat ion of p and a is

The remainder of this section will be devoted to considering 
~
1 (s)~ 2)1/3~~~ {1/lI,

’I (u)12)(I + 219
spec ial cases of the previous results. These serve to point out b*(u) — - . (2.5.31)

certain simp lif ica l ione as w el l  as some shortcomings of Theorem 2.5.1. 1
1
(1 + 2 i~~’1~~~~i2 ) l/3 ( 141, ’ h (L ) (2 Id t

0
First the case of a synset r ic distribution (in particular the normal)

will be considered . Secondly, the exponentia l distribution will be The corresponding optimal c.d.t., 11*, mu st be ta bu la fed by numeric

seen to pose certain problems in the application of Theorem 2.3.1. f~~~~~~~~ (see Chapter 3). For a given It . the asymptotically

- — — _
~~

- -
~~~~

_
~~~ * -_- - .. — -- - - - _ - - —_ - -

- a -
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optimal spacings , II~ 
1~ i 1 i — 1 It , can then be found The aaynptot ically optimal spacings generated by h5 are

by interpolation.

For the exponential distribution H*’~~(~
_-
~—j) — 1 — — ~3_~)3 • i — 1 k . (2.5.35)

O~
(u) — —in(l — u) 

• 
(2.5.32)

2.6 Comparison with Other Approaches

Q Cu) — 1 — u . (2.5.33)
0 0 - In this section the results of the previous section are applied

The f 0Q function in this case cannot be represented as in (2.5.3). 
to solve probleess considered by chernoff (1971) and Ssrndal (1962).

In fact  the f Q function is not even in the RYJIS of K~ as 
Qiernoff (1971) considers the optimal spacings problem for the

0 0

f Q
0 (0)  ii 0. 1 Consequently. Theorem 2.5.1 does not pertain to the 

normal distribution. He assumes that the- normalized quantiles , s~ ,

Q function in (2.5.33). This means that for exponential data , 
are selected according to some non—negative density function g(z).

0 0

estimation of p when a is known or simultaneous estimation of p and 
This may be interpreted as meaning that for large It there should be

a say not be accomplished using the theory developed in this section. 
approximately kg(z)6 qusntilea In a small interva l (a , a + 4).

However , the function f Q ‘Q doss possess the desired 
Using the notation adopted in Section 2. 5 f or the norma l

0 0  0

representation . Therefore, it is possible to obtain spacings for 
distribution, the ARE of a linear systematic estimator of p is

estimating a when p is known via equation 2.5.6. The optimal density 
proportional to

1+1 I f ( z i) —is 
______________________

(u — l)~~~’ 
- 

11
1 

— 

i~l 
~~~Z j

) — ‘~~i—l~ 
(2.6.1)

h*(u) — (2.5.34 )

J ’(t — l)~~~ dt 
-

0 
Chernoff writes Ki as

— 
k+1 [.l:z)~~ — 

~
zi_l )1

i l  — 
~~~i—1~J 

~~~~ — 
~~.
Z
i—i11 (2.6.2)

10t1,cr diz tr i l ’ut ions  (e.g. the Pnr cto)  n1 ,~n h.iv~ this problen.
In such cases , there appears to be a correspondence between the -

distribution being non—regula r and the f Q functions not being a -
0 0

member of the BlIPS of 113 . Whether this holds in general is a topic
for further  research.

•~~~~~
‘
~~~~d~~~P 

~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
—~~

--
~~

-- - -
~~~-‘~~---- - — -— - ~~ - - - - - - —----— -- - — -
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- - --~~~~~~~
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and notes that t or large It 
where C — J G~~(s)dz. La It * — the z~ correspond to approximately

the ç~
—

~ 
quantile of the g(s) distribution. Thus Chernoff’s solution

— J z2~(z>dz — 1 . (2.6.3) is to take the s
~ 

such that they satisf y

Si _
~~~~

Thu . is a discrete approx imation to I 6
1
~ (z)dz — ~

-
~-j I •‘3(z)dz . (2.6.7 )

J z 2~~(z)d x . (2.6.4) The error in approximating (2.6.4) is approximately

Therefore the problem of selseLing optimal spacings may be viewed 
- 

- 
k211 

U •
14(z)d s)3 , (2.6.8)

as one of selecting a best met of points to discretely approximate -

(2.6.4). Equation (2.6.7) can be seen to be the same solution as sug—

By expand ing 4(z) in its taylor series about n~_1 the differences gested in Theorem 2.5.1 by making the change of variable • — 0 1 (u ) .

between the integra l (2.6 .4) and can be shown to be approximate d This same procedure shows that the problem of finding a density

for large It a. follows: which minimizes the error term (2.6.5) is identical to the problem

of finding a density that a t ta ins-the  bound (2 .3.13) (here f — PU 1).
k+l k+1 •(~ ) 1

i/Il t ( z
i 

— zi.l
)l,(zi l) l2k~ 11 g2 ( z )  ~~ — z~~~ ) Thus not only the solutions but the problems theeselvea are the same .

i—I SBrndal (1962) treats the problem of selecting optimal spacings

as one of selecting an optimal generating function . He defines a

~~~~~ f  —
~

-
~~~~- dx (2.6.5) generating function to be a non—negative density function defined

12k2 — g2 (z) -

on an interval (a ,b) of the real line. Let C be the c . d . f .  that

corresponds to a density function g. Denote by C’~ the inverse
since c~ — a ) • Thus minimizing the error in

i i—l g Z~~_ 1 function of C. A act of It spacings , Cu
1
, u2, .,., Uk ) ,  taken

appcoxin.st ing (2.6. 4) and selecting the density g* that  minimizes
accord ing to t satisfy

the right hand aide of (2.6.3) are (asymptotical ly) equivalent

problems . Chernoff solves this by variational methods to obtain 
. 

,.
~~ 

— F~(C ’(~—~—j) ) (2 .6.9)

- .. g*(z) — 1~
4(z) (2.6.6) where F

0 
is the c .d . f .  in (2 .4. 1).

~

° .~~‘ !V’ - 5 
~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~ — ~~—w- -~~~~~~ — -
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Under the asaumption that g and its firsi derivative arc Again by l e t t i ng  x — Q (u) and subs t i t u t ing  the funct ion e

bounded and continuous with 5 ‘ 0 • the autl,or shows tha t  gh~ loss f Q ( u )  and f Q ( u ) Q
0(u) for those in Remarks 2 . 3 .2  and 2 .3 .3 ,

in efficiency in estimation using linear estimates  based on spacings the problems considered by S’arnda l and subsequent solutions are

chosen accord ing to g is seen to be equivalent to those in Section 2.5.

Je(5)f (a) —2
1. — 1 2 + 004 ) (2 . 6.20)

l2(k + 1) 2 —

where

d2 logf (x)
— ° — v1(x) for a known , -

dx2

d ~.dlogf (x)1

- 

— si~ dx J — v
2
(x) for p known • (2.6.11)

ilu (x)1
— 1v1

(x), w
2

(x ))A for both p and a known -
Lv2 (x)J -

He then defines nearly optima l spacings to be tl,osc obtSined

according to a generating function that minimizes (2.6.10). A

calculus of variations argument shows the optimal function to b.

g*(x) — .-
~j— (J *(x ) f (x) ) 1”

~ (2.6 .12)

where

C — J (J*(x)f0
(x))~~dx . (2.6.13)

4- i______ .___ . 
C
— ~ ~4~~~ ’ ‘ 
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3. APPLICATIONS 
— if p and a are unknown

J I . ’ (t)A ”4 (t ) ) ”~dt
3.1 Preliminaries 0

The regression model for location and scale parameter estimation 
where

ha. been seen to be
— —Ut Q (ufl”, (Q0(u)f Q (u)1”) (3.1.4)

Cu) + aQ (u)f Q Cu) + a5
3(u) (3.1.1) -f Q ( u ) ~~(u) — 

and A is the information matrix defined in Section 2.5.
0 0 0 0

In order to determine the .asymptotically optimal set of spacings
where

for a given number , k , of order statis tics ,’ it is first necessary
a9 

— (3.1.2) 
to compute the opt imal density, h5, and its corresponding c.d.f. H*.

Then the required spacings are the points  H~~
1 (~—+--rJ , i — 1 It.

and (8(u ) ,  u c (0 ,111 is a B r ovnf a n Sr ldgo proce ss. Prom this model , 
~~ utilize the preceding theory for data analys is , the researcher

it can be deduced that  selecting optimal spacings is equivalent to 
would require the ~~5

’ or ~ functions for many of the co~~~ n
selecting optima l regression designs . - 

distributional forms . Such functions are derived in Sett ion 3.2.
In Chapter 2 , design sequences that  were asymptotically optimal 

Comparison of the spacings obtaired using (3.1 3) with those

were considered. Such sequences for the Brownian Bridgu 
obtained by other authors are also provided.

were generated by density functions on 10,11. For th, model (3.1.1>, 
Once a spacings set has been decided apon , the estimators can

the optimal densities are given by 
then be constructed . The AIWE’s for a specified spacings met ,

I f Q (
~~

) 1
~~~ /3 

u1, u
2 

u.~ , are given as follows:0 0  if a is knovnh5(u) —

f
1

1f Q (t )”1~~ dt 1. When a u  known , th e es t imator  f ir  p is
0 

0 0

- It -
(I Q (u)I  Q ( u ) ) ” ) ’

~ P — I W (i)
~
l(u i ) — oC . (3.1.5)

II° ° if p is known (3.1.3) i—i p

(t)f Q (t))”)’~dt -

0 0 0 0 
2. When p is known , the estimator for a is

It
o - V (i)

~
(u i) - PC . (3.1.6)a

- ~~~~
- 

~~~~ —~~~- - —- ~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~
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3. Simultaneous estimators for p and a are
x

- It F0(x) — •(x) — I 4(t)dt • (3.2.2)

— ~~S1~
(i)Q(u

5
) (3.1.7)

and

- It Q0
(u) — •

‘
~~(u) . (3.2 . 3)

— 

i—l ° 
• (3.1.8)

Q (u) — Ø
”1 (u) — (2x ) ’4’2e,tp ( _ I 8

_
(u) 12 /2 )  . (3.2.4)

0 0
The exact formulas  for  these estimators and their eff ic iencies  may -

be obtained by re fe r r ing  to Section 2.5. In subsequent sections ,
The ma t r ix  A i~ found to be

the coefficients V V S , S , and the torrect ton fac tors  C and
U’ 0’ p 0 P

C will  be presented for ce r tain  spacings sets of in teres t .  It A — diag(1,2) (3.2.5)0

should be noted tha t  the correction factors  are zero in the case 
-

When a is known spacings taken according to the densf ~ yof sysim4etric spacings for a aymuetri c di s t r i bu t ion .

In Section 3.3 , the problem of selecting order statistics for
h*(u) — (3.2.6)

eumuarizing large data sets will be considered. I t  w i l l  be seen

0 -that the selection of a few s t ra tegical ly  p laced order s t a t i s t i c s

will provide s u f f i c i e n t  informat ion to construct efficient location will be asymototically optimal for estimating the mean. Since h*

and scale parameter estimatorS under a variety of distributional is aysxaetr ic , the spacings . u1, will satisfy

assumptions.

‘5It—i+1 
1 —  u i i — h  It - (3.2.7)

3.2 Spacings f a r  Some Coesnon Distributions

3.2.1. Normal D i s t r i b u t i o n  Using (3.2.6) it can be shown that

The c.d.f. and p.d.f. of the standard normal distribution are H* 1
(u) — •(ñ U

1
(u)) (3.2 .8)

usually denoted by P and 4 respectively. In this notation , the
Tha function in ~3.2.8) is shown graphically In Figure 1 andfunc t ions  to be considered are:

i. tabulated in Table 1 for  points in the interval  1O ,.5] .  To find

f 0(x) — 4 (x )  

_ 
(2a) ’ 4 tlexp ( — x ~ /2} , —— x n , (3,2.1)

- 
__

~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~ -~ ~~~~~~~~~~~~~~~~ - - — - - - —~~~~~~
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Figure 1. Normal Distribution , a Known; Table 1. Normal Distribution, 0 Zncwn;

The Function H* 1 Cu) The Function H~ (u)

u H* ’
~
1 (u) u R*

_ 1
(u)

.01 .00003 .26 .13136
- .02 .00019 .27 .14457

. - 
- 

.03 .00056 .28 .15865
l1*~~ (u) .04 .00122 .29 .16853

.05 .00226 .3 .18141
I 

,~~~—— .06 - .00368 .31 .19489
.07 .00539 .32 .20897

.90 I
.08 .00776 .33 .22363

.80 - 
7
’ .09 .02.017 ~34 .23885

/ .1 .01321 .35 .25143
.70 

/  .11 .01659 .36 .26763

60 /  .12 .02068 .37 .28434

/ .13 .025 .38 .29806
- / .14 .03074

/ .15 .03593 .4 .32997
I

.16 .04272 .41 .34458

.30 - /  .17 .04947 .42 .36317

/  4 .18 .05705 .43 
- 

.3707
.20 /  .2.9 .06426 .44 .39743

/ .2 .07353 .45 .4 1293.10 -
.21 .08226 .46 .4325

0 — I I I —‘ .22 .09176 .47 .44828
0 .10 .20 .30 .40 .10 CO .70 .80 .90 I 

.23 .10027 .48 . .46414

.24 .11123 .49 .48404

.25 .121 .5 .5

.4 —,---- 
_ —C ~~~~~~ ‘

~ 
~
‘ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~- ‘---- -~~~ -~~~~~ 
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ii* 1 values for u ‘ .5 the relation (3.2.7) may be used. Table 2 Table 2. Norma l Dis t r ibut ion , a Known ; Asymptotically
Optimal Spacings and Coefficients for Sevencontains spacings calculated using (3.2.8) and their  corresponding or Nine Order Statistics

coefficients for It — 7 .9. The asymptotically optimal spacings for

It — 2,7,9 are compared to the optima l sete- obtained by Ogawa (1951) —‘ ,,, ,,. ,,, ‘

~~~

_ _ _ _ — —— __ — _ ‘___

~~

_ _ “ _ —

in Table 3. i u V Ci) u~ W (i)i P
To estimate a when p is known, the optimal density is

1 .023 .049 .013 .028

1,
1
(u)/0

1
(u)1

/3 2 .121 .138 .074 .087
h*(u) — . (3.2.9) 3 .29 .201 .184 .134

4 .5 .223 .334 .1640
5 .71 .201 .5 .l’3

A tabulation of the function H*~~ (u) is given in Table 4 for u in 6 .879 .138 ‘ .666 .164

7 .977 .049 .816 .134
the interval (0. .51. For other values of u the relation ( 3 . 2 . 7 )  may 

3 .926 .087

be used. A graph of Us’1 is shown in Figure 2. Table 5 contains 9 .987 .028

the asymptotically op t imal  spacings and corresponding coeff ic ients  ________________________________________________________

and e f f i c iencies f or It — 7 ,9. Table 6 provides a comparison of

the asymptotically optimal spacings with the optimal spacing given

by Ogawa (1951) for It — 2,6.

For simultaneous estimation of p and o,apaclngs should be

taken according to the density

(1 + 2$9 (u)~ 2)i3exp(h/2J P
I
(u)~2}

h*(u) — (3.2.10)

J (1 + 2j 9’
~~( t > l 2 ) ’3exp ( h/31,” ( t ) 12 ) d t

0

Since the Spacings generated by h* are symmetric , th e  function I1~~

has been tabulated only over the interval IO ..5 ).  This tabulation

is given in Table 7. A graph of H’~~appeara in Figure 3. Table 8 -

‘p 
~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -. “5- - - _
~~ , - _ - - - - - -

I

pm -.~~-- - - . - —a — ——. -1 
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Table 4. Normal Diatributian , p Imes.;

.* 4 en 5.1 5— es ‘0 0 The Function lI~~
1 
Cu)

Ha
_ I 

Cu) u H~~
1 Cu )

—I 5 ‘.5 
-

— .01 .0 .26 .04176

.02 .00002 .27 .04712
- .03 .00006 .28 .05296

.04 .00013 .29 .05931
m .03 .00026 .3 .0662c c  -m.. 

‘0 .06 .00043 .31 .07367
.07 .00072 32 .08176
.08 .00106 .33 .09051

O W  - .09 .00156 .34 .09996S.- 5.. 0 .a .1 .00215 .35 .11017Ca ,
~ _, 0l 5- .11 .00288 .36 .1212o n. u 0 5- “1 ‘0 ‘.4 5- ‘0a -  o -s .v a~ S.- ~ C .12 .00376 .37 .13310. 0.

.13 .00481 .38 .14596
-
~~ .14 .00604 

- 
.39 .15987

.15 .00747 .4 .17492O F-’

.16 .00912 .41 .191240 0  5- 5, 0o ~ ~ en ‘~ .17 .01101 .42 .209s a c
5 .18 .01314 .43 .22 84

en .19 .01556 •41. .2497e~~ I .2 .01826 .45 .27328-. a u — s  -

.21 .02127 .46 .299680 --I en 5— ‘ ‘0
o . ‘ .22 .02461 .47 .329821 4 0  5 0

.23 .02831 .48 . .36537

.24 .03239 .49 .41045C p.
is .25 .03686 .5 .5e C

I” .4 t4 5, ‘0 Ill 0 -. es a. Ua a a a a a a a 0
0. 4°Is

-~~ 
- -

~ 
- ,  - - -- - -

—
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TabiC 3. Norma l Distribution , p Known ; Asymptotica lly
Op t imal Spacings, Coefficients and EfficienciesFigute 2. Norma l Distribution , p Known; for Seven or Nine Order Statistics

The Function hI* ’Cu)

k — 7  k — 9
i u

~ 
8 (i) ui 8 (i)

1 .004 — .031 .002 — .013

- - 2 .037 — .111 .018 — .062
H* 1(u) 

3 .14 — .2 .066 — .115

4 ,S .0 .175 — .164

5 .86 .2 , .3 .0
.90 

6 .963 .111 .825 .164
.00 

7 .996 .033 
- 

.9 34 .115
.70 / 8 .982 .062

I 9 .998 .013£0 / -

I Officiency .8848 
- .9231-SO

40

.30

.20

.10

C I I I 4~ 5 I

0 .10 .20 .30 .40 .50 .60 JO .00 .90 I U

,,
~~
. 1 .~a - 

~~~~~~~~~~~ PS ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-— - - - 

-
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- . .—-
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Table 6. Normal Distribution , p Known; A Comparison Table 7. Normal Distribution , Soth p and a Unknown;
of Optimal and Asymptot ically Optimal Spacings The Function lI~~

1 (u)
and Their Corresponding Efficiencies

k — 2  k 6  
U ~~~ Cu) u

Asymptotically Asymptotically .01 .0 .26 06164
Spacing Optimal Optimal Optimal Optimal

.02 .00003 .27 .06938

u .091 .069 .006 .01 
.00009 .28 .07779

1 .04 .0002 .29 .08688
02 .909 .931 .056 .055 .03 .0004 , .3 .09672

u3 
.22 8 .17 .06 .00069 .31 .10731

u .772 .83 
.07 .0011 .32 .11872

4 .08 .00166 .33 .1309 7
u5 

- .944 .945 .09 .00237 .34 , j44 l 1

U
6 

994 99 .1 .00326 .35 .15819
.2.1. .00436 .36 - .17323

Efficiency .6423 .6522 .8761 .8943 .12 .00369 ,37 1893
.13 .00726 - .38 .20644
.14 .00911 .39 .22467

- .13 .01125 .4 .24407
.16 .01372 .41 .26465
.17 .01652 .42 .28644
.10 .0197 .43 .30947
.19 .02 327 .44 .33372
.2 .02727 .45 .35917
.21 .03171 .46 .38574
.22 .03663 .47 .41333.

.23 .04205 .48 - 
.44 171

.24 .04 8 .49 .4707

- 
.23 .05453 .5 .5

_____________________________ — ~~~~~~~~ ~~~- — — —- -— •— -~ --~~
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Figure 3. Notmal Distribution , U and a Unknown; — contains asymptotically optimal spacings and the corresponding

The Function 11* ‘Cu) coefficients and efficiencies for est imators based on seven or

nine order statistics.

In the case that It — 2 , Og~ ia (1951) baa shown that the spacin gs

01 — .134 and u2 
— .866 with efficiency .4066 are optimal for the

simultaneous estimation of p and a. The spacings obtained using
Ha 1(u) - 

(3.2.10) are u1
5 — .132 and u2

5 — .868. The efficiency for this

latter spacings met is .4065.

3.2.2 Exponential Distribution
.90 /
.80 - The exponential c .d.f .  is

1:: 

— F (x) — 1 — sap (—x l , x 0 . (3.2.11)

The functionm required in construction of the optimal density are I

40 / -

/ f0 (x) — exp (— x )  , (3.2.12)

.30 /
20 ‘ - - 

- Q0(u) — —log(l — u) • (3.2.13)

.10 - and

C’ ______________________________ 
f Q ( u )  • 1 — u • (3.2.14)

O .10 .23 .30 40 .80 .60 .70 .00 .90 I U

Thus

(F Q ’ Q , f 0Q0.Q0> — 1 . (3.2.15)

—‘-5---— —---“ ~~
-.— -——---- — - 

~~~~~~~~~~~~~~~~~ 
-- -

- a - - - - - - — . 
- . - - 5
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Pa was as-en in Scction 2.5 , estimation of p when a Li knows,
Table 8. Normal Distrib,,Lion , Ilotis p and a UlIbsown;

Asymptotically Optimal Spacings , coefficients , or simultaneous estimation of both p and a could not be accomplished
end P.(f tcicocics  lot Seven or Nine Order
Statiecics using the design techniq ues of ~ lmp ter 2. Consequently, only the

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
estimation of a when p ii known vili be considered.

It — 7 It — When the location par~~~tsr is known, the optimal denaity if
u S Ci) S (i) U $ CL) S Ci)i i p 0 i II C scal e p.r amater estimati on is

.006 .018 — .025 .003 .009 — .012 
-

2 .005 .093 — .082 .027 .044 — .045 b~ (u) — 
Cu — l) (3.2.16)

3 .197 .24 — .106 .096 .109 — .075 
J ’(t — i5~

’3dt
4 .3 .357 .0 .244 .214 — .075 0 

-

5 .802 .24 .106 .5 .286 .0
Thus

6 .945 .093 .082 .756 .214 .075 -

7 .994 .018 .025 .903 .109 .075 
H* 1 (u) — 1 — (1 — u)3 . (3.2,17)

8 .973 .046 .043

9 .997 .009 .012

Efficiency .8382 .8903 The function (3.2.17) is shown graphica lly in Figure 4.

The optimal spacing s F or estimating a when p is known have

been found by Sarhmn and Gre enberg (1958). A cenpar isos of the per—

formsnc e of thee . optimal spacin gs with that of the spacings obtained

using is provided by Table 9 in the case of k — 2 , 7 ,9. The

asymptoticallj optimal spacings , correction factors and coefficients

.rc given in Table 10 for estimators based on either seven or nine

or der statistics.

3 ,2 .3  Pareto Distribution

The distribution function for the Pareto distribution is

- 7~(z )— l —  (l + z )~~ , x s O  , (3.2.18)

-

~~~ ‘ -
S - - - - - --

-‘0
5

- - - - - . a - - -
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Figure 4. Exponential Distribution , p Known;
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Table 10. Exponential Distribution , p Known ; Asymptotically where V 5 0 is a known shape paramater . The required functions are :
Optimal Spacings , Coefficients  and Correction
Factors for Seven or Nine Order Statistics

f (x) — V(l + ~) (5441) 
, (3.2.19 )

k — i  k — 9  — Ic,
i u 1 

W0 Ci) u~ W0 (i) 
Q (u) • (1 — u) ‘ — 1  • (3.2.20)

sod

1 .33 .297 .27 1 .245 f Q ( u )  — v(l — u)l+ ~I v (3.2.21)

2 .378 .219 .488 .196

3 .756 . 132 .657 .15 Sinc, the f Q  function does not vanish when evalua ted at zero , it
4 .875 .129 . 784 .11 

-

5 
- 

.974 .033 .875 .076 
cannot be in the PAIlS generated by the covariance kernel It3 (see

6 .984 .016 .936 .01.9 Section 2.2 for this notation). Thus as in the case of the exponential

7 .998 .005 .973 .027 distribution , optim ia spacin gs for estimadng p when a is known or
8 .992 .012

9 - 999 001 
for simultaneous parameter estimation cannot be obtained using the

C .849 .869 theory of chapter 2. However , the Q ’ f 0Q0 function has the desired

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
proper ties so the estimation of a when i~ is known using asymptotically

optimal spacings can still be accomplished.

Thu opt imal density for scale _ ameter estimation in the case

that p I.e known is

2—2v

- h*(u) — 
(1 — u) ~‘ 

, (3.2.22)
2—2 w

1
1 (2. — t) ~~~~. at

0

Thus
3w

H*”t (u) — 1 — (1 — u) 24V 
, (3.2.23)

- The function ~~~~ i shown graphically in Figure 5 for v — .5 ,1,2 ,3.

_ -- 5 - - - - - 
_

~~~~~

- -

~~~

- 

-~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ - 

- 
- 

5— - -------5- - - - “ .~~- - - — -‘---a — - - -  --- -- - --—----~~~~~~~~~ - ~~~~~~~~~~--~~~~- - - -
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Figure 5. Pareto Distr ibut ion , p Known , w — .5 ,1,2 ,3; 
In the case that v — 1, the spacings obtained f rom (3.2.23)

The Function II* ”I (u) are the points 
~

—
~

--j • i — 1 k. This solution agrees with

the optima l spacings given by Kulldorf and V nnman (1973). An

explicit expression for the ABLUE is

- 

6 L ( k _ i + 1 ) 2~ [_—L~_) ~~~~~~~~
k(k + l)(k + 2) i—i k + l~ k + 2

)I*~~ (u) 
- 

(3.2.24)

I - For V ~ 1 the spacings generated by h5 are only asymptotically

90 optimal. A comparison of the optima l spacfnge with those generated

by (3.2.22) is presen ted in Tables 11—13 for the cases V .3.2 ,3

respectively. Table. 14—16 contain the asymptotically optimal
20

spacing and corresponding coefficient. and correction factors for

.60 estimators based on either seven or nine order statisticg for when

.50 v — .5 ,2 ,3 respectively .
v — S

~40 - ., — 1 3.2.4 Cauchy Distribution

.30 v — 2
For the Cauchy distribution , the required functions are:

.20 - v — 3 -

.10 1 (x) — 4+ 1  tan 1 (x) , x c — , (3.2.23)

i I I I I I I  I I 1 10 .11) .20 .30 .40 .50 .50 .30 .00 .90 I u f (x) - — — (3.2.26)
l + x 2 -

Q (u) - t snti (u - ~) J (3.2.27)

f Q ( u) — x ’sin~ (xu) . (3.2.28)

- - .

- - -

- -. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - -  -— -— - - - -

..~~~ - - —-—--—5- - - — - -  - — -
a
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Table 14. Pareto Distribution , v — .5 , p Known; Asymptotically
VI Optimal Spacings , Coefficients and Correction Factor.

~ for Seven or Nine Order Statistics

8’ _______________________________________

• 0 1 5 .  k - i  k — 9
• —4

~~ 
‘ ‘~ i u 11 (i) u W (i)

U C  .54 O”4  -4 a a
C 5 .1 5 44% , 4  ,.4 .4 VI is #4 VI ‘0 .0 _____________________________________________________________
5. 4  44 S p. VI Ps 0 .4 0 is .Q is is

1 .077 .438 .061 .367
‘4 5 4  2 - .159 .321 .123 .292
0 . 5 4
o e 3 .246 .222 .193 .223
0 C 4 - .34 .143 .264 .163d S .445 .08 

- 
.34 .114

‘ 6 .565 .036 .423 .073
0

7 .713 - .009 - .314 .041U.S -
4- 8 .619 .018

5-~ 5 4 1

~~0 .4 44% 9 .749 .005
. 4 5  ‘0 ‘0 41 44% a. is C is

C 1.308 1.295
. 4 5  4 4 4 4  • a

.~~ .4 C
5 . 4  5 .4 VI 00 4 1  5 01 VI ‘01 4 0 .  4 .q is is

a
.0- 5.

4 . 5
S U  5-4 5.
n~~ s -

4 1 5 - 4  VI ‘5 VI .0 Ps is a.a a a S a a a a a
VI 

54

- 
~~‘4 -~~~~~~~~~ V 4nsc.4pp.*~~~~c~~-~~ ~~~ ..- “ ‘_5- ’-’  - -  — - - 

~~~~~~~~~~~~ 
- -

- — - - . ‘is

- - - - - . a
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Table 15. Pa reto Di s tr ibu t i On , V — 2 , p l~,~own; Asymptotically 
Table 16. Pareto Distribution , v — 3, p Known ; Asymptotically

Optima l Spacings , Coefficients and Correction Factors Optimal Spacings, Coe(ficicntu and Correction

for Seven or Nine Order Stat is t ics  Factors for Seven or Nine Order Statistics

k — i  k — 9  k — i  k 9

I. u~ W (i) u 1 
11 (i) I. u~ W (i) ui v0 (i)

1 .182 .876 .146 .737 - 1 .214 1.171 .173 .985

2 .35 .645 .284 .583 ‘ 
- 

2 .404 .861 .331 .769

3 .506 .447 .414 .447 3 .571 .598 .411 .598

4 .646 .286 .533 .328 4 .713 .382 .601 .441

S .77 .161 .64 6 .228 S .829 .213 .7 12 .305

6 .873 .071 .747 .146 6 .938 .094 - .808 .194

7 .956 .017 .836 .082 7 .976 
- 

.022 .885 .11

8 .911 .036 8 .945 .048

9 - .968 .009 9 .984 .011

C 2.503 2.595 C 3.343 - 3.443

a 
0

- --54-

- - --,‘a - ,~~ - . -- --5 - - . - -~~

- - - - — - - - —-- -~~~~~~~ - - a - - - -
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For the computation of efficicotics it should ho noted tha t
Table 17. Cauchy Distribution , a Known;

( f Q  ~~q >  — 4 , (3.2.29) The Function H*(u)

When the scale parnac-ter is assumed known , spacings taken
u H*(u) U H*( u )

according to the density
.01 .01402 .26 .25133

I2 scos(isu) .02 .028 .27 .25422
h *(u) — (3.2.30)

f (2,cos(2 it) 12”3dc 
.03 .04191 .28 .25829

0 .04 .0557 .29 .26336
.05 .06935 

• 
.3 .26935

will be a8ylnpt otically optima l for es t imat ing the location parameter. .06 .08281 .31 .27616

.07 .09604 .32 .28373
A tabulation of the optima l c.d .t., H~ , is given in Table 17 for

.08 .10902 .33 .29202
the interval (O ..5). Values for 11* 1 nay be calculated from the .09 .121 71 .34 .30095

table by ii.tcrpolation in combination with the use of (3.2.7). A .1 .13406 .35 .3105

graph of is shown in Figure 6. 
.11 .14605 .36 .32061

.12 .15762 .37 .33125
Sloth (1966) I,~ s considered the es t imat ion of p by a linear 13 .16875 

- .38 .34238

funct ion of five order statist ics The optimal spacings set in this .14 .17939 .39 .35395
.15 .1895 .4 .36594

case was found to be (.13 87) yielding an asymptotic
.16 .19905 .41 .37829

re la t ive e f f i c i e n c y  of .9516 Interpolation in Table 17 results in .17 .20798 .42 .39098

the spacings ~cr (.125 , .372 . .3. .628k .871). This latter set has .18 .2162? .43 .40395

.19 .22384 .44 .41719.9481 as its e f f i c i ency .  Asymptotically optimal spacings and their

.2 .23065 .45 .43065
corresponding coefficients and efficiencies are given in Table 18 for .21 .23664 .46 .4443

either seven or nine order statistics. .22 .24171 .47 .45809

.23 .24578 .48 - .472

3.2.5 Logistic Di s t r i bu t i on  .24 .24867 .49 .48598
.25 .25 .5

A frequent psramecerization for the logistic distribution is

F(s) [ ( s (x — p)’l I
— 1 + exp 4 — —

~ 
—— x — . (3.2.31) 

- 
- - -

H ~•? ‘~~~‘~~~~~~~~~~ 
~~~~~~~~~~~~~~~ 

-

~~ 
4~ 
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- Table 18. Cauchy Distribution , a Known; AsymptoticallyFigure 6. Cauchy Distrihutto,,, a Known ; Opt imal Spacings~ Coefficients , and Efficiencies
The Function H~

”1(u) 
- fot Seven or Nine Order Statistics

k — i  k — 9
i u~ 11 (i) 11 (8)

1 .093 —.031 .073 — .014- 
2 .25 .0 .161 — .048
3 .4 07 .343 .339 .104
4 - .5 .376 .427 .26I - 

.-“ S .593 .343 
- 

.5 .39 7
.90 - ./

“_ 
6 .7S .0 .57 3 .26

/ 7 .907 - — .031 .661 .104
.80 / 8 .839 — .048

/ 9 .927 — .014.70 ~
4
~
/

I 
- 

Efficiency .9579 .9743
.60 -

.50 -

40

.30 -

.20 - -

e I I I I I I I I I
0 .10 .20 .30 40 .80 .60 .70 .80 .90 I U 

-

- -, ____ - -  - 
S

•55 - ..- 
— 

—

- a
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where p and a are respect ivcly the sc-an and st.-s ssI larcl deviation of the Referencd may be made to that  section for an explicit form for the

distribution. The introduction of the factor ~//~ requires a alight estimator and its efficiency.

~odiftcation of the modeL (3.1.1). In this case the modcl becomes llhen ~ is known, the density function

1 1. —

f 1(u)~~(u) .4f 1(u) + af 2 (u) + a~ B(u) (3.2.32) h*(u) — 
Lu( l  — u) — 21os1j—~—)]

’3
(3.2 .38)ir  1 — 2t

where ~o L~” 
— t)  — 21os[j_~_i)]~~

3dt

~~~~~ — ~~~ u( l  — u) • (3.2.33) generates spacings that are asymptotically optimAl for estimating a.
/5

A tabulation of the corresponding c .d .f .  • H~ , is presented in Tab le 19.

f 2 (u) — uU — u)lo8(j—~ __] , (3.2.3-4) Values for may be obtained by intetpolatioo in this table for

points in (0 , .51 or by the use of (3 .2 .7)  for points outside this

a5 — o/~c • (3 .2.35) interval. A graph of the function lI*~~ is shown in Figure 7.

- Cupta and Cnanadoaik.n have found optimal spacings tot either

and (8(u) , u t (0 ,1)) is a Brownian Bridge process. The work of Gupta cvo or three aymastric quantiles for the estimation of a when p is

and Cnanadoaikan (1966) may be used to deduce that for the model asss ed known . A comparison of their spacings with the ones generated

(3.2,32) - by (3.2.38) is presented in Table 20. tsble 21. gives asymptotically

(~2 3 + .~2) (3 2 30) optima l spacings and coeff ic ients  for k — 7 ,9.A — d i a 8
~T . -’-T——J

For simultaneous estimation of p and a the Optimal density is

To estimate p when ~ is known, 
spacings should be taken accord ing

9 (l s 2 u
to the uniform distribution on (0,11, i.e. • h*(u) — 

(12 + 3’~
’
~~ u i  — ul —

32 if
- 

j (12 + ~ ( l — 2 t

— . (3.2.37) o ~
“ “

~~ ItU — t)  — 2foB (-j
_5_-~}J I 3dt

(3.2.39)

For a given value of k , the spacings are the points -j~
—

~—j . i — 1.
A tabulation of the corresponding distribution function, 11*, is given

k , which was seen to be the optima l solution in Section 1.2.6.2
in Table 22. Spacings may be obtained from this table through

2This is the same as the solution obtsi~ ed for the Pareto distri-
bution with ~ — 1. - -Thus , plot of H*

1 is given in Figure 5 (p. 61).

p.___-_ 
4
—.—-—- --,~~~•- - __.4 _ ~~~~~~~~~~~~~~~~~~~~~~~~~~ ~,n ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~ -.-. -I- — -— — — - 

~~~ - - -  ~~~~~~~~~~ v
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Table 19. Logistic Distribu tion , s Known; Figure 7. Logistic Distribution, p Known;
The Function Ha (u) 

Function 55~
1 
Cu)

u U*(u) u )I*(u)

.01 .12276 .26 .42392

.02 .15956 .27 .42946

.03 .18612 .28 .43478

.04 .20774 .29 .4399

.05 .22632 .3 .4448

.06 .2428 .31 .44951 I - -

.07 .25771 .32 .45401

.08 .27139 .33 .45832 ‘ -

.09 .28408 .34 .46244 .80 -

.1 .2959 3 .35 .46636

.11 .30706 .36 .47009 .70 - 
. -

.12 .31758 .37 .47363 .60 -

.13 .32755 .38 .47697 -

.14 .33703 .39 .48012 .50 -

.13 .34606 .4 .4830 7
~4O -

.16 .35469 .41 .48582

.17 .36295 .42 .48836 .30

.18 .37086 .43 .4907

.19 .37845 .44 .49281 20

.20 .38574 .45 .4947

.21 .39274 .46 .49635

.22 .39047 .47 .49774 0

.2 3 .4059 5 .48 .49885 0 .10 .80 .80 .40 .50 .eo .10 .80 .90 I u

.24 .41217 .49 .49964

.25 .41816 .3 .5 -

‘~~~~~~~ - — - -

-a.- — - ----- ~~,- - - - —5- - - - - - — - -~- -- - - - - - - - - - - —~~~- - - 
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Table 21. Logistic Di stribution , P Known ; AsymptoticallyTable 20. LogistIc Dis t r ibut i o , i , I Known ; A Comparison 
Optimal Spacings , Coefficients and Efficienciesof Opt imal and Asymptotically Optimal Spacings 
for Seven or Nine Order Statisticsand Their Corresponding Efficiencies

- ‘~~~~~~~~~~~~~———--— ‘ ——-- -— 
k — 7 k — 9k — 2  

— k — 3  
i u 11 (i) 

~i 
11 (i)Asymptotically Asymptotically 1 ~ 0Spacing Optimal Optima l Optima l Optimal

1 .011 — .035 .008 — .023u1 .134 .103 .065 .103 - 
2 .065 — .136 .036 — .066u .866 .897 ,~~ ,~~ 3 .185 — .26 .104 — .1422 

4 .5 .0 .221 — .214u3 .935 .897 
5 

- 
.815 .26 .5 .0Efficiency .6686 .6838 .6494 .6838 6 .935 .136 ‘ .779 .214

_______________ 7 .989 
- 

.033 .896 .142
8 - .964 .066
9 .992 .023

Efficiency .9016 .9364

- —
~ . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — — -- 

~~ 
‘ - -

S

A. -~~~~ -

- a
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Table 22. Logistic Distribution , Jloth ~i and a Unknown; interpolation and the use of (3 .2.7) .  The graph .f II~~~ is sham
The Function II*(u)

in Figure 8.

Hassanein (1969b ) has Obtained apacimgs for simultaneous
u H5(u) u 05(u)

estimation of p and a that minimize the sum of ths variances of the

.01 .10529 .26 .37907 sstiaators . A comparison of these subopti.sl spacings with spacings

.02 .1373 .27 .38499
generated by (3.2.39 ) is provided by Table 23 for k — 2 ,7 .9. Table.03 .16045 .28 .3908 -
24 contains the asymptoticajjy optimal spacings , cosfftctsnts and.04 .17933 .29 .39649

.05 .1956 .3 .40207 efficiencies for simultaneou, estimation using either sowem or mime

.06 .21008 .31 .4 0755
order statistics.

.07 .22323 .32 .41294 
-

.08 .23535 .33 .41825
3.2.6 Veibull Distribution

.09 .24663 .34 .42347

.1 .25 722 .35 .42861
The Weibull c .d.f .  is

.26724 .36 .43368
.12 .27673 .37 .43869 

• P 0 , (3.2.40)F Cx) — 1 — 5.13 .28582 .38 .44364 0

.14 .2945 .39 .44 853
where y 5 0 is a known shape parameter. TI e  othe r functions tha t.15 .30285 .4 - .43337

.16 .31088 .41 .45816 will be nesdad srsz

.17 .31863 .42 .4629 1

.18 .32613 .43 .46763 y—I
I Cx) — yx e • (3.2.41).19 .3334 I .44 .47231 0

.2 .34045 .45 .47697

.21 .34731 .46 .4816 Q Cu) — (log -j—1.-— 1 h’ (3 .2 . 42)

.22 .35398 .47 .48622
ar-

.23 .36048 .48 .49082

.24 .36682 .49 .49541 
~ 

(1_ ~, ) 1
1_ h1y 

- (3.2.43)f Q Cu) — y( l  — u) (log

.25 .37301 .5 .3

The work of Harter and Moore (1967) may be used to dsduco that

- 
,~ <P Q .Q f Q ’ Q > —  ~2 (3.2.44)

— 
a

S
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Figure 8. Logistic Distribution , Both p and a Unknown ; 
—The Function II*~~ (u) 
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Tab lo 24. Logist i c  Distr ib l lt ion , i and a I’nknown; Asymptot i ca l ly  For estimating a when p is known , spacings Should be tak en
Optimal Spacings and Coeuiit innts  for  Seven or Nine
Order Statistics according to the density

k — 7 k — 9 — 
b*(u) — (1 — u)~~3 . (3.2.45)

i u~ S~ (i) S5
(i) u~ S~ (i) S0

(i)
Thus

1 .016 .004 — .042 .001 .001 — .022

2 .093 .059 — .145 .053 .02 — .07 7 ‘ - 3* 1(u) — 1 — (1 — is) 3 
. (3.2.46)

3 .253 .228 — .187 .147 .088 — .137

4 .5 .366 .0 .296 .2 12 — .131
La this is the same solution that was given for the exponential

5 .7 47 .228 .187 .5 .293 .0

6 .907 .059 .145 .704 .212 .131 distribution, the properties of 3* (specifically its grrph) can be

7 .984 .004 .042 .853 .088 .137 found in Section 3.2.2. Asymptotically optimal spacings , coefficienta ,
8 .947 .02 .077

correction factors , and efficiencies for seven or nine order
9 .99 .001 .022

ff tci.ncy .8651 - .9095 statistics are given in Tables 25—27 for y — 1Yp, 2 ,4 respectively.

3.2.7 Extreme Value Distribution 
-

The c.d.f. of the extreme value distribution is

I 

1 (x) — exp C — asp ( — x ) )  , e x — , (3.2 .47)

- with corresponding p .d . f .

f (x) • exp (— (x + cxp C x)))  . (3.2.48)
0

The other functions required for optimal density construction are l

Q (u) — —log 1ogI~~l , (3.2.49)
C,uJ

- ,. and -

- —s. -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- - ~~~~~~~~~~~~~~~~~~~~~~~~~~ - — - -- —- - -

- - - - - -
- -_
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Table 25. Weibull Distribution , y — “/ ~
, p J:nawn ; Table 26. Woibull Distribution , y — 2 , p K nown ;

Asymptotically Optimal Spacings , Coefficients , Asymptotically Optimal Spaciegn , Coefficients,

Correction Factors , and F.ff icicncica for Correction Factors and Efficiencies for Seven

Seven or Nine Order Statistics 
or Nine Order Stetistics

k — I  k — 9  k — 7  k — 9

i u~ W (t) ui 110 (i) i u~ V U )  u~ W (i)

1 .33 .238 .271 .186 
- 1 .33 .189 .271 .139

2 .57 8 .211 .488 .177 2 .578 .204 .488 .16

3 .756 .165 .657 .152 .756 • .18 .657 .355

4 .875 .151 .784 .122 4 .875 .181 - .784 .136

5 .974 .045 .875 .091 .974 .062 .875 .11

6 .984 .023 36 043 6 .984 .032 .936 .081

7 .998 .008 .973 .037 .998 .012 .973 .051
- .992 .019 8 .992 .028

9 .999 .002 9 .999 .004

C0 
.841 .85 - C .861 .364

Efficiency .958 .978 Efficiency .958 - .976

S 
~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- - -

~~ 
—

~~
.,---—- --— -

~~ 
-

~~~~~~~
- -- - - --

~~ - --.--~~~ -—--9---_—_..- --

—C - - 
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Table 27. Weibull  Ohir ib l I t ion , y “ 4 , p KIII .w n;  f0%(ss) — —is log(ss) . (3.2.50)
Asymptoti ca l ly  Optima l Spacings , Coefficients
Correction Factors and Efficiencies for Seven -

or Nine Order Statistics It can be shown that

______________ 
(f 0Q0, 10Q0) — 1 . (3.2.51)

i U~ V~ (i) U
g 

91
0
(i)

- When a is known, the optimal density for use in the estimation
1 .33 .15 .271 .105 -

of p is
2 .578 .196 .488 .145

3 .75 6 .197 .657 .158 1 —~~~- h*(u) — — U - (3 .2.52)
4 .875 .217 .784 .151 3

S - .974 .086 .875 .132

6 .984 .046 .936 .104 An explicit expression for H~~
1 is readily obtained and is found to

7 .998 - .019 .973 .071 be of the form
8 .992 .042

9 - .999 .006 H~~
3

(u) — u3 . ‘ (3.2.53)
C .912 .913
a

Efficiency .958 .978 
-

A graph of this function appears in Figure 9.

The performance of spacings generated by (3.2.52) is conpared

- 
with that of the optimal spacings found by Massanein (1968) in

Table 23 for k — 2 , 7 ,9. The asymptotically optimal spacings,

coefficients , and correction factors for seven or nine order statis-

tics are given in Table 29.

3.2.8 Caoma Distribution

The density function for the gsama distribution is

f0(x) — •
—x
5
p—1 

, 0 x ‘ — , (3.2.54)

4 _a__-; .~~ .,~~. - 
— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- - - - ~~ ~~~ -- -, - -— _-~~ - - - - __-- - -~~
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Figure 9. Extreme Va1IIC D is t r ibu t ion , a Known;

The Function fl~
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where p ~ 0 is known . Denote by F
~ the c .d .f .  corresponding to f

0.
Table 29. Extreme Value Distribution , a Known; Asymptotically

Optima l Spacings , Coefficients and Correction As in the case of the normal distribution, it te not possible to
Factors for Scv~n or Nine Order Stat is t ics

- 
derive u s explicit fomul~ for Q0(u) — F

~ (u) for all values of p.

However , Q exists and hence its values and the values of the f
0Q0k - 7  k — 9

I u V (i) u V ( )  
function may be calculated th rough numerical procedure .

I ii i II
—__________ - When p is known , spacings taken according to the density

1 .002 .03 .001 .016 - 
-

2 .016 .096 .008 .056 Q0 (u) ~ exp (% Q 0 C u) )
3 .053 .157 .027 .098 k*(u) — 2(1 — 

(3.2.55)
4 .125 .199 .064 .133 - JQ 0(t) 

~ exp (% Q(t) }dt
5 .244 .212 .125 .158 0

6 .422 .187 .216 .168

7 .67 .118 .34 3 .16 will be asymptotically optimal for the estimation of a, Spacings
8 .512 .131 obtstne4 using ‘n0 havt ‘seen cemputed by Sirndsl (1964) for is — 1(1)10
9 — .729 .078 1

C — .444 437 and p — 2 ,3,4 ,5. A gra ph of 3* for these same values of p is
II

presented in Figure 10.

3.2.9 Lognorual Distribution

U in previous work ~ denots the standard normal p.8.!. and c.d,f.

by • and 6 respectively . For the lognoraa l distribution , the neces—

aary functions for the construction of optimal densities are:

f 0 (x) .‘ ‘-~ -~~ (log x) • O s  x c  • , (3 .2.56)

Q0
(u) • exp (6’~ (u)) . (3.2.57)

- and

f 0Q0(u) — ,6 3 (u) amp C — •‘‘ (u )} . (3. .58)

- ~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~ — -~ ~~ ~~~~~ — ‘  - -- - ~~~~~—

- C  — -

- a
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Figure 10. Galmlsa Distribution , ~ 
Anown ; - When p is assumed known , the density

The Fi,nction H* 1 (u)

h*(u) — 
(~~

“(u)] ”
~~ (3.2.59)

j  ~~~ Ct )
0

generates spacings that are asymptotically optima l for the estimation

H* ’Cu) of a. This solution is identical to the one found for the estimation

of the mean of the normal distribution when the etandard deviation
I ~~~~~~~~~ - -

was known . Consequently ,
90

- U*~~ (u) — •(/~ •‘
~~(u ) )  . (3.2.60)

~ 
‘4 Aaymptoticslly optimal spacings computed from (3.2.60) and the

40 

~~~~~~~~~~~~~~ 

“••5~_55•%_ 
- corresponding coefficients, correction factors and efficiencies for

.80 
/ii. ~~~~~~~~~~ estimators based on seven or nine ozder stat is t ics are given in

//7/ 
~~~~~~~~ 

p - 2 - Table 30.

.30
3.2.10 Comparison of Solutions

20 I -

/ ,// The 3* 1 functions provide one means of comparing different
50 

distributional Corns. In Ftgur~ 11 the functions for location

1’ -‘I ‘ ‘ parameter estimation are shown , when applicable , for the distributions
0 JO .20 .20 .40 .10 .00 .70 CO .90 I U

considered in this chapter. A point of interest is that the logistic

tends to behave sore like the Cauchy than the normal in the case of

spacings for location parameter estimation. A similar comparison

for scale para meter estima t ion is shown in Figure 12.

- ~~~~. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~ -V ~~~~~~~~~~~~ ~~~~~~~~~~~ -.-

• — -

- a
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Table 30. I.Of.IIOCma i Di st r ibu t ion , is CIIISWI I; lu .yisptotlcnlly —l
Opti mal  Sp.-IC JII D5 . Coef(tcient s , Corr s-et lnn Figure 11. The H5 Functions for Various Distributions
Factors and Eff iciencies  for Seven or Nine Order in the Case that o Is Known
Statistics

k— L . . ,,,,, ,, 
k — p

I u~ V (i) u~ W ( i)

1 .023 .363 .013 .263 - 3*
_ I 

Cu)
2 .121 .446 .074 .368

3 .29 .349 .184 .33

4 .5 .223 .334 .253 
I 

-~~~~~

5 .71 .115 .5 .173 90 ‘ 
~~~

‘

6 .879 .04 3 .666 .107 -“ I
’

7 .977 .007 .816 .055 .80 - /
1 

/ , Normal

8 .926 .02 70 /
9 - .987 .003 - / - I

/ I
C0 

1.546 1.571 .90 / •4s.. /
Eff ic iency .9637 .976 

- 
.
,
‘ “—._

~~ /
.50

Cauchy

I 20 
~~ ,1 Matreme

— 
I ~~~~~~. I I 

Val ue

O .10 .20 .50 .40 .50 .00 JO .80 .90 I u

- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 9~~ me~~~ Pmes...ml10.sI.ner 505, ~~ — - 5 - - - . .  - —- 

~— — —o —- . -~~

-I,
- -I

- _ _ _  _ _ _ _
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—I 3. 3 Data Suu~~ariea for Large S~sp leaFigure 22. TIle III Functions for Various D i s t r ibu t ions

in the Case that Is Known
An integral port of exploratory data analysis is the eunsarizatioo

of a data batch by a few select order s t a t i s t i c s .  These sunssriea

are used to estimate location and scale paramet ers and/or to f ind
Exponential
or Weibull re—expressions (transformations) of the data to other distributional

— I forms (often normal). Several rules of thumb regarJlng the selectionHa Cu) Pareto
— 3 of order statistics for s~~~ ary purposes have been ploposed , such as

using the median, quarti les and extremes, or taking the median ,
Pareto 

~~
- -
~

-
~~
‘ 1

v — 2 — — .
~~~~~

_— quartiles, 
~ 

percentiles snd~~ percent i les .
.90 

/ In Section 3.2 it was seen that the optimal placement of order

.80 / C statistics for location and scale parameter est imation depends

.70 
- - heavily upon the assumptions made regarding he d i st r i b u t i o n a l  typo

60 ,
h,~ of tho da ta .  Thus for large data sets . where only a small portion

of the sample is to be utilized for estimation purposes , the use of
- Logistic

order statistics from nonparaaetric five or seven number data
J No rmal

. 0 
Lognocma l suusaa rie s say result in estimators with low efficiencIes. A useful

.30 / Pareto tool would be a aunsaty techni que t ha t , pe rhaps a f t e r  goodness of f i t
- ‘I 

s - i

.20 “ ‘ Pareto tests , could b . adapted to the distributional form of the data.

10 
~,/

/ //  V — 
The objective of this section is to suggest such an adaptive technique

- for summariz ing large data  Sets through the use of a few order
o ........ .t-~~ 

— I..” I I I I I I I

0 .10 .20 .30 .40 .50 £0 .70 .50 .90 I U stati stics. 
-

The specification of an adaptive data summa ry rule , in the

- 
presen t context , say be considered as consisting of two parts :

(a) a role of thumb regarding the selection of a set of order

- - - 
~~ ~~~~ ~~~~~~~~~~~~~~~~ 

- - - - - -

- a
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8. The -
~j  percentiles , ~ (.0625) and ~ (. 9375).statistics for a data sun~ ary and (b) the specification of optimal

9. The -~~~~ percentiles , ~(.02) and ~(.98),subsets of these order statistics for use in the estimation of p or a

10. The -
~~~~ percentiles, ~(.0l) and Q(.99).for various location and scale parameter models. In this section,

adaptive rules based on 19 or 21 order statistics and consider ing 
For the distributions considered in Section 3.2 , Tables 31—32 indicate

subsets of size seven and nine respectively will be constructed tIming 
which order statistics should be utilized in the estimation of p or

results from Section 3.2. 
a respectively by an est imator based on seven sample quantiles. The

Upon review of the asymptotically opt ima l  spacings f or seven or 
selection of an order statistic is indicated by a check mark across

nine order statistics in Section 3.2, it is seen that these spacings 
from its corresponding spacing. For example , for the exponential

tend to cluster about certain points in the interval (0,1]. Since 
distribution with P known Table 32 indicafes that the spacings set

for k — 7, the spacings are the values lIe
_ i 1+). i — 1 7, it 

(.3125 , .5625, .75, .875, .9375, .98, .99) should be utilized for
is no real surprise that the points where the spacings cluser are 

the estimation of a.
generally multiples of - Similarly for k — 9, spacings tend to 

For estimators composed of nine order statistics, a 21 number
accumulate about multiples of -j~ - The clustering behavior of the 

adaptive data summary may be defined as consisting of the following
spacings may be used to jus t i fy  the order statistics placement in 

sample quantiles : -

the 19 and 21 number data summary rules tha t follow. 
-1. Q(.5)

1. 19 number adsptive data summa ry consists of the following - -2. Q(.4) ,  Q(.6)
sample quantilea: ‘ 

- -
3. Q(.33), Q(.66)

1. The median , Q( 5) 
~(.27), ~(.73)

2. TIle -j~ 
percentile , ~(.437S) and ~(.5625). 

- 

*(.20). Q(.80)
3. The pe rrentiles . Q(.375) and ~(.625) . 6. ~(.l7), ~(.83)
4. The percentiles , Q(.3125) and ~(.6875). 

7. Q(.lO), Q(.90) -

5. The quartilea , ~(.25, md ~j(.75). 8. Q(.07), Q(.93)
6. Ins -~~~ percentile,, ~( .l875) and Q(.8l25) .  

9. ~fl . 03), ~ ( .97)
7. The percentiles , QC.l25) and ~(.875). 10. Q(.02), Q(.98)

11. ~ C .O l) ,  ~ (.99)

~~~~~~~~~~~ 
~~~~~~~~ 

~~
‘- ‘~ T ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ ,. - - - ,  -— -- - - - -  - - -- - -~ -—

4

C.- 
~~~~~ — -

C — -
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Table 31. Order Stat is tic  Selection for I,ocntion
Pnr sIm. -t t - r  Ka t ima t  Inn by Seven Order
Statistics u ‘S ‘S

.~
— —~~~~~~~~~-.- -———--~~~~-.-—— CU

Distribution VI

Spacing Normal Cauchy Logistic Extreme Value I 
‘S ‘S ‘S

.01 / U

.02 / / ‘S ‘S ‘S ‘u ‘u ‘S ‘S5. .4

.0625 / ‘°

.125 / / / 1 -~

.875 o

.25 / / / 
~~s -

~ ‘S ‘S -t, ’S ‘S’S1.1 e m
.3125 / ~ 05’ ? 

-/ / 
~ 

-

.4375 /
I e l ’ s ‘S ‘u ‘S ‘S ‘S ‘S’S.5 - 

‘
I ,I / a,

S
.5625

.625 / /

.6875 / / ,~ ~~ 5 ‘S ‘S ‘S ‘ S ’ S  ‘S ‘S

.75 / / 
.

~ a , ,

.3125 oat
5 0 ’

875 1 / / ‘~ • -
~ ‘S’S’S ‘S ‘S ‘SUt C

.9375 5 U 5 ’ ’  -
.4

.98 /
.4 .4

.99
VI — s ‘u u’S’~~~_________________________________________ I’ C S

N
4’t VI

C VI VI VI VI VI VI Vt Vt
• ‘4 N at P. N VIP.  Cs VI I’. Fl V I P .

U P 4 t N 1 5VI ..I P. Ifl • C s V I V I . 4P..~~’IC
• U O O OC l .4 es .’t $ ’ t -V V I a t V I e’ - s e~~~se  

- _______________________________ 
- - 

a 
- -

4. a - - - ‘ - - t~~~ am , .  - - -~~~ — - — 
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For the dis t r ibutions considered in Section 3.2 , Tables 33—34 indicate
Table 33. Order Statistic Selection for Location

how order statistics should be selected for the estimation of p or a. Parameter Estimation by Nine Order
Statistics

Table 35 contains the coefficients (denoted by H ) ,  correction

factors (denoted by C) and efficiencies for tile spacings sets suggested ——
Distribution

in Tables 31—34 . To use this table , arrange the spacinga under Spacing Normal Cauchy Logistic Extreme Vslue

consideration in increasing order , u ( u2 
S . - . S u.

k
, Is — 7 ,9. Then

- 
1 .01 / /

the coefficient corresponding to u~ is W (i). For example , in the 
- 

02 /
case of tile exponential distribution with p known, en explici t .03 /
expression for the eatimacor of a formed from 7 order statistics is .07 / ‘ / /

.1 . / /

- - - - .17 1 /
a — .2906Q(.3l25) + .22 52 Q(.5625) + .l587Q(.75) + .0898Q(.875) 

2 / /

+ .055ä (.9375) + .O204Q(.98) + ,0l44Q(.99) — .854p , .27
- .33 / / / /

(3.3.1) .4 / /
.5 / / / /

The efficiency of this estimator is .9633. 
.6 /-
.67 / / / -

.73 /

.8 /

.83 / /

.9 /
- .93 / /

.97

.98

.99 /

~~~~~~~~ 
~~~~~~~~~~~~~ 
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4. SPACINGS FOR CENSORED SAI4PI.FS Ai~ The WillS generated by II). 11(1(3 , consists of 12 different iable

QUAIITI LY. ESTIMAT I ON functions. For f and g in 11(K) the inner product is

In this chapter , techniques similar to tliaue of Scct lon 2.5
(f Is)will be developed for spacing selection in censored ss.ples. .I~ p,q 

— f
41

1’(u)g ’(u )du + ~~P (P) + . (4.1.4)

selection of order statistics for the opt ima l estimation of population

qua ntiles will also be considered. If P C 8(K) is twice differentiable , the reproducing property

and integration by parts can be used to show that f has the repre—
4.1 Opt ime l Spacings for Censored Samples

smatat ice

Estimating location and scale para.eters given a censored set
q

f(u ) — — f f”(t ) 1t (u ,t)dt  + K~ (u ,p )(~ 8(p) —
of order statistics X (np)’ ’’ ’ X(,~~) is most easily lorpulated as 

-
using the sample quantile function, Q, over the interval fp ,q )~~ t0.li . 

-

+ J1
8

(u,q)! ~~~~ f(q)  + f ’( q ) ) .
It can be_ shown (Parson (1979)) tha t a model for location and scale

parameter estimation in this case is (4.1.5)

ly .sking the idendfications 
-

f0Q0(u)~~(u) — pf Q (a) + eQ (u)f Q Cu) + 0 1(u)
0 0  0 0 0  I

(4.1.1) C
1 

— f(p)  — f ’ (p )
u £ (p ,q ~ • (4 .1.6)

C2 — f ( q )  + f ’ ( q )l — qwhere (1(u), t t ~p,q1) is a Irownian ~ridge p rocess on (p , qJ  with

covariance kerne l
Remark 2 .3 . 5  of Section 2 .3  is seen to be applic a lsle. The next

K
1(u11u2

) — mto(u 11u2
) — u1u2 • u1,u2 c (p ,q ~ , (4.1.2) theorem which I. the censored sazpie analogue of Theorem 2.5.1 follows

imoediatoly from this fect. -

and
- 

Theorem 4.1.1. Suppose the sample quantil. functiøn 1 *(u) , is

— (4.1.3) available over the interval (p,q ~ C LO ,l3. Then the followtn$

results hold:
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1. If f0% has the representation (4 .1.5) on (p .qJ ,  define and

( f Q . ~~Q >  < f Q  f Q ’ Q >the density - 0 o 0 0  p,q 0 0 0 0 0 p,q

(8 q (u) ’1 ’~ 

p ,q 
— 

<f0Q0’Q0~
f
0Q0> p5q 

<f
0Q0’Q0~

f
0Q0 Q0)p•q

Is5 Cu) — ° (4.1.7)
p,q q IL.I ( i Q 0(t)”)  dt (4.1.11)

p

— i i  — l~ 
Denot, by H5 the c.d.t. corresponding to Is’ • ma

with corresponding c.d.f.  II’ • The spacings II’ ~— —jJ . - P ;7 
—p ,q p,q~ spacings H’ 1~ ’rJ ’ ~ — 1, . .. .  1 , sm asy.ptoticslly

i — 1 1 • are asymptotically optimal for estimating p,q
optimal for simultaneous estimation of p and a.

P when a is known. -

2. If Q0’f0Q0 
has the represeotation (4.1.5) on (p,q3, define Theorem 4.1.1 provides a solution to (he optimal spacings

the density problem for censored samples. The corresponding formulas for the

((Q (u)f Q (u))”)~
’
~ 

estimators of p and a based on asymptotically optimal spacings can

h ; q cu) — q ° ° ° (4.1.8) be constructed by replacing h5 by Is’ and )I* h [~~~~ r) by
f ( I Q ( t )f  Q Ct ) ) ” )  dt 

~ — 1 
p,q

0 ~ H ; q [~_:_T) in equations (2.5.20). (2.5 .22),  (2.5.24) and (2.5.25)

_l i — l~ 
of Section 2.5. -

with corresponding c .d .f .  8 q ’ The spacings 11
~~q ~— - r J’

I — 1,~~~.~~, k , are asymptotically optimal for estimating 4.2 Optimal Spacings for Quantile Estination

o when p is known .
For th, location and scale parameter model

3. Ii both f Q  and Q . P Q adait (be representation (4.1.5)

on (p ,q~ , define the density function F(s) — r~(s j—’i) (4.2 .1)

t4’(u)A~~ $.(u)) ’~
Is5 Cu) — 

p .q (4.1.9) the population qusntile function , Q, has the for .
p,q q 

~ I,I ($ ‘( t )A” 
q 

4(t))  3dt 
-

Q(u) — p + oQ0(u) (4.2.2)

where

(4.1.10)

- 
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wher e Q (u) — F ”1 (u) . Ibis section will  address the problem of Theorem 4.2. 1. Let 1’ — (L 11 t2) be a known vector of constants and

how to optimally select order statistics for the estimation of the define •(u) as in (4.1.9). Spacings generated by th, density

~th population quantile, Q(p). —
(~~ I (u)tt’ 4(u)) ~~

First observe that since Q ( ~ ) is known . Q(p) is a linear h’(u) — (4 ,2 .6 ,

combination of the unknown parameters p and a. Thus quantile o
estimation may be considered as a special case of the eatimation of 

-

linear functions of the form £~s + £20 , viii be asymptotically optimal for the est imation of t1
p +

For a given vector, £ ‘ — 
~~~~~~ 

it is known Eros the theory
The following corolla ry to Theorem 4.2.1 details an asymptotic

of least squares (Graybill (1976)) that
solution to the problem of optimal epacint selection for quant ile

- ‘ estimation .
+ £20 — £ 15P + £20 • (4.2.3) -

Corollary 6.2.1. Let Q have the form (4.2.2) and le t p £ (0 .1) be

i.e.1 the ARUIE of a linear combination of the parame ters is the specified. Define the density function -

same linear combination of the ABWE’s of p and a. Also note that

+ La;) — ~~~- £ ‘A’1& (4.2.4) 
h’(u) — 

J
1

(4~’( t)M9(t) ) ~
3dt 

(4 .2 .7)

0

02 1
— — tr(A L i ’ )  (4 .2 .5 )

o vith

[1 Q0(p) 1
where A is the information matrix of Section 5.2 and tr denotes the — I 2 (p)] 

(4.2.8)
LQ0(p) Q0

trace. Hence to minimize t h e  variance of £ 111 + £2; it suffices to

choose order statistics in such a manner that t r (A” 1 t &’)  is a mininu..

Sacks and ‘flvissker (1968) have derived an asymptotic solution to sod ~(u) defined as in (4.1.9). The sequence of spacings sets

th is preblea t~~It may be used to prove the nest tiseorem. 
generated by hA is asymptotically optima l for the est imation of Q(p) .

- 
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5. CONCLUSION to cluster about certain values made it possible to propose e~~~~

- adap tive procedures for s,~~ sriaing large data sets with a few order
5.1 Si~~~sry statistics.

A general approach to obtaining optimal spacings for linear In Chapter 4. an analogue of the asymptotic theory f or optimal

systematic est imators ot location sod/or scale parameters has been spacings Selection in uncensored samples was developed for the case

formulated in this dissertation. By trea t ing the problem of location of censored samples. Asymptotically optimal spacings for population

and scale parameter estimation by linear functions of order statistics ~~~stii~e est imation were also obtained.

as one of regression analysis of a sample quantile process ,
3.2 Proble ms for Further Research

it was found that the optimal spacings proble m was equivalent to a

regression design problem. This approach was seen to have advantages Several problems arise in the application of the theory developed

over classical techni ques in that it provided a unit icd regression in Chapter 2 due to the integral representation assumed for the

framework for optimal location and scale parameter estimation and f 0Q0 and Q0’f 0Q0 functions . For this reason an approach to optimal

led to computationally simple solutions to the opt imal spacings spacings selection f or functions that can only claim membership in

problea. the RXIIS generated by F.
1 
would be worthwhile.

The basic theory was developed in Chapter 2 where asymptotic There sre several cases where either f 0Q0” or (Q0’f 0Q0)’ behave

results regarding designs for continuous parameter time series were so poorly at zero and/or one that they fail to be integrable on the

employed to obtain spacings sets that weme aaymptotic.slly optimal. . closed interval [0,11. An obvious procedure in this case would be

This asymp totic optimality can be interpreted as meaning that the to use an appropriate subinterval [p ,q) of [0,1) and employ the

spacings acts result in nearly optimal efficiencies as the number of - results of Section 4.1 to obtain spacings. However, this approach

spacings included in the sets becomes large . seems to be quite sensitive to the choices f or p and q. Thus tech—

Th,s~ tl:eery ~Icvv1ntselI in Clsiptcr 2 wa,~ ,q~ph1cch to ,s -veral common niques (or selecti ng p nod q In an optimal manner would be quite

distributional forms in Chapter 3. The asymptotically optimal useful. -

spacings sets were seen to give nearly optiaal elficiency for set size An extension of the results of Chapter 3 to other distributions

as small as seven or nine. Further, the propensity of thes, spacings and estimation situations is needed. Of particular interest is

whether the placement of order statistics suggested in Section 3.3

- —.~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~
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