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1. INTRODUCTION
1.1 Prelimiraries

A frequently occuring statistical model is the location and
scale parameter model. In this model, it is assumed that the
:unulative distribution function (c.d.f.) of independent identically

iistributed random variables, xl. Xz, wueiy xn. 1s of the fora

e
Foo = ’o[_,‘!] (1.1.1)

shere !° is a known distributional form and u and ¢ are respectively
nknown location and gcale parameters. The maximum 1ikelihood
>stimators of u and ¢ are often difficult to compute. Thus prac-
:ical considerations often dictate the usage of estimators that are
inefficient when compared to the Cramer-Rao lower variance bound for
mnbiased parameter estimation.

A class of estimators of u and 0 that have good properties are
hose formed as linear functions of the sample order statistics,
:(1) < xm < e 1x(n), (the random sample xl, xz, werwy, xn
irranged in increasing order). These estimators have been called
systematic .za:nuc;kby Mosteller (1946). Systcmatic statistics
111 be of the form lflb‘x(“i) for x(“l)' x(nz). couy x("k) a subset
>f the n sample order statistics. For this reason the problem of

litations follow the format of the Journal of the American Statis-
:ical -Association.

.

estimation by systematic statistics consists of two parte: (a) the
sclection of a sct of k order statistics and (b) the determination

of the cocfficients for the order statistics selected.

Definition 1.1.1. The quantile function, Q, corresponding to a

distribution function F is defined to be

QW) = ¥ (u) = taf(x:F@) > u). 1.1.2)

The p™ quantile (0 < p < 1) of the distribution is Q(p).

Definition 1.1.2. Define the sample quantile function, Q, by

Q) = =1 i “
QW = x5 jT-<\|§_n. $=1, ey . (L1.3)
The pth sample quantile (0 < p < 1) 1s Q(p).

It 18 often more convenient to consider linear systematic
statistics as being linear functions of sample quantiles. By letting
k Rl
u = n /o, it follows that I b X = Ib5,Q(u ) and hence the
T ¢ ge1 V) 1Y
two formulations are equivalent.
A basic result which leads to the usefulness of systematic

statistics is the following theorem due to Mosteller (1946).

Theorem 1.1.1. Let F be an absolutely continuous distribution
with probability demsity function (p.d.f.) denoted by f. Let
0« U Uy <l <y < 1 be k real numbers and Q(ul). Q(uz). vooy

Q("k) the corresponding (i}owhtton) quantiles. Further assume

e
i -




that f is differentiable in the neighborhood of Xy g Q(u‘) and
that f(Q(ui)) H fQ(ui) $0fori=1, ..., k. Then the joint
distribution of the k sample quantilcs, 6(«1). 6(“2). otey 6(0\‘).
tends to a k-variate normal distribution as n tends to infinity

with

AE[Q(uy)) = Q(uy) 1.1.4)

and

= 5 1 u‘(l -u,)
M:W(Q(ni)&(uj)) -3 fQ(ui)fQ(\lJ) sup LU,

(1.1.5)

vhere AE and ACOV denote asymptotic expectation and covariance

respectively.

When the location and scale parameter model (1.1.1) holds the
p.d.f. and quantile function have the forms
Lelx-p
“‘)-u'o[ a ] ¥

(1.1.6) .
Q(u) = u + 0Q, (v)
) J

vhere fo and Q are respectively the p.d.f. and the quantile function
corresponding to the known c.d.f. Fo' A corollary to Theorea 1.1.1

concerning this model follows immediately using (1.1.6).

Corollary 1.1.1. In addition to the hypotheses of Theorem 1.1.1,

assume that f and Q are of the form (1.1.6). Then the limiting

distribution of the k sample quantiles is k-variatc normal with

AE(Q(u,)) = w + 0Q, (u,) 1.1.7)

v, Q- u,)

. 4 o2
AoV (@Cs,) ,8u,)) = -;Wu—y o Sy (118)

oo §

For the purposes of location and scale parameter estimation,
Corollary 1.1.1 may be interpreted as stating that, asymptotically,
the sample quantiles, ﬁ(ul). 6(\:2). Sl 6("k)' satisfy the con-
ditions required tor application of the Gauss-Markov Theorem. Thus
asymptotically best linear unbiased estimators (ABLUE's) of u and/or
o may be obtained through generalized least squares. Ogava (1951)
has given general formulae for these estimators and their asymptotic
relative efficiencies (ARE's) when either onc or both of the

parameters are unknown.

Let v, 0, YWl 21 and foqo(uo) - foQo(uk+1) = 0. Define

K [£Q (u) - £.0 (v, )2
-« I

(1.1.9)

R

i=1 17 Y11

L (Q (8 )6,Q (u,) - Qg 1) £ Q0 (o y)12

lz-l: ’

1=1 Y T Y4 .

(1.1.10)

k;I 1£,Q,(u,) = £.Q (uy_1)10Q,(u)E Q () - Q (u, 1)f Q (u, )]

K, =
g 1=1 Y * Y %

.1.10)

aciingh:. -~ Wie e




4 = KK - x; 3 (1.1.12)

KL [£,0,(u) = £,Q (ug_DIIEQ, (u)Au) = £.0 (v, 1)u,_))]
I

Z= 7=
=1 YT Y
(1.1.13)
S S
Y- 1§1 e 10, (u )£ Q (uy) = Quluy )E.Q (u,_ )]

[£,Q, (u))ACu,) - foQo(ut_l)a(ui_l)]] .

(1.1.14)

In this notation the ABLUE's and ARE's derived by Ogawa may be
written as follows:

1. Assume ¢ is known. Then the ABLUE for u is

1 3
..)qz-, (1.1.15)

with asymptotic relative efficiency

- Kl
ARE(y) = . (1.1.16)

o[58 ]

2, Assume y is known. Then the ABLUE for o is

. . K.

1
o= Y -uzs
K

1.1.17)
K

L R

E— vl

with asymptotic relative efficiency

e

£(%)

(= denoting approximate equality for large values of n).

3. Assume both u and o are unknown. ABLUE's for u and o are

g |
we g K2z~ K,Y) (1.1.19)

- -
c=3 (KIY - KSZ) (1.1.20)

with asymptotic relative efficiency

T - bl

(1.1.21)

Examination of equations (1.1.15) - (1.1.21) reveals that the .
estimators and their asymptotic relative efficiencies are all
functions of the spacings, Ups Ugs ceey Y. Therefore, through
strategic placement of the spacings it is possible to further opti-
mize asymptotic estimator efficiency. A set of spacings resulting
in a maximum value for one of the efficiency expressions (1.1.16),
(1.1.18) or (1.1.21) will be termed an optimal spacings set while
the problem of finding such sets will be termed the optimal spacings

problom.
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1.2 Revicw of the Literature
1.2.1 Overview

Let

x, = Qo(“i) v $9Y oen R s (1.2.22)

The classical approach to the optimal spacings problem has been to

first show that there exist solutions, '1" cosy "t" to

AARE(Y) _ o (1.2.23)
"1

A 3‘—;‘5@)- -0 2.2.24)
1

ARE(u,0

e =0 (1.2.25)

which satisfy the order restrictions

—~<x;<x‘z'<...<;;<- (1.2.26)
and maximize one of the expressions for asymptotic estimator
efficiency given in Section 1.1. The next step is to find the optimal
spacings that correspond to these solutions. Much of the literature
on the optimal spacings problem is concerned with solutions obtained

in this manner.

E TN T - ; . s
et o g WWMM B e e SR

For certain distribution types, the asymptotic relative
efficiency exprcseions become quite complicated. Consequently
numerical methods have frequently been employed to find spacings
sets resulting in optimal or near optimal efficiencics. The results
obtained are usually expressed in the form of tables of optimal
spacings and the corresponding coefficients for the ABLUE's for

various values of k.
1.2.2 Normal Distribution

Ogawa (1951) has considered the optikal spacings problem for the
normal distribution. In the event that o is known, 1t was shown
that there exists a unique set of optimal spacings for each value of
k. These optimal spacings were shown to be symmetric, i.e.

u + Yo+l = 1. Numerical techniques were employed to find the
optimal spacings when k = 2(1)10.

For the case of a known loca ion parameter, it was found that
the function ARE(;) had many maxima. Although the greatest maximum
was not found, of the spacing sets considered those resulting in the
largest efficiency values were reported for k = 1(1)6.

Simultancous estimation of both the location and scale paramcter
was considered only for an estimator based on two order statistics.
This estimator was derived under the assumption of symmetric spacings.

Eigenberger and Posner (1965) have extended Ogawa's results.
Assuming o or u to be known,optimal spacings have been calculated

for the cases k = 2(2)20. Suboptimal spacings that minimize the

e PP — .




i

sum of the estimators' variances, V(u) + V(o), were also found for

k = 2(2)20.
1.2.3. Exponential Distribution

Sarhan and Greenberg (1958) have considered the estimation of
the scale paramcter of the exponential distribution under the
assumption that the location parameter was known. Optimal spacings
were obtained for linear systematic estimators based on k = 1(1)15

order statistics.
1.2.4 Pareto Distribution

For the Pareto distribution the location and scale parameter

wodel takes the form

Fo = 1- Q+X=H™ x5y (1.2.27)

where v > 0 is a known shape parameter. Kulldorf and Vannman (1973)
have considered the cstimation of y and o by linear functions of
optimally spaced order statistics. '

For y assumed known,optimal spacings for the estimation of ¢
were obtained when v = ,5(.5)5 and k = 1(1)10. When v = 1, the
optimal spacings were found to be the points k+1' vi®l; souy K

For both y and o unknown, it was shown that optimal spacings

sets exist for the simultaneous estimation of u and o only if the

sample is censored to the left. Thus a sct of modified estimators

o~

10

was suggested which use the optimal spacings for the estimation of

o ( when p 1s known) with k - 1 sample quantiles.

1.2.5 Cauchy Distribution

Bloch (1966) has considered the estimation of the location

parameter of the Cauchy distribution by a linear function of five

order statistics. Numerical techniques were utilized to obtain a

set of spacings that was essentially the optimum. These spacings
corresponded to an asymptotic relative efficiency of .95161. A
linear systematic estimator based on these five spacings was found

to be superior to the optimum trimmed mcan and the sample median.
1.2.6 Llogistic Distribution

Gupta and CGnanadesikan (1966) have considercd the optimal
spacings problem for the logistic distribution. In the case of a
known scale parameter, the optimal spacings for location parameter
estimation were found to be the points k—i—i v k=l ceey ks A0
explicit form for the estimator based on these optimal spacings
was given as

3 6 1
PRR A D+ D)

k =
L i(k + 1-- 1)Q m] (1.2.28)
=1

with

k + 2)

%+ 1) . (1.2.29)

AREG) = ¢

—r— .. ... IS -
¥, -~ ——
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Optimal spacings for the estimation of 0,1n the event that u is
known,were obtained for two or three symmetrically spaced order
statistics.

Hassanein (1969b) has considercd suboptimal simultancous
location and scale paramcter estimation using spacings that minimize
the sum of the variances of the estimators. The spacings for these

suboptimal estimators werc given for the cases k = 2(1)9.
1.2.7 Weibull Distribution

The location and scale parameter model for the Weibull distri-

bution is of the form

F(x) = 1 - exp (-["—5—1]'}. x>y, (1.2.30)

where y 1s a known positive shape parameter. Hassanein (1971) has
obtained optimal spacings for the simultaneous estimation of both
the location and scale parameters of this distribution. The optimal
spacings are given for estimators based on two, four, or six order

statistice for the cases y = 3(1)10(5)20,
1.2.8 Extreme Value Distribution

Hassanein (1968) has studicd the estimation of location and
scale parameters in the extreme value distribution. Optimum
spacings for the estimation of the location parameter when the scale

parameter is known were given for the cases k = 1(1)15. Under the

assunption that the location parameter is known, optimum spacings
for scale paramcter estimation were obtained for k = 1(1)4. An
iterative scheme was proposed for simultaneous estimation of y
and ¢ by lincar functions of two order statistics.

The problem of selecting optimal spacings for simultaneous
location and scale paramcter estimation has been considered by
Hassanein (1969a, 1972). Spacings that minimize the sum of the
variances of the estimators have been obtained for k = 2, 3, &

and optimal spacings have been obtained for k = 1(1)10.

1.2.9 Camma Distribution

The location and scale parameter model for the gamma distri-

bution results in a p.d.f. of the form

1 RTINS
f(l)'-a?(—p-)-[xuu} e 0), x>y, (1.2.31)

vhere p > 0 is assumed known. Sarndal (1964) has obtained nearly
optimum spacings (in the sense that they result in near maximum
ARE's) for the estimation of the scale parameter of the gamma
distribution, when y is assumed known for k = 1(1)10 with p = 2(1)5.
The techniques utilized in the calculation of these spacinge are a
epecial case of a general approach to optimal spacings selection
developed by Sarndal (1962). :

Hassanein (1977) has obtained suboptimal spacings for simul-

taneous location and scale parameter estimation that maximize the

12
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sum of the efficiencies of the estimators. Spacings sets were
given for estimators bascd on k = 2(1)5 order statistics with

P = 3(1)10(5)20.
1.3 Objectives

The purpose of this research is threcfold: (a) to formulate
the problems of location and scale parameter estimation and spacing
selection in a unified framework, based on regression analysis of
the continucus paraneter sample quantile function é(u), 0<cucl,
thereby developing a general computationally simple solution to
the optimal spacings problem, (b) to apply this technique to several
common distributions, and (c) to develop guidelines for the selection
of order statistic subsets for the summarization of large data sets.
The problems of optimal order statistic selection for estimation

in censored samples and quantile estimation will also be considered.

13
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2. SPACINGS FOR UNCENSORED SAMPLES
2.1 Preliminaries

As secn in Chapter 1, the classical approach to optimal location
and/or scale parameter estimation by linear functions of order
statistics has centered upon the efficiency of the estimators. The
asymptotic relative efficiencies of these lincar systematic statistics
are functions of the spacings of the sample quantiles included in
the estimators. Thus spacings that maximize expressions for asymp-
totic efficiency corresouad to a best set of sample quantiles to be
used for estimation purposes. Therefore, classically, optimal
estimators were obtained by first finding spacings that resulted in
maximum va.lucs for asymptotic efficiencies and then using the
corresponding sample quantiles to estimate location and scale para-
meters by generalized least squares.

There are several problems associated with the classical
approach. Two such difficulties are:

1. Finding spacings that result in maximum values for

the asymptotic relative efficiencies is often computationally
quite ~ifficult.

2. There is no unified framework for solving the problem of

optimal cstimation.

In this chapter, a new approach to optimal location and scale

parameter estimation is presented which alleviates many of the

— - ~
T T e Wwwmfrv e S - e ———
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problems inherent in the classical method. It will be seen in this
and subsequent chapters that the computational aspects of this new
procedure are quite simple. Also by using this approach, the
problem of obtaining optimal linear systematic estimators of the
location and/or scale parameters may be formulated in a unified
regression framework.

The principal results of this chapter are contained in Section
2.5. Sectioms 2.2 through 2.4 provide the nccessary background
for the development of thesc results. Section 2.2 contains a few
preliminary concepts and definitions. Section 2.3 treats the topic
of regression design for a Brownian Bridge process. In Section 2.4,
it is seen that the problem of location and scale parameter estimation
can be f«;rmlated as one of continuous parameter cime serles regres-
sion. The results of Section 2.3 and 2.4 are combined in Section 2.5
to obtain estimators of n and/or ¢ based on asymptotically optimal
spacings. Finally in Section 2.6, the approach taken here is

contrasted with those of Chernoff (1971) and Sarndal (1962).
2.2 Definitions and Notation

This section contains definitions and notation that will be

used in subsequent sections.

Definition 2.2.1. A reproducing kernel Hilbert space (RKHS), with

reproducing kernel K, is a Hilbert space, H, of functions defined

on a set T. The kernel K is a function on T x T with the following

propertics for every u in T (where K(*,u) 1s the function defined

on T wvhose value at 8 in T is K(s,u)):
K{*,u) ¢ H (2.2.1)
(8,K(,u)) = g(u) (2.2.2)

for every g in H.

A kernel that will be seen to be of particular interest is the

covariance kernel of a Brownian Bridge process.

Definition 2.2.2. A Brownian Bridge process {B(u), u ¢ [0,1]) 1s

4 zero mean normal process with covariance kernel
l’(\ll,uz) - -1n_(\|1,u2) -y, . (2.2.3)

The Hilbert function space, HB' generated by Ka consists of
12 di{fferentiable functions satisfying £(0) = £(1) = 0 for every f ia

“D' The inner product of two function f and g in Hy 1s

1
<f,g>-{, £'(u)g' (udu . (2.2.4)

By taking g(u) = f(u), it is seen that for any f in H'

1
. |]f]lz-[° (£'(W)%du . (2.2.5)

"w-‘ - -
» e ¥ Pig ’“Wm”-ﬂw-vmw~'—m'~m-—--—— i e
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2.3 Regression Design for a Brownian Bridge Process

Let {B(u), u ¢ [0,1]} be the Brownian Bridge process defined

in Section 2.2. Consider the regression model

m
Y(u) = I Bf (u)+ aB(u) , ue (0,1],
1=1

2.3.1)
COV(Y(s), ¥(t)) = a2Ky(s,t)

vhere fl' fz. P f. are given regression functions, 81. Bz. «sarg) B..
a are m + 1 unknown parameters and KB is given by (2.2.3). For
this model an infinite observation set is feasible, in which case
paradeter estimation may be accomplished using techniques developed
by Parzen\(196h.b). It is often more convenient to take obser-
vations at only a finite number, k, of points on [0,1] as then
parameter estimates may be obtained by gencralized least squares.
Since the point set to be selected is at the disposal of the
experimenter, it should be selected in such a manner that the
resultant estimators have optimal prope‘rties over all such estimators
formed from the same number of observations.

The problem of sclecting a "best" set of points (for estimation
purposes) at which to sample from the process {Y(u), u ¢ [0,1]}
is one of design for continuous parameter time serics regression.
The point scts are called designs and the points themselves are

called design points. Since sampling over time obviates the

18

repetition of observations at a particular design point, it is

neccssary to define what is meant by a k-point design.

Definition 2.3.1. A k-point design for a Brownian Bridge process
(and hence for {Y(u), u ¢ [0,1])) 1s a k~tuple, (“1' Ups waes "k) =
with 0 < Up €Uy <<y < 1. Denote by Dk the set of all such
k point designs.
: For T ¢ Dk' let i, denote the BLUE of B = (al. 32. ceny B-)'
based on observations taken according to T. Let i denote the
estimator of 8 obtained usil'u observations over all of [0,1]).
Optimal designs are those that utnh;ize the variance of the
estimator in the case m = 1 or minimize ‘the gencralized variance of
the estimators in the case m >2. As a result of the order
restrictions satisfied by design points, Dk is not a compact set.
Consequently, optimum designs frequently do not exist and are usually

difficult to construct. This had; to the consideration of design

sequences that are asymptotically optimal.

Definition 2.3.2. For the case m=1 a design scquence {T Do

;e
J3=1 Tk
is asymptotically optimal for estimating “1 z B if

V@, ) - V(B

1lim - =
k+e [{inf V(BT) - v(8)
T‘Dk

‘w1 s (2.3.2)

Definition 2.3.3. For the case m > 2 a design sequence {T,)

173=1"

Tk € l)k is asymptotically optimal for estimating 8 if




A

}

¢
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[ ve, 07 - v
k

lim L% N (2.3.3)

o linf |v(§,r)'1|- v
TeD,

Design sequences may be constructed through the use of density
functfons. Let h de a continuous non-negative density function on

[0,1) with associated distribution function

u
H@) = [ h(t)de . (2.3.4)
0

The density, h, generates a design sequence (Tj };_1 where ch Dk

and T, = ¢ Ti—x ), B k_:i Yo cens B3 t 7 )). Finding an
asymptotically opcimal design sequence will be seen to be equivalent
to finding an optimal density, i.e., finding a density that generates
an asymptotically optimal density sequence.

The next theorem gives densities that gemeratc asymptotically

optimal design sequences. Its proof can be found as a straightforvard

application of results obtained by Sacks and Ylvisaker (1966, 1968).

[

Theorem 2.3.1, Let ft be twice continuovcly differentiable on [0,1]

and have the representation

£, ~ - L' £OK e, =1, m . (2.3.5)

20

1. For m = 1 the density

1e," @)1
i (2.3.6)

1
!o(lfl"(t)lzl’dc

generates asymptotically optimal design sequences for
estimating 81 z B.

2, Form> 2 let

$lu) = =5, W), £"W), oo, £ (2.3.7)
A=ELEDY, L=, ym (2.3.8)
The density
VA Y,
(0" (WA b1 8
h(u) - (2.3.9)

1 =
fva o)) B ae

generates asymptotically optimal designs for estimating

B = (Bys Byy vens B

Remark 2.3.1. Let T = {u veny "'k) € D, and m = 1. Denote by

xl uzl
P‘I’l the projection of fl onto the linear manifold generated by the
functions "('.u(), 1«1, ..., k . It can be shown that

T e e
‘ ) Wmm-w‘“_.ww__ﬂ;“ S— S




2 ) w -2 2 -1
V(B ”“-Hlll < Clegli®- e, - S0 (2.3.10)
Finding a sequence satisfying (2.3.2) is roughly (apart from conver-

gence rate considerations) the same as finding a sequence (T, )k 1

such that

Un [ [|€, -2 € I -:l.nf||£ -r P10 . 23D
ke % k 1

Remark 2.3.2. Let h be a density, and suppose {T. )kﬂ is the design

sequence generated by h. When m = 1 Sacks and Ylvisaker (1968)

W
[ [ J du (2.3.12)
o h(u)

1 satisfy any of the following conditions:

have shown that

Un k2 ||f. ~p_f || 2=
s 171

provided h and f

1 -
1. f [h(u)] 2du < » and ll" is continuous on [0,1].
Q

£"

2. —’l’- is continuous on (0,1] .

\
3. There exist a constant C such that

b b
(b - a) [ h2(u)du < C[[ h(u)du)? for all [a,b)l = (0,1) .
a a «

The authors have also shown that

m k2 inf ||f, - P f1||2 e [[ (f "(..)12’3 duld . (2.3.13)
TeD,
k

ke
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Thus in view of Remark 2.3.1 and equation (2.3.12) the task of finding
an asymptotically optimal design sequence can be accomplished by
finding a density function that attains the bound (2.3.13). Such

a density is (2.3.6).

Remark 2.3.3. A multi-parameter version of Remark 2,3.2 may also

_ be made. Sacks and Ylvisaker (1968) have shown that for {'1' PO

'c-) a set of positiv: numbers

]
s inf &2 5 a, [|f, -2 f‘H __n(]'[ gt "(u))’)’%..)’ (2.3.14)
ke i=]1

for any sequence of designs “k);-l . ‘Finding an asymptotically
optimal design is equivalent to finding a density h* that attains
a lower bound of the form (2.3.14). Such an optimal density is

given by (2.3.9).

Remark 2.3.4. The design sequences defined in Theorem 2.3.1 differ

from those suggested by direct application of the formulae of
Sacks and Ylvisaker (1966, 1968). These results may be reconciled
by noting that no information is obtained from observations taken
at 0 or 1 for regression functions in the RKHS generated by Kl
This is because (as noted in Section 2) such functions are neces-
sarily zero at these points. By taking the (k # 2)“‘ element of
the sequences suggested by these authors and disregarding design

points at 0 and 1 Theorem 2.3.1 may be obtained.

.w oy /‘“‘W . .
- Wm”""w‘--—-——‘--——m_.._ e T S—
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Remark 2.3.5. To obtain designs for an interval [p,q] and

oo LK U

regression functions of the form

q
!’_(ll) - -Ip f‘"(l)Kn(l.u)dn + Cll('(u,p) + CZKB(u,q), i=1, e m,

(2.3.15)

a modification of (2.3.6) and (2.3.9) is required. Although the
.ion of the optimal densitics are not altcred,all limits of
integration must be changed from 0 and 1 to p and q. The design
points for the (k + 1)'t element in the sequence are then

Uil &S WESY NP

2.4 Location and Scale Parameter Estimation as

a Continuous Parameter Time Series Regression Problem

Parzen (1979) has phrased the problem of linear estimation of
location and scale parameters as a problem in regression analysis
of a smoothed sample quantile process “oqo(“)a(“)' ue (0,11},
The formulation rests upon a theorem of Csorgo and Revesz (1978)
regarding the deviation of Q from the true quantile function Q.
This theorem may be paraphrased as saying that, under suitable
conditions on fQ, /n £Q(u) [QCu) - Q(v)], O < u < 1, 1s asymptotically
a Brownian Bridge process.

For the location and scale parameter model

F(x) = F [i;"] (2.4.1)
° [

24

the true quantile function i3
Q(w) = u +0Q_ () (2.4.2)

vhere Q° is the quantile function corresponding to 'o' Thus the

process

(@ £.0, (W) - u = 0Q (W] , ue [0,1]} (2.4.3)

may be considered as a Brownian Bridge process, {B(u), v e [0,1)),
for large values of n.
Parzen (1979) has justified writing the expression

/a 5
= £,0,(WQ) = u = aQ_(u)] = B(w) (2.4.4)
which holds asymptotically as n + -.. The estimation of w and ¢
is then scen to be a problem in continuous parameter time series

regression by writing (2.4.4) as

£,0, QW) = uEQ (W) + Of Q (W)Q () + 0,B(w)  (2.4.5)

vhere

o = o/n . (2.4.6)

The parameter % 1s not constrained to be related to ¢ and {s cstimated
as a free parameter. Therefore its estimate provides a diagnostic

check on the goodness of fit of the model.
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2.5 Seclection of Optimal Spacings as a Regression Design sets (designs) may be obtained by an application of Theorem 2.3.1.

Problem for the Quantile Process This statement is formalized in the next theorem.

Theorem 2.5.1. Let foqo and Q *f Q be twice continuously differ-

The regression model for location and scale parameter estimation o' fo

vas seen in Section 2.4 to be entiable on [0,1] and possess the representations

1
foQo(u)ﬁ(u) - ufoQo(u) +0Q (W Q (u) + agB(u) (2.5.1) £,Q,(0) = - IO (foQo(t))"V)(u.t)dt (2.5.3)

1
vhere Q,f,Q (w) = - !o (Q, ()£ Q () Ky(u,t)de . (2.5.4)
=a//n (2.5.2)

The following conclusions hold:
and {B(u), u ¢ [0,1])} 1s a Brownian Bridge process. This model 1. The density

is seen ta be a special case of the model (2.3.1) by making the
t£,0," ¥

identifications fl(u) - foqo(tl). fz(u) - Qo(u)foQo(u). '1 -y, h*(u) = (2.5.5)
8,=0 and a = op. Therefore, in an analogous manner to Section 2.3 {’(foQo"(t)]%dt
optimal regression designs may be considered for what, in this case,
would be location and scale parameter estimation. However, a generates a sequence of asymptotically optimal spacings
comparison of the definition of a design for a Brownian Bridge proces.s sets for the estimation of u when ¢ is

(Definition 2.3.1) with the properties ‘of a sct of spacings shows

2. The density
that such a design is nothing more than a set of spacings for sample
quantiles. Thus for the model (2.5.1), selecting an optimum design s ([Qo(u)faqo(u)]n)z/l
S e R (2.5.6)

for th timati £ location and scale parameters i ivalent

or the es on of loca paramete s equiva {)“Qo“)foqo(‘n“)%d'f

to aclecting an optimal set of spacinpa.

In the 1ight of the previous discussion, it follows that
generates a sequence of asymptotically optimal spacings

densities which generate sequences of asymptotically optimal spacings
sets for the estimation of o when u is known.

X Wm,.—v N — — e —
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¥(u) = =([£.Q (W)]",[Q (W Q (W)]")* (2.5.7)

and define the information matrix, A, by

A= Lj:oqo fOQ(i) <f Q QO‘OQ°>] (2 5 8)
'oQo foQ > <Qnfooo'qt)fta%)
The density
= by
(PRI
B O e (2.5.9)

- 1,
{1 v (A v(e)) Bae

generates a sequence of asymptotically optimal spacings

sets for the simultaneous estimation of u and 0.

Remark 2.5.1. The asymptotic optimality of the spacings sets may
be interpreted as meaning that as the number of spacings in a set,
k, grows large the spacings in Theorem 2:5.1 give rise to estimators
with approximately the same efficicncy as estimators based on the

optimal set of k spacings.

Civen any density function, in particular those in Theorem 2.5.1,
the form of the estimators may be deduced from those in Chapter 1.
It will be useful to adopt & somewhat different notation than that

empldyed there. Let h be a density function with associated distri-

P""""":’w-w ~ay -

) :
:

b C e —_— -
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bution function li. Define for a specified number of spacings, k,
the functions
- <111 = 11,42
o 10,07 [ - 0 (53
‘l(h) - I » (2.5.10)
i=1 -1{ 1 -1 -1
u [k-n] 7 [k+1]

g BEsE SEENEE
"z(") i 151 _1[ 1 ] -l[ 1. 1] lfoQo(ll [k +1 )Q o k+1
Al

i
k + k+1
- £, (0 [k“)o W [“1)12} , (2.5.11)
I:ﬂ - .
K,) = I 1 (£,Q, 0 ‘[k—-i-T])

R

- -1 -1 1 -1_1
- £.5,® l[k + 1])]”o°o(“ [k + x])qo(“ [k + 1])

~1ff - 1 -1t -1
- foﬂo(ll [k—-*'_l])qo(“ [k . 1])1.] ’ (2.5.12)
a(h) = K (WK, (h) - LINL) (2.5.13)
o T aet LW
™ i e i amaae .

B b
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K, (h)
3
Also define the weight functions \-'v(l.h), \vlo(i,h), Su(t,h), v co(h) - ;—(:)— ; (2.5.17)
2
sa(i.h) and correction factors Cu(h). cc(u) as follows:
- o ,L:_lL
£% ™ [k + 1]) 9, ¢ L— L toQo(“ [k 71 .
¥, (1,h) = S (4,h) = —— [K, (W)W (1,h) - K (W)W _(1,h)] , (2.5.18)
4 Ky (h) W S A 1] v Ay - L
1 k + 1 K+ 1
-1{1 +1 -
10,7 ) - 0,007 S (40 = —1— [ (W (4,1) = KBV, (LW)] . (2.5.19)
o%¢ Ll (2.5.14) . a2 ik
1 [1 + 1] s “-1
k41 k -b X
Estimators of y and/or o based on uz-u of k asymptotically
optimal spacings are given as follows:
t) = ﬁ‘.(h_) (2.5.15) '
c\o X. () v 1. Let h* be defined as in {2.5.5). An estimator for u
. vhen ¢ 1s known 1s E
k -
yt = I Hu(i.h*)Q(H' {m ) - aC (h#*) (2.5.20)
o [k ¥ 1] . -1 e
Wy (d:h) = = R SR "1} % —’])Q o [“*1])
Ky(h) TS} PTS e
K, (h#)
- 10,07 [ ])q . })] ki 1 ARE(u*) T (2.5.21)
k+1 k+1 “-l :T:]I - 'i%i £Q, £°Q >

2. Let h* be defined as in (2.5.6). An estimator for ¢
=1i+1 =1[1+1 ~1( 4 | -1 4 :
; [‘ U [kil 1%, [kﬂ )= B8 [kﬂ]"’o‘“ k+1])]

when y is known is

k
(2.5.16) ot = I W (4,00 Ly - mm (2.5.22)
. 4a1 9. k+1 (]

o B 1y - Aw"’":;‘*"—‘—w

b
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wvith
K, (h*)
ARE(o%*) = . (2.5.23)
(foQo'Qo»fOQO' Q°>
3. Let h* be defined as in (2.5.9). Simultancous estimators
of y and 0 are
we Tre h-)é(u-"[ 1 ]) (2.5.20)
qe1 ¥ 5 k+1 2
PO, % @t |2 ]) (2.5.25)
=9 k+1 i
with
ARE(u*,0%) = _fh‘).‘ A‘ ! (2.5.26)

It should be noted that these formulae may be adaptei =~ spacings
generated by an arbitrary demsity, 1, by'substitut ¢ur h* in
equations (2.5.20) through (2.5.26).

The remainder of this section will be devoted to considering
special cases of the previous results. These serve to point out
certain simplifications as well as some shortcomings of Theorem 2.5.1.
First the case of a symmetric distribution (in particular the normal)
will be considered. Sccondly, the exponcntial distribution will be
seen 'to pose certain problems in the application of Theorem 2.5.1.

.
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For a symmctric distribution it can be shown that the off
diagonal elements of the matrix A in (2.5.8) are zero (see Parzen
(1979)). This forumla (2.5.9) may be simplified somewhat in this case.

As a specific example of & symmetric distribution, consider
the normal distribution. The c.d.f. and p.d.f. of the normal distri-
bution are often denoted by ¢ and ¢ respectively. In this notation,

the functions that have been considered so far are

QW = ¢ @ , (2.5.27)

£Q,(v) = (21)"‘1 exp (-‘blo-l(u)lz) : (2.5.28)
It follows from (2.5.28) that

" 1
-foQ“ (v) -.w o (2.5.29)

Q_ (u)
£,Q,(w)

-lfoQo(u)Qo(n)l" -2 (2.5.30)
and A = diag (1,2).
The optimal density for simultancous estimation of u and o is

- )
a+ 206 w2 ’lexp Uale w2
N = v - (ST

- 1, .
!0(1 + 200700 [2) Bexp (le™ W 21de

The corresponding optimal c.d.f., Hi*, must be tabulated by numeric

integration (see Chapter 3). For a given k, the asymptotically

= ot ™ T

- —— - .
Bt~ mam o oo
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-1] 4
optimal spacings, l* [k—”] y 4=1, ..., k, can then be found The asymptotically optimal spacings generated by h* are )
by interpolation. 3
Tt (I T, o x 2 A
For the exponential distribution H k+1 = a= a3 nE® 1, «ooy ko (2.5.35)
Q°(u) ® «ln(l - w) , (2.5.32)
2.6 Comparison with Other Approaches
foQo(u) =1l-u . (2.5.33)
In this section the results of the previous section are applied
to solve problems considered by Chernoff (1971) and Sarndal (1962).
The {oQo function fn this case cannot be represented as in (2.5.3).
Chernoff (1971) conside;s the optimal spacings problem for the
In fact the fooo function is not even in the RKIS of Kn as
1 normal distribution. He assumes that the normalized quantiles, z_,
!°Q°(0) # 0. Consequently, Theorem 2.5.1 does not pertain to the i |
are selected according to some non~negative density function g(z).
foqo function in (2.5.33). This means that for exponential data, |
This may be interpreted as meaning that for large k there should be
estimation of u when o is known or simultancous estimation of u and
approximately kg(z)4 quantiles in a small interval (z, z + 4).
o may not be accomplished using the theory developed in this section.
Using the notation adopted in Section 2.5 for the normal
However, the function foqo- Q° does possess the desired
distribution, the ARE of a linear systematic estimator of u is
representation. Therefore, it is possible to obtain spacings for
proportional to
estimating o when p is known via equation 2.5.6. The optimal density
£ K+l [8(z)) - oz, 1))? ;
2 Kl - 1&1 W . (2.6.1)
(u-=-1) 3 .
h#*(u) = " # (2.5.34)
IO (t - 1)7 Bae Chernoff writes K, as
kil [o(z,) = ¢z, _1)]?
Kl -3 e o (0(:1) - 0(:1_1)] (2.6.2)
i=1 0(;1) - 0(:1_1)
Jother distributions (c.g. the Pareto) also have this problem.
In such cases, there appears to be a correspondence between the
distribution being non-regular and the foQo functions not being a
member of the RKHS of b‘ Whether this holds in general is a topic
for further research.
L
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and notes that for large k
- 2 -
LY [}‘.{%] de(z) = [ 22(z)dz =1 - (2.6.3)

Thus ll is a discrete approximation to

].;2.(:)(!: = (2.6.4)
-
Therefore the problem of seiecting optimal spacings may be viewed
as one of selecting a best set of points to discretely approximate
(2.6.4).
By expanding ¢(z) in its Taylor series about L the differences

between ;he integral (2.6.4) and I(1 can be shown to be approximated

for large k as follows:

i k+1 2 1 Koz )
£ =2, D%, ) ¥— | ——==(s =% .)
/11‘_1 R O M S e 0, ) 17 111
L -
sl g M) 2.6.5)

12k2  -= g2(2)

Sroam e
8(zy )k °
approximating (2.6.4) and selecting the density g* that minimizes

since (:i - 'x-l) Thus minimizing the error in

the right hand side of (2.6.5) are (asymptotically) equivalent

problems. Chernoff solves this by variational methods to obtain

g*() = 1B (2.6.6)

-
by
wvhere C= I ¢/3(z)dz. As k + = the z correspond to approximately
po

the quantile of the g(z) distribution. Thus Chernoff's solution

4
k+1
is to take the z, such thit they satisfy

i
k+1

"y, -
[ ¢%)dz = | ¢Bez (2.6.7)

‘The error in approximating (2.6.4) is approximately

.T:Tz” VBaap (2.6.8)

Equation (2.6.7) can be seen to be the same solution as sug-
gested in Theorem 2.5.1 by making the c;han;e of variable z = O-l(u).
This same procedure shows that the problem of finding a density
vhich minimizes the error term (2.6.5) is identical to the problem
of finding a density that atcains.the bound (2.3.13) (here f, = ¢97)).
Thus not only the solutions but the problems themselves are the same.

Sarndal (1962) treats the problem of selecting optimal spacings
as onc of selecting an optimal generating function. He defines a
generating fuuction to be a non-negative density function defined
on an interval [a,b]) of the real line. Let G be the c.d.f. that
corresponds to a density function g. Denote by G-l the inverse

function of G. A set of k spacings, {u PURIED “k)' taken

s il
according to g satisfy

u - ro(c"[ﬁ] ) (2.6.9)

vhere Fo is the c.d.f. in (2.4.1).

I i S 2 {
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Under the assumption that g and its first derivative arc
bounded and continuous with g > 0 , the author shows that the loss
in cfficiency in estimation using lincar estimatcs based on spacings

chosen according to g 1is

3 = I*(x)f_(x) i
L= 7 +0() (2.6.20)
12(k + 1)2 -=  [g(x)]

vhere
d210gf (x)
J(x) = —2>— = vl(x) for o known ,
dx?
d dlogf (x)
L ey o e for u known , (2.6.11)
4 =} Vl(l)
= lvy(x), vy(x)]A for both u and 0 known .
v, (x)

He then defines nearly optimal spacings to be thosc obtained
according to a generating function that minimizes (2.6.10). A
‘

calculus of variations argument shows the optimal function to be

)
0 = - re0E () h (2.6.12)
vhere
e toor ) Bex (2.6.13)

——
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Again by letting x = Qo(u) and substituting the functions
£°Q°(u) and fOQo(U)QO(u) for those in Remarks 2.3.2 and 2.3.3,
the problems considered by Sirndal and subscquent solutions are

scen to be equivalent to those in Section 2.5.
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3. APPLICATIONS
3.1 Precliminaries

The regression model for location and scale paramcter ecstimation

has been seen to be

£,Q, (WAW) = uf O (u) + 0 (WEQ (w) + ogBlu) (3.1.1)

where

- g//n (3.1.2)

s
and (B(u), u ¢ (0,1]} 1s a Brownian Bridge process. From this model,
it can be deduced that selecting optimal spacings is equivalent to
selecting optimal regression designs.

In Chapter 2, design sequences that were asymptotically optimal
were considered. Such sequences for the Brownian Bridgc process
vere generated by density functions on [0,1]. For the model (3.1.1),
the optimal densities are given by \
te,q, "%
lzbdt

h*(u) = if o is known

1
jo 1£,Q (t)

2/
(1Q (w)f Q (W)™ "
- 9 oo 1f u 1s known (3.1.3)

} w’h
{,“%"’%Qo“)” dt

40

a2 )
(v @A v B
L e if y and o are unknown ,

) E ]
[ v @A ) Bae
0

where

¢ () = =(lf Q (W], [Q ()£ 0 ()]™) (3.1.4)

and A is the information matrix defined in Section 2.5.

In order to determine the,asymptotically optimal set of spacings
for a given number, k, of order statistics, it is first necessary
to compute the optimal density, h*, and its corresponding c.d.f. H*.

Then the required spacings are the points ".‘l[,k i 1] vl e v B

To utilize the preceding theory for data analysis, the researcher
would require the H‘-l or H* functions for many of the common
distributional forms. Such functions are derived in Section 3.2.
Comparison of the spacings obtained using (3.1.3) with those
obtained by other authors are also provided.

Once a spacings set has been decided upon, the estimators can
then be constructed. The ABLUE's for a specified spacings set,

Ups Uy cevy U, are given as follows:

1. When o is known, the estimator for u is

- k ~ p
b= 1‘1:1|.a“(x)o(u‘) - °Cu . (3.1.5)

2. When u 1is known, the estimator for o is

" k "
o= ‘31“"“)(’(“1) - ucc % (3.1.6)

o I B e e S O £ S
?
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3. Simultancous estimators for u and o are
x
o E F () = 0(x) = [ ¢yae (3.2.2)
u= LS (t)Q(u‘) (3.1.7) e
=1
and =1
P N Q) =¢ () (3.2.3)
o= I Sa(i)Q(ui) . (3.1.8)
i=1 and
-1 =Y O
£0,(u) = g0 (u) = (21)" Zexp (-|0” (u)[?2/2) . (3.2.4)
The exact formulas for thesc estimators and their efficiencies may
be obtained by referring to Section 2.5. In subsequent sections,
The matrix A {g found to be
the coefficients W , W , S , S , and the correction factors C and
" ] N a 'l
Cq will be presented for certain spacings sets of interest. It A = diag(1,2) '_ (3.2.5)
should be noted that the correction factors are zero in the case
of symmetric spacings for a symmetric distribution. When o is known spacings taken according to the density
In éecunn 3.3, the problem of selecting order statistics for [“-l(u)]-zlg
h*(u) » ——— i
summarizing large data sets will be considered. It will be seen $o g -7, (3.2.6)
[ lee™ (£))7 Bae
that the selection of a few strategically placed order statistics 0 .
will provide sufficient information to construct efficient location will be asymptotically optimal for estimating the mean. Since h*
and scale parameter estimators under a varicty of distributional is symmetric, the spacings, u1' will satisfy
assumptions.
'
Yoga Tty =Lk G.2.7)
3.2 Spacings for Some Common Distributions
3.2.1. Normal Distribution Using (3.2.6) it can be shown that
-1 -1 .
The c.d.f. and p.d.f. of the standard normal) distribution are B (u) = 0(/3 0 (uw) . (3.2.8)
usually denoted by ¢ and ¢ respectively. In this notation, the
The function in {(3.2.8) i hi 1
Fotctton to be constiered aves on in { ) is shown graphically in Figure 1 and
is tabulated in Table 1 for points in the interval [0,.5]. To find
-l
£,00 = 4) = 0 Rexp (x2/2) , ~m<x<w, (3.2.1)
v c .
. ——r

-
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Figure 1. Normal Distribution, ¢ Known; Table 1. Normal Distribuﬂon, 0 Xnown;
The Function HA™'(u) The Function H%  (u)
u 1~ ) u e ()
.01 .00003 .26 13136
.02 .00019 .27 14457
- .03 .00056 .28 15865
.04 .00122 .29 .16853
.05 .00226 A .18141
.06 .00368 .31 19489
.07 .00539 .32 .20897
.08 .00776 .33 .22363
.09 .01017 S .23885
o .01321 .35 25143
A1 .01659 .36 .26763
.12 .02068 .37 .28434
.13 .025 .38 29806
.14 03074 .39 31561
.15 .03593 4 .32997
.16 .04272 .41 34458
.17 04947 42 .36317
.18 .05705 .43 .3707
19 .06426 44 .39743
.2 .07353 45 41293
.21 .08226 .46 4325
«22 .09176 47 44828
Y «23 .10027 .48 46414
.24 11123 49 48404
.25 Ja21 .5 o5
L '
p———
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B! values for u > .5 the relation (3.2.7) may be used. Table 2
contains spacings calculated using (3.2.8) and their corresponding
cocfficients for k = 7,9. The asymptotically optimal spacings for
k = 2,7,9 are compared to the optimal sete obtained by Ogawa (1951)
in Table 3.

To estimate o when u is known, the optimal density is

= - 2
o™ wge™ )
h*(u) = o (3.2.9)

b < -
o 07 (015
0

A tabulation of the function H‘-l(u) is given in Table 4 for u in
the interval [0,.5]. For other values of u the relation (3.2.7) may
be used.\ A graph of H"—l is shown in Figure 2. Table 5 contains
the asymptotically optimal spacings and corrcsponding coefficieats
and efficiencies fork = 7,9. Table 6 provides a comparison of
the asymptotically optimal spacings with the optimal spacing given
by Ogawa (1951) for k = 2,6.

For simultaneous estimation of u and 0,8pacings should be

taken according to the density .

& ) &
1+ 2)6 l(u)]’) /3exp(‘/,lo l(u)]z)
h#(u) = ; . (3.2.10)

o ) -
[ @+ 2670 (0)]2) Bexp (Y5107 (0| 2)ae
0

Since the spacings generated by h* are symmetric, the function el
has been tabulated only over the interval [0,.5]. This tabulation

is given in Table 7. A graph of H*-’.ppearl in Figure 3. Table 8

45

Table 2. Normal Distribution, o Known; Asymptotically
Optimal Spacings and Cocf{icients for Seven

or Nine Order Statistics

k=7 k=9
i vy “u“) u "v“)
1 .023 .049 .013 .028
2 .121 .138 074 .087
3 .29 .201 .184 134
4 .5 .223 .334 .164
5 .71 .201 oS <173
6 .879 .138 .666 .164
7 977 .049 .816 134
8 .926 .087
9 .987 .028

.

M ana - e
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Table 4. Normal Distributien, u Known;
-1
'E T 089 58 8 @ E The Function H*  (u)
s|l9 88 as 8 & &
> s - e
= u H*  (u) u R (v)
g 3
z bl i 62 .01 .0 .2 .04176
w - el ~ d
g td1a 238 8288 8 .02 .00002 2 .04712
> ~ o . . . . . . . . .
3 g8 .03 .00006 .28 .05296
T 5 .04 .00013 .29 .05931
o
23 .05 : .00026 .3 .0662
i3 i 3 .06 .00045 .3 .07367
v
g8 8l g 58,8392 ¢ 2 .07 .00072 2 .08176
(%) -~ . . . . . . . .
¥E g .08 .00106 -3 .09051
g .09 .00156 3 .09996
" o0 ~ >
B Ik a1 .00215 .35 .11017
£E x 5.5 PR P 5 11 .00288 .36 1212
Ss gz |23 & R s g & 22 .00376 3 1331
e 3 13 .00481 .38 .14596
55 < 24 .00604 y .39 .15987
3 ’é‘ .15 .00747 4 .17492
b 3 5 .16 .00912 .41 .19124
=3
&8 4|8 R e 17 .01101 42 .209
R & : .18 .01314 .43 .2284
- -
Bl o » .19 .01556 4 .2697
gm e .2 .01826 45 .27328
- -~ O~ w
"E'g '{;'é 8§ R § .21 .02127 .46 .29968
£T 23 - . .22 .02461 %7 .32982
s g.° .23 .02831 .48 ; .36537
- .2 .03239 .49 .41045
v »
3 g .25 .03686 .5 .5
% 4 s
L] - -
‘q’ 5” 5” Dn 5" 5"‘ :"° 5’\ =ﬂ 90 ﬁ
S -
[ <} .
| e————ris
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Figure 2. Normal Distribution, p Known;
The Function H*-l(u)

1 ()

S0

80|

J0L

60}

Table 5. Normal Distribution, u Known; Asymptotically
Optimal Spacings, Coefficients and Efficicncies
for Seven or Nine Order Statistics

k=7 k=9

i uy "u (1) v, Uv (1)
3 .004 -.031 .002 -.015
2 .037 -1 .018 -.062
3 .14 = .066 -.115
4 i5 .0 .175 -.164
] .86 2 b .0

6 .963 .11 .825 .164
] .996 031 Co9% .115
8 .982 062
9 .998 .015

Efficiency .8848 ) 9231
T T e —— Sl s
—




Table 6. Normal Distribution, u Known; A Comparison

of Optimal and Asymptotically Optimal Spacings
and Their Corresponding Efficiencies

k=2 k=6
Asymptotically Asymptotically
Spacing Optimal Optimal Optimal Optimal
vy .091 .069 .006 .01
uy .909 .931 .056 .055
uy .228 17
u 772 .83
ug <944 .945
L/ .994 .99
Efficiency 6615 6522 .8761 .8943

51
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Table 7. Normal Distribution, Doth y and ¢ Unknown;
The Function ll"-l(u)

u ue! (u) u ()
.01 .0 .26 .06164
.02 .00003 .27 .06938
.03 .00009 .28 07779
.04 .0002 .29 .08688
.05 L0004 | .3 .09672
.06 .00069 .31 .10731
.07 .0011 .32 .11872
.08 .00166 33 .13097
.09 .00237 .34 L14611
.1 .00326 .35 .15819
A1 .00436 .36 .17323
.12 .00569 .37 .1893
.13 .00726 .38 . 20644
14 .00911 .39 . 22467
.15 .01125 4 . 24407
.16 .01372 W41 .26465
17 .01652 42 . 28644
.18 .0197 .43 . 30947
.19 .02327 44 .33372
.2 02727 .45 .35917
.21 03171 .46 .38574
.22 .03663 47 .41331
.23 .04205 48 44171
W24 .048 49 4707
.25 .05453 5 .5

Eoitiads -~ S o
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Figure 3. Normal Distribution, u and o Unknown; Ty contains asymptotically optimal epacings and the corresponding
=1
The Function II* " (u) coefficients and efficiencies for estimators based on seven or

ninc order statistics.

In the case that k = 2, Ogawa (1951) has shown that the spacings
y - .134 and uy = .866 with efficiency .4066 are optimal for the
simultancous estimation of u and 0. The spacings obtained using

-1
* 5
R (el (3.2.10) are ulﬂ = .132 and "2. = .868. The efficiency for this
latter spacings sct is .4065.
e
3.2.2 Exponential Distribution =
90|
.80 | The exponential c.d.f. is
J0
- Fo(x) «1-exp{-x}, x>0. (3.2.11)
60 L
S0l The functions required in construction of the optimal density are:
40l
fo(x) = exp {-x} , (3.2.12)
0L
201 Qy(u) = -log(l - w) (3.2.13)
A0k and
P foqo(") «l-u . (3.2.14)
4] u
Thus
<£,0,Q, £0,Q>=1 . (3.2.15)
B
W"ﬁ P g - - e - - "9*1-.;.‘“1’“ ————
- - — - -—-' - S
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Table 8. Normal Distribution, Both u and 0 Uuknown;

Asymptotically Optimal Spacings, Cocfficients,

and Efficicncies for Seven or Nine Order

Statistics

k=17 k=9
i
1 v s, (1) §,(1) uy suu.) 5,1
1 .006 .018 -.025 .003 .009 -.012
2 ,005 .093 -.082 .027 044 -.045
3 .197 .24 ~.106 .096 .109 -.075
4 .5 .357 .0 244 214 -.075
5 .802 24 106 .5 .286 .0
6 2945 .093 .082 756 214 075
7 994 .018 .025 .903 .109 .075
8 973 044 045
9 .997 .009 .012
Efficiency .8382 .8903
.
.

As was scen in Scction 2.5, estimation of y when o is known

or simultaneous estimation of both y and ¢ could not be accomplished

using the design techniques of Chap 2. G q ly, only the
estimation of ¢ when y is known will be considered.
When the location parameter is known, the optimal density of

scale parameter estimation is

<%,
Mo o 0= (3.2.16)

]l (¢ - Dhac
0

lwe1-a-w . (3.2.17)

The function (3.2.17) is shown graphically in Figure &.

The optimal spacings for esuu‘ting o vhen y is known have
been found by Sarhan and Greenberg (1958). A comparison of the per-
formance of these optimal spacings with that of the spacings obtained’
using we! is provided by Table 9 in the case of k = 2,7,9. The
asymptotically optimal spacings, correction factors and coefficients
arc given in Table 10 for cstimators based on either scven or nine

order statistics.
3.2.3 Parcto Distribution

The distribution function for the Pareto distribution is

F ) =1-@+ Y, x>0, (3.2.18)

.
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Table 10. Exponential Distribution, u Known; Asymptotically
Optimal Spacings, Cocfficients and Corrcction
Factors for Seven or Nine Order Statistics

k=1 k=9

i u, Ho(i) uy Ho(i)
1 .33 .297 .2Nn .248
2 .578 .219 .488 .196
3 .756 .152 .657 .15
4 .875 .129 .784 .11
5 <974 .033 .875 .076
6 .984 .016 .936 .049
7 .998 .005 973 .027
8 .992 012
9 = .999 .001
Co .849 .869

60
vhere v > 0 is a known shape parameter. The required functions are:
£, = va + 0~ (3.2.19)
=
QW =a-w M, (3.2.20)
and
£0, = v - w'* ™ (3.2.21)

Since the f°Q° furg:tion does not vanish when evaluated at zero, it
cannot be in the RKHS generated by the covariance kernel Kl (sce
Section 2.2 for this notation). Thus as in the case of the exponential
distribution, optimum spacings for euint'lnz u vhen o is known or
for simultaneous parameter estimation cannot be obtained using the
theory of Chapter 2. However, the Qo- f°Q° function has the desired
properties so the estimation of o vher‘\ ¥ is known using asymptotically
optimal spacings can still be accomplished.

The optimal density for scale purameter estimation in the case

that y is known is

h*(u) = . (3.2.22)

plwe1-0-0® | (3.2.23)

The function Il"-l is shown graphically in Figure 5 for v = .5,1,2,3.

J”W"ﬁ WWM'” A e T
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Parcto Distribution, y Known, y = .5,1,2,3;
The Function ll"-l(u)
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In the case that v = 1, the spacings obtained from (3.2.23)

i
k+1

the optimal spacings given by Kulldorf and Vannman (1973). An

are the points »1=1, ..., k. This solution agrees with

explicit expression for the ABLUE is

= 6

k
L (k- 1+1)2Q
k(k + 1)(k + 2) =1

.

1) _2%+1
kK+1 " k+2

(3.2.24)

For v ¥ 1 the spacings generated by h* are only asymptotically
optimal. A ci)lparuon of the optimal spacings with those generated
by (3.2.22) is presented in Tables 11-13 for the cases v = .5,2,3
respectively. Tables 16-i6 contain the asymptotically optimal
spacing and corresponding coefficients and correction factors for
estimators based on either seven or nine order statistics for when

V= ,52,3 respectively.
3.2.4 Cauchy Distribution

For the Cauchy distribution, the rcquired functions are:

() = Friwnlo, wcxcm, (3.2.25)

1
1+ x?

1
fo(x) . (3.2.26)

Q) = tanls(u - ] (3.2.27)

: £,0,(u) = s letnlw) . (3.2.28)
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Asymptotically

Parcto Distribution, v = .5, u Known;

Table 14.

65

Optimal Spacings, Coefficients and Correction Factors
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Table 15. Parcto Distribution, v = 2, u Fnown; Asymptotically Table 16. Pareto Distribution, v = 3, u Known; Asymptotically
oOptimal Spacings, Cocfficients and Correction Factors Optimal Spacings, Coefficicnts and Correction
for Scven or Nine Order Statistics Factors for Seven or Nine Order Statistics
k=17 k=9 k=7 k=9
i
1 ug LACY) u v () v W () u W (1)
1 .182 .876 .146 .137 1 214 1.1n .173 .985
2 .35 .645 .284 .583 . 2 404 .861 .331 .769
3 .506 447 414 447 3 571 .598 47 .598
4 646 .286 .535 .328 4 2713 .382 .601 44l
S 7 .161 .646 .228 5 .829 215 N2 .305
6 875 .07 L2467 .146 6 .918 09 2 .808 .194
7 956 .017 .836 .082 7 976 .022 .885 a3
8 911 .036 8 * <945 .048
9 ~ .968 .009 9 984 .011
c 2.503 2.595 <, 3.343 > 3.461
o
.
i .
————
' B i et
4 g
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For the computation of efficicncies it should be noted that
1
CEQe £,00 =35 - (3.2.29)
When the scale paramcter is assumed known, spacings taken
according to the density
R/
[2ncos (2mu) | 3
B (e (3.2.30)

[ (23cos 2121 Pae
(3

will be asymptotically optimal for estimating the location parameter.
A tabulation of the optimal c.d.f., H*, is given in Table 17 for

the interval [0,.5). Values for ll"-l may be calculated from the
table by interpolation in combination with the use of (3.2.7). A
graph of H"-‘ is shown in Figure 6.

Bloch (1966) has considered the estimation of u by a linear
function of five order statistics. The optimal spacings set in this
case was found to be {.13, .4, .5, .6, .87) yielding an asymptotic
relative efficiency of .9516. Interpolation in Table 17 resulte in
the spacings set {.125, .372, .5, .628, .871). This latter set has
L9481 as its efficiency. Asymptotically optimal spacings and their
corresponding coefficients and efficiencies are given in Table 18 for

either scven or nine order statistics.
3.2.5 Logistic Distribution

A frequent parameterization for the logistic distribution is

=1
F(x) .[1 + exp {- .”_.(l;_}il} , ®<x<w, (3.2.31)
’ %}

o

Table 17. Cauchy Distribution, ¢ Known;
The Function H*(u)

u H#* (u) u H* (u)
.01 .01402 .26 .25133
.02 .028 .21 .25422
.03 .04191 .28 .25829
.04 L0557 .29 .26336
.05 .06935 3 .26935
.06 .08281 31 .27616
.07 09604 32 .28373
.08 .10902 .33 .29202
.09 12171 W34 .30095
o .13406 .35 .3105
a2 .14605 +36 .32061
A2 .15762 .37 .33125
13 .16875 .38 .34238
o34 .17939 .39 .35395
.15 .1895 “ .36594
.16 .19905 Al .37829
A7 .20798 42 .39098
«38 .21627 43 .40395
.19 .22384 A 41719
52 .23065 .45 .43065
w21 23664 46 443
22 24171 &7 .45809
.23 .24578 .48 472
.2 .24867 .49 .48598
.25 .25 .5 .5

70
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n

Figure 6. Cauchy Distribution, o Known;
The Function }l*-l(u)

Table 18.

Cauchy Distribution, o Known; Asymptotically

Optimal Spacings, Cocfficients, and Efficiencies
, for Seven or Nine Order Statistics

k=17 k=9
1 u LNEY uy ww
1 .093 -.031 .073 -.014
2 .25 .0 .161 -.048
3 407 .343 .339 .104
4 .5 .376 427 .26
S .593 2343 .5 .397
6 .75 .0 .573 .26
7 .907 -.031 .661 .104
8 .839 -.048
9 .927 -.014
Efficiency .9579 L9743
e S e T
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where y and o are respectively the mcan and standard deviation of the

distribution. The introduction of the factor ¥/v/3 requires a slight

modification of the model (3.1.1). In this casc the model becomes

£, (Qu) = uf, (8) + of,y(u) + apB(w)
vhere

£, =Lua-w,
A

£,(w) = u(l - uno,;[l ° u] >

o'-aI/rT ,

(3.2.32)

(3.2.33)

(3.2.34)

(3.2.35)

3

and {B(u), u ¢ [0,1]} is a Brownian Bridge process. The work of Gupta

and Cnanadesikan (1966) may be used to deduce that for the model

(3.2.32)

2 2
A= dhg('T ’ J—-;L] .

(3.2.36)

'
To estimate y when ¢ is known, spacings should be taken according

to the uniform distribution on [0,1], i.e.,
-]
He (u) =u

For a given value of k, the spacings are the points

(3.2.37)

yie1,

«vvs k, which vas seen to be the optimal solutioa in Section 1.2.6.2

2This is the same as the solution obtained for the Pareto distri-
bution with y = 1. -Thus g plot of W' s given in Figure 5 (p. 61).

Refercnce may be made to that section for an explicit form for the

estimator and its efficiency.

When u is known, the density function

1-2 u_11%
h*(u) = ["(1 =5 21°g[1 J] .
T
f [——ttl 2 - 2103[1 L t]]z’m

0

(3.2.38)

generates spacings that are asymptotically optimal for estimating o.

74

A tabulation of the corresponding c.d.f., H*, 1s presented in Table 19.

Values for H"'l may be obtained by interpolation in this table for

points in [0,.5] or by the use of (3.2.7) for points outside this

interval. A graph of the function ll‘-l is shown in Figure 7.

Gupta and Gnanadesikan have found optimal spacings for either

two or three symmetric quantiles for the estimation of ¢ when p is

assumed known. A comparison of their spacings with the ones generated

by (3.2.38) i{s presented in Table 20. Table 21 gives asymptotically

optimal spacings and coefficients for k = 7,9.

For simultaneous estimation of y and ¢ the optimal density is

(12 rl-zu

2 )
-zlog]fu}] K

it
W (u) = 3+ 72 W@ - v

1 ¥ . 1«3 T
10“2"3+-2 (t@=o - HoglT=7

])2 1,

(3.2.39)

A tabulation of the corresponding distribution function, H*, is given

in Table 22. Spacings may be obtained from this table through




Table 19. Logistic Distribution, u Known;

The Function H*(u)

o H*(u) u H (u)
.01 12276 .26 42392
.02 .15956 .27 42946
.03 .18612 .28 43478
.04 .20774 .29 .4399
.05 .22632 3 L4448
.06 .2428 ) | 44951
.07 .25 .32 .45401
.08 .27139 .33 .45832
.09 .28408 .34 46244
i .29593 .35 46636
a1 .30706 .36 .47009
12 .31758 .37 47363
.13 .32755 .38 47697
14 .33703 .39 .48012
.15 .34606 “% .48307
.16 .35469 4 .48582
17 .36295 .42 .48836
.18 .37086 .43 .4907
.19 37845 44 49281
.20 .38574 .45 4947
.21 .39274 46 .49635
.22 .39947 47 49774
.23 .40595 .48 .49885
24 41217 .49 49964
.25 .41816 .5 .5

75 7%

Figure 7. Logistic Distribution, u Known;
-1
The Punction H* (u)
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Table 20. Logistic Distribution, u Known; A Comparison

of Optimal and Asymptotically Optimal Spacings
and Their Corresponding Efficicncies

Table 21. Logistic Distribution, u Known; Asymptotically
Optimal Spacings, Coefficients and Efficiencies
for Seven or Nine Order Statistics

k=2 k=3

Asymptotically Asymptotically
Spacing Optimal Optimal Optimal Optimal
u 134 .103 .065 .103
uy .866 .897 ] .5
uy 935 .897
Efficiency .6686 .6838 <6494 .6838

k=7 k=9

1 u, Hq(i) u \’a(i)
1 .011 -.035 .008 -.023
2 .065 -.136 .036 -.066
3 .185 -.26 .104 -.142
4 5 .0 .221 -.214
5 .815 .26 .5 .0

6 .935 .136 779 $214
7 989 .035 .896 J142
8 .964 .066
9 .992 .023

Efficiency .9016 .9364
— Y
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Table 22. Logistic Distribution, Both u and ¢ Unknown;
The Function H*(u)

u H*(u) u H* (u)
01 .10529 .26 .37907
.02 .1373 .27 .38499
.03 .16045 .28 .3908
.04 .17933 .29 .39649
.05 .1956 .3 .40207
.06 .21008 .31 40755
.07 .22323 .32 41294
.08 .23535 .33 .41825
.09 .24663 .34 .42347
.1 .25722 .35 .42861
A1 .26724 .36 .43368
.12 .27675 .37 .43869
.13 .28582 .38 44364
d4 +2945 .39 .44853
.15 .30285 4 .45337
16 .31088 W41 .45816
.17 .31863 42 46291
.18 .32613 .43 46763
.19 L3334 44 .47231
.2 +34045 .45 47697
.21 .34731 46 .4816
.22 .35398 .47 .48622
.23 .36048 .48 .49082
24 .36682 .49 49541
.25 .37301 .5 .5

9

interpolation and the use of (3.2.7). The graph of *~' 1 ghown
in Figure 8.

Hassanein (1969b) has obtained spacings for simultaneous
estimation of y and ¢ that minimize the sum of the variances of the
estimators. A comparison of these suboptimal spacings with spacings
generated by (3.2.39) is provided by Table 23 for k = 2,7,9. Table
“24 contains the asymptotically optimal spacings, coefficients and
efficiencies for simultaneous estimation using either scven or mine

order statistics.
3.2.6 Weibull Distribution
The Weibull c.d.f. 1s

_xT
Po(x) =l-e o BE, (3.2.40)

vhere y > 0 is a known shape parameter. Tie other functions that
will be nceded are:

o
00 = e, (3.2.41)

1
Q () = [og 72177, (3.2.42)

an?

1),y
£,0,(u) = yQ1 - u)[lm;[1 = “]l . (3.2.43)

The work of Harter and Moore (1967) may be used to deduce that

S0 £0Q > = v2 L (3.2.44)

T T T
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Table 24. Logistic Distribution, p and o Unknown; Asymptotlcally
Optimal Spacings and Cocfficients for Seven or Nine
Order Statistics

k=1 k=9

i vy S"(i) Sﬂ(i) u 3‘.(() su“)
1 016 .004  -.042 001 .001  -.022
2 093 .05  -.148 053 .02 -.017
3 253 228 -.187 167 .088 =137
4 .5 .366 .0 29 212 -adl
s 47 228 .187 .5 .293 .0

6 907 .09 145 J06 .12 131
7 986 .00 062 .853 .08 137
8 947 .02 077
9 .99 .001 .022

ffictency 8651 3 .9095

8
For cstimating ¢ when u 1s known, spacings should be taken
according to the density
W -1a- ah (3.2.45)
Thus
lwe1-a-u . (3.2.46)

As this is the same solution that was given for the exponential
distribution, the properties of Il'.l (speciilully its graph) can be
found in Section 3.2.2. Asymptotically optimal spacings, coefficients,
correction factors, and efficiencies for seven or nine order

statistics are given in Tables 25-27 for vy = %3,2,4 respectively.
3.2.7 Extreme Value Distribution

The c.d.f. of the extreme value distribution is

(3.2.47)

F(x) = exp (- exp {~x}} , —=<xce,
with corresponding p.d.f.
Ea(x) = exp {-(x + exp {-x))) . (3.2.48)

The other functions required for optimal density construction are:

Q (w) = -log 1og[—\1|—] } (3.2.49)

and

T N T ——
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Table 25. Weibull Distribution, Y = %3, u Known;
Asymptotically Optimal Spacings, Coefficicnts,
Correction Factors, and Efficiencies for
Seven or Nine Order Statistics
k=7 k=9
i uy \Io(i) uy Hc(i)
1 .33 .238 271 .186
2 .578 .211 .488 177
3 .756 .165 .657 .152
4 .875 .151 .784 .122
S 974 .045 .875 .091
6 .984 .023 <936 .063
7 <998 .008 .93 .037
8" ' .992 .019
9 - .999 .002
Cc .841 .85
Efficiency .958 .978
.
.

86

Table 26. Weibull Distribution, y = 2, u Known}

Asymptotically Optimal Spacings, Coefficients,
Corrcction Factors and Efficiencies for Seven
or Ninc Order Statistics

k=7 k=9
1 u LACY uy W, (1)
1 ) .189 .27 .139
2 .578 .204 .488 .16
3 756 .18 .657 .155
4 .875 .181 . 784 .136
s .97 .062 .875 A1
6 .984 .032 : .936 .081
7 998 012 973 .051
8 .992 .028
9 .999 .004
¢ .861 .864

Efficiency .958 < .978

= ‘N' = #W’Wﬂ”ww—'“"—ﬁ"ﬁ_-—‘ BUERRE . e e o

b
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Table 27. Weibull Distribution, y = &4, p Known;
Asymptotically Optimal Spacings, Coefficients
Correction Factors and Efficiencies for Seven
or Ninc Order Statistics

e rr e

k=7 k=9
i uy “o(“ vy "a (1)
1 .33 .15 .21 .105
2 .578 .196 .488 .145
3 .756 .197 .657 .158
4 .875 .217 .784 .151
5 974 .086 .875 .132
6 .984 .046 .936 .104
7 .998 .019 .973 .0n
8 .992 .042
9 ° .999 .006
Cc 912 .913
Efficiency .958 .978

[ F—

'N”ﬁWWm,ﬁf-wn*——u»mwwr T

£,Q,(u) = -u log(u) . (3.2.50)
It can be shown that

(£, £Q>=1 . (3.2.51)

When ¢ is known, the optimal density for use in the estimation
of u is

e = 1aH G.2.52)

An explicit expression for H*™' s readily obtained and is found to

be of the form

B ) . Wl . (3.2.53)

A graph of this function appears in Figure 9.

The performance of spacings generated by (3.2.52) is compared
with that of the optimal spacings found by Hassanein (1968) in
Table 28 for k = 2,7,9. The asymptotically optimal spacings,
coefficients, and correction factors for seven or nine order -uﬁ:—

tice are given in Table 29.
3.2.8 Gamma Distribution
The density function for the gamma distribution is

p-1

fo(x) = %; 5P, oexcw (3.2.54)
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Extreme Value Distribution, o Known

The Function %™ (u)

Figure 9.
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Table 29, Extreme Valuc Distribution, o Known; Asymptotically
Optimal Spacings, Cocfficients and Correction
Factors for Scven or Nine Order Statistics

TrrE s e e T e

k=7 k=9

i uy "ll 1) uy "ll“)
1 .002 .03 .001 .016
2 .016 .096 .008 .056
3 .053 .157 .027 .098
4 .125 .199 .064 .133
5 244 .212 .125 .158
6 422 .187 .216 .168
7 .67 .118 L343 .16
8 .512 .131
Y e .729 .078
Cu =444 -.437

92
vwhere p > 0 is known. Denote by I-‘° the c.d.f. corresponding to f°.
As in the case of the normal distribution, it is not possible to
derive an explicit formula for Qo(u) - Po-l(u) for all values of p.
However, Qo exists and hence its values and the values of the f°Q°
function may be calculated through numerical procedure.

When u is known, spacings taken according to the density
20 - p)
) Qw1 e (%, (w)
h*(u) = : 20 - p) (3.2.55)
o % e (Hao)ae
0 s

will be asymptotically optimal for the estimation of o. Spacings
obtained uwsing h* have been computed by Sirndal (1964) for k = 1(1)10
and p = 2,3,4,5. A graph of Ht'l for these same values of p is

presented in Figure 10.
3.2.9 Lognormal Distribution

As in previous work, denote the standard normal p.d.f. and c.d.f.
by ¢ and ¢ respectively. For the lognormal distribution, the neces-

sary functions for the construction of optimal densities are:

£,00 = Lgttog ), 0<xcen, (3.2.56)
Q(w) = exp (67 (W), (.2.57)

and
. £,0,() = 907 (w) exp (- ¢ (W)} . (3...58)
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94
Figure 10. Gamma Distribution, y nown; When p is assumed known, the density
The Function H* ' (u)
-] -2/,
heu) - —L48 @] 2 (3.2.59)
1. o -
107 @1 Bae
0
generates spacings that are asymptotically optimal for the estimation
ll‘-](u) of o. This solution is identical to the one found for the estimation
of the mean of the normal distribution when the standard deviation
T = :
=" vas known. Consequently,
727
S0 | SO .
4

=k 7 '/\ ; B ) = 03 0 ) . (3.2.60)
J0h /& p=5 ‘

E //\' x P Asymptotically optimal spacings computed from (3.2.60) and the
60
r ///\ . corresponding coefficients, correction factors and efficiencics for
7/ p=3
\

Sor / /, estimators based on seven or nine order statistice are given in
sl 74
4

20 / /

P 2 s Table 30.
3.2.10 Comparison of Solutions

The H'-l functions provide one means of comparing different

A i stributional forms. n Figure the U* " functions for location
/./ distrib 1€ In Figure 11 the U™ functions for 1

parameter estimation are shown, when applicable, for the distributions
considered in this chapter. A point of interest is that the logistic
tends to behave more like the Cauchy than the normal in the case of
spacings for location parameter estimation. A similar comparison

for scale parameter estimation is shown in Figure 12.

(B ’

- .
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Table 30. lognormal Distribution, i Known; Asymptotically -1
Optimal Spaciugs, Cocfficients, Correctlon Figure 11. The H* = Functions for Varfous Distributions
Factors and Ffficiencies for Seven or Nine Order 4o the Case that ¢ 1s Known
Statistics
k=1 k=9
i uy W (1) uy Vu(i)
} 1 .023 -363 .013 .263 - ! (w)
‘ 2 221 446 .074 .368
3 .29 2369 .184 .33 .
4 .5 .223 2334 .253
' 5 n .15 .5 a7 90
6 .8719 .043 .666 .107
‘ 7 977 .007 .816 .055 40 Normal
8 +926 .02 70
9 " 987 .003 Logtstic
Co 1.546 1.571 .60
Efficiency .9637 .976 i
| o
l Cauchy
r 30 .
’ ¢ 20
& Extreme
| 10 Value
» :
|
i
~ M - Q‘. -
P, S et e A——— d _
e n .
(- SRE——— o —
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-1 3.3 Data Summariecs for Large Samples
Figure 12. The I*  Functions for Various Distributions
in the Casc that y Is Known
An integral part of exploratory data analysis is the summarization

of a data batch by a few select order statistics. These summaries

are used to estimate location and scale paramcters and/or to find
Exponential

or Weibull re-expressions (transformations) of the data to other distributional

forms (often normal). Several rules of thumb regarding the selection
Pareto
ve 3 of order statistics for summary purposes have been proposed, such as
using the median, quartiles and extrcmes, or taking the median,

' Pareto

ve?2 quartiles, % percentiles and L percentiles.

16

80}
< In Section 3.2 it was seen that the optimal placement of order
80 statistics for location and scale parameter estimation depends
70k s heavily upon the assumptions made regarding the distributional type
o L of the data. Thus for large data sets, where only a small portion
of the sample is to be utilized for estimation purposes, the use of
50|~ Logistic
order statistics from nonparametric five or seven number data
Normal
40 Lognormal summaries may result in estimators with low efficiencies. A useful
30 Parcto tool would be a summary technique that, perhaps after goodness of fit
vel
20 Pareto tests, could bc adapted to the distributional form of the data.
ve .5
io e The objective of this section is to suggest such an adaptive technique
for summarizing large data scts through the use of a few order
ol .t L
] 0 20 .30 40 .50 6O .70 .60 .90 ] u statistics.

The specification of an adaptive data summary rule, in the
present context, may be considered as consisting of two parts:

(a) a rule of thumb regarding the selection of a set of order
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statistics for a data summary and (b) the specification of optimal
subsets of these order statistics for use in the estimation of u or ¢
for various location and scale parameter models. In this section,
adaptive rules based on 19 or 21 order statistics and considering
subsets of size scven and ninc respectively will be constructed using
results from Section 3.2.

Upon review of the asymptotically optimal spacings for seven or
nine order statistics in Section 3.2, it is secen that these spacings
tend to cluster about certain points in the interval [0,1]. Since
for k = 7, the spacings are the values ll'-l [—:;—]. 1w 1, s T it
is no real surprise that the points where the spacings cluser are
generally multiples of % . Similarly for k = 9, spacings tend to

accumulate about multiples of The clustering behavior of the

1
10 °
spacings may be used to justify the order statistics placement in
the 19 and 21 number data summary rules that follow.

A 19 number adaptive data summary consists of the following
sample quantiles:

1. The median, Q(.5).
2. The 1le percentile, 3(.4375) and Q(.5625).
3. The 3 percentiles, 4(.375) and 3(.625).

G The £ pereentiles, (.3125) and Q(.6875).
5. The quartiles, Q(.25) and Q(.75).

6. Tne —126- percentiles, Q(.1875) and Q(.8125).
1

8 percentiles, Q(.125) and Q(.875).

7. The

100

8. The 3 percentiles, 3(.0625) and 3(.9375).
9. The -ﬁzl_o' percentiles, Q(.02) and Q(.98).

10. The Wlo percentiles, 3(.01) and Q(.99).

For the distributions considered in Section 3.2, Tables 31-32 indicate
which order statistics should be utilized in the estimation of y or
¢ respectively by an estimator based on seven sample quantiles. The
selection of an order statistic is indicated by a check mark across
from its corresponding spacing. For ecxample, for the cxponential
distribution with u known Table 32 indicafes that the spacings set
{.3125, .5625, .75, .875, .9375, .98, ‘99') should be utilized for
the estimation of .

For estimators composed of nine order statistics, a 21 number
adaptive data summary may be defined as consisting of the following

sample quantiles:

1. Q.5

2. Q(.4), Q(.6)
3. Q(.33), AC.66)
4 QC.27), Q(.73)
5. Q(.20), Q(.80)
6. Q(.17), Q(.83)
7. Q(.10), Q(.90)
8. Q(.07), Q(.93)
9. d(.03), aC.97)
10. Q(.02), Q(.98)

1. Q(.01), Q(.99)
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Distribution
Logistic

Cauchy
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/
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Statistics

Order Statistic Sclection for Location
Parameter Estimation by Seven Order

Normal
/
/
/
'
/
v/
/

Table 31.

Spacing
01
.02
.0625
.125
.875
.25
.3125
375
L4375
+5625
.625
.6875
.75
.8125
.875
.9375
.98
.99
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For the distributions considered in Section 3.2, Tables 33-34 indicate

104

Table 33. Order Statistic Selection for Location
how order statistics should be sclected for the estimation of u or o. Parameter Estimatfon by Nine Order
Statistics
Table 35 contains the coefficients (denoted by W), correction
factors (denoted by C) and efficicencies for the spacings scts suggested
Distribution
in Tables 31-34. To usc this table, arrange the spacings under Spacing Normal Cauchy Logistic Extreme Value
consideration in increasing order, u, < u, < ... <u, k= 7,9. Then
S L o1 / /
the coefficient corresponding to uy is W(i). For example, in the : 02 /
case of the exponential distribution with p known, an explicit .03 7
expression for the estimator of o formed from 7 order statistics is 07 / / /
.1 S /
N & 2 s L 17 v/ /
o = .2906Q(.3125) + .2252Q(.5625) + .1587Q(.75) + .0898Q(.875) 2 / /
+ .055Q(.9375) + .0204Q(.98) + .0144Q(.99) - .854y . -2
¥ .33 4 v / 7/
(3.3.1) N / /
.5 / / 7/ 7/
The efficiency of this estimator is .9653. 6 / /
.67 / / v/
.73 7/
.8 v/
.83 4 /
.
9 /
.93 v/ v/
.97
.98
.99 /

L = e

Bl e, = e




bl
o
s 5 6886° €0€L°T T900° 90ZO°  Z%Y0°  9TTT"  LIST* (LSBT  %2LT°  S9%%°  wI6Y* 6
a 2%986° 1999°1 6TT0"  £L%0° TLOT" SO6I° 9L6Z° 98Z%"  €€8S" L I8
. | 54
usouy i T = A ‘UOFINQFiISTQ 03938y ‘9 | i
£066° 9S9Z°T (900" LIZO" EL%0° 780° (860" ISLI® BTIOE" 8YYZ®  €L8T° 6 ﬁ
8€86° 6L0E°T LTI0°  6%€0°  %S60° 8YSI® BOST® S6TIE” B6ES” L n
A
umouy f 'S = A 'UOFINQFA3ISFQ 03939 P ;
; ]
A
62L6° 9%(8° TYI0° (OTO® (OZO" 86€0° 69S0° BBIT"  ZESI* BZOZ®  €LST° 6 w
£596° vs8° 7910°  %020° €S0°  8680°  [(8ST° . TSZTT® 9062 L }
usouy UOFINQFI3s8]q [¥Favouodxy
6%16° 0  85€0° 89¥0°  TEIT"  TI9T® 0°  TI9T°~ TEIT"~ 89%0°~ BSEO"~ 6 ‘
8€s8° 0 €8€0°  T690° 8EET’ 0° 8EEZ°- T1690°- €8£0°~ L
Umouwy UOFINQFA3ISTQ [PWION °q A
LY 3 0° BEZO"  %EBO"  ETET"  6ZLT°  TLLT°  6ZLT°  ETET"  YEQO'  9EZ0° &
TT96° 0 ?9%0°  LIST* 920Z° 9861° 9Z0Z° LIST®  %9%0° L. ¢
. UMOUY O 'UOFANQFAISFQ [VWAON ¥
£>uardr33a D (OL] (8)a mn o)n (sH)a (n (€)a @n  (Da b -
SOFISTILIS IIPIQ IUFN 10 UIAIS 103 i
s3urdedg aTny AIvummg Y3 103 SITIUIFIFJJI Pus $10308J UOFIVIIAI0) 'SIUIFIFIF0D  *GE QWL
3
“n
o
1
66"
’ ’ ’ ’ .
% ’ 4 id
’ ’ ’ 1
p / ’ ,/ £ i
’ ’ e ) ’ b
’ ’ 2 -8 |
’ / ’ ’ % .
’ 4 ’ v X c
’ ’ ’ L9°
¢ ’ A )
! ’ ’ ’ ’ / / ’ ’ o
’ ’ ’ r
’ ’ ’ / E
, / / hw.
’ / .
. 4 ’ ’ + 4 -2 . A.
' ’ & i ; i
’ p) / no. ¥
p €0 L H
} / z0° :
. ! ¢ ’ ’ .
’ i
TewaouSo]  [emioN 21383801 € =0 T=a I=a G* = A 1INQFaM 30 Suydedg
o3a1ed o3a1eg 0331%g 031wy Terauauodxy
uocF3INQFIISIq
SO0F3ISTIVIS I3PI0 AUFN Aq UOFIFWIISF I9IWeIWY I[PI§ 103 UOFIDITIS OFISFILIS 19pa0 “yE ITqelL \ s

\
¥

. B .




1 2 w
2 _ §
]
SL6* (8LS°T €T00° T610° 90S0°  E€TITIT°  TLLI° 989Z° T9€°  6%9¢€° v9z” 6 w
Te96° 895"t 6500° 870"  €%ZI°  9861° €OEE”  €6L%°  ST9E” L
umouy Uo¥3INQ¥I3ISTQ Jewsoudo] :
.
6ZL6° T$Zy°~- TBO" SOYT"  669T° €I6T°  TIET"  6S0T" 9ZL0°  TZY0"  9S90° 6 4
£596° L2473 Al 680T°  T98T” TT®  9981°  9IST”  96L0° T990° L
UMOUY O TUOFINQFIIST] oN[Ep Swaiaxy ‘v . |
|
6TL6° L916°  8Y90°  66Z0° TESO" 680" 90T BE9T"  SEOT” T S €1 ¢ 6
€596° 9716 TSY0°  99S0°  €BIT*  YSST®  LZOZ®  ZS6T*  Z6ET” 3
umouy f Ty » L TuoyIngyiISTQ TINQYOM ‘w M
6ZL6" T9L8° 90€0° €TZO" 8SE0"  6%90° %980° 8OST*  €Y9T" 889T°  €YUI° 6
€596° 9198° 80€0° €070 9T60°  w6IT" 898T"  L¥0Z®  6LLT” L
UMOUY Ml 'Z @ X 'UOFanqFi3sFq TINQFaM °T i
.
62L6° T9S8° 60Z0° ISTO® €8Z0°  60S0° ZOLO®  BEET"  TLST® €8T LT6T” 6 v
€596° Les” T120°  98z0° TL0°  8LOT* LT LwITT waTe L
umowy 'Y, = X TUOTINQTIISIA TInqFeM A V
3
4duayarzia 9 ({371 €. On 9a S)a ("a ©n - @A (n 1 ”
(Penup3u0d) ‘gE ITqEL
: .
o
-
£€6° 0° 8€Z0° (SSO°  66ET"  BEIZ® 0° BETZ°- 66£1°~ nnno”u nn«onn 6
6006 0 9€EO0"  TSET*  9v9T° 0°  %y9Z°- TSET"~ 9%EED - L
Wmouy 1 ‘UOTINQFIISFQ OF3ISTIOT
6886" 0°  Z®S0°  OTIT"  THET"  8€TT"  LIST"  8€ZT"  T9El’ wunnu oono“ €
92986° 0 €€€9°  6Zyl°  98L1° SOBT"  98LT" 6291 £€80 L
Umouy DO 'uojaInqri3Istq 9¥3ISTIOT ¥
€9L6° 0° I9T0° €8¥0° 8EOT" TO9Z®  TL6E"  To9Z®  8eEOl’ nn4o”n ~<ao“n 6
g o> 96%6° 0 8150° 0°  8ToE” S sT0g” 0 8150°~ L
.4, UWAOUY D 'UOTANQFA3STA Ayone) Y 3
v86° 8187 € €910° STISO"  8%80° 807°  6TLZ°  BEEyT  wT9S” nmon” ano” 6
- LSL6* 695%°¢ »ST0*  6LL0°  9E6Z°  S66E°  TE09°  SYV6 et L
w UMOUY N ‘¢ = A "UOFINQTIISTQ O3Iaed %
2$86° 697S°T 9800° Tyv0'  8980°  @SET*  L0ZZ®  €ETYT  LLIY® nnﬂn“ uqno” 6
T6L6° 1443 k4 %9z0°*  %890°  LY6T° €68Z° (TLy"  BOLY 869¢L I
UAGUY f YZ = A TUOFINQFIISTQ 03Ivd °J . ‘
3 £3usyd133a 5 (em (@ (Wn  On  ©Da (Ma  (©Oa @n (a1 :
(penujlued) ‘g ITQUL &
& '
‘ |
i - e al ~ M




e
3 : )
.
—~m——
|
109 110
4. SPACINGS FOR CENSORED SAMPLES AND The RKIlS generated by Ky, H(K), consists of L2 differentiable
QUANTILE ESTIMATION functions. For f and g in H(K) the inner product is

In this chapter, techniques similar to those of Scction 2.5 q
Ceg) = [ £ (g (wdu + TR | LQE@ (5.
P P P l1-q

will be developed for spacing selection in censorcd samples. The
selection of order statistics for the optimal estimation of population
quantiles will also be considered. If f ¢ H(K) 1s twice differentiable, the reproducing property

and integration by parts can be used to show that f has the repre-

4.1 Optimal Spacings for Censored Samples
sentation

Estimating location and scale parameters given a censored set

i :
ol " XL E@) - 1)

of order statistics x(np). cony x( is most casily formulated as

nq)

using the sample quantile function, a. over the interval [p.q) = [0,1]. ' 1
+ Ky (u,0)1 T-39 f(q) + £'(q)).
It can be shown (Parzen (1979)) that a model for location and scale

parameter estimation in this casc is (4.1.5)
By making the identifications
£59,(w)Q(u) = pf Q (u) + 0Q ()£ Q (u) + oyB(u) ,
(4.1.1) ¢ =3 I@) - £
ue [pal , (4.1.6)
€, = 1) + £'(0)

vhere {B(u), u ¢ [p,q]) is a Brownian Bridge process on [p,q) with 2 1-4

covariance kernel
Remark 2.3.5 of Section 2.3 is scen to be applicable. The next

KI(“l'“z) - -1“(“1'“2) < U, b Uy (psal » (4.1.2) theorem which is the censored sample analogue of Theorem 2.5.1 follows

immediately from this fact.

and
Theorem 4.1.1. Suppose the sample quantile function, Q(u), is
il

%" P i (4.1.3) available over the interval (p,q] © [0,1]). Then the following

rnul'n hold:
| ———,
Clao- i S amnaecy o g a : g - ———m
B andli - - -
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1. If foqo has the rcpresentation (4.1.5) on [p,q), define and
the density <£oQo'f»Qa>p.q <fo°o'foqo' Qo> P.q
A -
2 Pq . " .
(Eooo(u)“l h <tooo QO'foQo)p.q <foq») % £e%% Qo>p.q
h; q(\l) - (4.1.7)
’
[ £q (t)"l%dt (4.1.11)
R
i -1 Denote by H; the c.d.f. corresponding to h* . The
vith corresponding c.d.f. B . The spacings H q[ﬁ]' e Peq
Py Y spacings HA™ |.— 1], 1=1, ..., k , ar2 asymptotically
{=1, ..., k, are asymptotically optimal for estimating P»9ql
optimal for simultaneous estimation of u and o.
u when o is known. -
2, If Qo"oqo has the representation (4.1.5) on [p,q], define Theorem 4.1.1 provides a solution to the optimal spacings
the density problem for censored samples. The corresponding formulas for the
({Q_(w)f Q (u)]")y’ estimators of y and ¢ based on asymptotically optimal spacings can
& p ) oo =
L8 () q 2 {4.1.8) be constructed by replacing h* by h* and H* l[ki 1] by
[NCRCIXRGIDEE btk £ -
P H;q[k =1 in equations (2.5.20), (2.5.22), (2.5.24) and (2.5.25)
»
e of Section 2.5.
with corresponding c.d.f. H;'q. The spacings “]’.q o1’
i=1, ..., k , are asymptotically optimal for estimating 4.2 Optimal Spacings for Quantile Estimation
o when u is known.
For the location and scale paramcter model
3. If both £ Q and Q +f Q_ admit the representation (4.1.5)
o' © o0
on [p,q), define the density function F(x) = Fo[i-;—u] (4.2.1)
s y
(v @A ) K
h; q(u) - - R - (4.1.9) the population quantile function, Q, has the form
. -
(et n’, werlBae
P P
Q(u) = u +0Q (v) (4.2.2)
where
4 e " " -
¥ () = = ([£,Q (w)]",[Q, (Wf Q (1)]") (4.1.10)
k‘q—.:\v-ﬁ, —— ~ . — - e
;
N -
B SN el . -
: P :
LJ - ——rt "




—p— > m—— -
- e -
®
<~
113 114

= {
where Qo(u) s (u) . This scction will address the problem of Theorem 4.2.1. Let L' = “'1"2) be a known vector of constants and ,L
how to optimally sclect order statistics for the cstimation of the define y(u) as in (4.1.9). Spacings generated by the density
p"h population quantile, Q(p). Y

[ (u)2e'y(u))
First observe that elnce Q (p) is known, Q(p) is a limcar h*(u) = (4.2.6)

o

combination of the unknown parameters p and o. Thus quantile
estimation may be considered as a special case of the estimation of
linear functions of the form .'1“ + l.zo ¢

For a given vector, &' = “1"2)' it is known from the theory

of least squares (Graybill (1976)) that
B A -
Lutto=tiutto, (4.2.3)

i.e., the ABLUE of a linear combination of the parameters is the

same linear combination of the ABLUE's of » and 0. Also note that

- - 2
o
Vitgu + 250) == 2'A L (4.2.4)

a? £
D) (4.2.5)

'
where A 1s the information matrix of Section 5.2 and tr denotes the
trace. Hence to minimize the variance of llu + 12; it suffices to

=1

choose order statistics in such a manner that tr(A t2') is a minimum.
Sacks and Ylvisaker (1968) have derived an asymptotic solution to

this problem that may be uscd to prove the next theorem,

o~ e —

1
Io (¥ (0)22'%(0) ] Par

vill be asymptotically optimal for the estimation of L)y + 2,0.

The following corollary to Theorem 4.2.1 details an asymptotic
solution to the problem of optimal spacin} selection for quantile

estimation.

Corollary 4.2.1. Let Q have the form (4.2.2) and let p € (0,1) be

specified. Define the density function

b}
(6 )My ()]
h*(u) = 7 (4.2.2)
[ 1o (©mp(0)] Bae
(]
with
: | Q_(p)
M .[ °2 ] (4.2.8)
Q@ Q.2

and y(u) defined as in (4.1.9). The sequence of ;pacingt sets

generated by h* s asymptotically optimal for the estimation of Q(p).

T
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5. CONCLUSION
5.1 Summary

A general approach to obtaining optimal spacings for linear
systematic estimators of location and/or scale parameters has been
formulated in this dissertation. By treating the problem of location
and scale parameter estimation by linear functions of order statistics
as onc of regression analysis of a sample quantile process,
it was found that the optimal spacings problem was equivalent to a
regression design problem. This approach was seen to have advantages
over classical techniques in that it provided a unified regression
framework for optimal location and scale parameter estimation and
led to con;utazlonally simple solutions to the optimal spacings
problem.

The basic theory was developed in Chapter 2 where asymptotic
results regarding designs for continuous paramctel; time series were
employed to obtain spacings sets that were asymptotically optimal.
This asymptotic optimality can be interpreted as meaning that the
spacings sets result in nearly optimal efficiencies as the number of
spacings included in the sets becomes large.

The theory developed in Chapter 2 was applied to scveral common
distributional forms in Chapter 3. The asymptotically optimal
spacings sets were seen to give nearly optimal efficiency for set size

as small as seven or nine. Further, the propensity of these spacings

to cluster about certain values made it possible to propose some
adaptive procedures for summarizing large data scts with a levf order
statistics. '

In Chapter 4, an analogue of the asymptotic theory for optimal
spacings sclection in uncensorcd samples was developed for the case
of censored samples. Asymptotically optimal spacings for population

quantile estimation were also obtained.

5.2 Problems for Further Research

116

Several problems arise in the application of the theory developed

in Chapter 2 due to the integral representation assumed for the
fooo and Qo- foQo functions. For this reason an approach to optimal
spacings selection for functions that can only claim membership in
the RKHS generated by K, would be worthwhile.

There are several cases vhere either foqo" or (Qo- foQo)" behave
s0 poorly at zero and/or one that they fail to be integrable on the
closed interval [0,1]. An obvious procedure in this case would be
to use an appropriate subinterval [p,q] of [0,1] and employ the
results of Scction 4.1 to obtain spacings. However, this approach
seems to be quite sensitive to the choices for p and q. Thus tech-
niques for aclecting p and q in an optimal manncr would be quite
useful.

An extension of the results of Chapter 3 to other distributions

and estimation situations is needed. Of particular interest is

whether the placement of order statistics suggested in Section 3.3

|

)
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will suffice for a still wider range of distribution types than those

for wvhich it was constructed.
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