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1.0 INTRODUCTION

1.1 Basic Problems
V The pl ane, steady, incompressible, Navier—Stokes equations have been

subjected to a variety of numerical attacks. At the present state of the

art there is no particular method that Is clearly recognized as the “best~
• way to solve these equations. The difficulties are varied and perhaps the

fact that we cannot easily list and order them in Importance points up the

largest difficulty of all. To make some reasonable start on studies of
numerical methods for the plane, steady, Navier-Stokes equations we must

first classify, at least in some rough sense, the types of problems that are

of Interest.

The first basic classification concerns the domain (I.e. geometry) over

which the flow Is of Interest and the boundary conditions are tobe imposed. In

all “external” flows, or domains extending to infinity, we must be able to

give proper conditions on some artificial boundary in the fluid, in order to
reduce the problem to one in a finite domain. We do not attempt to study

this problem in our present work. Instead we use test problems in which

boundary conditions over simple finite domains are “reasonably~ well defined.

For example, we consider the driven cavity and the inlet region of a
channel. Even here, of course, there are open questions. But they do not

dominate the problem as, say, the flow at large radius does in the flow about
a cylinder.

The next basic difficulty concerns the Reynolds number, R , or rather the

range of R over which solutions are sought. For sufficiently large R

there will be thin boundary layers in the flow, say of width 6. Thus the

net spacing and numer ical method must be able to resolve var iations over

1
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lengths of the order of 6/10 say. We shall not attempt to resolve this

open question either. But our methods must be capable of working at large

R if we can use appropriate fine nets. Al so, we point out that most cal-

culations are desired not for a fixed R value but rather over some inter-

val , say R0 < R c RF. This fact can play a crucial role in developing

efficient numerical methods.

Suppose then that we have a simple domain (a rectangle for example) on

all of whose boundaries the “correct” boundary conditions are known. Further,

steady solutions are desired for a “moderate” range of R values. All

numerical attempts to solve such problems are iterative The literature on

this subject does not always stress these facts but it is clear that the

dominant concerns are now: (a) to Insure convergence of whatever iteration
scheme is used, (b) to accelerate convergence assuming it can be attained,

(c) to insure that the converged iterates accurately approximate a physical

solution, (d) to Insure that this solution is the desired one (for steady

solutlonsmay notbe unique). Of course, all these concerns are interrelated

and may not be resolved independently of each other.

l~2 Basic Methods

In the present report and in our most recent work we have concentrated

on three basic .formulatlons: primiti ve variables th—Sect.ton2.O-~
-vorticity—

stream function th .SectjoriJ.1~ and stream function-biharmonic formulation.

i-n- Sect1on~#.0tV With each such formulation there are a variety of difference

equations that could be used and then there are a large number of Iteration

schemes that could be employed to solve these difference equations. The

ultimate goal , of course, Is to find the best combination of all these

techniques.

2
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We have discontinued, for the present, our earlIer prImitive variable-

splitting technique studiest~~. They have some very attractive features but,

as we had used them, they seemed quite sensitive to the boundary treatment.

Al so, their convergence rates did not compare to that of our new biharmonic

j method.

The primitive variable methods of Sectlon2.O are based on the reportedly

successful techniques of SpaldingE2] and his coworkers. Basically, ADI
methods are used to compute the velocity from the momentum equations and then

these velocities and the pressure are adjusted to satisfy continuity. This

latter procedure is closely equivalent to solving a Poisson equation for the

pressure. This Is also done by an inner loop of ADI. Careful tuning of

this method seems to be required and adjustments of various kinds are made

when it Is applied to different problems. It is not clear that any analysis V

of convergence rates or order of accuracy can be done for this complicated

method.

The vorticity—stream function formulation of Section 3~0 is classical

for plane steady viscous flows. With more recent developments In numerical

analysis, It should be possible to make this formulation much more efficient

than It has been in the past. Thus we use AD! on the vorticity equation,

suitably linearized, and SOR on the Poisson equation (vorticity definition).

There are the usual troubles with boundary conditions in this method since

vorticity is not known on the boundaries and is in fact generated there. It

seems clear that the use of fast Poisson solvers could greatly enhance the
efficiency of these procedures; we hope to investigate this in the future.

Finall y, In Section4.D we use the biharmonic or fourth-order formula-
tion in terms of a stream—function (i.e. eliminate the vorticity). Now

there are no problems with the proper boundary conditions (on rigid walls,

_ _  _ _  _ _ _ _ _ _~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~. ~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ -~~~~~~
--—
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for instance). Also, there are not coupled systems of differential equations

to be solved. Newton’s method and modifications of it, in particular the

Newton-Chord method, are extremely fast for solving the finite difference

equivalents of this formulation. The main drawbacks with this method are

the possibly large storage requirements and the time it takes to get the

LU-decomposition of the large band-structured coefficient matrix that occurs.

But tentative tests indicate that this scheme can be as fast as the

others and works for a far greater range of Reynolds numbers.
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2.0 PRIMITIVE VARIABLE FORMULATION

t 2.1 Equations and Grid

Of the few methods which sol ve the incompressible Navier-Stokes equations

in primitive variables , the most successful one derives from the work of

Chorin~
3
~, Amsden and Har low~~ , and Spalding

t
~~. This entire group can be

described as being “pressure correctorH methods. The meaning of this phrase

will become clear in the detailed description which follows. 
V

The most familiar of these methods are the ones which have been developed

at Imperial College. The latest in the series of computer programs which

utilize this pressure corrector scheme is known as TEACH. Now, although the

basic method is the pressure corrector approach, numerous computational devia-

tions from a straightforward application of the method have been incorporated V

( into the TEACH code to render it useful for solving practi cal problems . These

devices range from the Incorporation of upwind differencing, and different

under-relaxation parameters for different variables, to the inclusion of

“false source” terms in the equations~~ in order to enhance convergence, and

the use of a block correction procedure(6] to correct the difference equations

for discretization errors. All these tend to obscure the basic properties of

the pressure corrector method itself and hence make comparisons with other

methods difficult, so the procedure described below is the basic concept of the

pressure corrector method, applied to various test problems, but bereft of all

computational devices.

Previous investigations have provided related Information concerning

implementation of the method (see Spalding(2] or Roachet~ for example) but it
V is useful to have a complete, detailed, developmen~ in one self-contained work,

and much of the interpretation and some details which are Included here are new.

The equations to be solved are the suitability nondimensional incompressible

form of the Navier-Stokes equations, i.e.

5
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(2.1)

(2.2)

(2.3)

In these equations the time derivative is regarded as a means of approaching

the asymptotic steady state, and a consistent time development of the equations

will not be considered. The TEACH method considers the steady equations, and

solves this elliptic system by relaxation methods. The conservation form of

these equations can be shown to possess the conservative property~
8
~, hence

conserve mass in the global sense when cast in finite-difference form, so

instead of eqs. (2.1) and (2.2), the following equations are used:

fr (u2) + (uv ) = ~~ P.+ 1(a
2u 

+ (2.4)

fr (uv) + f-. (v2) = _~~~~~.+  i (~~~+ 
a2
v) (2.5)

The finite-difference form of these equations is sol ved on the staggered

grid depicted in fig. 1. Arguments as to The physical basis for this grid have

been made, and it has become standard practice for all primi tive variable

solution techniques (including finite-element methods~~ ). However, It should

be noted that the original pressure corrector method of Chorin did not use

this grid, but the standard one with all variables defined at the same point.

Note the location of the boundaries of the solution domain and the posi-

tion of each variable relative to the grid and boundaries. On this grid

the interior values of the pressure , are defined on 2 ~ i ~ IMAX

and 2 < j < JMAX . The val ues along grid lines 1 or MAX+l must be

6 —
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determined by boundary conditions, or, as will be seen later, other means.
The interior values of the u-velocity are defined on 3 < I < IMAX, 2 < j  .c

The values at I = 2 and I = IMAX+l fall directly on the boundary lines of

the solution domain and are provided by boundary conditions. The values at

j = 1 and j = JMAX+l are exterior to the solution domain and are specified

in combination wi th interior values of u to provide the correct boundary con-

dition at j  = 3/2 and j  JMAX + 1/2. The values at i = 1 are never used. 
- 

-

The situation for the v-velocity is ideetical to u with the roles of I and

j  interchanged. Thus v interior values are 2 ~ I IMAX , 3 ~ 
j ~ JMAX ;

3 = 2 and 3 = JMAX+l values fall on boundaries . I = 1 and I IMAX+l are

exterior and cal culated in combination with Interior values, and 3 • 1 values

are never used. The exact specification of the boundary values will be given

below in section 2.4.

2.2 FInite-Difference Equations

The spatial differencing scheme to be used will be central differencing

at all points; this Is standard practice. However, we choose an implicit

integration technique, as in the formulation for vorticity streamfunction vari-

ables, on the assumption that rather arbitrary choices of time steps may be

taken to enhance the convergence to the desired steady-state solution. This

point will be returned to later. The ultimate integration procedure will be

an alternating direction implicit (ADI) method, but due to the nature of the

way the pressure corrector equat6ons are derived, the AD! method will be

arrived at in an indirect way. The main reason this is necessary is that the

pressure corrector equations are derived from considering ’ the lineari zed

difference eQuations and not the original differential equations. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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To derive the final form of the equations, consider the fully-implicit

differencing of equations (2.4) and (2.5). The x-momentum equation Is

centered at the point (1 — 1/2 , 3), and the y-momentiin equation Is
centered at (1 ‘ j — 1/2). The two equations are

n , 2,~n+l , 2~n+l , ,
~n+l , ~n+1U1 112,3 — U 1_112~~~4 ~u —~ u ‘1-1,3 

+ 
~~~~~~J 1..112 ,1+112 

—

(.At/2) Ax

n+) n+1 ,‘ n+7 n+l n+l
= — 

p1 ~ 
— 

~~~ ,j 
+ ~ 

— 2u1_112,3 + u1_312~
Ax R \ AX2

n+l 2 n+l 
+ 

n+1
+ 

U~~ _1,2 ~~ — 
u1_112~~ u1_ 1~2 i_i) (2.6)

n+l n , ~n+1 , ~n+i , 2~n+l ~. 2~n+lvi,j _l/2 — ~~~~~~ 
+ 

~uv,1~112 3 112 — ~uv,1_ 112 ,3_ .~12 
+ ‘

~~~ ‘~,j — ~~~~ ‘1,3+1
(At f2) AX Ay

n+l n+1 j  n+l n+i 
+ 

n+l
— — ~i .3 — ~i .3—1 + 11 ~i+l .3—1 /2 — 

2v1 ,j -l/2 v1_1 ,j—lL2— 

Ay R \ AX 2

n+l 2 n+1 + 
n+lVt_,j~~~,2 Vj j ..1~ 2 vi .i.~R) (2.7)

where (n+1) is the new time station, (n) Is the old time station, the factor

of 1/2 in the time step is for convenience later, and the pressure for the moment

is assumed to be known. After multiplying through by at we can define the

following quantities.
_ At 

~ 
_ At D — At D At (2 8cx A x  , y~~~ 7 ’  ~~~~~~ y ~~~

Since the convective terms -In eqs. (2.6) and (2.7) are nonlinear and we can
only solve linear difference equatIons , we must lineari ze the equations.
The linearized values of the dependent variables will be denoted by an

overbar. Dealing with only eq. (2.6) for the present, we get 

___  ~~~~ ~YIjj t fl~ 
~~~
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.J n+l n c ~~
— n+l - nfl

— ui_ li2 ,3) ~~~~~~~~ 
— ui..l,jui_ l ,j

+ C  r ~n+1 - nfl
y v1_ 112 ,3~112 i—l/2 ,j+l/2 — v 1_112 ,3 112u1_112 ,3_112

- ~
, nfl nfl 

~ + 
,.

~ , nfl n+l 
+ 

nfl
— C,~!~Pj,j Pi~l ,j’ “x’~

1i+l/2,j —2u1_112 ,3 u~~312,3

+ Dy (U~~ 12,j +1 — 2u?~~,2,3 + u?~~,2,3_ i ) (2.9)

Since the val ues of u are only known at the half-integer values of I, and

the values of v are known only at the integer values of 3 on the staggered

grid, simple averages (which are formally second-order accurate ) are used to

eliminate these val ues In eq. (2.9),

2 / nfl 
+ 

1 , n+l 
+ 

nfl
— Uj .1,~~j J 

CX LU1 ,~~ ~ ~~~~~~~~ u1~112 ,3

- 1 ,nfl nfl— u i_i ,3 
. 

~~
. 

~ui_ 1/2 ,j + uI_3/2 ,j

1 ,n+1 n+l
+ C~ LV I_ 112 ,J+1/2 

. 
~~
. 

~U 1_ ~,2 ,~~ 1 + Ui_h 2,3

1 , nfl nfl , n+l n+l
- V

j _ 1 , 2,
~~~_1,2 ~~~ ~~U1_1~~~2,~~ 

+ U1_112 , 3 1 ,j —C,~P1,3 Pj_ 1 ,j

+ 
,n+ l n+l 

+ 
n+1D~~uj +1i2 ,j —2u1_112 ,3 ui..3/213

,~ ,n+l ,~n’-l 
+ 

n+1
+ uy~

Ui_ l /2 ,j+l _ & ui_ l /2 ,j ui_ l /2 ,j_l

where the averages are used In calculating the linearized (barred) quantities

also.

After regrouping the terms in eq. (2.10), the final form of this differ-

ence equation can be written

10
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t AU nfl 
+ AU1lnfl + + + AU ~ 

nfl 
+ AU nfl¶ NUi_l /2 ,j+l ‘V9—3/ 2,j ~2 “pr pyiUj1123 EU1+l/2j

+ A~u~~,2,31 — u~~~~,3 + C~(p~~ — p ~~~,3
) 0 (2.11)

where

- ~~C i l/2 j+l~~ ~~
Dy~ A~ - 4Cy~i~l/2,i~l/2 ~~y

= —~-C~ü~~13  —D r; A~ = ~-C,~ü~~3 ~~~ 
(2.12)

— 

~~~ ~ 
U ,3 — u~_~,3 ,c~ py — 

~ ~~ 

v1_ 112 ,3~112 V 1 1,2 ,3_1,2 y

Similarly, the final form of the v-momentum equation, (2.7), can be written

~V nfl 
+ A V nfl 

+ ‘2 + A~ + A V ~ nfl + A V n+l
~Nvi,l+h,2 r~ V1_ 1 ,j_112 ‘ PX 1~py 1~I,j ..h/2 ~Evifl,J_l,2

+ A
~v?~~_3i2 —v?,j_1i2 + CY (P?~ 

— p ~~ _ 1) 0 (2.13)

where

N 
= 

~~~ y~I,j 
— 

y’ 
_

~~~~~ ,~
vi,3_~ 

— y

A~ = —-~.C,~ü1_1 ,2,3_1,2 — Dr; A~ 
• 

~~~~~~~~~~~ — D
~

(2.14)
A
~x 

= 

~
.C
~
(ui+i,2,i_i,2 ui..1i2,j..1i2) + 20

X~

~~ = 

~-C~(~1 ,3 ~~~~~~~~~~~~~~ 
+ 2Dy

The only remaining equation 4s the continuity equation, (2.3). This is

placed In finite-difference form by centering the equation at the point (1,3).

n+1 nfl 
+ 

AX , n+l nfl - ou1~112 ,3 — u1_112 13 ~~ ~v1 ,j+l/2 
— V

1 ,3 1/2 —

_________ -V ‘~~~~~~~ -V - 
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These three equat ions, (2.11), (2.13) and (2.13) form the basis for the
pressure corrector method.

The implementation of the method follows from the following argument.

If the correct pressure were known, then eqs. (2.11) and (2.13) could be

solved for -u and v, and eq. (2.15) would be satisfied exactly. However,

it is not known, so we have to make a guess for it, and then correct it in

a rational way to satisfy eq. (2.15) which we want to hold. Hence, we assume
that the true solution Is given by

v~
’1 

= v* + v ’ (2.16)

~n+i = +

where the starred quantities are the guesses and the primed quantities are the

corrections. Placing (2.16) into eq. (2.11) for u yields

A~(u* + u ’) 1.112,3÷1 + A~(u* + u’) i_3/2 ,j + (2 + A
~x 

+ A~~) (u* +

+ A~(u* + U ’)
1~~ 112 3 

f A~(u * + u ’)1 112,3_1 —~~!_112 ,3

+ C~E(p* + p’) 13  
— (p* + 

~
‘
~i-i ,j~ 

= 0 (2.17)

Hence, the equation for the predicted (guessed) value of u* is identical to
- - equation (2.11) but with (nfl) values replaced by starred values, since V

eq. (2.17) is linear and can be split into a predictor equation and a corrector

equation. The remaining terms in eq. (2.17) give the full equation for the

correction value u’:

12
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+ A~u~~312,3 + (2 + A
~x +

+ A~u~~112,3 
+ A~u~_112,3_1 + C

~
(p
~ 3 — P~~1 3

) — 0 (2.18)

This equation, as it stands , is of no value, but an approximate form of the
equation leads to the final solution. For more details of the following

argument, see Chorin1
~~ or Amsden and HariowE4]. In order to alter the

velocity, but not change the value of the vorticity, the velocity can only

be corrected by the gradient of a scalar function. Hence, eq. (2.18) is

approximated by

U~~112 ,3 
= 

(2 + A
~x

+ A~~) 
~~~ ~~~~~~~~~~~~~~ 

(2.19)

In an analogous way for the v-momentum equation, it can be shown that the

predicted value of v~ is obtained from eq. (2.13) wIth (nfl) replaced by

starred values , and the correction for v fron,

c
= 

(2 + A~ + A~ ~ 
( ,3 ‘~i ,j — i~ (2.20)

pX py

Note in passing here that had the values for a predicted and corrected value

been placed in either the full differential equations (2.4) and (2.5) or the

nonlinear difference equations (2.6) and (2.7) the results for the correction

values would have been significantly more complicated.

To determine the equation for the correction (primed values), we must
account for the fact that the continuity equation has not yet been satisfied.

Thus, placing eqs. (2.16) for unhi and vU4
~ into the differenced continuity

equation, (2.15), and using the relations (2.19) and (2.20) for the correction

velocity we get

1 
__________  ______  _______  
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B
~P~j+i - ~ P~ 13  + (B~~: B~ + 

~~~ (B~ + B~)]p~ 3 
- B~p~~13

—~~.B~p1 3.1 + £* - 0 (2.21)

where

BX Cx BX = [  
C,~

~ (2 + A
~x + A~~) 

E 1(2 + A
~x + A~~) E

(2.22)
B
~= [ (2 +A~f~ )l B~ =[(2 fA ~~+A ~y)]

~

f A X I ~~ *ifl/2,j 1-1/2,3 ~~ ~~~~~~ ~~
vi ,j_l,2)

Clearly (2.21) is a difference form of a Poisson equation for the pressure.

2.3 Solution Al gorithm

The solution procedure for this predictor-corrector scheme is as follows :

(a) Guess a value of the pressure, e.g. the pressure at the last integration

station; (b) compute the linearized quantities present; also from last inte-

gration station; (c) integrate the two momentum equations, subject to the

imposed boundary conditions discussed below in section 2.4, to get the values of

u* and v*; (d) find p’ from the Poisson equation, (2.21); (e) correct

the starred quantities using eq. (2.16) to get the new values of u, v , p;

(f) continue this process until a satisfactory convergence is obtained.

Step (c) above requires the solution of the two momentum equations which

now have the form

+ A
~uT_3i2,j 

+ (2 + A
~x + A~y)ui_i,2 ,j + A~u~~112,3

+ A
~ut_i,2,j1 

—u~_112,3 + C
~
(p
~ j 

_ pir_l ,j) — 0 (2.23)
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A~vi ,j+l,2 
+ A~v~’_1 ,31,~2 + (2+ A

~x 
+ A~y)vir,j..i,2 +

+ A~v~,3 312 — v~,j 112 + C~(p~,3 — p~ 3 1 ) 
. o (2.24)

Rather than solving these in this fully implicit form in which they were

written for convenience in deriving the predictor and corrector steps of

the methods , an alternating direction procedure will be used to generate a

scheme where only tridiagonal matrices need to be solved for the unknown

values. Writing eqs. (2,23). and (2.24) j~ a more convenient shorthand —

notation

L~q1_ 1 ,~~ 

+ Lyqj ,j-l + (2 + M
~ 

+ My)qj ~ 
+ N~~1~1 ,~~ 

+ N~q1 ,jfl — q~,3

+ D — 0  (2.25)

where the correspondence between (2.25) and either (2.23) or (2.24) can be

found by Inspection, and only the relative (1,3) positions of the unknowns

on the difference mesh of figure 1 has been shown. The factor 2, in the

middle term above, which was introduced into the time differencing of eqns.
( (2.6) and (2.7) will now be seen to ailow a syninetric AOl scheme to be formed.

Eq. (2.25) can be split into the following ADI scheme

(1 + Fx)~ + (-1 + F~)q’~ + D = 0 (2.26a)

(1 + F~) (-1 + F
~
)
~ 

+ D = 0 (2.26b)

which is equivalent, to second—order accuracy, to a Crank-Nicolson scheme

expressed as
q_ q n + (F~ fF)(q f q n)+ 2 D=o (2.26c )
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where

= L~q1_1 + M~q1 + N~~1~1 (2. 27a)

Fy = Lyqj_1 + Myqj + N~q3~1 
(2.27b)

Thus, equations (2.26) can be looked upon as a Peaceinan—Rachford~~~.AOI

solution procedure for either u* or v~, and this only requires the use of

a two-sweep, or Thomas, algorithm for the Inversion of tridiagonal matrices.

The Poisson equation for the pressure correction, eq. (2.21), needs to -

be solved in step (d) above. In the time asymptotic solution of steady-state

probl ems, it has been found that the Poisson equation need not be solved

exactly at each fictitious time step, but that only a reasonably consistent

value of p ’ need be generated by the Poisson solver. This is accomplished

by turning the elliptic Poisson equation into a nonhomogeneous, parabolic

equation for p’, and advancing this equation a few (usually 3-5) tIme steps

for the value of p’. Hence the Poisson equation, (2.21), can be inunediately

cast into a form exactly equivalent to eq. (2.26) by adding 2/At p
~~3 

and

subtracting 2/Ar p
~,3 to equation (2.21). Now the AOl formalism can be

used to march the converted eq. (2.21.) three to five steps for a consistent

p’ and the solution procedure outlined at the beginning of this section can Iproceed.

2.4 Boundary Conditions
I

Al though the use of the primitive variable formulation allows the direct

specification of the velocity values on the boundaries, rather than indirectly
as In the case of the vorticity and stream-function formulation, the use of I
the staggered grid depicted in figure 1 complicates things. Were all velocity i

points coincident with the boundary,specification would be trivial. However (
16 }
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since half the velocity nodes needed to specify boundary conditions lie

outside the computational domain, special relations are necessary to provide

the correct boundary values at the midpoint between the velocity nodes. On

the other hand, the boundary conditions on the pressure (actually the pres-

sure correction , as will be seen) are quite simple, and easily applied.

In this section, the four boundaries of the domain shown in figure 1

are denoted by the obvious terms upper, lower, left and right boundaries.

Conditions for u on each of these will be described first, followed by

conditions for v on each. Next will be a discussion of the pressure

boundary conditions, and the consequences on the pressure of using the pres-

sure corrector method. Finally, the incorporation of typical boundary condi-

tions into the implicit solution algorithm described in section 2.3 will be

shown.

The u-velocity nodes fall directly on the boundaries on the left and

right sides of the domain. Thus, if the velocity is given on these boundaries,

for example a sol id wall , or a specified inflow profile, the value is fixed
at the given value. If outflow is specified at the right boundary, i.e.

au/ax = 0, then the fol lowing relations are used to connect the variation

of the boundary velocity wi th two Internal points.

U jp1~~~1 ,j — (4uip~x j 
— u IM~)(_l ,~)/3 (2.28)

This relation Is second-order accurate and does not destroy the tridiagonal

system of equations when implemented as shown below.

For all probl ems di scussed here, the upper and lower boundaries can be
considered solid walls. Thus the u velocity on these walls is given by

the wall velocity due to the no-slip condition. Unfortunately, the boundary

17
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is located between u nodes, see figure 1 , and hence the u-value given there

cannot be directly specified. Thus, a relation giving u at the boundary

In terms of the exterior and interior points must be derived. The standard

relation which has been recoimnended for this problem is based on a simple

average. For the top wall , denoting the velocity at the wall by subscript

w, we can write

u
~ 

= 

~~

- (u j,JMM+l + ui ,j~~X
)

Hence the boundary condition to be used for the unknown velocity at node
F

JMAX+l can be expressed as

ui,JMA)(+l 
= 2u

~ 
— 

~~~~~ 
(2.29)

This is a formally second-order accurate result. However, a higher—order

relation which still retains the tridiagonal form can be derived. This

gives

u i ,JM~)(fl = 
~
•U
w 

— ui ,JM~)( -
~
u1 J ~4~X...l

Now, althou ;~e recoannended relation , (2.29) Is formally second-order
accurate, consider the case of a fully developed pipe (Poiseuille) flow.

Here the u velocity has a parabolic form. Equations (2.29) implies that

the velocity variation around the wall point is linear, which in the case

of Poiseulile flow, it certainly is not. Relation (2.30) was derived by

allowing a quadratic variation around the wall and is consistent with a para•

bolic profile, such as Polseullie flow. The use of these on the test prob-

lems will be discussed in section 2.5 where the results are presented.

The situation for v boundary conditions is very simi lar to what was

just stated for u above, except with I and 3 reversed. The upper and

lower walls conicide wi th v nodes aiw so v can be specified here exactly.

For all cases considered here v = 0 on both walls. The left boundary is

18
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either a wal l or a specified Inflow , and so Vw Is known. Thus an appropriate

version of eqs. (2.29.) or (2.30) for v at I = 1 can be used. The right

boundary, if it is a wall, uses eq. (2.29) or eq. (2.30) with u replaced by

•v and I and 3 unchanged. If it is an outflow boundary, then av/ax a 0

must be used in order to specify v11~~,,1 3. Here, the standard relation given

is the only one which could be found to satisfy this gradient condition, con-

sistent wtth maintaining the tridlagonal form of the system, I.e.,

v1~~~.1,3 
= vfl4~)(,J (2.31)

The boundary conditions necessary for the solution of the pressure cor-

rector equation , (2.21) follow directly from the definitions of the velocity

corrections , eqs. (2.19) and (2.20). Since in all cases here the velocity

is to be specified on every boundary, we solve the equations for the predicted

(starred) velocities by setting u* and v* equal to the correct boundary

conditions. Hence, the correction (primed) veloc ities are al l zero on the
boundaries. However, using eqs. (2.19) and (2.20) these correction velocities

are related to the gradient of the correction pressure , so at the left and

right boundaries where u is specified, we have ap ’/ax — 0, and on the upper

and lower boundaries ap ’/ay — 0. Thus the Poisson equation for the pressure

correction is solved subject to Neumann boundary conditions.

Note that these conditions are on the pressure correction, p’, and not

the guessed p~ or corrected pressure p. In fact, in the formulation used

and described In this report, the boundary values of p or p~ are never
used. Checking the differencing and the grid will confirm this. This fact,

which does not seem to have been emphasized before, is a plaus ible resul t of
solving the equations in primitive variables. Most pressure boundary condi- V

tions are derived from the equations of motion since the actual pressure on

a boundary is not known a priori In any flow situation. They are considered

19 
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“extra ” conditions necessary to complete the particular mathematical (numer-

ical) formulation being used. In fact, they are extra, because in the vorticity

stream-function formulation a fourth-order biharmonic equation for the stream

function can be generated. This requires only two boundary conditions at each

boundary surface. They are the function and normal derivative, which are in

fact u and v. No further conditions are necessary. Essentially the same

thing is done in the “pressure corrector” method. The velocities are given
as conditions, and then a consistent set of boundary conditions on a non-
physical variable is derived and used to compute the relevant physical quantity,

i .e., the pressure. Never is any recourse needed for a “pressure ” boundary

condition. In this way, the pressure corrector scheme models the physics of

the flow closely in that an internally generated value of the pressure is

obtained at all points Inside the solutiQn domain without any reference to

boundary values of pressure. If the value of the pressure on the boundary

(which lies between pressure nodes) is desired, an extrapolation from Interior

points can be used.

To incorporate any of these boundary conditions into the solution algo-
— rithm the following method is used, which keeps the tridiagonal form of the

matrix intact, and allows the use of the tridiagonal solver given in the

Appendix. Using the notation of the Appendix, the general form of the

difference equations generated In this section are

~
C
~
(-l + BKQK + CKQK+l + DK 

= 0 (2.32)

where the Q are the unknown var iables and the A, B, C, D are coefficients

computed at the K location. It is presumed that boundary values for Q

(either computed or prescribed) are given at a starting location, KST , and
an ending location, (NO. The tridlagonal solver is then invoked from KST+l
to K140-l. Thus , at the beginning and final stations of the solver’s use,

20
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eq. (2.32) , appears

A
~~T+lQ~~T + ~~~~~~~~ + C,~T+lQK~

.+2 + 0
~~T+l 

= 0 (2.33a)

A
~~D l Q~~~2 + B~~ _1Q~~~1 + C

~~D..lQ~~D + 0KND-l - 0 (2.3~~)

However, at each of these stations, the boundary value is either known out-

right, or is given in terms of the two next interior points . As an example

writing boundary condition (2.30) In general form consistent with (2.32) and

(2.33) gives

~KND = bQK~~_l + aQKND 2 + d (2.34)

This is in fact, the most general boundary condition which can be incor-

porated, including all conditions from fixed values , for which b — c = 0, to

forms like eq. (2.30) . Placing eq. (2.34) into (2.33b ) gives the following

equation at the last point where the solver is employed. -

~
‘KND-l~KND-2 + WKND_1QKND_l + 5KND-l = 0 (2.35a )

where

rKND l = A,(ND_l + aC~(N0..1 (2.35b)

= B
~~D_l 

+ bC
~~D..l (2.35c )

= D~ 0_1 + dC
~~D_l (2.35d )

Thus eq. ~2.35a) is in the correct form for the solver to proceed, and there

is a similar equation at KST+l. All that is required is that the coefficients

A , B, C, D be modified to incorporate the boundary values as in (2.35b) -

(2.35c) at the two end points KST+l and KND-l , and after the solver gener-

ates the values of 
~K (KST+l) < K < (KND-l), a separate calculation gener-

ates and Q~ 0 from the definitions of the boundary val ues, such as

eq. (2.34).

_ _ _  
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3.0 VORTICITY STREAM FUNCTION FORMULATION

3.1 Equations and Grid

The equations used to solve for the vorticity and stream function

as dependent variables are easily derived from the incompressible primitive

variable form of the Navier Stokes equations. The vorticity, for the two

dimensional case, is defined by the single component

_ au av 3 1
~~~ay ax

An equation for this variable can be obtained by cross-differentiating

equations (2.1) and (2.2) and eliminating the pressure to yield

(3.2)

Again, the time derivative is included in the equations as a means of

reaching the asymptotic steady state which is desired; no true time dependent

solutions are sought. Using the definition of the stream function in two

dimensions

(3.3)

the continuity equation, eqn (2.3) is automatically satisfied, and the

equation which determines ~ 
can be found by placing eqn (33) into

definition (3.1) to yield

= C (3.4)

t
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These two equations (3.2) and (3.4), along with the auxiliary relations

(3.3) for the velocity, are the equations to be used in this formulation

of the incompressible Navier-Stokes equations.

The finite-difference form of these equations is solved on a standard,

five point, mesh, depicted below

(1,3+1)
.

(1—1 ,3) (1~3) (1+1,3)• •
(1,3—1)

•

In contrast to the primitive variable procedure, here all the dependent

variables are located at the same points, and the boundaries of the solution

domain pass through the first and last row or column of nodes. Thus the

boundary values are imposed at the boundary, and no interpolation is required.

However, the boundary conditions for the vorticity stream function
- - i formulation still are not applicabl e in a straightforward manner. We need

conditions on all boundaries for q, and ~~. What we have are no slip condi-

f 
tions for u and v. The normal velocity condition can be translated into

a condition for 
~
,, but the vorticity boundary condition Is still lacking.

The method for determining the boundary vorticity Is described in Section 3.4

below, and is one of the standard means of accomplishing this.

3.2 Ftn-tte Difference Equations

-Both the ‘time dependent’ equation for vorticity transport, (3.2), and

the Poisson equation for the stream function (3.4) are solved by using

central differences in space. Unlike the primitive variable solution

23
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procedure, these equations are solved directly for the dependent field

variables, and so the time integration in eq. (3.2) can be done ininediately t
by an AD! procedure. Since the convection turns on the left hand side are

non-linear they are handled in much the same wa~- as in the primitive variable

section, where an overbar was used to denote a dependent variable which has
been linearized. Thus, the difference equations appear:

+ ~~~ (c~+i—~~~~ ~~l~3) + 
~~~~~ (c~.i+l

2
_ C

~.i l )
(3.5a)

- 1 i~ +l ,~~ — ~~~ + C~~1 ,~~ 
+ 

C~,j4 1 — 
2C? j +

~x 
~~ F

+ u i ,j( +l ii —
~~

_ u .i)+ ~~~~~~~~~~~~~~~~~ — (3.5b)

— 
1 (cir+l ,~~ — 

2C~~ + C _ 1 ,j 
+ 

C?~~+i — 
2C?1 + ~~~~~ 

P

-~~~~~~~~~~ 

LX Ly

These equations are already in the tridiagonal fonn,dlscussed in

section 2.3,wh-lch allows for their rapid solution. This can be displayed

more directly by combining terms In (3.5) above to yield

L
~ ~~ ,~~ 

+ M
~ 4~ 

+ Nx 4..~ ,~~ 

+ R
~ 

= 0 (3.6a)

~~~~~~~~~~~~~~~~~~~~~~~~~~ = 0 (3.6b)
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where

i. 1 -  1 1 -  1
— — -~ •C~u.~,3 — -2.D~

, M
~ 

— 1 + 0~’ N
~ 

= 4.CXuij ~!
0x (3.7a)

V 

= 
1 - n n 1 n n n

x 
— C1 ,j ‘4 y~i ,j 

Cj ,3+l Cj ,j—l — 2 y C1 ,j+l 
— C1 ,j C~ ,j—l

L —  1 . , l - 1 i %
y~~~~~ ~

v1,3 —-2~ x’ y y~ y r yvj,j_ 7 
~
. •

R~ 
= C1,j ++C,~üij (Ct+1,j q~1,3 ) -4D,~ (q+1,j ~~2C~,j +

and
at Lt at 

____C~~a~ j ‘ C~~~~~ ; D~~=~~~j~-; Dy R ~,z 
3.8

The linearized values of u and v are determined from the solution of

the Poisson equation for the stream function, using the auxiliary relations

(3.3) which define u and v. As in the primitive variable procedure, only

the steady solution is desired, so the Poisson equation need not be solved

exactly at each step. Only a solution for ~ , 
reasonably consistent with

the current solution for C~ is required for the method to proceed. Hence

there is no time advantage to an implicit solution procedure for the solution

of the Poisson equation since the exact solution (which could be obtained more

quickly via the use of implicit methods) is not required. For the present

purposes either an SOR or explicit integration technique was used Both can

be written as

= + 
~.[*?+i i 

— 

~~~ + *i_l ,j + 
~~2• (*1,3+1 

— 

~~~ 
+

(3.9)

where ~ is the relaxation factor for SOR or equivalent to 4~ t/~x
2 if an

: 
~~ 

iV
~~~~~~~~~~~~~~~~~:::i:::: s used, where it i sa fa lse time.
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3.3 SolutIon Algorithe

The solution procedure using the ADI-SOR combination just described Is

as follows: (a) Compute the linearized velocities, u and v, from the
last computed values of *; (b) Integrate the vorticity equation one complete )
AD! step, subject to the imposed boundary conditions discussed below in

Secti on 4, uslng- -the..standard tridlagonal solver, at each of the two

intermediate steps which comprise a complete AD! step; (c) Find a

new value of *~ consistent with the value of C found in step (b), by

making three to five SOR passes (or explicit time steps) through the Poisson

equation for q~; (d) Continue this process until a satisfactory convergence

is obtained.

3.4 Boundary Conditions

The difficulty with the it’ 
— C formulation of the Navier Stokes equations

is that the natural boundary conditions we have are on u and v, not * or

C. Both of these velocity conditions can be easily related to conditions on

it,, but neither one directly relates to C. Thus, the boundary conditions on

the velocity normal to the boundaries leads directly to a specification of *
at all points on the boundary. However, unless we know the vorticity exactly,

as In the case of a specified velocity profile at an inflow boundary; or can

specify Its normal gradient equal to zero, as a result of a downstream

continuation outflow boundary, there Is no analytic specification of C at a

boundary which can be made without recourse to the equations themselves and 
-

other boundary conditions. But, to complete the specification of the Navier-

Stokes problem to be solved,a condition for the C variable on the boundary

(either c or its normal derivative given) must be specified.
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For inflow boundaries, as previously stated, given the velocity profile,

it can easily be Integrated tangential to the boundary to get *, and

differentiated to specify C. At outflow boundaries, the standard, second
order accurate , one sided, first derivative form can be used to specify both

as/an and aC/an equal to zero, where n denotes the normal to the boundary.

Taking for example, x to be the direction of outflow, the following relation

for c (or *) can be obtained which does not destroy the tridiagonal form of

the matrix to be solved.

CIPI~~j  
— 

~~~ ~~~~~~ ~ C1~ia~_~,j

This is in the general form used in (2 34) to incorporate boundary conditions

into the tridiagonal solver, and the implementation is the same as described

following eqn (2.34). In section 2.4.

For solid walls, we can still specify * by knowing that the walls are

streamlines and if there is any mass injection (norma l velocity) through the

- t walls. However, since we do not know the normal derivative of the tangential

velocity (although we do know the velocity) the vorticity is not known dire~tly.

A condition for must be made which is consistent with the known boundary

conditions and the governing equations. This can be done In a variety of

ways, see Roache [11]; here we use the most straightforward. The unused

condition on the tangential velocity is combined with the governing differential

equation, written in difference form on the boundary in question, to generate
a relation for the wall vorticity, Cw as follows. The Poisson equation for

~‘
, eqn (3.4), can be written at any boundary, in normal and tangential coordinates

as, a2
- 

anz + 
at’
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In most cases (all that are considered here), *~ is a specified constant,

so that its tangential derivative along the wall Is zero. Writing the

remaining second derivative in difference form, centered at the wall gives

— + - (an)2~~ (3.11) .1
in obvious notation. The value of either or $ is not known,

depending upon the location of the boundary, i.e. the end or beginning of

the domain. However , we do have a relation which Involves this external

point, namely the stream function definition of the tangential velocity, 
~~~~

In difference form this is

= Zan 
- (3.12)

Solving eqn (3.12) for either *.~. or ~ 
and placing it into eqn (3.11)

yields the boundary relation for ~~~~~~ either

= — 
•

~S *

~~ 
(3.13a)

at the end of the domain , or

2 [$+ *w 
~~~ 

(3.l3b)

at the beginning of the domain.

These are only first order accurate conditions for c.
~ 

but have been

shown to be sufficiently accurate in most cases. These relations for C

are decoupled from the current solution for 
~~
, and lead to the sequential

solution algorittmi given in Section 2.3.
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4.0 BIHARMONIC FORMULATION

4.1 Equations and the Newton-Chord Method

Eliminating the vorticity C in the vorticity-stream function formula-

tion yields what we call the biharmonic formulation:

a. fr v2q, =

where (4.1)

b. X(*) ~~
- 

~~ 
— ~~t + .~±. ~2 ~j

For the steady state we have simply

j 1~(~) — 0 (4.2)

Newton ’s method for solving such a nonlinear problem assumes given a current

approximation to the solution, say * — F, and then we seek a correction, say

•, such tha t ip = F + ~ satisfIes (4.2) when second and higher-order terms

in • are dropped. This procedure gives the linear problem for •:
j  t L(F)s = -i((F) (4.3)

where the linear operator L(F) is defined by:

1(F) ~~
- v4 

+ (v2 ~~~~~~~~ fr — (v 2 ~~._ ~~ .v 2) ~~~~
. (4.4)

Of course the Indicated procedure can be lterated (replacing F by F +

which is Newton’s method) and terminated when, say 
~ 

< 10—d ,2 If d

digits are required. This method has many virtues; not the least of which is

rapid convergence. Specifically the error at the next application Is

essentially 
~ 
, 1,

2 if F is sufficiently near a solution.

The main difficul ty wi th Newton’s method is that at each Iterate a new

V 

linear problem (4.3) - (4.4) must be solved. However, the so-called modified

1 ________________ 
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Newton method or Chord method can be used to clrciinvent this. Specifically,

the linear operator is “frozen” at say ~ (F0) L
i,
, the first iterate, and

we solve in place of (4.3) the system

= -11(F) (4.5)

Now only the right-hand side need be updated at each iteration and the main

work in solving (4.5) need be done only once. It is easy to show that this

procedure, although not quadratically convergent , does converge quite fast

if F0 Is reasonably near a solution. Techniques have been developed to -

insure that this combined Newton-Chord Iteration, or slight modifications of

it do converge and that no more than two full Newton iterates need be donel

In the formulation and discussion above, we have neglected the boundary

conditions which must be imposed along with (4.3) or (4.5). However, we will

consider only linear boundary conditions, which will usually be $ and its

normal derivative prescribed (but may also involve the second and perhaps

higher normal derivatives). Then It is always possible to arrange that each

iterate satisfies the boundary conditions exactly, so that the correction, •,
merely has to satisfy the corresponding homogeneous boundary conditions.

4.2 Difference Approximations

We cover the relevant rectangular domain in the x,y plane by a grid

system defined by

x1 — x1 + Ci —l)h (I = 1, ...~~ rn), Yj a-y 1 + Ci —l)k (j— 1 , ..., n)
(4.6)

where h,k are the grid sizes In the x,y directions (see Fig. 2). We use

standard second-order centered difference approximations. Thus It Is con-

venient to introduce the central difference operators 6~, 6~, 1h’ 6k and
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[~~~~

t] o ja2

s • ~a 2J i-i

i n l  I-rn i-m+1

Figure 2. A typical computational molecule at a point where an exterior
• unstored grid value is used. The dotted lines indicate the

grid values connected by the two boundary equatIons (4.27).
Stored and unstored grid values in the calculation are indicated
by • and o.
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also, to simplify the derivation, the corresponding shift operators 5, T,

In terms of which:

a S —21 + ~~
..1

, 4 1 2 I  + T~
(4.7)

— 
‘ 

—

Then to approximate (4.3) at each interior grid point, i.e. for I — 2, ... ,

m l , 3 — 2, .. ., n—i , we make the following operator replacements:

~~ :~~~oh =~~~ ( S S ) ~ r:ff 6k E ~~
T l )

(17 ~~ + 
1 2 1 + 4-~- 6~4 + i4.

]
~ ~

2 —4S + 61 —4S~ + S 2) + 14~ (1
2 —4T + 6! —4T~ + T 2)

h (4.8)

— 

+ _}-
~ 
(ST —25 — 2T + ST 1 + 41 + S 1T — 2S~ 

— 2T 1 
+ S 1T 1)

-
~~~

+ ~~~—-~~~ (ST —2S + ST 1 —TS 1 
+ 2S 1 — S 1T~~)

2hk

+ 4) 6k 
~

1
k
•
~ 

(T2 — 2T + 2T 1 — T_2)

+ (ST—2T+S ~ T—ST~ +2T
1 — S~ T~~)2kh

Corresponding to the operators j ( and 1, these replacements generate a

nonlinear difference operator 14 and a linear difference operator £.

given by
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P4( F13 ) -
~~~ 

(1k. 4 + 
h2k2. 44 + 

~~~~~~ 

4)F13 (4.9)

4hV 6k~lj 
(12. 46.,~ + 2

+ 6hFij (—
~ 

6h6k + 
~~ 

626k)F ij
and —

1(F13
) -~ (14- 4 + 

h2k2 ~~~~~~~~~ 

+ ~~~~~~ 4 @.10)

+ ~~ 
(
~~ 6h6k 

+ 
~7 626k)F136h — 

~~ 
6~F~3 ~7 6h6h + 2 626h)

— -i~ir 
(
~~ 6h6h + •••2

~ 
626h )Fij6k + 

~}~~
6hFii (

~~ 6h6h + 
~~~ 

6~6~)

In terms of these the difference equations for the read

= —N(F 13 ) (4.11) -~~

Using the explicit expressions in (4.8) for the operators occurring in (4.10),

we can readily find the coefficients multiplying the 
~~~~~~ in (4.11),

where a,v — 0, ±3, ±2 wi th I~ I + lv i <2. Denoting these coefficients by

a~ (see Fig. 2) , so that (4.11) reads - 
-

~~~ 
a~+i+~,j+~ -N(F~3 ), (4.12)

lpI+ Iv l~.2

and defining for convenience -

a1 -14 , a2 
= 

Rh2 
(12. + 12.), a3 

— 

~~~~ 
a4 — -~

—2 (17 + 12.), a5 -

b1 4h~k ~k
F, b2 - 4h3k 

(4~k F) + 
4k~h~~~~~~

’ C2 
- ~~~~~~~~ (17+ kF,

(4.13) V 
-

C
3 

. 

~ 
I~F, b3 — 

l~3 6kF, b4 
a 

~ 
(4 F) + 34 h k  4 k h  4 h k  4 k h

1 1  1 —  1 —

V 

C4 ~EV ~2 + ~~
) 6hF~ b5 

= 

4k3h 
óhF

___________________ _
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we find that:
- 

c i a a 2 +a4 + 2(a1 + a 5),

— a1 + b1, a°1 
- -a2 — b2 —c2, = •3 + b3 —c 3,

4 a1 —b 1, 4 — -a
2 

+ b2 + C2, a~
1 

— a~ 
— b3 

— c3
(4.14)

cs;
2 a5 b5. a;~~’ a 4 +b4+c4~ a’1 a3 +b 3 +c 3,

a~~~a5 + b 5, a~,” -a 4 —b 4 c4, ce~ — a 3 — b 3 +c3

Wi th this notation we also find that

N (F
13
) = a14F1j + a3.s~4~13 + a55~F13 — b2 F13 + b4ikFjj (4.15)

To complete the system of equations for the we must adjoin to the

system (4.12) the equations corresponding to the boundary conditions. These

will be considered In the next section.

4.3 Boundary Conditions

Normally two boundary conditions will be imposed along each of the four

sides of the basic rectangular domain defined by the four grid lines with

i = 1, m, 3 — 1, n. We will discuss several relevant pairs of conditions,

but for simplici ty will restrict attention to one boundary only, the one

along the grid line I — m. The corresponding details for the other three

sides will follow In an obvious way. Certain differences have to be observed

between the I a ~~, m and the 3 — 1, n boundaries when we consider the 
V

solution of the difference equations, but these need not concern us at

present.

The most coemon pair of boundary conditions Is for * and Its norma l

derivative ~g,/ax to be prescribed functions of the tangential variable y.

34 V

_~_~
_ t €I_ _ ~~~~~~ -~



- - 
- 

_ -
~

If the initial guess is set up with the correct boundary val ues of ~ji, the

first condition Is simply represented by the equation

— 0 Ci a 
~ .... n) (4.16)

If the same standard difference approximation as in SectIon 4.2 is used, the

second condition can be represented by

— q + 
~m—l j (4.17) 

- -

where q = 2h(a*/ax)l j_m, or in Newton form with * F +

m—l ,j + 
~m+l ,3 

— F1~ 1 ,~~ 

+ F,,~1 ~ 
+ q (4.18)

Now this condition involves a grid value outside of the rectangle of stored

values, which must be eliminated by using the appropriate stream-function

equation written for one point 1n from the boundary. Here this reads

0 0 0 0
+ 

~o m—l ,j + al$m j + a2 m+l,j — ~a2F,ft1 ,J + ... 4.19)

where only the relevant terms have been specifically written down. The

— 
remaining terms on the right—hand side do not involve F~~1 . . El imination

t of +m+l ~ 
yields

...
,

+ (a~ + cs2)~m l j  + a -4(q + F~~1 3 ) + ... 4.20

Thus the second boundary condition can be accounted for by modifying the

Newton form of the stream—function equation for grid points one line In from

the boundary. This modification amounts to replacing cs by ~ + 4
and evaluating the right—hand side in the standard way by (4.15), except that

wherever F,~ 1 ,3 would occur, we use in its place q + Fm - u .

If the second normal derivative Is given instead of the first , (4.17)

will be replaced by

i ___________________ 
____________ 
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where now q — h2(a2*/3x
2)1 1,m , and the corresponding Newton form reads

m-l ,j 
— 2 m,3 

+ m+l ,~~ 

= -F~~1 ,~~ 

+ 2Fm,i — Fm-1 ~ 
+ q (4.22)

Again we must eliminate now between (4.19) and (4.22); the

modified equation corresponding to (4.20) reads

+ (~~~ 
a2)+m-1 3 

+ (4 + 24)+m,i — ...4Cq + 2Fm j  — Fm-1 3 ) + ... (4.23)
So again the boundary condition is accounted for by modifying the Newton -form

of the stream—function equation at the appropriate grid point and by eva2uat-

ing the right-hand side using (4.21) with ~p replaced by F wherever

occurs.

It may also be relevant to impose two boundary conditions involving

~~
. For example, a satisfactory way of dealing with the downstream

boundary condition in developing channel flow is to impose a$/ax — a2$/ax 2 
= 0

at stations suitably far downstream. If these stations are on the grid line

I — r n , we have

~m+l,j ~m..l ,j = ~m+l,3 
2
~m,j + *m..l,J = 0 (4.24)

Eliminating ~~~~~ between the two equations , we can replace the second by

~m,j — 

~rn—l ,j (4.25)

which in Newton form reads

~ m-1,J + - Fm-i,j ~~
Fm,j (4.26)

We can now merely add this equation in place of (4.16) and account for the

first of (4.24) by (4.18) with q — 0.

It may be noted that the pairs of conditions so far considered can all

be Included as special cases if we assume that the pairs of boundary differ—

ence equations can be put in the form V

36 

-V 

- 
-V - -—

~~~~~~=-~~~~~~~~~~~~~ :~~~~~~-~~~~~~~~~~~~~~~~~~~-—



--V V ~~~~~~~~~~~~~~~~~~~~~~~~ __~_ —-V
____  - - - -_— V.. — - -~~~

= q + aFm ,j + bFm..1 ,ji Fm,j = r + CFm_ l ,j + -dF
m-2~ 

(4.27)

It will be seen in the next section that equations of this form do not dls-

rupt the band structure of the Newton matrix; In fact, we will see that the

first of the pair could also -Involve Fm 2 1 
and Fm-3 ~ 

without disrupting

the structure, but this is not necessary for the cases we consider.

Note that the first equation of (4.27) is applied for j  = 2, ... , n-l ,

I.e. at n-2 points , and hence , totalling the corresponding equations for

the other sides and also the Newton equations for the stream function, we

have MN-4 equations without those corresponding to the second equation

of(427). The latter must, therefore, total 2M + 214-4, since the total

number of unknowns is MN + 2(M—2) + 2(N-2). Thus, at each corner we must

choose just one of the associated sides to contribute a boundary condition

corresponding to the second of~ .27). In most applications it will not matter

which, so we choose arbitrarily to associate the corners with the North and

South sides (j = ‘, n) (see Fig. 2).

The notation in (4.27) IS transferred ininediately to the boundary condi-

tions for the other four sides , a multiplying the value at the boundary

point, b and c that at the first point inwards, and d that at the next
point inwards. Thus with superscript W , 5, E, N referring to the West,

South, East, North sides, we write the set of boundary conditions as

F0,3 = q
W + awF1 ,j + bwF2,3, F1 ,3 

= rV + CwF2,3 + dWF3,3

F1,0 = q
5 

+ a5F1,1 + bSF1,2, F1 ,1 
= rS + c5F1,2 + dSF1 ,3

Fmi.i .1 
= qE + aEFm,j + bEFm_i ,l~ 

Fm,j = rE + cEFm_i I + dEF~~2 ,1

Fi,n+i = qN + aNFi,n + bNF1 ,~..1, Fi n  
= rN + cNFi ,n..., + d’~F1,~_2

The val ues of q , a, b , r, c, d for any particular case can be set

out in tabular -form as in section 5.
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4.4 Matrix Structure and Solution by Band Solver

There aie various ways available for the solution of the linear system

(4.11). Several block elimination schemes can be formulated and also iterative

schemes, Including those of AD! type. Since one would like to take advantage

of the Chord or special Newton method, a scheme In which an LU decomposition

is performed would seem to be preferable. Block elimination schemes can be

designed to do this, but because of Its potentially greater stability, espec-

ially for large Reynolds numbers , we choose to explore the practical applica-
/ 

tion of a standard band solver with partial pivoting for stability (this may

be especially important since we hope to work entirely in IBM single precision).

The standard way of organizing the system (4.11) as a banded system is

to order the unknowns by rows, i.e. In the order •1 l ~ 
...

~~ ~~~
The matrix elements for the system (4.11) plus the boundary equations of

the general form (4.28) has the appearance shown In Fig. 3. The super-

scripts N, S, E, W indicate to which of the North, South, East, West sides
the second boundary conditions belong. For clarity the suffixes attached to

the a’s are shown on one row only, and the modifications to the a’S due

to eliminating the first boundary equations are only indicated by position.

Thus , those needing modification at the W and E boundaries are shown with

a bar, those at the N and S by a hat, and those at both by a bar and hat.

For use In the band solver, the diagonals have to be stored as the columns

of a rectangular array, B say, so they are numbered from 1 to £4 = 4m + 1.

The main diagonals of the individual blocks have salient locations, which are

denoted by ~~ £2 and 2.3. These are shown in a sample row in Fig. 3 whIch

also shows an equation count k In relation to the successive blocks.

It Is important that the rows are scaled so that their norms are of

fairly uniform size before the LU subroutine is called. The natural scaling
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of equations (4.11) is good enough since the diagonal element is constant

and is likely to be the dominant element in each row. However, the rows with

the unit diagonal elements are normal ly much small er, so scaling is definitely

necessary, especially -for single precision, as tests have Indicated , and it

is convenient to multiply them through by a . In some problems these unit

diagonal elements do not arise if the known boundary values of * are not

included as unknowns.

The major storage requirements are for the matrix B, whose dimensions

are (mn, £4 ) and a matrix C, say, for storing the I of the LU decompo- V.

sition , whose dimensions are (mn, £2), where £2 2m+l. In addition, we
need three vectors of dimension inn for F, the right—hand sides and the Inter-

change permutation. This yields mn (6m+5) as an estimate for the storage

requirements. Note that the solve procedure SOL after the decomposition

needs both B and C, so that the Chord method needs the same amount of

store as the full Newton iteration.

Operation counts yield the following asymptotic estimates for the cost of

each stage of an iteration step:

LU 8M3N, SQL = 6M2N, COEFFS 15MN

Here LU Is the procedure for factoring L(F) into the LU form, and COEFFS

denotes the procedure for evaluating the Newton matrix and right-hand sides.

Thus, neglecting the cost of COEFFS, the ratio of a full Newton to a Chord

step Is about 414/3 and as M Increases it would seem more efficient to

switch to the chord method. However, this depends on the rate of convergence

of the linear iteration. This, in turn, depends on the closeness of the

initial guess from which the Jacobian matrix Is calculated. If a sequence of

Reynolds number cases are performed, wi th or wi thout extrapolation from one
to the next, this will in turn depend on the Reynolds number spacing. Other
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strategies can be envisaged, for ex~~ 1e, two fu ll Newtons could be used

each step with chord iterates, if n cessary, either between or after. It

Is not really clear what an optlmi strategy might be since this Is rather

problem-dependent and also depends on the accuracy required. For the

applications considered here we choose a fixed absolute accuracy of four

decimal places In the stream function as a reasonable objective. SInce

the velocities are obtained by dividing stream function values by the step

lengths , this corresponds roughly to graphical accuracy in the velocities.

The vorticity can vary considerably In magnitude, so it would seem reasonabl e

to allow the accuracy In the vorticity to be defined implIcitly by the

accuracy in the stream function.
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5.0 TESTS AND COMPARISONS

A series of tests and comparisons of the basic methods has been made

and is continuing. Considerable experience has been gained in designing

iteration strategies for good convergence and it has been clearly demon-

strated that the techniques developed avoid the convergence problems

associated with large mesh Reynolds numbers. It should be pointed out,

however, that the present restriction to uniform grid codes does put a

severe limitation on the accuracy that can be obtained for large Reynolds

numbers. A subsequent investigation will examine the extent to which this

situation can be improved by introducing a variable grid of an appropriate

character. In the present report we concentrate on convergence and consider

two regimes. The first covers a Reynolds number range for which we may expect

accurate results by h2—extrapolation. The second deals with higher Reynolds

numbers for which the grids - that we can reasonably use are nnt fine enough for

h2-extrapolation to be of much significance, but for which convergence is

still possible, because we avoid the mesh Reynolds number problem, and

results can be obtained that give a reasonable qualitative picture. The

introduction of a variable grid should give this regime more qual itative

significance and also extend it.

The basic test problems are those of the driven cavity and entrance

- ‘ flow In a channel. The former problem has been used as a test by almost

all workers in this area and thus is essentially mandatory. In additIon,

it isolates a basic feature which occurs in more complicated flows that we

wish to consider later. The channel flow problem is perhaps closer to some

of the practical problems we wish to study, and It also contains a free

“downstream” boundary on which the development of appropriate “soft”
boundary conditions can be studied.
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5.1 Driven Cavity

We consider the biharmonic formulatIon first. -Here the boundary condl-

tions are very simply dealt with since the fact that u ~ v 0 on all sides

except one, say the North, where u = 1 and v a 0, ImplIes that the coef-

ficients In the boundary equations In (4.27) are all constants and mostly zero. V

- - In terms of * we have 
~ 

a 

*x 0 on the East and West sides , * 
a = 0

on the South side and $ = 0, $y = 1 on the North side. In terms of the net

function F1~. the conditions on the North side, for example, read

a 2Ay + F1 ,n—1’ F1 ~~~ 

= 0

so that rN a ~
N 
~ d

N 
a o, qN 

= 24y, aN = 0, bN a 1. A similar treatment

of the normal derivatives on the other sides yields the table

Side q a b r c d

W 0 0 1 0 0 0

$ 0 0 1 0 0 0

E 0 0 1 0 0 0

N 2Ay 0 1 0 0 0

A wide range of Reynolds numbers from 25 to 2000 were tried on a very

coarse ii x 11 grid with a variety of iteration strateglesto gain experi-

ence w-tth.the convergence properties . Several strategies produced convergence

for R a 1000, but none of those used did so for R a 2000. It did not seem

worthwhile exhausting all possibilities in order to see whether R 2000

was an upper bound for this grid, but It does seem likely. In any case,

although the results for R ~ 1000 gave a qualitative picture that was not

unreaso nable , this Reynolds ni.mter is wel l beyond that for which one could
V expect reasonably accurate results wi th a coarse uniform grid.

V 
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Several finer grids were tried and since 31 x 31 seemed to be a reason-

able upper limit on the IBM 370 In the present context, most of the tests were

performed on 11 x Ii, 21 * 21, and 31 * 31 grIds. Tests showed that the

sequence R a 50, 100, 200 was a reasonable range to consider for the regime

in which h2-extrapolation could be expected to give graphical accuracy in the

u velocity on the centerline X a 1/2, and the results are graphed in

Fig. 4. The curves for R a 50, 100 are extrapolated from 21 x 21 and

31 x 31 and seem adequate for graphical accuracy. For R = 200 an extrapola-

tlon on all three has been performed and even this is probably not quite adequate

for graphical accuracy; the curve for 31 x 31 is shown for comparison . A
distinctive structure is beginning to appear at this Reynolds number. Results

for R — 500 on the 31 x 31 grid are also shown; they indicate that the sharpen-

ing up of the structure is being followed, but an extrapolated curve is not

given since errors are likely to be substantial to graphical accuracy.

Data for various Iteration strategies are given in the following table.

Iterations 
— 

Convergence
Required Factors - Tiu in~s (3~Q mm ~

_ _ _  R 
_ _ _  _ _ _

Grid 50 100 200 ~~~ 50 100 200 Newton 1 Chord Total Average

l i x 1 1 1  + 5 9 16 15 0.26 0.59 0.77 0.010 0.001 0.31 0.010

21 *21 1 + 7 11 27 28 0.41 0.64 0.81 0.138 0.003 0.314 0.105

31 x 311 + 7 12 33 41 0.44 0.67 0.85 0.625 0.012 1.270 0.423

- 31 x 311 + 7 1 + 2 1 + 4 41 0.44 0.07 0.53 0.625 0.012 2.061 0.687

31 * 3 1 2 + 3 1 + 2 1 + 5  41 0.39 0.14 0.80 0.625 0.012 2.656 0.885

The number of iterations is given in the form i1 + i2, or i2 If 11 
a 0,

where 1
~ 

is the number of Newton iterations and 12 the number of chord

iterations. The general strategy was to specify two Integers n1 and n2,
and to perform a maximum of n1 Newtons for the first Reynolds nister case
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Fig. 4. Extrapolated curves of u on vertical centerline for R = 50, 100, 200
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and a max imum of n2 Newtons for the remaining ones, fol lowed In all cases
by chord iterations until convergence (max 1.1 c J

~ 1O~~). At first it was
thought that a reasonable strategy might be to take n1 — 2, n2 = 1, as in

the last line of the table, but evidently this would be efficient only for a

much larger spacing In Reynolds numbers than is justified by the grid limita-

tations. For the sequence considered here It clearly Is most efficient to

evaluate the Jacobian only once and keep it fixed for three Reynolds number

cases . It is unlikely that one could determine an optimum sequence of
Reynolds numbers In advance. It is more likely that one would specify a short

sequence of Reynolds numbers for prelIminary Investigation before continuing

to higher numbers. Further, when a variable grid code Is Introduced, one may

very well wish to change the grid structure before continuing to higher values.

In such circumstances, it is of interest to consider the convergence from a

zero initial guess to a higher Reynolds number. The following table gives some

data from some early experiments with larger Reynolds numbers ( ii ’ denotes non-

convergence of the chord iterations).

Iterations Required
R Grid 250 500 1000 2000 Total Time

( 3+1 3+~ >0.068

1 2 + 5  2 + 3  2 + ~~ >0.072
ll x ll (

1 2 + 3  1+ 9  1 + —  >0.065

~ 2+ 3 2+2 2+ 3 0.069

2+. >0.335

3+ 1 1 0.447
21 x 21

— 
3+ 3 0.412

— 2 + 8  0.302

3 + .  >2.209

3l x 3l 3 + 5  2 + 2  3.178

3 + 5  1 + 8  2.669
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it would be needlessly expensive to make this table more complete, but some

t observations may be made from selected items. In going straight to R • 500,

for example, we see that more Newtons may be needed as the grid is refined;

and for the sequence R — 250, 500, 1000 with the 11 x 11 grid the strategy

n1 
= 2, n2 — 1 ultimately fails for a Reynolds nueter for which a solution

exists.

- :  
- 

The comparison with the * — ‘ AD! scheme of section 3 Is strictly a

comparison between methods for solving the difference equations since the

difference approximations are Identical. What we are comparing is a • —

iteration scheme in which the ~ equations are solved by AD! and the *
equations are solved by SOR with a biharmonic scheme In which the iteration

matrix Is factorized wi th a big band solver. The first thing that can be

said Is that the biharmonic scheme needs vastly more storage than the • —

scheme , at least em (6m + 5) words, which for a 31 x 31 grid is approaching

2 x 1O~, as compared with little more than 6mn, which could be reduced still
further If the convenience of storing u and v was relinquished. Clearly

one must look for a compensating advantage in the bihannonIc scheme. The

boundary conditions are somewhat more easily dealt with in the biharinonic

( scheme, but this is fairly marginal. The obvious remaining characteristic

is speed or run time to achieve a given accuracy. This is not quite so easy

to compare as might be expected, since the 
~~ 

— , iterations can be very

slowly convergent, In which case the same tolerance test max ½

• would not give a fair comparison. This is because the actual error can be

many times larger than the iterative change in cases of very slow linear

convergence. If, as usual ly the case, the convergence is ultimately geometric
with a comon ratio less than but close to unity, a comparison with the geo-

metric series Sn 
— a + ar + ... + ar, n-l for which ‘~n 

— lim SnI
— 

~n—l
1 x r/(l—r), suggests that we should terminate the iterations
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when max 1st < ¼ 1O 4 x (l-r)/r, where r Is an estimate of the coemon
ratio of the size of the successive corrections. Since the actual ratio

of successive corrections will not necessarily be monotonic and smooth, we
use the spatial average of the (as~ and, in fact , store the last eight
values of this quantity, say a1, a2, ... , a8, and take r as given by

r4 1(a5 + a6 + a7 + a8)/(a1 + a2 + a3 + a4). Ccm~ar1son of several sample
values of the converged results from each method shows that they give exactly

the same results for the stream function to the four decimal places required,
and also that, if the original criterion of max ~~ < ¼ lO 4 Is used, sub-

stantial differences in the fourth decimal do occur.

A further complication to a straightforward comparison Is the choice of

pseudo time step, for experiments show that for each grid and each R there

is an optimum ~t for which convergence is reached in the smallest number of
steps. Unless we use thIs optImum value, there Is no definite scheme which

we can say is typical. For the present this has been found by varying the

parameter y — At/ax; for example, y 4.3 for R — 100 with the 31 x 31
V 

grid and thus yields a value of r a 0.92 for the asymptotic convergence
factor. It seems that r is less sensitive to y for ~ < than for

> 1O~~ 
In fact, r Increases quite rapidly for 

~~ ‘ 
~~OP1~~ 

and it may be

possible to use this to estimate 
~OP~ 

by increasing y as the solution

progresses until the currently monitored estimate of r exceeds 1.0 and

then backing off a notch. For the typical case mentioned above the time to

convergence (In 84 IteratIons) is about 0.125 compared with 0.625 for

1 Newton on a 31 x 31 grid, so there is a fal r amount of 1 eeway that could

be taken up In such monltorings. One could also afford to store several

earlier Iterations and carry out some form of extrapolation such as Aitken ’s.
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Thus In the Reynolds number regime where h2-extrapolation is accurate,
- 1 the ADI scheme seems to be substantially faster. One presumes that the con-

vergence will get slower as the Reynolds number increases and that the problem

of finding an optimum y will worsen. This turns out to be the case as the

table below indicates, but even for R • 500 the time required is still less

than 1 Newton on the 31 x 31 gv Id. However , considerabl e time was used in

experimenting to find and attempts at automating this have so far not

been satisfactory. Total time is therefore becoming quite comparable with the

bihannonic scheme.

R 100 250 500

Optimum y 4.3 4.5 4.7 
—

Convergence factor 0.92 0.96 0.98

Iterations required 84 220 400

Time requi red (370 mins) 0.125 0.322 0.587

There would seem to be more point in developing the variable grid codes
~

before trying to push the Reynolds number up further. For variable grid codes

more time woul d be spent in evaluating the residuals, which would tend to

improve the speed ratio between the blhannonic and the • — 

~ schemes, so

one may expect the biharmonic scheme to be preferable with a variable grid,

especially at Reynolds numbers in excess of 500.

5.2 Channel Flow with Uniform Parallel Inlet Velocity

We make use of symetry and take the channel wall to be along x = 0 and

the centerline along x — ½. Entry conditions are u • 0, v 1 along y = 0

f 
and fully developed flow is assumed to have been reached by y —

Normally 
~aiax 

is very much bigger than ¼. so we expect to have to take more

stations In the downstream direction than across the channel. An appropriate

will depend on Reynolds number and in fact should be proport ional to R
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for large R. ExperIments showed that ~~~ • 3.0 was reasonable for R = 50

so for larger values we took 
~max = 0.06R. This turned out to be excessive

for larger R, presumably because we are not in the asymptotic regIme at

R — 5 0 .

A downstream boundary condition in which the fully developed profile was

imposed generated oscillatory behavior near the downstream boundary, so a

condition of parallel flow independent of y was imposed instead. This

avoided the oscillations and yielded a downstream profile adequately close to

the known parabolic profile. Thus, the boundary conditions read:

x 0 :  u = 0 , v 0 , x = ½ : u~~ O, v,~=O
y = O : u 0 , v 1 , Y Y ma,C u 0 ,  Uy O

or in terms of q~:

x 0 :  p = O , *~~~O, x ½ :  * - ½ , *~~~~°
y= O: *= -x ,*~~=O 

y _ y ~fl~~: *y *yy O

V 

Using standard central difference approximations and the eliminations mentioned

in 4.3, we obtain the followThg table

Side q a b s c d

W 0 0 1 0 0 0

S 0 0 1 -x 0 0

E 0 2 -1 -½ 0 0

N 0 0 1 0 1 0

For a selection of moderate Reynolds numbers, including R = 150 for

which we can make comparisons with the results of Wang and Longwall~~
21,

we obtain the following performance data, starting from a first initial guess

given by fully-developed flow.
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Results for the case R = 150 on the 21 x 61 grid wi th — 9.0,

AX = 0.025, 4y = 0.15, obtained with the biharmonic program, were compared

with the results of Wang and Longwall1121. Satisfactory agreement was

obtained. A further series of tests on a crude 8 x 15 grid were made to

investigate the convergence for larger Reynolds number. The strategy defined

by n1 = 2, n2 = 1 worked extremely well on the Reynolds number sequence

R = 25 , 50, 100, 200, 400, 800, 1000, 3200, the convergence for R = 3200

appearing to be j ust as good as for the earlier values .

A limited number of tests have been made with the p — ~ AOl program

for this case because It soon became evident that the bihannonic scheme

was clearly superior and a lot of pointless work would have been carried out

in finding 1opt Suffice it to say that a typical particular case , R = 50

on a 11 x 31 grid, converged in about 230 iterations with y = 5.0 and con-

vergence factor 0.97, and took 0.15 mins, as compared with 0.11 mins for the

s ame single case using the biharmonic program.
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