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A-

Consider a stationary Gaussian stochastic prOCess {y (t); t € R) with a rational spectral density, and let
H(y) be the II ilbert space spannsd by it. The problem of determining all stationary and purely nonde.
terministic famiiie, of minimal splitting .“~petm of H(y) is considered; the splitting .ubspacse consti-
tiite state-spices for the proc y. It is thowo that some of these families are Markovian, and they lead
to Internal stochastic realizations. A complete chara~tsriz.tion of all Markovian and non-Markovian
families of minimal splitting lubupaces is provided. Many of th. basic results hold without the aesimption
of rational spectral density.

1. lnaroducticsi H~(y) H~ (y) (~ H (y) (4)

• Let ~yft); t ER) be a purely nondeterminhstic, mean-square the praant space. It contains the gain space
contimious, siatlonery. Gaussian stochastic process with zero
mean and defined on a probability space (fl,F,P). We shall H~ .(y) — ~~{y(tL~(tI ~fr)(t 1. (5)
assume that the ipectral density • of y Is rational although,

we shall explain below, many of our results hold without this i.e. the subepace spanned by y(t) and all its derivetives at t ,
sumption. Let H(y) be the closed linear hull in L2(~l,F,P) y~”~(t) being th. highest existing derivative defined In meun•

of thestochailcvariablas {y(t);tER). Then lily) l~. square. If 4’ has roots on the imaginary axis, l.4~(y) will also
Hu bert space with inner product I ~,i~)’ E (E’p}. where E .) contain same integrals of y over the real line.
denotes mathemetical expectation. The ststlonarlty of y
implies that there is a translation group CUt ; t E R } of unitary For an arbitrary t a R, we wish to determine a subepace of H(y)
linear bounded operators H(y) H(y) such that y(t ) U~y(0) which, loosely speaking, contains all the information about the
for every t C R. A family {S5;t ER) of subapaces of H(y) is past of the process needed in predicting the future or , wh ich is
said to be stationary if . for eect~ t ER , S~ - U~S0. equivalent, all the information about the futu re required to esti-

mate the past More precisely stated: Find all (closed) wb.pee s
For seth t ER , the Ililbert space H(y) can be written X which satisfy the condition

H(y) lç(y) VH~(y), (1) E {i, lH~ (y) VX ) E(n l X )  fo ral l ,iEH~(y) (6)

where H~~y) is thep tspac. or the equivalent condition

H~iy) ’~~{y fr );v~~t ) (2) E{n 1 14(y )VX} E{ T i IX )  for all iiEHj iy) . (7)

end Ht(y) is the l4iJture spac. where E {i~ I X) denotes the orthogonal protection of t~ onto
the wbsp.ce X, or, in probabilistic terms, the conditional mean

4(y) — ~~(yfr );r ~ t ) .  (3) of i~ given (the sigma-field generated by) X. Each of the tw o
conditions (6) and (7) are aquivelent to H (y) and 4(y)

Her, ~~{ •} denotes the dosed linear hull , arid X V V is the being condition ally Independent given X ~101. A subepace X
amiss ~~{X,Y} . Of course,(1)isnotan orthogonal dscom. withthhsproperty is .aid to be awlltthgwbwac,attime t (6,
position; in fact, the past and future spaces overlap. We shall 11). Obviously H(y) is a splitting subepace, and so are H’ (y)
call aid H~’(y), but they are too large for our purposes. We shall be
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Approved for public release :
dietributjoh unlimited.

—~~~~~~~~ ______

— —
~~~~

- — 
~~--—- .--——-- -~~~~~~~~ J ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~



---- 
-•.--____

S .

- . .—. . . . S

AIR FORCE OFYIC’E OF SCI~~TIrIC RESEARCH (1330)flOTICE 07 TRANSMITTAL TO DDC
2. teolt~tcal r~por’t has been reviewed and is

-~.;,rovec~ f o r  ~~~~~ r~1eg3e IA.~ Aj~ 1~ J —l2 (7b).
~~ itvibution is t1~limited.
A. D. BLOSE
Technical Information Off ice~

- T .1 .T~~
- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~
- -=-~~-~~- . ~~~~~~~~~ - -



- ——- — -- --——. .-- --

interested in splitting ,ubepacas X which are minimal in the such splitting subspace must contain
sense thet ths re is no proper aibspac.ot X which is also split-
ting. We will show that (in the rational case) all such subipaces H~

1
~iy) ~~(E (ii I H~’(y) ) ;‘i E H~’(y )) ,  (9)

are finite dimensional.
which is itself a splitting subspace. Hence H~’ iy) is a minimal

The sigoificance of the minimal splitting oihep~~’ is that they splitting subspace. We shall use the shorthand notation
will serve state spaces. If is a minimal splitting subsp.ce
at time 0, X1 — U~X0 is a minimal splitting gubspace at time t i4’ iy) — !{l4~’(y) I H~~(y) } (10)
Heric. {X.t; t € R) ~is a stationary family. Any stationary vector
process (x(t) ; t C K } such that, for avery t C K, x (t ) is a basis instead of (9). As soon as we hav, established that H~

/ 1y) is
in X5, is called a state proc . In the nest sectio n we show that finite dImensional, we may remove tits bsr over the E denoting
yft) C X5, and hence there isa constant row vector c such that closure. In the sa~ne way , it can be seen that

-

- 
ylt) ca(t) - (8a) H~” (y) ’~~(H~iy) l Ht (y)} (11)

It will be seen in Section 4 that there we famili , of minimal Is th. minimal splitting aibapace contained in 4(y) . These are
splitting subapaces which are Markov ian. Then any state process the two stats spaces considered in (1, t 1, 123.
x will be a Markov proc~~ and there isa representation

A generalization of this consuuction leads to the following two
dx - Axdt + bdu , (Sb) lemmas.

where A is ac ~nstant stabiliry matrix, b ls a constait vsctor Lemma l. Let S b.awlxpac.ef 11(y). f f S D H~’(y),then
arid u Is a Wiener proc defined on the who le real line. In ~ {4(y) I S) is. splitting subspac. at time t Similarly, if
general, there is also a multitude of nori-Markovian familiat of S D 4(y), ~{H~iy) IS) is a splitting wbspzc. at time t.
minimal splitting subw~~~ for which there is no such ~~~~~ —t5tiofl. Proof. Set X E{H~ly) IS) . Let ,iEHt(y). Then

E{E {,,lS ) lX ) E~iiIS) . Therefore,since S~~X,
A representation (8) is called a stochastic realization of y.
Usualiyawhitenoise term is eddedin(Sa),whith leads tocon- E{q IS} E{,~)X } . (12)
sidering a stochastic process y with stationary increments
instead. The results of this piper can be trivially modified to Assume that S ~ H 1y). Then, Içiy) V X C S. Hence, pro-
cover thss case (8] ,th.preasnt formulation bsing for darity of jictlng(12) onto H~ (y i V X  yields (6), i.e. X isaaplhting
presentat ion only. A deterministic version of the stochastic real- aibspace. A symmetric argoment yiel ds the second part of the
ization problem, concerned with the determination of (A,b,c) lemma. •
in (8) only , hae been considersd by Anderson (2), Faurre (31
and j  C. Wiliems (153 . The probablllstlc problsm of flndlngall Lamma 2. Let X b..minwnel splilring subepac.at time t
representations (8), i.e. quadruplets (A ,b,c,u), wag solved (in a Than isa have Uie following two rspresantatians.
more general setting) in Undquist and Pi~~i (71 and Rucksbu,ch
(13] . A coordinate-fr., state-apace approach, such as the one X ’ ~{4(y1 I lç(y) V X}  (13)
takenin th,speper.wesu,ed by Akaike(lhPicci (111 and
Rczanov fl2] ,but cniynatespecsscontain.d in the past or,a X.!{H r (y) 14(y )VX) (14)
for Akalke, In the future were considered. A complete charac-
teriza tion of all Markovian state spaces wag obtained by Proof. By Lemma 1, the right members of (13) aid (14) are
Lindquist and Picci (81 and Ruckebusch (141 . The former splitting subepaces at time t But, in view of (6) and (7), these
paper is written in tam e of minimal splitting subspacss, but the are conteln d in th. minimal splitting subepace X and therefore
non.Markavian splitthigwtapac. were overlooked. An erratum (13) and (14) follow, e
for (83 is provided in the end of this paper; a revised version is
under preparation. The existence of non-Mvkovian splitting Now define the fram, space
subapical is establ ished in Lindqulst-Picci-Ruckebusch (93 . This
result Is discussed In Section 5. H~(y) — H~~’iy) V Hr’ (y) , (15)

In this paper we have limited our attention to internal stochastic which Is itself a splitting aibapace. In fact , H~(y) Is the smallest
realizations, Li representations (8) whose state spaces are subepace containing all minimal splitting subapaces, es Is seen
contained In the Hilbert space H(y). If we dispense with this from the following theorem.
assumption, we obtain xtsrnal realizations. Generalizations of

• our results to include these representations will be pceaented Theorem 1. Let X be a minimal spllmisgavbspac, at taie* t
elsewhere. Than

______- 
- 

2. MInimal splitting suh~~ e H?(y) C X C H~
(y) . (16)

Ut us begin by considering en arbitrary splitting subapece X Proof. (I) Let i~ C I4~(y) - Hj ’fy) f’l 4(y). Then v~ -contained in thep.t space Hfly). In view of (6) it must E{fl I Pçiy )VX), which , by thespllttlngprcparty (6). equals
satisfy E (,~ I H~ (y) } E (‘? I X ) for all ,

~ 
C Ht(y). Hence any £ {‘i I X}. Hence ,~ C X.

- -—-~~~~~~~~~~~~~~~~~~~~~~ —— - -— - —----.
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(ii) Define P4 and Nt to be lç(v) 0 H~~iy) and class of all Wiener processes (22) and U4’( U )  the subset of
H ’(y) 0 1ç4(y) respectively. It is easy to we that N~ • shoes u EU wh ich correspond to a * for which the function
H~ (y) fI 14v 11 and N~ - K~’(y) fl (H~ (y)11 Consequently, ~~ ‘ i(k~,) Isof Hardy clap H~(H~’). Let W bethe inverse
we have the orthogonal decomposition Fourier transform of w -, W(k.i). Then

11(y) — N~~• H~(y) ~~ N~’ - (17) 
v~ ~ sl~)t~ (10)~ ) if W(t—r)dufr) . (23)

For seth ~~ C 4(y) define r~ — £(r~~ I Hj~’(y) V X). By
Lemma 2, X is the closed linear span of all ~~~~ ~~- 

~~°“°‘. Now, W(t) ~ 0 if and only If u C U ” . Therefore, U ’ containsE (,p lHiy)}- £ {a7’ l Hr(y)) C Ht~”iy),*4iiCh Isoithogonel prscljsly shoes u for which Hr(du)~~Hr(y). Let be th,to N~ . Slncs, In addition, (,~ — £ (q I Hjiy) }1 I Hr(y) ~ ~~~~‘ unique rational spectral factor with all poles end zeros In the leftwe have ip .L Pc, La. X Is orthogonal to N~ . In the same ws~ ~on half-plans, and let u. be the corresponding Wienerusing rsp~..i..t iJon (14), h I s  seen that X is orthogonal to N~. process. Then u~ C U~ . Moreover, since *.‘~ has all its polesHence X C Hi’. in Us. left dosed hail-plane, with acm. effort it cot be seen from
(22) that Hr(du.) C Hr(y). Hence H~idu.) • H~ (y). and u.This theorem thowi that, as pointed in Section 1, all minimal 
~ called the irwiovat ion procas. In the semi way we cot we that

splitting siabsp.cas at time t contain y(t ). ti~ C of those u for which 4(du) C 4(v), with

____ 

equality for the backwd Innovation pmcweAU., i.e. Vie WienerCorollory 1. Let X be. minimal splitting wbepace at owi. t corres ponding to the spectral factor W, (—s). Finally, we
fliP ,? note that H(u) H(y) tor ah u CLA.

(18) P..,po.itlon l. Let UCLA ”' endlet W be th~~.,r ...lMsedksg
spectral factor. Then E (4(y) I H~”(du)) is finite dbnwafavsal

E X H” ~‘ - H ’~’( ) (19) If aid only If * Isseticvipl,i,.. *‘ ed~,iWsere s and x a’{ I t~~” ~ 
, raw reiarha~, prim. p omials. In th~

In anticipatio n of Corollary 2 below and to provide a more .? (
aiggestive notation,thedosur,ben havs b.sndaletedin(18) E(H~

’(y) I Hr(du)}~~J !~~L l deg(p)<k) d9, (24)
aid (19). This result will be interpreted in Section S. ‘Lw t,i4lo~) j

3. Forweid end backward Kaks,en4ucy filters ~~OV~ k dag(X), and .s* re we have taken Us. clo d line.-
span in L2(R) over all teal polynomials p of degree lose mar is.

Since Vie stochastic procew y is atadonay and meensquare
continuous, it has a spectral ,ep.~~~sa’Jon Proof. First not. that, in view of (23),

vU) ,L,~
4t
~9(nu1), (20) E {y(t+r) I H~”(du) } if~~~~i_a)du(c) . (25)

where d9 is an orUiogoiwl atucheell~ measure (41, whIch, in 
-view of thepurely n~ndeta....inistic imptlon, has the ~~~ (If): Suppose that W -~~~~ is rational, and let (A4i,c) be.

arty E 1d9 ~2 • •(io,)do,. liars we ne Vies Vi. spetlj~~ minimal realization of W. Then W(q- c(sI—A) b aid, in
density • Is rational, i.e. ~ • ~~~ ~~~ ~ ~~ ~ ~

,, ,.j, view of the H condition, Wit) - cel’%tbl (t), where lit) Is one
direly prIm. polyncreiele of dsp.. 3m and 2rs rs.,~activsiy; for I ~ 0 and zero for t <0. ThIs inserted in to (25) yIelds
of cosine m <it. (kr)
Consider all seir solutiorts of~~~s p e e jz.j~,i 

E{v(t+~~IH~ (du))aj .~~
t
~~~~~d9(w)

a where C~. - x(s)ce~’(s1—Ar ’b isa polynomial, for x is the
(21) th polynomi al of A. Since (cA) ls obesrvabli,qran

{p1; v ~ 0) ~onsists of all nsal polynomials of degree less than is,
For each aids ~~~, and consequently (24) holds. The dimension of (24) Is is.

(only If): We use a technique found in 151 . Suppose that
dO. ~os~r’d9 (22e) dim £ (4(y) I Hr(du) } - is < . Let W be the dosed span of

{W v ~ 0) In 1.3(0,” ), where W,(t) • W(t+r ). ‘Thai, In view
is a unitary orthogon al qre~si& me~~pre aid of (25), diii’s W - is, Let (‘1’ ‘2” - -~‘is } be. bede In W , and

let e be the column vector of these *inctlo..a. Since SI Is dosed
under the shift Wft ) -. Wfts r), there is an nvertlbl• mettle func.

11(1) • ‘ — dO(w) (flb) don T aid’s that sft+r) - T(r)plt); T is continuous, for Vie
sh Ift Is ~onthnuous In 1.3. SInce T(t .v) a T(t)Tfr ), T(t) •

+ ~~~~~~onUse real lint Define H~~di~ aid ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

manes f u rseiiactlvalv. I,. H~ (~ a) ~~ ~~(u(t+r) — u(s); r~~0) Using a symmetric argomem we can prove a backward versIon ofand ~(di’ ~~(u4t+r ) — u(ti. t 1. Lit U this proposition.

- ___  _ _ _ _  —
~~~~
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Psopoelh.n2. Let u € U  ard lot ~ b.ffi corregoondesg for .very t ER, Xr : V~~1X~ aid )4” :.V~ Qç are condi-
spectral lbeov~ Than B (Hj fy) I 41 di4 ) lo finite dbnanalonel tionally undspandsnt given Xr This is equivalent to sad’s of the
If id only if * lo ‘ationul, in s*lo’r ~~~ B (H~ (y) lH~’(du) ) two conditions
m pAcer by Us. r~iW member of (24), .sV*w s Us mmrarww
polynomiifol W aid is m.d.peeofm.denaninator po4no. (I) E(tt lxj ” )a E(’s, lX1) forall r,€4 (31)
miaL

(II) £ (ti I4)aE(i,IX 1) for all r~EX ~” , (32)
Since H (y) Hr(dia.), Proposition 1 yields a representation
of ~~~~~~ namely elthir of which cat be used as an alternativ, dpflnltion.

H
~~

(y) •f
~~~~~~~

Lldegip)<n} d9 (26) Lamme 3. Let {81;t ER} b.anon .aslagfanhlyof
w

—w 
‘ aiôge~~~of H(y), /.& S1C S

~~C br a !  ICR and e)’O.
Then (~

(Ht(y) IS~); t e l l )  lo Navkoviai.
where v. is the numerator polynomial of Qir.. Now, using the
prucsdi~re outlined is’. die end of Section 4, we can ew that there Proof. Set X • T(H” (y) 1st ) ~~ ~~ C 4(y), where V ~~ I.
Is an equivalence class of ,.iprea...I.b ons OSfifie • £ i s1j .  SInce 4 lithe closed span of all such

,i,lt just remains to thOw th$t E(i~lX ~ ) E(,~lX 1) to prove
(31). But. as in(12),E(q lS1}uE{ii lX 1}- Since ~~~~~(27) X1,this lmplies £(fl lS1)a E(,lXt},w$iIthpro~ectadonto X~y. • c,x• yields Vie desired rNult, for X~’ C S~.

of type (3), such that, for cesry tEll, ,t .(t) is a basis of Consider a family (X1; t E R)  of mmm’sal splitting ailisp~~~This is the (steady-state) K.Iman-Bucy filter. Ukswise, Then, by L.mma 2 (and Corollary 2), X~ - £ (4(y) I5t~ 
for all

the reprsssntasion t ER , wh ere St a Hj (y) V X.,, Now, could we find a Wiener
~ process u aid’s that S~’ H~’(du), Proposition I would yield a

ic1”' Iv) .f ~~~~~ “~“~ I dsg(p) <n }~ (28) representation (24) of (X1: t ER) - The following three lemma

~ L’.(-,~
) show under what conditions th is will happen. -

follows from Proposition 2, using the fact that 4(v) - Mt(da.), Lemma 4. Let (Xt; t ER) be. Ma,kovew f.’nify of minimal
and we obtain an equivalence d of b.ckwd Kalman.Bucy splitting wbip’car, aid, for ovary t ER , define St • Hr(y) V
filters Tbn th. 4nnuiy ( ;t ERI inondea’enW~

- ~ ,I,dt +&.d(1. Proof. By Theorem 1, y(t ) C X~, and hence 
~ 

lç(y) YX~~(29) S~. Define Z a x~ 9 S~. Let r ~ t, Then, using Us. splitting
property (6), E (y(r) IX ~ ) •E(y fr ) I Xt ) +E(yfr ) I Z ) .  Hence,
since yfr ) C X~, the Ma’kov property (31) implIes that

which ivolve beckw ard in time startin g at t a a’, for B {yfr ) I Z) 0. Therefore B {l’l’1’(y) I Z) aO whi ch togethi.
R.{MA,,)) >0 (see Section 4). Now the second part of with the trivial fact E {H~”(y) I Z~ —0 yIelds Z 0. Conee.
Theorem 1 can be rephrased to reed: Let X be a minimal split- qusntty, 

~~~~ 
X~, which is ~~~~~~~~~ a

tingsubepace at time t. Then X C~~(z.(t) ,~ .(t )), i.e. any
(minImal) state vector can be aqr~~~ J In term s of the forward Somewhat differsndy stated, Lemma 4 car, be found is’ 191.
and backward Kaiman-Bucy estimates; cf. Undquist-Picci (7) whets an alternative proof Is gIven.
aid Ruckthu.ch (13) . In view of (26) and (28), the following 

____ _____proposition Is immediate. A famIly {Xt; IC B) of wbsp’oss is said to be purif y n.adeter.
mln(e?Ic It 9 X1 a 0. By assumption, {H~ (y); t ell ) Is purely

PropositIon 3. Lit • - p/q, where p and q a,, mfaove4r nondessrmhnlsdc. The following result Is L.madlais.
prkriepo4,emriws of dep~~ 3m aid 2n ‘uspec*sly, Then
Us. fran’s. woes pAcer by Lemine 6. Let X1 - £ (4(y) 1St). where S

~
. Pc(v) V X~There (X t; tE ll ) lo atadonay and purely naedeannhiMtft if

a’

P4~(y) f ~~~~~ dsg I~ ) < }d9 (30) 
aid only if (S~;t CR) ha mew pre~~f I .

-“ ~p4k.r) Lemma S. Lit (St; tE ll ) be. stationery, pwsf y n~ e~~e.-.
Corollary 2. Give.’ Us. mme ~ ~~~~~~~~~~~ 3.1cr minlatle, aid nondicraeskig fonHy of aibepaiN of H(y) auth

X beamkrhnw spilttl., wbquaor at trw,. t. Then n<dim K< St~ 
Hr(y) for all tE R Then mere .nIg~~a Wiener

process u deflnan’on all of R such disc, for every tE ll,
Ic(dia)aSt. Momouc , uCLA ”'.

Proof. Since XC H0 Thaciars 1), dim X ~ i’.+m. In view of
(IS), dliii X ~ dIm l~ ” iy) a it. . The proof of this lemma isa bit lengthy and technical, aid It will

be glv.n k’s th.rerissdvsrslonof 181 . Once the atletenc eot e u
4 ~~,ksv$en fanijiss of minimal splitting subapeos. such that Hr(dlJ ) - St ha been estdellihed, It Is easy to em Vial

• — It must belong to U”. lii tact, since H~ (y) C H~ide). there is
A fatill y (X~ ti ll ) of subep’cs I. said to be Mark OP/a, i~, 

an l.2.function W aid’s that

( 
______________________________________________ 

________---~~ _

-‘ — - ,
~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



a’ 
(i). First obseive that uEU~ if andonly If x~~x..

ylt) W(t-o)du(o) af k.i)d~(w). It follows from the proof of Theorem 2 that H~idu)
But It Ii seen from the proof of Lemma 4 that

* 
H1 (y) V X1 X~ - Hence X1 a H (du),

Hence W isa spectral factor of cla H~, and therufore u ELI”. Lastly If): The inclusion X~ C H~jdu) implies that Hr(y) C
H~idu) (Theorem 1). Thisconditlon is equivalent to u E Li”

Thaorem2, Let ~~~p/q, wher. p and q ~~~~~ timly prime - (Ssction 3),which can only be the case if x-x. . a
polyncmè’s oldejwu.. 2m and 2.’ irqu.cthvfr aid m <s’s.
Then C Xt; iC B) is. stationery ~~~~ I.~~d. iIb?isIk It follows from Theorem 2 that there are at most 2m stationary.
Mav*ovi~

p family of minimal splitting ,jhwoca If aid o.’/y if purely nondstsnninhatic, Markovien families of minimal splitting
subspi~csi. We shall now em that each of these corresponds to an —

x~ af ~x dsg(p) <n} d9 For.!! tE ll (33) :~~~
i’.ce a

~~~~~~~~~ ,~~~
zaticns (8). To this end define

for some vu! polynomial v satisfying xk (t) af eI~
t ~~~~ dQ’ k — I  2 ... n, (37) L

,~~~ i(lw)
ajs )t (—s) a p(s) - (34)

Then, for each t C B, the random vector x (t ) isa basis in X1.
Proof. (if): Lot x. be the polynomial solution of Let Vi. components of the row vector c be defined by

x(s)x (—s) • q(s) (35) iii ) 
~~ c~s1” ’1 . (38)

kal •

having all its zeros in the left open half-plane. ~~~~~ 
a 

~~~~~~~ and Hdefine u to be Vie Wiener procass with stochastic spectral SflC*• In vera’ of (20),

measure dO • W(k.~~’1d9. Then u C U”, and therefore
Hr du) ~ I4~ (y J. 

~~~~ St — ~‘~~du). cI.aiy; S
t :t 

E R )  isa 
y(t ) — cx(t) - (39•)

ststionary, purely nondetunmnustic, riondecr.asing family of To
t’tiiIJ~~~ such that ~~~ Hr(y). Moreover, by Proposition 1, ~5t C rwPr~~~~ for x, let

X1aE{Hjtv) lS1), for dsg~x.)—n . Hence,by Lammas l,3,. xf s )—j ’ +a 1s.” 1+a2s” ’2 +, . + a.. (40)
and 5, (A1; t C B) isa stationery, purely nondeterminhstic, and
Markovlsn family of splitting subspacss. Since dim X1 - ii, be a solution of (35) and iet u be the Wiener procen in U
these splitting suhspaIl, era minimal (Corollary 2)- corresponding to - w/x. Th.n
(only If): Let (Xt; t C A ) be a stationary, purely nondetrnin. a’

istic, Merkovian family of minimal splitting subspacaL By 1’ ‘ICorollary 2, dim X, <a ’, and, by Lemma 2. X.. - B (4(y) 1St) x k(t) —J •I~,t ~~~ dO (41)
whets St H~ (y) V Xr The family S t  C 

~
) is noted.. x(lø)

emm~~~~~~~~~~~~~ . Henc~~~~~~~~~~~~~~~ e 
and therefore it is easy to see that x satisfies

C U  such that St - H idu) for all tE ll . Then, since th
dim X~ 

+ bdu , (39b)

a’
. . 

‘ 0 1  0 - ’ ’ O ’ 0
X~ ..f .

1~~~~
{ef

~~~~~ )
,)

I de~ o) <n + de~(~.)} d9 (36) 0 0 1 - - ‘ 0 0

In fact , a ration ~ ipectra~ tactor mist ~~. Vi where A - ; b a 
:

0 0  0 - - ’ l  -

W(s)
—a1 ~~~~~ ~~~~~~ 

. - I
where t and x ~ tisfy (34) and (35) respectively and ~ is 

_____

some other polynomial. But the rigIit member of ~~ contains The system (39) se Merkovian representation of y, But for

• (33), which we have just shown to bee splitting subapacs. (39b) to evolve forward In time, we must have Xj C H~ (dlj) .
Hence ~ - 1. • 

This condition, which is equivalent to X~ I H~ (de), character-
izes the forward propirty, and to satisfy It we must choose

• Corollary 3. Let (X1; t EA)  be me family of minimal splitting x • x. (Corollary 3). Than Re{X(A) } <0, and we here a ‘

wtwoca defined by (33). Let x be a polynomial solution of stochastic realIzatIon of type (8). Likswlie, by Imposing the
(35). and tar u be the pvoo In U ~~~aspn~~j . ’g ~~ ~~

a ~ ConditIon 4 C 4(du), I.e. x(s) - x.(—a) (Corollary 3), we

Then, (I) C Hr(de) If aid only If x • x. (the solution of obtain a back vd stochastic real/ration [7) wIth Re{7(A) 1>0.
(35) wIth semi having n.getA,e real parts) , ~ 

~~~, 
By makIng coordinate changas of the type x (t ) ‘~~ Tx(t) in X,,

X~~
. H idu); and (iii 4 C 4(du) if aid only if x(s) x.(—’I where T isa nonsingular constant matrix, we obtaln equivalent

in whim cm.. 4” H~’(du). ‘ representations with (A ,b,c) exchanged for (TAT~~,Tb,cT’~~),but them is no such relationshIp between realIzations (8) corre-
Proof. The tiiv parts are symmetric, so we only need to prove spondlng to different families of minimal splitting subapaoea~

~

-- - - - ~~~~~--- --  I
- - 

_. 
~~~~~~~~~~~~~~~~~ ~~~~~~~~ ~~~~~ -

‘ ‘‘
~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~
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8. Nosi-Morkovlen families ot minimal splitting s”b~~~’- 7. A. Lindqulst and G PIcci, On the stochastic realization

Th. following theorem, presented In Undqulst.PIcc.-Ruckebu,d’s 
~~

, 
~~~~ of .(91, gives a complete characterization of all minimal splItting & 

~~~~~~~~~~ ~~~~~~~~~~~~~: F Oc. 1977subsp.ces. 
Caif. Derision and Ca’rvol, New Orleans, 1977, 42 -48.

Theorem 3. Lit X a!{ l4~’(y) IS) . Then X isaminimal spilt. 
~ A~ Lindquist~ G. Pled wed G. Ruckabu.th, On minimal split-ting sube,ac. at tine t ifa’#doniy i~’ ting siab,p~ -ss wed Mw’kavian repreesmgions, (to

H~iy) CS C H~iy) V I4~(y) , (41) 10. M. Leave, Prcbebilfty Theory, Van Ncetra,d, 1955. 
‘4

in which case S • Hr(y) V X 11. G. Pined, Stashemic realization of Gaussian proce ss, Proc.
IEEE 64(1975), 112—122.

In Theorem 3.
that th.r* i~ only a finite number of X which belong to 12. Yu A. Rozweov, On two selected topics w’snacted with
Markovian families, namely those given by (33). Let us call the $todia$bc PitItwV’s$ th.OiV,APPhed M.themetlor &
em of these M

~ 
However, in gsn.ral, there is an infini te number OptimizatIon 3 ( 75),

of na~ pv— S satisfying (41). Since there isa one 10 one 13. G. Ruckebuach Representations msrkovisnnas de pcoe~~ ’scorrespondence between S and X. there are in genital minim al Gaum.isns stationires, Ph.D. Thesis, Univ. of Paris VI , 1975.splitting sub,i,enes X I N0. For such ai X. define X1a U1X
for all tell. Then (X1; tell] isa non-Markcvian family of 14. G. Ruckebuich, A state space approach to the stochasticminimal splitting subipeces. 

~~~(~gt j~~ problem, Proc. 1978 gnisvm Symp Circuits
and Systems, New York.

Altflougi’s, in general, an arbitrey state proca (x(t); t E A )
will not be Markov, there is always a representation (39a), and, 15. J. C. Willems, Dissipative dynwnicel systems, Part II: Linear
in view of Corollary 2, the relations sYsWfl5 qUadrZtic suPplY retaLAndUW~~ Rational

E {xft) I H (y) ) — x .(t) (42) 
______

t Ii ~stom lot Re1e~ence S (COC version):and

B {zft) I 4(y)) T,(t) (43) p. 44: The exponential in (3.3% thoiitd be replaced by a genstil
inner function. However, by first showing that the frame space iswhere x’~ft) and ~.(t) are the forward and back ward Kal~nei’s~ finIte dimensional, as we do in this paper, only rational W need

Busy stitnatse, WIU always hold, to be considered.
Finally. let us remark that many of the msistti of Viii PCOIr do p. 44: Add the assumption çis1 -0 In Lemma 3.1 and elsewhe re
not require a rational W-’i al density; this assumption enters vitiate this result is used.only In Section 3, Theorem 2 and Corollary 3. In fact , Section
2, Umnem 3 and 4 and Theorem 3d. not even require me p. 48: it is claimed in me proof of Lemma 7.2 that the family
stationary wed purely nondetermlnistic imptionL (S1; ~e B) increasing. Actu ally this condition is equivalent

_____ 
to {X1; t E B) being completely Markovdan (9] . Hence this

Rof5renam property must be tasimed in Lemma 7.2 and Theorem 51.
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