AD=A073 230 KENTUCKY UNIV LEXINGTON DEPT OF MATHEMATICS F/6 12/1
A STATE=-SPACE THEORY FOR STATIONARY STOCHASTIC PROCESSES: (U)
1978 A LINDQUIST, 6 PICCI AFOSR'78-3519
UNCLASSIFIED AFOSR=TR=78-1417

END
DATE

Fil L'H
poc




r————

e Jj2s

o
3

L £

= . k=

. -
=

22 s s

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A




.

R R R S e B

SRR
H

o

MA073230

DEERTR A

R L S e e

DDE _FILE COPY

SECURITY

~

8| AF

 TITLE (and Subtitle)

7. AUTHOR(s)

el

78 - 141

OG NUMBER

S. TYPE OF REPORT & PERIOD COVERED

Inbirim

& STATE-GPACE THEORY FOR ;TATIONARY /
i‘l‘OCHASTIC PROCESSES; e

Anders indqulst ‘ Glorgio/Piccl } /J .9

p——

6. PERFPRMING ORG. REPORT NUMBER

8. CONTRACT OR GRANT NUMBER(s)

V AFOSR-78-3519

e

. PERFORMING ORGANIZATION NAME AND ADDRESS

Lexington, Kentucky 40506
1. CONTROLLING OFFICE NAME AND ADDRESS

16. DISTRIBUTION STATEMENT (of this Report)

University of Kentucky /
Department of Mathematics

10. PROGRAH ELEMENT, PROJECT, TAS

oinl]

)AL
euozﬂg‘p AL

REA & WORK UNIT NU

Air Force Office of Scientific Research/NM j
Bolling AFB, Washington, DC 20332

-
7 &

REP! €
- NUMBER OF PAGES o
7

T4. MONITORING AGENCY NAME & ADDRESS(/f different from Controlling Office) 18.

SECURITY CLASS. (of this report)

UNCLASSIFIED

15a, DECL ASSIFICATION/DOWNGRADING
SCHEDULE

Approved for public release; distribution unlimited.

v

17. DISTRIBUTION ST,

AENT (of 1’ + abastract entered in Block 20, il dilterent from Report)

~ e

18. SUPPLEMENTARY TES

19. KEY WORDS (Continue on reverse side il necessary and identify by block number)

| EC ABRTRACT (Continue on reverse side if necessary and identify by block number)

Consider a stationary Gaussian stochastic processcr
rational spectral density, and let H(y) be the Hilbert space spanned by it.
The problem of determining all stationary and purely nondeterministic
the splitting
It is shown that some
of these families are Markovian, and they lead to internal stochastic real-

izations. A complete characterization of all Markovian and non-Markovian ﬁhw

families of minimal splitting subspaces of H(y) is ¢
subspaces constitute state-spaces for the process y.

(t)ité

onsidered;

RP with a

fan7s 1473

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

O RN T P

AU . st e

e

iy RS YT W SRS WA MR T




o o M o e = =
L S i - e e
i e kARG M BT 40 7 @ S
\ 20. Abstract continued.
‘{ 4 families of minimal splitting subspaces is provided. Many of the basic
f g results hold without the assumption of rational spectral density.
i :
~
i Tor :
E TS SN e
0¢ gutf Section O
1 UNANNOUICED o
1 JUSTIFIGATION ———
4 i
BY - 54 r e
MSTRISETONAYALABLITY CO0ES
Y and /o SPEGIAL
ﬂ ;
UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered) ;
2 -~ A = & A”“““"“““ﬁ‘?“’ V.‘."FV: q. W \"-: . -‘4,' o
P PNl L s e o




;

- ]

AFOSE-TR-

7g8-1417

Proc. 21st Midwest Sympaosium on Circuits and Systems, August 1978 (invited paper)
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Giorgio Picci
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Casella Postale 1075
35100 Padova, italy

Abstract

Consider a stationary Gaussian stochastic process {y(t); t€ R} with a rational spectral density, and let
H(y) be the Hilbert space spanned by it. The problem of determining all stationary and purely nonde-
terministic families of minimal splitting subspaces of H(y) is considered; the splitting subspaces consti-
tute state-spaces for the process y. It is shown that some of these families are Markovian, and they lead
to internal stochastic realizations. A complete characterization of all Markovian and non-Markovian
families of minimal splitting subspaces is provided. Many of the basic results hold without the assumption

of rational spectral density.

1. Introduction

Let {y(t);t€R} be apurely nondeterministic, mean-square
continuous, stationary, Gaussian stochastic process with zero
mean and defined on s probability space (S1,F,P). We shali
asume that the spectral density & of y is rational although,
as we shall explain below, many of our results hold without this
assumption. Let H(y) be the closed linear hull in Lo(R,F,P)
of the stochastic variables {y(t);tER}. Then Hly) isa
Hilbert space with inner product (£,7) = E (¢}, where E{-}
denotes mathematical expectation. The stationarity of y
implies that there is a translation group {U,;tE R} of unitary
linesr bounded operators H(y) = H(y) such that y(t) = U,y(0)
forevery t€R. A family {S;;t€ R} of subspacesof Hly) is
said to be stationary if, for each tER, S, = U,S,,

For esch t € R, the Hilbert space H(y) can be written
Hly) = HE (y) V HEly), 4]

where H'(y) is the past space

Hy'ly) = 8 {y(r);r <t} (2
and Hily) is the future space

HEly) =B {ylr)ir > 1) . 3
Here S5{*)} denotes the closed linear hull, and X VY is the
same 8s 5 {X,Y}. Of course, (1) is not an orthogonal decom-

position; in fact, the past and future spaces overiap. We shall
call

H2(y) = HT ly) N HEly) @)
the present space. |t contains the germ space
Realy) = Biyit i, .. .y}, (5

i.r the subspace spanned by y(t) and all its derivatives at t,
v{T(1) being the highest existing derivative defined in mean.
square. If & has roots on the imaginary axis, H{(y) will also
contain some integrals of y over the real line,

For an arbitrary t € R, we wish to determine a subspace of H(y)
which, loosely speaking, contains all the information about the
past of the process needed in predicting the future or, which is
equivalent, all the information about the future required to esti-
mate the past. More precisely stated: Find all (closed) subspaces
X which satisfy the condition

E{nIH{ly) VX} =E{n|X) forall n€HFly) (6)
or the equivalent condition
E{n!H'{(v)VX)'E(nIX} for all n € H(y), ”n

where E(n | X} denotes the orthogonal projection of n onto
the subspace X, or, in probabilistic terms, the conditional mean
of n given (the sigma-field generated by) X. Each of the two
conditions (6) and (7) are equivalent to H:"(y) and H{ly)
being conditionally independent given X {10]. A subspace X
with this property is said to be a splitting subspace at time t (6,
11]). Obviously Hly) is a splitting subspace, and so are H{"(y)
and H{ly), but they are too large for our purposes. We shall be

*This work was supported by the Air Force Office of Scientific Research under grant AFOSR—78-3519.
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interested in splitting subspaces X which are minimal in the
sense that there is no proper subspace of X which is also split-
ting. We will show that (in the rational case) all such subspaces
are finite dimensional,

The significance of the minimal splitting subspaces is that they
will serve as state spaces. if X, is a minimal splitting subspace
attime 0, X, = U, X, is a minimal splitting subspace at time t.
Hence {X,:t€R)} isastationary family. Any stationary vector
process {x(t);t€R} such that, for every t€ R, x(t) is a basis
in X, is called a state process. In the next section we show that
y(t) € X,, and hence there is a constant row vector ¢ such that

y(t) = ex(t) . (8a)

It will be seen in Section 4 that there are families of minimal
splitting subspaces which are Markovian. Then any state process
x will be a Markov process and there is a representation

dx = Axdt + bdu , (8b)

where A is a constant stability matrix, b is a constant vector
and u is a Wiener process defined on the whole real line. In
genersi, there is aiso a multitude of non-Markovian families of
minimal splitting subspaces for which there is no such represen-
tation.

A representation (8) is called a stochastic reslization of .
Usualily a white noise term is added in (8a), which leads to con-
sidering a stochastic process y with stationary increments
instead. The results of this psper can be trivially modified to
cover this case (8], the present formulation being for clarity of
presentation only. A deterministic version of the stochastic real-
ization probiem, concerned with the determination of (A,b,c)

in (8) only, has been considered by Anderson (2], Faurre [3]
and J. C. Willems [15]. The probabilistic problem of finding all
representations (8), i.e. quadruplets (A,b,c,u), was solved (in a
more general setting) in Lindquist and Picci [7] and Ruckebusch
[13]. A coordinste-free state-space approach, such as the one
taken in this paper, was used by Akaike [1], Picci [11] and
Rozanov [12], but only 3tate spaces contained in the past or, as
for Akaike, in the future were considered. A complete charac-
terization of all Markovian state spaces was obtained by
Lindquist and Picci (8] and Ruckebusch [14]. The former
paper is written in terms of minimal splitting subspaces, but the
non-Markovian splitting subspaces were overlooked. An erratum
for (8] is provided in the end of this paper; a revised version is
under preparation. The existence of non-Markovian splitting
subspaces is established in Lindquist-Picci-Ruckebusch [9]. This
result is discussed in Section 5.

In this paper we have limited our attention to internal stochastic
realizations, i.e. representations (8) whose state spaces are
contained in the Hilbert space H(y). If we dispense with this
assumption, we obtain externa/ realizations. Generalizations of
our resuits to inciude these representations will be presented
eisewhere.

2. Minimal splitting subspaces
Let us begin by considering an arbitrary splitting subspace X

contained in the past space H"(y). In view of (6) it must
satisty E{an{ly))-E{an) for all 7 € H{ly). Hence any

such splitting subspace must contain
Hy/=(y) = B{E{n I HT(y)}:n EHF(y)}, ®

which is itself  splitting subspace. Hence H{/~(y) is a minimal
splitting subspace. We shall use the shorthand notation

HE/=(y) = E{H{(y) | HT ()} (10)
instead of (9). As s00n as we have established that HF/~(y) is
finite dimensional, we may remove the bar over the E denoting
closure. in the sarne way, it can be seen that

HE*(y) = E{HTty) | HF(y) } (n

is the minimal splitting subspace contained in H(y). These are
the two state spaces considered in (1, 11, 12].

A generalization of this construction leads to the following two
lemmas.

mel Let S be a subspace of Hly). If SO H{ (y), then
E{Ht (y) |S) is a splitting subspace at time t S:mllar/y, if
SO H{ly), E(HTly) IS} /s a splitting subspace st time

Proof. Set X = E{HJ(y) |S}. Let n€HJ(y). Then
E{E(ﬂls)lx}'E(‘ﬂIS} Thenfonsmee SO X,

E{n|S}=E{n|X}. (12)
Assume that S O H (y). Then, Ht‘(v)VXCs Hence, pro-
jecting (12) onto H;‘(yle yields (6), i.e. X is a splitting
subspace. A symmetric argument yields the second part of the
femma. @

Lemma 2. Let X be a minimal splitting subspace at time t
Then we have the following two representations.

X = E(HIly) [HTty) V X} (13)
X=E{HTly) | Hly) V X} (14)
Proof. By Lemma 1, the right members of (13) and (14) are
splitting subspaces at time t. But, in view of (6) and (7), these
are contained in the minimal splitting subspace X and therefore
d:n and (14) follow. ®
Now define the frame space
Holy) = H/=ty) VT (y) (1s)
which is itself a splitting subspace. In fact, H{(y) is the smallest
subspace containing all minimal splitting subspaces, as is seen
from the following theorem.

Theorem 1. Let X be & minimal splitting subspace at time t.
Then

HP(y) € X C HEly) . (16)
Proot. (i) Let n € HQ(y) = Hly) N HZly). Then n=

E{n|HI(y) V X}, whld' bylhonll!thﬁmw(ﬂ) equals
E{ﬂlx‘) Hence n € X.
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(u) Define 73 and N7 tobe HTly) © H{/~(y) and

v)e (v) respectively. iuuuvtoautmt Ny =
HE(y) 0 (2} and N = H2lv) 0 (KT ty)]L. Consequently,
wohmtm onhopnd dmnpodnon

Hiy) = N7 @ Hly) ® NT . an

For each n* € Hily) define n= E{n* | HT(y) V X). By
Lemma 2, X -mdoudlimwofdlweh n. Moreover,
Eln | HT(y)} = E{n* | HT(y)} € HI/=(y), which is

to Ny~ Since, in addition, [n — E (7 | HT"(v) }] L H (YD ONF,
we have n.I.N',Lc. X honhogomlto Nt . Inthnnmoww
using representation (14), it is ssen that X is orthogonal to Nt.
Hence XCH. @

This theorem shows that, as pointed in Section 1, all minimal
splitting subspaces at time t contsin y(t).

Corolisry 1. Let X be a minimal splitting subspace at time t.
Then

E{X | H7(y)} = HY/=ly) 18)

E(X|H(y)} = HT™(y) . (19)
In anticipation of Corolisry 2 below and to provide a more
suggestive notation, the closure bars have been dsieted in (18)
and (19). This result will be interpreted in Section S.
3. Forward and backward Kalman-Bucy filters

Since the stochastic process y is stationary and mean-square
continuous, it has a spectral representation
-

v = [ dtedia, (20
where dy is an orthogonal stochastic messure (4] , which, in
view of the nondeterministic assumption, has the prop-

orty Eid¥ 1€ = ®(iw)dw. Here we assume that the spectral
density @ is rational, i.e. = p/q, where p and q are rele-
tively prime polynomiasis of degrees 2m and 2n respectively;
of course m<n,

Consider all scaler solutions W of the spectral factorization
problem

WIW(—s) = &(s) . (21)
For each such W,

& = Wiiw)= ey (220)
is a unitary orthogonal spectral messure snd

£
)= [ % &iw) (220)
£

is 8 Wiener process on the reai line. Define H (du) and

M (du) nhlhuladlinnrmcfm“ﬁnmm
rmmsof u respectively, i.e. M (du) = B {u(t+r) - u(t); 7 <0)
and H{(du) = B{u(t+r) ~ ult); v>0) Let U denote the

class of all Wiener processes (22) and U*(U™) the subset of
those UE U m-d\eorrmondtol W for which the function
w = W(iw) is of Hardy clags H3(H3). Let W be the inverse
Fourier transform of w = W(iw). '?hon

=) o0
yit)= f N (i) -f Wit—r)dulr) . (23)
e GO -0

Now, W(t) €0 ifand only if u€ u*. Therefore, u* , contains
precisely those u for which HE(du) O HE(y). Let w be the
unique rational spectral factor with all poles and zeros in the left
complex half-plane, ndm U, be the corresponding Wiener
process. Then u, € U*. Moreover, since w-‘ has all its poles
mholchdoudhdf-plm with some effort it can be seen from
(22) that Hy(du,) C Hily). Hence H(du,) = Hly), and u,
ucallodmummonm lnthouvmmvvnmmm
U~ istheclass of those u for which H; (dulCH (y), with
mdnw!whbkadmmuonpmaw U.,lc the Wiener
process corresponding to the spectral factor W, (—s). Finally, we
note that H(u) = H(y) forall u€U.

Proposition 1. Let u€ U* andiet W be the corresponding
spectral factor. Then E{H{ly) | Hy(Gu)} is finite dimensionsl
if and only if W is rational, i.e. W= n/x, where x and x are
real relatively prime polynomials. In this case

E(Hty) | HT(du) ) _[-'“"u{leKk}dv (24)

where k = deg(x), and where we have taken the closed linesr
span in Lo(R) over sll real polynomials p of degree less then k.

Proof. First note that, in view of (23),
t
E{y(t+7) | Ht- (du)} = W(ﬂ'f-a)du(d) ’ (25)

(if): Suppose that W-tlx is rational, and let (A,?,c) bea
minimal realization of W. Then W(s) = c{sI~A)~'b and, in
view of the H3 condition, W(t) = ce™*'b1(t), where 1(t) is one
for t> 0 and zero for t<0. Thisimnodinto(?.’:)vm

o, liw)
E HE iwt T
{y(t+r) | HT(du)} = f O iy M)

where p, = x(sice”"(sI-A)= b is a polynomial, for x is the
characteristic polynomial of A. Since (c,A) is observable, span
(p,,r>0} consists of all resl polynomiasis of degree less than k,
and consequently (24) holds. The dimension of (24) is k.
(only if): Muulmiwofwndlnlsl Suppose that
dlmE{H (v)IH-(du))'k<~ Let W be the closed span of
w,: r>0} in Lz(O-) where W, (t)'W(Nr) Then, in view
of (28), dim W = k. Let {ey, 8, ...8 ]} beabasisin W,and
let @ be the column vector of these functions. Since W is closed
under the shift W(t) = W(t+r), there is an invertible matrix func-
tion T such that e{t+r) = T(r)e(t); T is continuous, for the
shift is continuous in Ly. Since T(t+r) = T(UT(r), T(t) = At
for some matrix A. urmhumv.gmr ¢ such that, for
t>0, W(t) = ce(t) = ce/\le(0), and hence W is rational. =

Using a symmetric argument we can prove a backwerd version of
this proposition.
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Proposition 2. Let uE U™ and ket W be the corresponding
soectral factor. Then E{Hgly) | Hi(du)) is finite dimensional
if and only if W is rationel, in which cese E (HT (y) IH{ (du) }
15 given by the right member of (24), where = is the numerator
polynomial of W and k the degree of the denominator polyno-
migl.

Since Hy"(ly) = Hi'(du,), Proposition 1 yields a repressntation
of HY/=(y), namely

HY=ty) -[ .-‘w‘u{ff% } doglo) < n} @, (8

where x, is the numerator polynomial of W,. Now, using the
procedure outlined in the end of Section 4, we can see that there
is an equivaience class of representations

dx, = Ax,dt +b,du,
(27)
Yo = CoX,

of?mla),wdwm.brm tE€R, x,(t) isa basis of
HZ/=ly). This is the (steady-state) Kaiman-Bucy filter. Likewise,
the representation

HT* (v) -f o‘“‘w{;ﬁ“_'_“;'—u’,lmm <n }¢9 (28)

foliows from Proposition 2, using the fact that H{(y) = H{(dG, ),
and we obtain an equivalence class of backward Ksiman-Bucy
filters

&, = A X,dt+D,d0,
Ve =Tox, ,

which evolve backward in time starting at t = e, for
Re{A(A,)} >0 (see Section 4). Now the second part of
Theorem 1 can be rephrased to resd: Let X be s minimal split-
ting subspace at time t. Then X CT{x,.(t), X, (1)}, i.e. any
(minimal) state vector can be expressed in terms of the forward
and backward Kaiman-Bucy estimates; c.f. Lindquist-Picci (7]
and Ruckebusch [13]. In view of (26) and (28), the following
proposition is immediate.

Proposition 3. Let & = p/q, where p and q are rejatively
prime polynomials of degrees 2m and 2n respectively. Then
the frame space is given by

Hoty) -L M{&%‘j’ll degip) < nem }av . 30

Corollery 2. Given the ssme assumptions as in Proposition 3, let
X be a minimal splitting subspece at time t. Then n < dim X<
ném.

(29)

Proof. Since xcugmmn,mxmm. In view of
(18), dim X > dim H/~(y) = n. ®

4. Markovisn families of minimal splitting subspaces

A family (X tE€R) of subspacss is ssid to be Markovian if,

forevery tE€R, X7 := Vo X, and X{ :® V5, X, are condi-
tionaily independent given X,. This is equivalent to each of the

two conditions
@ E{(nIXT}=E{niX} forall n€XY 31
(i) E(mIX7i=E{nIX,} forall n€X;, (32

either of which can be used as an alternative definition.

Lemma 3. Let {S;;tER} be a nondecreasing family of
subspaces of Hly),/.e. $,CS.,, forall tER and ¢>0.
Then {E{HZly) |S;};tE€ R} is Markovian.

Proof. Set X, = E{H{(y) IS,}. Let n* € H]ly), where r> ¢
Define n=E{n* |S,] . Since X7 is the closed soan of all such
7, it just remains to show that E{n | X7} = E{n | X,;} to prove
(31). But, asin (12), E{n* 1S,} = E{n" | X,}. Since §, D, D
X, this implies E {n|S;} = E {n | X}, which projectsd onto X;
yields the desired result, for X CS,. ®

Consider a family {X,:t€ R} of minimal splitting subspaces.
Then, by Lemma 2 (snd Corollary 2), x'-s(n,*(vnm) for all
t€R, where S; = H'ly) V X;. Now, could we find a

process u such that S, = Hy"(du), Proposition 1 would yield a
representation (24) of {X,:tER}. The following three lemmas
show under what conditions this will happca. >

Lemma 4. Let {x';ten) be a Markovian family of minimel
splitting subspaces, and, for every tE R, define S, = HE'ly) V X,
Then the family (Si;t€ R} i nondecressing.

Proof. By Theorem 1, y(t) € X,, and hence X" D Hi(y) VX, =
Define z-x,-es, Let 73> t. Then, using the splitting
property (6), E{y(r) | X;"} = E{y(r) | X;} + E{y(r) | Z}. Hence,

since y(r) € X, the Markov property (31) implies that
E{y(r) | 2} = 0. Therefore E{H}(y) | Z} = 0 which together
with the trivial fact E (H(y) | 2} = 0 yields Z= 0. Conse
quently, s,-x;,muaw ]

Somewhat differently stated, Lemma 4 can be found in [9],
where an altemnative proof is given.

A family {X,;t€R} of subspaces is said to be purely nondeter-
ministic if QX,=0. By assumption, {H"(v);t€R} is purely
nondeterministic. The following result is immediate.

Lemma 8. Lot X, = E(HT(y) S, }, where Sy = HTly) V X,
Then {X,;tER) is stationary and purely nondeterministic if
andonly if {S;;t€R} has these properties.

Lemma 8. Let {S,;tER} be a stationery, purely nondeter-
ministic, and nondecressing family of subspaces of H{y) such
that S, D Hy'ly) forall t€R. Then there exists » Wiener
process u defined on all of R such thet, forevery tER,

i (du) = S,. Morsover, u€U*,

The proof of this iemma is a bit lengthy and technical, and it will
be given in the revised version of [8]. Once the existence of a u
such that HF (du) = S; has been established, it is easy to see that
it must belong 1o U*. In fact, since Wy ly) C Hi (du), there is

an Ly-function W such that

cow o n




t o
viv -f W(t—0)dulo) -f oW (iw)d(w).
-—00 -0

Hence W is a spectral factor of class H3. and therefore u€u*.

Theorem 2. Let & = p/q, where p and q are relatively prime

polynomials of degrees 2m and 2n respectively and m <n.
Then {X;:tE R} is a stationary, purely nondeterministic,
Markovian family of minimal splitting subspaces if and only if

-
of siwtg] pliw) }
X, I.‘ lﬂ{ﬂLiu)I&q(p)<n dy forall t€R  (33)

for some real polynomial = satisfying

=(s)={—s) = p(s) . (34)
Proof. (if): Let x, be the polynomial solution of
x(s)x(-s) = qls) (35)

having all its zeros in the left open haif-plane. Let W = x/x., and
define u to be the Wiener process with stochamcspml
measure dl = W(iw)~1d). Then u € u*, and therefore
H"(du) O Hily). Set S;=H:(du). cmny, {Sp:tER) isa
stationary, purely nondeterministic, nondecreasing family of
subspaces such that S, O H"(y). Moreover, by Proposition 1,
X, = E{HZly) | S¢), for degix.) = n. Hence, by Lemmas 1, 3,
and 5, {X;;t€ R} isa stationary, purely nondeterministic, and
Markovisn family of splitting subspaces. Since dim X, =n,
these splitting subspaces are minimal (Corollary 2).

(only if): Let {X,;t€R} be astationary, purely nondetmin-
istic, Markovian family of minimal splitting subspaces. By
Corollary 2, dim X, < =, and, by Lemma 2, X, = E {H{(y) IS,}
where S, = H'ly) V X;. The family {S;:t€ER} anondo-
creasing { Lemma 4), stationary and purely nondeterministic
(Lomma 5) and S, O Hi'ly). Hence, by Lemma 6, there is a
u€EU* such that -H‘(du) forall t€R. Then, since

dim X, < oo, Propomion 5 yields

W
o f- ‘a{ﬂ e ,mw)<n+mm}ay (36)

in fact, a rational spectral factor must have the form

W(” - M »
x(sho(—s)

where v and x satisfy (34) and (35) respectively and ¢ is
some other polynomial. But the right member of (36) contains
(33), which we have just shown to be a splitting subspace.
Hence y=1. =

Corollary 3. Let {X,; tER) be the family of minimal splitting
subspaces defined by (33). Let x be a polynomisl solution of
(35),mdm u be the process in U corresponding to W'l’/x

Then, (i) X3 C H'(d:) ifand only if x=x,. (the solution of
(35) withol m:mhavlngmmlvorulpru) in which case
X" = Hy'(du); and (ii] Xy C Hy(du) if and only if x(s)= xe (=5,
in which case X$ = HY(du).

Proof. The two parts are symmetric, so we only need to prove

(i). Firstobservethat u€ U™ ifand only if x = x, .

(if): It follows from the proof of Theorem 2 that Hy"(du) =
HEtly) V x‘. But it is seen from the proof of Lcmma 4 that

H'(w V X, = XT. Hence X7 = HF(du).

(onlv if): inclusion X C H""du) implies that H"(y) C

H (du) (Theorem 1). *nm eondmon is equivalent to u€ u*

(Section 3), which can only be thecase if x=x,. ®

It follows from Theorem 2 that there are at most 2™ stationary,
purely nondeterministic, Markovian families of minimal splitting
subspices. We shall now see that each of these corresponds to an
equivalunce class of stochastic realizations (8). To this end define
the stationary stochastic processes

37

| eiwt (iw)k—1
el [_' *liw)

Then, for each t €R, the random vector x(t) is a basis in X,.
Let the components of the row vector ¢ be defined by

dy; k=1,2,...,n

i) = k% . (38)
Hence, in view of (20),
y(th = cx(t) . (38a)
To get a representation for x, let
xi9)=s" +ays"Teans™24 g (40)
be a solution of (35) and let u be the Wiener process in U
corresponding to W = x/x. Then
o
kai eiwt “_;:%'lda (@1)
and therefore it is easy to see that x satisfies
dx = Axdt + bdu , (39b)
[0 1 0---0] 0]
0 0 1 0
W AS L v e s b : pe
o 0 O 1 h
-1 02 03 ey 1]

The system (39) is a Markovian representation of y. But for
(39b) to evolve forward in time, we must have )(t C HE (du).
This condition, which is equivalent to X{™ L H (du), character-
izes the forward property, and to satisfy ltmmmehoou

x =X, (Corollary 3). Then Re{A(A)} <0, and we have 8
stochastic mllzltion of type (8). Likewise, by imposing the
condition X{ C Hildu), i.e. x(s) = x.(~s) (Corollary 3), we
obtain a backmrd:tcd’m realization (7] with Re{\(A)}>0.
By making coordinate changes of the type x(t) = Tx(t) in X,,
where T is a nonsingular constant matrix, we obtsin equivalent
representations with (A,b,c) exchanged for (TAT—1,TbeT—1),
but there is no such reistionship between realizations (8) corre-
sponding to different families of minimal splitting subspaces.




§. Non-Markovian families of minimal splitting subspaces

The following theorem, presented in Lindquist-Picci-Ruckebusch
[9), gives a complete characterization of all minimal splitting
subspaces.

Theorem 3. Let X = E(HZly) | S). Then X is a minimal split-
ting subspace at time t if snd only if

HTly) €S CHT(y) VHI(Y) (1)
in which case $ = HT {y) V X.

For the moment, let us set t= 0 in Theorem 3. We have seen
that there is only a finite number of X which belong to
Markovian families, namely those given by (33). Let us call the
st of these Mo However, in general, there is an infinite number
of subspaces S satisfying (41). Since there is a one to one
correspondence between S and X, there are in general minimal
splitting subspaces X € M. Forsuch an X, define X, = U.X
forall tER. Then {X,;tER]} isanon-Markovisn family of
minimal splitting subspaces.

Although, in general, an arbitrary state process {x(t);tER}
will not be Markov, there is aiways a representation (39a), and,
in view of Corollary 2, the relations

E{x(t) | HT(y) } = x,(1) (42)
and
E{x(1) | H{(y)} =%, (1) (43)

where X% (t) and X,(t) are the forward and backward Kaliman-
Bucy estimates, will slways hold.

Finally, let us remark that many of the results of this paper do
not require a rational spectral density; this assumption enters
only in Section 3, Theorem 2 and Corollary 3. In fact, Section
2, Lemmas 3 and 4 and Theorem 3 do not even require the
stationary and purely nondeterministic assumptions,
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Esvatum for Reference 8 {(CDC version):

p. 44: The exponential in (3.3 should be replaced by a general
inner function. However, by first showing that the frame space is
finite dimensional, as we do in this paper, only rational W need
to be considered.

p. 44: Add the assumption Qs,-o in Lemma 3.1 and elsewhere
where this result is used.

p. 48: It is claimed in the proof of Lemma 7.2 that the family
(s,-, t€R} itincressing. Actually this condition is equivalent
o {X;;tER} being completely Markovisn [9]. Hence this
property must be assumed in Lemma 7.2 and Theorem 5.1.
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