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SECTION I

OBJECTIVES

PURPOSE OF STUDY

The Air Force, as do many industries, transports, stores, and uses
a number of materials which might be toxic to elements of aquatic environ-
ments if released to a water body. While such discharges do not occur
routinely, there is always some small possibility of an accidental spill
of such material.

The current study is therefore aimed at identifying the state of
existing knowledge which might be applied to this problem, as well as
shor tcomings in existing methods. This report will present findings from
a preliminary investigational analysis of the prospects for developing
a catastrophic spill toxic pollutant model for the general case. Required
data inputs will be defined, and influences of local features will be
specified. The three-dimensional convection diffusion equation will be
presented as modified by the method of images to account for finite source
size and finite confining boundaries. Standard means of including
reaction terms in the diffusion equation will be reported, with comments
on applicability to hydrazine and similar materials.

The interactionof convective transport, turbulent mixing, chemical
reactions, and other processes will be reviewed, with examples shown. The
information gathered and reported herein will be condensed into a set of
recommendations for selection oi all input parameters, selection of

modeling technique and strategy, and modifications required to fully

describe toxic spills of'hydrazine or other such materials.




CHARACTERISTICS OF HYDRAZINE

The material of most interest is hydrazine, although the techniques
reported here can be applied to any toxic material. It is pertinent, how-
ever, to review the physical characteristics of hydrazine to assure that all
pertinent features are ultimately included in the final model.

Much has been written about the properties of anhydrous hydrazine
(referred to hereafter as simply hydrazine) elsewhere (l)f Only a few
aspects needed for the current discussion will be presented here. Hydrazine
is a liquid at ordinary temperatuies, is highly reactive chemically, is
combustible, and is miscible with water. It displays a marked tendency to
absorb oxygen and carbon dioxide from the air. The Air Force currently has
underway an extensive program to determine its chemical behavior in the
water systems (2).

The density of the liquid may be its single most important property
with respect to mixing characteristics in a turbulent field. Walton and
Hilgert (3) have suggested the following equation to represent the density.

p = 1.0253(1-0.00085T) 1)
in which p = mass density, g/cm3
T = temperature, -
Table 1 shows values calculated based on Equation (1), along with

corresponding densities for water at the same temperatures.

'Pron this point on, it should be understood that numbers appearing in
parentheses refer to the references, unless otherwise noted.
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TABLE 1, DENSITY OF LIQUID HYDRAZINE

3 3
" p, g/cm p, g/cm
() Hydrazine Water (fresh)
0 1.0253 0.9998
5 1.0209 0.99996
10 1.0166 0.9997
15 1.0122 0.9991
20 1.0079 0.9982
25 1.0035 0.99705
35 0.9948 0.9940
50 0.9817 0.9880

It is important to note that until temperatures above 35°C are
reached, hydrazine is more dense than water at the same temperature.

In fact, at the lower temperatures, hydrazine densities begin to approach

those of highly saline water, close to the density of sea water. The
exact density difference between hydrazine and the receiving water body
will, of course, depend on the temperatures of the two liquids (which
may not be the same) and the characteristics of the receiving water body.
If the receiving water body is highly saline, approaching that of sea
water, hydrazine will be lighter than the receiving water body. On the
other hand, hydrazine will usually be heavier than most fresh waters.
Due to stratification existing in many receiving water bodies, the depth
of the release may be very important in defining the relative density

of hydrazine and the surrounding water.

Section III will deal with the known effects of these density

differences. It is clear, however, that in most cases density differences
existing between hydrazine and the receiving water will play a major role

in the behavior and movement of the hydrazine.

TYPES OF SPILLS ANTICIPATED {

For the purpose of the current review, essentially any means by which

3 r
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the hydrazine or other material would enter a water body is included. The
spill can be considered as occurring over any time from instantaneous
(the entire quantity is dumped at one time) to continuous (discharge
continues long enough for a steady state to be reached in the receiving
water). The discharge will usually last a finite time, either until all
available material has been spilled or until the problem is found and
stopped. It will be seen that the size of the water volume through
which the spill enters the water body may range from a point (such as a
defined pipe exit) to a volume source (such as might occur if a truck
accident occurred, spilling the material into the water over a larger
area).

This all simply means that spills as discussed here include those
from trucking accidents, tank ruptures draining through storm drains and
then to water, or any other accidental introduction of material into a

receiving water body.

OUTLINE OF WORK

The work to be accomplished will consist of developing the basic
equations, reviewing coefficient values, defining basic means of solving
the equations, reviewing available models, illustrating results from
some of the models, and presenting recommendations for future work.
The work is intended to provide a base for future selection and use of
toxic spill models for the Air Force.

It will be seen that an understanding of the physical behavior of an
effluent is important in selection and use of a given model. Of equal
importance are the coefficients used in the models. Emphasis will be

placed on the definition of these coefficients and their physical

interpretation.
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SECTION 11

DEVELOPMENT OF DIFFUSION EQUATIONS

GENERAL COMMENTS

This section outlines the basic diffusion equations to be used in
varying circumstances. It will be seen that all such equations germinate
from the same basic equations, with various simplifying assumptions made
to arrive at reduced forms. Each simplifying assumption has the effect
of omitting one or more physical processes from the equation, thereby
possibly reducing model predictability.

If empirical coefficients are introduced into the equation (as they
are in the diffusion equations) then these omitted terms effectively
become absorbed by these coefficients. Thus, it may be possible, by
judicious selection of the coefficients, to make acceptable predictions.
However, the failure to understand the effects of simplifying assumptions
(usually a form of averaging) on coefficients can lead to very erroneous
results. The technical literature is full of papers, predictions, and data
fittings which fail to recognize this. Therefore, the current report will
emphasize a consistent representation of the diffusion, with definition of
and distinction between the numerous coefficients. This is essential, as
the first step in proper application of a model is correct selection of
empirical coefficients as a function of the existing circunstances. Impres-
sive mathematical equations have no value without proper understanding and

ability to properly specify parameters.
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AVAILABLE WORK AND METHODOLOGIES

Much of the technical literature shows or discusses the development
of the basic diffusion equations. It is the intention here to show the
basic approaches which are available and then to present a simple view
of the development by one method only. The reader will then be referred
to a number of possible references for more depth.

The two major approaches to equation development for turbulent
diffusion are the Fickian diffusion model and the description of the basic
turbulent process by the theory of diffusion by continuous motion. Fick
proposed that the molecular diffusion of matter could be expressed in the
same manner as the conduction of heat or electricity in a conducting body,
as used by Fourier and Ohm, respectively, in their work. This can be stated
as making the rate of diffusion in any direction directly proportional to
the concentration gradient in that direction. Mathematically, this becomes

diffusion transport rate in x, direction

. e

in which KD = diffusion coefficient describing the mechanism (s)

(2)

leading to the diffusion

x, = coordinate direction (typically x, y, or 2z)

i
Fick proposed this as a means of describing molecular diffusion. Sub-

sequent work has proceeded by expressing the transport due to fluid

turbulence as also being proportional to the local concentration gradient.

This is a simplification which treats the turbulence in a gross manner as a

phenomenon whose effects can be lumped into a single coefficient.
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The theory of diffusion by continuous movements was first articulated
in an intuitive fashion by Taylor (4) and has been followed up by Batchelor (5),
Batchelor and Townsend (6), and Taylor himself (7). This theory attempts
to give a kinematic description of turbulent diffusion based on the actual
properties of the turbulence. The theory was originally presented for the
case of one dimensional dispersion in a turbulence field which is spatially
homogeneous and stationary (unvarying) with time. Fickian theory is cast
in an Eulerian framework where the frame of reference is fixed and motion is
viewed relative to that fixed framework. The statistical (continuous move-
ment) theory, however, is developed in the Lagrangian framework, where
discrete fluid particles are'followed as they move through the flow field,
thereby creating a moving coordinate system with each particle followed.

Reviews of the two approaches are given elsewhere, and the reader is
especially referred to works by Fischer (8), Sayre (9), Sayre and Chang (10),
Holley (11), and Slade (12). Further details will also be evident in the
ensuing secticus,
CONVECTION-DIFFUSION EQUATION

The theoretical approach to the diffusion problem is based on the principle
of conservation of mass. Any material, pollutant or otherwise, of interest
is subject to the same conservation laws. Chang (13) and Holley (11) both
outline the initial relationship involving convection and molecular diffusion,
and their ideas will be used here.

If a stationary control volume is established in the flow of a mixture
of the basic fluid and one or more constituents, the statement of conservation

of mass for a marked fluid (fluid constituent of interest) is

Net mass Net rate of production Time rate of
flux entering + of mass due to internal) = accumulation of mass
control volume sources and sinks in inside control
control volume volume
(3)
7

FT




The mass here refers to the fluid constituen: being observed, whether

that be BOD, temperature, sediment particles, or other materials. The net
mass flux enters the control volume by convection (velocities in the fluid)
and molecular diffusion, assumed to follow a Fickian law as in Equation (2).
Internal sources and sinks may include deposition, chemical or biological
reactions, attenuation of solar radiation, radioactive decay, or other
processes,

If the constituent of interest has the same density as the ambient
fluid, the convective diffusion equation for molecular diffusion can be written
in Cartesian coordinates as

3c 3¢ ac ¢ - 3_ 3¢ .
B ik S Dm[axax+8y

o
b [}

3 3¢

in which
¢ = concentration of marked constituent or fluid
t = time
X,Y¥,2z = Cartesian coordinates
u,v,w = velocity components in x,y, and z directions, respectively
D_ = molecular diffusion coefficient

3S = sum of all internal sources and sinks.

1. Turbulent Diffusion - In a turbulent flow field, velocities and con-
centrations are fluctuating with time. Reynolds first introduced the concept
of treating the instantaneous values as the sum of the time-mean value and

a fluctuation from the mean, or
- 1
u=u+u
- ]
ve=v <+ v

weuw+w

ensTt+e (5)
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in which the overbar implies values averaged over time and the primes

indicate the instantaneous fluctuation from the mean.

1f these expressions in Equation (5) are inserted into Equation (4)

=2 2 [3c), 2 (3c), 2 (ac
i D-[ 3x(3x)+ 3y (8y)+ oz (azl

W' ¢') + 35

after manipulation, one obtains

v L%
<o
(g]

L E ac - 3¢ , =
1! — ——
g | 3t + u 3% + Vv

3 oel & e g

e b & -l

; 1v, Ix Ay 3z
|
|

P

(6)

ke

L

The left hand side of Equation (6) can be written using the equation of

conservation of mass for an incompressible fluid so that the three convective

terms become

e e ) s

2 @O+ @O +5e @0 ™

9x

3
3y

The terms of interest in Equation (6) are the time-averaged cross

]
products, such as u c¢'. These terms represent the volume flux per unit

f;.i area due to fluid turbulence and the resulting transfer of material. It
is in treatment of this term that the two methodologies (Fickian model

and diffusions by continuous movements) already mentioned can be brought

to bear.,

2. Pickian approach - Here an exact analogy is made to molecular |

diffusion, as in Equation (2). Specifically, this becomes here

Gl Eaen ke EE
Ry ®x  x (8)
3 e 3c
s e S . 9
V o» dc
v e “: 9 (10)




in which e ey, g - turbulent diffusion coefficients in x, y, and

z directions.

Insertion of Equation (8-10) into Equation (6) yields

+ % B .7 = -(D +e>__a_<_a_)
y z m x| 9x |9x
.l
| +(D +e) 3 [3c |+ [pD + e 3 foc ) + 3s
| —— [ — — e
%) 2 G) ()2 E) %
{

EE Again, the left hand side could be rewritten as in Equation (7).
\
i

|

+
cl
< &

Equation (11) contains the assumption that molecular and turbulent
diffusion are independent processes and thus additive, as indicated by
; terms of the form (Dm + ex). Mickelsen (14) made and justified this
' j assumption. As noted by Sayre and Chang (10), however, it is really only
of academic interest in open channel flows, as the turbulent diffusion

coefficients are typically several orders of magnitude greater than Dm'

For this reason, Dm will be neglected in subsequent presentations of the

S e

equation.
The assumptions made in Equation (10), as shown in Equations (8-10),

are rather sweeping. Sayre and Chang (10) noted that experimental evidence

from a number of sources implies that lateral diffusion is much better |
represented by the Fickian model than is longitudinal dispersion (as repre-
sented by the one-dimensional form of Equation (11), with transport only
in the x-direction).

Most workers have found that,despite its theoretical shortcomings,the
Fickian model provides a resonable starting point and an approximate
kinematic description of diffusion in open channels. It is especially

limited by the nature of the coefficients, which attempt to incorporate
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many complex influences into a very simple format. The theory itself
provides little insight into the actual values of the diffusion coefficients

as they are related to the important flow features.

3. Diffusion by Continuous Movements - Taylor (4) introduced a theory

which has shed light on diffusion and dispersion processes. He considered

dispersion in one direction (say x) in a turbulence field which is both

homogeneous and stationary and proved the following relationship for

spreading out of particles beginning at x = o for t = o.

2 2 t
o (t) =2 u' ‘4 (t - )R (1) drt (12)

in which

2
o (t) = variance of particle distribution in x-direction at

time t
u'2 = mean of squared instantaneous velocity fluctuations

2

R (1) =u 3 (t)u ; (t+t) / u'
= Lagrangian auto correlation function, which correlates values
of u ' from one time to the next instant.
R(1) is difficult to determine, but it approaches 1 for small T and o

for large 1. With this knowledge, it can be shown that for small times

2 e
o (t) = u'z t -

(13)
and for large times
oz(t) =2 u'? €T,
(14)

in which TL = the Lagrangian integral time scale. It can be found that Equa-
tion (14) has the identical form of the variance for longitudinal dispersion

from the Fickian model.

11




Since Equation (12) was originally derived for homogeneous turbulence

fields, it may appear inapplicable to open channel flows, where statistical
properties are known to vary with the distance from the boundary. However,
Sayre and Chang (10) review work by Orlob (15, 16) and Batchelor and
Townsend (6) and note that Equation (12) applies, under conditions of
uniform flow, to lateral diffusion and longitudinal dispersion in planes
parallel to the bed in wide channels, and that Equation (14) applies to
longitudinal dispersion in any uniform channel. They note that this gives
very strong theoretical support to the applicability of the Fickian dif-
fusion model to longitudnal dispersion in open channels for sufficiently
large dispersion times. Evaluation of what constitutes a "sufficiently"
large time will be discussed in Section III.

4. Summary on Convective-Diffusion Equation -~ The preceding sections
have attempted to show the development of the convective-diffusion equation
for three dimensions, as in Equation (l1l). The use of the Fickian model
analogy to molecular diffusion Equations (8-10) is important to note.
Because of the ill-defined nature of the coefficients in these equations a
better understanding of their variation and the physical patameters in-
fluencing them is essential. The current state of knowledge in this area
will be reviewed here.

Fischer (8) notes that there are limitations to use of a gradient-type
coefficient for turbulent transport [(as in Equations (2) and (8-10)]. In
the oceans, for example, particles are usually separated by a distance
smaller than the largest scale of turbulent motions; thus, the farther
apart particles move, the faster they tend to separate, leading to the
well-known four-thirds law, shown in Equation (33). Fischer notes, however,

that in open-channel flows the turbulence scale is limited by the depth,

12
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and it is possible that a group of tracer particles may be spread over
distances larger than the largest scale of turbulence, thus making the
concept of a gradient-type mixing coefficient reasonable.

In summary, despite some theoretical shortcomings, Equation (11) gives
a rational form for describing diffusion processes, and it will be used
for further work in this report.
SPATIAL AVERAGING OF EQUATICNS

Equation (11) is valid at any point in the flow field. Ideally,
solution of the equation would include consideration of the individual
components at each point in the flow field. Inadequate knowledge of the
flow processes limits the ability to obtain such a solution. One should
recall Equation (l1) already includes omne simplification, represented by
replacement of turbulent fluctuation terms by Equations (8-10).
To obtain a solution, other simplifications may be necessary. In addition,
certain physical situations exist in which it appears acceptable to treat
something less than three dimensions. For example, if the pollutant seems
likely to be well-mixed vertically in the water body, it would appear
practical to consider a two-dimensional model. However, each simplification
introduced into the equations also introduces more physical effects which
must be described by the free parameters in the equation, i.e., the
diffusion coeffiecients. In discussing the two-dimensional equation,
Pritchard (17) notes that '"The greater the detail provided by the model with
respect to variations in velocity in time and space, the less significant
are the horizontal eddy diffusion terms ..." (page 17). 1t is important
to understand which things are included in each coefficient, and therefore

a brief review of the effects of spatial averaging will be presented here.

13




ii 1. Depth Averaging: Two Dimensional Equation - In most open channel
(river or estuary) situations, the depth is much less than the width, and
it may appear reasonable to assume that the tracer material is mixed fully
throughout the vertical structure of the water body. This assumption

can be utilized to integrate Equation (11) over the depth, h, of the

water body, thereby reducing the equation to a two-dimensional equation.
Values for all the parameters will then be depth-averaged values. Integra-

| tion with depth will also eliminate the vertical diffusion term, e,. As

shown by Holley, et al (18), Equation (11) can be integrated vertically to

: yield
| dc dc dc d ac 3 3c
. BEE s G elly o & 2< X 2
- R g - AL S L (15)

5 in which all values are depth-averages, and Dx and Dy are defined by

-‘ o gt = X
| x ax "¢ % %
| (16)
| = 3¢ - ¢
=D —_— - LIPS —
‘ yéy "% Ty By a”n

u', v', ¢' = deviation from depth average value of u, v, and ¢
respectively
(Overbars imply depth average, and have been omitted in Equation (15)

It can be seen from Equations (15)and (16) that the longitudinal

coefficient, Dx’ now includes mixing due to both turbulent diffusion

(the e, term) and differential advection due to vertical variation of
longitudinal velocity and concentration. It has been shown that the turbu=-
lent diffusion term is negligible in this instance. Similarly, Q, includes
diffusion and differential lateral advection. The relative magnitudes of
these terms depends on the physical setup. However, bends, overbanks, or

other configurations which create trangverse flows in channels may make the

14
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advective term become very large. Holley, et al (18) and Krishnappan
and Lau (19) both note that spreading due to transverse velocities can
easily exceed spreading due to turbulent diffusion. It is important to
recall these approximations in selecting coefficient values,

2. Width Averaging - One-Dimensional Equation - If Equation (15) is

further integrated across the entire channel width, it yields

hB (35 +u2S) =2 (mp 3€) (18)

in which all values are cross-sectional averages and DL = longitudinal
dispersion coefficient,
This equation is often called the longitudinal dispersion equation or

the one-dimensional dispersion equation., The coefficient D, is defined by

L
P R TS
DL 9x ke Dx 9x

(19)
in which u" = variation of velocity from cross-sectional mean

¢" = variation of concentration from cross-sectional mean.

Overbars imply.an average over the stream cross-section. Again, over-
bars are omitted in Equation (18).

The coefficient DL now contains not only the elements in D‘, but, in
addition, the spreading out of material due to differential velocities (and
concentration) across the stream, Fischer (20,21) has noted that in rivers
this latter contribution is by far the largest of the components included
in DL' A review of the devel&pments shows that DL now includes the effects
of the following physical processes:

Molecular diffusion (Dm)

Turbulent diffusion (ex)




Vertical variation of velocity and concentration.
Lateral variation of velocity and concentration,

Typically, in open channels, the increase from one mechanism to the
next is at least one order of magnitude. For example, the coefficient
contribution due to vertical variation is at least one order of magnitude
greater than turbulent diffusion in the x-direction. In some estuarine
situations, however, it will be shown that the vertical variation will be
more important than lateral variations.

The relationship between the longitudinal coefficient and the lateral
diffusion coefficient has been reviewed by Fischer (20), who obtained the

following equation,

h(y)

B y y
weod [ ool [ o ol
o o o

o
(20)
in which

h(y) = local depth
A = cross-sectional area of flow
u"(y)= local deviation of longitudinal velocity from cross-sectional

mean.

Note that Equation (20) not only indicates a strong contributign due to

lateral variation of the longitudinal velocity, but also shows the limiting
effect of lateral diffusion, as given by Dy' Higher degrees of lateral
diffusion tend to gslow longitudinal spreading, as material which is moved
ahead of particles in adjacent flow paths would tend to establish a

high lateral gradient. This high gradient, coupled with high Dy values, would
spread the material later;liy and tend to lessen the longitudinal spreading
out of the particles, Fischer (21) has used Equation(20) as a basis for

evaluating longitudinal coefficients based on field information.

16




? 3. Partial Averaging: Velocities - Frequently, the diffusion equation

is written using velocities which are average values over the cross-

sectional area. In Addition, the lateral and vertical velocity components,
v and w respectively, are often neglected. Even if the spatial average

of one or both of these is zero, the value (8) is individual points will

R L

be nonzero.

e e

Consider first the neglect of v and w. Referring to Equation (11)

assuming v = w = 0 would result in dropping the following terms:

T L P

dc Jc
3y and w oz

v

Further, notice the similarity of the form of these terms to the diffu-

A R )

I ¥ sion terms on the right hand side of the equation. It can logically be ex-

pected that the contribution to mixing due to the actual transverse velocity

field, v(x,y,z,t) will be absorbed in the Dy term when v is neglected. A

o e S
NE——

similar statement holds for absorption of vertical mixing into the Dz term

when w is assumed to be equal zero. Notice, however, that the replacgnént

can never be exact unless Dy and Dz are made to vary with x,y,z and t so as
to duplicate the effects of v and w. Typically, this is not done; instead,
modified values for Dy and Dz are employed which purport to encompass

these effects.

Similar statements can be made concerning the use of a spatial average
value of the longitudinal velocity, u, at each point. Use of u at each
point means that the expression in Equation (11) at any individual point in

the flow field has neglected a term, u' This term can be either positive

3¢
ax’
or negative, depending on the value of u' at that point in the section.
For any given point in the flow field, it would be possible to compute |
values for other terms, especially the advective terms, and determine the

relative magnitude of the neglected term. However, the full three-

17

;.
3
]
f
L.

NP P TN RSN e




T Y

s

dimensional equation result camnnot be compared directly to that using
an average ;'except by a full solution using finite element or finite
difference techniques. This is because the integrated mixing history of
a parcel of material is a function of all the velocities to which it is
exposed.

Whatever view 18 used, however, neglect of u' terms loses some detail
from model description of the mixing process. These processes then get
lumped into the Dx term in Equation (11), also a function of %ﬁu
This expression is then similar to D , the longitudinal dispersion
coefficient seen in Equation (18). In fact it can be shown by integra-
tion of Equation (11) with u instead of u that Dx is numerically equal to

DL for that use.

4. Partial Averaging: Depths - Another very common simplification
is the assumption of a constant depth across the channel section. This
effect can be reviewed by looking at several of the preceding equations
as well as by considering the physical implications. It should be noted
that there is a relationship between the local depth and the velocity.
Sayre and Caro-Cordero (22) have noted that a preliminary review of some

available data indicates that

5/3
S )
q h
in which q = discharge per unit width at any location across the sec-

tion where the local depth is h
a = cross-sectional average of the q
h= average depth at the cross-section
Regardless of whether Equation (21) provides the final form of the u versus h
relationahip, it is clear that neglect of depth variations can lead to

problems similar to assuming a single, constant value of u.

18
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Equation (11), as noted, can be written in a form including the conserva-
tion of mass relationship., For the current discussion, the conservation of
mass equation will be considered separately, as shown in Equation (22).

u , v, Ww

, ox 3_y' gl

az (22)
Integration of this equation over the depth in a steady flow (implying w = 0

at both the stream bed and the water surface)yields
3(uh) + 23(vh) _ 0
9x ay

Here, u and v are now depth-averaged values. Further integration, as
shown by Holley (23), with respect to y results in an expression for the

lateral velocity, v.

y
g
v - uhdy (23)
s

where s is a point in a streamline. Holley (23) states that to study
diffusion data, the value of the transverse velocity of interest is the one
which describes the movement of marked fluid particles relative to the
streamline through the point of release. Therefore, s should be located on
that atte’amline. A look at Equation (23) shows that if h and u have been
assumed constant, then the value of v will be zero. This would be so because
physically no transfer of material from one stream tube to another could

possibly take place if neither velocity nor depth changed, if stream tube

widths remain unchanged. Physically, then, assumption of a constant depth
along with a constant velocity has the effect of eliminating detail of

the transverse velocity field. This would be similar to the neglect of
terms such as v%%- from Equation (11), which results in changes in the
lateral coefficient values to accommodate the loss of descriptiom of

advective motion.
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Fischer (264,25) notes that some of the largest contributions to
values for DL in estuaries appear to be the lateral currents created by
depth variations. The water tends to move up over the shallower, overbank
regions as the tide rises and to move back toward the main channel as the
tide falls.

Holley, et al (18) numerically experimented to compare mixing behavior
in rectangular and trapezoidal channels, using a finite-difference model.
Discharges into the shallower water near the shore always displayed higher
near shore concentrations than the same discharge into a rectangular
channel of constant depth. What is happening here is that less water is
available for dilution in these shallower regions. Hence, any solution which
replaced the channel with some equivalent rectangular channel might under-
estimate these near shore concentrations. Unfortunately, it is frequently
these very concentrations which are most critical in many biological systems.

In summary, it can be stated that use of a constant depth may lead to a
number of possible misrepresentations of the actual physical behavior. These
misrepresentations will cause the values of the coefficients to change from
the standard values if an attempt is made to reproduce data. If no data
exists, the possibility for erroneous predictions exists. In additionm,
coupling an assumed constant depth with an assumed constant velocity results

in further failure to adequately describe the advective motiom.

5. Partial Averaging: Coefficients ~ A final area in which con-
stant values are often assumed is in the coefficients chosen to represent
a given cross section reach. It will be discussed further in the next

gsection that a basic form for the diffusion coefficients is

D, = ahu (24)

i
in which D1 = coefficient of interest
a = coefficient

20




This is usually applied in an overall sense, choosing average h and u

values over a reach., However, as noted by Holley, et al (18) and Eheart
(26), there is some logic to the possibility that, for example, the
transverse mixing coefficient might vary as a function of the local values
of h and u at any given point. If this were true, then assumption of
constant coefficients and removal from the derivations would omit some
terms. For example, consider the lateral diffusion term from Equation (11),,

using Equation (24) to describe Dy

2
) dc 37¢ dc Jdu sh
v Py dy e y ®% * vy) e

The first term on the right hand side in Equation (26) represents a common
way of replacing the general expression on the left hand side. Note that if
the coefficient were a function of local u and h values, then the other right
hand sidefterms would be neglected by assuming a single, constant Dy value.
In that case, the Dy value would again be modified by attempting to
incorporate those neglected mechanisms.

The current state of knowledge is not such as to enable a definitive
statement of how I)y and the other coefficients vary. Indeed, over longer
reaches, Krishnappan and Lau (19) and Chang (13) indicate that use of single
coefficient: values may be adequate, although in local regions in bends
this may not be so. As better knowledge becomes available, it may be
possible to better decide the influence of the neglected terms from
Equation (25).

It is important to observe that similar considerations can be made if u
and h are varying in time, meaning that the coefficient value is not a
constant. Any model which assumes a' time-invariant value for any or all
coefficients 1s then trying to lump all this neglected behavior into the

coef ﬁ.ci‘.ntn .

21

{
4
3
£
i
|
|

Y




¥ TIME AVERAGING OF THE EQUATION

One form of time averaging has already been discussed in considering the
short-term turbulent fluctuations by the Reynolds method [(see Equations (5)-
(7)] and the replacement of the covariance terms by the terms in Equation

(8). Of interest now is the use of longer term averaging, for example, over

the period of a tidal cycle. Actually, any time an unsteady flow is treated

as steady, the equation is effectively averaged. As the tidal cycle usually
represents the most extreme unsteadiness of concern in water quality problems,
emphasis here will be placed on that area. However, river systems exhibit un-
steady flows as well, and those which have dams controlling flow downstream

of the site of interest often exhibit flow reversals as well. Therefore,

while more has been written about tidal systems, rivers should receive as
much attention in future work.
Harleman (27) gives an excellent discussion of the various approaches,

and his comments will be briefly summarized here. For this discussion,

reference will be made to the one-dimensional, longitudinal dispersion equa-
tion written in Equation (18). The term hB (depth times width) will be
replaced by A (the cross-sectional area) to make the equation general. The
source and sink terms will be omitted, but it should be recognized that they
must be included for general use. It is, however, the advective and disper-

sion terms which are of most interest in defining the averaging problems.

The modified version of Equation (18) will be referred to as the real-time
equation, since it could be applied to any point in time.
{ Two approaches both yield models which can be classed as non-tidal
advective models, since the advective terms representing tidal velocities
have been eliminated. One such approach uses an average over the tidal cycle,

while the other deals only with the points in time called slack tide.
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Arons and Stommel (28) and Stommel (29) proposed averaging each term

of Equation (18) over a tidal period, yielding Equation (26).

dc ac 1 d,— = Jc
3t+uf3_x XB—X.(DL x) 26

in which the overbar represents the average value over the tidal period and

Uf = pon-~tidal advective velocity due to freshwater inflow
» Qf/A

!

i
: ! : Q = freshwater inflow.

s Note that all mass transfer effects due to the tidal component of the
| advective velocity, and hence such effects must appear in the time-averaged
dispersion term.
: i Occasionally Equation (26) is rewritten by setting the time derivative
equal to zero and then further assuming that the freshwater inflow, Q. =
A Uf, is a constant. This yields a so-called steady state equation,

inasmuch as C does not change from one tidal period to the next if the

boundary conditions for C are also constant. This use of the wording
steady state occurs in a number of estuary references and can be con-
j : fusing.
| The second non-tidal advective model approach is the slack tide
approzimation, formulated especially by the Manhattan group led by 0'Connor,
i and exemplified in O'Connor and DiToro (30) and O'Comnor (31). Their
models apply only to the specific instant of slack tide and not to any
S intervening time. In many cases data in estuaries are only available at tineg
of slack tide. High water slack refers to the point at which flood tide

changes to ebb tide, while low water slack is the reverse. Slack tide is

actually that time at which the total velocity (tidal plus freshwater) equals

zero, but O'Connor retained the freshwater velocity, Qf/A. This slack tide

yields
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in which C, = concentration at slack tide
A = across~sectional area at slack
DLs = dispersion coefficient

Again, all the advective behavior of tidal action which is neglected
from one slacktide to another must be handled in the dispersion term. The
three equations [(18), (26) and (27)] attempt to describe the same system,
but the three coefficients - DL for the real time equation, f)L for the
tidalperiod-average equation, and DLS for the slack tide approximation - all
represent somewhat different phenomena. Typically, the latter two coefficients
are much larger than DL as they must encompass such a large amount of neglected
tidal advective behavior.
SUMMARY ON AVERAGING EFFECTS

The preceding sections have had the goal of outlining a way of thinking
about coefficients and their meaning as well as equations in which they
appear. Each time one or more terms of the equation is averaged in space
or time, some of the detailed behavior associated with those terms is lost.
The only mechanism left for trying to reproduce that neglected portion of
the behavior is through the values assigned to the diffusion and dispersion
coefficients in the equation. It should be clear, then, that in common
uses of the equation the coefficient values are strongly a function of the
physical situation at the site and the characteristics of the discharge,
as these determine the relative magnitude of the transverse velocities, tidal
velocities, or whatever other behavior has been neglected or simplified.
Indeed, some cases may actually require more detailed treatment than can be

generated solely from the convective-diffusion equation, especially those

where initial mixing or density-driven currents exist.
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The models can be used for at least two classes of problems. First,
the models may be used to predict concent:ations where little, if any,
prototype verification data exists. In these cases, the physical processes
must be reviewed to assure the best choice of coefficients. The second
category of problems involves those cases where extensive verification
data does exist at the site. In these cases, the problem is one of fitting
the equations to data to establish coefficient values. However, the physical
mechanisms involved must be fully understood to avoid misuse of these fitted
values or extrapolation, to cases where the controlling physical parameters
are different. One example is: erroneously used diffusion coefficients
obtained from non-buoyant dye releases for predicting the behavior of
buoyant discharges. As another example, ambient mixing and hence diffusion
coefficient values will vary from one part of a bend to another. With these
factors to review in transposing from one flow to another at the same site,
it is clear that extreme care is needed in transposing data and coefficients
from one site to another.

Specific numerical values will be presented in the discussion on co-
efficient selection section. The key elements to rememger are (1) the
coefficients in the diffusion equation encompass many more physical
phenomena than just turbulent mixing, and (2) coefficient values for any
given case are strongly a function of both the physical system and the
equation being used.

USE OF CURVILINEAR COORDINATE SYSTEM
A number of authors have developed the basic diffusion equations in a

curvilinear coordinate system rather than the Cartesian system.

e
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The curvilinear coordinate system recognizes the natural channel curvature
which almost always exists in natural streams of any length. In addition,
even in rather straight channels, irregularities in the channel bottom due
to structures, sediment deposition, and the like may yield a nonuniform
channel and hence, lead to some of the same transverse velocities of
interest in river bends.

From a strictly theoretical point of view, there are some advantages
to the use of a curvilinear system. It has to this time been used less
widely than the Cartesian and therefore has received less attention in this
review. However, it is likely to be utilized widely in the future, and its
combination with the use of the cumulative discharge as the independent
variable shows real potential for certain classes of problems.

Yotsukura (32) presents a very comprehensive and rigorous derivation
of the basic equations. Chang (13) and Fukuoka and Sayre (33) also employed
this system, often called the natural coordinate system. The system is
composed of three mutually orthogonal sets of coordinate surfaces, called by
Yotsukurs (32) the longitudinal, transverse and horizontal coordinate
surfaces. The longitudinal and transverse surfaces are vertical, typically
curved and nonparallel. The horizontal surfaces are all parallel, horizon-
tal planes. The longitudinal surfaces are usually aligned approximately iu
the direction of the depth-averaged total velocity vector. The origin and
the three coordinate axes - x,y, and z - are shown in Figure 1. (Note that
Yotsukura's y and z make this consistent with the current report's notation.

Due to channel curvature and changes in width, metric coefficients m
and my are introduced to correct for differences between fhe distances
measured along any given surface and those measured along the corresponding
axes. Thefe are illustrated in Figure 1. The values of mxiand m_ may

vary from point to point, being functions of both x and y. Note that mx-l
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on the x axis and my- 1 on the y axis. Due to the parallel nature of all

f horizontal coordinate surfaces, the value of L is one everywhere. As
Yotsukura (32) notes, this natural coordinate system is therefore based
on the premise that the total velocity vector everywhere in the channel is
primarily oriented in the horizontal direction. In most natural channels,
this is a reasonable assumption. Note that a rectangular Cartesian system
can be viewed as a subset of this natural coordinate system for the case r
where L B 1 everywhere.

| Use of this coordinate system enables derivation (13, 32) of an equation

comparable to Equation (11).

u u m
: 3 % d@eo LY 3 3 Lo 3% &
A t+mm x +mm ay(“x°)+“zaz m m ax(n exax)+
1 Xy Xy Xy x
m
1 3 x as 3 dc
; m m_Jy (m ey ay) = 9z (ez az)
| Xy y (28)
in which

m s my = metric coefficients shown in Figure 1

u s uy, L% velocity components in the direction of the three axes

in the natural coordinate system (note these are not the

}
same as u, v, and w in the Cartesian system unless the i
1
i

channel is straight and uniform)

For comparison, the mass conservation equation for water is written as

] 3 k.=
i (myux) + 3y (mxuy) + mxmy - 0

(29)

Yotsukura (32) notes a major theoretical advantage due to approximate
alignment of the natural coordinate axes with the velocity vectors. Theore- . %
tical developments beyond the scope of the current paper have defined the

diffusion coefficients as a tensor ( 3 by 3 ). Hinze (34) and
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Dagan (35) note that if only the three principal coefficients (ex, ey, and
ez) are to be used, this alignment with the flow field is essential. This
is a plus for the use of this system , but current lack of knowledge of
the diffusion process and proper selection abd use of equations and coe-
fficients probably masks errors due to failure to satisfy this criterion
in standard Cartesian systems.
Yotsukura (32) does an excellent job of providing a rigorous and through
development of the equations through the process of depth and then width
averaging. A review of this paper is an excellent starting point for
understanding the natural coordinate system and the whole process and
effects of equation averaging.
USE OF CUMULATIVE DISCHARGE AS INDEPENDENT VARIABLE

An added step has been introduced by Yotsukura (37) and Cobb (36) to
further deal with the difficulties associated with varying channel geometry
and alignment. They suggest a transformation whereby the transverse
coordinate is replaced as an independent variable by the cumulative discharge
from the shore to that transverse point in the channel cross section.

The transformation can be identified by the relationship (38)
. :

;P ./.m3huxdy

L (30)
in which qE = cumulative discharge in channel flowing between coordinates

passing through YL and y
yL = coordinate of left bank.
The cumulative discharge, q.s can be used as the independent variable
(in place of y) for two-dimensional, steady-state problems. Equation (30) shows
that integration over depth has already occured in the definition, hence

limiting it to two-dimensional cases. Yotsukura (37) and Sayre (38)
29




] incorporate this into the diffusion equation for steady-state conditions.
They first note that in steady-state conditions, the work of Sayre and
Chang (10), among others, justifies neglect of the longitudinal dispersion

term except near the source. Note that if either the flow or the pollutant

input is unsteady, this places a limit on use of this model. In fact,
Thomann (39) indicates that variation of the input with any period less

than one week requires inclusion of the longitudinal dispersion term in

the one dimensional equation. Serious constraints are unlikely with this
current model, but the possibility should not be ignored. The two-
dimensional version of Equation (29) is written and integrated from L to y,
including the relationship in Equation (30). The result is substituted into
the two-dimensional form of Equation (28) with the longitudinal dispersion

term dropped and yield

ac 9 2 oc
9x aqc X Xy 9q
(31)
If m is set equal to one in Equation (31), it becomes identical to

the form shown by Yotsukura and Cobb (36), for a straight, uniform channel

where u_ = 0.
z

One important factor in use of Equation (31) is that no specific data

needs to be provided about the transverse velocities uy. The cumulative 1
discharge information can be attained by information on longitudinal velo- ;
cities and channel cross section geometry, both of which are made easier to i
measure than are transverse velocities. %

Use of the natural coordinate system has introduced the metric co- |
efficients m and my. Some uncertainty exists as to their full significance.

However, they probably are not a big problem is use of the approach. Sayre and

Yeh(40) report that they found values of m ranging from 0.86 to 1.14 in an ]
extremely sharp bend In the Miusour! River, Indicating that there will usually
i
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be only small differences from unity if the x axis is located in the central

part of the channel.
CONCLUSIONS TO SECTION II

The basic form of the convective - diffusion equation, Equation (11),
contains all advective terms and diffusion terms. The only averaging
which has taken place is over the short time intervals of turbulent fluc-
tuations. However, for mathematical simplicity, other forms of the equa-
tion are frequently used which introduce various forms of spatial and/or
temporal averaging. Each time such an averaging takes place, one or more
terms is effectively dropped from the equation. Practically, this means
that the physical effects represented by these terms must be absorbed by
the only free parameters in the equation, the coefficients. Basically,
the coefficients are required to make up for shortcomings in describing
the advective flow fields.

The major items averaged in equation simplification are the longitudinal
velocity and the depth of flow. A further simplification occurs if lateral
or vertical velocities are neglected, leaving their often substantial
influence to be handled by the lateral and vertical coefficients respec-
tively. A knowledge of the averaging steps undertaken to formulate a
given model is essential to being able to select coefficients.

Two recent developments offer some an alternative approach to the stand-
ard formulation of the diffusion equation. Both may help overcome problems
associated with bends in a river. One technique involves writing the
equations using the natural coordinate system, which follows the axis of
the river. The other technique uses the cumulative discharge (total dis-
charge between the bank and the point of interest) as the independent
variable rather than the lateral distance, y. This has been shown to

provide a good fit to field data. If accurate information can be provided
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on velocity variation within the section, this may prove to be a very

useful way to incorporate channel

32

geometry into the equation.
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SECTION III

COEFFICIENT SELECTION

INTRODUCTION

Following the discussion of the factors lumped into the various
coefficients by equation development procedures, it seems appropriate to
review available information on selection of numerical values for those
coefficients. The emphasis throughout will be on presenting the basic
information, citing references to enable the reader to pursue it in more
detail, if desired. Reference will be made on numerous occasions to the
developments in Section II on effects of equation averaging on these values.
It is essential to read the material in this section with the understanding
that the coefficients are strongly functions of the (1) physical situation
at the individual site and (2) the equations being employed.

A few comments about terminology are in order. A review of the litera-
ture reveals an extradinarily large variety of designations applied to the
coefficients. Unfortunately, even now there is no uniformity of the jargon
used in the technical literature., This can lead to confusion when reading
reports and journal articles. The safest thing to do is to understand
fully what equation is being used and understand what advective components
are included in the coefficients, thereby bypassing problems of definition.

There is occasionally concern over proper use of the words diffusion
and dispersion. Some have suggested that diffusion apply only to the
resultant of temporal averaging over the scale of turbulent fluctuations,
with dispersion reserved for any results of spatial averaging with depth
and/or width. Others use dispersion only to apply to the one~dimensional

equation [Bquation (18)], while still others call any and all processes
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dispersion, which at the very least avoids problems with jargon. Other
workers have circumvented the problem by referring to transverse mixing or
longitudinal mixing. The tendency in this report will be to use the term
mixing along with diffusion for vertical and transverse processes, and

{ dispersion for longitudinal processes where spatial averaging has occurred
beyond Equation (11). The key point is the understanding of what the
coefficients mean. Then terminology is less of a problem. Still, it is

hoped that some consensus will eventually be reached on the terms to be
used.

BASIC FORMULAE

There are two main approaches used to express values for the diffusion
; coefficients. The first of these relates the cocflicient to the depth and
| friction velocity, while the second - the so-called four-thirds law -

relates the coefficient to the scale of mixing raised to the four-thirds

power. Current practice is to use the former formulation for rivers and

estuaries, while the second is used for more open water bodies, such as

oceans, lakes, large embayments, and the like. The four-thirds law is often
g used in atmospheric mixing problems as well. In these large systems, the
: largest scale of turbulent motion ("eddies") is usually larger than the

distance between any two tracer particles of interest. Theoretical develop-

ment for the two particle separation problem indicates they separate faster
the farther apart they are, following something like the four-thirds law
(5, 41). The physical phemonenon here can be understood by realizing that
as the particles move further apart, larger scale eddies can act to move them
apart at an increasing rate.

Due to the concept of relative eddy size, the use of a gradient-type
approximation of diffusion, as in Equation (2), has been questioned. How-
ever, as Fischer (8) notes, in typical open-channel flows, the scale of

turbulence is limited by the channel bottom or the flow depth. He notes that
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if the cloud of particles is well distributed over the depth, then the
particle cloud may be larger than the largest scale of turbulence, and
hence a gradient apﬁiroximation i8 reasonable.

1. Friction Velocity Formulation- The basic expression here arose

from the theoretical work of Taylor and Elder (42) and takes the form (4)

B, = ahu, (32)
in which Di = diffusion or dispersion coefficient of interest

of = coefficient
= friction (or shear) velocity

Other measures of the depth, such as the hydraulic radius, may be used.
Holley, et al (18) used the mean velocity in the channel instead of u,.
This is not frequently done, but it is worh noting the relationship between

U, the mean velocity, and U, . From any standard fluid mechanics text, it can

be found that

'3_'\/% (3)

®

in which f = Darcy-Weisbach friction factor. For cases where incomplete
knowledge exists at a given site, Equation (33) might be used to estimate u,

by estimating f and U.

2. Four-thirds Law Form - The basic expression here can be written as

4

- /3
D, KL, G4)

in which K = a constant, dependent on units used
Li = gcale of plume in direction of interest (i.e., size of plume)
The value of the constant K has been taken as various values, dependent
upon thoApcrticular data reviewed. However, the data reported by Wiegel

(43) indicates that the range of K is about 0.0001 - 0,01 for Dyand a
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reasonable value is 0.001, for units of L in feet and Qy in ftzlsec.
PREVIOUSLY REPORTED COEFFICIENT VALUES

Representative values for the coefficients will be given in the
following sections, with emphasis on 'standard" values. Then, succeeding
sections will review the effects of varying physical features, such as
bends, flow unsteadiness, etc. There will be obviously some overlaps, as
reported data does not always clarify which physical features are present.
This, in fact, is one of the dangers in transposing data from one site
to another.

1. Vertical Mixing - Less work has been done on vertical mixing than
on transverse and longitudinal, probably because of its lesser importance
in many practical open channel problems. However, analytical developments
by Elder (42), predict. a parabolic variation of the vertical momentum
transfer, which is assumed equal to the rate of mass transfer. This
parabolic variation has been verified experimentally by Jobson and Sayre
(44). The peak value of e, is about 0.09hu,, while the depth-averaged
value, as noted by Fischer (8), can be taken as about.

e, = 0.067hu, (35)
in which e, = depth-averaged value.

2. Transverse Mixing - Most work on transverse mixing has been done
by making measurements, either of the spread of floating particles placed
on the surface or by the spread of a dye or other dissolved tracer placed
into the flow. Fischer (8) summarizes results tabulated by Prych (45) and
Okoye (46) covering a range of reported values. These are reported in

Table 2.
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TABLE 2.

REPORTED VALUES FOR TRANSVERSE MIXING IN OPEN CHANNELS

e — .
Type of Reference Location ?;/’

Experiment hu,
Floating 47 Lab flume Average 0.16
particles 48 Lab flume 0.24

10 Lab flume 0.196~0.264

49 Lab flume 0.204~0.234

45 Lab flume 0.167-0.252

(Average of 13 runs = 0,204)

Lab 50 Lab flume 0.08
tracer 42 Lab flume 0.16
studies 10 Lab 0.16-0.179

51 0.107-0.133

46 17 runs-avg. = 0.14

i 45 13 runs - avg. = 0.135
River 52 Columbia River 0.72
tracer 53 Atrisco Feeder
studies 54 Canal 0.24-0.25
Missouri River 0.6

It appears that the coefficient, at least in a straight channel free
of extraneous behavior such as transverse velocities, ranges from about

0.2 hu, at the surface to zero at the stream bed, with a depth-averaged

value

A glance at the field results shown indicates the large changes in

coefficient values which can occur when other factors come into play.

Several of these factors will be discussed in succeeding sections. |
3. Longitudinal Mixing - It is considerably more difficult to E'

categorize the values to be assigned here once the coefficient Dz is

reached!

This is due partly to the wide variety of velocity variations

D, =~ 0.15hy, (36)




found in natural channels and partly due to the tendency to apply the

one~ dimensional equation to cases which are not in faet one-dimensional.
For most practical applications, the value of e, has little signif-

icance due to its small value, but if it is assumed (10, 42) that the

turbulence is isotropic merely for the sake of an estimate, then . is

approximately equal to e,, or

=0.07 h
€x S (37)

The value of Dx has considerably more significance, and it has been
analytically treated by Elder (42) following Taylor's approach. Elder determined
the rate of transfer of material across a section(moving at the mean velocity
of the fluid) due to differential advection. He used the logarithmic velocity
profile with the origin at the water surface to find the advective portion

of D to be
x

0.404
D. hu
xa %
53 (38)

in which Dxa = portion of Dx due to differential advection
§ = von Karman's constant

For the standard value of von Karman's constant of 0.4, Dxa = 6.31 hu,.
\

The relationship is often approximated by S

D, = 6hu, (39)

This is due to the fact that Dx = D‘. + e and . is much smaller

than Dxa' In addition, Sayre and Chang (10) investigated the influence of

a different velocity profile on the integrated result. For a parabolic \

velocity distribution, they obtained




A D A0

S0

e

Dxa i3 3 DU, (40)

As they note, this is in surprising agreement with Equation (38) considering
the usual assumption of extreme sensitivity to even small changes in the
vertical profile. Ellison (55) and Bowden (56) used different assumptions
and obtained values up to 25hu,. However, the most commonly used value is
6hu, .

Several experimenters have reported values which generhlly confirm this
range of values. They all tend to be a bit higher, possibly because the
existence of sidewalls in laboratory flumes may make the flow not truly two-
dimensional, or for other reasons. Elder (47) himself reported values of
6.3hu, experimentally. Fischer (20) reported on 197 experiments, with an
average value of 13hu,, the range being from 10.4 - 15.7 hu,. Thackston and
Krenkel (57) reported similar results and Sayre and Chang (10) reported 5.3hu,
for three experiments.

In summary, the value of Dx is usually taken as 6hu*. In addition, as
Dx includes no lateral averaging it provides a minimum value for any longitu-
dinal mixing term in a two-or one-dimensional equation. If any lateral varia-
tion of velocity or concentration exists and is included in the coefficient
definition, then the coefficient values must be larger than given by
Equation (38).

The value of DL’ the longitudinal dispersion coefficient, is subject tc
a great deal more variability and much less certainty in selection. Table
3 shows typical values obtained experimentally. The variation illustrates
the range of physical phenomena operative at different sites. In addition,

however, it should be noted that in some instances the data reported here
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or elsewhere may not have met the criteria for application of the one-

dimensional equation. Data in the table are adopted from Fischer (8) and

Liu (58).

TABLE 3. REPORTED VALUES FOR DL
Reference Channel Depth, cm DL/hu*
59 Chicago Ship Canal 807 20
60 Sacramento River 400 74
61 River Derwent 25 131
52 South Platte River 46 510
62 Yuma Mesa Canal 345 8.6
20 Trapezoidal Lab Channel 2.1-4.7 150-39
63 Green-Duwamish River 110 120-160
54 Missouri River 270 7500
64 Clinch River 58-210 210-800
64 Copper Creek, VA 40-85 220-500
64 Powell River, TN 85 200
65 Sinuous lab flume 2,3-7.0 5.8-35

It can be seen that the Missouri River value ié far larger than any of the

others, With the exception of this, most values reported here or elsewhere

for DL are less than 1000hu,. McOuivey and Keefer (66) report a number of
other results, although they do not report the depth and hence the dimensionless
coefficient value cannot be obtained, It is a useful set of data to review,
however, All the data served to show the need for site-by-site reviews of

the situation to enable prediction of DL' Some simple predictors are reviewed

in the next section.

4. Predictors for Longitudinal Dispersion Coefficient- Several simple
means of selecting values for DL have appeared in the literature and are

presented here. It is essential to recall in reviewing any data appearing
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in the literature that values obtained for DL by use of the one-dimensional
equaticn are only valid if the criteria for ﬁ;e of that equation have been
met.

Fischer's analytical relationship (2) [Equation (20)] provides an
excellent theoretical basis, but it requires a knowledge of the detailed
velocity distribution in the section. Several workers have employed it
in numerical schemes for routing material down long stretches of river. In
fact, this use is usually referred to as Fischer's routing procedure.

Jain (67) has employed Fischer's Equation (20) with the lateral

5/3

velocity variation suggested by Equation (21) (showing uh proportional to h™" 7)

to arrive at a predictive equation for DL for an idealized cross-section

which is constructed to represent the real section. His equation is

D. = 8 u2 Bz
L J Dy (41)
in which
u = mean velocity
B = channel width
BJ = coefficient, calculated,
varying from about 10 " to 10-2

Means of determining BJ are given by Jain (67).

Liu (58) based his relationship on somewhat iimited data. He had a
screening procedure for elimination of some data which has drawn criticisms.
His equation is

o g i
L L hu, (42)

in which

u 1.5
- 0.18[_’1]
u

B (43)
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The expression is derived by best fit and fits the data on which it
is based within a factor of 6. It should be noted that many researchers have
been very happy to be able to fit data and predict the resultant coefficient
within a factor of 4-6, giving an indication of the state of the art.
Christensen (68) discussed Liu's paper and provided a theoretical basis for
selection of a different expression for BL which fits the data at least as
well., His expression is

\.l* 2
BL = 0,41 (T,-‘) (44)

McQuivey and Keefer (66) have provided another equation based on fitting
to field tracer data by use of Fischer's routing procedure to obtain the value
of DL giving the best fit to downstream concentration vs. time curves. They

rely on information available for one-dimensional flow routing to derive the

approximate relationship

=

D, = 0,058 0
oo (45)
in which

Q = discharge at steady base flow

S = sglope of energy gradient at steady base flow
B = width of channel surface at steady base flow
McQuivey and Keefer report that Equation (45) has a standard error of

approximately 30 percent based on data over a wide range of flow conditions for

18 streams and 40 time-of-travel studies. This relationship has the advan-
tage over Jain's that the value of Dy is not required, but this is not a
major factor with all the other uncertainties.

Harleman (27) presents an expression based on Elder's and Taylor's work
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for use in estuaries. Since it is based on this earlier work it therefore
relates to vertical variation of velocities and therefore is more appropriately
a descriptor of Dx’ rather than DL' However, it will be noted that in
estuaries the time scale is frequently short enough that D, is well approxi-

L
mated by Dx' The expression can be written as

5/6
Dx = 77nuR (46)

in which
n = Manning's roughness coefficient
u = instantaneous velocity, ft/sec
R = hydraulic radius, ft
all in foot-second units
Fischer (69), in a discussion of Reference 66, proposed another equationm,

given as

0.011 u’b>

D -
L hu, (47)

A final statement seems in order. All of the equations presented
herein are intended only as guides. None has been shown innately superior to
any other. None can be expected to completely replace judgment and knowledge
of the site. Each one may provide a useful first cut assessment where a pre-

liminary estimate is required prior to any field studies.

FACTORS INFLUENCING COEFFICIENT VALUES

In the succeeding sections, a number of the most common factors affecting
values for the coefficients will be discussed as knowledge exists for coeffi-
cients in each of the directions. It should be recognized that all of these
modifications to basic values of the coefficients represent the lumping of

advective terms into the coefficients, as discussed in Section II. It must be
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noted then that some points will be reached where no amount of modification

of the coefficients will enable accurate prediction of correct mixing behavior,
especially over a long reach of the river where conditions may change consi-
derably from point to point,

1. Density Differences Between Effluent and Reeceiving Water - Many
materials are clearly strongly influenced by their density relative to the
surrounding water to which they are discharged. Lighter materials tend
to rise to the surface due to buoyant forces, while heavier ones tend to
plunge. The momentum changes created by these density differences may in
fact give the effluent a trajectory different from the ambient fluid and
therefore change the total turbulence levels at the plume boundary to give
behavior more like that of a jet of fluid into a receiving ambient fluid.
For this reason, some people classify effects due to these density dif-
ferences as part of the so-called mixing phase, in which discharge char-

acteristics and momentum may dominate ambient mixing processes.

Edinger and Polk (70) note that heated water discharges in the field,
when fitted to a diffusion model, yield values for the lateral ccefficient
larger than expected and values for the vertical coefficient smaller than
expected. This is due to the increased lateral spreading due to the lighter
heated water trying to ride up over the surface, while vertical mixing is
restricted by the density gradient. Sonnichsen (71) reported similar findings.
The most comprehensive work in this area has been presented by Prych (45)
and its use summarized by Brooks (72). Prych performed an extensive series
of laboratory experiments in which effluents were discharged in the center of
a channel in the same direction at the same velocity as the ambient flow. A
number of runs (reported in Table 2) were made to establish the ambient level

of turbulence in that particular laboratory flume. Then a series of runs were
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made where the effluent was either heavier or lighter than the receiving

water, His findings show that density differences enhance lateral mixing.

Prych deals with the variance of the lateral distribution of depth-
averaged concentrations, 02, as a measure of the spread of material. His
findings can be briefly summarized as below.

a. When Ap (the density difference between effluent and ambient
fluids) is not zero, oz(x) is nonlinear up to some point and grows at a
more rapid rate than where Ap= 0. This is shown in Figure 2, where it can
! also be seen that at large x, the curve becomes linear and parallel to the
p curve for no density difference.

b. Data indicates that the more rapid growth of oz(x) is caused by
density-induced secondary flows.

c. The dimensionless excess variance, AV = Ac 2/h2, at large x shown
on Figure 2, represents the added variance or spreading due to the density
difference. AV is defined in Figures 3 and 4 and can be seen to be a function

of only Mb (or Ma) and B, In these figures

f R .
T h (48)
| B' = b/h = dimensionless source width (49)
Ms - %E gb/(au*)2 (50)
a
2
M, -%i-gh/(au*) (51)

in which

b = sgource width

- ambient fluid density
a = Dy/hu*
g = acceleration due to gravity

h = depth
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lAfter Prych (45)]
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d. Evidently fluids which are more dense do not exhibit as much

increase in spreading as lighter fluids for typical discharpe cases. For
B much less than 1 (source width much less than the depth) and M constant,
AV for fluids lighter than ambient is about 5 times the value for

effluents heavier than the ambient. However, for B’ much greater than 1

(source width much greater than depth), AV is the same for light and

heavy fluids.

e. The variance can be predicted as a function of x by using the

expression

V(X,B,Mb) = 2X + (52)

2
1 + r AV
in which ¥ = c2/h2
r = function defined in Reference 45, giving the slope of the
variance versus X curve in Pigure 2
f. The excess variance is a one-time added spreading of the tracer

fluid which occurs within a distance of about
A 1l.5u

h a ug ('53)

It is possible to convert Equation (52) to a form similar to a

coefficiert expression "“sing the relationship from Reference 46,

2
k0
Dy T 7 Y& )
Using Equations (52) and (48) , one can then write
- & 2 dr
D = h = —
y " ‘mR) & v & S

(55)
The value of dr/dx reaches zero at or before the point defined by Equation (53).
Earlier values can be obtained from Prych's data plots. Note that the
first term on the right hand side of Equation (55) is the standard value of
Dy’ and the second term is an increment due to Ap which ultimately becomes
zero. Note that this Dy value in Equation (55) varies with x, although
Prych's data indicates that dr/dx is reasonably constant over a broad range,

generally up to about two-thirds of the distance given by Equation (53).




2. Stratification in Receiving Water - Less work has been done de-
fining the effect of existing ambient stratification on diffusion processes.
A few works are worthy of note, however.

(a) Sumer - Transverse Mixing - Sumer and Fischer (73) and
Sumer (74) have reported on experiments measuring transverse mixing in

oscillatory flows, both in uniform and non-uniform channels. In the

D
uniform channel, the value of a = ;%- generally decreased as the Richardson
*
number, Ri’ approached 1, where
22)gh
e [
R, 2 ( 56)

in which Ap = density difference between upper and lower layers. In
other words, Dy decreased as the stratification increased. The work jave
values of a as 0.058 < a < 0.273 for the average over the depth.
In the non-uniform channel runs, a increased about 50 percent above

the standard values for homogeneous (Ap = 0) runs, yielding

0.024 < a < 0.50
For stratified runs, the range was

0.21 < a <1.87
Instantaneous salinity measurements show a lateral gradient of salinity
toward the deep side, i.e., heavier water is always at the shallower side.
It is surmised that these gradients may be established by vertical mixing
induced by channel irregularities. The gradients in turn induce transverse
circulation and hence larger values of Dy. Sumer (74) reports on an
analysis similar to one outlined by Prych (45) in which the transverse
velocity in a single cell is predicted and the value of Dy including these
transverse velocities is calculated as Dy = 0,953, which is within the
range of experimental values. This analysis lends credence to the belief

that induced transverse velocities create the larger transverse mixing.
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The results of Sumer's work show that the transverse mixing in a

uniform channel is decreased by the existence of a stable density gradient |
in about the same proportion as the vertical mixing is reduced. In
addition, a relationship between the coeffieient and a Richardson number
can be discerned. However, few natural channels are uniform, and
Sumer's results show that Dy is increased if the channel is irregular.
Sumer and Fischer (73) note that it seems likely that the same holds
for Dz’ but they did not investigate this aspect. 'Most numerical
models of stratified estuaries hypothesize a relationship between mixing
coefficients and some form of Richardson number. The results of this study
suggest that in natural channels no such relationship may exist, or if it
does, it may be in the opposite direction from what has usually been
assumed." (73, page 599)

(b) Thatcher - Longitudinal Mixing in Salinity Intrusion Regions -
Thatcher and Harleman (75, 76) have reported on application of one-dimensional

models in salinity intrusion regions in estuaries. They recognize the

role of the longitudinal density variations in the momentum equation and
in the dispersion term. They suggest the following relationship for the

longitudinal dispersion term in that case.

& 3s
DL(x.t) = K * + ET 57)
Iy
in which K = coefficient defined in Equation (58)
Sy = S/S°
S = Salinity
S° = preference salinity
|

X = X/L, 5
Lo = total length of estuary b

ET = Taylor's expression for the longitudinal coefficient




Taylor's value is obtained by

E, = 100aR>/® y . (58)
T max
in which U = maximum tidal velocity.
This is a modification of Equation (46) to enable using a constant value

over the tidal cycle. The coefficient K was found empirically to fit the

relationship
K - -0025
TE 0.002E7 ( 59
in which u, maximum cross-section velocity at mouth of estuary
2
B
S T (60)
Q. T
£
P2 " Yo
! gh Ap/p (61)
in which P, = tidal prism (volume swept out by one tidal period)
T = tidal period
Qf = freshwater inflow

It can be seen from these relationships that higher stratification
implies a higher Dy value. This occurs due to the longitudinal salinity
(density) gradient in the estuary. |

@) Fischer's Analysis - Fischer (24, 25) has presented the most
comprehensive analysis of the factors contributing to estuarine circulation
and mixing. This work will be reviewed more fully in the next section.

It is clear that density differences do cause a part of the circulation
in a real estuary, but Fischer (24) notes that much remains to be done
in understanding real, irregular channels as three-dimensional problems
where a number of factors - buoyancy, tidal momentum input, currents due
to irregular channel geometry, and the like - all interact. As he notes,

even in cases where vertical mixing appears complete there may be

significant density-driven circulation.
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3. Flow Unsteadiness - As might be expected, this is a complex topic
about which much has been written and speculated but where much remains
to be done. A number of earlier comments have been made about various
unsteady flows for other reasons, e.g., non-tidal advective models,
Sumer's (74) work on transverse mixing, and Thatcher and Harleman's (75)
work on salinity intrusion. Most work on unsteady flows has been in
estuaries, but the same phenomena exist in unsteady river flows. In
fact, especially where rivers are controlled by dams, there can be flow
reversal . Brocard and Harleman (77) and Daily and Harleman ( 78 )
have developed a generally applicable one-dimensional model, and the former
workers have applied it te Conowingo Reservoir, a controlled river reach.
In keeping with the tenor of this report and its goal to provide
useable results only a brief review of current thought will be presented,
along with some brief guidance to enable coefficient selection in
unsteady cases.
(@) Fischer Review - Fischer (24) has prepared an excellent
discussion of the physical phenomena involved and tried to classify the
mechanisws which circulate material. The reader interested in a detailed
literature review is strongly urged to read this article. It provides a
very good list of references up to the time of the review (1976). Fischer
also draws heavily on an analysis of circulation he performed (25). An
estuary in steady state (from cycle to cycle) has the net seaward transport
by the mean outflow balanced by three terms representing landward transport
by a variety of mechanisms. The three terms represent (@) trapping{b) resi-
dual currents (gravitational, pumping, and wind), and ) shear effect plus

unsteady wind effects.
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! "Trapping" represents retention and delayed release of material

by embayments or tidal shoals or other local geometry features. This
trapping has the effect of spreading the material out along the estuary
axis, resulting in a larger apparent value of Dy

The most significant form of residual current is that due to gravi-

| tational circulation, caused by thc density distribution. Inertial and
‘ frictional effects, the earth's rotation, and wind also contribute to the
L | residual circulation. Most studies to date have dealt with the vertical
i circulation. In addition, many lab studies have employed rectangular flumes.

| Fischer (24) reviews findings on the vertical circulation, but he then

states (25) that a non-rectangular section would contain a transverse

circulation. This circulation was computed to be landward in the deeper

PP -—

parts of the cross section and seaward in the shallower parts. Fischer
ié applied this concept to data taken on the Mersey estuary and found that
E | the transverse gravitational circulation should contribute about 90 per-
?i cent of the magnitude of the dispersion coefficient there. In that case
vertical mixing was achieved 18 times as rapidly as transverse mixing.

All of this implies that there is still a shortage of readily
applicable information on this obviously important mechanism. Figcher
notes that work should move "...towards a three-dimensional understanding
of gravitational circulation, and towards an understanding of the inter-
play between the buoyancy input from the river and the momentum input
from the tide in generating the distribution of currents in real estuaries."
(21, page 121)

"Pumping" is that portion of the residual circulations due to tidal

waves interacting with the channel boundaries. Fischer (24) gives some

examples,




The wind may enhance local mixing due to surface wave generation,
but its primary impact may be due to its generation of currents in the
water body. These currents are strongest nearest the surface, generally
being 3-5 percent of the steady wind speed (79). These may enhance (or
retard) already existing advective velocities in the longitudinal direction
o or create additional transverse velocities. The author has observed a
| site on the Mississippi River near a large *hermal discharge where the
wind made significant differences in thermal plume behavior. The plume
vertical extent was on the order of 10 feet, so that it was subjectéd to
i the greatest induced surface currents. Two consecutive days with similar
plant discharges and almost identical river flows yielded widely different
areas influenced by the thermal plume. A very steady wind existed from
the north on the second day with a magnitude of 16 to 18 miles/hour. This
; would create surface currents comparable to the normal stream velocities
’ﬁ ; of about 1 ft/sec at the low flows being studied.

Fischer (80) provides a numerical example of the relative importance

of the various mechanisms in the Northern San Francisco Bay, which consists

of a series of large bays joined by narrower channels. A one-dimensional

RN <3 RN 47

analysis is probably not appropriate for this case, but Fischer and Dudley
make reasonable assumptions to estimate effects. They observe that vertical

gravitational circulation is unlikely to account for the observed length

of salinity intrusion, whereas the combined effects of trapping, pumping,
and wind are entirely capable of doing so. Fischer (24) notes that numerical
models are adept at handling trapping and pumping, but less capable of

handling gravitational circulation. This may explain the reasonable results

obtained from applying numerical models to San Francisco Bay, with lesser
success at other sites. Fischer notes that "...it is useful to begin a A

study of an estuary by evaluating which mechanisms are important." (2u, page 127)
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(b) Estimate of Dx in Estuaries - An expression is shown in Equa-
tion (46) and later modified in Equation (58) for Dx in tidal estuaries.

This D: is the same as the E showing up in Equation (57). As Fischer (24)

notes this E, is misnamed the Taylor result because Equation (46) was
originally obtained rather arbitrarily by modifying Taylor's res;lt for a
circular pipe. The step from Equation (46) to (58) is made based on work
by Holley and Harleman (81). They conducted experiments which showed
that a single constant value for the dispersion coefficient could be
assumed throughout the tidal cycle if the time average value of the
absolute value of the tidal velocity is used. If the tidal velocity varies
sinusoidally in time, then this time average value is 2/% times Upax"
The resulting equation is then increased by a factor of 2to account for
increases in longitudinal dispersion due to bends and channel irregularities.
Hence, Equation (58) is the final recommended form.

(¢c) Holley, et al Dispersion Due to Shear ~ This is really the
third category of landward transport mentioned by Fischer (24) and is the
closest to the type of motion previously discussed in Section II of this
report. Holley, et al (82) and Pischer (83) have studied dispersion in
constant density portions of oscillating flows. They have both noted that -
the time scales of vertical and horizontal mixing relative to the time
scale of oscillatory motion controls the behavior of a dispersing material.
"For any net dispersion to occur, the period must be great enough for
some cross-sectional mixing to take place. Then, for example, a particle
carried one direction by a high-velocity streamline may migrate by
diffusion and return by a lower velocity stream line, and longitudinal

dispersion will take place." (82, pape 1697)
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Consider a cross-sectional mixing time, Tc which will be different

for vertical and transverse directions. Further, define

]

T
o0 (62)
c

in which T = period of oscillation. If T approaches infinity, this repre-
sents a steady-state case. From a practical standpoint, if T' is greater
than one, the coefficient of interest will be able to attain its steady-
state value. Bowden (84) found that a sinusoidal velocity which varied
spatially both vertically and transversely gave a value of one-half that

of a steady flow with its velocity equal to the peak tidal flow. Okubo (85)
noted that the value was dependent upon T', with Bowden's result valid for
T' much greater than one.

On the other hand, Holley, et al (82) investigated the variation for
smaller T' where only a vertical velocity gradient existed. They presented
a curve and an approximate equation for the variation, ranging from a zero
value of the coefficient at T' = 0 to the maximum, steady-state value at T'
approaching 10. That equation giving the average value of the dispersion
coefficient over a tidal cycle is written as

oo

O _ a2sor’? » 1
D, 4 (2n-1)> [—"(zn-l)zr'] ‘M (63)

) » n-1 2

in which Dﬁ. = dispersion coefficient for steady flow.

This equation was derived with numerous simplifying assumptions, but it gives
a good general view of the variation with T'. They introduce separate time
scales for vertical and transverse mixing, with

T = _T_ =

t (64)

T
7 i

¢ trans b

(65)
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in which b=channel half-width = B/2. Holley, et al (82) do some order
L}
of magnitude review and observe that for most estuaries, Tv is much

\J
greater than 1.0, while Tt is less than 0.1.

This means that the full degree of longitudinal dispersion due to vertical
velocity gradients is always achieved, but only a fraction of the

contribution due tc transverse gradients is realized. They propose a

E
preliminary equation for the ratio EE- , where Et = Dv = dispersion
v
coefficient based on transverse variations, and E_ =D _ =

v x
dispersion coefficient based on vertical variations. Their equation, i

' '
valid only for Tv > 1 and Tt < 0.1 , is

E qu 1y
= = o.om (37 %
E 3 2 2
v ('—'Ut)
(66)
in which
UT = maximum tidal velocity
"
u = deviation between cross-sectional mean velocity and

velocity at any given point in the section.
Obviously, evaluation of this ratio requires a knowledge of the spatial
distribution of velocities so that u" can be determined throughout the
section. As a guide, Holley, et al (82) used values of 0.0l and 0.04 for
the bracketed expression on the right side of Equation (66) and note that
its value would be about 0.02 for a logarithmic velocity distribution.

This equation is based on Fischer's (20) simple result comparable to

Equation (20) , or

D e L.2

- u
L 0.30 S ] ('R") (67)
Ru, u,

in which R = hydraulic radius

L = distance from thread of maximum velocity to most distant bank

RO
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This equation has not been verified for geometries typical of estuaries
and represents only an attempt to try to understand the relationships
between parametera. Therefore, no real exactneas should be associated
with its use. It does provide a reasonable first step toward evaluation
of the relative impact of velocity variations in the two directions. They
recommend the following procedure for defining DL'

(1) Calculate 1; and TL .

(2) 1f T; <0.1 and TL > 1, use Equation 3.35 to calculate Et/Ev.

(3) If Et/gv < 1, vertical variations of velocity
dominate the dispersion, and DL = Dx =6 hug.

[Equation (39)].

(4) If Et/Ev > 1, more detail \formation is needed
about the transverse variation of velocity to enable
evaluation, for this variation dominates the process and
may yield a coefficient whose value approaches 10 Dx .

(5) They note that if the discharge is a continuous one, then
the factor of 10 in the coefficient may not be significant
and use of DL = Dx = 6hu, may be satisfactory. However,
this is not true for unsteady discharges of material such
as occurs in a spill.

It is worth noting that if the rate of transverse mixing is enhanced
above standard levels by bends, groins, islands or sandbars in the flow,
or the like, this further increases the possibility that the transverse
contribution will dominate. In general, then, it seems likely that for
wide estuaries the value of DL can be approximated by Dx = 6hu,,
while for narrow estuaries or those in which the rate of transverse mixing

is high the coefficient must be estimated based on a measured or assumed

transverse velocity variation.
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Harleman (27) mentions the example of the upper Delaware Estuary.
There, it is estimated that T; is about 15, while T; is about
1/200. It could be concluded for this case that the vertical variation
dominates and D, can be taken as 6hu,.

The preceding discussions cover many elements and are often based
on preliminary sorts of equations. For this reason, the predictive
equatio s of, e.g., Holley, et al (82) are given here only for preliminary
analyses. The major significance of what has been said lies in the
importance of the mixing time scale. Calculation of T; and T; enables
a first estimate of the relative importance of the mixing mechanisms.
Further evaluation of the coefficient values ranges from simple (if
vertical variations control and D = 6hu,) to complex (if E
controls). This situation is consistent with the previous discussions
indicating the large degree of uncertainty associated with coefficient
selection in estuaries. Recall that there are many factors in addition
to the shear behavior discussed here. Holley, et al (82) note that their
analysis is probably most nearly applicable to estuaries which have a well-
defined and reasonably straight channel, such as those found along the
east coast of the United States. It probably does not apply to multi-
channeled or island-laden estuaries similar to portions of the Columbia
River. For estuaries where other major mechanisms - overbanks, shoals,
islands, hends, or other gravitational circulation - are not apparently
important, the information presented here can provide some guidance to

coefficient selection. The final decision will have to rely also on

judgment.
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d. Ward's (86) Work on Transverse Mixing in Oscillating Flows -
Ward (86-88) performed laboratory tests and reanalyzed field data on
transverse mixing in oscillating flows, providing additional information
on the influence of bends and channel geometry on this process. In his
laboratory work, he varied the flow depth, h, and the radius of curvature
of the bends, Rc . He additiomally used the parameter L, = B/2,
where B = channel width. He found he could categorize the time average
value of the transverse mixing coefficient in two ways, using either the

average value of the shear velocity or the instantaneous value. This

yielded _Dl L, ;
ALy, c c
= f )
Yo ¢ (69)
in which G* = time average value of u,
Uy = instantaneous maximum flood tide value

These relationships are illustrated in Figures 5 and 6. Figure 5
shows the relationship in Equation (68), with values for the dimensionless
coefficient, or a from Equation (32), ranging up to about 1.7.

When the representation of Equation (69) is used, Figure 6 shows values of
a all less than 1.0 for the ranges tested. Notice that these values

are in the ranges of values reported by Sumer (74). In his study, secondary
currents were generated by channel non-uniformities and flow stratification,
while in Ward's work they occurred due to bends. Ward also reported three

estuarine cases for which he found data where the a value obtained by

dividing by u, as in Equation (68) ranged from 0,42 - 1.03.
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Figure 5, Transverse Mixing Coefficient in Oscillating Flows

Using Average Shear Velocity [After Ward (86)]
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Figure 6. Transverse Mixing Coefficient in Oscillating Flows
Using Peak Shear Velocity [After Ward (86)]
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4. Bends and Other Geometry Problems - The primary effect of any

geometry feature lies in its tendency to (a) induce currents in the flow
and (b) to limit available dilution water by the existence of a limiting
boundary. A number of these effects have already been discussed in
earlier sections. Some other works will be reviewed here.

a. Transverse Mixing in Bends - In bends, the secondary current,
helical in nature, has the effect of enhancing transverse mixing over a
reasonable reach of the river. However, in certain local sections en-
compussing a portion of the channel width, the net transverse velocity may
be opposite to the direction of spreading and decreasz the local transverse
mixing. Fischer (89) and Chang (13) made studies in laboratory flumes
and found o values [Equation (32)] ranging from 0.5 to 2.5, considerably
above the typical value of 0.10 - 0,20. In field circumstances,
Yotsukura, et al (54) and Sayre and Yeh (40) have found average values
for a ranging from 0.6 for a gradually curving reach up to as high
as about 10 fcr a very sharp bend. However, it appears that other elements,
specifically groins along the shoreline (on the Missouri River) may have
contributed to this very high value by generating added transverse currents.

Fischer (89) employed Rozovskii's (90) radial velocity distribution

to derive the expression

(AD.) u.2 h.21
s SR~ R

hu* c (70)
in which § = von Karman's constant
AD, = increment due to helical motion
R, = radius of channel Gupvature
I = function given inReference 89, varying from 0.02 to 0.2
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This result was for an infinitely wide channel, with no boundary influences.
Sayre and Yeh (40) have found improved correlation with data by including
the factor B/h, the width-to~depth ratio. Yotsukura and Sayre (38)

plot field and lab data and show that in both cases a is proportional to
&2 (5*-)2 (’,;—c)2

Even this does not bring laboratory and field data together, implying that

more work is needed. However, it does provide a useful guide to the

effect of flow or geometry changes.

It is interesting to review Ward's data in Figures 5 and 6. Again,
the same trend with h/Rc is evident in his work. Physically, one can
realize that Rc approaching infinity implies a straight channel, and
o values should decrease with larger Rc‘

Krishnappan and Lau (19) have carried out a laboratory study where
the bottom was allowed to deform in the way a natural channel would, i.e.,
deeper portion toward outer part of the bend, etc. The earlier studies
had rigid beds of generally uniform depth. They used the generalized
change of moments approach for data analysis proposed by Holley, et al
(18), to separate out the spreading due to the net transverse velocity.
The remaining coe“ficient represents spreading due to (1) turbulent
diffusion and (2) differential convection due to the variation of the
transverse velocity over the depth. The resulting a values varied
between 0.213 and 0.416, larger than the usual 0.10 - 0.20 for a straight
channel, but smaller than the values reported by Chang (13) and Fischer
(89), which ranged up to 2.5. Note that these other two investigators used
rectangular channels with flat bottoms, while Krishnappan and Lau used
channels with large transverse variations in depth, as well as cross-
section variations when moving downstream. It is clear that this difference
in channels is the major factor causing differences in coefficients. It

still leaves, however, many questions with respect to predicting the co-

efficients for any given site. 65
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Holley, et al (18) review also the effect of bends. It is noted that
as the flow proceeds through a series of bends, a lateral current exists
due to the movement of the bulk of the flow from one side to the other.

The deeper portion of the river section (and hence the major portion of

the flow and the higher velocities, occur toward the outer part of a bend.
Therefore, dependent upon where the release point is, there may be a
tendency for the transverse currents to enhance (add to) mixing due to
standard processes or to decrease it. In fact, Holley, et al (18) note

that if this transverse velocity is not considered, it is possible to obtain
negative values for diffusion coefficients by standard means of fitting
data. Chang (13) in fact found this in his work.

Chang (13) summarizes some of his key findings as follows:

1. The lateral mixing coefficient in a meandering channel is
closely related to the development and decay of the helical motion. It is
periodic in the longitudinal direction. In general, maximum values occur
near the downstream portion of bends, and minimum values occur in the
upstream portion of bends. The mixing coefficient also depends on the
lateral position of the plume and hence on the source position.

2. The lateral mixing coefficient can be approximately represented

as the sum of a variable lateral dispersion coefficient and a turbulent
diffusion coefficient.

3. The lateral dispersion coefficient, which relates the lateral
convective flux across stream tube boundaries to the lateral concentration
gradient, is negative at the beginning of the bend, where the helical
motion reverses direction. When the lateral dispersion coefficient is
negative the dispersant is convected by helical motion from a region of
lower depth-averaged concentration to a region of higher depth-averaged
concentration.

4. The normalized lateral dispersion coefficient D /hu was found
to decrease with increase of roughness at the bed.

5. In a wide channel, the lateral dispersion coefficient should
increase with increasing depth to radius-of-curvature ratio, as does the
intensity of the helical motion. However, when the width-depth ratio is
small the helical motion and hence the rate of lateral dispersion is
evidently attenuated by the influence of the side walls. Therefore the
lateral dispersion coefficient actually decreases with increasing depth
to radius-of-curvature ratio. (13, pages 94-95)
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In summary, processes in bends are very complex and provide a real
problem in selection of proper coefficients. It is best to think of two
separate kinds of problems: (1) a discharge which proceeds through a number
of bends over a reasonable length of the river to the point where a
prediction is needed, and (2) a discharge from a particular point in or
near a bend where a predicted concentration is desired very near the
discharge point. In the former case, elevated values of Dy/hu* similar
i ; to those reported by Chang (13}, Fischer (89), Ward (86), and Yotsukura,
g t et al (54) are appropriate. In the latter case, judgment must be applied

: to understand the transverse velocities generated in the bend. The state
t of the art in this area is not too far along. The author feels that
f j future work which incorporates transverse velocities in the model 1is
. more likely to adequately describe mixing processes in bends than using
varied coefficients in a standard model. For the time being, however, it
seems that Chang's work provides the best basis upon which to proceed.
The neglect of transverse velocities has been shown to be one
factor resulting in larger transverse coefficients when data are fitted
to a model. Holley, et al (18) note that transverse velocities on the

order of one percent of the main stream velocity can give transverse

spreading rates comparable to standard diffusion rates. The author has

made comparisions of the magnitude of the neglected term, v 3c¢/dy ,

as compared to the second derivative transverse diffusion term, using the
solution for a point source discharging into an unbounded medium. It is
clear that even values of v on the order of one to two percent of the

mean longitudinal velocities yield a neglected term on the same order as

the standard diffusion term over a large portion of the flow field for

typical river-parameter values.
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In addition, Sumer (73) has used a simplified analysis of the
transverse velocity field and derived a value of o equal to 0.95 for
a typical case. This clearly shows the impact of transverse velocities.
All of this does not necessarily mean it is necessary to go to a
numerical model in two dimensions. It does mean, however, that use of
any model requires consideration of potential sources of transverse
velocities to enable assigning reasonable coefficient values.

b. Other Geometry Effects - Other peculiar geometry effects are
as numerous as there are possible physical sites. Strange bank or bottom
configurations, structures, attached water bodies such as embayments or
pools are some examples. Sayre and Caro- Cordero (22) and Holley and
Abraham (91) present findings relative to grion's which are control structures
protruding from the bank. The high value of Dy/hu* of about 10 reported by

Sayre and Caro-Cordero in the Missouri 'is partly due to extensive groins in the area.

Holley (23) presents Figure 7 as a way of viewing transverse mixing
rates with groins, also heiping to illustrate behavior across bends as
discussed earlier. In Figure 7, the component e x represents the
contribution to diffusion by shearing action (the 0.1 - 0.2 hu, portion),
while e, represents the contribution due to helical motion in a bend.
Superimposed on this is increased turbulent mixing, represented by eg,
caused by the groins (or other structures protruding into the channel).

It is to be expected that increased turbulence due to these structures will
have a limited physical extent, thereby affecting only a portion of the
width of a sufficiently wide river but the entire width of a narrower stream.
In addition, it is evident that the behavior of the discharged material

will vary according to (a) its location in the channel and (b) the portion
of the channel it covers. This further emphasizes the need for site-by-
site reviews, although it is clear that current information does not enable

estimation of the extent of groin influence.
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Holley and Abraham (91) report on the results of five field tests on
two rivers in Holland. For the IJessel River, Dy/hu* is about three times
that for a straight rectangular channel. For the Waal River, Dy/hu* is
about 60 percent of that in the IJssel, presumably because the Waal is

both straighter (reducing helical motion) and wider (reducing the extent
of groin influence).

Geometric features can be important even when they are not obvious. A
classic example is discussed by Fischer (8), concerning data taken in the
Atrisco Feeder Canal, a very straight, man-made canal. Measured values of
Dy = 0.23hu, seemed in excellent agreement with Elder's work, and this
value was frequently cited as the value to use for a straight channel. How-
ever, a subsequent review showed that while the channel edges were straight
(in plan view), the thalweg, or deepest part of the channel, meandered from
side to side. This created secondary motions which increased Dy' It appears
that for a perfectly straight channel of the same size, then, Dy would
probably be more like 0.1 - 0.2 hu,.

c, Initial Jet Mixing - A factor which is really separate from the dif-
fusion problem as far as mathematical approach is the initial mixing which
occurs due to excess momentum or other driving forces at the point of dis-
charge. For example. some people include the increased mixing due to
buoyancy, as outlined by Prych (45), as part of the initial mixing problem.
It is true that any time the discharge has a different velocity (magnitude
and/or direction) from the receiving stream, then additional local turbulence
is generated by the shearing action between the two fluid streams. The key
fact to note here is that the diffusion models discussed in this report are
not applicable until this initial excess momentum is dissipated and the
pollutant is subject only to ambient velocities. The same is also true in

faster flowing receiving waters where the velocity of discharge is less than

the ambient.
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For cases where initial mixing is significant, a model linking
this mixing with diffusion is needed. Some simple attempts have been
made for steady state cases, but none for the unsteady discharges likely
in a spill.

Sayre and Caro-Cordero (22) have developed a model based on empirical
evidence for the dilution and spreading which occurs in the initial
region at a site on the Missouri River. Eheart (26) has attempted to
link a jet model to a diffusion model. These and other such linkages
attempt to define the areal extent of the pollutant plume in the cross-
section and the peak concentration at a point where initial mixing is
assumed to have been dissipated. This gives a concentration and size
to use as the source for the diffusion equation. Brooks (92) discusses
use of an adjusted initial concentration after initial mixing, but uses
it as a constant concentration over the newly-defined source, as others
have done, rather than a more representative distribution. The interested
reader is referred to sources such as those by Benedict, et al (93),
Benedict, et al (94), and Jirka, et al (95).

d. Depth Variation in Receiving Waters - Some effects of depth
variation have been previously mentioned, including the depth variation in
bends which give rise to variation of transverse velocity across the stream.
Krishnappan and Lau (19) note this effect. In addition, intuition leads
one to the understanding that material entering shallow water near the
channel bank will be diluted less rapidly due to the existence of limited
quantities of water for dilution purposes. Holley, et al (18) report on
some numerical experiments in which pollutant behavior in a rectangular
channel is compared with that in a trapezoidal channel of comparable size

and velocity. Considerably higher concentrations are noted in the shallow
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regions of the trapezoidal channel. This sort of behavior is duplicated
in many natural channels and in flows with overbank regions.

e. Width-to-Depth Ratio in Channel - The width-to-depth ratio
has been cited in the discussions on bends and groins as having importance
in the diffusion process. Earlier discussions on the scale of turbulence
are important here also.

Okoye (46) has presented data on the effect of the width-to-depth
ratio, shown in Figure 8. It is apparent that the aspect ratio, A = h/B,
has an effect. However, it appears that over a broad range the scatter
in the data is sufficient to mask some of the variation and yield some

uncertainty in selection of a coefficient. It does appear, however, that

as A approaches 1.0 (the channel gets relatively narrower) the value

of a is reduced by the apparent limitation of the scale of mixing

by the existence of the sidewalls. It also appears that somewhat higher
values might be expected in relatively wide natural channels. For example,
for B/h of 100, a = 0.25 or more might be reasonable.

In a recent study, however, Lau and Krishnappan (96) have presented
imposing evidence suggesting possible error in Okoye's suggested trend or
at the very least showing uncertainty in the state of the art. They review
Okoye's own data (note the scatter in Figure 8) and other data and note
that it is hard to define a definite trend. They then present some of
their own data and show what appears to be a very good correlation between

B/h and Dy/u*B. They do note that the friction factor, f, is
obviously still a factor and variability of Dy with f remains to
be better defined. They concluded that the dominant mechanism in transverse
mixing is the secondary circulation driven by variations in transverse
shear. This variation is governed by the width-to-depth ratio, as narrower

channels find more of the flow region affected by sidewall shear and

hence have larger secondary currents. This reasoning leads one to expect
72
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A larger U& values if the channel width is decreased. It should be noted

that Lau and Krishnappan's results included no B/h value less than about
; 8.8. Therefore, it still may be true that further reduction in B might
find the turbulence scale reduction overriding the increase in secondary
influence. They have concluded that this is not the case in the data
they present.

Lau and Krishnappan (96) expect Dy to approach a constant value
for constant velocity larger B/h values (say, approaching 100), varying
only with f. They further suggest that values for Dy/u*B will be
i different for other cross-sectional shapes due to the likely differences
| ‘ in secondary circulation.

All of this leaves some unresolved conflict between results from

Okoye (46) and Lau and Krishnappan (96). It appears there are still
unanswered questions, and future work will have to untangle them. From a
practical standpoint for the time being, it is worth noting that Lau and
Krishnappan (96) reported values of Dy/hu* ranging from 0.108 - 0.259
for B/h from 8.88 - 42.86. For conservative predictions, this range of
coefficient values is narrower than those for bends, for example, and there-
fore it is possible to select a value.

One further item should be mentioned here. If the :'idth becomes not .
only very much greater than the depth, but also much larger than the size

of the pollutant plume, then perhaps the four-thirds law should be used to

estimate Dy [see Equation (34)]. Recail the earlier discussion which indi-

cates that in many such cases the gradient-type mixing may not be applicable.
Therefore, in lakes or large estuaries or embayments, coefficients should

probably be calculated by the four-thirds law.
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APPLICABILITY OF 1-D MODEL

One ol the errors most frequently made in analysis of water quality
problems is the use of one-dimensional (1-D) models when in fact the process
is not really 1-D. It has been established that there are some criteria
which can be applied to determine the length downstream required to reach
the point where the concentration is sufficiently uniform across the stream
section to allow use of the 1-D, longitudinal dispersion equation
[Equation (18)]. Fischer (20) and Ward (97) have presented criteria for
estimating the longitudinal distance required to reach this point, with

both methods giving comparable results. Fischer's equation yields

By (71)
distance to point where Equation (18) applied

in which XL

L

distance from streamline of maximum velocity to most
distant stream bank

It can readily be seen that for wide streams a substantial distance
(many miles) may be required to justify use of the 1-D equation. Therefore,
even for problems where longitudinal behavior is of most interest, use of
a two-dimensional equation such as Equation (15) may be best. In fact,
Holly (98), in a discussicn of the work by Liu (58), makes this point very
well. He shows excellent fit to a set of data using the 2-D model, while
the 1-D model gives a quite different trend.

Other investigators have dealt with the 1-D question also. Ruthven
(99) has used the Fischer criterion in an assessment of applicability of
the 1-D model for BOD. McQuivey and Keefer (100) note that about 150 miles
may be required in a particular stretch of the lower Mississippi River for

1-D conditions to be met after a dye dump. It is not uncommon to see
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estimates of XL approaching this sort of large distance in larger rivers.
Fischer suggests Equation (71) as a criterion for estuaries also.
In terms of time, the time required for a side discharge to mix completely

across the cross-section (Tmix) is on the order of
2

0.4 B

5 (72)
y

TS
mix

Fischer (101) found that in a stretch of the Delaware Estuary about (1300 meters
wide) about 10 days would be required for complete mixing. A one-dimensional
model would therefore not be a good choice for a side discharge at that site.
Fischer (24) notes that in many cases, material discharged into an

estuary is flushed into the ocean before complete transverse mixinec occurs

and thus the 1-D equation has no value at all in those cases.

Ward's (97) results clearly show the effect of the location of the
discharge point. As might be expected, material discharged near the center
of flow reaches 1-D conditions most quickly, as spreading occurs in both
lateral directions and must cover a shorter distance to reach the bank than
where material is discharged from one bank. Both Ward (97) and Holley,
et al (18) note the extreme importance of channel bends in increasing D
and therefore decreasing XL. Ward presents figures based on his numerical
experiments, as do Holley, et al. The latter are shown here as Figures
9 and 10, which are illustrative of some important points.

It must first be noted that any [ractical definition of complete
mixing must specify some allowable deviation across the channel, e.g., a
maximum 2 percent, or 5 percent, variation across the channel. In Figure 9,
the crossing distance, xc, is defined as the point downstream where the
concentration on the far bank first reaches 2 percent of the near bank

concentration. (Discharge is from one bank into a rectangular channel.)
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Figure 10 defines complete mixing as that point where cross-sectional

variation of concentration is a maximum of 5 percent. Holley, et al (18)

present equations describing the curves, based on using

1

in which u = mean velocity

D = K, uh (73)
y

The value of K, can be related to the a of Equation (32) by use of
Equation (33). The value of u/u, is usually between 10 and 20, and K1 is
thus usually in the range of 0.02 - 0.04. Lower K1 values may prevail in

man-made channels, and higher ones in channels with extreme bends, groins,

or other geometry problems. Equations describing Figures 9 and 10 are

X
c _ 0.0543 B

Bl K h L%

1

xm = 0.445 B

U 2 (75)
B Kl h

in which Xc = crossing distance
Xm = mixing distance

both as defined above.

A range of Kl values are illustrated in the Figures. It is interesting
to note that both Xc and Xm vary in proportion to the logarithm of the
assumed percentage variation selected. For example, in Figure 9, CB = con-
centration at y = B and Co = concentration at y = o. The value of Xc/B
varies inversely with 1n(CB/Co)‘ For example, if CB/C° were selected as
0.01 rather than the 0.02 used, the right side of Equation (74) would have

to be multiplied by 1n(0.02)/1n(0.01)= 0.85.

In Figure 10, q- is the completely mixed concentration, given by

c = 2m
®  yhB , (76)

in which Qm = total flow rate of discharged material. Values of Xm/B vary
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in proportion to 1p [(co - CB)/q Co ] + As an example, if 10 percent

' variation across the channel were taken as the criterion, rather than the

S5 percent shown, the right side of Equation (75) would have to be multi-
plied by 1mn(0.10/4)/1n(0,054) = 1.26 »

It is recommended very strongly that any attempt to employ a 1-D
model be checked thoroughly against the criteria presented here to assure
its applicability. It is important to note that unless the non-1-D
‘a : region is very short, an appropriate 2-D or 3-D model should be used up
i! to the point where one-dimensionality occurs.

EI CONCLUSIONS TO SECTION III
It has been shown that selection of coefficients for diffusion models is

not a simple task. The coefficients are a function of the physical site and

the particular model being used.
The first step in model selection must be a review of the model, listing
! the averaging steps it has undergone to assure full understanding of what the
coefficients in the model represent.
i 1. Dz Value - The simplest coefficient selection should be the vertical
coefficient, Dz, which is defined as 0.067hu,. This may be decreased in the

L presence of density stratification or it may be increased if bottom irregular-

ities are thought to increase vertical mixing. No good guidance exists on

how much to increase or decrease Dz in those cases.

2. Dy Value - The transverse mixing coefficient, Dy, has a basic value
of 0.15hu,. The biggest single factor changing this standard value is the

existence of bends, although density differences can also play a major role.

In bends, the transverse velocityies created by the geometry are the main

features. If a stream tube model such as that by Holly (115) is used, the -
transverse velocities are implicitly included and this modification to the

standard value does not have to be made. In other models, however, two
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separate types of adjustments may be necessary, one for local behavior in a
bend and the other for longer stretches of the waterway passing through many
bends. For local processes in the bend itself, the work by Chang (13)

provides some guidance to the variation through the bend. For longer reaches,
Chang (13), Krishnappan and Lau (19), Yotsukura and Sayre (38), and Fischer (89)
all provide values. Ward (86) provides very similar values in an oscillating
flow. It is important to observe that Dy never exceeds about 2hu, through

a series of bends unless there are other features as well. This provides an
upper limit.

Stratification existing in the receiving water has not been investigated
much with regard to Dy’ However, Sumer (73) has shown values for Dy in
unsteady, stratified flows which are also less than 2hu,, or the same order
as values due to bends.

Prych (45) has provided the best work on mixing rates where the effluent
and ambient densities differ. One should check the distance over which
the density influence would be felt. Calculations inside that range should
use Prych's modified values, while beyond that the density effect can be
neglected.

If the discharge is into a lake or very wide water body, it may be more
appropriate to use the four-thirds law [Equation (34)] for estimating Dy'

3. Values for Dx(DL) - It must first be ascertained whether averaging of
velocity, etc., hhs occurred across the entire cross-sectional area or only
vertically. In the former case, rhe designation DL (longitudinal dispersion
coefficient) is more appropriate. The value for D, where only vertic:l
averaging has been performed is usually taken from Elder's (42) work as .
6hu, .

If the appropriate coefficient is DL' one must first compare the width of
the water body to the expected plume width. Holley, et al (82) discuss this

concept in estuaries and a similar approach could be used in rivers. If




the plume covers only a small part of the stream width, Elder's (42) value

of 6hu, may still be appropriate. If the plume covers a substantial portion
of the stream width, then more must be known about the lateral variation.

At the current time, in estuaries it is recommended that the Thatcher-
Harleman relationship [Equation (57)] be ised to estimate DL’ with the Holley,
et al (82) methods used to estimate values for smaller plumes.

For rivers, a number of empirical relationships exist and are summarized
in Section III - 3.d. One approcach is to calculate DL by all techniques
and compare. The methods by Jain (67) and Fischer (66) should be given more
weight because they are theoretically more sound. None, however, are
excellent.

4. Conservative Estimates - There is a fairly high level of uncertainty
in selecting coefficients for model use. Some of this can be alleviated by
using models retaining more detail of the advective flow field. 1In any
case where it is desired to assess potential spill impact, coefficients
should be selected to provide a measure of safety. If redults are still
acceptable, then no further estimates are needed. If the predictions in-
dicate a potential problem which disappears when upper limit coefficient
values are used, it will be necessary to better refine the values. In
general, lower coefficient values should be chosen to minimize mixing and

provide conservative results. They should never be lower than the lower

limits. For example, D should never be less than 6hu,.
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SECTION IV

TECHNIQUES FOR SOLUTION OF DIFFUSION
EQUATION

GENERAL BACKGROUND

The equation to be solved has been derived and given as Equation (1}1),
the three-dimensional convective diffusion equation. The literature has many
discussions about solution techniques for these equations, but they all fit
three basic types:

Integral transform methods
Method of images
Numerical methods
Brief mention will be made later of numerical methods, but the major thrust

here will be the first two techniques. This is because the Air Force needs

will be much better served by analytical models which can be applied widely
with a minimum of backup data required. Numerical models require much more
extensive programming, user skill, and interpretation, coupled with a need
! for data at a much higher level than is called for in the assessment and
planning modes needed by Air Force users. In fact, some of the data is often
not available.

This report is not intended to be a basic text, and therefore where ade-
quate coverage appears elsewhere, the reader will be referred there for details.

Greater detail will be presented on the method of images due to the feeling

that it is not adequately described elsewhere in the generally available technical
literature. Probably the single best reference is the classic by Carslaw and
FR Jaeger (102). However, Crank (103) has an excellent presentation, and Jost

(104) and Monin and Yaglom (105) also present useful reviews. In reviewing

the next sections, a key fact should be remembered about the convective dif-

r fusion equation. The convective diffusion equation (Equation (11) and its simp-
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lified versions) is linear, in that the sum of one or more solutions to the
equation is itself a solution. This is often called the superposition principle.
BOUNDARY CONDITIONS TO BE MET

The primary constraint in the solution of Equation (11) lies in the
boundary and initial conditions which must be met. These will vary according
to the specific case being considered, but the most general condition 1s the
no-flux boundary. In order to assure that no material is transported past
the physical boundaries of the system, there must be no transport past the
air-water interface (z=0), the two lateral boundaries (y=0 and y=B, the stream
width), or the bottom boundary (z=h, the stream depth). This can be expressed
as 3c/3dn = 0, or the concentration profile is normal to all these boﬁndariea.
Other boundary conditions are imposed by the size and shape of the source, as
well as the time distribution of the material release. In additionm, 1nitiai
conditions of concentration are determined by "ambient" concentrations, or
at lease those existing prior to the release.

1. Solution by Integral Transform Techniques - A direct analytical solu-
tion technique exists for certain cases, using the method of integral trans-
forms. It is somewhat difficult to use as the problem to be solved increases
in complexity. It is generally true that many of the effects which are lumped
into the coefficients, especially by partial averaging (see Section II) are
very difficult to define due to the complexity of the solution forms. However,
it provides a systematic approach to a very difficult problex and is beginning
to appear more and more frequently in the technical literature, as can be
seen in the review of models in Seciton V.

A full description of the integral transform technique for solution of
differential equations is presented in the references cited, as well as numer-
ous mathematical texts, including the one by Snedden (106). Cleary and Adrian

(107) present a very thorough version of the solution process. They show a
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two-dimensiocnal and a three-dimensional solution with certain assumptions
involved. For example, for the two-dimensional case, one finite (vertical)
and one infinite (longitudinal) dimension can be transformed out of the
convective diffusion equation by use of a finite Fourier transform and a
complex Fourier transform, respectively. This results in an ordinary dif-
ferential equation with time as the dependent variable. This equation can
be integrated directly for the transformed variable which represents concen-
tration. This variable must then be converted back to the real concentration
by "inversion', i.e., by integrating by appropriately defined inversion for-
mulae which reverse each transforming integration made initially. 1In this
case, two integrations were used in the transform process and therefore a
double inversion is required. The process is identical in three dimensions
except that one more integral transform is required to remove the finite
lateral dimension. Of course, one more inversion formula is required for
conversion back to the real concentration.

The above description oversimplifies a complex set of operations. The
complexity increases as more realistic variability in the physical parameters
is allowed. For example, use of a single, constant longitudinal velocity
yields simpler solutions than those suggesting more realistic cross-sectional
variations. In addition, those dealing with time-varying flows are even more
complex. From the standpoint of a model user, rather than a model developer,
other features of the method are more important than the underlying mathematical
manipulations. A key thing to remember in all model reviews is to be sure to
understand the assumed flow conditions, source conditions, and boundary condi-
tions.

The form of the solution obtained by integral transform techniques usually
consists of one or more combinations of infinite series of sine and/or cosine

terms. Examples will be shown later. It is worth noting that one of the
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difficulties of these series is that they are very slow to converge and may
therefore require a large amount of computer time. Holley, et al (18) and
others (108) report this fact.

2. Solution by Method of Images - The second technique involves use of
the method of images, outlined in Carslaw and Jaeger (102), Prakash (109), and
Benedict (110). This method takes advantage of the superposition principle,
in that the sum of a number of solutions to Equation (18) is itself a solutionm.
As an example, consider the solution to Equation (18) obtained for an infinite
medium, i.e., no boundaries exist. If this solution is written for two sources
of the same strength (flowrate and concentration) at different locations, the
sum of these two solutions has the characteristic that there is a plane sur-
face midway between the two sources across which there is no transport of mate-
rial, or 9c/3n = 0, which is exactly the required condition which must exist
at a physical boundary. In this example, one source is inside the real flow
field and 1s the real source. The other is outside the physical flow field

and is referred to as an imaginary, or image, source. Therefore, proper selec-

tion of locations for image sources and the resultant summation can yield a
set of physical limiting planes exactly corresponding to the stream surface,
bottom, and lateral boundaries. It develops that this requires infinite seriee
of terms in the vertical and lateral directions. Inasmuch as the basic solu-
tion form contains exponential terms, the image solution is then one or more
infinite series of exponential terms, versus the sine-cosine terms from the
integral transform method.

The reason the infinite series becomes necessary can be seen by reviewing
Figure 11, taken from Cochrane and Adrian (111). The real source is R. Image
sourcel , is placed to balance the real source across the bottom boundary and
yield a no-flux boundary at that location. Image source 12 is similarly placed

for the surface. However, each time an image source is placed to balance one
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boundary, it automatically unbalances (creates a net flux) at the other boun-
dary. Hence, another one must be placed to offset that effect. For example,
13 is placed to offset Il’ and I4 to offset 12. Obviously, this process con-
tinues forever, yielding the infinite series in both directionms. It should

be noted that the lateral case is identical, for the surface and bottom in
Figure 11 could as well have been called left bank and right bank. Sayre (112)
has noted, however, that the practical application of these models is such

that any images beyond about five in each direction are so far away (see the
expanding distances in Figure 11) thet their contribution to the calculated

concentration is negligible. Therefore, for calculation purposes, any =

showing up in the summation term of an image solution can be replaced by S.

3. Comparison of Two Solution Techniques - Holley et al (18) preient an
interesting comparison between the two forms of solution for the continuous
release of material at a mass rate QIII from a vertical line source at one edge

of the chammel (y = 0). The image solution is

n = 4
6 et Y | - | an
h /WD Ux o
y n-—ﬂ

in which U = stream velocity (average)

The integral transform solution is

2 e cos 2y
n-

Ux
" RBU  FBU AT Mkl R At
Q+ un) y
(78)
in which
2Dnw 2
% 7 ( uB ) .
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The two solutions given by Equations (77)and (78)are numerically equiva- ,
lent, as they should be. However, Holley et al (18) note that Equatiom (77) g
requires only a few terms of the series to converge for small x, while Equa- S
tion (28)requires only a few terms at large x. Kuo (113, 114) notes |
that the transform solution may take in excess of 100 loops to converge.
While this can be accomplished on the computer, it in less efficient. 1In ad-
dition, the image summation process makes it easier to see the effect of
boundaries.
DESCRIPTION OF BASIC MODEL BUILDING
This section is devoted to describing the process by which various source
conditions are simulated by use of the superposition principle. The term
source refers to the physical location of the injection of the spilled material
into the receiving water, as well as to its rate of input with time. The
physical location of the spill is frequently treated as a point, having no
physical dimensions. However, if reason exists to believe thaf the spilled
material quickly occupies some larger volume of the receiving water, the point
source solution can be integrated over that space to yield the correct solu-
tion. The initial volume of interest here is the volume or space occupied by
the spilled material as it undergoes initial mixing upon entering the water
prior to beginning to be mixed by processes of ambient diffusion and disper-
sion. For example, a tankful of liquid spilled from a truck might be assumed
to occupy a finite volume immediately upon entering the water. Material leak-
ing from a barge might seem to issue from a finite size plane source, or, in
the case of a long, thin crack, a line source of material.
Common categories of simplified sources assumed for models include the
following:
Point source: located at X Vo0 2

o

Vertical line source: 1located at x = xo, : it
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from z = z1 toz = zZ,

Horizontal line source: located at x = X s Z=2Z, extending
from y = Y1 toy = ¥,
Plane source: covering part of the cross-sectional area of the
stream = located at x = X» extending
fromy = Yy tay = Y, and from z = zy to z = z,
Volume source: covering a finite stream volume - extending from
x - x to x = x,, y = Y1 toy =y, and
z=2 toz=z,
The most realistic source from a physical standpoint is the volume source.
Any material spilled into the water enters into a finite stream volume. These
spills may include material falling over a bridge from a truck accident, leak-
ing from a damaged barge, entering the stream by way of a storm drain, or
other means. The difficulty lies in defining the size of the finite volume
source over which the spilled material is distributed. Work is planned to
define this by using jet entrainment theory, but only judgement is available
now. However, at distances sufficiently far from the source the concentration
predictions look the same regardless of the initial source configuration.
This is because the mixing has masked the original conditions. No firm guide-
lines exist now, however, as to the distance downstream one must go for the
point source to be a totally acceptable source approximation. For the time
being, it is suggested that the best estimate possible be made, realizing
that the influence of errors in selection will conly be important near the
spill location.
The time rate of the release during a spill may range from instantaneous
(all material enters water at one instant of time) to continuous (material
continues to enter the water at the same rate for an indefinite time). In

between these extremes lie many posaible spill histories representing finite
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times of spills. For example, a spill of material from a truck might be assumed
to last 10 minutes, with the rate of flow varying over that time and gradually
decreasing to zero. However, an undetected storage tank leak which flowed

into a storm drain and then into the stream might continue to flow for a num-
ber of hours at a fairly constant rate. All of these cases can be treated

by integrating the instantaneous source solution over the time from beginning

to end of the spill. Numerically, this integration can be achieved by re-
placing the spill by a series of instantaneous releases yielding the same

total release rate and spaced closely enough in time to adequately approxi-

mate the uninterrupted spill.

1. Basic Point Source Equations - It is necessary to have a point source

solution in order to integrate it over time or space. Appropriately, the

final equation solution must include both correct source conditions and any
image or boundary terms. The solution can be compiled by integrating the
point source solution for an infinite flow field to obtain the required source
and then imposing the method of images to meet the boundary conditions. Or
the other hand, it is also possible to include the images in the point source
solution first and then to integrate. The former viewpoint will be employed
here, as it seems easier to visvalize, e.g., that a series of imaginary plane
sources are needed to balance a real plane source. The point source solution
for both continuous and instantaneous discharges can be found in numerous re-
ferences. The infinite field solutions are given first.

Instantaneous Point Source:

(x—ut-xo)2
i
4Dxt

c(x,y,z,t) = * exp (-At)
" 8t vasD D D
Xyz
(y-y )2 (z-2 )2
-exp - —— e SR - M. (79)
4D_t xp 4D t
y z
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in which t = time measured from to’ the time of release
M = total volume of tracer material released = Covo

X s Bosk, " coordinates of point of release

Vo = total volume released

| A = rate of decay, dimensions 1/time

4 Continuous Point Source:
c_Q exp (-\ x/u) (y-y )2
| c(x,y,z) = 2 0o exp - ZB——ET—
{ 4mx VD D y %
i y 2
|
| (z-zo)2
“exp ~ W xh (80)
{ z

in which 6, " initial discharge concentration
Qo = rate of discharge of material

Several important features should be noted immediately. Both solutions

assume that all transverse and vertical velocities are zero (v=w=0). Also,
the solutions are for cases where only one sink term appears, that of a first
order reaction given by the expression

sink = \c (81)
This term appears in the diffusion equation preceded by a negative sign, as

it 1s a sink. Other source or sink terms will naturally change the basic solu-

tion. The interest here is in selection of the simplest form to assure ease
in understanding the model formulation process. One other point of interest
lies in the failure of Dx to appear in the steady state Equation (80), This
is consistent with the assumption that the longitudinal dispersion influence
is negligible in steady flow cases, but its full significance will be explored
later in this section and again in Section VI.

It should also be noted that Equations (79)and (80)are for unbounded flow

| fields. Application of the method of images yields the following results for
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a flow field with finite width and depth.

Unsteady Point Source - Bounded Field:

2
(x- ut - xo)
M exp (-At) exw - 4Dxt‘

8t \/nt Bx By 52

2
n=+4w (y - P 2nB) (y + ¥ = 2th)2
Z ; exp - B = + exp { - By
o y y

2D ¢t + exp # 2D ¢t (82)
z z

c(x, y, z, t) =

Continuous Point Source - Bounded Field:

co Qo exp (-Xx/iu)rﬁ

c(x,y,z) =

5 —
4 7 x Dy Dz
3 2
st s o 208)” (y +y, - 2nB) ]
; Z g ~ T4 x/u i T 4D x/u
y y
i L -
me=—$-o
F (z-zo-th)2 (z+z°—2ﬂl)2 T
i E oy = loDz x/u o & 4Dz x/u
- b (83)°

2. Spatial Integration for a Source - Use of the superposition principle
to define a source of any spatial extent can be visualized easily. Consider
a discharge assumed to originate over some space. Visualize that source
as composed of an infinite number of point sources. Thus, at any point in
space and time, the concentration can be calculated by summing up the contri-

bution at that pojnt due to each of the point sources comprising the spatial
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¥ source. As the spatial source is a continuum, this summation is the same thing
as integrating the solution over the given spatial domain which defines the

source. In this integration process, the error function will frequently appear,

noted as erf and defined as

Bs 2
erf (a) = Rk R e " at (84)
‘ '
{ [}

in which t = dummy variable.

3. Time Integration for Unsteady Source - The discharge may have many

| types of time histories. For the purposes of this discussion, unsteady implies

any source other than one which continues at a constant rate long emough to
achieve steady-state conditions at any downstream point of interest. Thus, for ex-
ample, a discharge which occurs at a steady rate for a finite time and then

drops to zero before a steady value of concentration is reached at downstream

| locations of interest, is classed an unsteady source.

The unsteady source can be visualized as composed of an infinite string
of instantaneous releases. Note that these could be instantaneous point
sources, plane sources, or whatever other spatial character is assumed to re-
present the source. The concentration at any given point in time and space

8 is then found by summing up the contribution due to each of these instantaneous
releases, or integrating over time. To cover the most general discharge his-

tory, this integration will ordinarily be done numerically. Then the discharge

is assumed to be adequately represented by a series of instantaneous releases
at finite time intervals. Obviouqu, the time interval selected must be short
enough so that the difference in predicted concentration between that for a
continuous release and that for a finite-interval series is negligible. No
firm guidelines exist now for selection of the time interval. However, intui-

tive reasoning and experience in requirements for unsteady flow calculations
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in open channels indicate that at the least the interval between slugs released

should be very small compared to the travel time to the point at which concen-
trations are calculated. Probably the best ag@roach for any given case at
current is to experiment using several time increments and note the size of
increment below which no significant change in predictions occur. Then use
that increment. Note that use of a smaller increment than necessary increases
calculation time, while use of a larger increment leads to inadequate descrip-
tion of the physical case.

Once the time interval is selected, the material released at each time

can be determined from
t+At

M(t) = C, Q(t) dt (85)
t
in which M(t) = volume of tracer released over time At
and therefore assumed as instantaneous
release
Q(t) = rate of effluent flow as function of time
C° = concentration of tracer in effluent
Of course, the integration suggested in Equation 4.9 may well be carried out
numerically. In deed, for the short time intervals used in such calculationms,

the average flow could be used over that interval, yielding

M(t) = Co Q0 At

in which 6; = average effluent flow rate over time interval At

Holly (115) presents a review of the superposition principle, and Sayre
(112) presents a very thorough discussion. The main thing to recall here is
that virtually any source can be derived by considering it to be composed of

numerous individual releases in space and/or time.
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4. Influence of Longitudinal Dispersion.- While a more lemgthy discussion
will be presented later (SectionVI, it is beneficial te look at tha longitu-
dinal dispersion contridution now, especially since it is frequently neglected
in the basic steady-state building blocks, e.g., Equations (80)and (83). It
may be helpful first to note the solution to the longitudinal dispersion (one-
dimensional) equation first. It can be written (10, 115) as the following.

Instantaneous Plane Source - One-Dimensional:

(x - ut - x%)°

- T2~ exp x‘ WDt (86)

24 (wDLt)l

c(x,t) =

in which A = cross-sectional area of flow
This is a solution to Equation (18) for a single, constant mean velocity, u,

and longitudinal dispersion coefficient, D Discharge is from a plane source

L*
covering the entire cross-sectional area of the channel, or a discharge
assumed to have become completely mixed across the section. Recall the sub-
section on applicability of the one-dimensional equation. The solution
shown in Equation (86) is a Gaussian, or bell-shaped, curve which flattens
and spreads out as it moves down stream. The peak moves at about the mean
travel velocity of the stream, distorted somewhat by dispersion. This char-
acteristic is the reason many dye studies are used to obtain so-called time-
of-travel data. A very great deal of attention has been given to evaluation
of DL for use in Equation (86). Because it frequently oversimplifies the
problem too much, this equation is being somewhat displaced as better analyt-
ical tools and physical understanding develop. However, as it may still
provide useful preliminary estimates in some cases and even be appropriate
in small streams, some discussion is in order here.

Godfrey and Frederick (64) observed that data indicated that Equation

(86) generally predicted a rising limb (of the concentration versus time curve)

which was too flat and a falling limb which was too steep. Data showed a
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tendency for there to be a very long "tail" on the concentration vs, time -
curve, implying that some material lagged quite far behind. A number of
workers have attempted to treat the process by considering so-called dead
zones or separation zones to exist. These zones are attached to the main
channel and may include small embayments, shallow overbank regions, lee re-

glons of a bend, or protruding structures, and slow moving regions near the

stream bed caused by dunes or submerged structures. Material is assumed to

move into these dead zones and then to very slowly reenter the main channel

flow, thereby spreading the cloud of discharged material far more than by

3 ? mere shear-induced dispersion. Hays, et al (116) present a solution for the } #
coupled main flow dispersion equation and side channel-main channel exchange
equation. There is some question as to the need for this level of complexity

| in preliminary assessments, considering especially all the uncertainties in-

| herent in use of the 1-D equation and selection of DL. It is clear, however,

E | | that these dead or separation zones exist and must be ultimately considered

in final selection of models and coefficients.

Frenkiel (117) and others have integrated the equivalent of Equation

(11) with Vv = W = 0 and neglecting the longitudinal turbulent diffusion term

T
e

(the e, term). This yields the steady-state Equation (801 It has generally

been assumed that this deletion is valid. Thoman (39) notes that if the dis- |

e s

charge varies with a period of one week or less, the longitudinal term should

be retained in many 1-D, longitudinal dispersion calculations. Dobhins (118)

T T

has shown by sensitivity testing that for steady river flows within practical

ranges of flows and sizes, longitudinal dispersion is unimportant in a 1-D

it el 0 ek

dissolved oxygen model. It must be recalled that if either the effluent flow 3

rate or the receiving water flow rate is unsteady, longitudinal dispersion i

cannot be neglected.

Sayre and Chang (10) present an instructive solution for the case of a

| |
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two-dimensional mixing problem from a vertical line source extending from the
water surface to the stream bed. The discharge is into a laterally unbound-
ed water body. Integration of the solution for an instantaneous vertical

line source yields

Q ¢
T
2rth\/e_ e x
Xy
" (87)
u/ 2 x 2\1/2
Ko 2e < " e ¥ )
x y
in which Ko = modified Bessel function of second kind,

order zero

The coordinate arigin (x and y) is assumed to coincide with the source loca-

tion here.

Sayre and Chang (10) note that if

2 2ex
¥y <<1 and x >> T

|®

ey 22

then Equation (87) converges to

Q ¢ 2
AT
Zhu (rxe /i) 1/2 ha x (88)

Equation (88) is equivalent to integrating Equation (80) from z = 0 (surface)

to z = h (stream bed). One can then view the inequalities shown as a means
of estimating, at least for this source condition, the distance downstream
which must be reached to assure that neglect of the longitudinal term is ade-
quate. For practical open channel flows, the two conditions described are

met except for very near the source, and thus neglect of the longitudinal term
is appropriate for continuous discharges (10). However, recall the discussions
in Section II on the effects of partial averaging on coefficient values. If

a single, cross-sectional average velocity is used, then e, should be replaced
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o

by DL’ for this coefficient now includes all the behavior due to cross sectional
variation of velocities. In this case, the length to be attained may be more

significant. Calling Ln the distance to the point where D, effects are negli-

L
gible for this continuous vertical line source discharge,

2D
R

n u (89)
in which DL can be replaced by Dx if only vertical averaging
has occurred
A quick look at representative values for ZDL/u may help. In the Missouri

2
River, Yotsukura, et al (54) report values for D. as high as 30,000 ft /sec,

L
with velocities (u) ranging from 3.9-6.0 feet/second . Using their average u

2
over the reach of 5.34 feet/second and average D, of 16,000 ft /sec, one can see

L
from Eqn. (89) that Ln must be greater than about 6,000 feet. On the other hand,
a small stream, the Comite River (width = 41 ft) was reported by McQuivey and

2
Keefer (66) to have a DL = 75 ft /sec with u = 1.02 feet/second . Eqn. (89) yields

a value of 150 feet, for Ln’ which is essentially negligible.

Criteria do not currently exist for other source conditions. However,
Eqn.(89) is a reasonable means of attaining a first estimate of Ln when concen-
tration values quite near the source are desired. The purpose of these last
paragraphs has been to illudtrate the fact that while the neglect of longitudinal
mixing for continuous discharges is generally valid, there is likely to be a
region near the source where this is not so.

NUMERICAL MODELS

All the solutions to the diffusion equation discussed thus far are analy-
tical solutions to the differential equation itself. It may often be necessary
or more efficient to use a computer to numerically evaluate series or other terms
appearing in the equations, but there is still an explicit equation for the

concentration. On the other hand, there are a number of numerical models
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which have been deyeloped. These models solye a set of equations which serve
as an approximation to the actual differential equation, rather than the dif-
ferential equation itself. These models are often finite difference or finite
element models. A discussion of the details of such models is beyond the
scope of this report. However, some knowledge of their utility and status

is helpful.

This report places its primary emphasis on analytical solutions. It is
believed that, especially considering many uncertainties already described,
many of the assessment and planning problems which must be addressed with
spills of toxic materials can be adequately addressed with anslytical models
with a much smaller expenditure of time and money than with numerical models.
The data input requirement for many numerical models can be substantial, re-
quiring time for collection and coding for computer use. In additionm,
the same uncertainty about physical processes which exists in analytical so-
lutions is a limiting factor with numerical models. However, there are some
strong points to be considered with numerical models. In addition, a two-
level procedure may be possible in many assessments. The first level uses an
analytical solution to estimate impact of a spill or other discharge. If no
problem seems to exist in the receiving waters, then no further approach is
needed. If, however, a potential problem appears (in terms of excessive
concentrations or exposure times), then a very critical review of the water
body and discharge configuration needs to be made. Several questions need to
be asked, including these:

e Does the analytical model seem to incorporate all pertinent aspects

of the physical system, e.g., bends, buoyancy, unsteadiness, etc ?

e If there seems to be possible inadequacy in the analytical model,

is there a numerical model which offers any improvement?

These questions demand an understanding of the physical system. The

fact that a numerical model exists does not automatically make it better
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than an anlytical model. Improper understanding which leads to improper
input could make the numerical model give horrible results. In addition,
if important physical processes (tidal velocities, etc.) are omitted from
the numerical model, then some real question exists as to any advantage in
its use. One important advantage of analytical solutions lies in the visi-
bility of all the pertinent parameters in the equation and the ability to
more clearly see how they affect the results.

1. Advantages of Numerical Models - There are some areas, as discussed
by Holly (115), in which analytical models have some difficulties. In general,
most of these difficulties relate to geometry. In streams of non-rectangular
slope, the use of the image method is unwieldy if not impossible. Prakash
(109) presents a result for a point source in a trapezoidal channel which is
very lengthy. What is equally limiting is that most of the solutions require
an assumption of longitudinal uniformity of the flow. This is equivalent to
requiring an unchanging channel section. Obviously, one of the main features
of natural channels is the non-uniformity they exhibit. The stream tube mod-
els proposed by Yotsukura and his colleagues provide an increased ability to
incorporate unusual cross-sectional geometry. However, existing analytical
solutions to these models assume longitudinally uniform flow and a constant
diffusion coefficient. Fischer's routing method (54, 63) allows for arbitrary
stream geometry and velocity districution for a steady injection of tracer.
Fischer's method is not a solution to an analog of the differential equation,
but rather to what is believed to be the set of physical processes involved in
the mixing process.

It is possible to incorporate a good deal of advective information into

numerical models. In fact, the water quality diffusion model can be coupled
with a hydrodynamic model which predicts flow depth and velocity as a function

of space and time. These predicted depths and velocities can then be used in
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the numerical model of the diffusion equation. An alternative is to use mea-
sured depth and velocity values as input. Earlier sections have pointed out

the value of retaining as much advective detail as possible. Despite the

numerous advances in numerical modeling of unsteady hydrodynamics, there are

gtill many shortcomings.

2. Difficulties with Numerical Models - Reference has already been made
to the complexity of these models, the expense, and the data requirements.
Three-dimensional models dealing with thermal discharges frequently use several
hours of high-speed computer time to generate a solution for a single discharge
condition (119). In addition Cunge (120) notes the extreme difficulty with
adapting even well-documented models to one's own cases.

There is another feature of numerical techniques which is very important.
It goes under various names, often something like numerical dispersion. This
is apparent diffusion or dispersion which occurs with no physical basis but
is rather a consequence of the numerical computation method. A related prob-
lem 1is the ability of the model to handle sharp changes in geometry, sudden
flow changes, or other such changes. That is, are these perturbations damped
as they are in the physical system, or do they propagate and induce numerical
errors. Since most users of numerical methods will not investigate these
questions very deeply (if at all), but will merely use the model, these ques-
tions are very important. If the model is not well cast and used carefully,
it could produce quite erroneous results which nontheless may be difficult to
detect if the physical situation is complex. In fact, it is really better
when one of these models becomes unstable and predicts unbounded results (e.g.,
extremely large velocities, negative concentrations, etc.) for then the user
can easily see something has gone amiss.

Sound theoretical approaches to the stability and convergence of numerical

solutions have begun to appear, as typified by the work of Dailey and Harleman (78),
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Holly (115), and Liggett and Cunge (121), Much remains to be done in

this area, but any numerical model to be employed should, at the least, have
some criteria for time and distance steps to assure stability and minimize
propagation of perturbations.

3. Status of Numerical Models - At the outset, it should be observed that
the number of models available is large and grows larger each year, Any
attempt to provide an exhaustive list would be foolish and probably out of
date soon. A few key works in each main area cf interest will be identified,
and some brief feel for the status will be given. More thorough reviews can
be found in Liggett and Cunge (121), Gray, et al (122), and others. A major
impetus to numerical transport calculations has come from the concern over
heated water discharges, and Jirka, et al, (95) Dunn, et al (119), and NRC (123)
discuss these models.

In general, the stage of advancement of numerical models increases dram-
atically as the dimensionality decreases (from 3-D to 2-D to 1-D). Three-
dimensional models are least well developed at this time. They not only re-
quire exorbitant computer times (up to 10 hours in some cases) for a single
steady state \ation, but really do not provide any improvement in predict-
ability. This may change in the future as understanding of the physical mech-
anisms increases.

Two-dimensional models have received much attention, and a number of good
models exist. Consider first bodies such as embayments, lakes, etc., and then
rivers. The work of Leendertse and co-workers for Rand Corporation (123-127)
must be mentioned first. It represented pioneering work and is the best avail-
able documented model. In fact, the excessive documentation prompted Cunge
(120) to select the Leendertse model for review. Difficulties in its testing |
and use were reported, and Cunge notes that much greater problems in implemen-

tation could be expected for cases where less detailed documentation was given.
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