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1 DESIGN AND PERFORMANCE EVALUATION FOR SYSTEMS

IN AN UNCERTAIN ENV IRONMENT

— —

Abstract

Included in this report are results of investigations into the

following topics: design and performance evaluation of optimal and

suboptimal. estimation and tracking systems for space-time point-process

observations; optimal signal design for coded, direct-detection optical

communication systems; informationally-decentralized shortest path al-

gorithms for networks; singular estimation and control problems; compen-

- . sator design for polynomial matrix descriptions of linear multivariable

systems; a direct proof of the informational equivalence of the innova-

tions and observations processes for linear estimation or Gaussian pro-

cesses; and quantitative measures of controllability and observability

~

and their implications in system analysis and performance evaluation.
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1. INTRODUCTION

This final report describes the research conducted under Office of

Naval Research Contract N00014-76-C-0667 from March 1, 1976 to June 30,

1979.

This research has had as its principal concern the investigation of

estimation, decision and control problems for systems operating in an

environment of uncertainty, with an increasing emphasis on information-

ally-decentralized problems that arise typically in connection with

large systems , and particularly C3-systems , where multiple decision-

makers take actions on the basis of their own individual knowledge and

data.

Our investigations have been directed both towards finding exact,

optimum solutions to various such estimation, decision and control prob-

lems and, where these are not available or difficult (or infeasible) to

implement, towards providing a basis for designing and assessing the

performance of satisfactory suboptimum solutions. An example that en-

compasses both of these objectives is found in our research, described

in Chapter 2, into estimation and tracking problems involving space-

time point-process observations. There we derive the optimum estimators

and controllers and show them to be nonlinear but finite-dimensional;

they are thus implementable, but evaluation of their performance re-

quires infinite-dimensional calculations. We have therefore derived

easily-computed upper and lower bounds on the optimum performance; in

fact, the upper bounds give the exact performance of a parametrized

family of suboptimum designs that are even more-easily implemented than

.
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the optimum , and one of these is identified as providing better perfor-

mance than any other, thus making it the best design within this class.

When significant detector dark current is present, the exact optimum is

infeasible to implement, and there is no choice but to examine subopti-

mum designs.

This example illustrates our view that, because implementable opti-

mum solutions can be found only for relatively few problems , what is

frequently needed is a shift in emphasis away from optimal designs and

towards implenientable designs that achieve satisfactory performance.

For this there is needed a setting within which easily-implemented sub-

optimum designs can be identified , and their performance evaluated

through a reasonably complete and computationally-feasible design analy-

sis. —
Even so, special cases for which exact, optimum solutions can be

found continue to be important , both in their own right and as a basis

for suggesting candidate designs for broader classes of problems , and in

forming benchmarks with respect to which of these candidate designs can

be compared. Problems for which exact solutions have been derived in

the course of this research include, in addition to that described

above, an optimum signal design problem involving point-process observa-

tions; singular estimation and control problems; and shortest path prob-

lems with decentralized information and topological requirements.

We now turn to an outline of the contents of the chapters that

- 
- follow.

In Chapter 2 we review our extended research effort into estima-

tion, detection, and tracking problems involving space-time point-pro-
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cess obse rvations. Such problems arise in d~ rect-detection optical

conxnunication systems, infrared tracking systems, and star tracking

systems, all of which have a requirement for position sensing and active

tracking to maintain optical alignment. For these problems we have de-

rived optimal estimation and tracking system designs, and analyzed the

performance of these in terms of easily-computed upper and lower bounds.

Both the optimum estimator and the optimum controller are of ~nterest in

that they are nonlinear but finite-dimensional, and therefore implement-

able. The upper bounds also give the exact performance of suboptimum

estimators and controllers that have certain minimality properties and

are even more easily implemented than the corresponding optimum system.

The last section of the chapter discusses our recently-begun examination

of the case where there is significant detector dark current or signifi-

cant background radiation, thus superimposing on the problem difficul-

ties akin to those ar ising in the perhaps more familiar problem of

• tracking an object in clutter.

Chapter 3 is also concerned with point-process observations, in

this case the design of optimum signal waveforms for coded, direct-

detection optical communication systems. Significant new results with

important practical consequences have followed from this extended pro-

ject. It is of interest that a modulation scheme we show to be optimum,

when an average energy constraint  on the transmitted signal is a limit-

ing fac tor , is the one that has been adopted in the brass-boarded one

gigabit-per-second optical communication system currently under develop-

ment.

I

_ _ _ _ _ _ _ _ _ _ _  • • • •~. -•~~ • • . .  _ _  

•



____________ 
~~~~

-.—
~~~

• —-——-—
~
.—-

~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ T1.L~~~~~~~~~~~ :L~~~~~~~~~~~~ ~~~~~~~~~~~~~

— 4 —

Our research into shortest path algorithms with decentralized in-

formation and topological requirements is described in Chapter 4. There

we present algorithms we have developed that enable each node in a net-

work to calculate its shortest distance to any other node using only

local knowledge of the network topology and only local information

transfer between adjacent nodes. Shortest path problems arise in many 
•

contexts, and algorithms with such decentralized information reç~ire-

ments are of obvious importance in many applications. One area of par-

ticular applications interest is that of naval C3-systems.

These algorithms are based on appropriate modification and reinter-

pretation of labelling algorithms for shortest path problems in order to

extract the desired decentralized properties. All converge in finite

time , even if implemented asynchronously. The simplest algorithm was

• developed with a static network in mind , but it also handles decreasing

I ; branch lengths and the introduction of new nodes or branches. Changes

are needed, however, to account for increasing branch lengths or ~.he

failure of nodes or branches. Thre e such modifications are presented,

each retaining the basic localized information properties. Each has its

own characteristics , and its applicability or suitability is a function

of the particular network under consideration.

In Chapter 5, we describe the new results we have. obtained for

singular estimation and control problems . These results have followd

from our examination of these problems from a geometric viewpoint,

utilizing the ideas first introduced by Wonham and Morse and by Basile

and Marro in connection with decoupling and other problems. We show

• L I --
~~. •
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that certain fundamental subspaces introduced by Wonham and Morse in

that context also provide just the right framework for an extremely sim-

ple characterization of the solution to the singular estimation or con-

trol problem. The solution is as simple for multi-input, multi-output

systems as it is for single-input and/or single-output ones, in contrast

to available results based on algebraic approaches, where the strongest

and simplest solutions are for systems with a single input (in the case

of control) or a single output (in the case of estimatIon). Our geomet-

ric characterization reduces easily and directly to known algebraic re-

sults in the single-input or single-output case. Both continuous-time

and discrete-time problems are included within the same unified develop-

• ment.

Recent years have seen a resurgent interest in frequency-domain

m~thnds for the analysis and design of linear multivariable systems , in

contrast to the time-domain-based state-space approach that has predomi-

nated for the past two decades. These methods are based on polynomial

• matrix descriptions of multivariable systems and, in fact , have both

time-domain and frequency-domain interpretations. Chapter 6 contains a

description of our investigation into design methods for systems repre-

sented in polynomial matrix form. Our objective has been the develop-

ment of methods for designing compensators for such systems, and partic-

ularly minimum-order compensators . The techniques we have employed ~raw —

on the ideas and objects of modern algebra , especially the theory of

modules and free modules. The design methods we have de’~e1oped to date

• L apply primarily to single-output (multi-input) systems, since the sim-

plest available tools from modern algebra turn out to correspond to this

i 
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case. It is of interest to ob~~rve that this design problem is, for

• polynomial matrix descriptions , the analog of observer-based compensator

design via state-space techniques: there, too, the theory for single-

output systems preceded , and is simpler than, that for multi-output

systems .

The successful “innovations approach” to estimation rests on the

equivalence of the information provided by the innovations process and

that provided by the observations process. This is known to hold true

in some circumstances, and to fail to hold in others. We have con-

structed a new , direct proof of its known validity for an important

class of linear least-squares estimation problems and problems involving

Gaussian processes. This proof is outlined in Chapter 7.

Finally, in Chapter 8, we present some preliminary results of our

recently-begun efforts to develop quantitative measures of controllabil-

• ity and observability that have implications in design and performance

evaluation methods for large systems . Almost all of linear system

theory consists of sharply-defined answers to sharply-posed questions.

For example, a system is either controllable or not, or decoup led or

not. Disturbances must be completely rejected for disturbance locali-

zation to be said to take place. There is no body of theory that allows

for approximate achievement of these goals. A disturbance or another

input may affect a certain output to an acceptably sight degree, but if 
—

the effect is nonzero our present sharp formulations have us conclude

that the disturbance is not rejected or that the output is not decoup-

led from the input. What seems especially needed are quantitative mea-

sures of controllability and observability that have implications, in

_______________- I
f • • 
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terms , say,  or performance bounds , on such problems of approximate dis-

turbance localization or approximate noninteraction , and on the perfor-

mance of estimators or controlLrs designed on a noninteracting basis

but implemented on an interacting collection of subsystems. The long-

term goal of this research project is the provision of such a framework

for decentralized design and performance evaluation.

A number of the chapters that follow are concerned with work that

has been already published or is available in a report that has been

submitted for publication. In those cases , the appropriate papers or

reports are included as append ices, and the presentation i. limited to

an outline of the results that are established there in detail. Also ,

in these cases, references are made where possible to the list of ref-

erences in the relevant appended paper or report.

Chapter 4 was prepared with the assistance of doctoral student

L Jeffrey H. Abram , and Chapter 6 with the assistance of doctoral student

Olive Y. Liu.

• _ _ _  _ _ _ _ _— — —--- — --—- —- .• .  •• • - -
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12. ESTIMATION AND CONTROL PROBLEMS WITH SPACE-TIME POINT-PROCESS

OBSERVATIONS

2.1 Introduction

A major component of our research effort has been concerned with

observation models other than the familiar “signal in additive white

Gaussian noise” structure. Particular attention has been given to ob-

servations that take the form of a doubly-stochastic space-time counting

process whose intensity is signal-dependent . Estimation and control

problems involving such processes arise in a number of contexts , includ-

ing quantum-limited optical communication and nuclear medicine. The

estimation and tracking problems associated with optical communication

systems have been discussed in detail as motivation in the papers that

have resulted from this study.

New results of major significance have been obtained for both esti-

mation and control problems involving space-time counting process obser-

vations. A sequence of new results culminated in the journal article:

“Estimation and Control Performance for Space-Time Point-
• Process Observations,” Ian B. Rhodes and Donald L. Snyder,

IEEE Transactions on Automatic Control, Vol. AC-22, No.3,

June 1977, pp. 338-346.

which is included here as Appendix 3. This paper includes as special

cases all earlier results for this class of problems, including our own • -

earlier research under this contract which was reported in the journal

article:

“A Separation Theorem for Stochastic Control Problems with

Point Process Observations,” EL L. Snyder, I. B. Rhodes ,

and E. V. Hoversten, Automatica , Vol. 13, No. 1, January
1977, pp. 85—87.

_ _ _ _ _ _• 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • 
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4

and in the invited conference paper:

“Estimation and Control Performance for Space-Time Point-

Processes,” I. B. Rhodes and D. L .  Snyder, Proceedings of
the Fourteenth Allerton Conference on Circuit and System
Theory, University of Illinois, September 1976, pp. 38-51.

These two papers are included here as Appendices 1 and 2.

The next subsection outlines in loose terms the results established

in detail in Appendix 3. This is followed by a discussion of our recent

efforts to extend these results to the situation where there is signif i-

• cant detector dark current or significant background radiation.

2.2 Summary of Appendix 3

In outline, the paper included as Appendix 3 considers a stochastic

sys tern

dx
~ 

= F(t) x
t
dt + G(t) U

t 
dt + V(t)dv

~

dz
t = C(t) x

~ 
dt + dw

t

where u~ is a control variable, v and w are Wiener processes , and the

usual assumptions (detailed in the paper) are made. In addition to the

observation process z, we assume additional observations of a space-time

point process N(t,r) in which each point occurrence has both a temporal

coordinate t and a spatial location r. In an optical communication set-

ting, this point process might be thought of as a model for photoelec-

tron conversions on a detector surface, a particular point occurrence

corresponding to a conversion taking place at time t and at location r

on the detector surface. Associated with N(t,r) is a counting process

Nt which simply counts point occurrences regardless of their spatial lo-

~~~

•

~~~~~~ _ _ _
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cations; Nt is assumed to be a doubly-stochastic process with stochastic

intensity 
~~ 

Given that a point occurrence has taken p lace, its spa-

tial location r is taken to be a Gaussian random vector with mean H(t)x
~

and covariance R. In terms of the photoelectron conversion model men-

tioned above , the dependence of r on the system state x
~ 

reflects the

(random) movement of the center of the incident beam due to vibration,

beam steering due to atmospheric turbulence, the motion of the tracking

system, etc. The control u~ represents the input to the tracking sys-

tem, which is included as part of the total state x~ . The randomness of

the temporal intensity p1 includes the transmission of information by

modulating p, as well as randomness due to such eff ects as fad ing during

propagation.

For this model, we have examined

a) the estimation problem of finding the conditional density of the

processes (x
~

,II
~
) at time t given observations of both z and the

space-time point-process up to time t, and especially to find the

associated conditional means and covariances.

b) the control problem of finding the control u~ that depends at most

on the past of the space-time point-process and z and minimizes

J[uJ = E 
~ JEu~

P(t)ut + x
~
Q(t)x

~
] dt + X

~
SX
T 

.

Precise statements of these problems, their solutions and some

attendant technical assumptions are given in the paper. In simple

terms , the resuls we establish there are:

- _ 1 J~~~~-~~~~ 
— • •-.-•.--.-——-•- -•- -•. •- 
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(i) Under assumptions that are reasonable from a practical view-

point, the joint problem of estimating both the temporal in-

tensity 
~~ 

and the state x~ reduces to two separate problems ,

one of estimating 
~~ 

from just the temporal component N
~ 

of

the space-time point process , and the other of estimating x~

using all available observations . In terms of the optical

• communication problem , this is of great practical importance

since it establishes that demodulation or detection can be

carried out independently of tracking (provided, of course,

optical boresight is maintained).

• The demodulation or detection problem of estimating p
~ 

from the

temporal component N
~ 

of the space-time point process is a

standard one that has been solved under a variety of assump-

tions on p in the book by Snyder [Ref. 6 in Appendix 3].

We show in Appendix 3 that the conditional density of x~ given

all observations up to time t is Gaussian. Furthermore, the

conditional mean and covariance satisfy a pair of finite-

dimensional, nonlinear stochastic differential equations (see

eqs (6) - (8) in Appendix 3). It should be emphasized that

although the optimum estimator is nonlinear it is finite-

dimensional and therefore implementable in practice.

(ii) The solution to the control problem satisfies a separation

theorem analogous to the standard linear-quadratic-Gaussian

separation theorem of linear system theory, i.e. the optimum

tracking controller separates into two separate and indepen-

1: - 

_______::~~~~~~ ~~~1
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dent components: an estimator and a control law. The esti-

mator is the finite-dimensional , nonlinear one described

above, while the control law is the certainty-equivalent

linear one. Being finite-dimensional, the controller can be

eas ily implemented in practice. This separation theorem is

important both theoretically and practically. From a theo-

retical standpoint, it seems to be the only case beside the

standard LQG result where separation of a dual-control problem

into two independent problems has been established . Not only

is this an important exact result in its own right, but it has

} the as-yet uninvestigated potential of forming a benchmark for

designing and assessing the performance of suboptimal control-

lers in wider situations, much as we have previously used the

standard LQG result to obtain bounds for incrementally conic

nonlinear systems. From a practical viewpoint, the separation

theorem for space-time point-process observations provides

the simple, optimum design for an important class of tracking

and other problems .

(iii) Although the optimum estimator is finite-dimensional, its

error covariance depends on the point process occurrence times

and is thus a random process that is not precalculabe (in con-

trast to the deterministic , precalculable error covariance of 
___

the standard Kalman filter). A natural measure of estimator

performance , which also turns out to determine controller per-

formance , then becomes the expected error covariance; however ,

—

~~~~ L~ ~~~~~ ~~~~~~~~~~~~~~
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although this is deterministic , its calculation is infinite-

dimensional. We have, therefore, derived easily-computed up-

per and lower bounds on the expected error covariance and cor-

responding bounds on the optimum controller performance. The

upper bounds are derived by evaluating exactly the performance

of a parametrized family of suboptimum designs; one of these

is identified as having smaller performance than any other,

thus providing a ndnimal upper bound within this family. The

bound-minimal estimator and controller are thus natural can-

didates for designs that are even more simply implemented than
• 

• the optimum , in that they require less on-line computation be-

cause the gain coefficients are deterministic and precalcu-

lable rather than stochastic and dependent upon the particular

realization of the counting process , Nt, as they are in the

• optimum estimator.

2.3 Extensions When Detector Dark Current is Present

Both estimation and tracking problems are greatly complicated when

there is significant detector dark current (or background radiation).

This is because of the uncertainty that then exists as to whether an

observed point in space-time is due to the signal process or to the dark

current. In this respect, the principal difficulties that arise are

conceptually similar to those in the more familiar problem of tracking

an object in clutter , where again uflcertainty exists as to whether an

observation corresponds to the object being tracked or to the clutter.

A recent summary of the problem of tracking in clutter can be found in

-• (1).

- ~~~~

- 
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In either case, a solution to the estimation problem can be ob-

tained in principle by constructing a bank of estimators that expands

geometrically with successive observations , and appropriately weighting

the outputs of these to obtain the conditional mean In our case, this

means that after N point occurrences in space-time , there will be re-

quired a bank of estimators of the type given in Appendix 3, each

estimator corresponding to one of the possible hypotheses as to which

points in the observed sequence are due to the signal and which to the

dark current. For each such hypothesis, the corresponding estimator

satisfies the equations (6) - (8) in Appendix 3, but including only

those observation points hypothesized as being due to the signal, and

neglecting those hypothesized as being due to the dark current. The

state 
~it 

of the i-th estimator, corresponding to hypothesis H
1 

as to

which observation points are due to the signal and which to dark cur-

rent, is the conditional mean of the state x~ given both all observed

data to time t, and that hypothesis H1 
holds. The conditional mean

of the state is then found as the linear combination

2N

• A V A:1 x~ = L~~t
i=l

where p .~ is the conditional probability that hypothesis Ii. is true

given all observation data up to time t . Equations for the can be

developed under various sets of assumptions on the dark current process.

One simple possibility is to assume that the time component of the dark

current process is Poisson with rate V and independent of the signal

• process, and that, given a dark current point occurrence has taken

• - - • • • - - • - • —•-~~~~~~ -~~~~~~~~ •
_~~~~~- • ~~ - -- _ _
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place , its spatial location is uniformly distributed over the detector

area A (assumed large compared with the covariance of the signal-induced

spatial distribution) and is independent of the spatial locations of

prior and succeeding points. Even then, the equations for the p1~ 
be-

come unwieldy, and they are not given here because, in any event, the

requirement of constructing such a rapidly-expanding bank of filters

makes this solution impractical in almost any conceivable application,

i.e. unless very few point occurrences are expected to take place.

One is, therefore , led to seek more-readily-implemented suboptimal

estimators. We have taken the approach of investigating estimators

whose dimension is that of the system state x~ , thus bypassing at the

outset the expanding-state requirement of the optimum estimator. We

adopt the same notation and the same models for the signal and the

signal-induced space-time point process as in our paper [Appendix 3],

and assume that the dark current satisfies the assumptions given towards

the end of the preceding paragraph. Let the first observed point be at

time t and at location r. Over [O,t) the optimum estimator is n-dimen-

sional and satisfies eq. (6) in Appendix 3 with the last term identi-

cally zero since no points have yet occurred; indeed at time t— the

conditional density of the state given the observations is G(
~~

_ ,
~~

_)

i.e. Gaussian with mean and covariance L~ given via eqs. (6) and

(7) in Appendix 3 , with , in both cases , the last term identically zero .

Under the hypothesis that the observed point is due to the signal, the

conditional density of x at t+ is, from eqs. (6) - (9) in Appendix 3,

G(i
~t+

,
~ t÷
) with

~-—- -•• — 1 .L. ~~~~..I. - ~~~TT~ T T T- .-‘ —. --- — —-- •-— •~~ 
-•-- ----

~~~
-.-

~~~ 
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= 
~ t- + 

~t_
H’1

~~ t_
H’ + RJ

~~
(r_H

~t_
)

and

= 

~~- 
- ~~~R ’ (HI.~~H’ + R] ’HI

~
_

Under the assumption that the observed point is due to dark current, the

conditional density of x at t+ is the same as at t- , viz. 
~~~~~~~~~~

It then follows that the conditional density of x at t+ given data to

t+ , including the observed point, is the convex sum of Gaussian distri-

butions

= f(x
~+

Idata to t+) = p
~

G(
~ t+,~~+) + 

~~~~~~~~~~~~~~

= 
~~~~~~~~~ 

+ pt1G(~ t+ ,
~~+
) -

where p~ is the conditional probability that the observed point at time

t is due to the signal. Various equivalent expressions can be given for

one is

Pt [1 + (n/s)*exp~ p
2
~~

1

where

2 —1
- 

~~~J ’ [R + HIt..H’I [r - Rx,~j ,

(n/s)* = (v/A)/(M/(2n)
m/2det l/2 (R +

- 

• 

•

— -- ---—-~ ---. •--•-- —,-- __~__ _ _ _ _  ____•____s_ ~~~~~~ -
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and we assume for simplicity that the temporal intensity p~ of the space

time point process is constant. It then follows from straightforward

calculations that the conditional mean and covariance of x at time t+

given data to t+ are, respectively,

A - A
~~~ = Pt x~+ 

+ (1 - 
~~~~~~~ 

x
~
_

= - Pt ~~~ 
H’ [H

~t..
H’ + R1

1 
~~~~~~~~

_

+ - P~ )(X .~. - 
~t_ )(5c t+ 

-

Although these expressions give the exact conditional mean and co-

variance immediately following the first point observation, the condi-

tional density is not Gaussian but, rather, the convex combination of

Gaussian distributions given above. Thus, in contrast to the situation

that obtains in the absence of dark current , conditional Gaussian-ness

is not maintained across the first occurrence point, and this procedure

cannot be repeated through succeeding observation points. Indeed, after

the N-th observation point the conditional density is a convex combina-

tion of 2N Gaussian densities , and it is the generation of these densi-

ties that reflects in the estimators required in the exact solution.

On the other hand , one natural approach to maintaining an n-dimen-

sional filter is to approximate the conditional density f~~. following

the first observation point by a Gaussian density with the same mean

and covariance 
~~~~
. given above. This Gaussian approximation then re-

mains Gauss ian as it is propagated to just befo re the next occ urrence

point using eqs. (6) -(9) in Appendix 3. The above procedure is re-

ii

~j s  - ___•_•••—___
~__._c •___ •_~_.. •• ~~ • “~~~~..• .. ~~~~~ ~~~~~ ,4&a . ~~~~~~~~ j ttt~”4~~~~~~. —. • , ‘ - • •
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peated to incorporate the new space-time data point , and the process is

repeated .

Evaluation of the performance of this suboptimum estimator is dif-

ficult because the resulting equation for the mean-square-error , I, de-

pends not only on the occurrence times (as it does in the dark-current-

free problem in Appendix 3) but also on the spatial locations of the ob-

servation points through both Pt and ~~~ This nonlinear dependence on

the spatial locations as well as on the occurrence times greatly compli-

cates an analysis in terms of bounds comparable to that performed in

Appendix 3 for the dark-current-free case.

We have begun to investigate parameterized families of suboptimum

estimators in which p~ is restricted to being dependent only upon r in a

simple way, in combination with the suboptimal estimator eq. (16) in

Appendix 3. This means that the family of suboptimum estimators (16) in

Appendix 3 is modified to become

d4 = Fx~dt + Gutdt + L(t) [dz
~ 

- C4dt]

• + J p(r) 14(t) Er - Hx~ J N(dt x dr)

One possibility is to restrict p(r) to being, say,

1 [r - ER + HI1~H ’ 1~~~[r - H4] < a

p(r)

O otherwise

IH

____________________ 

_____________ I
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _
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where a is a parameter to be chosen and is the error covariance as-

sociated with x#. In simple terms, this means that if r is “sufficient-

ly close” to its expected location Hx~ , “suff iciently close” being de-

termined by the parameter a, then the point occurrence will be taken as

being due to the signal; otherwise, it will be neglected as being due to

the dark current. Our objective is to find choices of the gains L(t)

and 14(t) and of the parameter a that are in some sense optimum , such as

leading to a minimum error covariance ~~~. Our investigation of this

problem is continuing. We remark that a much simpler version of this

problem has been examined by simulation in [2], where a simpler criteri-

on for accepting or rejecting points as being due to the signal is em-

ployed .

I
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3. OPTIMUM SIGNAL DESIGN FOR CODED, DIRECT-DETECTION, OPTICAL

COMMUNICATION SYSTEMS

Important new results have followed from our new approach to the

coordinated design of the encoder, optical modulator and demodulator for

a digital communication system employing an optical carrier and direct

detection. These results are contained in the revised report:

“Some Implications of the Cutoff-Rate Criterion for Coded ,

Direct-Detection, Optical Communication Systems,” Donald

L. Snyder and Ian B. Rhodes, Biomedical Computer Labora-

tory Monograph 363, Washington University, St. Louis, MO,
March 1979,

which is included as Appendix 4 and has been submitted for publication

in the IEEE Transactions on Information Theory. Individual results from

this comprehensive report [Appendix 4] have been presented at two con-

ferences and one workshop, and another conference presentation will take

place later this year:

“Signal Optimization for Random Point Processes,” D. L.

Snyder and Ian B. Rhodes, AFOSR Workshop in Communication

Theory and Applications, Provincetown, Massachusetts ,

September 17-20, 1978.

“Quantization Loss in Optical Communication Systems,”

Donald L. Snyder and Ian B. Rhodes, Sixteenth Allerton
• Conference on Communication, Control, and Computing, Uni-

versity of Illinois , October 4-6, 1978.

“Some Implications of the Cutoff Rate Criterion for Coded ,

• DirectDetection, Optical Communication Systems,” Donald L.

Snyder and Ian B. Rhodes , 1979 IEEE International Informa-

tion Theory Symposium, Gr ignano , Italy, June 25-29, 1979.

I
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“Quaternary Pulse Modulation is Optimal for Optical Commu-

nication at One Gigabit Per Second ,” Donald L. Snyder and

Ian B. Rhodes, National Telecommunications Ce cerence ,
• Washington, DC , November 27-29, 1979.

Because Appendix 4 provides a comp lete account of the comprehensive

collection of results obtained in the course of this extended research

effort, we limit ourselves here to a very brief outline of the principal

conclusions .

The basis of our new approach has been the reformulation of this

signal design problem to use the cutoff rate as a performance measure

instead of the usually-employed probability of error. The use of cut-

off rate as a design criterion has been eloquently and persuasively

argued by Massey in his apparently little-noticed 1974 conference paper

[Ref. 8 in Appendix 4]. In this paper he also examined the additive

white Gaussian noise channel and was able to prove for the first time a

long-standing conjecture on the optimality of a simplex signal set.

We have derived the cutoff rate for a digital communication system

employing an optical carrier and direct detection, and we have used this

as the performance measure in studying the coordinated des ign of the op-

tical modulator and demodulator. The choice of modulation that maxi-

mizes the cutoff rate has been derived for various relationships between

peak amplitude and average energy constraints on the transmitted optical

signal, and found to be:

(i) When the average energy constraint is predominant , pulse posi-

tion modulation is found to be optimum .

• .~~ • - • - - -~~ 
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(ii) When the peak amplitude constraint predominates , Hadamard

matrices can be used to define an optimum choice of modula-

tion.

(iii) When neither constraint predominates, appropriate time sharing

of the solutions given in (i) and (ii) above is optimum.

We have also addressed within this framework problems of efficient ener-

gy utilization, the choice of input and output alphabet dimensions , and

the effect of random detector gain.

Corresponding results are also shown to hold when polarization

modulation is employed in the optical modulator as well as temporal

modulation. Specifically, for an input alphabet of dimension 4, the

optimal modulation when average signal energy constraints predominate

employs binary pulse-position and binary polarization modulation; it is

of interest to note that such a modulation scheme has been adopted in

the one gigabit per second satellite optical communication system re-

ported by Ross et al. in [Ref. 15 of Appendix 4].
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4. INFORMATIONALLY-DECENTRALIZED NETWORK PROBLEMS

4.1 Introduction

A major effort has been concentrated on developing shortest path

4 algorithms that enable each node in a network to calculate its shortest

distance to any other node using only local knowledge of the network

topology and only local information transfer between adjacent nodes.

• The requirement that information transfer and topological information

be localized contrasts sharply with the global information that is re-

quired by almost all of the many existing shortest path algorithms ;

the implementation of these algorithms can be thought of as requiring

each node to transmit distance and topology information to a central

controller , who is then responsible for solving the problem and sending

the appropriate optimal routing information to each of the nodes. In

a large network this could involve a significant amount of cominunica-

tion. Additionally, for some networks establishment of a central con-

troller may be expensive, infeasible , or undesirable from a security or

reliability viewpoint.

Shortest path problems arise in many contexts, and algorithms with

decentralized topological and information transfer requirements are of

obvious importance in many applications. In addition to the traditional

applications areas, an area of particular applications interest is that

of naval C3-systems , and an algorithm we have developed was presented —

at the First !IIT/ESL-ONR Workshop on Distributed Communication and Deci-

sion Problems Motivated by Naval C3-Systems held at MIT in August, 1978.

A more detailed account of this algorithm appears in the conference

• 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 2~~~~~~~~~~~~~~~~ •~~~_
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paper:

“A Decentralized Shortest Path Algorithm ,” Jeffrey M.

Abram and Ian B. Rhodes, Proceedings of the Sixteenth

Allerton Conference on Coninunications, Control and Com-

puting, University of Illinois , October 4-6, 1978, pp.
271—277 ,

which is included here as Appendix 5.

This algorithm was initially developed for a static network in

which branch lengths and topology remain constant, though it can accom-

modate limited changes. We have subsequently made a number of modifica-

tions to the algorithm to enable it to operate in a dynamic network in

• which branch lengths can increase or decrease , and nodes or branches can

be added to or removed from the network. The ability of ~~ algorithm

to handle such topological changes is essential in most practical appli-

cat ions , including especially those arising in connection with C3-sys-

• tems.

A brief outline of the algorithm described in Appendix 5 is given

in the next section. This is followed by a description of several modi-

fications of this algorithm to accommodate various types of changes in

a dynamic network.

4.2 The Static Algorithm

Consider a direct-ed graph consisting of N nodes , denoted

(1,2,.. .,NJ, and a collection of branches (links), A { ( i,j): i,j e N and

• there exists a branch from i to j }. To each branch (i,j)cA is associat-

ed a length s
1~
. The lengths are unrestricted in sign , but the sum of

the lengths in any closed loop of the netw’rk is assumed to be positive.

- -~~~~~~- - •  --
‘ 
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Very little topological information is needed. Each node needs to know

only which of its neighbors are attached to incoming branches, which are

attached to outgoing ones, and the lengths of the branches to the out-

going neighbors. For each ultimate destination, a node calculates and

stores an assessment of the shortest path via each of its outgoing

links; the smallest of these is taken to be its assessment of the short-

est path to that destination and is subsequently referred to as the

current shortest distance. Also stored is the identity of the outgoing

neighbor which achieves this minimal distance. Initially, the current

shortest distance is taken to be: for ultimate destinations that are

neighboring nodes, the corresponding outgoing branch length; for all
L 

other destinations, infinity.

Whenever a node’s current shortest distance to a destination

changes , either through reinitialization or new information received

from a neighbor, this new distance is transmitted to all incoming neigh-

bors. At the conclusion of the algorithm, each node will know the

shortest distance to each other node (or that no path exists), the next

• node in the path that achieves this distance, and the shortest distance

via each alternative outgoing node. The algorithm is guaranteed to

converge, even if it is implemented in an asynchronous manner.

4.3 Dynamic Network ~ jgorithms

While the above algorithm handles static networks, many problems

arise for a dynamic network model. The phenomena that we have investi-

gated include branch lengths decreasing and increas ing, branches being

• 
. 

introduced into the network, and branches failing or being removed from

• 
—---- .
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the network. It should be noted that , in principle , a node coming up or

going down can be treated as the incident set of branches simultaneously

doing the same thing.

The easiest case to handle is that of decreasing branch lengths.

A crucial element of the convergence proof for the static algorithm is

that every distance assessment is no smaller than the corresponding true

distance, so that monotone convergence applies. For decreasing branch

lengths this condition is still met and the convergence proof remains

valid.

On the other hand, when a branch length increases , this condition

may be violated and the original convergence proof is no longer appli-

cable. The algorithm may or may not still converge for a particular

graph ; even if it does, convergence may be slow, as illus trated by the

following example:

Example 1.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~1~~~~~~~~~~~~~ 3~~~~~~~~~~~~~4

• Let node 4 be the destination and assume that the

static algorithm has converged to the correct solution.

Thus node 3, for example, has a shortest distance of 1,

with alternative paths via node 1 or 2 of length 3. Now
• suppose that branch length s34 increases to 20, giving

~~~~
j

~~:i ~~~ _ • •••I_•:~ ~~~~~~~~~~~ • • .•• •~~~~ 



1’ 
•• 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Notice that all shortest paths to node 4 are affected by

the change. When the change occurs, node 3 can immedi-

ately adopt 20 as his new direct distance to node 4. How-

ever , he now believes that he can achieve a distance of 3

via node 1 or 2. Obviously, this distance of 3 can no
longer be physically achieved, but node 3 is unaware that

• his alternative paths have been affected by the branch
increase. He now tells nodes 1 and 2 that his current

shortest distance has increased to 3. Node 1 now com-

pares his new distance of 4 via node 3 to his distance

via node 2, and decides that his new current shortest

distance is 3. Node 2 takes similar action. They then

transmit this information to node 3, who now increases
to 4 his assessment of the distance to node 4. This

process of gradually increasing the distance assessments

will continue until the true distances are reached ; so

even with this small, simple example, convergence will
take quite a long time.

Some modification to the algorithm is necessary in order to guaran-

tee convergence when branch lengths increase. When such an increase

does occur, the nodes must somehow be enabled to determine which dis-

- 

• 

tance assessments can be trustcd , and which cannot.

•
I
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With this goal in mind , we have developed several m~dif led versions

of the static algorithm , three of which are described below . Each ver-

sion has its advantages and disadvantages, and the applicability and

• suitability of each is a function of the characteristics of the particu-

lar network under consideration. The first version is the simplest and

most robust with respec t to other topological changes , such as introduc-

tion of new nodes or branches , but requires total suspension of distance

communication for a sufficiently long period that all nodes can be guar-

anteed to have reinitialized . The second method can effectively handle

branch increases and failures but can encounter difficulties when a new

• link (or node) is introduced into the network. Thus, if links are added

rarely and under controlled circumstances , this version could be ap-

propriate. The third modified algorithm was developed in an attempt to

improve the second, but as we have often found to be true, a modification

which solves one problem can introduce a new one. In this third ver-

sion the problem of introducing new links has been solved but certain

link or node failures cannot be accommodated and require special hand-

ling.

Each of these modified algorithms is based primarily on some form

of reinitialization of the basic static algorithm; they differ mainly

in the mechanics of the reinitialization. It is not sufficient to mere- 
—

ly disseminate a reinitialization command throughout the network when a

branch increase occurs. Once a node has reinitialized its distance as-

sessments , it needs some guarantee that subsequently received informa-

tion has also been reinitialized , and some means of doing this must be

introduced .

4 -~~~~~~~~— 
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Modification A

Perhaps the simplest and most robust approach is to effectively

suspend all communication of distance information for a sufficiently

long period of time to insure that all nodes have reinitialized. Sever-

al possible mechanisms for achieving this present themselves: one is

for the node detecting a branch length increase that affects any of his

current shortest distances to decide upon a future time at which communi-

cation of distance information based on reinitialization will resume,

and to send this to his neighbors who continue to propagate it through-

out the network. Implicit here is the existence of a time base common

to all nodes , and the availability to each node of (at least an upper

bound on) the time it takes for the “reinitialization message” he initi-

• ates to propagate throughout the network, which implies a more global

knowledge of the network. Since communication of distance information

• • is suspended for this period , it is advantageous to make it as small as

possible. This will clearly be aided if a mechanism exists for making

these “reinitialization messages” top priority so that they bypass all

queues and buffers at each node.

Other mechanisms for achieving the same basic objective have been

devised. Together with that above, they share the convergence of the

static algorithm and its robustness with respect to other topological

changes such as introduction of new nodes or branches . Its feasibility

requires that branch length increases occur infrequently relative to the

total time information transmission is suspended and the static algo-

ritha subsequently converges.

_ - .. •  ~~~

• 
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Modification B

Instead of suspending all communication of distance information un-

til all nodes can be guaranteed to have reinitialized and all distance

information can be trusted, a mechanism has been devised for each node

to determine which distance information he receives is trustworthy (in

that all nodes further down the corresponding path are guaranteed to

have reinitialized) and which is not. In simple terms, on hearing that

a branch length increase or failure has taken place , a node ignores dis-

tance information sent by any questionable neighbor until that neighbor

acknowledges tha•t he, too, is aware of the change. As each neighbor in

turn so acknowledges, the embargo on his information is removed. In

this way, some convergence toward the new solution can be taking place

while news of the change is still propagating through the network.

More precisely, this modif ied algorithm involves the use of a

“special action”, which, as in the previous algorithm , is initiated by a

node detecting a branch increase or failure that affects any of his

current shortest distance assessments. When this occurs, the initiator

assigns a unique index to the special action (consisting of his node

number and a counter), and does the following:

1. Reinitializes

2. Places an embargo, indexed by the special action , on distances

received from every neighbor , except for the neighbor at the

opposite end of the affected link.

3. Transmits all of his new shortest distances to each neighbor,

along with the special action index.

• • - —~~~~~~~~~ •~~~ -~~~~~~ •• •~~~~ --
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Each neighbor receiving this information takes analogous action, in

Step 2 placing an embargo on all his neighbors except fo r the one he has

just heard from, and in Step 3 using the same special action index. He

then waits until a message is received from a neighbor, at which point

his action is governed by the following:

Case 1. Message contains no special action index.

A. If there is no embargo on this node, calculate the new dis-

tances via this neighbor and proceed normally.

B. Else, ignore the message.

Case 2. Message contains a special action index.

A. If there is no embargo on this node with the same index as in

the message , perform steps 1 - 3 above.

B. Else, remove the matching ban from this particular neighbor.

If no other embargo exists, calculate new distance via this

node. Otherwise, ignore distance component of message.

- • Several special actions can exist within the network simultaneously,

each distinguishable by its index. A branch failure can be treated as a

branch length increasing to infinity. As before, to insure convergence

it is necessa ry for the topology and branch lengths of the network to

remain constant fo r a long enough period of time for the algorithm to

find the new solution.

While this algorithm solves the problem of increasing branch

lengths, it introduces a new difficulty, viz, that of adding new nodes

or links to the network. In the preceding algorithms, bringing up a new

node or link causes no trouble. It introduces new paths, which can only

serve to decrease shortest paths through the network. Thus, one should

i~~
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be able to consider this in the category of decreasing branch lengths ,

discussed earlier. However, in connection with this particular version

of the algorithm , adding a new link can cause a serious problem, as il-

lustrated by the following example :

Example 2.

Let node 5 be the destination; suppose branch length

845 increases to 20 , and apply Modification B. Further-

more , suppose we have reached the point at which node 4
has informed nodes 2 and 3 of special action (4;l), node
3 has acknowledged receipt of this message , but node 2
has not. Pictorially:

1 W(4;l ) 1 W(4; 1) 1

~~~~~I
T1 7

T
~~D

where W(4;l), read wait for (4;l), indicates that a ban

exists on distances via the specified outgoing neighbor.

At this point, every node is aware of special ac tion
(4;l) except node 1, who believes that his shortest dis-
tance to node 5 is 3. Furthermore, node 3 has fulfilled
his duties with respect to action (4;l), and no longer
has any memory of it. If node 2, for whatever reason, is

• 
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slow in relaying the message concerning action (4;l) to

node 1, a problem can develop. Suppose that a pair of
• links between nodes 1 and 3, each of length 1, is intro-

duced at this point. Node 1 sends its distance of 3 to

node 3, who in turn tells node 4 that his distance to the

- - 
destination has been cut to 4. Node 4, having already
removed the ban f rom node 3, passes this on to node 2.
When node 2 finally transmits the special action message

to node 1, it is accompanied by the false distance of 6.
This is clearly an undesirable situation, brought about

by the introduction of the new links between nodes 1 and

• 3. It happened because node 3 informed all of his neigh-

bors of the special action, and later acquired a new

neighbor who was unaware of the action.

Modification B can be used for networks with increasing and decreasing

branch lengths and failures , but some other technique must be utilized - •

• to add nodes or links to the network.

Modification C

This version of the algorithm is a modification of the previous

one, developed to solve the problem of adding links. If a node remem-

bers the indices of special actions after he processes them, he can

insure that any new neighbors that he acquires are informed of the most

recent special actions. But how long must a node remember which actions

have occurred? In a network in which branch increases are a common oc-

currence , it would be infeasible for a node to remember every special 
- •

action that it had received. Actually, a node need remember a particu-

lar special action only until he can be certain that eve ry node in the

network has knowledge of it. 
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Thus , in order to enable a node to decide when it is safe to forget

a given special action , we modify Algorithm B. Now , when a node first

hears about a special action , he performs the same steps as before, with

one alteration. The node now remembers which neighbor first informed

him of the action, and may not send acknow ledgement to that neighbor im-

mediately. He tells his other neighbors about the action, waits until

they all acknowledge receipt of that me~.sage , and then sends his ac-

knowledgement to the node which first sent him word of the special

action. The initiator of the action plays the role of a temporary con-

troller. When he has received acknowledgement from all of his neigh-

bors , every node in the network knows of the special action. The ini-

tiator can now send the “all clear” signal, allowing each node to erase

memory of the action.

Unfortunately, this modification introduces a new difficulty ; link

and node failures no longer behave the same as branch increases. For

instance, certain node or link failures can disrupt the flow of acknowl-

edgement messages, necessitating that some form of emergency action be

taken. We have developed a mechanism which enables any node that de-

tects a failure that could interrupt the flow of acknowledgements to

initiate this emergency action. The emergency procedure itself must be

able to bring the network to a state from which convergence is guaran- 
—

-

teed; perhaps the simplest such procedure is to temporarily invoke

Modification A in those networks where it is feasible.

_ _ _ _  - 
I

• •
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fr
4 .4 Sumi~~ry

The static algorithm in Appendix 5 is the foundation upon which

each of our algorithms is based. This fundamental algorithm has local-

ized information and communication requirements , operates asynchronous-

ly, and is guaranteed to find, in finite time, all shortest paths in a

static network; also in networks in which branch length decreases and

addition of new nodes and links take place. For networks with increas-

ing branch lengths or branch failures , some means of reinitializing the

algorithm is introduced. Modification A is the most versatile of these

reinitialization schemes; it can accommodate branch increases, decreases

fa ilu res and add itions, but it requires suspension of all distance com-

munication and shortest path calculations for a sufficiently long period

that all nodes can be guaranteed to have reinitialized. However, this

algorithm does provide a simple means of reinitialization and is the

• 
most robust of the algorithms that we have developed . Modification B is

a more complicated algorithm . Its reinitialization mechanism relies

upon an acknowledgement system that increases the required information

storage capacity of each node. It can accommodate branch length de-

creases , increases, and failures, but not the introduction of new nodes

or links. Its main advantage is the ability to begin converging toward

the new solution soon after the reinitialization process begins; its

main disadvantage is the need for special treatment in order to insert

new links. Modification C contains a more sophisticated acknowledgement

system, further increasing the storage requirements of each node.

Branch additions and branch length increases and decreases can be accom—

V

• - •
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modated , as well as certain branch fai lures ; a node detecting any fail-

ure is capable of determining whether it should initiate an emergency

procedure in order to guarantee convergence. We note that algorithms
4

utilizing acknowledgement systems are being investigated elsewhere. For

instance, Merlin and Segall [31 have developed an algorithm which is

more complicated than any of ours and which solves a reduced version of

the problem we consider.

The investigation of decentralized network algorithms is continu-

ing as the doctoral research project of Jeffrey H. Abram.

• 
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5. A GEOMETR IC APPROACH TO SINGULAR ESTIMATION

The paper presented at the 1976 IEEE International Symposium on In-

formation Theory:

“A Geometric Approach to Singular Estimation Problems,”

Ian B. Rhodes, 1976 IEEE International Symposium on Infor-

mation Theory, Ronneby, Sweden , June 1976.

considered the singular estimation problem characterized by the follow-

ing question: Given the constant linear system

~ (t) = Ax(t) + Dv(t)

with noise-free observations

y(t) = Cx(t)

where v is white Gaussian noise, what states x(t) can be determined

• I 
exactly by

(a) differentiation of the current output y(t)?

(b) constructing an appropriate observer that utilizes

smoothly the past observations y over [0,t]?

Our answers to these questions concerning singular estimation were

based for the first time on a geometric viewpoint drawing on the ideas •

first introduced by Wonham and Morse [4] and Basile and Marro [5].

Assuming without loss of generality that (A,D) is completely control-

lable and (C ,A) completely observable , the answers we found are :

_ _ _  _ _ _ _ _ _ _  t:t ~~~~~~~~~•:~~~~~~~~~~ .
_ _ _ _ _ _ _ _ _ _ _
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(a) By differentiation, x(t) can be determined exactly modulo the

subspace ~~~, where W is the maximal (A,D)-invariant subspace contained in

• the nulispace of C. The maximal (A ,D)-invariant nullspace in a given

subspace was first introduced by Wonham and Morse [4] in their geo-

metr ic approach to decoupling and other problems. Specifically, W is

the largest subspace W that is contained in the nullspace, N(C), of C

and satisfies AW C W + R(D), where R(D) denotes the range of D. It is

known [4] that W can be obtained using the iterative formula

W~÷1 = N(C)fl A ’ [W
~ 
+ R(D)], W = N(C)

which converges to the limit W in at most n-l steps. It is also known

[6] in the single-output case (where C is a row vector) that ~ can be

found as

C

CA
W = Nullspace

CAd

where d is the smallest integer such that CAdD 
~ 
0. In the context of

• • singular estimation, this reflects the well-known idea that the output is

differentiated until the white noise v first appears ; because CA’D = 0

for i < d, the first d derivatives of y(t) do not contain v and the

equation

• ~~~~~~~~~~~~~~~~~~~~~~~ - . - •  _ _ _
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y( t )  C

Y
(l) (t) = CA x( t)

y
(d)(t) CAd F

can be solved for x(t) up to ~~~, the nullspace of the matrix appearing on

the right side. Note that the (d+l)-st derivative of y(t),

y
(d+l)(t) = CAd+lx(t) + CAdDv(t)

is the first containing the unknown v(t) and gives only statistical, but

not exact , information about x(t).

Thus our result that x(t) can be determined exactly modulo W gen-

J 

eralizes to multiple-output systems a well-known result for single-

output ones.

(b) Using an observer, such as

~(t) = A~ (t) + K[y(t) 
-

the set of states x(t) that can be determined exactly depends on the co-

variance of the initial state x0, 
but the largest such set is the sub-

space V, where V is the maximal (A’,C’)-invariant subspace in N(D’).

Again, ~ can be found in at most n-l steps using the analog of the iter-

ative formula given above. Here the comparable explicit formula is for

single input systems, viz, if D is a vector and d is as above,
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V N  D’A ’

D~A,d

For either single-input or multi-input systems, V can be interpreted in

terms of the observer error, ~ (t) = x(t) - 
~(t), which satisfies

~(t) = (A - XC) R(t) + Dv(t)

The subspace V is the largest set of x’s that can be made , by appropri-

ate choice of the observer gain K, unaffected by the noise input v. If

the covariance of the initial state is zero along V and K is chosen ap-

propriately, the covariance of x(t) remains zero along V for all

future t.

In summary, by differentiation we can determine x(t) modulo t~ and

by an observer, assuming appropriate initial noise covariance , we can

determine x(t) exactly along V. Now, if we take (W)1 to be the proto-

typical set that can be determined exactly by differentiation and (V)~

to be the prototypical subspace modulo which x(t) can be determined

using an observer , then

(1) the set of states that can be determined exactly both by

• differentation and by an observer is Vfl(~)~ ~ i~. It turns

out that this subspace is another fundamental subspace type

introduced by Wonham and Horse: R is the maximal (A’,C’)-

controllability subspace contained in N(D’); for a defini-

tion of this , see [4].

•I  

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
_ _ _ _ _

:~~~~~ ~~~~~~~~~~~~~~~~~~
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(ii) The set of states that cannot be determined either by diff er-

entiation or by an observer is (V)iflW ~ ~~~, i.e. using both

differentiation and an observer, the state can be determined

only modulo ~~. In this case, ~ is the maximal (A,D)-control-

lability subspace in N(C).

Of course , if S is simply the origin, then the entire state can be

determined exactly using together differentiation and an observer. A

sufficient (but not necessary) condition for this is that the system

have a single “input”, i.e. the noise v is real-valued , and not vector-

valued. Similarly, if R is simply the origin, then no state can be de-

termined both by differentiation and by using an observer. A sufficient

(but not necessary) condition for this is that the system have a single

output. If both R and ~ are simply the origin, then all states can be

determined but none by both differentiation and by an observer. In

other words , the state space then can be separated into a direct sum of

two sub-spaces, one of these being the set of states determinable by

differentiation and the other the set of states determinable by an ob-

server. This will be so for single-input, single-output systems for

which, as has been noted above, explicit algebraic formulas are avail-

• able for both V and W.

We have thus provided an alternative interpretation of the special

properties enjoyed by single-.input , single-output systems insofar as —

singular estimation is concerned . At the same time , we have shown that

the ideas and objects of geomet ric systems theory are convenient and

natural for solving the general multi-input, multi-output singular esti-

mation problem .

~~~~~~~~~~~~~~~~~~ ~
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For the discrete-time system

xk+] = Ax
k 
+ DV

k

= Cx
k

the states that can be determined exactly using an observer

xk+l
_ AJC

k
+ y

k
_ C X

k
]

is exactly as in the continuous-time case, viz, it depends on the co-

variance of the initial state, but is at most the subspace V defined

earlier. However, the analog of differentiation is differencing, and

the result of waiting for the output data so that differencing can be

performed is that smoothing becomes involved. It is found that the

continuous-time result holds true for deducing Xk 
from future and pre-

sent observation data j > k, i.e. Xk can be determined modulo the

sub-space Q Because the useful data will in fact extend at most n-i

steps into the future, we can fix data availability to time k and

determine Xk_j modulo ~ using data to time k, for an appropriate j,

0 < j < n-l. It has been our longstanding conjecture that suitable for—

• ward propagation of i~ or (ii)’ is intimately connected to the constant

directions of the Riccati equation 171 - [91, hut the exact form of

this relationship has yet to be established .

For both continuous-time and discrete-time systems, corresponding

new results for the singular control problem follow by standard duality

arguments.

— 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • - - - _____
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6. COMPENSATOR DESIGN FOR POLYNOMIAL MATRIX SYSTEM DESCRIPTIONS

6.1 Introduction

- - 
A major conceptual development in system theory over the last cou-

ple of decades has been the replacement of the classical transfer func-

tion approach in the f requency domain by the state-space approach in

the time domain. However, in the past few years, there has been a re-

surgent interest in frequency-domain methods. This is due in large part

to the development of an alternative time-domain technique, namely the

differential operator approach to the analysis and synthesis of time-

invariant linear multivariable dynamical systems. Rosenbrock [101 has

shown how to derive many state-space results through the analysis of

certain polynomial matrices. Independently , Popov [11] has shown how

such seemingly state-space-theoretic problems as the realization of sys-

tems in controllable canonical form and the determination of the con-

trollability indices could be elegantly solved by polynomial matrix

methods , starting from the transfer matrix . More recently, a signifi-

cant number of investigators [12]-[201 have used polynomial matrix meth- 
-

•

ods to solve other problems , employing the fact that the (pxm ) transfer

matrix, T(s), of a linear time-invariant multivariable system can be

factored as

T(s) = R(s)P”1(s) Pr(s) Q(s) (1) —

s~here R(s) and P(s) [P Cs) and Q(s)] are relatively rigbt[left] prime

polynomial matrices in the Laplace operator s , and P(s) [P
Q
(s)] is

colunin[row] proper. Such a factorization directly implies a minimal

time domain realization of T(s) in differential operator form, namely 

—-——-• •~~~~~~ •• — . •  -
‘

• - —- ——-—- • - •
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P(D)z(t) u(t)

y(t) = R(D)z (t) (2)

or 

P
Q
(D)Y(t) = Q(D)u(t) (3)

where P(D) and R(D)[P
Q
(D) and Q(D)J are polynomial matrices of dimen-

sions mxm and pxm[pxp and pxm) in the differential operator D d/dt with

P(D)[P
Q
(D)] column[row) proper and nonsingular, z(t) is a p-vector

called the partial state, u(t) is the rn-vector input, and y(t) is the

• p-vector output.

The equivalent state-space representation of (2) is just

(DI-A)x(t) = Bu(t)
(4)

y(t) Cx(t)

where x(t) is the state vector and A ,B,C are real matrices of appropri-

ate dimensions .

In view of (1) and (2) or (3), the Laplace operator s and the dif-

feratial operator D can be, and will be, freely interchanged in our sub-

sequent discussion. It should be noted that a differential operator

description of the dynamical behavior of a physical system often follows
I

• as a direct r-sult of applying well—known physical laws to model the 
—

~~

system .

One of the most important features of the controllable differential

operator representation (2) can be seen if we consider the effect of the

linear state variable feedback (lsvf) on a compensated system defined by

L - • • ~~~~ ~~~~~~~~~~~~~~~~~~~~~~~—-4-- - s Th.____
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the control law

u(t) = Fx(t) + Jv(t) (5)

in the case of state-space representation of the form (4), or

u(t) = F(D)z(t) + Jv(t) (6)

in the case of differential operator representation of the form (2). In

(5), F and J are real gain matrices of appropriate dimensions and J is

assumed to be nonsingular. In (6), F(D) is an arbitrary polynomial ma-

trix having column degree less than that of P(D). A difficulty in phy-

sically implementing an lsvf control law will occur whenever the entire

state of the system is not directly measurable; i.e., when only y(t) =

R(D)z(t) is available for direct measurment. This problem can be cir-

cumvented in the case of an observable state-space system through the

employment of a Luenberger observer. An entirely analogous result can

• be obtained by the differential operator approach . In this regard, the

following result [12, Theorem III) is important:

Consider the differential operator representation (2).

For any F(D) of lower column degree than P(D) , there

exists a triple {Q(D),H(D),K(D)1 of polynomial matrices

satisfying the following two properties:

(a) K(D)P(D) + H(D)R(D) = Q(D)F(D)

(b) Q~~(D)[H(D) K(D)] is an asymptotically

stable proper transfer matrix,

The significance that this result has for compensator design can be seen

~~~~~~~~~~~~~~~~~~~~~~~~ • 

--
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by considering the compensation, depicted below , of a given system

(P(D) , R(D)) of the form (2)~

v(t) u(t) 
_____ 

z ( t )  
_____  

y(t)

_ _  

4j~(s)]

It is seen from the diagram that

u(t) = w(t) + Jv(t)

If w(t) exponentially approaches F(D)z(t) then the compensation scheme

(6) will be realized asymptotically. A little algebra using (2) and the

relation from the block diagram

Q(D)w(t) = K(D)u(t) + H(D)y(t)

shows that this is precisely what conditions (a) and (b) of the theorem

ensure; furthermore, the compensator is stable and realizable because

its transfer functions Q4(s)H(s) (from y to w) and Q~~’(s)K(s) (from u

- • -• • ---~~~~~~~~~~~~~~ 
- .-----

~~~~~

_ -

I

~~~~~~ -~~~~
—  -• —
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to w) are so specified by condition (b). A procedure for constructing a

triple (MCD), K(D), Q(D)} with the two prcperties in the theorem have

been given by Wolovich [121, using the classical “eliminant matrix” of

two polynomials. There are, however, no methods available for con-

structing a triple with these two properties and the additional property

that the determinant of Q(D) has minimum degree. This corresponds to

the design of a stable, minimum-order compensator. Our research efforts

have been directed towards the development of such methods , with a view

to subsequent application of these ideas to other system problems.

6.2 Problem Formulation

Consider a linear time-invariant multivariable system defined by

• the equations

P(D)z(t) = u(t)

y(t) = R(D)z(t)

where P(D) and R(D) are polynomial matrices of dimensions mxm , pxm , re-

spectively, in the differential operator D=d/dt and P(D) is column pro-

per and nonsingular. Our goal is , for any polynomial matrix F(D) of

dimension rnxm having lower column degree than Q(D) to find a triple

(MCD), K(D), Q(D)] of polynomial matrices of appropriate dimensions

which satisfies the following properties:

1) H(D)P(D) + K(D)R(D) = Q(D)F(D) (7a)

ii) Q”1[H(D) K(D)J is an asymptotically stable (7b)

proper transfer function

iii) det Q(D) is of minimal degree (ic)

.. . 

•_‘
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For simplicity , the argument s or D will be omitted hereafter,

since the two are interchangeable. Equation (7a) can be rewritten as

H P+KR - QF O

or , equivalently,

1H’l
[P’ R’ - F’] K’ I = 10] (8)

LQ’J
Let

T [P’ R’ -F’ J,

Ill’
G = K’

LQ’

where P’ is a row proper, (RP 1)’ is proper , and the row degree of F’

is less than that of P’. Hence the polynomial matrix T is row proper

and of full rank. Therefore, instead of solving (7a) for the triple

(H, K, Q), we may solve the linear equation on free polynomial modules,

TG = [0] (8’)

where the elements of the composite polynomial matrix G are to satisfy

conditions (7b) and (7c).

6.3 The Free Modular Approach

Consider the linear equation

T r n n  (9)

where T is a linear map from the free R[s]-module H of rank r(M) to the

• 
i~iI• ,

— 
-.---

~~~~~ — ~~- — — — ___&•_~~~-. :... ~ — ~~ —. _________ —-~~~~~~~~
•— ~~~~~~~~~~~~~~ ~
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free R [s)-module N of rank r(N). It is clear that (9) has a solution if

and only if n c Im T. Because R[s1 is a free principal ideal domain, Im

T and ker T are free modules. Equation (9) thus involves, for complete

analysis, the computation of two bases, one for Im T, and one for ker T.

We also have the customary identity

r(Im T) + r(ker T) = r(M).

Our procedure for solving (8’) is first to determine a minimal re-

duced basis for ker T and then use this basis to construct a polynomial

matrix G which meets all the requirements.

Let v1,... )Vn~ 
n r(ker T), be a basis for ker T, where each element

can be expressed in the manner

r.

v. =~~~~~v. .~~~ ,

~ j0 ~~

-
• 

• where r. is the column degree of v.. We say that {v1,... ,v5} is a

• minimal reduced basis for ker T if the rank of the constant matrix

formed from the last in rows of

[v . . . v J  (10)
r

is equal to m and r. is minimal.

For a row proper and full rank matrix T, a minimal reduced basis -

for ker T always exists , though it is not unique. There are algorithms

for constructing such bases, although we shall not present them here.

Without loss of generality, we may assume that our basis is always mini-

mal and reduced .

- -- • — • - -~~~~~--- . - • .  - - - ----- - -
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Returning to equation (8’), we have an equation immediately recog-

nized as (9) with n = 0 and T: R[S]2in’~~ ~ R[S]’~ given by matrix

[P’ R’ - F’]. The matrix G = [11 K QJ ’ can then be constructed using the

• basis {v1,. .. ,v~} for ker T. In view of (8), n = rank(ker T) in + p,

and the column elements of G can then be expressed as linear combina-

tions of the basis elements v1,. . . ,vn; i.e.

= a
1~~v3 

i = 1 ,m (11)

where G ~~~ and the g
~ 

and v
1 are partitioned as

= [
~
] v. [::]

The determinant of Q’ can be written as the exterior product of the

i.e.,

Det Q’ = q1
A. . .A~~ (12)

By rewriting (12) with the aid of (11), while taking due account of

the multi-linear and skew-symmetric properties of the expression, it is

possible to obtain the revealing form

Det Q’ = 
~~~

bk(l) . . ~~~~~~~~~~~~~~~~~ 
•Ad k~~)

(s)l (13)

where the sum is taken over all Integer arrangements satisfying

1 < k(l) < . ...  < k(m) < ri (14)

It then becomes a matter of determining the b’s in (13).

- —
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Let Q denote the set of all strictly increasing sequences ofm ,1~
positive integers r , of length in , chosen from 1 ,n, i.e.,

1<r(l)<. . . .<r(m)<n. Because the d
k ( I ) (s) are known, finding the b’s

in (13) is essentially a decomposition problem . Select a basis

v
1 ,v~ for an F-vector space V; then an in-vector has the general

form (13) for the sum taken over all integer arrangements in and

with the b’s in F. Decomposition means that m vectors

V. = a . .v. a. . eF (15)1 
~~~~ 

~~, j  ~ 
1 ,1

can be found in V such that the exterior product

(16)

is equal to the rn-vector in question.

The mathematical literature dealing with the construction b -* a

L. tends to be framed in a vector space, rather than a free-module , con-

text. For example, the following result is known [21, p. 5681:

Proposition: In an (m+1)-dimensional F-vector space V,

every rn-vector is decomposable.

An extension of this result to free R[s]-modules has been given by

• Sain[131. Using this extension, a solution to the compensator design

problem has been constructed for single-output systems.

6.4 Single-Output Systems

For single-output systems, p l  and so m n-l, and a polynomial ma-

trix A(s) = [a1,~(s)l can be found such that

________________________ 
~~ ~~~~~~~~~~~~~~~~~

• _ _  - ~~~~~~~~ ~~~~~~~~~ ~~~~— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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i) b
r 

= Det A
r r 

~ ~rn,n ‘ H
ii) G = [v

1 V IA

iii) Q 1[}I K] is proper,

where A
r is the submatrix of A consisting of the r(l),. .. ,r(m)-th col-

umns of A.

- r The matrix A(s) can be determined in one or two steps depending on

the solution to (13). Suppose that we have a solution b to (13) for a

• • desirable polynomial Det Q’. Step 1 is to define a matrix B as follows

- b
3/b1 . (_l)n+l

bn÷l/bl
b1

1
B =  . 

• (17)

1

where b. is the shorthand notation for b , and r. is the i-th element1 1

of 
~m,n 

when its elements are ordered lexicographically. If b
1 is a

constant, we may simply let A be equal to B; otherwise, step 2 is neces-

sary to convert the rational matrix B to a polynomial matrix . Step 2

is to determine the matrix A from the fact that

(V
1A AV

~
)AV

~ 
= 0 , i = 1,...

where 
~~

. is defined by (15) except that 
~~~~ 

are elements of Risi and

(v1,... ,v
1 
is a minimal reduced basis for V = ker T(s); i.e.,

(
~~~ 

b ) A (
~~ a .  . v .)  = 0 (18) -

r.€Q r
1 r~ i=1 ~ 

1

1 m,fl

I

• • 
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where v~ denotes the exterior product of the m elements of [V , ..  . ,v ]
r1 1 n

corresponding to r.e Qm n . Because v’~ A v. = 0 if i is in the sequence

r for all r E Q and v A.. .Av cannot vanish because {v.} is a basisrn,n 1 n 1

for V , we have
N

~~ (—l)”
~~
b
~
a
1~~ 

= 0, j = 1,... ,m
i l

where N =(n
’~= number of sequences in Q . We are then essentiallym ,n

looking for a polynomial basis for

ker [b1,—b2,... ,(_l)
N_l

bNJ (19)

in the free R[s)-module sense. If one of the non-zero b is a constant,

then, by reordering {v.} such that b1 
is that constant, the column ele-

ments of B defined in (17) form a basis for the kernel (19). Otherwise

B is a rational function and the column vectors of B form a basis for

that kernel in an R(s)-vector space context but not necessarily a free

modular basis. An algorithm has been developed to construct a free

modular basis from the B matrix.

6.5 Multi-Output Systems

For multi-output systems, p > 1 and so in < n-l, and the free R[sI

module extension of the Proposition given at the end of Section 3 is no

longer applicable. Generalizations of that Proposition in a vector

space setting are known; e.g., Theorem 1.4 in [22], but we have so far

been unable to establish any extension to a free R[s]-module setting.

That such an extension should be possible, at least under certain cir-

j cumstances, is illustrated by the following alternative approach.
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Consider the possibility of triangularizing the transfer function

matrix by precompensation; since the set of proper , stable, real, ra-

tional transfer functions forms a Euclidean domain, it is possible to

triangularize a transfer function matrix by postmultiplying it by a

unimodular matrix of rational functions [231, thus transforming a multi-

input, multi-output system into a sequence of multi-input, single-output

systems. Postmultiplication by a unimodular matrix amounts to allowing

“input dynamics” in the compensation scheme.

It can be shown that, for a minimal system descr ibed by (2), the

exterior products d
A
, for all r e 

~~~~~~~~ 
are relatively prime polynomi-

als. Hence, the determination of minimum degree of Q’ matrix is essen-

tially to find ar(s), 
r c and the smallest integer k such that

i) C
0 

+ + c
ks
k 

= a (s)d (s) is a stable
reQ~~~

polynomial of degree k, and

ii) deg ar
(s) + deg d (s) < k.

This problem seems to be related to the generalization of the so-called

“eliminant matrix” of two polynomials.

Further investigation of these questions is being carried on as the

doctoral research project of Olive Y. Liu.

— — — ~~~~~~~~~~ — —
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7. ESTIMATION AND STOCHASTIC CONTROL: TILE INNOVATIONS CONJECTURE

7.1 Introduction

The informational equivalence of the “signal in additive white

noise” observation process

2
t fy5~

s + w~ (1)

and the innovations process

V
t = Z

~~
_ f c

~~dS=f~~~~
d S +W

~ 
(2)

is known to hold under certain conditions and to fail to hold under

others; an account of these can be found in Benes [24]. Two of the most

important sets of conditions under which informational equivalence holds

are:

1. The “signal” y is a second-order process with EJ’~~y5~
2ds<oo,

the “noise” w is an uncorrelated-increment second-order pro-

cess , future noise is uncorrelated with past signal, and our

concern with with linear least-squares estimation. Specif i-

cally, let be the closed-linear subspace of H =

generated by ~z
1
,sE[O ,t1, i = I,2,...,m = dimz 5 i .

(1)
For the complete probability space (Q,F,P), }1L

2
(Q,F,P) is the

Hu bert space of real-valued , zero-mean, finite-variance random van -
ables on (~ ,F,P) with inner product <u,v> E(uv).

- - 
_._

~~~~~
._ 

- - -

_J

_

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~



n
—56 —

Then in (2) is the projection E*[y sIZs
] of y5 on Z

5,

~ 
y~-9~, and informational equivalence means that =

for all t , where Nt is the closed linear subspace of H gener-

ated by {v~ ,se[0,t), i 1,2,.. .,rn}.

2. The “signal” y and the “noise” w are jointly-Gaussian second-

order processes , y is almost-surely square-integrable on any

f inite interval , w is a Wiener process whose future increments

are independent of past y, and our concern is with least-

squares estimation. Specifically, let Z~ by the sub-a-algebra

of F generated by {z~ ,se[0,tJ, i = 1,2,. ..,m}. Then in (2)

is the conditional expectation E[y s I Z sI, ~~ = y5 
-

~~~~, and in-

formational equivalence means Z~ = Nt (mod P) for all t, where

N
t 

is the sub-a-algebra of F generated by {v~,sc[0,t], i =

1,2,... ,m}.

We have constructed a new direct proof of innovations equivalence

for these two cases using only elementary facts from stochastic pro-

cesses and estimation theory such as those in the book [251. This con-

trasts with most of the existing proofs which involve deep and sophis-

ticated results in the theory of stochastic processes. In terms of

directness, generality and assumed background, our proof is comparable

to that recently published in [261; the principal argument in the

proof , however , is entirely di f ferent .

A paper presenting these proofs in detail is in preparation. We

summarize here the essential arguments involved .

~~— - ~-~~~~~ ~~~~~~
—
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7.2 Linear Least-Squares Estimation

The essential ingredient of the proof is to introduce the process p

- 

• def ined by

= z~ -f ~ ds (3)

where = E*[y~~N] . Recalling that N
tcZt, it is immediately clear

from (3) that M
tCZt, and thus that Mt 

+ N
~
cZ

~
, where M

t is the sub-

space of H generated by {p~ ,s [o ,t], i 1,2,... ,m}. On the other hand ,

rewriting (3) as

t
tJ

0

L. 

it is seen immediately that Z
~
cHt + N

t
. Thus

- 
I Z~ 

~~ 
+ N~ . (4)

• This fact, that knowledge of the past of both p and V is equivalent to

• knowledge of the past of z , is the very reason the process p is intro-

duced .

Now, substitution of (2) into (3) gives

~~~~~ 

- ~~ )ds +

• •— 

• 

- —
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It is easily proved that the processes (~~-~~) and V appearing on the

right side of (5) are uncorrelated , and by an ea sily proved result [25,

Lemma 4.3.2] the subspace M
~ 

can then be represented as the set of in-

tegra ls

M
t )Jb~

(s)[~~ 
- 
~~Jds ~1 

b I ( s ) d v ;bEL
~

[0
~ t ] 1  (6) 

• -
This, in fact, is a generalization of the standard result that can be

represented as the set of Wiener integrals on v, i.e.,

Nt = ~fa (s)dV5; aEL~[0,t] . (7)

In view of (4), any vector in can then be represented as a vector sum

+ n~ , where m
~ 

and have representations as above, i.e.,

= M~+N~= ~fb’(s)[~~-~~ Jds +fc’(s)dv ; b,c€L~[0,tJ

In particular, (
~~-~~) is in Z~ and has a representation of this form:

also , because is the projection of on Nt, (~~-~~) is orthogonal to

Nt and c ’ E 0. Thus

- 

~~ fB’(t,s)[~~ - ~~Jds

____ ____ 

I

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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After it is shown that

:i• f~~I B ij (t ,~ I2 ds it <

o 0

using ES
~~
ytI2dt<c~

, it then follows by any of a number of arguments

(Contraction Mapping Theorem, Picard Iterations , Inversion of Volterra

Operators) that - = 0 for all s. Then, immediately from (6), (7)

and (4),

~t 
= Nt = Zt

which is the desired result.

7.3 Estimation of Gaussian Processes

Once causal equivalence has been established for linear least-

squares estimation, the corresponding result for the case where y and w

are jointly Gaussian follows readily by arguments such as those in

Section III of [26]. The proof uses the fact that, for y Gaussian,

~ ~~ 
< ~ a.s. iff E f I~ 

(2ds < ~~

to provide a bridge between the two cases.

As mentioned above, a paper presenting these arguments in detail is

in preparation. -
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8. QUANTITATIVE MEASURE S OF CONTROLLAB ILITY AND OBSERVABILITY

8.1 Introduction

Our long-term objective in this recently-begun research effort is

to develop quantitative measures of controllability and observability,

and to use these as a basis for providing an analytical framework for

design and performance evaluation, especially for large-scale or decen-

tralized systems.

The large and highly-developed body of knowledge concerning the

structural properties of linear systems is framed almost entirely in

terms of “yes” or “no” questions and answers; a state is either reach-

able or it is not, an input disturbance is either localized away from an

output or it is not, a system is decoupled or it is not; in each case,

available characterizations afford conditions that can be checked to de-

termine which of the two holds true. Almost all of these involve,

directly or indirectly, the controllability and observability properties

of the system. There is, however, no body of knowledge relating to the

approximate achievement of these goals, or , more generally, of the de-

gree to which they are achieved . For many practical purposes it is suf-

ficient if , for example, an input has an acceptably small influence on

an output, and it is not necessary for this influence to be zero.

Especially in large systems , some measure of the degree of interaction

or noninteraction between subsystems seems essential for analyzing the

system, for designing decentralized estimation or compensation schemes,

and for assessing the performance of these estimators and controllers

(in terms, say, of performance bounds). 

_ _.~ II . I~~I- 
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• We present here some preliminary results from our initial investi-

gation of these questions. For simplicity of presentation, we concen-

trate on discrete-time constant systems, with occasional references to

J the continuous-time or time-varying counterparts of these. The next

section introduces the measures of controllability and observability we

have been working with to this point, while Section 8.3 presents some

implications of these in measuring interaction between input and output,

and in providing lower bounds for smoothing problems , in order to pro-

vide simple illustration of some of the consequences of these control-

labili ty and observabili ty measures.

8.2 Measures of Reachability and Observability

Consider the constant, discrete time system

Xk+l = Axk + Bu
k 

(la)

y~~~= C x ~

I. with xk E R’~, Uk e R~ and yk E R
m. As in [271, we apply the input Uk

over [-n,-l], starting with x.~ = 0, and observe the output over

[0,n-lI. Letting

— r ~ , ~— L u 1 U~~~
2 

...
[y~ yj ... y~~1J 

(?)
F = [B , AB , A~~~B] , 

-

C
1 1 =  CA , -

~~
n l  

-~~~~~~~~~~~~~~~

• -

~~~~~~~

-
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we then have that the state x0 at time 0 is given by

x0 F u  (3)

while the output over [0,n-lJ is, in terms of x0,

(4)

or, in terms of U,

• 
y HFu~~~G u  (5)

where
CB CAB ... CA~~

1B

CAB CA2B
G =H F = : (6)

• • CA~~
1B . . . CA2’~

1B

is the Hankel matr ix ass ociated with the system.

One natural way to measure the reachability of a given state x at

‘ time 0 is as the maximum value of the inner product x’x0 over all x
0 of

the form (3) with IN 11 2 
= u’u < 1, i.e.,

r(x) = sup x’Fu ~~4x’FF’x = II F’ x J I
U ’u < 1

where the second equality follows as a result of performing the simple

maximization. [f x has norm 1, this reduces to maximizing the projec-

tion along x of all states reachable with at most one unit of input

energy .

_ _ _ _ _ _ _ _ _  _ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~
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1ff r(x)  = 0 then x is unreachable in the standard sense of the

term ; i.e., orthogonal to the set of reachable states , so the inner pro-

duct in (7) is identically zero. Large values of r(x) correspond in

some sense to states that are easily reached , though not in the classic

sense of the term , since such states may have unreachable components.

It is easily seen that r(x) is a sublinear function of x. It is

• also convex, so that, in part icular , the set of states whose reachabil-

ity measure is no greater than a, i.e., {x: r(x) < a}~ is a convex set

for all a > 0.

The corresponding dual observability measure of a state x at time

0 is simply the norm of the output sequence y that is produced by x ,

i .e . ,

o(x) = lixil = II HX II ~~ /x ’H ’lLx (8)

We note that ocx) is zero if f the state x is unobservable in the stan-

dard sense of the term. Large values of oCx) mean that x gives rise to

an output sequence y with large norm , and in this sense x is highly ob-

• servable. The observability measure o(x) is sublinear and convex ; the

set of all states whose observability measure is less than a given ~ is

convex; i.e., (x: oCx) < ~~ is convex.

These measures , r(x) and o (x ) ,  preserve suitable duality condi-

tions . It is easily checked that the reachability measure , r
d (x), of —

the system dual to (1) is simply the observability measure o(x) of (1).

Conversely, the observability measure , od (x),  of the system dual to (1)

is the reachability measure of (1).

• _
~~ •,• -
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It is convenient, in order to avoid the square roots in (7) and

(8), to work with the squares

R(x) = r2(x) , 0(x) = o2(x) (9)

Another reachability measure is the conjugate functional of R. The

conjugate functional of a convex functional R is defined by [see, e.g.,

28],

R*(z) = sup [z ’x - R(x)] (10)
x

Performing the indicated maximization with R(x) given by (7) and (9),

we find

* -1R (z) = ~ z’ (FF’) z , (11)

assuming that IF’ is invertible; if it is not , R*(z) is still defined by

(10) and takes the value ~ if z lies in the nullspace of F’. For sim-

plicity of notation , we assume here that IF’ is invertible. Henceforth,

we also neglect the constant factor 3~ in (11) and take as our alterna-

tive reachability measure

R*(z) = z’ (FF’)~~z (11’)

This reachability measure (11’) has a simple interpretation in terms of

the system (1): it is the minimum amount of control energy u’u needed

to reach state z at time 0 from state 0 at time -n, i.e. mm f~’u:Fuz}.

This minimum energy is known from standard least-squares linear system

theory to be just

_ _ _ _ _ _ _  
~~~~~~~~~~~~~~~~~~ 

_ _ _ _
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= R (z) = z ’ (FF’) z

Thus the measure R* given by (11’) is in fact a measure of unreach-

*ability: small values of R correspond to small values of required input

*energy, and thus to relatively easily reached states ; large values of R

correspond to large required input energies and thus to states that are

more difficult to reach; in particular, states in the nullspace of F’

(and thus unreachable according to the “standard” definition) have

R*(z) = ~~. We observe that R” is convex , as are all conjugate function-

als of convex functionals.

The corresponding conjugate functional of 0 is, again neglecting

the constant factor of ¼ as in (11’),

0*(z) = z ’(H’}L)~~z (12)

An interpretation of this in terms of the system (1) follows by consi-

dering the problem of minimizing the norm of the linear functional on

~ that produces the projection (or, more generally, the inner product)

of the initial state x on the vector z. Suppose x~,z is found as the

linear functional w ’x; the vector w of minimum norm that accomplishes

this is w° H(H’H)’z, so that w°’w° = z’(ll’IL) ~z = 0 (z). We thus see

that 0* gives , In fac t, a measure of unobservability: Small values of

0 (z) correspond to a small effort to determine x~,z and thus to a “more

* *observable” z than do large values of 0 (z). Note that 0 (z) = ~ if z

is in the nullspace of H, corresponding to a state that is unobservable

*in the standard sense of the term . As with all our measures , 0 is

• convex.
S.

~~~~~~~~

L 
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* *The measures 0 and R also preserve appropriate duality relations:

the observability measure 0 of the dual to system (1) is the reach-

ability measure R of system (1), and vice versa.

• As a means of making more concrete the relationship between R and

observe that if IF’ is diagonalized by the similarity transformation

T, so that T’FF’T = A , then

n
R(x) = x ’FF’x = (T’ x)’A(T’x) = E X.(T’x

i l

• whereas

R*(x) = x ’(FF’Y 1x = (T’ x)~A~~(T’ x) = E XT 1(T’ x)2

This makes clearer the earlier observation that R is a measure of reach-

ability, whereas R* is a measure of unreachability.

Finally, we note that the continuous-time analog of

IF’ A’BB’A”

is the “controllabili ty Grammian”

T
A

~
‘e tSB, Atdt

8.3 Some Implications

We present here two simple implications of the above measures of

controllability and observability. The first of these concerns the

interaction between an input and an output of a system of the form (1).

We emphasize that, in this context, u in (1) may be simply a part of the

_ _ _ _ _ _-

~~~ _____________is~•__•••••__ _ __
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total input and y in (1) may be simply part of the total system output ,

so that we are thinking in terms of possible applications to disturbance

rejection or decoupling . We adopt as a measure of interaction between

input and output the maximum norm of the output sequence x that can be

produced by an Input sequence u with u’u < 1, i .e.

max : = 11x0 ,x = Fu, u’u < 1)

= max Il~t~Il 1111111lI~~~~
(Recall that HF is the Hankel matrix of the system (1).) A number of

equivalent expressions for this can be given in terms of the above mea-

• sures; each, upon - reflection, has its own intuitive interpretation and

provides some insight into the underlying measures. For example

11HF1
2 

= max u’F’H’KFu = max x’H’Hx = max 0(x)
u’u < 1 u ’u < 1 R*(x) < 1

xFu

1 - 
where the last equality follows after a few lines of algebra and the use

of the definition of R . One intuitive interpretation of this expres-

• sion is that large interaction between input and output is a consequence

of at least some states whose observability measure 0(x) is large also

being reasonably reachable (in the sense that the unreachability measure

R*(x) is no greater than 1). If all states having high observability,

as measured by 0(x) , also have low reachability (as measured by a high

unreachability R*(x)), then input-output interaction will be small.

That interaction between input and output should depend on the reach-

ability and observability of the states is to be expected . What is im-

. i~~~I
_
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portant about the above expression for is that it quantifies this

dependence in terms of specified measures of reachability and observa-

bi 1 ity.

The corresponding dual expression is

1111112 = max R(x) (13)
0*(x) < 1

and this has a dual interpretation to that above .

Taking a Lagrange multiplier approach to performing the maximiza-

tion in (13) yields, af ter a few lines of algebra,

• RH F I2 = sup {j~: IF’ + ~ (H’H) 1 is singular}

while the corrsponding dual expression is

JJ
HF12 = sup {v: H’H + V (FFt) 1 is singular}

In either case, the eigenvector corresponding to the zero eigenvalue so

created might be thought of as the state through which maximum input-

output interaction takes place.

An alternative expression for I ILFD2 can be given in terms of the

measures o and r. It can be shown after some algebra that

4 
max {o(x) r(x)}

• Again , this provides the interpretat ion that low input-output interac-

tion requires easily-reached states (in the sense of having large r (x) )

to have low observability (in the sense of small o(x)) and easily-

observed states to have low reachability. The quantification of this 

- - - - • 
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expected intuition, and the measures involved , are quite diff erent from

those given earlier.

We conclude this section with the second of our two simple applica-

tions of the measures of controllability and observability , in this case

to providing bounds on the error variance in smoothing problems . Con-

sider the discrete-time stochastic system

Xk+l = 
~~k 

+

Yk CXk + W k

where v and w are independent white noise sequences , and the initial

• state is taken to be unknown. Let the error covariance in the Gauss-

Markov (smoothing) estimate of x0 
given y

0 ,y
~_1 

be ~~. Then it is

easily shown that

< H’H , Z > (H ’H)~~

where the matrix inequalities denote the usual partial ordering: P > Q

iff P-Q is nonnegative definite. The above bounds on I and are, in

fact , simply the Cramer-Rao bound for this problem.

In particular,

x~ 1
1 x0 

< 0(x0)

and - 

*
z’ I z > 0 (z)

0*(z) thus provides (if z is a unit vector) a bound on the error van-

ance in the direction z: the smaller is 0*(z) , and thus the more ob-

_ _ _ _ _ _ _ _ _ _ _ _ _ _  ~~•• . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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se rvable is z , the smaller is the lower bound on the error variance in

this direction .

These two simple examples are intended merely to illustrate the

kind of results that follow from an analysis in terms of quantitative

measures of controllability and observability. Research in this area is

continuing.

— 
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9. SUMMARY

Two of the research topics included in this report are concerned

with estimation, decision, and control problems fo r observation models

other than the familiar “signal in additive white (Gaussian) noise” one.

Both involve observations of a doubly-stochastic point process. In one

problem we derive and examine the performance of optimal and suboptimal

estimation and tracking systems when available observations include a

space-time point process; the optimal estimators and controllers are

shown to be nonlinear but finite-dimensional (and therefore implement-

able), and their performance is analyzed in terms of upper and lower

bounds, the upper bounds giving the performance of suboptimal schemes

that are even more-easily implemented than the corresponding optimum .

In the second problem, we derive optimal modulation and demodulation

systems for coded , direct-detection optical communication systems under

various conditions on the average energy and peak amplitude of the

transmitted optical signal; here the received data is a point-process

whose intensity is signal-development. A modulation scheme we show to

be optimum when average energy constraints are a limiting factor is,

in fact , the one employed in a one-gigabit-per-second satellite optical

communication system currently under development.

Algorithms have been derived that enable each node in a network to

compute its shortest distance to any other node using only local topo-

logical information and decentralized information transfer between ad-

jacent nodes. Shortest path algorithms with such decentralized informa-

• ~~~. • _
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tion requirements are of obvious importance in many applications , in-

cluding C3-systems. A number of modifications of our basic algorithm

have been derived , all retaining the basic informationally-decentralized

characteristics, but each with its own advantages and limitations in

handling va r ious topological changes in the network.

Singular est imation and control problems have been examined from a

geometric viewpoint, and var ious subspaces that are fundamental to the

geometric approach to system theory are shown to provide simple , concise

solutions to the singular estimation and control problems. These solu-

tions are the same for multi-input , multi-output systems as for single-

input , single-output ones; the geometric solution reduces directly to

well-known algebraic solutions in the latter case.

Compensator design methods have been investigated for multivaniable

systems represented in polynomial matrix form. Recent years have seen a

reawakening of interest in frequency-domain design techniques, in con-

trast to the time—domain methods that have predominated for the past two

decades , and these have been based principally on polynomial matrix sys-

tem descriptions. The theory underlying our design procedures draws on

the ideas and results of modern algebra, especially multilinean algebra.

A new , direct proof has been derived of the known causal equiva-

lence of the innovations and observations processes for linear estima-

tion and for  Gaussian processes.

Finally, we have presented some preliminary results from our re-

cently-begun research effort to develop quantitative measures of con-

trollability and observability that have consequences in terms of mea-
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suring such properties as the degree of interaction or noninteraction

• between input and output and in deriving bounds on estimator or con-

troller performance. Of particular interest in the longer term are

applications to large , decentralized system problems.
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Brief Paper

A Separation Theorem for Stochastic Control Problems with Point-Process
Observationst

D. L. SNYDER,t 1. B. RHODES~ and E. V. HOVERSTENj

Kay Word Index —Communications control applications; control theory ; filtering; Kalman filters;
nonlinear filtering; point process; state estimation; stochastic control; tracking systems.

Summary—The exact solution is derived for a stochastic The point-process observation.model we adopt here is a
optimal control problem involving a linear stochastic plant, generalization of that in (I) to include feedback interactions
quadratic costs , and nonlinear. nongaussian observations, between the observed points and the state of the linear
The observations are in the form of a point process in which stochastic plant. This interaction implies that the plant state is
each point has both a temporal and a spatial coordinate. The not a Gaussian process. Even so, we find as in LII that at any
State of the stochastic plant influences the intensity of the time the state is conditionally Gaussian given observations of
observed time—space point process. The solution to this dual the time—Space point process up to that time.
control problem can be real ized with a separated estimator— -
controller in which the estimator is nonlinear, mean-square 2. Model and problem statement
optimal, and finite dimensional, and the controller is the We adopt the following model. Denote by [t,, ~) and R a
certainty equivalent linear controller. Motivation for the semi-infinite time interval and an rn-dimensional Euclidean
stochastic optimal control problem studied here is given in space, respectively. We consider as observations a point
terms of position sensing and tracking for quantum-limited process on ft,. n) x R “ ; thus, each observed point is
optical communication problems. identified by a temporal coordinate t E (:~,, ~) and a spatial

coordinate r € R ”. Let T and A be Borel sets in [ t a, ~) and
1. Introd uction ‘ R ’, respectively, and denote by N(T~< A )  the number of
THE MOST general stochastic optimal-control problem is a points occurring in TX  A. We define N ( t )  N([t ,, t )  x R )
so-called dual control problem which has been solved only as the number of points up to but not including time
under very restr ictive conditions. Of special importance is regardless of their spatial location. We use .~~ to denote the
the separation theorem which demonstrates that for a linear sequence of points up to time 1; .4~ consists of the number
stochastic plant, quadratic costs, and linear observations in N( t)  and time—space coordinates (t ,, r.), ((2, r,) .
additive Gaussian noise, the optimal control law can be (iN,,), rN,,,) of all points in ~t0, t) x R ’ .
determined by solving separately and independently a causal We assume that
stochastic estimation problem and a deterministic control
problem. In this paper, we demonstrate that a similar lim (Tp ”) ’ Pr{N([t , t + i’) X c(r , p)) = lI.N, x(o -) ; a ~ t,,}
separation holds for the exact solution to a dual control ‘~~~~

°

problem involving a linear stochastic plant, quadratic costs, . -,
and nonlinear, nongaussian observations. The observations = urn (rp ) Pr{N([ t , t + rt x c(r, p)) ~ 11A . z(a); a ~ i.}
are in the form of a point process in which each point has
both a temporal and a spatial coordinate. The state of the = A(t)e sp{— l( r— H(t)x(t)J’R ’(i)[r — H(:)x(t)fl, (1)
stochastic plant influences the intensity of the observed
time—space point process. We show that the solution to this where: c(r, p) (r., r. + p) x .  - XI,,,,, r.. + p) is a cube in
dual control problem can be realized with a separated R” ; A(t) is a known function of t; H(t) is a known, rn X a
est imator—controller in which the estimator is nonlinear, matrix-va lued function of t ;  R(t)  is a known, symmetric,
mean-square optimal, and finite-dimensional, and the control- positive-definite. m x rn matrix-valued function of t ;  and
Icr is the certainty-equivalent linear controller. Motivation (x(t); t ~ t.} is the n-dimensional state of a linear stochastic
for the dual control problem is given in terms of optical plant as defined below. Thus, the conditional probability that
position sensing and tracking. a single point will be observed in a small time—space volume

~t, 1 + r)  x c(r, p) given .~~~ and {x(o’); a ~ t,} is approximated
________-_______ to order i-p by A(t, r,x(t))rp , where we define
‘Received 5 March 1976; revised 21 July 1976. The original 

A’t .~~~~~~ 
— A ’t5 ~ — H’t ’ ‘151’R ‘ tvers ion of this paper was not presented at any IFAC meeting. — C P1 21r ,x 5

This paper was recommended for publication in revised form x Ir — H( t)x (:) J}.
by associate editor Y. Sunahara.
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Consider now the stochastic optimal control problem control law ~~, that minimizes J ( ~ J is defined by
involving the linear dynamic system (2) and the average
quadratic cost functional = — P (1)G ’(t )K(t)i(i) .  (7)

J l u I =  E {J  tu ’ (t) P (1) u ~.) + x ’( i)Q ( t ) x ( t) 7d t  
where K~~) satisfies (5), and . i ( t )  E(x(t)lA;1 satisfies

d. t ( t )  = F (t ) . i ( t)d t  + G ( t ) u . . ( t ) d t
+x ’(T)Sx(T)) . (3)

-4-
J 

M ( t f l r — H ( t ) 1 ( t ) ) N ( d t x d r ) .  ~(t ~) 1 ~, (k)
w here P. Q. and S are given matrices such that P ( t )  is
positive definite for I E (ta, TJ .  Q ( t)  is non-negative definite d~ (i) = F(t )~ (t) dt + ~(t )F ’( t)  di + V (()  V’( t )  di
for I C It ,, TJ ,  and S is non-negative definite. Attention is
restr icted to the so-called classical information pattern in — M ( t) H ( t )~ (t )N(d t x dr); ~(:,) !.. (9)
which the control input u ( t)  at each time t C tt~. T)  depends
on the observat ions A up to that time. In other words, we M ( t ) =~~(t )H ’( : f lH ( : ) ~ ( t ) H ’ ( : ) + R ( t ) J - ’ . (10)
consider control laws ~s(-, -) that map pairs of the form (A;, t)
into u ( t ) =  ~z(A , I). In view of this, the symbol u( t )  will Furthermore, x(t) is conditionally Gaussian with mean 2 ( t )
henceforth denote the control law ~ 

evaluated at (A;. 1). In and covar iance t(t) given A;.
order to emphasize that the cost functional (3) therefore Proof of Proposition I. According to Astrdm[2), the cost
depends on the choice of control law ~s we shall write J (~ I function J[gL ] can be rewritten as
instead of JLuI. We seek the control law p., that minimizes

is welt-known that when observations of x have the ~~~ = j  E {JJ u( t )  + A (:) i( t  
~~~ di + E {x~K(to)x .}

linear, additive form

d z ( t )  H ( t ) x ( t )  di + d w ( t ) ,  (4) + t r E B ( t)E ( ~ U) )  + V(t)V ’ t K , )  dt

where w is a standard Wiener process, the control law that where .1(1) = E[x(t)lA;I is the causal minimum mean
minimizes J(p.) is defined by u,(t) = — P ‘( t ) G ’(t) K ( t ) i ( t) ,  square-error est imate of x ( t )  given .k , E ( t)  is the correspond-
where 2(t) is the causal minimum mean-square-error ing conditional error covariance given A;, A(t ) =
est imate of x( t )  in terms of past data (z(a); t,~~ a <t} ,  and P ’( t )G ’(t)K( t) ,  B(t)  = A ’( t ) P ( t ) A ( t ) , f f u U, . 5 = v ’Pv for any
K ( : )  is the precomputable solution to the matrix Riccati vector v, and I r [‘I denotes trace. It is evident by virtue of the
equation non-negativity of the first term on the right in this expression

that the optimal control law p., is defined by u,(t) in (7)
dK(t ) (d t —K ( t ) F ( t ) — -  F ’( t) K ( t )  provided that ~ (t), and so E[~(t)J, is independent of the

+ K ( t ) G ( t ) P ’( t)G ’( t ) K ( t )— Q( t )  (5) choice of control law. We now demonstrate this indepen-
dence by arguing first, that for any causal control law, x (t) is

with the final condition K(T) = S. This result is usually called conditionally normal given A;. This can be verified by using
the separation theorem because it shows that the solution to (6) and paralleling the proof by induction of Proposition I in
this special version of the stochastic control problem can be [II; it is found for a control law defined by u( t )  = p.(A;. t) .
obtained by solving separately and independently a least- that x ’t) is conditionally normal given A; with a conditional
squares control problem and a least-squares estimation mean and covariance which satisfy (8)—(I0) with u.,(t)
problem. In the next section, we shall show that an analogous replaced by u(t). It follows as a special case that these
separation hotds when the observations are in the form of the assertions hold for the particular choice u(t) = u,(t). Now,
time—space point process defined above. We note in this examination of (9) shows that the only way t(t) can be

• instance that neither the plant state nor the observations are influenced by the choice of control law is through the point
• normally distributed, process

We will need the following lemma, which can be proven in
exact ly the same manner as Lemma I in 11). N’t1 — “ I N’dc x d IILemma I. Denote by p,(X~A;)  the conditional probability ‘ 

~ j, , ,~,,‘ 
r.

density of x ( t )  given A; for t � t~. Then
However, it is evident (see [31 or 141 for a proof) that { N (t ) ;

dp , ( XI X ,)=  L( P, ( XI X,) I d t  t �t,} is a point process with rate function
+ p , ( XJ X,)  f (A(t. r, X) — 

~ (t , r)I.~~’(I , r)N(dt X dr),(6) f A( t , r, x(t)) dr = (2,r)”2A(t)det’° LR(t)). (12)
where we define

• As this rate function is independent of both .W~ and
A (t , r) E (A (I, r, x (t) ) IA; I {x(o ’) ; a � t,}. it follows that f N ( t) ;  I 

~~ I,) is a Poisson
g process with a rate that is independent of the choice of

• 
. . .J A(t ,r,X)p,(XfX,)d X, - - dX.~ control. Hence, ~ (t) is independent of the control law, and

Proposition I is then established.
and where LI(’)I is the following partial—dilterential operator

4. Application to optical tracking

L ~~
— 

‘ , Communication systems that employ a narrow beam of
— — t9( + GuJ,(-),aX~ light as a carrier, star-trac king systems, and infra-red tracking

systems all have a requirement for position sensing and
+-~~~~~ ~~ ~‘~vv~ (-)I~x8x act ive tracking to maintain optical boresight in the presence

of a var iety of disturbances(5J. The requirements can oe
quite stringent with a design goal of a few microradians of
angular tracking accuracy not being uncommon. The above

3. Es timator—contro l ler solution estimator-controller solution provides a possible tool for the
The optimal control law p... that minimizes the average design of an optical tracking system under the following

quadrat ic Cost J (p. 1 when the observations are of the idealized conditions.
nonlinear. nongaussian type described above is given in the Let 1(1, r) denote the light intensity at time I C (t,, ~

) and
following proposition, position r C 1* of an optical field incident on the photoemis.

Proposition I. Under the above assumptions , the optimal sive surface of a two-dimensional photodetector on boresight 

-- ~~~~~~~~~~~~
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and w ithout any motions. Here. 9t is a subregion of R~ photuemitter , h is Planck’s constant , and v is the optical
corresponding to the photoemissive surface. We assume a frequency. Here, x is the vector obtained by adjoining x ,, and
Gauss ian intensity profile x,.and H is obtained from H,. and II , in anobvious way.

The problem of optical tracking is to follow the position of
I(t , r)  1, ( t )e a p (—( r ’R ’(t)r }. maximum light intensity at time I in terms of photoelectron

conversions observed on [1,, 1) x ~~~. Except for the finiteness
V ibration, beam steer ing due to propagation of the light beam of ~t. this problem is identical to the control problem studied
through atmospheric turbulence, and other effects cause the above when photoelectron conversions are identified as
spot of light on the photoemissive surface to move about in a points. An approximation that appears reasonable when the
random fashion. In this case , the intensity profile becomes beam is small and the tracking errors are small (i.e. fine

tracking mode rather than an acquisition mode) compared to
I(t , r, y,, (1)) ~

- l, (t) cxp (— flr — y_ (tfl’R - ‘(t)fr — y_ (t )J}. the size of the photoemissive surface is to replace ~ by ER’.
With this approximation, the optical tracking problem is

where y.,(t) models the random motions. We assume that solved by the result in Proposition I.
(y_ U); t � I,) is derived from a Gaussian diffusion satisfying

5. Conclusion
dx_ ( t )  F_(t )x ,, (t)dt + V,..(t) d v,.,(t), The solution has been given for a stochastic control

problem involving observations of a time—space pointy_ (t) = H...(t)x_ ( t) .  process. The solution is in terms of a separated estimator—
controller in which the estimator is nonlinear but closelywhere (i...(t); t � 14 is a standard Wiener process. The related to a linear, discrete-time Kalman—Sucy filter, and thepurpose of the tracking controller is to compensate for these controller is the certainty e uivalent linear controller. Therandom motions in order to maintain optical boresight. Thus, est imation performance, E(~~(t)]. and control performancein the presence of a controller to position telescopes, corresponding to this have not been given and, indeed, appearmirrors, or other pointing devices, the intensity becomes extremely difficult to evaluate exactly. We have established
lower and upper bounds on these performances which will beI(t , r , y,,(t),y,(t))
given in another paper[7].

= 1,(t)exp(— 4[r — y,.,(t )+ y~( t)J ’R ’(1) (r— y _ ( t ) +y , ( t ) J }
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ESTIMATION AND CONTROL PERF IJ RNANCE FOR SPACE-TIME POINT-PRO CESS OB SERVATIONS * .

IAN B. RHODES** and DONALD I.. SNYDER***

- ABSTRACT

Estimation and control problems are examined for a class of models
• involving a linear system , a quadratic cost , and observations tha t include

a space-time point process as well as the famil iar  “signal in add i t i ve
Wiener process” measurements.  Motivation for this class of models is given

• - in terms of position sensing and tracking for  quantum— limited optical
communication problems. These models include as special cases several
simpler ones considered previously . As in the simpler cases, the optimum
estimator is finite—dimensional and nonlinear , and the optimum controller
separates into the optimum estimator followed by the cer ta inty—equivalent
control law.

Although the optimum estimator and the optimum controller are finite—
dimensional , the corresponding expected error covariance and optimum cost
require infinite—dimensional calculations. This motivates the derivation
of easily—computed upper and lower bounds on estimator and controller
performance. The upper bounds are derived by evaluating exactly the
performance of a parametrized family of suboptimum designs; one of these
is identified as having smaller performance than any other, thus providing
a minimal upper bound within this family. The lower bounds are obtained
directly by calculations involving inequalities.
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I. INTRODUCT ION

Snyder and Fishnian (1] have considered the problem of estimating the
Gaussian state of a linear stochastic system from observations of a point
process in which each point has both a spatial and a temporal co—ordinate.
The state of the system influences the apatial component of the intensity of
the observed space—time point process: at any given time , the contours of
constant spatial intensity are ellipsoids whose common centroid depends
linearly on the current system state. The temporal component of the in-
tensity ~s assumed in [1] to be deterministic. The conditional density of
the system state at any time given the past of the observation process is
shown to be Gaussian, and the conditional mean and the conditional covariance
satisfy finite—dimensional nonlinear stochastic differential equations that
are driven by the observed space—time point process.

This model has been generalized in [2], [3) to include causal feedback
interactions between the observed point process and the state of the linear
stochastic system. Although inclusion of a feedback (control) term destroys
the Gaussian—ness of the system state process, it does not alter either the
Gaussian form of the conditional density of the state given past observa—
tions or the finite—dimensionality of the stochastic differential equations
for the conditional mean and the conditional covariance. These and related
proper ties underly the derivation of a separation theorem for a stochas tic
optimal control problem involving these system and observation processes and
a quadratic cost functional. Motivation for this stochastic control
problem is given in (2], [3] in terms of position sensing and tracking for
quantum—limited optical communication problems.

In this paper, we first generalize the model of [2], (3] in two ways.
On the one hand , the space—time point process observations are supplemented
by continuous observations of a linear function of the system state in an
additive Wiener process. The opti~uum estimator for a restricted version

• of this problem is included in the dissertation (4] and a corresponding
separation theorem is to be included in a forthcoming paper [5]. Here we
remove the requirement in [4), [5] that the supplementary observations have
the same dimensions as the spatial component of the space—time point process.
On the other hand, we allow the temporal component of the intensity of the
observed space—time point process to be Itself a random process. Under

• appropriate independence assumptions, it is shown that the joint problem of
estimating the state of the system and the temporal intensity reduces
to two separate problems, one of which is that considered in [2], [3] while

• the other is a standard estimation problem for point process observations
having no spatial component, as discussed, e.g., in [6). All properties
needed to extend the separation theorem for stochastic control problems are
retained. These two generalizations are discussed later in terms of the
optical position—sensing and tracking problem that motivated [2], [3].

Second, we examine estimation and control performance via upper and
lower bounds. While in all cases the optimum estimator and the corres-
ponding conditional error covariance satisfy finite—dimensional stochastic
di f fe ren t ia l  equations and thus can be computed on—line , both depend on the

• observed space—time point process and cannot be precomputed . In sofar  as the
conditional covariance is concerned , this contrasts with the precomput —
ability that holds for the Kalman f i l ter .  One is therefore led to consider
the expectation of the conditional covariance, both as a natural measure
of estimation performance in its own right and because it happens to be the

- 

_

i 

particular measure of estimation performance that determines the optimum
cost in the stochastic control problems considered here and in [2], [3].
However, while the expectation of the conditional covariance is determin—

3 istic and in principle can be precalculated , this calculation turns out to
be infinite—dimensional. With this in mind, we derive in Sec tions IV and V
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easily—precalculable matrix—ordering upper and lower bounds on the expected
conditional covariance. The upper bounds are obtained by determining the
exact performance of each estimator in a parametrized family of suboptlmal
estimators whose structure is similar to that of the optimum estimator but
for which the mean—square error is preconiputable. From within this class,
we identif y a particular suboptimum estimator whose mean—square error lies
at all times below that of any other in the matrix ordering sense. The
lower bound is obtained directly using differential and other inequalities.

II. FORMU LATION OF THE ESTIMATION AND CONTROL PROBLEMS

Consider the stochastic linear system

dx
~ 

= F(t )x
~

dt + G( t )u
~

dt + V( t)dv
~ 

(la)

dz
~ 

= C( t)x
~
dt + dw

~ ; z0 
= 0 (ib)

where the state x is an n—dimensional random vector, the control u • is a
k—dimensional vector whose measurability is defined later, v and w hre

• independent (normalized) t— and q—dimensional Wiener processes , the random
Initial state x0 of (la) is independent of v and w and is Gaussian with
mean x

0 
and covariance E0, and the deterministic uniformly bounded matrix—

valued time functions F(.), G(.), V(.) and C(.) have the appropriate
dimensions.

In addition to observations of the process z, there are also available
observations of a space—time point process defined on [O,°’) x Rm as follows .
Each point occurrence is identified by a temporal co—ordinate t~~ [O ,co) and
a spatial co—ordinate rERm. Let t and A be Borel sets in [O ,co) and R

m
,

respectively, and denote b~ N(t x A) the number of points occurring in t x A.
We def ine N

~ 
= N([O ,t) x R ) to be the number of points up to but not

including time t regardless of their spatial location; N is taken to be a
Poisson counting process with intensity p, where p is a stochastic process
that is independent of x0, v and w , and p is almost—surely positive . Given
that N has a jump at t (i.e. N 

— ~ 
N
t+

), the spatial location r of the point
is taken to be an m—dimensiona~ Gaussian random vector with mean I i( t )x

~ 
and

known positive definite covariance R(t), where H(s) is a known m x n—matrix
valued time function. Given N and x for s > 0, the spatial locations are
independent random vectors tha~ are I~dependent of all other random entities.
Thus the space—time point process can be thought of as having an intensity

= P
~
Y
~~
(r,x

~
) (2)

that separates into the product of a temporal component that underlies
the Poisson counting process N and a spatial component

—in/2 —
~‘ —l

• y
~~

(r ,x
~

)_ N ( H ( t )x
~
,R( t ) )= (2 ,r ) [ d et R (t ) ]  ~exp (_ %(r_ H(t )x ~ Y R  (t) ( r_ H (t )x

~
) }

that gives the density of the spatial location r of the point occurring at t.

Let (c2,F,P) be the underlying probability space. We denote by Z the --
the sub—a—algebra of F generated by the process z over the interval
and by N the sub—a--algebra generated by the space—time point process over
[O ,t). Let 8~ Z~VN~, the a—algebra generated by Z~ and W~~. It is assumed
throughout that u is B

~
..measurable and such that the solution to (la) is

yell—defined; such controls will be henceforth called adjniasible.

The estimation problem to which we address ourselves is to find the
conditional means

x .~A E(x~ IB
~
J, 

~~ 
~~E[~~j8~]
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and the corresponding conditional covariances

~~
. cov(x~ I8~~

)
~ 

F~ ~ 
cov(1I

~~
IB
~
]. (4)

The control problem we examine is to f ind the admissible control
• - 

{u
~
: t E [ O ,T ) )  that minimizes the quadratic cost functional

J[u] = Elf [u P(t)u
t 

+ x
~

Q( t)x t)dt + 7CTSX T
) (5)

where the symmetric uniformly—bounded matrix—valued time functions have the
appropriate dimensions with Q(t) and S non—negative definite and P(t)
positive difinite.

Our notation is generally as follows: lower case letters denote
vectors, upper case letters denote matrices, and script letters denote
a—algebras; v~ denotes a time—indexed random vector , in contrast to v(t)
which denotes a time—indexed deterministic vector; everything takes place
on the f ixed , finite time interval [0,T); y—N(q,Q) means that y is Gaussian
with mean q and covariance Q; the inequality P<Q between symmetric , non-
negative definite matrices means that Q—P is non—negative definite.

III. SOLUTION OF THE OPTIMAL ESTIMATION AND CONTROL PROBLEMS

Theorem 1. The conditional density of x~ given l~ is Gaussian and the
conditional mean and the conditional covariance satisfy the finite—
dimensional nonlinear stochastic differential equations:

dx
~ 

= F( t)x
~
dt + G(t)u

~
dt + EtC’(t)Idzt — C( t)x

~
dt]

+ J m~
1
t k 

— H(t);
~
]N(dt x dr); E[x0

] (6)

.dZ
~ 

= F (t )E
~

dt + ZtF’(t)dt + V (t ) V ’(t ) dt  — z

~
C’(t)C(t)E

~
dt

— M
~

H( t)Z
~

dN
~
; E0 = cov[x 0} 

- 

(7)

where

Mt = E
~
}1’(t) (H (t ) E

~R ’(t)  + R( t )] 1 (8)

If cov[ x J is positive defini te  then Z~ is almost—surely positive definite
and its ?nverse satisfies the finite—dimensional nonlinear stochastic
dif fe ren tial equa tion

= —L
~
’F(t)dt — F’(t)E

~
’dt —E~~V( t)V ’( t)E~~dt + C’(t)c(t)dt

+ 1I’(t)R
~~~~

( t ) H ( t ) d N
~~
; E

Q~~ = (cov [x
0J)
’ (9)

The conditional density of given B
~ 

coincides with the conditional
densi ty of 

~~~t 
given the a—algebra T generated by tee past of the process

• Nt, i.e. ~~~~PJ B~ ) = ft~~~
Tr), assuni~ng the control u~ is satisfies a

technical property specified in the proof and discussed immediately there—
after.

: 
— 
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Proof. The derivation of (6) — (9) we give here parallels the proofs of
Lemma 1 and Proposition 1 in [1] which establish the corresponding result
for the spec ial case where u

~ 
E 0, P = P ( t )  is deterministic , and C( t) E 0

(i.e. the observations z are not avahable). In outline, the modifications
that are made to include each of these generalizations are as follows: the
introduction of a 8

~
_measurable u causes no difficulty since u~ is deter-

ministic in all calculations which involve probability measures conditioned
on B ; the presence of nonzero C(s) merely adds an additional term that is
familiar for this “signal in Wiener process” observation model; the
generalization to random is handled by temporarily conditioning every-
thing on the a—algebra M generated by p over [0,T] and subsequently finding
that the stochastic differential equation for the conditional density of
given and 1.1 turns out to be independent of M.

Letting 
~~~ 

= exp[jy ’x
~
J, where yER~ is nonrandom , we find using the

Ito rule that

d4
~~ 

= ~~~~~~ + 4j y ’v ( t )dv
~

where

= jy’ [F(t)x
~ 

+ C( t)u
~
] —½y’V(t)V’ (t)y

Letting = BtVM and defining for the moment x~ = E(x !F
~

) and A
~

(r) =

E [A~ (r ,x ,p )IF
~
], it follows from our standing assumptions that , for any

• Borel set BtER m, dz
~ 

— C(t)x
~
dt and N(dt x B) _fgX t (r)dr dt are independent ,

independent—increment processes relative to F - We then have, analogously
to [1, Eq. 9],  that the conditional characteristic function M

~
(jy) =

E[$
~
(B
~
VM3 of x~ given ~~~ satisfies

dM~(jy) = E{+
~~~ IF~

)dt + E{4
~~

(x
~
_x
~
)’ IF~

}C’(t)[dz
~
_C(t)x

~
dt)

+ 1mB 
~

[X
~ ~~~~~~~ 

— X t (r) 1iF~
}

x A~~~(r) [N (dt x dr) — A
~

(r)dr dt]

Taking inverse Fourier transforms and simplifying then yields the following
stochastic differential equation for the conditional density of x given
F
~ 

(c f .  [1, Eq. 5]) t

dp
~
(xI8

~
VM) = LEp

~
(x IFt)]dt + p

~
(MI )[x — x

~
]’c’(t)t

~~~ 
— C( t)x

~
dt]

+ Pt t )fn t
(r ,x ,p

t
) — A

~
( r ) ]A

~~
(r)N(dt x dr) (10)

where
n

L ( q J  = — 
~~~ a [ ( F (t ) x  + C (t )u  )q ]  .I~x .
i=l t 1 1

E 3
2
[V(t)V(t)q) Iax1ax

i=l j =1 ii j

Recalling from (2) that ~~~~~~~~~~ = P t .y t (r ,x t ) ,  we see that the integrand
of the last term in (10) can be rewritten as (y,~ (r ,X) — y

~
(r) ]

~~
’(r) , where

y
~
(r) = E[y

~
(r ,x

~
)lF 1. Noting that y

~
(r) and x

~ 
can be written as inte-

grals involving p
~
(X
~
F
~
), the evolution in time of (10) does not depend in
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in any way on Thus p~~( X I B ~
VM) = p

~~( X I 8~
) ,  and (10) can be rewritten as

= L [pt(xIB ~
)]dt + P

~~( X I B t ) [X  — x
~

]C’(t)[dz
~ 

— C( t)x
~
dt]

+ p
~ ( x I B ~

) f  [y t (r ,X) — y
~

(
~
.)]; (r )N(d t  x dr) (11)

with the Gaussian distr ibution N(x 0 , E
0

) as initial condit ion.  Of course ,
E[x

~~I8~
VM] = E [x 

~~ ‘‘ so the def in i t ion  of x given in the s ta tement  of
Theorem 1 coinci~ es with  the temporary def in i t ion  introduced in the proof;
similar remarks apply to y~ .

The proof that p
~

(X I6~
) is Gaussian with mean x~ given by (6) and

covariance given by (7) or (9) then follows from a straightforward
inductive proof similar to that of Proposition 1 in [1]: in the intervals
between point occurrences of the space—time point process, p (XIB

~
) evolves

according to the first two terms on the right side of (11); this is simply
• Kushner’s equation for linear system (la) with linear observations (lb),

and is known to yield a conditional density p (XjB
~
) that is Gaussian with

mean x and covariance E
~ 

satisfying (6) and ~7) or (9) , respectively ,
with t~e last term on the right side of each deleted . At those instants
when a point occurs in the space—time point process, a jump occurs in
PtOdIBt) because of the last term on the right side of (11). However, it
turns out that p (XIB

~
) remains Gaussian af ter  this j ump because it was

Gaussian before the jump and because the spatial intensity y
~

(r ,X) is
Gaussian. As in [1), calculation of the last term on the right side of (11)
shows that the jump in the conditional mean is given by the last term on
the right side of (6), the jump in conditional covariance by the last term
on the right side of (7), and the jump in the inverse of the conditional
covariance by the last term on the right side of (9).

Finally, to prove that f
~
[uI8 I = f [PIT

~
], let x~ sat isfy  dx = 

*
F(t)x dt + C(t)u

~
dt; x0 = E [x

0
]. ~hen x~ A x~ — x~ and z~ 4. z~ — C(t)x

~satisfy

dx~ 
= F( t)x

t
dt + V(t)dv

~
; 

~~~ 
= C(t);

~
dt + dw

~ 
(l2a)

with - N (O ,E
0

) and z
o
=O, while r ~ r_Hx* has spatial intensity

- N(H (t)
~~

,R(t)). (12b)

Let be the a—algebra generated by z over [0,t) and let N be that
generated by the space—time process that is obtained from t~e original one
by leaving N. unchanged an&.reDlacing r by r_Hx*. Then, under the
assunrption tha t is also Z~VN ~

_measurable , an argument th~ t parallels
the proof of Lemma 1 in [7] shows that  Z Vt’! =Z vN~. This assumption is
discussed shortly. Thus, it is equiva1e~t to ~rove that f~

[pIZ
~

Vt
~
J ] f

~ E p I T ~I .
Now, because 

~ 
and N are independent of x0, v and w, so also are t~ ey

independent of x and z; thus, the joint density of p and the event that
t j , t 2 , .  ..  , t 1, are the occurrence times of N over [O,t) satisfies

= f[p,t1,. - ,tk]~ 
Equivalently , —

- f [p IT
~vZ~If Et i,.. ,tk lZ t ] = f [pITt]f[tl,..,tk]

Because N and ; are independent , f [t 1,.. , t k l Z t ] = f ( t l, . .t k ] and therefore

f [P !T ~
VZ

~
] = f [

~~~~
I T

~~~
1 (12c)

~ 1so because the spatial components r1, r2 , .  - 
~~N are independent of p given

X~ and we have 
- 

t 
-• f[p,r1,. ..,rN IT~

VX
~
] = f EP IT tVX

~
]f [ri,. - ,rN I~~”~~

]
- - t t

1.
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where is the a—algebra generated by ~ over [0~ t ) .  Replac ing Z~ by X
in the argument leading to (12c) , we have f [ P I T ~

VX
~

) = f [pIT ) for  the drst
~~~~ on the r ight  side, while the l e f t  side can be written

• T~VX ] f ( rl,...,rN ~T~VX~1. Cancelling the second te rm on each side , ~e~ t
are ‘eft with t

(f [PINtVX
~

]
~

)f [PI;i,...,;N , T
tV

~~~
] =

which in combination with (12c) gives the required result.

• Remark 1. The technical assumption that u is N VZ
~
_measurable which is

required for the proof that f~ [~ I6~] = f [~~T~] hso arises as a sufficient
condition in [7). A generalization of [~ , Theorem 3] shows that this will
be the case if u is generated from the past of z, 1. and r or ~ , N and ~
using a suitably smooth control law. Specifically , it will be so if p is
generated as a Llpschitz function of the state of a suitably smooth finite—
dimensional system; included here, in particular , is a control u

~ 
so

generated from of (6), which is of interest because this is tnè case
for the optimum control found later.

R~inark 2. The stochastic differential equations for and given in
Theorem 1 admit an intuitively simple interpretation. In the intervals
between point occurrences of the space—time process, the problem reduces
to one of estimating x~ from th~ observations z; the non—occurrence of
further points in these intervals provides information about but none
about x

~ 
because of the separability (2) of A and our standing assumptions

concerning independence. Thus, during these intervals we are left with the
standard Kalman filtering problem of estimating the state of the linear
system (]a) from the observations (ib); if x~ is conditionally Gaussian at
the beginning of each such interval, it remains so throughout with mean
and covariance which evolve according to (6) end (8) or (9) with the last
term deleted in each. (This, or course, is also reflected in the equation
(11) for the conditional density reducing to K --~hner ’s equation during
these intervals.) We now observe that x~ is, in fact, conditionally
Gaussian at the beginning of each such interval because it is at t 0  and
because it remains Gaussian after each point occurrence: indeed , at each
occurrence (t ,r) of the space—time point process the spatial observation r
is an independent observation on a Gaussian random variable with mean Hxt
and covariance R; this is equivalent to a discrete observation of the form

r H( t )x
~~+~~

where ~ - N (O ,R) is independent of x and z. Thus , from standard estima-
tion theory for Gaussian random variables [e.g. 10], the conditional density
remains Gaussian and the change in conditional mean and covariance of
after accounting for this new observation are

- ‘  d~ t a 
— = E~ H’ [}flH ’ + R] 1(r — }L~~) = M

~
(r — Hx

~
)

dE A E — = -•E H ’ [H~H’ + R } 1H~ = —M H~• 

aç
1
A Z

—1 
- = }I ’R~~ H

Of course , this term is to be included only when an occurrence takes place
• at (t , r ) ;  mult i p lying each of these expressions by N(dt  x dr) and inte—

grating over Rm takes care of this , and constitues the last term in (6) , (7)
and (9),  respectively.
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wasO e (x~8 VM) does not depend on 

—

N, and thus x~ and i,i are conditionally indepen~ent given 8t~ 
in particular ,

x~ and are conditionally independent given B , and thus the joint
problem of estimating x~ and given 6~ separates into two separate
problems of estimating x~ and estimating

f (x
~

,IJ
~

IB
~
) = f (x

~~
B
~

)f( 1J t I B~
)

Fur thermore, the final part of Theorem 1 establishes that f(ut fB t)=f(lI~
IT
~
)

depends only on the Poisson counting process N and does not depend on
z or the spatial locations of the points. This latter estimation problem
with various models for L~ is examined , for example, in [6].

Theorem 2. The unique admissible control u that minimizes the cost (5)
is g iven by

u = —P~~(t)C’ (t)K(t)~~ 
J~ —L(t)~~ (13)

where = E [x~ IB I satisfies the finite—dimensional nonlinear stochastic
differential equation (6) with E given by (7), and the n x n symmetric
non—negative definite matrix K(t~ satisfies the Riccati equation

k(t) = —K(t)F(t) — F’(t)K(t) + K(t)G(t)P 1(t)G’(t)K(t) — Q(t); K(T)=S

(14)
The corresponding minimum value of J is

E{x~K(O)x
0
} + 
f
Ttr (KCP~~Gt K E{E

~
} + KVV’]dt , (15)

where tr denotes trace.

Proof. According to Astroui [8], J(u] can be rewritten as

J[u] = 
f
T E{ I Iut + L( t)x~ II 2pt~~}dt + [Right •side of (15)]
0

where = EEX
~~
8
t1 and Hy1f

2 
= y’Py. The first term on the right side is

non—negative, and zero if and ~niy if u~ = —L(t)x . Thus (13) gives the
unique optimum control provided the right side ot (15) is invariant under
changes in u. The only way for (15) to be u—dependent is through EfZt},
and (7) shows that the only possibility for E

t 
to vary with u is via Nt

.
But N is a Poisson counting process with rate ii~~, and both N and are
specitied at the outset as mappings on (cz,F,P) without any reterence to u.
Hence E and, therefore, E {E

~
} and the right side of (15] are invariant

under changes in u, and the proof is complete.

Remark 4. Theorem 2 shows that the solution to this stochastic control
problem can be realized with a spearated estimator—controller in which the
estimator is nonlinear, mean—square optimal, and finite—dimensional and
the controller is the certainty—equivalent linear control law (i.e. the

• optimum linear control law for the deterministic problem in which x
0
E(x

0
],

and x~ is known exactly). This result, therefore, includes
as special eases the familiar linear—quadratic—Gaussian “Separation Theorem”
(where the space—time point process observations are absent) [e.g. 8] and
the similar results in [1] — [5] for restricted versions of the space—time
point process observations.

We observe that I , the conditional covariance of x~ given B~
, is not

precomputable because the last term on the right side of (7) depends on the
particular realization of the counting process N

t. One is, therefore , led
to consider E(t) 4, E [E

~
], both as a natural measure of estimation perfor-

mance in its own right and as the particular measure of estimation perfor—
inance that determines the optimum control cost (15). However, while E(t)

I
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~~~~~~ 1 is deterministic and in principle can be precalculated , this calculation is
infinite—dimensional. One way of seeing this Is to observe that an attempt
to calculate E ( t )  by taking expectations of both sides of (7) is compli-
cated by the last term on the right side , which requires the calculation of
E {EIt ’ [HEH ’ + R 1 R E ) .  While a d i f ferent ia l  equation for this can be written
down , it, in turn, requires expectations of additional nonlinear func t ions
of 

~~~‘ 
and so on ad infinitum in a mushrooming requirement for additional

terms that is familiar from other nonlinear filtering situations. Accord-
ingly, we turn our attention to deriving easily—computed upper and lower
bounds on Z(t). These estimation bounds then directly imply upper and
lower bounds on the optimum control performance (15). F

IV. SUBOPTIMUN ESTIMATORS AND UPPER BOUNDS

Our approach to finding easily—computed upper bounds on E[E
~

J is to
examine a parametrized family of suboptimum estimators whose mean-square
performance can easily be calculated exactly. For each suboptimum estimator
the corresponding mean square—error is then trivially a matrix—ordering
upper bound on E[~~ ]. Furthermore, we show that there exists a suboptimum
estimator In this family whose mean—square performance is at all times
smaller than tha t of any other , thus providing a minimal upper bound within
this class.

Motivated by the form of the optimum estimator (6), we consider the
family of suboptimum estimators

dx~ F(t)x~dt + G(t)u~
dt + N(t)(dz

~ 
— C(t)x dtl

+f M(t) [r — H(t)x ]N(dt x dr) (16)

parametrized by the deterministic uniformly—bounded n x in— and n x q—matr ix
valued time functions N(.) and M(.). This family does not include the
optimum estimator (6) in which M

t 
Is a random matrix which depends on N

through Z. Apart from the requirement that M( ), N(.) be deterministic , the
sub—optimum estimator (16) and the optimum estimator (6) share the same
structure. The nonrandomness of H enables us to write down an ordinary
n x rn—matrix differential equation for the mean square error of the sub—
optimum estimator (16). Indeed, subtracting (16) from (la), it follows
directly by straightforward calculation that

5(t) 
~ 

E [(x
~ 

— x~)(x~ 
— x~) ’ ]  (17)

satisfies the linear matrix differential equation

~~= ( F — Nc)S + S(F — Nc) ’ + VV’ + NN ’
- + p (M[HSH ’ + RIM — MHS — SH’M’}; S(O) cov[x01 (18)

where we have suppressed the common argument t of all entries , and where
E[p

~
I. Because all coefficients in (18) are uniformly bounded , a

unique solution to (.18) exists for all t~~ [O ,o~). We thus have proved:
Theorem 3. For any uniformly bounded M ( )  and N ( ) ,  the mean—square
performance (17) of the estimator ~(l6) satisfies the linear matrix dif fer-
ential equation (18) , and this is a matrix ordering upper bound on E(E

tI,H i.e. for all t G [ 0,~~) ,

E(t) ELE t) < S(t), (19)

in the sense that S(t) — ~~(t) is non—negative definite.
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We now show that there exists a choice of M() and N(•) in (16) for
which the corresponding mean—square performance given by (18) lies at all
times below that for any other choice.

Theorem 4. Let S*(.), M*(.) and N*(.) satisfy

S* = FS* + S*F’ + VV’ — S*C’CS* — PS*H’(HS*H ’ + RJ HS*; S*(0)=cov (x
01

1 (20)
= S*H ’ (ILS*H ’ + R] , N~ = S*C’ (21)

where the common argument t of all entries in (20) and (21) is suppressed.
Let S(.) be the solution to (18) for some arbitrary M( .)  and N ( ). Then ,
for all t E [O ,co) ,

E [E t ] < S*(t) < S(t) (22)

and S*(t) = E{ (x — x~) (xt — x~) ’ } is the mean—square performance of the
bound—minimal estimator

dx~ = Fx~dt + Cu
~

dt + S*C ? [dz t 
— Cx~dt ]

+ S*H’[HS*H ’ + R1_ lf
m (r — Hx~ ]N (d t x dr) • (2 3)

Proof. Completing the square on the right side of (18) yields

= FS + SF ’ + VV ’ — SC’CS — ~iSH ’ [HSH’ + R1’HS + (N — SC ’)(N — SC ’) ’

+ ~~[M — SH’ (HsH ’ + R)~~ ] (HsH ’ + R) [N — SH’ (HSH ’ +

S(O) = cov[x O] (24)

For given S( t ) ,  the right side of (23) is clearly minimized by making the
last two non—negative definite terms 0, in which case the right side of (23)
reduces to that of (20) while the minimizing choices of M(t )  and N(t)  are
given by (21) . It remains to show that this instantaneous ordering on the

• time derivative produces a permanent ordering of the solutions over [O ,T],
I.e. that the solution to (20) lies at all times below tha t of (23) in the
matrix ordering. This is readily accomplished by using Lemma 1 in (9) ,
after  appropriate modifications to reflect that initial conditions , rather
than final conditions , are of interest here. This means that in [9, Lemma 1]
the lef t sides of (*) and (**) should be replaced by +X and +Y , respectively,

• and all time orderings O<t<scT replaced by 0csct.cl. Then, letting (24) play
the role of (*) and (20) the role of (**) and checking conditions 1) to 4)
of (9, Lemma 1] we have: 1) and 2) are trivial under our standing assump-
tions; 3) holds because , by a subsidiary application of [9 , Lemma], the
solution to (20) lies at all t imes above tha t of the Riccati equation

F = Fr + FF ’ + VV ’ — r[c ’c + pH ’R 1H] ; r(0) = cov(x
0

] (25)
for which 3) is known to hold; finally, 4) holds for (18) and therefore
(24) because if S1(t) and S~,(t) are the respective solutions to (18) with
initial conditions S1(O) ana S2 (O) , S1(O) > S

2
(O) , then S

1
( t) > S

2
(t) for

all t , since

— = (F — NC — iMHXS1 
— S

2
) + (S1 

— s2)(F — NC — NH) ’

- + ffl(S1 — S
2

)H ’M; (S
1 

— S2
) (O) 0

and the solution to this lies at all times above the (identically zero)
solution to

em

j 47

_ _ _  - . 

~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~

____ 
•______________________________________________________ -



F— 
~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -•- •- —.-— —,. --- .—— ——-•-----———-—-——— -. , • — -—-——-—- • . —  -——— • -•——-

‘~~= ( F — NC - p M u ) Y + Y ( F — NC -~~ MH) ’

by a fur ther  subsidiary application of (9, Lemma 1].

Remark 5. The evaluation of the performance of the suboptiinum estimator (16)
is a second—order analysis that uses only the means and covariances of the
various random variables and processes and makes no use of the Gaussian—ness
of x0, v, v and r. Thus the results of this section remain valid if v and
w are replaced by normalized uncorrelated—increment processes that are
uncorrelated with_each other and with x

0 
and r , with x

0 
having any distri—

bution with mean x~ .and covariance E0 
and the spatial intensity

being any distribution with mean Hx and ~ovariance R such that r is
uncorrelated with x0. The bound—minimal estimator (23) can then be viewed
as the best estimator in the family (16) . These estimators are bilinear
because of the product r .N(d t  x dr) in the last term , though they might
also be considered to be in a sense linear , to the extent that N (dt x dr)
merely signals the arrival of a spatial observation r which , as with z ,
is utilized linearly in the production of x.

V. ESTIMATION LOWER BOUNDS AND CONTROL BOUNDS

Theorem 5. Let S~ be the solution to (25). Then, for all t>0, S
~
(t) is a

matrix—ordering lower bound on E[E
~

], i.e.
S
~

(t) < E [E~] - 
(26)

The corresponding lower bound on the optimum control cos t is -

J[u °] > E(x~K(0)x 0
} +f

Ttr[KGP
_lG? KS* + KVV’ ]dt  (27)

Proof: We have from (9) than E 1 A E [E
~
’] satisfies

= — E 1 F — F’ S
1 

— E [E~~ VV ’E~~ ] + pH’R 1H; E (0).(cov[x
0

])~~

= — E~~ F — F’ E~~ — f1 VV’5 1 
+ pH’R ’H — A •(28)

where
A = E(E lVV~~ 

1~ — vv’ — cov[E~~V] > 0 (29)

It then follows from (9, Lemma 1] that E~~ lies at all times below the
solution to

E — EF — F’ E — EWE +~~H ’R~~H; E(O) = (cov(x 0))~~ (30)
Thus

E( t) > E 1
(t) 

~ 
E[E~~] > (EE

~
) ’, 

. 

(31)

the last inequality being a matrix version of Jensen’s inequality proved
in the Appendix. Taking inverses of (31) and noting t hat if S~ is thesolution to (25) then S 1 Is the solution to (30), we have the desired
result (26). The control bound (27) then follows by combining (15) and (26).

We remark in passing that (25) gives the covariance of the optimum
estimator when the space time point process observations are replaced by
continuous observations of the form

dy
~ 

= Hx~
dt + (

~~~~ RY~
dn

~
where n~ is a Wiener process independent of x0, v and w.
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• Rem Comparing (20) for the minimal upper bound with (25) for the
lower bound , we see tha t these two bounds will be close to each other and

1
thus to EEE tI 

if HS*H’ is small compared with R (or , equivalently, if H’R H
is small compared with S*). Both bounds will also be_close to each other
and to the optimum performance if the mean intensity ii is small. These
are discussed later in terms of our motivating example.

Once we have deduced upper and lower bounds on the estimation perfor-
mance E[E ], corresponding bounds on the optimum control performance follow
directly ~y substitution of these bounds for E[E~ I in (15):

Theorem 6. Upper and lover bounds on the optimum control performance J[u°)
of (1.5) are

E{x’K(O)x
0
} + fTtr [KGP 1G’PS~ + KVV ’ ]dt

0 o

< J[u°] c E{x~K(O )x
0
} + fTtr[KGP~~GTKS* + KVV ’]dt

0

where S~ is the solution to (25) and S* is the solution to (20).

VI. DISCUSSION

The above estimator—controller solution extends results in [2] and [3]
to include a more general form of observation. Just as with the observation
model in f 2] and [3], this more general observation is motivated by communi-
cation systems that employ a narrow beam of light as a carrier, by star
tracking systems, and by infra—red tracking systems, all of which have a
requirement for position sensing and active tracking to m aintain optical

• alignment in the presence of a variety of disturbances. We shall indicate
how the models of [2, Sec. 4] and [3, Sec. 4] are usefully extended by this
more general observation. The estimator—controller solution of Theorem 2
provides a possible tool for the design of an optical tracking system under
the conditions indicated below, and the performance bounds of Sections IV
and V provide the means for predicting the performance of such designs.

+ 
- Let I(t,~) denote the light intensity at time tE[O,~ ) and position

rER of an optical -field incident on the photoemissive surface of a two—
dimensional photodetector on boresight and without any motions. Here, R is
a subregion of R2 corresponding to the photoemissive surface. We assume a
Gaussian intensity—profile

I(t,~) = I0(t)exp(—~~~ R~~ (t)i~}.

Vibration, beam steering due to propagation of the light beam through atmos-
pheric turbulence, and other effects cause the spot of light on the photo—
emissive surface to move about in a random fashion and to fluctuate randomly
in optical intensity. In this case, the intensity prof ile becomes

I(t,~~, y ( t)) = 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

where y (t) models the random motions, and 1
0
(t) is a random process (e.g.,

a logno~mal process) that models random intensity fluctuations. We assume
that {y (t);t>O) is derived from a Gaussian d~f fusion satisfying

dXm
(t) = F

m(t)Xm
(t)d t + V

m
(t)dV

m
(t)

~ Ym(t) 
= H

m
(t)x

m
(t)

~

where {v (t);t>O } is a standard Wiener process. The fading process (1
0

(t) ;
t>O} is ~ssumed to be independen t of motion processes but is otherwise
arbitrary. The purpose of the tracking controller is to compensate for these
random motions and random fading In order to maintain optical alignment.
Thus, in the presence of a controller to position telescopes, mirrors, or
other pointing devices, the intensity becomes
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I(t
~~~Ym

(t)
~Yp

(t)) 
-

1
0
(t)exp(_½ [ _y

m
(t) + Yp(t)I~~~

1(t)E1
~ Ym

(t
•
) +

where y (t) — Y~~t) is the tracking error. Ideally, this error should be
zero, b~ t this cannot be accomplished for two reasons: the position error
y~(t) is unknown and must be estimated from data available at the photo—
detector output , and the tracking devices will have some inertia so that

cannot be tracked instantaneously even if it were known. We model the
tracking devices by a linear stochastic plant

dx(t) = F (t)x (t)dt + G (t)u(t)dt + V (t)dv (t)

=

• where u(t) is the input to the tracking devices from the tracking controller,
and {v (t);t>O} is a standard Wiener process modeling local disturbances
such a~ those due to vibration.

- 
Photoelectron conversions take place in the photoemissive surface at

a rate proportional to the Incident light intenst iy [3]. Thus, the photo-
• electron conversion rate has the form of k

~
(r ,x ,p~ ) for (t,r)E [O ,o~) x R

with an appropriately scaled version of I (ti, and x is the vector
obtained by adjoining x and x , and H is ob~ained from H and H in an
obvious way, 15 P rn P

The problem of optical tracking is to follow the position of maximum
• light intensity at time t in terms of both photoelectron conversions observed

on [0,t) x R and observations of the plant state x obtained with sensors
located at the tracking devices . These latter observations are modeled
according to (lb) so as to account for sensor noise. Excep t for the finite-
ness of R, this problem is identical to control problem studied above when

• photoelectron conversions are identified as space— t ime points. An approxi-
mation tha t appears reasonable when the beam is small and the tracking
errors are small (i.e. fine tracking mode rather than an acquisition mode)
compared to the size of the photoemissive surface is to replace R by R2.
With this approximation, the optical tracking problem is solved by the
result in Theorem 2.

It is important to note that according to Remark 3 and Theorem 2 , the
• design of the tracking controller does not depend in any way upon the source

or nature of randomness in I (t). Thus, for example, the same design is
obtained If 10(t) is random ~ue to atmospheric turbulence or modulation by
an information—bearing signal or a combination of these.

The upper and lower bounds of Sections IV and V provide a measure of
the performance for the optical position—sensing and tracking system derived
from Theorem 2. From Remark 6, the upper and lower bounds merge when HS*H’
Is small compared to the beam spread as measured by R. It is evident that
the estimation and control lower bounds derived as above for observations
of each photoelectron conversion are also lower bounds for both optimal and
suboptimal trackers that employ observations obtained by temporal or spatial
averaging as would be obtained using photon counting and a quadrant
photomultiplier.

We mention also that A. Segall in [11] has applied the models of [1]
and [3] to study computer communication networks. The upper and lower
bounds on performance that we have derived can be applied in this context
as well.
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• - APPENDIX -
Lemma. Let V

1 
and V

2 
be positive definite matrices, and let yE[O,l]. Then

[yW
1 
+ (l—y)W2

] < yW
1
1 
+ (1—y)W ’ (Al)

i.e. W’~ is convex in a matrix sense. Furthermore, we have

E[W 1
J > (E[W])~~

• (c.f. Jensen’s inequality)

Proof. See [12].
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• Estimation and Control Performance for
Space-Time Point-Process Observations

IAN B. RHODES, MEMBER, IEEE, AND DONALD L. SNYDER , MEMBER, IEEE

Abs:ract—Esthnatloo and control problems are examined for a class of point process and the state of the linear stochastic system.
models involving a linear system, a quadratic coat, and obserratlans th at Although inclusion of a feedback (control) term destroy s
Include a space-time point process as well as the familiar “signal In
addItive Wiener process” measurements. Motivation ~~ ~~ 

the Gaussianness of the system state process, it does not
models is given in terms of position sensing and trac&Jng to~ q,~autum. alter either the Gaussian form of the conditional density of
lImIted optical communication problems. These models include as special the state given past observations or the finite-dimensional-
cases several simpler ones considered previously. As in the simpler cases, ity of the stochastic differential equations for the condi-
the optimum estimator Is finite-dimensional and nonlinear, and ~~ ~Øl tional mean and the conditional covariance. These and
mum controller separates Into the optImum estimator followed by the
certaInty-equIvalent control law related properties underl y the derivation of a separation

Although the optimum estimator and the optimum controller ~~ ~~~ 
theorem for a stochastic optimal control problem involv-

dimensional, the correspondIng expected error covarlance and optimum ing these system and observation pr - :esses and a
cost require infinlte-dlmensiosial calculatIons. ThIs motivates the derlva- quadratic cost functional. Motivation for this stochastic
tion of easily-computed upper and lower bounds on estimator and COO- control problem is given in [2] and [3] in terms of position
trolls, performance. The upper bounds are derived by evaluating exactly
the performance of a parametrized family of suboptimum designs; one of sensing and tracking for quantum-limited optical corn-
these Is Identified as having smaller performance th an any ,,~~~~, i~~~ 

munication problems.
providing a minimal upper hound within this family. The lower bounds In this paper, we first generalize the model of [21 and [3]
obtained directly by calculations Involving InequalitIes. in two ways. On the one hand , the space-time point-pro-

cess observations are supplemented by continuous ob-
servations of a linear function of the system state in anI. INTRODUCTION add itive Wiener process. The optimum estimator for a

S NYDER and Fishman [I]  have considered the prob- restricted version of this problem is included in the dis-
lem of estimating the Gaussian state of a linear sertation of Vaca [4) and a corresponding separation theo-

stochastic system from observations of a point process in rem is to be included in a forthcom in e paper [5]. Here we
which each point has both a spatial and a temporal remove the requirement in [4] and [5] that the supplemen-
coordinate. The state of the system influences the spatial tary observations have the same dimensions as the spatial
component of the intensity of the observed space-time component of the space-time point process. On the other
point process : at any given time, the contours of constant hand , we allow the temporal component of the intensity of
spatial intensity are elli psoids whose common centroid the observed space-time point process to be itself a ran-
depends linearly on the current system state. The temporal dom process. Under appropriate independ~nce assu mp-
component of the intensity is assumed in [I )  to be de- tions , it is shown that the Joint problem of estimating the
terministic. The conditional density of the system state a~ 

state of the system and the temporal intensity reduces to
any time given the past of the observation process is two separate problems , one of which is that considered in
shown to be Gaussian. and the conditional mean and the (2] and [3] while the other is a standard estimation prob-
conditiona l covariance satisfy finite-dimensional nonlin- lem for point-process observations having no spatial corn-
ear stochastic differential equations that  are driven by the ponent , as discussed, e.g., in [61. All properties needed to
observed space-time point process. extend the separation theorem for stochastic control prob-

This model has been generalized in [2] and [31 to lems are retained. These two generalizations are discussed
include causal feedback interactions between the observed later in terms of the optical position-sensing and tracking

problem that motivated [2] and [3].
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• covariance, both as a natural measure of estimation per- A,(r,x,,p.,)— ,s~’y,(r,x,) (2)
formance in its own right and because it happens to be the
particular measure of estimation performance that de-
termines the optimum cost in the stochastic control prob- that separates into the product of a temporal component
lems considered here and in [2] and [3). However, while ~ that underlies the Poisson counting process N and a
the expectation of the conditional covariance is determin- spatial component

istic and in principle can be precalculated, this calculation
turns out to be infinite-dimensional. With this in mind, we ‘it (r, x,)— N (H (ox ,, R (:)) — (2,r ) m/2[ det R (i)] 

— 1/2

derive in Sections IV and V easily-precalculable matrix-
ordering upper and lower bounds on the expected condi- . exp t—~ (r — H ( i) x tYR~~~( t) ( r — H ( :) x , ))  (3)
tional covariance. The upper bounds are obtained by
determining the exact performance of each estimator in a that gives the density of the spatial location r of the point
parametrized family of suboptimal estimators whose occurring at t.
structure is similar to that of the optimum estimator but Let (~Z, ~ , P)  be the underlying probability space. We
for which the mean-square error is precomputable. From denote by ~~, the sub-a-algebra of ~ generated by the
within this class, we identify a particular suboptimum process z over the interval 10,1), and by ‘31., the sub-a-alge-
estimator whose mean-square error lies at all times below bra generated by the space-time point process over 10, t).
that of any other in the matrix ordering sense. The lower Let 

~~ , — ~,V’3t1 be the smallest a-algebra containing ~~,

bound is obtained directly using differential and other and ‘31.,. It is assumed throughout tha t Ut is ‘~ ,-measur-
inequalities, able and such that the solution to (L) is well-defined ;

such controls will henceforth be called admissible.
The estimation problem to which we address ourselves

II. FORMULATION OF THE ESTIMATION AND is to find the conditional means
Co~ rRoL PROBLEMS

Consider the stochastic linear system X1 E {x,I~ i,J, g~, ~ E[ p~’~ ,] (4)

dx, = F ( t)x , di + G (t)u , di + V (i) dv, (Ia) and the corresponding conditional covariances

dz,= C(i)x ,di +dw,, z0 =0 (Ib) 
~ cov[x ,~~,}, r, £ cov [ ~ç]’~,].

where the state x, is an n-dimensional random vector, the
control u, is a k-dimensional vector whose measurability is The control problem we examine is to find the admissi-
defined later, v and w are independent (normalized) 1- and ble control (ii, :1 E [0, T] }  that minimizes the quadratic
q-dimensional Wiener processes, the random initial state cost functional
x0 of (Ia) is independent of v and w and is Gaussian with

— I T
formly bounded matrix-valued time functions F ( - ) ,  G ( -) ,  o } ~mean x0 and covariance , and the deterministic uni- 4 ,~

] — E 
~, 

f ~~ ( i) u ~ + x,~ Q (i)x ,] di + x .Sx~
V( -) ,  and C (.) have the appropriate dimensions.

- I In addition to observations of the process z, there are where the symmetric uniformly-bounded matrix-valued
also available observations of a space-time point process time functions have the appropriate dimensions with Q (1)

defined on [0, oo) X Rm as follows. Each point occurrence and S nonnegative definite and P (i) positive definite.
is identified by a temporal coordinate t ElO, no) and a Our notation is generally as follows: lower case italic
spatial coordinate r E R” Let i~ and A be Borel sets in letters denote vectors, upper case italic letters denote
[0, no) and R m, respectively, and denote by N (r  X A )  the matrices, and script letters denote a-algebras; v, denotes a
number of points occurring in rX A. We define N, — time-indexed random vector , in contrast to v(t) which
N ([ 0 ,e)x R m)  to be the number of points up to but not denotes a time-indexed deterministic vector; everything
including time t regardless of their spatial location; N. is takes place on the fixed, finite ime interval 10, T] ; y —..
taken to be a doubly stochastic Poisson counting process N ( q , Q )  means that y is Gaussi, ’n with mean q and
with intensity ~t , with ~t and N stochastic processes that covariance Q; the inequality P ~ Q between symmetric,
are independent of x0, v, and w, and gs, is almost-surely nonnegative definite matrices means that Q — P is non-
positive. Given that N has a jump at i (i.e., N,_ * N,~), 

negative definite .
the spatial location r of the point is taken to be an
rn-dimensional Gaussian random vector with mean H (t)x , III. SOLUTION OF THE OPTIMAL ESTIMATION AND
and know n positive definite covariance R (i), where H (-)  C0Nm0L PROBLEMS
is a known mX n-matrix valued time function. Given N,

• and x, for s >0, the spatial locations are independent Theorem 1: The conditional density of x, given 
~~ , 

is
random vectors that are independent of all other random Gaussian and the conditional mean and the conditional
entities. Thus, the space-time point process can be thought covariance satisfy the finite-dimensional nonlinear
of as having an intensity stochastic differential equations

- ~~~~~~~~~~~~~~~~~~~~~~ —— —~ ~~~ ~~~~~~~~~~~ ~~~~~~~~ •-‘ ~~~~~~~~~~~~~~~~~ -~~~~-~~ - ~~~ , - - j
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di,—F(t)i,di+G(i)u,dt+I,C’(i)[dz,—-C (i)~,d ]  satisfies

+ f M,[r— H (i).~,}N (di x dr), x~— E{xo} ~~ 
dM,(jy)= E{~,i,&,I~ ,}di + E(4,(x, — i,YI~ }

. C ’(i )[ dz — C( i) ~ d i]d~ ,= F ( t) ~ ,dc+~~,F ’( t) /~ 4- V( t)V ’( t)d t
— I ,C ’(i)C ( t) ~ ,di — M ,H ( i) I ,dN,, Z,~— cov [ x 0] 

+ f
~
_ {~ , [A, (r ,x,,1i,) —A ,(r) } I~~}

(7) .)c’( r ) [ N ( d i x dr) —~~( r) dr dc ]
where

I Taking inverse Fourier transforms and simplifying then
M, — ~~, H ‘( t~i [ H  (t )~~, H ‘(1) + R (1) ] . (8) yields the following stochastic differential equation for the

- . - . - . conditional density of x, given ~ (ci. [I , eq. (5))):If cov [x 0] is positive definite then I, is almost-surely
positive definite and its inverse satisfies the finite-dimen- 

~~ (Xi ~) = e [~, (X 16J)] di +p, (XI ~ ) [ x —sional nonlinear stochastic differential equation
. C ’( i) [ dz,— C(t)~ di]~~~~~~~~~~~~~~~~~~~~~~~~~

— ~~ ‘V (t)  V’(t) I ~ ‘di + C ’( t)C ( i)d :  +p , (X] ~~) . 
fR-~~~

’
~~~~~~~~~ 

_A, (r ) ]

+H ’( t) R ’ ( t) H ( z) d N ,, X~ ’=(cov [x0])~~. (9) 
.ç ’( r) N ( d i X dr) (10)

The conditional density of p~, given ‘~~ coincides with where
the conditional density of ~i, given the a-algebra 

~~, 
gener- n

ated by the past of the tempora l process N,, i.e.,f,Qtl~ 1) e [q]= — ~ a[(F (i)x÷G (i)u,)q] ./ax,
=f, (t 1~~,). assuming the control u, satisfies a technical ‘~~~~

• property specified in the proof and discussed immediately i ~~ ~ ~z ~ r f -  1 / ~ V ~l Vthereafter. + ~~ U I (~
j  (‘,qj ~,,

Proof - The derivation of (6)—(9) we give here parallels — I i — I

the proofs of [I , lemma 1 and proposition I] which estab- Recalling from (2) that A, (r ,x,,~z,)= 1s, ’i,( r ,x,) , we see that
lish the conesponding result for the special case where the integrand of the last term in (10) can be rewritten as
u, mO, p~ = ~i(i) is deterministic , and C(i)mO (i.e., the [y , ( r , X)  — f , ( r ) ] ~[ ‘( r), where ~,( r) = E[y , ( r , x,)I~ ,J .
observations z are not available). In outline, the modifica- Noting that ‘~, (r) and 1, can be written as integrals involv-
tions that are made to include each of these generaliza- ing p , (Xj ~~) , the evolution in time of (10) does not depend
tions are as follows: the introduction of a ~~ , -measurable in any way on p,. Furthermore, p~, (X J% — N (X0, ~~~~

)) is
u, causes no difficulty since u, is deterministic in all independent of ~a by assumption. Thus, p,(X)~~,VOlt)=
calculations which involve probability measures condi- p , (X I ~P ,), and (10) can be rewritten as

• 
- tioned on ; the presence of nonzero C ( -) merely adds

an additional term that is familiar for this “signal in 4’, (X I ~,) = E [p ,  (X l’~,)] di +p (X Is,) [ X
Wiener process” observation model; the generalization to . ~ ~(~) [ dz, — C (i)1, d i]  +p, (X Irandom fç ,s handled by temporanly conditioning every-
thing on the a-algebra ~L generated by ~a over [0, TI and f [ .y, (r , X ) — ~,( r)  J f, ‘( r )N  (di x f r )  ( 11)
subsequently finding that the stochastic differential equa-
tion for the conditional density of x, given ~, and ‘3R~ with the Gaussian distribution N(i~,t,,~J as initial condi-
turns out to be independent of ‘3lt . tion. Of course, E [x,~~ ,V’3LI= E(x,I’&~,], so the defini-

Letting ~, — exp [j y ’x,J where y E R ” is nonrandom, we tion of ~, given in the statement of Theorem I coincides
find , using the Ito rule, that with the temporary definition introduced in the proof;

€14 — 4  i~ di+ifjy’ Vui)dv 
similar remarks apply to ~,.

The proof thatp ,(XI~~,) is Gaussian with mean i, given
where by (6) and covariance >~, given by (7) or (9) then follows

from a straightforward inductive proof similar to that of
4~, j y ’{F( 1)x ,+ G (1)u ,] — ~y ’V(i )V’(1)y .  [1, proposition I]: in the intervals between point oc-

currences of the space-time point process, p , (X~ il,)
Letting ~~ — 

~~, V ‘311. and defining for the moment ~, — evolves according to the first two terms on the righ t side
E[x ,~J,j and A, (r ) — E [A, (r ,x,,~,)~F,], it follows from our of (II);  this is simply Kushner’s equation for linear system
standing assumptions that , for any Borel set B E R  “‘, (I a) with linear observations (I b), and is known to yield a
dz,— C( :) ~,di and N(dix B ) — f 9 A, (r)dr di are indepen- conditional density p,(XI’~t ,) that is Gaussian with mean
dent, independent-increment processes relative to ~~~~. We ~, and covariance ~ , satisfying (6) and (7) or (9), respec-
then have, analogously to [I , eq. (9)), that the conditional tively, with the last term on the right side of each deleted.
characteristic function M,(j y) -. E1+,I~ I of x, given ‘~ At those instants when a point occurs in the space-time

iL ~~~~~~~~~~~~~~~~~~ .~~~~~
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point process, a jump occurs in p, ( X I ~ , ) because of the Recalling that ~~ = ~~~~~~ the desired result then
last term on the right side of ( 11). However , it turns out follows immediately.
that p , (X ~,) remains Gaussian after this jump because it - Remark 1: The technical assumption that u, is ~ , ~was Gaussian before the jump and because the spatial ~,-rneasurable which is required for the proof that
intensity ‘i,(r,X)  is Gaussian. As in [I] ,  calculation of the f,[~I ’~i3,) =f , (~ l~T,] also arises as a sufficient condition in
last term on the right side of ( i i )  shows that the jump in [7) . A generalization of [7, theorem 3) shows that this will
the conditional mean is given by the last term on the ri ght be the case if u is generated from the past of z , N , and r or
side of (6), the jump in conditional covariance by the last 2, N , and ~ using a suitabl y smooth control law. Specifi-
term on the righ t side of (7), and the j ump in the inverse cally, it will be so if u is generated as a Lipschit z function
of the conditional covariance by the last term on the right of the state of a suitabl y smooth finite-dimensional sys-
side of (9). tern; included here, in pa rticular . is a control u, so gener-

Finally, to prove that ~~~~~~~~~~~~~ let x~ satisfy ated from i, of (6), which is of interest because this is the
dx 7=F(t) x 7d: +G(t)u,d i ;x~= E [ x0]. Then i, ~ X, —X 7 case for the optimum control found later.
and 2, ~ 

— C(t)x7 satisfy Remark 2: The stochastic differential equations for i,
and ~, given in Theorem I admit an intuitively simp le

di, —’ F ( t ) .~,dt + V(i)dv ,, d1 =C(t)i ,dt +dw, ( 12a) interpretation. In the intervals between point occurrences

with i0~~N(0,~ 0) and z0 =0, while i ~ r— Hf  has spa- of the space-time process, the problem reduces to one of
estimating x, from the observations :: the nonoccurrencetial intensity of further points in these intervals provides informat ion

( 12b) about ~t, but none about x, because of the separabili ty (2)
of A and our standing assumptions concerning indepen-

Let ~, be the a-algebra generated by 2 over [0, 1) and let dence. Thus , during these inter~als we are left with the
~t , be that generated by the space-time process that is sta ndard Kal man filtering proble m i~ estimating the state
obtained from the original one by leaving N unchanged of the linear system ( I a )  from the observations ( Ib) ;  if x,and replacing r by r— Hf .  Then , under the assumption is conditionall y Gaussian at the beginning of each such
that u, is also ~, V’3L,-measurable, an argument that interval, it remains so throughout with mean and covari-
parallels the proof of Lemma I in [7] shows that ~~~~~ ance which evolve according to (6) and (8) or (9) with the
= ~,vk ,. This assumption is discussed shortl y. Thus , it last term deleted in each. (This, of course , is also reflected
is equivalent to prove that f,(~t9.,V’3t,J=J [i iI~ I. Now , in the equation ( I I )  for the conditional density reducing
because ~i and N are independent of x0, c, and w, so also to Kushner ’s equation during these intervals.) We now
are they independent of i and 1; thus , the joint den sity of observe that x, is , in fact , conditionall y Gaussian at the
~ and the event that t 1. t2, ’ ’

~ tk are tIle occurrence times beginning of each such interval because it is at i = 0 and
of N over [0, 1) satisfies 11 ~~, ~~~~ I ~J~’,] f[ ~~ ~~~~ - 

~~~~ because it remains Gaussian after each point occurrence:
where ~ic, ~~ V~ , and ~X , is the a-algebra generated by indeed, at each occurrerce (i , r) of t he space-time point
i over [0, t). Equ ivalently, process the spatial observation r is an independent ob-

servation on a Gaussian random variable with mean Hx,
f[~~’T,v~Ic,]f{ t ,, . ‘ ‘  .tkI ~1ff ,] f I  i~I~,] J f t 1. ,

~ k] .  and covarj ance R; this is equivalent to a discrete observa-
tion of the formBecause N , i and 2 are independent , f [ z ,, - -  ‘ , 1kI ~ lc,]=

f [ , . . , t~ ] and therefore r = H ( t ) x ,+~

4 ,~I~3’,v~ff ,] =f[ ~I’5,]. ( l 2c) where ~— N ( 0 .R)  is independent of x and :. Thus , fro m
- • standard estimation theory for Gaussian random variables

Also, we have fro m Bayes’ rule that (e.g., 10], the conditional density remains Gaii~~:an and
the change in conditional mean and covarianc~. f ~, after

• f [  ,~ ~~ v~t,]i[i~, . . . ~~~~~~~ accounting for this new observation are
—

—i I: ,iI’~1IS ,v’5,]J[ r i, ’ -- ,~~ Ia(~~)V~ tc,V~ ,], di, ~ i,.,. —i,—~ ,H’{H~~l1’+R]~~(r—Hi ,)

—
since both equaI f[~i,F,, . -  - ~~~~~~~~~ Now the second M1 ( r —  Hi,)
factor on each side equals

d~ 
£~~ ~~1 1+

N,

~ ~~~~~~
— 1

and cancelling these and combining the result with (12c) d T ’ ~~ ~~~+
‘ 

~~~~~
‘ H’R ‘H.

yields Of course. this term is to be included only when an
it ,sM~c,V’3t,}— f [ ~~I~~~~]- occurrence takes place at ( :,r) ; multip lying each of these

-- -• -~~~~~~-~~~~ •. -• .- •
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calculation that For given S (a’), the right side of (24) is clearly minimized
by making the last two nonnegative definite terms 0, in

S (a’) ~ E[ (x , — x,# )( x, — x7)’] ( 17) which case the right side of (24) reduces to that of (20)
while the minimizing choices of M ( :)  and L( t)  are givensatisfies the linear matrix differential equation by (21). It remains to show that this instantaneous order -

~ = (F —L C ) S + S ( F —L C) ’ + VV’ + LL’ ing on the time derivative produces a permanent ordering
of the solutions over [0, T] , i.e., that the solution to (20)

+ ~ii (M  [ HSH ’ + R ]  M — MHS Si.” M ‘1~ lies at all times below that of (24) in the matrix ordering.
S (0) = coy [x 0] (18) This is readily accomplished by using [9, lemma I) after

appropriate modifications to reflect that initial conditions,
where we have suppressed the common argument i of all rather than final conditions , are of interest here. This
entries, and where ii(’)= E [ gi,J. Because all coefficients in means that in [9, lemma I) the left sides of ( )  and (t *)
(18) are uniformly bounded, a unique solution to (18) should be replaced by + I and + )~‘, respectively, and all
exists for all i E(0, oo). We thus have proved Theorem 3. time orderings 0< a’ < s < T replaced by 0< s < 1< T.

Then, letting (24) play the role of (*) and (20) the role ofTheorem 3: For any uniformly bounded M (-) and 
~ ~) and checking conditions I )—4) of [9, lemma I] weL ( -) ,  the mean-square performance (17) of the estimator have: I) and 2) are trivial under our standing assump-(16) satisfies the linear matrix differential equation (18), tions; 3) holds because, by a subsidiary application of [9,

and this is a matrix ordering upper bound on E [ s ,], i.e., lemma I], the solution to (20) lies at all times above that •for all t E [0, ~~~), of the Riccati equation

~(i)—E [~ ,]<S(i) (19) i’=F r + rF ’+v v’—r [ c ’c+ iiH ’R- ’H] r , L
in the sense that S ( t) —~~(i) is nonnegative definite. r(o)=cov[x0] (25)
We now show that there exists a choice of M ( -) and

• L ( ’)  in (16) for which the corresponding mean-square for which 3) is known to hold; finally , 4) holds for (18)
• performance given by (18) lies at all times below that for and therefore (24) because if S,(:) and S,(t) are the

any other choice, respective solutions to (18) with initial conditions S,(0)

Theorem 4: Let S*(.), M ( -) ,  and L*( ) satisfy and 
~~2(°)’ S,(O) ) S2(0), then S,(t )>  S2(i) for all 1, since

• 
~ , — S~=(F— LC—~iMH ) (S, —S 2 )

S =FS +S F ’+ VV’ _S*C ’CS*
— S2) ( F —  LC— jIMH ) ’

— iiS*H ~[ HS*H ’ + RI [ ’HS *, S*(0)=cov[x0]
+j IMH(S, — S 2 )H ’M, (S , — S 2 ) (0) > 0- ;~ (20)

M * =S *H ’[HS *H ’ + R) ~~, L* =s*c (21) and the solution to this lies at all times above the (identi-
- I cally zero) solution to

where the common argument a’ of all entries in (20) and
(21) is suppressed. Let S(-) be the solution to (18) for l~~ ( F L CH iM H ) Y +  Y ( F—L C j I M H ) ’; Y(0)=0
some arbitrary M ( ’)  and L ( -) .  Then, for all IE(0, 00),

by a further subsidiary application of [9, lemma I) .
E[
~
,] <S(:)< S(:) (22) Remark 5: The evaluation of the performance of the

suboptimum estimator (16) is a second-order analysis that
and S ( a ’) = E ((x, — x7)(x, — x7)’) is the mean-square per- uses only the means and covariances of the various ran-
formance of the bound-minimal estimator dom variables and processes and makes no use of the

Gaussianness of x0, v, w, a~ d r. Thus, the results of thisdx7 = Fx7 di + Gu, di +S~ C’ [ dz, — Cx7 di] section remain valid if v and w are replaced by normal-
+ S*H ’[ HS*HI + R3 ‘f f r — H x 7 JN ( d ix dr). (23) ized uncorrelated-increment processes that are uncorre-

• lated with each other and with x0 and r , with x0 having
any distribution with mean ,i,, and covariance I~ and the

Proof: Completing the square on the right side of spatial intensity y, (r,x,) being any distribution with mean
(18) yields Hx and covan iance R such that r is uncorrelated with 

~~The bound-minimal estimator (23) can then be viewed as
S — FS + SF’ + VV’ — SC’CS — j ISH ‘[f I S H ’ + RJ ~~HS the best estimator in the family (16). These estimators are

bilinear because of the product rN(dixdr) in the last
+ (L — SC’)( L — SC’)’ + ii{ M — SH ’( HSH ’ + R ) 

~~~
‘] term , though they might also be considered to be in a

. (J ~f S H ’+ R ) [ M . . . SJ .f ’ (H5Jf ’+ R y ’} ’ sense linear , to the extent that N(dzx dr) merely signals
the arrival of a spatial observation r which, as with z, is

5(0) — coy { xo]. (24) utilized linearly in the production of i. - .

— I 
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expressions by N ( d i x dr) and integrating over R’” takes problem in which x0 — E [x 0), v,= E[vj~~0, and x, iscare of this, and constitutes the last term in (6), (7) and known exactly). This result , therefore , includes as special
(9), respectively, cases the familiar linear-quadratic-Gaussian Theparation

Remark 3: It was observed in the proof that p,(xI~~,V theorem” (where the space-time point-process observa-

~
‘)l1.) does not depend on ‘311., and thus .~, and ~ are 

tions are absent) (e.g., [8]) and the similar results in (1H51
conditionally independent given ~~,; in particular , x, and for restricted versions of the space-time point-process
~t, are conditionally independent given ~,, and thus the observations.

• 
I 

joint problem of estimating x, and p~ given ~, separates We observe that ~,, the conditional covariance of x,
into two separate problems of estimating x, and estimat- given ~ ,, is not precomputable because the last term on
ing es,: the right side of (7) depends on the particular realization

of the counting process N,. One is, therefore, led to

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~ consider !(i) ~ E [ X ,] , both as a natural measure of esti-

Furthermore, the final part of Theorem I establishes that mation performance in its own right and as the particular
f(~~~~~ I~~~~~,)=f( i~,I ~~~~

,) depends only on the Poisson counting measure of estimation performance that determines the
process N and does not depend on z or the spatial optimum control cost (15). However, while X(i) is de-
locations of the points. This latter estimation problem terministic and in principle can be precalculated, this
with various models for ~, is examined , for example, in (6]. calculation is infinite-dimensional , One way_of seeing this

Theorem 2: The uni que admissible control u,0 t hat is to observe that an attempt to calculate ~ (i) by takine
minimizes the cost (5) is given by expectations of both sides of (7) is complicated by the last

term on the right side, which requires the calculation of
— P — ‘  G’~~K (z)i, ~ — L (I) i , (13) E (~~H iH ~~H ’ + R}’~Ji~~). While a differential equation

• for this can be written down, it , in turn , requires expecta-
where 1, = E[x ,I~~,J satisfies the finite-dimensional nonlin- tions of additional nonlinear functions of 

~~,
. and so on ad

ear stochastic differential equation (6) with ~, given by inf initum in a mushrooming requirement for additional
(7), and the n X n symmetric nonnegative definite matrix terms that is familiar from other nonlinear filtering situa-
K (a’) satisfies the Riccati equation tions. Accordingly, we turn our attention to deriving
K (1) = — K ( i)F(  1)— F ’i~ i)K (1) + K (t)G ( i )P — ‘(a ’) easily-computed upper and lower hounds on ~~~(t). These

estimation bounds then directly imply upper and lower
‘G ’( i) K(t) Q( i) ,  K(T)~~S. (14) bounds on the optimum control performance (15).

The corresponding minimum value of J is IV. SUBOPTIMUM ESTIMATORS AND UPPER BOtJNDS

J {u °] — E ( x ~K (O)x0) Our approach to finding easily-computed upper bounds
T on E E L ,) is to examine a parametrized family of subopti-÷1 tr [ KGP ~~G ’KE {~ ,} +KVV’} d i .  ( 1 5 )

• mum estimators whose mean-square performance can
where tr denotes trace. easily be calculated exactly. For each suboptimum estima-

b r  the corresponding mean-square error is then trivially aProof : According to Astrom [8], J [uJ can be rewrit- matrix-ordering upper bound on E [ s ,). Furthermore , weten as show that there exists a suboptimum estimator in this
J [ u ] =  f

T
E (I l u +  L(:)i,112P(,))dr + [right side of (15)] family whose mean-square performance is at all times

0 smaller than that of any other , thus providing a minimal
where i,=E [x,I~ ,] and Ly~I~~ y ’I~y. The first term on upper bound within this class.
the right side is nonnegative , and zero if and only if Motivated by the form of the optimum estimator (6),
u, — — L(t) i,. Thus, (13) gives the unique optimum control we consider the family of suboptimum estimators
provided the right side of (15) is invariant under changes dx7 F( i)x,* di + G (i)u , di + L( a’) [ dz, — C (a~)x,* d i]
in u. The only way for (IS) to be u-dependent is through
E ( ~ ,) , and (7) shows that the only possibility for I, to .4- f  M ( t ) [ r — H ( i) x 7 ] N ( d i x d r )  (16)
vary with u is via N,. But N, is a Poisson counting process R’

with rate p,, and both N, and ~ , are specified at the outset parametrized by the deterministic uniformly-bounded n X
as mappings on (~2, ~~ , P)  without any reference to u. m- and n X q-matrix valued time functions L ( -)  and M (‘).
Hence ~, and, therefore, E (s,) and the right side of (15) This family does not include the optimum estimator (6) in
are invariant under changes in u, and the proof is corn- which M,, L, — ~,C’ are random matrices depending on N
plete. through I. Apart from the requirement that M( ~), L ( ’)  be

Remark 4: Theorem 2 shows that the solution to this deterministic, the suboptimurn estimator (16) and the opti-
stochastic control problem can be realized with a sep- mum estimator (6) share the same structure• The nonran-
arated estimator-controller in which the estimator is non- domness of M , N enables us to write down an ordinary
linear, mean-square optimal, and finite-dimensional and n x rn-matrix differential equation for the mean-square
the controller is the certainty-equivalent linear control law error of the suboptimurn estimator (16). Indeed, subtract-
(i.e., the optimum linear control law for the deterministic ing (16) from (Ia), it follows directly by straightforward

____ ~~~~
_
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_
~~_ l,-’_~~~~l_ ~~~~~~~~~~~~~~~~~~~~~~~~~~ -— —-i- — ~~~~- -- ~—..-- -



344 IEEE TRANSAC TIONS ON AUTOMATIC CONTROL., JUNE 4977

V. ESTIMATION LowER BouNDs AND CONTROL T

BOUNDS £ {x ~,K( 0)x 0} + f t r {KGP - ‘G ’PKS ~ + K VV’] d i

Theorem 3: Let S~ be the solution to (25). Then for all <4~~ 0] < E {x~K(0)x0}
a’>O, S, (i) is a matrix-ordering lower bound on E[~ ,J , r

+ 1 tr [ KGP ’G ’KS +KVV’] d ti.e., Jo

S.(i)< E{~ ,}. (26)
where S~, is the solution to (25) and S is the solution to

Proof : We have from (9) that 1 ’  ~~ E [~~~~ 9 satisfies (20).

— — ~~~ F— F’ ~~~~
‘ — E[ ~ 

- ‘vV’Y~~] + C ’C VI, DiscussioN

+ jill ‘R — ‘fi; ~~ (0) = (coy [x0]) 
— ‘  The above estimator-controller solution extends results

in [2) and [3] to include a more general form of observa-
= — ~~ ‘ F — F ’E~~ — 

~~~~‘ VV’~~~’ + C’C tion. Just as with the observation model in [2) and [3], this
+ ji H ’R - ‘H — (27) more general observation is motivated by communication

systems that employ a narrow beam of light as a carrier ,
by star tracking systems, and by infrared tracking systems,where all of which have a requirement for position sensing and
active tracking to maintain optical alignment in the pres-= E[ X ‘VV’~ 

- ~] — 
~~~~‘ VV’ ~~~ = coy [~ 

- ‘V] >0. 
ence of a variety of disturbances. We shall indicate how

(28) the models of [2, sec. 4] and [3, sec. 4] are usefully
It then follows from [9, lemma 1J that ~~~~

‘ lies at all times extended by this more general observation. The
estimator-controller solution of Theorem 2 provides abelow the solution to
possible tool for the design of an optical tracking system
under the conditions indicated below, and the perfor-• - 

— ZF —F ’ ! —Z V V ’~~+j iH ’R~~H+C ’C mance bounds of Sections IV and V provide the mean s
Z(0) = (coy [xo]) ~~

‘. (29) for predicting the performance of such designs.
Let I(i,r~) denote the light intensity at time iE(0, oo)Thus, and position rE ~it of an optical field incident on the

photoemissive surface of a two-dimensional photodetector
~ E[ ~~~’] > ( E Z,) ’, (30) on boresight and without any motions. Here, ‘&l. is a

• subregion of R 2 corresponding to the photoemissivethe last inequality being a matrix version of Jensen’s surface. We assume a Gaussian intensity-profileinequality proved in the Appendix. Taking inverses of (30)
and noting that if S~ is the solution to (25), then S~~ is I ( i ,F ) — I o ( i ) exp {—f 7 ’ R ~~ ( a ’) 7) .

• - the solution to (29), we have the desired result (26),
We remark in passing that (25) gives the covariance of Vibration, beam steering due to propagation of the light

the optimum estimator when the space time point-process beam through atmospheric turbulence , and other effects
observations are replaced by continuous observations of cause the spot of light on the photoemissive surface to
the form move about in a random fashion and to fluctuate ran-

/ ~
, = Hx,dt + ( ~~~

- 1R )‘12 d 
domly in optical intensity. In this case, the intensity
profile becomes

where n, is a Wiener process independent of x0, v, and w.
Remark 6: Comparing (20) for the minimal upper

bound with (25) for the lower bound , we see that these ‘R
two bounds will be close to each other and thus to E [ l ,]
if HS*H ’ is small compared with R (or, equivalently, if where y~ (t) models the random motions, and 1~( i)  is a
H’R ‘H is small compared with S ) .  Both bounds will random process (e.g., a lognormal process) that models
also be close to each other and to the optimum perfor- random intensi ty fluctuations. We assume that (y~(’); a ’>
mance if the mean intensity ~i is small. These are dis- 0) is de~ived from a Gaussian diffusion satisfying
cussed 1at~r in terms of our motivating example.

- • Once we have deduced upper and lower bounds on the dXm(i) ’ Fm( i)x ,,,(i)d i+ V, , (f ) dVm(1) ,
estimation performance E [ I ,J , corresponding bounds on y (i ) ~. ,~,m (1)xM(i)
the optimum control performance follow directly by sub-
stitution of these bounds for E [ E ,) in (15). where (v m(f) ; a’ >0) is a standard Wiener process. The

Theorem 6: Upper and lower bounds on the optimum fading process (10(i); i ) 0) is assumed to be independent
control performance J (u °J of (15) are of motion processes but is otherwise arbitrary. The pur-

hii_. —— ~~~~~~~~~~~~~~~~~~~~~~~ _•-—~-— .—-.~~~ —~~~— — . • •  _— - - - ~— -- -- --- --~~ -—- - ~- — —~~ --~~ ——--~~~ ~~~ —• —-i-- -~ - ~~~~~~~~~~~~~ ~i ~~~~~~~~~~~~~~~~~~~~~~~~~ 
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•

~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

pose of the tracking controller is to compensate for these rem 2. From Remark 6, the upper and lower bounds
random motions and random fading in order to maintain merge when HS ’ H’ is small compared to the beam
optical alignment. Thus, in the presence of a controller to spread as measured by R. It is evident that the estimation
position telescopes, mirrors, or other pointing devices, the and control lower bounds derived as above for observa-
intensity becomes tions of each photoelectron conversion are also lower

bounds for both optimal and suboptimal trackers that
I (a’, “,Ym( :),y,(:)) = 1~(z )  exp ( — 

~ [ ~— y,,, (i) +y,,( a’)]’ 
employ observations obtained by temporal or spatia l
averaging as would be obtained using photon counting

-R 
~~ (1){7—yM (I)+yP(:) ]) and a quadrant photomulti plier.

We mention also that Segall in [II] has applied the
where y,,(:) ~~Ym(a ’) is the tracking error. Ideally, this error models of (I)  and [3] to study computer communication
should be zero, but this cannot be accomplished for two networks. The upper and lower bounds on performance

that we have derived can be applied in this context asreasons : the position error Ym (t) is unknown and must be well.estimated from data available at the photodetector output ,
and the tracking devices will have some inertia so that
Yn, ( )  cannot be tracked instantaneously even if it were APPENDIX
known. We model the tracking devices by a linear
stochastic plant Lemma.- Let W, and W2 be positive definite matrices, 1 1and let yE [0, I] . Then

dA,(t)= F,(a’)x,(~ dt+G,(t)u(t)dl + V~(t )dv~(:)
y, ( t )=  H, ,(z)x~( a ’)  [ ‘y W, 4( 1 — ‘a ’) I•V2]  — ‘ < .1~y,— ‘4(1 — 

~y)t3’2 ‘. ( A l)

i.e., W ’ is convex in a matrix sense. Furthermore. we
where u(a’) is the input to the tracking devices from the havetracking controller, and { v,,(a’): 1> 0) is a standard Wiener

- - process modeling local disturbances such as those due to E { w - ’ j  > ( E [  W] ) ~~ (A2)
• vibration.

• Photoelectron conversions take place in the photoemis- (cf. Jensen’s inequality).
• sive surface at a rate proportional to the incident light Proof: Let x — [y W, + (I  — 

~‘) W2]y. Then Iintensity [3). Thus, the photoelectron conversion rate has
the form of A,(r ,x,,p~) for (z ,7) E(0 ,~~)x ’~R. with p., an X~[~( W + (l r) W~~~] x . y 3y~W, y+ 2 .,2 ( l_ .y)y W2y
appropriately scaled version of I ,-, (s), and x is the vector
obtained by adjoining x,, and x~, and H is obtained from + y ( l — y ) 2y ’W2 W1 ’B’2y IHm and H, in an obvious way. +(l—y)y ~y’W,Wj ’W,y
The problem of optical tracking is to follow the position

of maximum light intensity at time a’ in terms of both + 2 y ( l — y ) 2 y ’W,y
-
~ photoelectron conversions observed on [0, i)x~R and ob- 4( 1 — y) 3y ’W 2y .  I

servations of the plant state x~, obtained with sensors
located at the tracking devices. These latter observations Now W2 W, ’ > 2 W2 — W, because (W2 — W,) W1

_ I( W2 —

are modeled according to (1 b) so as to account for sensor W,) >0; similarly, W, Wç ’W, > 2 W, — W2. Substituting Inoise. Except for the finiteness of ~~~, this problem is these inequalities and simplifying yields
• identical to control problem studied above when photo-

• electron conversions are identified as space-time points. x’[ y W1 ’ 4( 1 — 

~‘) 
W, ’ ] x >  

~~[(~~ 
+ I — 

~~)
2]

~~
’ w1 y

An approximation that appears reasonable when the
beam is small and the tracking errors are small (i.e.. fine
tracking mode rather than an acquisition mode) compared = ty ’ W, y + (1 — y)y’ W2y
to the size of the photoemissive surface is to replace ~R byR 2 , With this approximation, the optical tracking problem = x’ [ y W1 + ( 1 y) 13”2] 

-

is solved by the result in Theorem 2.
From this (A2) follows. IIt is important to note that according to Remark 3 and

Theorem 2, the design of the tracking controller does not 
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APPENDIX 4

Report:

“Some Implications of the Cutoff-Rate Criterion for Coded, Direct-Detec-

tion , Optical Communication Systems ,” Donald L. Snyder and Ian B.

Rhodes, Biomedical Computer Laboratory Monograph 363, Washington Univer-

sity, St. Louis, MO, March 1919. Submitted to IEEE Transactions on

Information Theory.

I ~
1

(Pages 113 — 162)

I

11

. 
- 

. . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . - - ~~~~~~~~~~~
— —.. — ~~~~~.- — —~ — .—. ,- —~ — ~~~~~~~~~ ~~~ , — ~~~~~ ~~~~~~~~~~~~~~~~~~~~~ ~-~~~~- ~~~~~~~~



- . ~~~~~~~~~~~~~~~~~~~~~ —~~. - 
____________

_ _  ~~~~~~~~~~~~~~~~~~~~

M SOME IMPLICATIONS OF THE CUTOFF—RATE CRITERION FOR CODED,
DIRECT—DETECTION, OPTICAL—COMMUNICATION SYSTEMS

~~~~~~~~~~
I)

1’ 
~ 

Donald L. Snyder
Ian B. Rhodes -

A .. .c~ - .

F 

-

-

i~n 
. 

- -

1 . . -

A - . 

.

- -  - .  - -

1-4 MONOGRAPH NO. 363 . 

- - 
MARCH 1979

F
This work was supported by the National Science Foundation under
Grant ENG 76—11565 and by the National Institutes of Health under
Research Grant RR 00396 from the Division of Research Resources,
and the Office of Naval Research under Contract N00014—76—C—0667.

‘I
WASHINGTO N UNIVERSITY SCHOOL OF MEDICINE - ST. LOUIS , MO.

I.i

___________  ~~~~~~~ ~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



Some Implications of the Cutoff—Rate Criterion for Coded,

Direct—Detect ion, Opt ical—Coimnunication Sys tenis~

Donald L. Snyder

and

Ian B. Rhodes
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St. Louis, Missouri 63130

ABSTRACT

The cutoff rate is derived for a digital. communication system employing

an optical carrier and direct detection. The coordinated design of the encoder,

optical modulator, and demodulator is then studied using the cutoff rate as a

performance measure rather than the more commonly employed error probability.

Modulator design is studied when transmitted optical signals are subject slinul—

taneously to average energy and peak value constraints. Pulse—position inodula—

tion is shown to maximize the cutoff rate when the average energy constraint

predominates, and the best signals when the peak—value constraint predominates

are identified in terms of Radamard matrices. A time—sharing of these signals

maximizes the cutoff rate when neither constraint dominates the other. Prob-

lems of efficient energy utilization, choice of input and output alphabet dimen-

sion, and the effect of random detector gain are addressed.

tThis work was supported by the National Science Foundation under Grant
ENG 76—11565 and by the National Institutes of Health under Research Grant
RR 00396 from the Division of Research Resources, and the Office of Naval
Research under Contract N00014—16—C— 0667.
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- : I. INTRODUCTION 
-

Our concern in this paper is with digital communication systems that

employ coherent light as a carrier and direc t detection as the means to conver t

the received optical field into an electrical signal for subsequent processing.

Communication systems of this type are discussed widely in the literature (see

(l)— (5] and references therein) and are of increasing importance in applications.

The optical portion of the overall system consists of the optical modulator,
‘I

optical channel, and optical detector shown schematically in the basic information—

theoretic model of the optical, digital—communication system of Fig. 1. Here ,

E(t,) represents the temporally and spatially dependent complex envelope of the

optical field , and N(t) represents the counting process associated with the

output of an ideal, direct—detection device. This counting process is assumed

to be an inhoniogeneous Poisson process with rate function A (t) s(t) + A0,

where A
0 
represents the contribution to the total count rate due to dark current

in the detector. Also, can account f or background radiation when this is char-

acterized by many, weak modal—components (2,3]. The assumption that N(t) is a Poiss’ t

~‘roc ess is met to a close approximation on the free—space channel for coherent sources

[3]. On our model, the signal count—rate s(t) is related to E(t,~ ) according to

s(t) — (rl /hv)
f 

IE (t,~)I 2d~, (1)

where T1 is the quantum efficiency of the detector, h is Planck’s constant, U

is the optical—carrier frequency, and A is the active surface of the detector;

it is evident that 8(t)  is nonnegative, which , of course, it must be as a rate

function. - .

We shall suppose that a code letter x in Fig. 1. is drawn once each T

seconds from a q—ary alphabet X (X1,X2, •~~•s Xq}• 
We further suppose that

each demodulator—output letter y is drawn from a q’—ary alphabet V = (Y1,Y2, ...,Y ,

where in general q’> q. Initial1~ , we investigate “infinitely soft” decisions 

-—-. — . — 
- -~-_________________ - --
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-

for which q’ ~
; then we study the penalty for choosing a smaller value of

q’. The decoder output letters ~ supplied to the sink are reproductions of the

encoder input letters u supplied by the source; these are presumed to be drawn

from a binary alphabet U = (O ,l}. The rate of the coding system in terms of

the number of source digits for each channel letter will be denoted by R bits

per channel use. This means that R R T if the source generates R bits per

second.

The combination of the optical modulator, optical channel, optical detector,

and demodulator forms a discrete channel with a q—ary input alphabet X and q’ —ary

output alphabet V . By virtue of the independent—increments property of the

Poisson process and the constancy of A0, this is a “constant, discrete, memory—

less channel” in the sense that the conditional probability ‘the channel output

sequence is b
1
b
2
...b , where each b

i 
is in Y, given that the input sequence is

a1a2 .. . a , where each a
i 
is in X, factors into the n—fold product of the per—

letter transition probabilities according to 

-

:: Pr(y
1 

= b1,y2 = b2,...,y~ = b ~x1= a1,x~~ ~~~~~~~~~ a~)

=~~~~Pr(y1 
= b~ Ix~

= a
t
]. (2) 

- 

- --. 1=1.

Furthermore, the per—letter transition probabilities are the same for any T

second use of the channel. Thus, if Py~~ (YtX) denotes the per letter transition

probability , the right side of (2) islT p (b~Ia 1) . The design of the 

—

-

i=l y

modulator and demodulator, of course, affects p (Ytx). We shall study the

design which makes P7j~
(YIX) most favorable f or a given optical channel and

detector. The coordination of this design with that of the encoder will also

be studied.

: 1

1 

_  
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A quantity that reflects the influence of P~~~I~~~
(Y I X) on the quality of

a constant discrete memoryless channel. is the cutoff rate R
0 defined by

R
0 

= -log {
min > ~ X) )~Q (x) ] 2~~

YEY X~~X ~
‘

(3)

= —1og
2
{~~

’
~ 
~~1 

E Q ( xi) Q ( xj
)~~~~(p

YI X
(Y

k I X I ) p
y I X

(YkI X
J

) ) ½},

where Q is a probability mass—function on X. Wozencraft and Kennedy (6], in

1966, were first to argue in favor of the cutoff rate as a criterion for design

because it is the upper limit of code rates R for which the average decoding

computation per source digit is finite when sequential decoding is used.

Wozencraft and Kennedy also showed that there is a block code of rate R and codeword

length N such that the probability of error Pr(e) in decoding a sourceword of

length K = NB. is bounded according to

Pr(e) •
~
. 2

—N (R
0
—R) if R < R

0
. (4)

Thus, for block codes , the single number R
0 

provides a measure of both a range

of rates R for which reliable communication is possible as well as the coding

complexity, as reflected by N, required to guarantee a specified block—error

probability. More recently, Viterbi (7] has shown for convolutional coding

and maximum—likelihood sequence decoding on the constant, discrete memoryless

channel that the error probability is upper bounded according to

Pr(e) I CR 
L 2 0 

if B. < R
0
, (5)

where N is the constraint length of the convolutional coda, R is the code rate,

L is the total number of source letters encoded , and C
R 
is a weakly dependent

function of R and not a function of L and N. Thus, as with block codes, the

single number R
0 
provides a measure of both reliable rates and code complexity. 
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Massey [8,9] made these observations first and has used them to make an eloquent

and persuasive argument for adopting R
0 
as a modulator—demodulator design parameter

in place of the more coimnonly used error probability. In what follows, we shall

investigate some of the implications of attempt ing to maximize this parameter

for modulator—demodulator design for direct—detection, optical communication -

systems. . -

II. R~ for. Infinitely Fine Quantization

In practice, the demodulator of Fig. 1 must quantize the point process

observed on (O,T] in some fashion to produce one of the q’ output letters in V.

This might be accomplished~ for example, by counting points in subintervals of

[O,T] ,  disregarding their times of occurrence within these subintervals, and

then comparing the subinterval counts to prescribed thresholds. Regardless of what

form of quantization is adop ted , the finer it is, the larger will be the cutoff

rate B.
0 
of the resulting constant discrete inemoryless channel. Thus, we consider

first the limiting situation of infinitely fine quantization , for which q ’

and B.
0 R

0~~, 
Is not degraded by quantization. Then, we consider the effect

of finite quantization. -

For a Poisson process with rate A(t), the probability of observing n points

during (0,T] in n disjoint intervals ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

is approximated to o(max~At1
) by

(2T 
A (t1.))exp(_JA(t)dt) ~~~~~~~~~

for n>l and by

ex~(_J A (t)dt)
0

for n 0. Consequently, for infinitely fine quantization, the summation,

A.

! . - 
_ _ _  

_ _  ________

- — ~~~~~~~~j
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call it f(i,j), over k in (3) becomes

f(i,j) = exP (—3~J~(A j (t)+Aj(t))dt) t i+~~~~~~~ 
f f  .. .

J~~~T (Xj(tL)A
j 
(t~ )) ½dt

1
dt
2
. . .dt~]

where A
1

(t) and A~(t) are the detection rates for code- letters and X~,

respectively, and the integration is over the region O<t
1
<t
2
<. . .< t < T. By

extending this range of integration to O<t 1<T for I = 1, 2,... ,n, and dividing

by n! to compensate for this extension, we obtain

- f(i,j) exp(_1~
j
igj(t)_ gj(t))

2dt),

where we define g1(t) 
= A~~(t) and g~(t) = A~(t). Thus,

R
0~~ 

= _log
2
{m~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (6)

i=l j l.

This expression is identical. to that obtained by Massey (8,-.eq.(4)] if

the signal g
1
(t) were to be observed in an additive white Gaussian noise of

unit intensity when is the code letter into the modulator. It is with this

expression that Massey established for the first time the B.0 ~,—oP
timality under an

average energy constraint of a simplex signal set for the additive white Gaussian

noise channel. However, the additional constraint g
1
(t-)>X~~O obtains here, so

Massey ’s argument does not hold for direct—detection optical—communication - -

systems and must be modified . This is accomplished as follows . -

By defining

and by using Jensen’s inequality, Massey [8 1 shows from (6) that

R
o.,I - 1o82

{
m
~~[S+(1_S)exP(_ 2(1-S) 

~~ Q(X
j

)Q(X
j )j  

(g~(t)-g~ (t)) 2dL)J)

(7)

i - i 
—_ _ _

L. -
~~~~

--.. --~ - 
~~~ -_~~~~~~~~~~~~~~~~~~~~~ --~~ - - ~~ -- ~~~~~~~~~~~~~~~~~~~~~~~~~ ~~

. 
~~~~~~~~~~ ~~~~~~~~~~~~~~~~ ~~
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with equality holding if and only if the quantity

~~~ 
~~
j

T
(gj (t) - g~ (t)) 2dt (8)

is the same whenever i~j. It is evident from (7) that R
0~~ 

is a monotonically

increasing function of d
1~ 

f or i#j. Thus, if d denotes the maximum of

- - the ~~ for i~j, there holds

R0,~~I
_log

2
{ni~~[S + (l-S)exp(-~ d

2)]}. (9)

Furthermore, it is easily verified that the minimizing code letter distri-

bution in (9) is the uniform distribution Q(X~) = l/q for 1=1,2,... ,q.

As S = l/q for this distribution , (9) becomes

< 1og~q — log2(l + (q—l)exp (—½ d
2
)], (10)

with equality holding if and only if d1. = d whenever i#j .

III . Modulator Design Based On R0 ~

An optical modulator designed to produce a signal set S =

E2 (c , ) , . .  . ,E(t , ) }  such that ~~~ = d for i#j and such that d is as large

as possible produces the best overall performance for the digital optical

communication system as measured by R
0~~

. Thus, we are motivated to examine

the maximization of d subject to suitable constraints on signals in S.

Associated with each signal set S Is a derived signal set G =

gq(t)} in which g1(t) = X~~(t) , where

_ _-  _ - _ _ - - .~~~~~ - ~~~~~ .

- - -.--—— - -—— -_ - -~~_ ~~ —--~- _-..-- ~-~ -
-.

~~~~~~~~ _--  -~ _--—- _~ a ~~~~~~~~~~~ — —~~ -i-- ~~~~~~~~.._..ua_ -_~ ~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~ - -~~~~~



(n/lw ) 
J~

E
i
(t,~ )I

2 
d~ + A

0
. (11) 

- -

Note that signals in G satisfy g~ (t)>g~~~ A~ .

This maximization problem is examined subject to additional constraints

on t~ie average energy and the peak amplitude of signals in the transmitted

signal set S. We assume tha t the average energy E of signals In S, defined

by 

= 
fIEi

(t,~ )I
2 
d~dt, (12) . 

- 

-

must satisf y

E < E
— max, (13)

where is a prespecified maximum allowable average energy. Then the

average energy E for signals in the derived signal set G, defined by

= -
~~ E f g

1
2
(t)dt, (14)g q

1=1 ~

satisfies

~~ 
—

~~~~~~= <  , (15)
g — max

where s = T~EIhv and n = g21 T = X
0
T are the average number of signal

counts and noise counts, respectively,per channel use, and where -

,

_____ — —.--_ —
——._ — _,,_ — -‘ - —- - -  — - - - —-- ~ _

—- 
~1

— .- t__ ~~~~~~~~~~~~~~~



S nE lhv. We assume, further , that the amplitude IE1(t,~) I  of each

signal in the transmitted—signal set S cannot exceed a prespecified maxi—

mum value P ; that is,max

IE1(t,~)I < p (16)

+
for i=l,2,...,q, 0-c t c T , and for all locations r in the active surface of

the detector. Then each signal in the derived signal set G satisfies

8min1 
g
1
(t)<g , (17)

where and g~~~ = ((
~AIhu) + A 0] ½~

For modulator design, we thus have the following optimization problem:

select signals in G to maximize

d2 
= (q(q_l)f l~~~~~~~~~~

J 
(g (t)— g (t) ] 2

dt (18)

i—l j=l. 0

- - 
subject to the following constraints:

(i) equidistance constraint : the quantities d1~ in (8) should be

the same whenever I ~ j.

(ii) average—energy constraint: equation (15) should be satisfied.

(iii) p eak—conplitude constraint: equation (17) should be satisfied.

To simplify the development, we temporarily neglect the equidistance con-

straint In formulating and solving this optimization problem. It will be evi—

dent subsequently that among the solutions to the relaxed problem are ones

satisfying the equidistance constraint, and these are then solutions to the

fully constrained problem.

.~~~ I 

- 
-- -. _ _

_
~~~~~~~ 

. - 
~~- 

- - - -~~~~-~~~!I~~
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We find for q’ ~ that the best choice of modulator design depends on

the particular values of q,T,g ,g , and s , but whatever values thesemiii max max 
- .

parameters may be , there are only three categories of best design. These

are determined by the conditions

max C 10
~~

-
~~~~

(8
~~~~~~~~

— g2
i

)T] (19a)

1 2  2 1 2  2
(~(g — g 1~)T~ ~~~~~~~~~~~~~ q even

s Cmax (19b)
1 2 2 g~~ 2 2

2q (8mai~8min
)T)

~ 
q odd

i f 1 2  2 q even

S cmax

~~~ (g~~~—g~~~)T,°), q odd. 
- 

(1k)

We say that the “average energy constraint predominates” when (19a) holds,

the “peak—amplitude constraint predominates” -when (1k) holds, and that

“neither constraint predominates” when (19b) holds.

Average Energy Constraint Predominates. We first give an upper bound on

d
2 that holds regardless of which, if any, constraint predominates. Then

we Identify a modulator design that achieves this upper bound when the

average—energy constraint predominates.

Suppressing the common argument t of all entities, we have

(gj—gj)
2 

= 
~~~~~~~~~ 

— 
~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~

I ~~~~~~~~~ + 
~~~~~~~~~ 

-

the inequality holding because (~1—~~~~
)>O for all iC{1,2,...,q).

‘—_ -
-

L -~ -—~~~~~~~ ~~~~~~~~~~ ~~~ ~~



integrating over [O ,T], and dividing both sides by q(q—l) yields

T q q T q  
-

q(q—l) f ~~~~~~ (g~(t)—g~(t)]
2
dt I~~ 5 E [g~(t)— g .]

2
dt , (20)

0 i=l j—1 0

with equality holding if and only if, for almost all t, g~(t) > ~~~~ for

at most one value of I in {l,2,...,q} . Now for any iC {l,2,...,q} and

any tC[0,T}, -

~~~~~~~~~~~~ 

(8~~~~
_

~~j
(t) ] > 0 ,

which yields 
-

g~(t)
_gj(t)[g~~~ + 

_
axç~ 

(21)

with equality if and only if g1(t) 
= g 1 

or g.(t) = We then have

2 2g 2 
-

= 
g 

~~~ (g
1
(t)_(g +g~~~)g1(t)]max miii

+ [1 - 
g

hi
~~g

_ _ ]S~ (t) + g2

÷ f~~max
_8

min~ 2 
~ + 

2
- I g +g ~~~max~min I g +g 

~ 
g~ 8mjn

max miii i. max miii

= 
[

~ inax~~mun
] 

[g~~(t)— g 2
1~ ], (22)

max miii

- ~~
_ :

~~~
__j

~~~~~~
---- 

- - - - 

- -_________

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~



~ --~ _ - - - - ----~~~~~~~~~ - -~~~~-

where the inequality follows by virtue of (21) , and equality holds if and

only If g1( t )  = or g~ (t) = 
~~~~~~~~~~ 

Finally, substituting (22) into

(20), using the average energy constraint (15), and noting the conditions

for equality yields the following lemma.

Leivna 1. Given s as the maximum average signal Counts per channel usemax
and g~~~~<gj(t)<g for tC(0,T] and iC 02,...,q , then

2 1 fl~5X WIn1 23d ~ 2L ~~~~~~~~ 
(

Furthermore, equality holds if and only if both: (a), at any time

tC[0,T], all signals in 0 take on value g
~~~ 

except at most one which takes

on value g ; and (b),max

q T

• ! 
~ 

f  g~(t)dt —

_ 

g2~~T = s .  (24)

Here, condition (a) for equality is simply a combination of the conditions

for equality of (20) and (22) , while condition (b) is the condition for

equality in (15).

A signal set that is equidistant and achieves the upper bound in

Le~mna 1 with equality, and which therefore maximizes the cutoff rate B.0,,

when the average energy constraint predominates , is characterized in the

following lemma .

Lenvna 2. ~~ satisfies (l9a), equality is achieved in (23) by the —

equidistant pulse—position modulation (PPM) signal set

(i—l)T/q < t  -c (i—l+~)T/q -

g~ (t) (25)
otherwise for 0 < t c T ,

S

. . 
- L

— ‘
———-— — — _

~~~~
-
~~

----—- -

__________ — ~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —~~ —- --- ~~~~~~~



I
where

q smax . (26)
~ 2 2

To establish Lemma 2, note that the PPM signal set is clearly equi—

M distant and that condition (19a)is equivalent to c-c l so that condition

(a) in Lemma 1 is satisfied. Moreover, the average number of signal counts

per channel use for the PPM signal set is given by

q T
_* l’c~~~~~(*2 2 LT 2 

2

= •
~: Z...~J g

~ (t)dt 
— 

~~~~~ =

• i=1 0

Hence, from (26), ~ * = ~ , so condition (b) of Lemma 1 is also satisfied.
Consequently, by Lemma 1, d2 for this signal set equals the upper bound in

(23). Also, it is straightforward to verify by direct calculation for

this PPM signal Set and cIl that d2 equals the upper bound. Lenma 2

follows, and we conclude that the equidistant PPM signal set (25) maximizes

R
0~~, 

when the average energy constraint predominates.

Lemma 2 can be strengthened by noting that the equidistant PPM signal

set (25) is the unique signal set that achieves equality in (23) modulo

shifting or splitting of pulses while keeping them nonoverlapping and keeping

the total “on—time” of any g~ equal to •eT/q. This is because condition

(a) of Lemma 1 is satisfied if and only if pulses are nonoverlappung and

because e<i is chosen precisely to use up all the available energy, as

required by condition (b) of Lemma 1.

Peak—Amplitude Constraint Predominates. By this we mean that the ~~ergy

constraint -(15) is not a limiting consideration. We therefore neglect it,

~~~~~~~ ~~~~~~~~~~~~~~~~~~~~
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as well as the equidistance constraint , and consider the problem of maximizing

41
2 
in (18) subject only to (17). The average energy required by the signals

that solve this problem will then provide conditions for dominance of the

peak—amplitude constraint , and among the solutions to the relaxed problem

are ones satisfying the equidistance constraint, and these are then solutions

to the fully constrained problem.

In the Appendix, we derive the following upper bounds on d2 :

½q(q— l) 
~~~~~~~~~~~~~~~~~~~~ 

T, q even (27a)

d
2 c

— 

½ ~~~~~~~~~~~~~~~~~~~~~~~ q odd .

An alternative and simpler derivation for q even is as follows. - For any

choice of g ,  there holds

(g~—g~)2 (g~— g ) 2—2 (g 1--g )  (g~—g 8) + (gj— g ) 2, -

-
~ so that summing over i and j  yields

E E (g —g ) 2 
= 2q 

~~~ 
(g1— g ) 2 

— 2q2 (c—g8)2 ,
i=]. j=]. i—I. -

q -

where c is the centroid c q~~ E g~ • Thus, from (18)
i—i

d
2 

2(q-1)~~ f  E (g~(t)_g5(t)12dt - 2q(q—l)~~ f(c(t)_g5(t)]241t

f  ~~~~ [g j (t)_ g9 (t) ]2
dt , (28)

0 i— i.

I-

• —- — - — -• 
— —

- - 
-
~~~~~~~

- 
~~~~T~~~~~~~— -- 

—- - -—---- 4.~~—-~~ — —



with equality holding if and only if c(t )  = g~(t) for almost all tC[0,T].

Taking g5(t) — ½(Smax+8mun) implies I~ (t)—g5I1 ~~~~~~~~~~ and the bound in

(27a) then follows from (28). This bound holds f or both odd and even values of

q, but it is tight only for q even , and the more precise bound (27b) derived in

the Append ix for q odd is the one that is achieved with equality.

Any set of q equidistant signals G satisfying (17) and achieving the upper

bound (27a) for q even or (27b) for q odd is a signal set maximizing B.
0
.

Signal sets having these properties can be identified for certain values of q

by the following procedure. Partition (0,T] into in equal subintervals, and

define in functions p~ (t)~ i1,2,...,m, that are piecewise constant having a

constant value of 1 or 0 over each subunterval. Then, ~~(t) can be identified

by a binary codeword of length in bits. If we write g~(t) =

it is enough to find q binary codewords of length in whose common Ramming

distance satisfies the conditions in Table 1. The last column in this table

reflects a necessary condition for optimality that follows immediately from

conditions for equality in (Al) that yields the upper bound (27); namely, for all

-
- t C ( 0,T],

- 
(i) for q even , q/2 of the signals take on value g and the remaining

q/2 value

(ii) for q odd, (q—l)/2 or (q+2)/2 of the signals take on value g and .

the remainder g .
miii

This provides an additional check on the otimality of the following signal

set and was an important aspect in our identification of it. For optimality,

however, it is sufficient that the signal set be equidistant and achieve the —

appropriate upper bound (i.e., Hamming distance).

For q a multiple of 4 and such that a Radamard matrix of order q exists ,

q codewords satisfying these conditions are easily obtained by deleting the

first column (all ones) of the normalized Iladamard matrix (10,11]. Prom

this, $ q—l codewords satisfying row 3 of Table 1 with s replacing q can

5, 

_________

— ~~~~~~~~ - _- - - _
~~ -_~~~~ •• -~ -- -- -~~~- ~ - • ~ - - - . _~~••~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

1



be obtained by deleting the codeword of all ones . Also , p ~ ½q codewords

satisfying row 2 of Table 1 with p ~eplacung q can be obtained by deleting

all rows of the normalized Hadamard matrix that have a 0 in (say) the second

column and the deleting the first two columns. From this, s ½q— l codewords

• satisf ying row 4 of Table 1 with s replacing q can be obtained by deleting the

codeword of all ones. Since Eadamard matrices for q 1 ,2, or a multiple of

4 are known up to q 200 except for q 188, this procedure gives an optimizing

signal set 0 for all q<200 except for q = 93, 94 , 187 , and 188. Also infinite

fam ilies of Hadamard matrices are known, for example those for which

for some positive integer k: these coincide with cyclic maximal—length

shift register codes, and they are also a subset of the first—order Reed—

Muller codewords of this length.

We remark that complementation of an optimum signal set yields another

optimum signal set. Also, time sharing of any two optimum signal sets yields

another optimum signal set.

The average energy of these signal sets is easily calculated as follows.

For q even, because, at any time, q/2 signals have value g and the remainder

cliii
,

— 2 2
= 

~~~~~~~~~~~ 
+ g~~~ )T, (29)

which implies

- s Eg 
— g

2
1
T ½(g~~~

_g
~~~)T. (30)

Also, for q odd, at any time, (q+1) /2 signals have value 
~~~~ 

and the remainder

g , SOwax -

+ ½(q+l)g~j~ ]T~ (31)

which implies

— i8-g~~~
T = j~ (g2 —g 2

1
)T. (32)

, -1

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~: •
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This uses less energy than taking (q + 1)/2 signals with value

clax 
and, thus, extends the range of average energies for which this choice

is optimum; namely, the available average energy must exceed that required

for s of (30) or (32), which yields condition (19c).

Finally, the distance d* achieved by these signals that maximize B.0 , ,

when the peak—amplitude constraint predominates is given by

....i.. I cl5X cli]~~~~ 
—

q—l I +~ 
5, q even

L max bminj

d*2 = 
(33)

- 
- 

~±:!~. ç~ max
_8

mun~~;
q—l Ig +g J , q o

I- max miii

Neither Constraint Predominates. If S satisfies (19a) or (l9c), the PPMmax

signal set or , respectively, the Hadamard—derived signal set maximizes R0 , .

Unless q 2  or q 3 , we are lef t with a range of values of s for which a

solution has yet to be identified. This “gap” region is specified in (l9b).

For q 2 or q=3, this region collapses to the empty set, and at the common upper

limit of the range (19a) and lower limit of range (19c), the PPM or Hadamard—

- I - derived signal sets are equivalent and optimum. For q>- 4, we now demonstrate
- - that an optimum signal set results by time sharing the PPM and Hadamard—derived

solutions.

The gap region has strictly positive length if q> 4, and then any point

in either interval (l9b) can be expressed as a strictly convex combination of

the endpoints; that is, for q even and in the appropriate interval (19b),

there exists a unique AC (0,l) such that —

— A (1—A ) 2 2
& (— + ] (g —g )T , (34a)

max q 2 max mm

while for q odd and in the appropriate interval (19b), there exists a

•- unique AC(0,1) such that 
- 

-

:1

- -  • -~~~~~~~~~~~~~~~ 
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max 
= ~2~+ (l

;
X ) ( ~_l)

](g 2 _gZ~~ )T. (34b)

An optimum choice of modulation can now be given in terms of A.

Len~na 3. for q even (respectively, odd) and 5
max in the appropriate interval

specified in (19b), let A be defined by (34a) (respectively,(34b)). Then an

equidistant signal set that maximizes R0,, while satisfying the average energy

and peak—amplitude constraints with equality is: for fraction A of the

interval [0,T], use the “full—width” PPM signal set (25)- with c 1 and T

replaced by AT , and for fraction (1—A) of [0,TJ, use the signal set defined

by the appropriate Hadamard matrix, as discussed in the previous section with

T replaced by (l—A)T. -

Lemma 3 is proven as follows. For an arbitrary choice of ccC(0,l] and

an arbitrary choice of maximum average energy s
~ 

C(0,s ]  allocated to

the interval (0, a T], we have from Lemma 1

q(q—l) 

~~~ 
[g1

(t)— g~(t)
2
dt -c 2 [:~~~~~~~ ]i,max’ (35)

0 i—i j=1

and from (27) -

(l—ctlTci 2

T 2(q—l) ~~~~~~~~~~~~~~ ~ q even
q q (36a)

q(q-l) J ~~~~~~~[gj(t)_ gj(t)J 2dt ~~~~)T(~+l)(g _g )2, q odd

(36b)

Adding these expressiors and using (18), we obtain 

-- ----- -- —-~~~~~- - --— --•-~~--~~~ - . -  
- 

- -~~~~~~~~ -
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2 [: +g~~J51,max 
+ (1—cz)Tq ~~~~~~~~~~~ q even (37a)

d2 - 

2 

~l,max 
+ (l-a)T(g+l) (g -g )2 q odd (37b)

Now, from Lemma 1, equality holds in (35) if and only if both:

(i) at any time t C [0,aT], all signals take on value g~~~ , except at

most one, which takes on value g .  This implies that the average

energy s
~ 
used on (0,aTl is

aT
— 1 q 2 2 aT 2 2

= — E J g (t)dt — 
cl~~

aT 5 
-
~
- 
~~~~~~~~~~

i=l 0

• and 
-

(ii) s s
1 1,max

Thus, a necessary condition for equality in (35) is

<~~~(g
2 —g2 ). (38)l,max— q max mm 

-

Furthermore, the derivation in the Appendix shows that equality holds in

(36a) only if half of the signals take on value and the remainder g .

This involves an average energy usage 
~2 

Ofl [aT,T] of 
—

= 

~~~ 

f g~ (t)dt - g2
1 (l—ct)T 

u ~~~~ )T 
~~~~~~~~~~~~

i=l aT -

Because of the total average energy constraint , 
~l 

+ s 2< s , we then have using

(34a) ,

- p 

~~~~~~~~~~~~~~~~~~ 

— -



r~~’~

— — — A a—A 2 2
• 5i-~- ~~~~~~~~~~ = 

~~~ + —j--) (8max_clin)T
~ 

(40)

For equality to hold in (37a), it is necessary that both (35) and (36a) hold

with equality, and necessary conditions for these are in turn (38) and,

combining 
~l 

8
l,ma’c with (40),

— A a—A 2 2
81,max ~ + r~ 

(gmax
_g

min)T
~ 

q even . (41a)

For q odd, the corresponding necessary conditions for equality in (37b)

become (38) and

8l,max <[!+ 
(a_ A~~(~_l)] 

~~~~~~~ —g
2
.~~)T , q odd . (41b )

We now consider the selection of 8l,m~~ 
and a to maximize the upper- bound

(37a) subject to the constraints (38) and (41a), which are necessary conditions

for it to hold with equality. Because both (38) and (4la) are constraints

on s , we consider each in turn to be dominant in the sense of being more
l,max -

restrictive. The bound (38) is less than or equal to the bound (4la) if —

and only if a> A. Substituting (38) into (37a) and simplifying, we obtain

2(g —g )T
d

2 

~ 2q(q~i) (q
2
—a(q—2)

2
].

Because we are considering q >4, this bound is maximized over a C[A,l] by

the unique choice a A .  Similarly, the bound (4la) is less than or equal

to the bound (38)if and only if a <A. Substituting (41a) into (37a) and

simplifying, we obtain

2 2 ~a(q— 2) + q A (2—q)
d < ~~~~~~~~~~ T ~2(q— 1) 2(q— l) + q

- -  
_ _

— —~~~~ —-- — -~•- — -~~ —-—- — .  ~. ~~~~~~~~~~~~~~
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Again because, q> 4, this bound is maximized over csC (O,A ] by the unique

choice aX . Thus, the bound (37a) is maximized, subject to the necessary

conditions (38) and (41a) for it to be achieved, by taking a —A , and the

corresponding maximum bound is

+ 

~ 
~~~~~~~~~~~~~~ q even. (42)

• But this upper bound is readil7 achieved by the time—sharing of a “full—width”

PPM signal set for fraction A of [0,T] and the Hadamard derived signal set for

the remaining fraction 1—A of [0,T]. Furthermore, the average energy required

by this solution is exactly s .  For q odd , a similar analysis leads again

to the unique choice c~ A and the corresponding maximum bound

~~2 < [a�~. + 
(l_

~ ) (~+1)](g _g )2T, q odd. (43)

Again, this oound is achieved by the time sharing of a full—width PPM signal

- 
• set for fraction A of [0 ,Ti and the appropriate Hadamard—matrix derived signal

set for the remaining fraction 1—A of (0,Tj, and the average energy required

by this solution is exactly 5max’ as before.

IV. Efficient Energy Utilization

Denote by A the count rate due to the signal alone when it is “on”

for any of the optimal signal sets derived in the previous section. Then,

g
2 

= A +A and g2
. = A , where ~ is the count rate due to the noise alone.max s O  miii 0 0

In considering designs for efficient energy utilization, we distinguish three

situations depending on which of A , S , and c are adjustable and whichS wax

are fixed. We seek to identify values of the adjustable parameters so that

- -•- -‘— . - ~~~~~~~~~~~~ 
-- - -- -~~~~~~~~~

— —- p 

- 
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the cutoff rate per unit energy, R
0 fs, is greatest.

1. s adjustable, A 5 f ixed . The value of d2 achieved with the optimal
wax

signal sets of the previous section is shown in Fig. 2 as a function of smax

assuming that A 5 is a fixed constant. Here, 412 is a piecewise linear function

of s with the following parameters:wax

d
~ 

= .~(1_ (l+A5/A0)
½ J
2A
0T (44)

2 
2(q l) [i_(l+A S

/A
O

) ] A
o
T
~ 

q even

d2

2(q—l) 
[l_ (l+A5/A 0)

½]2A0
T, q odd (45)

s~ 2(A
0

/A
5
)[i_ (l+A

5
/A
0
)½]

2 (46)

q even

2 
2 - 

(47 )

2 (A
0
/A )[l—(l+A /A

0
)½]2, q odd.

q —4q+3 
S 5

Using (10), with equality for optimal signal sets, and using the expressions

for d
2 
implied by Fig. 2 and (44)—(46), we conclude that

dR
0~~

/dSmax 0.72(q—l)[(q— 1)+ exp(½d
2)] 1

~(slope) , (48)

where the factor “slope” is 
~~ ~2’ 

or zero depending on which constraint, if

any, .predominates. Thus, dR0 ,,,/ds decreases monotoflically with increasing

5max’ so the signal energy is used most efficiently when is small, where

the energy constraint predominates and where the PPM signal set is optimal

— 
,_
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_
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• and utilizes energy s = s • This situation is analogous to that studied
wax

by Massey (8,9] for the additive Gaussian—noise channel. For s

small, we conclude tha t

R0,,/s 1.44 .%.~~(A
0

/A
5
)(l_ (].+A

5
/X
0
)
½
]
2, (49)

with equality achieved for s 0. Rence,

R0,, ~51.44 .~~~i (A
0
/A )[l_ (l÷A /A

0
)
½

J~~~~ (50)

is an upper bound on B.0,, for any choice of and any choice of modulation with

near equality holding when s is small and for the PPM signal set. Since

for the PPM signal set., S = LTA /q, this means that when A is fixed, the

most efficient energy utilization occurs for narrow pulses, s being selected

as small as practically feasible.

2. A adjustable, s fixed. By a somewhat messy but straightforward calcu—

lation, it is readily verified that dR0 ,,IdA 5 > 0 for s fixed . Thus, R0,,,

and hence R0 , ,/s for s fixed, is a nondecreasing function of A~. Consequently,
- 

the most efficient energy utilization Is achieved by selecting A5 large and,

- therefore, operating in the region where the energy constraint predominates.

This implies using the PPM signal set with as large a value of signal count—

- rate A5 as practical and sufficiently narrow pulses that s cTA
5
/q.

3. s adjustable, PPM signal set with £ fixed. The PPM signal set with a

fixed pulse width cT/q maximizes provided the energy constraint pre—

dcxninates,whichwe assume. For c fixed and s = cTA
5/q, 

we find that

RO , ,(S~ fl eff ) — log
2q 

— log2
( 1+(q—i)exp [— q Ueff

U_ /i~
i
~~

Leff ) 
~ • (51)

‘k _ i -
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where we define

it cn = cA Teff 0

as the “effective” average number of noise counts per channel use, and

where

a ff — 

~~~eff 
(52)

is the signal—to-noise energy ratio. Graphs of RO ,,(S~
Ueff) as a function of

a ff for several values of tteff are given in Fig. 3. These graphs are seen to

increase monotonically with a for each fixed value of n . Thus, aseff eff
• expected, the performance improves systematically for fixed fl ff as the average

signal energy per channel use, s, increases. However, while starting from

S = 0, the performance initially improves rapidly, there is a point of

diminishing returns after which there is only marginal Improvement for further

increases in s. For each tt ff ~ there is an S = s*(fl ff ) such that for all

S O  there holds

RO _ (S
~
iieff

) B.0 
(~~~~~~ff

) 
(53)

This value of S can be found graphically for each fleff by pivottung a vertical

lun~e about the origin (R000 0, aeff 
= 0) in Fig. 3 until it lies tangent

to the graph of 
~~~~~~~~~~~~~~ 

The abscissa of the point of tangency is S*/fl ff .

• Inequality (53) holds because the graph of RO , ,(S~~
fl eff ) lies on or below the

line so constructed for all aeff >O. It follows from (53) that the most effi—

d ent utilization of energy, in the sense - that the cutoff rate per unit energy

is greatest , is achieved when s s*. The dashed line in Fig. 3 is a f i t

I: ~~~~~~



~~~~~~~~ 
—- - -  — - 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _—~- — - -

• of S*/fl ff versus fleff obtained graphically by connecting together the points

of tangency described above. From this f it, we find for the range of average

noise counts in the figure that s* and fleff are approximately related by

the following power—law:

~* 2.349 
—0.452 (54)

eff

This is shown as the solid line in Fig. 4. A measure of the range of energies

nearly as efficient as s* can be determined for each fleff from the values

of °eff — Shfl ff in Fig. 3 for which R0 , ,(S ,n ff ) is close to , say within

10% of , the ordinate of the line of tangency constructed as above. Values

of s within the dashed lines in Fig . 4 satisfy this 10% condition; Fig. 4

implies that for maximally efficient energy utilization s should be kept within

• about ± 2db of 5*~

V. Effect of Finite Output Quantization

The cutoff rate decreases from B.0 , ,  as the dimension, q ,  of the output

alphabet decreases. This degradation is greatest for a binary input alphabet

(q 2) when a’ — 2, which correspond s to making bit by bit decisions without

any coding. For a Gaussian model , Massey (8 ,9 ] concludes that choosing q 2

results in a quantization loss of 2.04db ; that is, in the efficient range of

energy utilization for the Gaussian model, the energy per channel use must be

about 2db greater for q =2 in order to achieve the same cutoff rate as when

q’ —~~. Moreover , Massey also concludes that for q = 8, there is virtually

no quantization loss. The degradation for the Poisson model is somewhat

smaller than that found by Massey when 55
~ eff 

140 and is of about the same

order when ti ff 1.

Suppose the input and output alphabets are X (0,1) and V = (0,1),

• - so that q q  =2. We adop t a binary pulse—position modulation format with

_ __ _ _

--- ~~~~~~~~~~~~~ ~~~~ ~~~~~~~~~~~~~~~~~ ~~~~~ ~~~.
_______ --a- -•



pulses of duration £T/2 because this maximizes R
0 when the energy constraint

predominates. For this choice, each symbol interval is divided into two

equal subintervals, and output letters are generated according to: “produce

1 if n(0,cT/2]< n(T/2,( 1+e)T/ 2], otherwise produce 0,” where n[0,cT/2] and

n(T/2 ,(l+e)T/2] are the number of points observed in the first and second

signalling interval, respectively. Here, n(0,cT/ 2] and n(T/ 2,(].+c)T/2]

are independent Poisson random variables with mean parameters +(
f~

/2)

and ll ff /2 , respectively, when 0 is the input letter and fl ff /2 and

+ (~~f~/2). respectively, when 1 ts the input letter. As in the previous

discussion, s and fleff are the average number of signal counts received per

channel use and effective number of noise counts received per channel use.

It is straightforward to conclude for these assumptions that the cutoff rate

• is given by -

R0 q ~=2 •= 1 — log2(l+2(p(l_p)]
½} , ( 55)

where p is the binary error probability associated with producing an output

symbol 1 (or a 0) when the input symbol is a 0 (or a 1, respectively). This

error probability is given -graphically for certain va].ues of fl ff and a range

of S by Pratt (4, p. 209: identify 
~
ieff 

21
~H,B 

and 8119I S B
].

The values tabulated in Table 2 were obtained as follows: (1) ~~;* is

obtained from (54) for each fleff (3), p* is the value of p in (55) such

that O~ ,p*11 and RO q ~~2 
= R~~,,; and (4), s is obtained by interpolation

from the graph given by Pratt. Thus, s* and s of the table yield the same

cutoff rate for q =c~and q~ =2, respectively. To within the accuracy that

the interpolation step can be accomplished, we conclude that about 1.5 db

more signal energy is required with hard decisions than with infinitely soft

decisions for it in the range of 5 to 40 counts per channel use. 

_ -—-
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VI. Effect of Input Alphabet Dimension

- Pot an input alphabet of dimension q, q’ = ~, and an average energy
constraint that predominates, q—ary pulse—position modulation maximizes

the cutoff rate. We now consider the effect of q in each of the three

situations identified in Section IV.

1. Sma adjustable, A fixed. From (48) and (49), increasing q from 2 to

implies that the greatest rate per unit energy that can be achieved

increases by a factor of 2. Moreover, examination of graphs of R0~,,Is for

R0, ,given by (10) with equality and with d2 = s1~, 
where is given in

(46), shoes that the range of values of S for which the approximation (49) holds

closely increases as q increases; in other words, the range of efficient

signal energies is extended as q is increased.

• 2. A adjustable, S fixed. For A5 large and the PPM signal set, we see from

Fig. 2 and (46) that d
2

- 2s. Then, -

R0 , ,Z log2q — log2(l+(q—l)e~~] - ~~~. (56)

Hence, f or large A
51 R0, ,/ ~~<...(q_ l ) I q and, therefore, the largest rate per

unit energy increases by no more than a factor of 2 as q increases -from 2 to

3. s adj ustable, PPM signal set with c fixed. A graph of (51) as a function

~ — 16 and various values of q is shown in Fig. 5. For each q,

there is a corresponding signal energy that is most efficient; this can be

found graphically in the same manner as before, as indicated by the lines of

tangency. These.efficient energies depend upon q; very roughly from the

graphs, we find that (s*/l6)q ]., so that the most efficient signal energy

decreases as q increases. This implies a significant potential improvement 

~~-~~~ -~~~~~~~_ _ _ _ _ _  
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itt performance at low signal energies by the use of a large input—alphabet

dimension q and q—ary pulse—position modulation. These observations appear

to hold for other values of fleff as well.

VII. Effect of Random Detector C~iin

Let {M(t); t>0} be a compound Poisson counting process defined by

N(t)
M (t) ~~ u ,  (57)

n=O ~

where {N(t); t>0} is the Poisson counting process defined above, u
0
0, and

{ u ;  n=l, 2 , . . .}  is a sequence of independent , identically distributed random

variables each having an integer value greater than zero. Here, (N(t); t>O}

•nodels pri tary photoelectron conversions, and it models the number of secondary

• electrons appearing at the detector output due to the nth conversion . This

random gain is an important effect encountered, for example, with avalanche

detectors used in optical—fiber communication systems.

In considering a digital—data communication system in which measurements

are derived from {M(t); t>O}, it is of interest to know the cutoff rate

for infinitely fine quantization. As before, this quantity then places an

upper limit on the per formance for any receiver employing finite quantization,

such as an “integrate and dump” receiver (12,13] in which M(nT ) — M[(n — l)T]

is used to make a decision about the nth transmitted symbol.

We find R01,, 
to be identical to that in (6) , so random detector—gain

neither degrades nor inhances the cutoff rate for infinitely fine output

quantization. This is because the distribution of the random gains is

unaffected by the choice of transmitted signal on our model and can be verified

mathematically by the following steps. First, we write the summation over k 

- , -~~~~~ -

— — — ~~~~~ 2 — ~~ 

—
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in (3) as f ( i,j) E~ tA~~~ (Y)11 where

A
11

(Y) = Py~x~~IXj)h
lPy1x

C1kj1 (58)

is the likelihood ratio for symbol X~ relative to symbol X~ and E~() denotes

a conditional expectation given X~. As the output quantization is refined,

this becomes

f(i,j) = E . [A ~~~~~ (M (t); Oct<T)], (59)

where A~~~(N(t); 0ct<T) is given by the ratio of the sample function densities

[18] of {M(t); O-ct<T} for symbols X~ and X~. This likelihood ratio is found

not to be a function of the random gains, and the assertion follows.

A consequence of this assertion is that many of the conclusions reached

• in preceeding sections also apply in the presence of random detector—gain.

At the present time, there are too few published results on the binary error—

probability f or an integrate—and—dump receiver for us to examine the potential

benefits of employing finer output quantization, bitt this is a matter of

some practical interest for fiber—optic systems.

VIII. Polarization Modulation

Suppose that binary, orthogonal polarization modulation can also be employed

in the optical modulator of Fig. 1 in addition to temporal modulation. Then the

scalar field E(t,r) becomei.~ a vector (E1
(t , ) ,  E2(t,~)) in which one component

H is the 0
0 field and the other one the 900 field. A polarization decomposition

of the received field followed by direct detection in each channel then results

in two independent point processes, which we label N1
(t) and N2(t), O< t - .cT.

Assume that when the input codeletter is X
1C 

(X
1~
X
2~•••~

X
q
) that the count

rate for N
1(t) is

i

I -
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-~~~~~~ p1

— s1~ (t)  + A c, — g~~ (t) (60a)

and for N2 (t) is

x 2~(t) s~1
(t) + g~~(t). (60b )

Following the procedure used in the last sect ion, as q - ~-—- , the sum over k

in (3), call it f ( i ,j ) ,  becomes

f (i ,j) — E~ {A~~~~(N
1(t).  N2

(t ) ; O lt I T ]

2
— exP(—½d 1~). (61)

• where -

T
2 

2
d
1
~ — J (tg

1~
(t) — g1~(t)] 2 + [g2~(t) — g2~ (t) ] )dt. (62)

0

The steps leading to (10) remain unchanged with (62) replacing (8).

We now assume that each of the signals in — CE11(t , ) ,  E12(t , ),...,E 1 (t ,~ )~
and S2 = {E 21(t , ) ,  E22 (t , ),... , E2q (t~;)} satsify the average energy and peak—

amplitude constraints in the section about modulator design based on B.0 , ,. Then,

we have the following optimization problem: select signals in

— {g11(t) , g
12

(t),... ,g1 (t)} and G2 
“ ( g 21(t) ,g 22 (t),. . ., q2 (t )} to maximize

d2 
- (q(q-1)]~~ 

~~~~ E j
T 

((g1~(t)-g1~(t)]
2 + (g2~(t)-g2~(t)]

2)dt (6~
i—I. j =l 0

subject to the following constraints:

::~~~ ~~i i : _ ~~~~~~~~i~ 
_~:~~~~~~~~I~~J



(i) the equidistance constraint: the quantities in (62) should be the

same whenever i~j .

(ii) average energy constraint: (15) should be satisfied for both signal

sets and

(iii) peak—conplitude constraint : (17) should be satisfied for both

signal sets G1 and G
2

.

By paralleling the development leading to Lemma 1, we have the following.

Lemma t: Given ; as the maximum average signal counts per channel use inmax

each polarization com ponent and given (17) for both signal sets and G2, then

2 —~~~~~- 
m n  s . (64)d < 4 ig  + g I max

— max minJ

Furthermore, equality holds if and only if both: (a), at any time tC(0,T], —

all signals in and G2 take on the value g~~~ except at most one in and

one in G2 which takes on value and (b),

- 

i 
~~~ f 

g~~ (t)dt — g2 T r

J r  

i—i O 
-

both both k=l and k=2.

A signal set 0 = G1UG 2 that is equidistant, in the sense that the quantities

in (62 ) are the same whenever i~j ,  and that achieves the upper bound in Lemma 1

with equality, and which therefore maximizes R
0~~, 

when the average energy con—

straint pred ominates in each polarization component, is characterized in the

following lemma for q even.

Lanma 2: If q is even and satisfies (19a), equality is achieved in (64)

by the following signal set: for 1- < i < ( q / 2 )  and j  = i + (q/2) ,

- 

_ _ _ _ _ _  

4
— 
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, (i—l)2T/q<t -c (i— 1+c)2T/q

sli(t) — g~~(t) = 
-

g , otherwise for 0 c t < Twin — —

g~1(t) 
= , 0-ct<T .

where e is given in (26) .

The verification of Lemma 2~ is straightforward paralleling the yen —

fication of Lemma 2. It is interesting to note for q=4 that this signal set,

( then called “quatranary pulse modulation,” is used in the one gigabit per

second optical communication system reported by N. Ross, et al. [15].

t
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TABLE 1. Code Constraints

I~ iniwfng EP ~~~~~~~
t)

m Distance i—i

even - -1  %q ½q
- even 2 (q— 1) q

odd q ½(q+l) l~(q—l)

odd q q+l J~(q—l)

I

I 

•

______________________________ _________ ____________________ ~I ~~~ 
I
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~ 
- TABLE 2. Degradation Due to Finite Quantization

‘~eff ~~ R~~,, p* s lOlog(S/S*)

1 2.35 0.53 0.038 3.8 2.09

- 5 4.86 0.65 0.020 7.0 1.58

/ 10 6.65 0.68 0.016 9.25 1.43

20 9.10 0.70 0.014 12.7 1.45

40 12.45 0.71 0.013 16.9 1.33

_ 
_ _-- 
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APPENDIX (derivation of (27))

Let Q. = {l,2,...,q} and define 3* by

m x  

k f E Ig .( t ) -g~ (t )] 2dt. (Al)
8k ~ CQ. c,

Then

max max
J*IT tC[0,T] ~~(t),k~~2 

~~~~~~~~~~~~~~~~~ 

(g~(t)— g~(t)]
2, (Al)

with equality if and only if -the integrand in (Al) is a constant independent

• of t . Thus, we consider the problem of choosing q real numbers 5k’ kCQ to

maximize

1(g) = 
~~~~~~~ 

(g1—g~ ) 2 
- (A3)

i, j CQ

subject to g~~~~< g , , iEQ. A necessary condition for g~, iCQ. to minimize

—I(and so maximize I) is the existence of 2q real numbers u~~> 0 , ~~~~~~~~~~~~~

i=l ,2,... ,q, such that [16] l:

— 
L(g*,~i ,v ) <  L(g,~ , v ) ,  for all g in (A4)

-cg implies ii .~ = 0, (A5)

g~ ~~~~~~~~~~ 
implies = 0, - - - 

(A6)

where the Lagrangian L is defined by

L(g,u, v) = — (g —g ) 2 +Eu .(g .-g ) +E~jj (g 
~ 

-g~). (A 7)
- i,j CQ ~ i i€Q. ’ 1 max m n

t

~~~~~~~~~~~~~~~~~ 
_

~~~~
_

~
_j
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- .  Equating to zero the derivative of L with respect to g
1
, we obtain for icQ.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (A8)

where c~ q
1 

~~~~
g
~• 

From (AS) and (A6) , if g <  g~ < g ,  then

~i = v 1 0, and

= c*. (A9)

Thus, each g* takes on one of three values: g ,g , or c*. Let there be
i mm max

n , it , and q — n — n of these, respectively. Then, from thewin wax win max
definition of c*. we have -

q cs” n g + it g + (q—n —n )c*win win wax max win wax

or - CAb )

c* = ( n g .  + n  g )/ (n + n  ).win mm wax max win wax

Furthermore, -

— g~) 2 2n .~n 5~(g
_g
~~~)

2

+ 2n (q—n - — n )(g _c*) 2 (All)max win max max

+ ~~~~~~~~~~~~~~~~~ (c* -

Substituting (AlO) into (All ) and simplifying, we obtain

I(g*) L(g*,~i,v) ~~~~~~~~~~~~~~~~~~~~~~~~~~ , (A12)

and this is to be minimized subject to 0 < n + n <q, n and n being
— win waX win wax

non—negative integers, which is the same as the minimization of ( lIf l
mim

) + ( lf f lwax)

with the same constraints. The solution to this is: for q even, n n q/2;m m  wax

_ _ _ _  _ _ _ _

~

-
-

~ 
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and for q odd , either n~~ — (q+l)/2 and = (q—l)/2 or n~~~ 
(q—l) 12

and n5~~ 
= (q+1)/2. Thus ,2 for q even, we have

I(g*) ½ 
2~~~~~~~~~~2 (Al3)

and, for q odd,

I(g*) = ~~~~~~~~~~~~~~~~~~~~~ 
(A14)

The corresponding upper bounds on d*Z 
= q~~(q_l)3* are, from (Al) ,

~~~~~~~~~~~~~~~~~~~~ q even

d 2 
~~. 

(AlS)

q odd.

L 
-

i _ i
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FOOTNOTES -

1This is a necessary condition for a reguiai’ point g* to minimize —I subj ect

to < g 1 < g ,  i C ~~. Since g1 — < 0  and — g1-c 0 cannot be

simultaneously active (that is, satisfied with equality), it is evident that

the set of gradient vectors of the active constraints can include ei (the

i—th natural basis vector) or — e~~ but not both (and possibly neither) . Thus ,

the set of gradient vectors of the active constraints is linearly independent

for any g, and any g is therefore regular .

2Because this is the only solution to the necessary conditions (A4)—(A6),

either it is the maximum of I or none exists. But , by the Weierstrass theorem,

the continuous function I defined by (A3) achie-:es its maximum on the compact

subset of ~~ defined by ~~~~~~~~~~~~~~ Thus, it is, indeed , the maximum.
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FIGURE CAPTIONS

Figure 1. Optical Digital—Communication System - -

• Figure 2. d2 for Optimal Signal Sets
-
~ Figure 3. Cutoff Rate as a Function of Signal—to—Noise Ratio

Figure 4. Optimal Signal Energy as a Function of Noise Energy Per Channel Use
I 

Figure 5. Effect of Input—Alphabet Dimension on Cutoff Rate
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Reprint of Paper:

“A Decentralized Shortest Path Algorithm ,” Jeffrey N . Abram and Ian B.

Rhodes, Proceedins of the Sixteenth Allerton Conference on Communica-

tions , Contrcl and Computing, University of Illinois , October 4-6 , 1978 ,
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(Pages 163 - 170)
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A DECENT RAL 1Z ED SHORTEST PATH ALCOR 1THM

JEFFREY N. ABR~~1 and IAN B. RHODES
Department of Systems Science and Mathematics

I Washington University , St. Louis, Missouri 63130

- ABSTRACT

A decentralized algorithm for determining the shortest paths in a net—
work is presented. Using information received only from neighboring nodes ,
a sequence of eidditions and comparisons is performed at each node in the
network. Convergence to the optimal solution takes place in finite time.

I. INTRODUCTION

- - A common problem in graph theory is that of finding the shortest paths
between all pairs of nodes in a network, and numerous algorithms exist for
its solution, e.g. [1], [2], [3]. Nearly all of these algorithms are de-
veloped under the presumption that the computations will be performed by a
decision maker with knowledge of the entire graph topology and of all
branch lengths. The implementation of algorithms of this type can be
thought of as requiring each node to transmit distance and topology infor-
mation to a central controller, who is then responsible for solving the

- • problem. After the shortest paths have been det~rmined , the controller
will send the appropriate routing information to each of the nodes. In a

• • large network this could involve a significant amount of communication.
Additionally, for some netwDrks establishment of a central controller may
be expensive, infeasible, or undesirable from a security or reliability
viewpoint.

The purpose of this paper is to present a decentralized shortest path
algorithm in which each node computes its shortest distance to each other
node , while requiring communication only with its adjacent nodes, thus
eliminating the need for a control center. This algorithm does not arise
from any new concept; it is based primarily on a shortest path algorithm of
Ford and Fulkerson [4]. In a similar spirit to the modifications made by
Lau , Persiano and Varaiya [5] to a similar algorithm for the maximum flow
problem, the Ford and Fulkerson algorithm is modified and reinterpreted in
order to extract and emphasize its localized information requirements.
Very little topological information is needed . Each node needs to know
only which nodes are attached to the incoming branches , which are attached
to the outgoing ones , and the lengths of the links to the outgoing nodes.
A node sends information only to its incoming nodes . For each ultimate
destination , a node calculates an estimate of the shortest path via each of
its outgoing links ; the smallest of these is taken to be its estimate of
the shortest path to that destination. All of these approximate shortest
distances will have become true shortest distances by the time the alga— - -

rithm converges. Convergences is guaranteed in finite time, even if the
algorithm is implemented by the nodes of the network in an asynchronous
ma nner. .

II. THE ALGORITHM 
-

Consider a directed graph consisting of N nodes , denoted {l ,2 ,.. .N) ,
and a collection of arcs , A (( i ,j) : i ,j C N and there exists a direct
link from I to j ) .  To each arc (i , j) c  A is associated a length L(i ,j).
These lengths could represent physical distance , time , energy , money , or
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any other quant ty suitable for the network of in terest .  The lengths are
unrestr icted in sign , but the sum of the lengths in any closed loop of the
network is assumed to be positive . Also , for every 1CN def ine

1(i) = {j : (j,i)E: A).
3(i) = {j : (i , j)€  A) .

We will refer to 1(1) as the set of incoming nodes to I , and J(i)  as the
set of outgoing nodes from I. Each node maintains a matrix of shortest
distances to each ultimate destination via each outgoing branch. In Fig. 1,
d(i ,j ;k) represents the “current shortest distance” from i to j ,  given that
k must be thc next node along any path considered , - -

d(i ,j) = mm d(i,j;k),
k

n(i ,j) i s-t h e  next —node on the path that achieves the distance d(i ,j).  Row
i is crossed out because it would represent-distances from i to i tself .
For any -i  ~ 3 (1) , j  ~ i, column j is crossed out because no direci . link -

exists from i to j .
- Initialization of the matrices requires only local topological infor—

mation. Each node i begins by crossing out row I and all appropriate col-
umns , as discussed previously. The diagonal elements represent direct link
distances to other nodes . Thus , every diagonal element which is not
crossed out (viz., those in the columns of the outgoing nodes) is assigned
the length of - the arc from i to the ~iven outgoing~node. Assume Z(i,j) =M ,
a very large number , whenever (i , j )$t  A. Then in -column I , d(i,j) = L(i,j)
and n(i , j )  = j .  In other words , since direct paths are the only ones known
at this time , column i, which consists of the shortest paths to each desti—
nation based on information received to date , initially contains the
lengths of the direct links to each node. Note that whenever d(i,j) = N ,
this indicates that no real path from i to j  han yet been found . (N should
be treated like ~~~. N + d = N for any “real distance” d~ )

Now, for purposes of analysis, imagine stacking the N X N distance
matrices in order, one above the other, to form a distance cube with the
matrix of node 1 at the top, and that of node N at the bottom. The basic
idea behind the algorithm is the following. Suppose that node i makes a

• change (this includes the initialization step) in some d(i,j) component in
column i. The only distances that are directly affected by this change are
the distances to j ,  via i, for each of the incoming nodes to i. The dis-
tance cube is arranged In such a way that -these affected elements are those
that are not crossed out and lie along the vertIcal line that passes
through d(i , j) .  That is , information~ transmission is purely vertical.
Thus , distances to other nodes are received from the set of outgoing nodes ,
making it possible to calculate distances via these nodes .

More specifically, at each node I the algorithm is begun by initializ-
ing the distance matrix.  Each distance in column i must then be transmit-
ted up and down the corresponding vertical line. Node I now does nothing
until a new distance, say to node k , is received from an outgoing neighbor
j .  To ca lculate  the distance to k via j ,  the d i s t ance  received from j must
be added to the direct distance , ~C(i ,j ) ,  from I to j ,  which can always be
found in the (j , j )  element of matrix 1. This sum is the new d(i ,k; j )  and
replaces that stored in the (k ,j) element of node i’s matrix.  If it is
larger than d(i ,k) ,  node i does nothing because a better path has already
been found . If it equals d(i ,k),  J can be included in n(i ,k) because there
is a tie for shortest path . If it is less than d(i ,k) ,  it becomes the
“current shortest distance” from i to k , so in the (k ,i) element of this
distance matr ix , node I replaces d(i ,k) by d(i ,k ; j) ,  and n(i ,k) by ~, and
transmits this new distance along the vertical line through his (k ,i)
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element . The a lgor i thm continues in t h i s  manner un t i l  no more changes can
be made. At this point , each node wi l l  know the shortest  distance to each
dest inat ion (or that no path exists , which will be ref lected as a shortest
path l ength ~‘I) ,  the next  node in the path - that  achieves this  distance , and
the shortest distance Via each a l t erna t ive  outgoing node.

Observe that in any given node ’s d is tance  mat r ix  the operations in any
row are self—contained and independent of those In any other row: the
initialization step and each subsequent addit ion and comparison operation
involves only elements in a specific row . This means that the operations
performed by a given node for one u l t imate  destination are independent of
those for any other ul t imate  dest inat ion.  It has also been noted that in
the distance cube constructed by vert ical ly stacking the individual dis-
tance matrices , the only communication takes place along vertical lines .
This reflects the fact  that the information t r ans fe r  concerning one parti-
cular ultimate destination is independent of that  for any other. Together ,
these observations mean that both information t ransfer  and addition—compar—
isons are independent from one ultimate destination to the next .  In the
di stance cube , this means that the vertical “slices” corresponding to each
fixed ultimate destination are self—contained in so far as both communica-
tion and addition—comparison operations are concerned . This decomposition
property is the basis for our proof of convergence in the next section. It
should be emphasized , however , that the topological information required to
construct and update each of these vertical slices is ~~~~ localized. In-
deed, interpretation of the algorithm for these vertical planes is closely
related to the “centralized” Ford—Fulkerson algorithm. - What is important
for our purposes is that while the decentralized nature of the algorithm is
exhibited by separating the distance cube into horizontal slices, conver-
gence is most easily proven by thinking of the cube as being separated into

• vertical slices that are self—contained and for which convergence can be
proven separately and individually. Clearly , the two are equivalent since
they are simply alterative decompositions of the same distance cube.

111. CONVERGEN CE OF TILE ALGORITHM

The convergence of the algorithm will be proved , by induction, for an
arbitrary vertical slice. Since the algorithm can be applied independently

• to each vertical matrix , convergence for a vertical slice implies conver-
gence for the entire distance cube. Consider the v.ertical matrix composed
of all of the row j ’s,i.e. corresponding to ndde j  being the common ultimate
destination. This matrix will take the form given in Fig. 2. Row ~ is
crossed out because node 3 is not interested in distances to itself. As an
example of the fact that arcs may not exist between all pairs of nodes , the
-(1,2) element has been crossed out , indicating that in this case the graph
~ontai.ns no direct link from node 1 to node 2. Each diagonal element con-
tains the current shortest distance to destination 3 and the next node in
the corresponding shortest path. Distance changes in any diagonal element
will be communicated th roughout the corresponding column.

Suppose 3 is an isolated node , so that no node has a path into 3. Then
- ) - each diagonal element will Initially have d(i ,j) N. After these M’s have

• all been transmitted, all distances in the vertical matr ix  will have the
value N , no further  changes can be made and the algorithm stops . Thus, the
final matrix does indeed indicate that no node can find a path to 3. Now
suppose that at least one node has a path to 3. De fine

S(tn) = (1. : 3 a shortest path from I to 3 containing exact—
ly m a r c s ) -

• Since for some node at least one path exists to 3, an optimal path exists.
By the Principle of Optimality , the last link in this path , say (k j ) ,  must
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be a shortest path from k to 3. Thus k € S(l) and S(l) is not empty . The
• diagonal element corresponding to each node In S(l) will initially contain

the direct distance to 3. By the definit ion of S( l ) ,  these distances are
optimal. At some t ime , T(1) , each of these distances will haye been trans—
initted throughout its column, and each of the columns corresponding to the
nodes in S(l) will now be optimal . In general , define T(in) to be the time
at which each node in S (m) has transmitted its true shortest distance to 3.
Now assume that at time T(m) , the columns associated with the nodes in

• S(1) 0 S(2) U ... U S(m) have been optimized. By the Principle of Opti—
mality, for each node in S(m+l) , the shortest paths to 3 with rn-I-]. arcs
must all involve going f irst  through a node in S (m) . Therefore, at time
T(r) , after each of the nodes in S (m) has transmitted its shortest distance,
each row corresponding to a node in S (w+-l ) will have the shortest distance
to 3 in one of its S Csi) columns. Since the distances in each ~61 these row-s
are actual distances, they must be greater than or -equal -tc ~~~ shorte~ t dis—-
tances to j .  Thus , af ter  comparisons are performed , the diagonal elements
in the S(m-Fl) rows will contain true shortest distances to 3. These dis-
tances will be transmitted , and at time T(mi-l) , the columns corresponding
to the 5(1) U S(2) U ... U S(m-fl) nodes will all be optimal . The only
fact still to be proven , is that the algorithm stops. Let in’ be the sinai—
lest integer such that S(l) U S(2) U ... U S (in ’) contains all of the
nodes In the graph . 

- 
The existence of such an integer is guaranteed by the

fact that m ’ cannot exceed N—i , which is the maximum number of links pos-
sible in any shortest path. Obviously, at time T(m’), every column in the
matrix will consIst entirely of optimal distances . At ’ this point , the a].—
gorithm must stop .

In order to calculate an upper bound on the number of operations re-
quired , the algorithm is modified to operate o n a  synchronous basis . The
event—driven nature - of the original algorithm, i.e. sending new distances as
soon as they are calculated , is quite convenient for the nodes using the
algorithm. However , this characteristic makes it diff icult, if not impos-
sible , to bound the number of operations . So we assume instead that nodes
are forced to take turns , being allowed to transmit once every N units of
time. Define a triple operation to be the sequence of performing an addi-
tion , a comparison , and a replacement If necessary . Again , consider an
arbitrary vertical slice of the cube. During the f i rs t  cycle of transmis-
sions , the distances in each of the N—i diagonal elements will be propagat—
ed , and each will cause at most N—2 triple operations. At the conclusion
of this cycle, at least one column is optimal , and does not enter into
future calculations. During the second cycle , at most N—2 diagonal elements
will transmit changes , so a maximum of (N—2) (N—2) triple operations are per—
-formed during this cycle. The upper bound for total operations for one
vertical matrix Is given by -

(N—2)(N—1) + (N—2) (N—2) + ... + (N—2) = -
~~
. N (N—1) (N—2) -

• Therefore, the entire distance cube will be optimal af ter  at most
.~~N’2(N— fl (N—2) triple àperations . This is an order of magnitude larger than
the algorithm in Hu (l ] ,  but there are other considerations. The calcula— 

- - -• t ions are shared by all of the nodes of the network , and each node does
approximately the same amount of work as a central controller would . The
prindlpal advantage of the algorithm is that each node computes its own
Shortest distance matrix.

IV. MODIFICATIONS APD EXTENSIONS

Practical implementation of the algorithm will ob #iously d i f fe r  some—
what from the form given above , which bar . been chosen with ease of presenta—
tion in mind . Construction and maintenance of the entire N X N distance
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mat ix by each node would be ine f f ic ien t .  Storage space should -be allocated
only for the columns corresponding to the set of outgoing nodes , as well as

• the column containing the “current shortest distances” and “next nodes” .
The distance cube cannot be constructed by any single node because that
would requi re knowledge of the full  topology of the network, so in formation
transfer must be handled d i f feren t ly. In the distance cube model distances
are propagated vertically, but these distances are ignored whenever the
vertical line passes through a crossed—out element. Those elements along
the line- which are not crossed out are precisely the set of incoming nodes.
Thus , when ’ a node I has a new distance to be tran smitted , he sends it only
to the nodes’ 

3 -C 1(1). The message sent must include the identity of the
sender , the name of the destination to whom the distance has changed , and
the new distance to that destination. The addition—comparision operation
remains unchanged.

An additional topic of interest is topological changes in the network .
A problem arises when a topological change causes one or more shortest
paths to get longer. This can occur when an arc length increases- or---ijhen
there is a breakdown in a node or link. It is cruci,~l in the convergence
proof that when a d(i ,j ;k) assumes the value of the true shortest path from
i. to j ,  It must be the smallest distance in row 3 and d(i , j)  will be as-
signed this optimal value . It is the propagation of these. true shortest
distances which guarantees the convergence of the algorithm. Fix an ulti-
mate destination 3 and consider the corresponding vertical matrix. Suppose
a topological change occurs , and some shortest distances increase. For the
new topology , we can construct the sets S’(m) , which may differ from the
sets SCm) . However, the d(I ,j;k) ’s in some rows may no longer be valid;
they could be smaller than real distances to 3 if they correspond to paths
affected by the topological change . Thus, in the convergence proof , there
is no guarantee that when a true shortest distance enters a row , it will be
smaller than the other distances in the row. It is possible that the al-
gorithm will converge in some such cases, but a result along these lines
has not yet been proved. -

On the other hand , if a topological change decreases some shortest
paths, while none increase, convergence can be proven. Suppose the change
occurs , and consider vertical matrix 3. Define the sets S’(ui) for the new
topology . Since the nodes directly affected by a topological change will
know about this change immediately, the distances in column 3, i.e. the
lengths of the direct liTiks into 3, will be correct Immediately after the
topological change . In particular, these direct distances will be in the
rows of the S’(l) nodes . The other distances in each of these rows will
either be actual distances, or will be larger than actual distances. There-
fore , the dis tance in column 3 will be the minimum in each S’ (1) row , and
will be assigned to the diagonal element of the row. Then at time T’(l) ,
the S’(l) columns will be optimal . The same argument Is valid in the in—
ductive step of the convergence proof.

V. CONCLUSION

A decentralized algorithm for finding shortest paths between all pairs
of nodes in a graph has been presented. Each node requires only local
topological information . All communication in the algorithm is between ad-
jacent nodes . The algorithm can be implemented esynchronously, an advan—
age in networks where the individual nodes have d i f ferent  processing capa-
bilities. The algorithm may require more operations than a centralized
scheme, but the calculations are divided up among all of the nodes in the
graph . There is also the unanswered question of convergence of the algo—

• rithin a f t e r  certain topological changes .’ However , m9st importantly,  the —

algorithm finds all optimal paths in the network, while giving the users
the advantages of decentralized topological and information requirements.
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d(i .N;N)

Hg.  1. Di s t a nce  m at r i x  for  node  i.

NEXT SODE

1 d(i ,j) X ~~~~~ d(1,j;j) d(I.j;N)

2 d(2 ,j; 1) d(2 .j ;j) d(2 ,j ;N)

_ _
_

_ _ _

N d(N,j; 1) d(N,j;2) d(N,,~;J)

Fig. 2. VeTtital “slits ” j.
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QUA14TIZAT:ON LOSS IN OPTICAL CO~DflJ NICA Tj ON SYSTII- (S5

• DONALD I.. SNYDER and IAN S. RHODES
Was hington University
St. Louis, Missouri 63130

ABSTRACT

In a digital co~snunLcation system sisploy lug an optica l carrier
and direct detection and having five to forty dark—current counts per
channel use, about 1.5d b more signal energy is required with bard
decisions to achieve the same cutoff ra te as with infinitely soft
decisions.

This research was supported- by the National Science Foundat1o~ under
Grant ENG 76—11565 , by the National Institutes of Hea lth under Research
Grant RR00396 from the Division of Re search Resou rces , and by the Office
of Naval Research under Contrac t N00014—76--C--0667 .

.

364 -

- - - - -

~

-

~ 

-~~~~~~~-

-

~~~ ~~ 

-

- - — - 

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

~~~~~~~~~~~~~~~~~~~~~~ - -~~~ -~-““--- - —~-~~~ - .‘~~~~~~“~~~~‘ ‘  

~~~~~~~~~~~~~~~~ — —



— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-

— 173 —

APPENDIX 7
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SESSION F2 - -

•1

SOME LMPLICATIONS OF THE CUTOFF RATE CRITERION FOR CODED ,
DIRECT DETECT1°r4, OPTICAL COMMUNICATION SYSTEMS, Donald

L. Snyder and Ian B. Rhodes (Washington University, St. Lo~.tis, 
-

M~.ssouri 63130). The cutoff rate is derived fo: a digital communication

system employing an opt-tcal carrier and direct detection. The
• coordinated desi gn of the optical modulator and demodulator is then

studied using the cutoff rate as a performance measure rather than • 0
the more conimonly employed error  probability. The best choice of
optical modulation is identified for various relationships between peak

amplitude and average energy constraints on the transmitted optical -

field. When the average energy constraint is predominant, pulse
position modulation is shown to maximize the cutoff rate. When the
peak amplitude constraint is predomina nt, Hadamard matrices can be - •
used to define an optimum choice of modulation. Problems of efficient

energy utilization, choice of input and output alphabet size, and the
effect of random detector gain and addressed. - .
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