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SOME EXAMPLES OF COGNITIVE TASK ANALYSIS
WITH INSTRUCTIONAL IMPLICATIONS

James G. Greeno
University of Pittsburgh

ABSTRACT
Analyses are described of knowledge structures used to understand

and solve problems in high school geometry and in primary-grade arith-
metic word problems. Analysis of geometry problem solving has clarified
the nature of strategic knowledge needed by students and raises the
question whether more explicit training in strategies would be bene-
ficial in school instruction. Analysis of semantic knowledge needed

to understand word problems raises questions about relationships be-
tween students' learning of computational procedures and their under-

standing of general types of quantitative relationships.
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SOME EXAMPLES OF COGNITIVE TASK ANALYSIS
WITH INSTRUCTIONAL IMPLICATIONS

James G. Greeno
University of Pittsburgh

As concepts and methods for the analysis of conpicx cognitive per-
formance have developed, it has been increasingly attractive to think
about their potential use in analyzing tasks that are used in instruc-
tion. The idea of applying concepts and methods of cognitive psychol-
ogy to the analysis of instructional tasks is certainly not new; ef-
forts of such early inv,ttigatots as Dewey, Judd, and Thorndike come
to mind, as well as more recent contributions by Atkinson, Gagné, Glaser,
Resnick, Skinner, and Suppes, to name a few. However, recent develop-
ments seem to have added a new dimension to the potential use of ideas
from psychology and other cognitive sciences in the analysis and design
of instruction. At least that seemed the case to me when I wrote a
chapter entitled "Cognitive Objectives of Instruction," in 1974 (Greeno,
1976a). The organizers of this conference requested that I prepare a
paper on that same topic. Perhaps it will be useful in this context if
I present a brief progress report of work that I have been engaged in
during the meantime. Much of this work is still in very early stages,
and I apologize that this presentation is still more a research program
than a set of results. However, some of the potential research that I
sketched in 1974 has become actual research, and it may be useful to
report the directions in which those ideas have developed during the

short period since publication of that earlier article.
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In my earlier paper, I discussed three kinds of instructional

tasks: performing calculations in arithmetic, proving theorems and
solving other problems in geometry, and understanding concepts in
science. I did not intend to suggest then, nor do I now, that these
topics exhaust the instructional domains in which cognitive science
will contribute to instructional practice. For example, my short list
did not include the analysis of reading skill, which probably is the
domain in which the most has been accomplished in relating cognitive
science and instruction. However, the three tasks that I discussed
represent three important theoretical foci, and my research has
progressed in ways that are relevant to those three kinds of tasks.
The analysis of calculating skills uses concepts in the theory of
cognitive procedures. The analysis of knowledge acquired in geometry
uses concepts in the theory of problem solving. And the analysis of
understanding scientific concepts uses concepts in the theory of se-
mantic schemata used in the process of understanding language. The

work that I will discuss in this paper has involved analyses of geo-
metry problem solving and arithmetic. Thus far, our studies of geo-
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metry have fit rather weil into the research domain of problem solving.
However, in our study of arithmetic we have become concerned with pro-
cesses of understanding and semantic schemata, as well as with proce-

dural knowledge involved in computatiomal skill. ¥

Problem Solving in Geometry 1
When the cognitive processes involved in an instructional task

have been analyzed, the results can be viewed as a hypothesis about
the knowledge that students acquire when they successfully learn the

material given in instruction. The knowledge required for problem




solving in geometry has been represented in a computer simulation model
that I have given the name Perdix. The major source of empirical data
used in developing Perdix was a set of thinking=-aloud protocols that I
obtained from a group of six ninth-grade students during a year in which
they were studying geometry in a course. I interviewed the students
individually approximately once each week throughout the year. At each
session, the student solved a few problems, thinking-aloud during the
process. The protocols were recorded on audiotape and the transcrip-
tions are accompanied by diagrams that the students drew during problem
solving. In developing Perdix, I have included procedures and struc-
tures of knowledge that enable the model to solve the problems that
these students were able to solve, in the same general ways that the
students solved the problems.

< The form of Perdix is a production system, which means that each
component of its knowledge is a pair consisting of a condition and-an'
action that is performed if a test of the condition is performed and
it is found to be true. The productions that constitute Perdix' knowl-
edge about geometry are in three groups, and these three groups of
productions can be considered as three domains of knowledge required
for students to solve the problems they are given in their study of
‘geometry. :

The three domains of knowledge required for geometry problem
solving are the following:
1. Propositions used in making inferences.

2, Perceptual concepts used in recognizing patternms.

3. Strategic principles used in setting goals and planning.
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The propositions needed in geometry problem solving are the famil-
iar statements about geometric relations, such as, "Corresponding angles

formed by pnidhl lines and a transversal are congruent"; or, "If a

triangle has two sides and the included angle congruent to two sides
and the included angle of another triangle, the trianges are congruent";
or, "If two angles are congruent, they have equal measure.” Inferences
based on this kind of proposition constitute the main steps in geometry
problem solving. Geometry problems require students to show relation-
ships between objects, for example, "Prove that angle A and angle B are
congruent”;) or to find the measure of an object, such as the size of
mgie or the length of a line segment. Information is given in the
problem in the form of segments or angles that are congruent, lines
that are parallel, the measures of some angles or segments, and so on.
Each step in solving the problem consists of an inference in which some
new gcln:ion or the measure of some additional component is deduced
from information that waes given or that has previously been inferred.
The problem is solved when this chain of inferences reaches the rela-
tion or measure that is the goal of the problem. Each of the infer-
ential steps is based on one of the if-then propositions that the
student knows. The antecedent condition of the proposition is found
in the given information or the dugrm, and the consequent relation
is added to the problem situation.

The perceptual concepts needed for geometry problem solving include
the patterns that are mentioned in the antecedents of many propositions.
For example, the proposition, "Corresponding angles formed by parallel

lines and a transversal are congruent" mentions a pattern, corresponding

angles. To use this proposition as a basis for inferring that angles
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are congruent, a student must look at a diagram and determine that the
angles are in the correct positions relative to a pair of parallel
lines and a transversal to be called corresponding angles.

The strategic knowledge that is needed in geometry inciudes knowl-
edge of general plans that lead to the various kinds of goals that occur
in geometry problems. For example, when solution of a problem requires
showing that two angles are congruent, three alternative approaches are
available. One approach is to prove that triangles containing the
angles are congruent. A sezond approach is to use relations between
angles that are based on parallel lines, such as corresponding angles

or alternate interior angles. A third approach is to use relationships

between angles whose vertices are at the same point, such as vertical

angles, or angles that are formed by the bisection of another angle.

The design of the planning process in Perdix is similar to the one

developed by Sacerdoti (1975) in his program NOAH (for Nets of Action

Hierarchies). As with NOAH, Perdix has knowledge of some general ac-
tions that it can perform. Knowledge about each general action includes
the consequences of the act;l.on and prerequisite conditions that are re-
quired for the action to be performed. Perdix selects a plan for its
current goal by checking the general action that have consequences that
achieve the goal. If the prerequisite conditions for ome of the actions
are present in the situation, Perdix adopts the plan of achieving the —
goal using that action. Then Perdix proceeds to try to execute the
plan, using procedures that are also stored as part of the knowledge
that Perdix has about the general action. These procedures can include

the setting of further goals, which may require selection of plans for




their achievement, leading to a hierarchy of plans and goals for the
solution of the problem.

Most of the features of the model for geometry problem solving
have been developed by applying standard concepts in the recent liter=-
ature on problem solving in psychology and artificial intelligence.
There have been some interesting new developments required to simulate
problem solving in this domain, which are discussed in other places

(Greeno, 1976b, 1977, 1978). However, the main results have been

obtained by sxamining the nature of the geometry task environment in
some detail, studying the performance of subjects who are successful }
in performing the tasks that are used as a criterion of learning in

that domain, and using concepts and methods that have been worked out

in the general theory of problem solving to develop a theory about

the knowledge structures and cognitive processes required for success-

ful performance in the domain.

The result of this theoretical analysis can be considered as a
model of the outcome of successful instruction for those aspects of
the course that have been included in the analysis thus far. It has
the advantage over purely rational task analysis that it is gemerally
consistent with performance of human learners who did succeed in learn-

ing how to accomplish the criterion tasks. On the other hand, it does GSNE

]
o

not characterize all the students who were in the course; some of them
did not succeed in acquiring the necessary knowledge, and I do not have
a model for their umsuccessful performance. Furthermore, to provide a
really strong guide for instructional practice, we need to develop
models of the process of acquisition in addition to models of the
knowledge that is nc.quired.
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On the other hand, a clear representation of the outcome of success-

ful instruction probably can be useful. In the case of this geometry
model, some interesting issues appear when the characteristics of the
model are considered in relation to the content of the geometry curric-
ulum as it is represented in texts for the course.

The theoretical analysis of geometry problem solving led to the
conclusion that three main components of knowledge are required for a
student to successfully accomplish the criterion tasks used in the
domain. These are propositions for inference, perceptual concepts for
pattern recognition, and strategic knowledge for planning and setting
goals., Of these three, the first two are included explicitly in the
instructional materials used in teaching. There is explicit presenta-
tion of the propositions that are used as the basis of inferences.
When a new proposition is introduced, it is always explained carefully,
and often a proof of the proposition is given. There is also explicit
presentation of the perceptual concepts that are needed for pattern
recognition. These are usually presented in diagrams, with exercises
that emphasize the relevant features needed to identify instances of
the concepts.

However, the components that I have been calling strategic knowl-
edge are not represented explicitly in the instructional mferhlo of
geometry. The knowledge that is needed for planning and setting goals
can be given an explicit characterization; indeed, it has such a char-
acterization in the model that I have been describing. However, most
references to that knowledge in texts that I have examined are rela-
tively indirect, and my impression is that most teachers do not ex-
plicitly identify principles of strategy when they teach their students.




One interesting question is the following: If the instructional
materials of a course do not include an important part of the knowledge
needed to perform ¢@ criterion tasks, how do students acquire that
knowledge? We know that many students must acquire strategic knowledge
in some form, since they are able to solve probiems that we are confi-
dent require strategic knowledge. It seems a reasonable conjecture
that this knowledge is often acquired by induction. Texts include
example problems that present the steps of solutions in sequence, and
teachers solve example problems during class, both before and after
students have attempted to solve problems as exercises. The principles
of strategic knowledge that must be applied in solving problems prob-
ably can be induced as general properties of the sequences of steps
that studeuts observe in example solutions. Knowledge that is induced
in this way probably is implicit in nature. As with many intellectual
skills, when we ask subjects to explain how they decided to perform
in the way they did, the answers are not very coherent. Thus, the
induced strategic principles appear to be in the form of tacit proce-
dural knowledge involving things the learnmer is able to do, but not
things that the learner can describe or analyze.

It is not surprising that students' knowledge of strategic prin-
ciples is implicit; it has only been in recent years that our scien-
tific theories have included concepts that make it possible to describe
strategic knowledge in explicit ways. In our general wisdom about
problem solving, we attribute the skill some students show in problem
solving either to their intelligence, or to their motivation in the
form of persistence, or at most to their ability to use very general
hauristic problem-solving methods. However, when curreant theoretical
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concepts and methods are used to analyze the tasks, the anaiysis indi-
cates a set of important strategic principles involving planning knowl-
edge that is quite specific to the domain of problems that are analyzed.

A question about instruction arises in a rather obvious way. Rov
that we have discovered the nature of domain-specific strategic kmowl-
edge, should we include it explicitly in the materials of the geometry
course? The argument for teaching strategies explicitly is quite
straightforward. Strategic knowledge is part of the knowledge that
students must acquire in order to solve problems in geometry. It is
reasonable to try to teach that knowledge, like other knowledge of
of the course, in as effective a way as possible. While i: is possible
that the unguided discovery method that is now used is more effective
than a more explicit form of instruction would be, that seems unlikely
in the light of the research that has been done on discovery learning.
The propositions for inference and concepts for pattern recognition
in geometry are taught in the specific form in which they are required
for geometry problem solving, and it seems reasonable to treat problem-
solving strategies in the same way.

An argument against teaching specific problem—solving strategies
explicitly rests on the intuition that with the instructional methods
we now use, students are required to actively genmerate the solutions of
problems, and that this is a more valuable learning experience than wouid
be provided if the instructional materials provided step-by-step guidance
in methods of solution. The issue is an empirical one, albeit diffi-
cult to decide, and it would be desirable to have some empirical com-
parisons between instructional methods that_are based on the two ideas.

However, it seems certain that some methods of teaching strategic
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principles could be devised that would do more harm than good. It
would probably not be helpful to most students to teach about strategies
in an abstract way, with the surategic principles divorced from the con-
text of problem solving in which they are used. Successful performance
in solving problems probably should be considered as an intellectual
skill, snd it seems likely that successful instruction in problem~solving
strategies will be based on principles of skill acquisition. Since we
don't understand very much about the principles of skill acquisitiom,
it is clear that we have a long way to go before we can make
definfte pronouncements about the relative merits of different forms
of instruction in problem—-solving strategies. It should be noted,
though, that our present methods are quite analogous to the method of
teaching swimming that consists of throwing a pupil into the water.
That method is successful for some students, but it has obvious nega-
tive consequences for others.

Another possibility that I believe should be investigated is 1:;—
clusion of explicit instruction about problem—-solving strategies in
the instruction that is given to mathematics teachers. I have not
studied geometry teachers' understanding of problem solving in a sys-
tematic way, but the t;achcts with whom I have had conversations have
quite an undifferentiated impression of the nature of skill in solving
problems. 1In one meeting of teachers, when I described the strategic
component of the problem=-solving model Perdix, one teacher responded
by asking whether what I was discussing wasn't just the students' in-
telligence. This teacher's view was that some students are better
than others in applying mathematical ideas in problem situatioms, and
that occurs because they are more intelligent. Another teacher proposed

S i s




a motivational theory, in which the cause of failure in problem solving
arises from a lack of persistence. When difficulties are encountered,
some students continue to work on the problem and may eventually find
8 way to maks progress, while others give up as soon as the next move
is oot obvious. I am sure that both of these views have merit, but |
they are not the complete story. I am hopeful that teachers might be
able to be considerably more helpful in facilitating their students in
the acquisition of problem—solving skills if their own understanding
of the process became somewhat more sophisticated, with some concepts

that rafer to various cénpomts of the skill rather than being limited

é to very global concepts of intelligence and persistence.
|«
|

I will close this discussion of geometry by noting that the cog-

nitive analysis of problem solving has not provided strong recommenda- £
tions about how to teach the subject matter. It has provided a char-
acterization of the knowledge that a student should acquire, and some i

of the features of that knowledge raise issues about instructiom that

|
appear to be significant and interesting. It may be that specific £

recommendations about instruction would follow from a cognitive anal-
ysis of the learning process itself, but that is a point we will have
to look into when we have some theoretical analyses of the learning
process. ,
Computation and Understanding in Arithmetic 4
A second instructional task that we have been studying at Pittsburgh |
is elementary arithmetic. In this work we have begun with the basics—-
concepts of addition and subtraction that are taught in the first and

second grades. As in the case of geometry, we are attempting to develop

a model that represents tha knowledge that students acquire if they are




successful in mastering the material they encounter in arithmetic in-
struction.

Instructional objectives for primary arithmetic have two aspects:
skill and understanding. In the domain of skill, students are expected
to learn the basic addition and lubtrnctién facts, so they can answer
questions such as, "What is 8 -~ 3 ?" or "What is 3 + 5 ?” or perhaps
"3+7=8." In the domain of understanding, a variety of tasks
are included in the curriculum, and they probably relate to rather
different ideas about the nature of understanding. We have focused
on the kind of understanding needed for childrem to be able to apply
their knowledge of arithmetic in concrete situatioms, or in the semi-
concrete situations that are presented in the form of word problems.

A substantial number of studies have analyzed processes for an-
swering questions involving basic arithmetic facts. A considerable
body of evidence now supports the idea that children use methods based
on counting when they answer simple questions such as, " 3 + 5 =7 ."
The method used by practiced subjects for addition is shown in Figure 1.

Evidence supporting this model has been obtained in studies by Groemn

Insert Figure 1 about here

and Parkman (1972) and by Groen and Resnick (1977). The evidence sup-
ports a model of subtraction that is similar in character. If the gap
between two numbers in a subtraction problem: is small, as in
"8<«6=?7" the child finds the answer by counting the size of the
gap. If the number to be subtracted is small, as in " 8 - 2 = 2 "

the child uses a procedure that requires only a couple of counts——it
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.Figure 1. Procedure for answering simple addition questions.
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might involve counting backward, but more likely involves some process
of generating a small sequence of numbers near the larger term, and
then identifying the appropriate member of that sequence (Woods,
Resnick, & Groen, 1975; Groem & Poll, 1973).

The main feature of these models is their procedural character.
We should conclude from these analyses that the knowledge acquired by
students when they learn the basic facts of addition and subtraction
is a set of procedures that are based on their knowledge of counting.
This implies that to understand the learning of these procedures, we
need to understand the nature of children's knowledge structures that
are involved in counting. We have been fortunate to be able to collab-
oritc with Rochel Gelman, who has conducted several studies of childrem's
counting, focused on analyzing general principles that childrem under-
stand and that affect their performance in counting tasks. This col-

laborative project, in which Mary Riley is also participating, has the ;
goal of representing children's counting knowledge in a simulation |
model that we test by comparing its performance on various tasks with
the performance that Gelman (1978) has reported. A long-term goal

is the development of a simulation of learning, in which the knowledge
structures that we identify for the counting tasks are transformed into
knowledge structures that are capable of performing addition and sub-

traction.

The second aspect of knowledge about arithmetic involves children's
understanding of concepts and procedures. In one test of understanding

children are asked to solve problems consisting of brief stories in-

volving quantitative information such as the following: "Jill had three
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apples. Betty gave her some more apples. Now Jill has eight apples.

How many did Betty give her?"

One project that we have begun is a simulation model of the process
of solving arithmetic word problems; in this project I am collaborating
with Joan Heller. A model of solving word problems has been developed
previously, by Bobrow (1968), but our model is based on quite a dif-
ferent view of the process than Bobrow's was. In Bobrow's model, the
main process was translation of the text into a set of simultaneous
equations. This process of translation was based as much as possible
on syntactic information, and semantic processing occurred only when
it could not be avoided. In our model, semantic processing is the
main component of the understanding process. The system constructs

a semantic network representing the information in the problem. To

solve the problem, the system must selact an arithmetic operation-——
for example, addition or subtraction. In our model, the operatioms
are associated directly with structural representations, so their is
no intervening process of constructing equations before the operation
is chosen.

The processing of a problem by our system is btased on a set of
schemata that specify alternative structures of quantitative informa-
tion. The analysis of these schemata has provided the most interesting

result of our project thus far, The problems we have analyzed at this

point all are solved by addition or subtraction of the numbers given

in the problem. We have identified three distinct schemata that we

believe are necessary and sufficient for understanding of all the

problems that are solved by a single operation of addition or i
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subtraction. I will refer to these three schemata as Cause/Change,
Combination, and Comparison.

The Cause/Change schema is used for.understanding situations in
vhich some event changes the value of a quantity. For example, when
Betty gives Jill some apples, there is a change in the number of
apples that Jill has. The abstract schema that represeants such
situations is in ugur; 2. There are three main components. First,
there is an initial quantitative state in which some object O is asso~
ciated with some quantity P. Second, there is some action that in-

Insert Figure 2 about here

volves a direction of change, increase or decrease, and an amount Q,
in the object 0. Finally, there is a resulting state in which O has
quantity R. For example, in the problem where Jill had three apples
and got five more from Betty, the object is the set of apples in Jill's
possession, the initial amount, P, is three, the direction of change
is increase and the amount of increase, Q, is five. The question in-
dicates that the final amount, R, is unknown and the problem is to
find that quantity.

Figure 2 indicates that both addition and subtraction are related
to the cause/change schema. This is because either operation can be
required to solve problems in which the schema is used to represent
the information. Consider two kinds of problems in which the unknown
quantity is R, the amount in the final state, with numbers given as
the values of P and Q. Addition is needed if the direction of the

change is an increase, and subtraction is needed if the direction of

I Ve
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the change is a decrease. For example, in the problem, "Pat had eight
flowers; he found three more flowers; how many flowers does Pat have
oow?” P is eight, Q is three, the direction is an increase, and the
answer is found by adding eight plus thres. In the problem, "Pat had
eight flowers; he lost three flowers; how many flowers does Pat have
now?” P is eight, Q is three, the direction is a decrease, and the
answer is found by subtracting 8 - 3 . Thus, both of the operations
addition and subtraction are related to the semantic structure that
represents changes in quantity, and the selection of an operation for
solving a problem depends on the content that is found in a specific
problem.

The second general schema for addition and subtraction problems
is in Pigure 3. This schema is used to represent situations where

there are two amounts, and they can be considered either separately

Insert Figure 3 about here

or in combination. For example, "Sue has three apples; »Batty has five
apples; how many do they hnve altogether?” or "Sue has three apples;
Betty has some apples; they have eight apples altogether. How many
does Betty have?™ The two separate amounts fill in the positions
denoted by U and V in Figure 3, and the combined amount fills the
position denoted W. In this schema, the choice of an operation for
answering a question depends on which of the three quantities is un-
known in the question. If the combined amount is unknown, it is
found by adding the other two amounts. If one of the separate
amounts is unknown, it is found by subtracting the known separate

amount from the combined amount,




argument a argument b object
CORCE

object |amount |object |amount

(8 (pI(e) T8

Figure 3. Schema for Reprasenting Problems Involving
a Combination of Two Quantities.
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The third general schema for addition and subtraction is in

Figure 4. This involves two amounts that are compared, and a differ-
ence between them. It would arise in a problem such as, "Sue has

Insert Figure 4 about here

three apples; Betty has five apples; how many fewer apples does Sue
have than Betty?" Bctty'; apples are the reference object 0l, and
their amount, J, is five. Sue's apples are the comparison object 02,
and their amount, K, is 3. The direction of the difference is fewer,
and the amount of difference is unknown. Another problem that would
be represented using this schema is "Sue has three apples; Betty

has five more apples than Sue; how many does Betty have?" 1In

€his case, the réference J, the number of Sua's apples, is

given as three; E, the direction of the difference, is given as
more; L, the amount of difference, is given as five; and K, the
number of Betty's apples, is unknown. Notice that when the differ-
ence is unknown, the question is answered by subtracting J from K
or K from J , depending on which is smaller. If the difference is
known, the question is answered by adding L to the known single
quantity, or subtracting L from the known single quantity, depending
on the direction given for the difference.

These three semantic schemata counstituts three different meaning
structures for addition and subtraction. I think it is appropriate
to say that these arithmetic concepts are ambiguous. They have dis-
tinct and incompatible meanings. On the other hand, addition and
subtraction are genuine abstractions in relation to the Cause/Change,
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Combination, and Comparison meaning structures. These, in turn, are
relatively abstract themselves. For example, the Cause/Change struc- 1
ture applies to situations where many different events c§n occur that
increase or decrease the number of objects in someone's possession,

to events that change the amount of some substance in a container
(e.g., "There were five gallons of gasoline in the tank; I poured in
three more gallons."). It is not hard to generate different verbs
that refer to events that fit into the Cause/Change schema, or dif-
ferent situations that fit into the Combination or Comparison schemata.
There are also situations that can be interpreted naturally with more
than one of the schemata. For example, "Jack built four birdhouses
yesterday; today he built six more birdhouses," may most naturally be
thought of as a combination. However, it also can be understood with
the Cause/Change schema, considering the initial amount as the number
of birdhouses built before, and the change as an increase in the

number of birdhouses caused by today's work.

In our model of the problem—-solving process, the input text is

translated first into a parsed form, in Anderson's ACT formalism

(Anderson, 1976). One of the three semantic structures is con-

structed, based on categorical information stored about the verbs in

the sentences. Note that the construction of a semantic representa-

tion involves processing much like that involved in ordinary language 3
processing, with inferences made in order to achieve a coherent struc-

ture., However, the inferences made in the context of arithmetic word

problems are quite different from those made in other contexts, such

as ordinary stories. If the sentence, "Betty gave Jill five apples"

were encountered in a story, the reader would probably be making




inferences about Betty and Jill's friendship, or some general goal of
Betty's such as a hope that Jill would reciprocate by sharing some-
thing that Betty wants (cf. Schank & Abelson, 1977). In the context
of an arithmetic problem, if a person already has the i. ‘ormation that
Jill had three apples before, then the sentence, "Betty gave Jill five
apples" produces the inference that a change occurred in the number
of Jill's apples, the direction of the change was an increase, and the
amount of the change was five.

When a semantic representation has been constructed, the answer is
obtained by applying an arithmetic operation. The first three columns
in Table 1 specify 14 different structures that can result from repre-

senting different addition and subtraction problems. One possible

Insert Table 1 about here

theory is that each of these is simply associated with one of the op-
erations, along with a procedure for assigning the quantities in the
problems as arguments of the procedures. The form of the model that
we have programmed is based on a somewhat different intuition which
we consider plausible, but not firm. The current model has direct
associations from six of the semantic structures to operatioms. For
the remaining structures, a transformation is required to obtain a
representation that is associated with one of the operations. For
example, for a problem such as, "Jill had three apples; Betty gave
her some more apples; now Jill has eight apples; how many apples did

Betty give her?" the model first generates a Cause/Change structure

with three as the starting quantity, eight as the final quantity, an
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Table 1

Selection of Arithmetic Operators

R —————. “‘-—‘WW'—-""‘:"“' = M SRR P . 2o

Schema Direction Unknown Decision

‘ Cause/Change (P, Q,R) Increase Result, R Addition (P + Q)

Cause/Change (P,Q,R) Decrease Result, R Subtraction P - Q) -

' Cause/Change(P,Q,R)  Incresse  Change, Q Transforn to Combine(P,Q.R)

‘ Cause/Change (P,Q,R) Decrease Change, Q Transform to Combine(R,Q,P)
Cause/Change(P,Q,R) Increase Start, P Transform to Combine(P,Q,R)

f Cause/Change(P,Q,R)  Decrease  Start, P Transform to Combine(R,Q,P)

3 Combine (U, V,W) — Combined Amount, W  Addition (U + V)

’ Combine(U,V,W) Separate Amount, V Subtraction (W - U)

f Compare(J,K,L) More Difference, L Subtraction (K = J)

' Compare (J,K,L) Fewer Difference, L Subtraction (J = K)

¢ Compare(J,K,L) More Second Amount, K Transform to Combine(J,L,K)

; Compare (J,K,L) Fewer Second Amount, K Transform to Combine(K,L,J)
Compare (J,K,L) More First Amount, J Transform to Combine(J,L,K)
Compare(J,K,L) Fewer First Amount, J Transform to Combine(K,L,J)
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increase as the direction, and the amount of increase unknown. This
is the structure described on the third line of Table 1. Then this
structure is transformed to a Combine structure, with three as the

first separate amount, eight as the combined amount, and the second
separate amount unknown. This is the structure shown on line eight
of Table 1. This new structure is associated with the operation of

subtraction, so the system then chooses that o.pcrntion.
The choice of Combine as the canonical structure for missing ad-

dend problems is largely speculative on our part, though there is some
suggestive evidence in Case's (1978) work that is comsistent with

our intuition. We consider the specific set of decision rules in
Table 1 to be quite arbitrary, and probably different individuals
have different decision rules associated with the semantic structures.
The nature of these decision and transformation processes remains an
open question in our research, and Table 1 should be considered as
illustrative of the kinds of procedures that seem plausible in the
framework that we are using.

The idea of a system.that solves word problems without generating
equations is encouraged by the fact that children can solve many word
problems before they have any knowledge of equations. In fact, there
are data chmd.nz'thn: children can solve some word problems before
they begin to learn arithmetic at all (Buckingham & Maclatchy, 1930).
The supply of data about solution of word problems by young children
is not large, perhaps becsuse it is msuch more convenient to present
word problems as test items to childrem who are able to read the
problems from written text. Ome of our current projects involves

collecting some systematic data to identify the abilities of young




children to understand the kinds of information involved in simple

word problems.

In one experiment conducted by Mary Riley, second-grade children
were asked to solve a series of word problems that were designed to
provide information about relative difficulty of the three semantic
structures that we identified in the theoretical analysis described
above. A sample of the problems used in the experiment are shown in
Table 2. In the experiment, students were asked to solve the problems,
and were also asked to represent the problems using sets of blocks.
Table 3 shows the structural descriptions of the nine kinds of prob—-
lems used, and also shows the proportions of correct answers and the
proportions of correct representations that the children producod.

with blocks.

Insert Tables 2 and 3 about here

The main finding is that the semantic schemata involved in prob-
lems were rather strong determiners of problem difficulty for these
children. They had little difficulty with any of the problems with
the Cause/Change structure. While the Combination problems with the
combined amount unknown were all solved correctly, the studeats were
not as successful with the Combination problems with one of the sepa-
rate amounts unknown. This finding casts doubt on the assumption
about decision rules shown in Table 1 that missing addend problems
are all transformed into Combination structures. We are collecting
further data on this mater, but if results like those in Table 3 are

typical, we should revise our assumptions about the nature of

R - G




Combination

Comparison

1.

3.

4.

3.

7.

Table 2

Examples of Problems

Example

Joe has 3 marbles. Tom gives him 5 more marbles.
How many marbles does Joe have now?

Joe has 8 marbles. He gives 5 marbles to Tom.
How many marbles does Joe have now?

Joe has 3 marbles. Tom gives him some more marbles.
Now Joe has 8 marbles. How many marbles did Tom
give him?

Joe has 8 marbles. He gives some marbles to Tom.
Now Joe has 3 marbles. How many marbles did he
give to Tom?

Joe has 3 marbles. Tom has S5 marbles. How many
marbles do they have altogether?

Joe and Tom have 8 marbles altogether. Joe has

3 marbles. How many marbles does Tom have?

Joe has 3 marbles. Tom has 5 more marbles than

Joe. How many marbles does Tom have?

Joe has 8 marbles. He has 5 more marbles than Tom.
How many marbles does Tom have?

Joe has 5 marbles. Tom has 8 marbles. How many
more marbles than Joe does Tom have?
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Table 3
Problem Structures and Proportions of Correct Problem
Answers and Representations
Problem Correct :
Iype Schema Direction Uniknown Answers  Representations
X« Cause/Change Increase Result 1.00 1.00
2. Cause/Change Decrease Result 1.00 1.00
3. Cause/Change  Increase Change .83 <94 LL
(' Cause/Change Decrease Change 1.00 1.00
5. Combine ——— Combined Amount 1.00 1.00
Hg 6. Combine e Separate Amount .67 77
2
§ T Compare More Comparison Amount «56 «28
&
8. Compare More Reference Amount 28 «50
9. Compare More Difference 42 .83 g
=
g
| 8
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transformations that are typically performed with Cause/Change and Com-
bination problems.

The most strikiug finding of this experiment is that all of the
problems that have Comparison structures were relatively difficult for
these second-grade children. One interesting item was the discrepancy
between the proport:l.on_n of correct answers and correct representations
in problems of Type 7, relative to problem Types 8 and 9. The higher
proportion of correct answers for Type 7 apparently was due to a ten-
dency for students to add the numbers in the problem, whether or not
they understood the problems. When students were asked to show the
relationships using blocks, these were the hardest problems of the set
used. In the two remaining types of problems with Comparison struc-
tures, representation using blocks was more successful than problem
solution, perhaps because the blocks provided a method of holding the
quantitative information in external memory.

The analysis of semantic processing in solution of word problems
provides an interesting suggestion regarding instruction. If we are
correct, the process of solving a word problem often involves comstruc-
tion of a semantic representation that is only indirectly related to
the operations of addition and subtraction that are used to solve the
problems, but that is nonetheless an important component of the process.
The suggestion that this hypothesis leads to is that students might be
instructed to identify the various general semantic structures that
occur word problems, and relate them to arithmetic operations in appro-
priate ways. In arithmetic, this would involve training in representing
problem situations as one of the three general schemata: change in a

quantity, a combination or a comparison; and teaching them the connections
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between those representations and the addition and subtraction opera-
tions. One approach that seems worth trying would be to use techniques
of the kind used in concept formation tasks to train students to at-
tend to the relevant dimensions of information. Many of the training
procedures used in experiments that have been concerned with training
children to perform more successfully on Piagetian tests of cognitive
development can be interpreted as concept-formation procedures in which
children learn to attend to the features of the situation that are rele-
vant for the task. Gelman's (1969) study of training for number con-
servation is an important example in which the discrimination-learning
paradigm was adopted explicitly.

A second issue that arises involves the way in which computational
skill is acquired. I have already discussed the fact that at the begin-
ning of instruction basic arithmetic, children have relatively sophis-
ticated knowledge about counting, and that this is almost certainly an

important knowledge base for their acquisition of basic arithmetic

facts of addition and subtraction. An additional issue involves chil-

dren's understanding of these facts. The instructional materials used !

in primary grades emphasize use of manipulative materials, such as
blocks or plastic counters, in providing alternative representations
of addition and subtraction facts. The idea that seems to underlie this
isstruction is that students will be able to understand the operations
1= ‘opmad with blocks snd other concrete manipulative materials rela-
‘aw 7 easily, and these will provide a cognitive basis for their un-
derstanding of aritimetic expressed in symbolic notation.

When ve begam our study of primary arithmetic in 1976, we planned

to focus our attemtion on relationships between formal notation of
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arithmetic and manipulations of concrete materials such as blocks,
plastic counters, and the number line. Our initial exploratory work
using these materials was surprisingly discouraging. Rather than un-
derstanding operations on manipulative materials easily, children
seemed to have considerable difficulty. The number line was especially
troublesome as a medium for representing quantitative information, and
we were informed that the children had not received much instruction
involving the number line. We were led to wonder whether the children's
general understanding of operations with concrete materials may depend
rather strongly on the instruction they have received, rather than
being something they comprehend easily and naturally. We have not
pursued this issue in detail; however, the experience of our informal
explorations was sufficiently discouraging that we moved our research
program in another direction.

The direction i.n which we have developed our ruurch‘ is the study
of processes of solving word problems, as I have described in this
paper, Children seem to have considerable ability to understand -
information that describes relationships among quantities in concrete
situations involving changes in possession, locacion of objects, and
so on. Our current conjecture is that children's ability to understand
and solve word problems might be exploited much more than it is in
present instructional practice as a part of the cognitive basis for
the acquisition of arithmetic concepts and operations. Rather than
basing instruction on relatively abstract representations such as
blocks or the number line, we wonder whether addition and subtraction
(and later, the more advanced topics of arithmetic) might be taught in

relation to more concrete events and situations where people give things
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to each other, more objects from one room to another, and so on. This
involves viewing problem solving as a basis for instruction arithmetic,
rather than as a skill that is more complex than arithmetic knowledge 1
and that has to be built on top of the more basic knowledge of computa- ‘
tion. The issue has ramifications that implicate fundamental aspects
of the current structure of our teaching of mathematics in the schools,
and we have only begun to touch the edges of some of these. However, 4
the ideas seem plausible, and we look forward to a lively period of
exploration and research in the years ahead.
Conclusions

In my concluding comments, I will try to extrapolate from the
kinds of results we have obtained in our studies of geometry and pri-
mary arithmetic. The kinds of issues that are raised by those findings
arise in other domains as well, and it seems a reasonable conjecture
that there are possibilities for exploring alternative methods of in-
struction in a number of different domains that correspond to the pos-
sibilities that I have been suggesting in the domain of mathematics.

First, the issue of teaching problem solving strategies in geometry
seems quite clearly applicable in other domains where students are

trained in problem solving. Strategic knowledge in a problem-solving

domain consists of knowledge of the kinds of subgoals that are useful
in various problem situations and the plans that are helpful in achiev-
ing various goals and subgoals. One advantage of teaching that knowl-
edge to a student in explicit form is that the student will then have
a better understanding of her or his own problem solving achievements
(cf. Brown, Collins, & Harris, 1977). It would be reasonable to expect
that this might facilitate transfer to other problem-solving tasks,




although this conjecture remains to be tested. Explicit instruction

in a problem-solving domain could have considerable facilitating ef-
fects on students' abilities to solve problems within the domain of
instruction, but there may be poteatial hazards of making strategic
knowledge too explicit, if it reduced the educational benefits that
at least some learners now receive by finding their own solutions for
problems., It seems quite likely, however, that if a more detailed
analysis of strategic knowledge in a problem domain were taught to
individuals who are instructors in that domain these individuals
would have a better understanding of what their students are required
to learn in order to succeed as problem solvers and could interact
with their students more effectively in instructional situations.

The second general issue raised by the snalyses I have presented
is the issue of teaching students how to represent problem situations.
There is a very large experimental literature on the process of learn-
ing the relevant attributes of a categorical concept, and an interest-
ing extension to that literature has been given in Winston's (1975)
analysis of acquisition of concepts in the blocks world. The gemeral
idea of analyzing the relevant features of problem domains and then
giving specific training in identifying those features seems to be
widely applicable. Recent studies by Larkin (1977) and by Simon and
Simon (1978) have indicated that a major difference between expert
and novice problem solvers in physics arises from the expert's con-

struction of an abstract representation of the problem situatiom, in

contrast to the novice's more direct attack on the problem. One inter-

pretation of the result is that by achieving a coherent representation

of the situation, the expert avoids the need for extensive
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problem-solving search because the expert's representation contains in-
formation needed to select appropriate problem—-solving operators di-
rectly. The well known studies of expert chess and Go players' to |
encode complex game positions rapidly (Chase & Simon, 1973; Reitman,
1976) attest further to the importance of knowledge for representing
problem situations to successful problem solving performance.

While the experimental literaturs on concept formation provides
a useful starting point for a program of developing instructional :
technology for representational knowledge, we probably will encounter

some important differences when we study concept formation in the
domain of problem representation. Traditional study of concept for-
mation emphasized features that permitted classification of stimuli,
and used simple perceptual features as much as possible. In the repre-
sentation of problem situations, the important thing is to find fea-
that are relevant to the selection of a problem—-solving method, rather
than features that simply distinguish one category of situations from
another. This means that the concepts to be acquired are components
of a decision process, rather than simple labels. Further, the power-
ful representations that experts construct apparently involve complex
and abstract relationships in the problem situation, rather than
simple perceptual attributes. We will need to extend our techmology
for teaching concepts considerably in the domain of problem solving
representations, but it seems a promising and generally applicable
idea.

The third general issue raised by these analyses involves the
acquisition of procedural knowledge in meaningful ways. It has always 1

seemed reasonable to teach procedures in contexts that involved the

— e m—
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situations in which the procedures were to be used to solve problems,
both because that should make it more likely that the learmer would
be able to apply the knowledge appropriately and because in that way
the new procedures would be more meaningful. However, the analysis

of arithmetic problems and procedures may illustrate some of the
reasons why that o0ld truism is correct. The problem solving contexts
in which procedures are applied may indicate important semantic dis-
tinctions that should be considered as differences in meaning of the
procedural concepts that are involved in the instruction. These dis-
tinctions are probably important for students to understand, since
they are relevant components of the situations in which they are ex-
pected to use procedures to solve problems. They also may be important
mediating concepts that are needed to provide understanding of the na-

ture of relationships between concrete problem situations and the ab-

stract ideas involved in problem-solving methods.
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