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1. INTRODUCTION

During testing of a miniature land navigation aid, the Infantry Automatic
Position Indicating System (known as IAPIS) certain problems arose which required
closer investigation. The detailed nature of the problem was evaluated and is
discussed in reference 1, whilst the current study was instituted to establish a
thorough understanding of the mechanical characteristics of the gimbal system
incorporated in the Mk IV version of IAPIS.

The Mk IV version of IAPIS incorporates a gimballed magnetometer platform in
order to maintain the magnetometers at an average horizontal attitude. This
action was taken to eliminate the large errors that would result from the long-
term slippage of a strapdown system on a man's back.

The gimbal system, whilst eliminating slippage, does respond to the short-
period rotational and translational excitation experienced on the operator's back
whilst he is walking. For responses on the pitch axis the fundamental component
of such excitation may be represented by a rotation of the case and a horizontal
acceleration (both at the pace frequency) with a fixed phase displacement.

To predict navigation errors incurred by this response one needs to have a means
of predicting the response of the system to a generalized excitation. A limited
study of the rotational characteristics of a walking man is reported in

reference 2.

2. THEORY OF GIMBAL MOTION

2.1 The model system

The model system, illustrated below, consists of three concentric
components; the internal sphere, the external spherical case and the gimbal
ring. The space between the sphere and the case is filled with a fluid of
known viscosity, and specific gravity such that both sphere and gimbal ring
are floating at neutral buoyancy. The sphere is free to rotate in the
gimbal ring (on the pitch axis) and the gimbal ring is free to rotate within
the case (on the roll axis), all bearings are frictionless. The pitch and
roll axes lie in the horizontal plane and intersect orthogonally at the
geometric centre of the system. The centre of mass of the sphere is
located a known distance below its point of suspension (which is also its
centre of buoyancy). The centre of mass of the gimbal ring and its
geometric centre are coincident. Electrical connections between the sphere
and the case are represented mechanically as springs.

INTERNAL
SPHERE

ROLL
AXIS

PITCH
AXIS

GIMBAL
RING

SPHERICAL
CASE
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2.2 The equation of unforced motion

We need only consider rotations about one axis at a time since it can be
shown that rotations about orthogonal axes are independent under certain
conditions. These conditions hold true for the example system, the important
consideration being that the axes of rotation are principal axes of the body
that rotates. A schematic diagram representative of the single axis physical
system is shown below.

We now define the various torques acting upon the central body when the
case is held stationary.

The torque, Tg, applied by gravity is expressed as:

Tg = - mga, Sin 6
where 9 is the angular displacement of the central body, a, is the offset of

the centre of mass from the axis of rotation, g is the acceleration due to
gravity and m is the mass of the central body. For small angles r _ is
given by: g

- ng &P,

where Kg is termed the "gravity spring constant" and is given by:

The torque, Ts’ applied by the springs is a function of the displacement 6.

For small angles:

T > _ K6 (3)

Torque is exerted on the central body by viscous drag of the fluwid, for
non-turbulent flow this can be expressed as:

ry = -1 )

where 0 is the angular speed of the central body and L (termed the viscous
torque coefficient) is some function of the interior geometry of the system
and the coefficient of viscosity of the fluid.

If the moment of inertia of the system is I, then the equation of motion
is obtained by summing the various torques in equations (1), (3) and (&) and
putting this equal to the rate of change of angular momentum:

18 = Tg + Ts + T,

or: 16 + L6 + (K+K ) = O (5)
s 8

The behaviour of the system when it is in a disturbed state (6 #0 oré # 0)
is obtained by solution of equation (5) only when no external "forces" are
acting.
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Kg
;\ a (ROTATION INPUT)

—= A (ACCELERATION INPUT)

2.3 The equation of forced motion

The equation of motion when external "forces" are acting is obtained by
substituting the driving torque for the zero on the right hand side of
equation (5).

A driving torque is obtained by considering the torques acting upon the
central body when it is held in an undisturbed state. Two possible sources
of driving torque are considered; rotations of the case, and horizontal
accelerations.

2.%.1 Rotational driving torque

A rotation of the case about the axis of interest by an angle a
causes a rotation driving torque ?a. This consists of some torque

transmitted through the springs and some through the fluid, thus:
T = I& + Ka (6)
a s

2.3.2 Acceleration driving torque

A constant horizontal acceleration i, applied to the case exerts a
force -mf on the central body at a moment arm a . Hence the driving
torque is given by:
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or, rearranging: T - Kéy (7)

where , =f/g.

2.3.3 The complete equation of motion

The driving torque is obtained by summing equations (6) and (7).
Thus the complete equation is:

18 + L6 + Ko :L&+Ksa-Kgy (8)

where K = K + K .
S g

The output of the system, 6, for a given combination of inputs,a , Y
is obtained by solution of equation (8).

2.4 The frequency response

Taking the Laplace transform of equation (8) we obtain:

= . —
e (s)[f[s2 +LS+Kil = A(s)[Ls+KS|+I‘(s)[- KgJ

where ®(s) = 1.{9 (t}
A(s) = fla(t)
T(s) =dLfy(t)}

This may be written as:
() = H,(s) Als) + Hy (s) I'(s)

where Ls + Ks

Is? + Ls + K

H, (s)
is the rotational transfer function, and

- K
g

I52+LS+K

H'y(s)

is the acceleration transfer function.

The complex response of the system G (w) to a unit sinusoidal rotational
input (the frequency response) is obtained as:

Kg + jlo
and the frequency response to linear accelerations is:
- K
£ (10)

G @) = H(w = TW - @?) + jlo-
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where w: - K
N T T (1)
and fN =:wN/27 is termed the natural resonant frequency of the system.

Because the system is linear the output amplitude, R, when the system is
excited by driving "forces" given by:

o= o ejwt
(o]
yev, ej(wt+8)
is: s
_ - J
R =& Gy (@) + Y, e Gy(w) (12)

where & is the phase lead of the acceleration relative to the rotation.
The zero frequency gain

In cases where the acceleration is zero the system response to a rotation
at zero frequency is obtained from equations (9) and (1) as:

K
G = —S—
o K + K
5 g

Hence for a gimbal system to be effective (in its primary function of
eliminating long-term slippage of the sphere) K must be considerably
less than Kg' S

Example frequency responses

The absolute value and phase of the response R (from equation (12)) has
been plotted in figures 1, 2 and 3 for a hypothetical system excited by
rotation alone, acceleration alone, and a joint rotation-acceleration
respectively. System parameters are I = 10.132, K_ = 4O and Kg = 360, which

1 - :0.1,
give fN = 1.00 Hz and G0

Figure 1 shows the case for which a, = 1° and Yo = 0, figure 2 shows the
case with ao = 0, Yo = 1° and 8 = 7 (for the damping coefficient L taking the
values 10, 50 and 250 in both figures). These graphs show generally that
larger damping coefficients yield larger values of response amplitude to
rotation input and smaller responses to acceleration input.

The graphs plotted in figure 3 show the frequency response gor the same
system with damping coefficient fixed (L = 50) and @ =y =1 with input

phase angle & taking the values O, 7/2, 7 and 2n/2.
It is seen that the response amplitude is strongly dependent upon the
input phase angle at all frequencies.
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3. MEASUREMENTS OF THE FREQUENCY RESPONSE OF THE EXAMPLE SYSTEM

The frequency responses of the example gimbal systems were determined by the
measurement of their responses to a sinusoidal rotational excitation.

3.1 Measurement of the attitude of the internal sphere

As previously mentioned the internal sphere of the IAPIS gimbal system
contains two magnetometers. These were utilized to enable measurement of its
attitude, 6 as explained below.

Suppose that a magnetometer is aligned at a heading of B (from magnetic
north) and is inclined at a small angle 6 to the horizontal, then the
magnetic field along its own axis is given by:

H = Hﬁ Cos B + H;G

where Hﬁ and H& are, respectively, the horizontal and vertical components of

the earth's field. If the inclination & were varied from zero, the magneto-
meter output would vary from some fixed value, by an amount proportional to
the amount of inclination. Thus the magnetometer output may be used as a
measure of the inclination 6.

3.2 The rotation test equipment

The gimbal system under test was bolted to a rotating platform so that the
axis of rotation was coincident with the gimbal axis. The platform was
rocked sinusoidally through a crank arm, push rod, eccentric and gearbox by
a variable speed electric motor. A photograph of this equipment is shown in
figure L.

Desired input frequencies were obtained by adjusting the motor speed (via
a calibrated tachometer) and selection of the required gear ratio.

Actual platform inclinations, monitored electrically via a potentiometer
attached to the platform axle, and intermal magnetometer inclinations,
monitored as described in Section 3.1, were recorded with timing pulses on a
multi-chanmel chart recorder for later analysis.

3.3 Data analysis techniques

Pen records of input and output waveforms with timing were obtained at a
set of frequencies between 0.02 Hz and 2.00 Hz (for an input amplitude of 50)
for each gimbal axis. These records were analysed to yield a set of
frequency, output amplitude and output phase lead ; {fi, Gi, ¢i}. The

complex response amplitude Q was considered to take the form:
Qw) = F-Ga(m) (13)

where G (w) is defined in equation (9) and F, which has dimensions of length,
is a constant- for a particular set of data. Bquation (13) gives the formulae

for the expected values of amplitude and phase at angular frequency = 2 f:
y
5
n [ | K; + L?w? %
e = Q = .
(K-Tw?)? + LPw?
( (14)
~ Im(Kg-Iwz)
¢ = Arg(Q) = arctan KS(K-Iwz) N
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Simultaneous non-linear weighted regression was used to obtain the least-
squares best fit of equations (14) to the set of data f£506 ;54 ;] and the
corresponding values of I, L and Ks'

These values depended upon the selection of an independent value for Kg'

The selection procedure was changed according to the type of experimental
information being gathered, as explained below.

3.%.7 Comparative measurements

The twelve sets of comparative measurements made on the system
parameters of the six example gimbal units (each with 400 cs o0il) were
initially represented as two sets of six measurements of system
parameters, both described by:

zIk ) Lk ! Ké

% g

™~

2 for k=1,.-.,6

where Ké is the (constant) value estimated in Appendix III. However,

it was decided that the value of L would be less likely to vary than
would the value of Kg between the six units, since greater fabrication

control could be maintained over external geometry (which is largely
responsible for fixing L) than could be maintained over mass and its
distribution within the sphere (which determines I and Kg)°

Consequently a scheme was devised in which each system's '"measured”
parameters were multiplied by a constant,kk so as to bring all six

viscous torque coefficients to a constant and maintain the mean average

of the six values of Kg equal to Kg' These constants are given by:

’
N T =

Bel, &

?,2(1/%)

n="1

Then the new system parameter measurements are given by:

o o Koo Ko b= I T A xRy vy K )

The absolute accuracy of the results still depends upon the mean of
the actual values of K_ for the six systems being equal to the estimated
mean K g

g.

3+e3.2 Measurements of one system with various oil viscosities

A series of measurements was made on the No.3 gimbal system after
slight modifications with five different oil viscosities. In this
case it was reasonable to assume that the valunes of K_on the pitch

and roll axes remained constant throughout. The two values used were
obtained by subtracting from the final results for Kg of the No.3

system (from Section 3.3.1) the estimated change in Kg caused by the

modification (as derived in Appendix III.2):
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wit

Lo

L. 2

5.1

(X_)

849 ~ 259
€ pitch

590 dyne cm

(K )

795 - 259
& roll

536 dyne cm

4, SURVEY OF ALL EXAMPLE SYSTEMS

Six gimbal systems (numbered 1, 3, 4, 5, 6 and 7) were manufactured for use
h IAPIS Mk IV (a photograph of one is shown in figure 5).

Comparative measurements of different systems

The rotational responses of each of the six gimbal systems has been measured
(with 400 cs 0il) on the pitch and roll axes. The results presented in
Tables 1 and 2 list the measured values of I, L, KS and Kg’ the standard

deviations of the residuals (errors between the fitted response functions and’
the data) in amplitude and phase; and the values of the natural frequency
and the zero frequency gain.

Typical examples of the measured frequency response data and the best fit
theoretical curves are given in figures 6 and 7 for the No.3 system on the
pitch and roll axes respectively.

Measurements with different oil viscosities

The No.? gimbal system, as modified (see Appendices I.7 and III.2) was
tested with oil viscosities of 20, 50, 100, 250 and 400 cs. Tables 3 and 4
show the results (in the same form as Tables 1 and 2).

The frequency responses on the pitch and roll axes are given in figures 8
and 9 respectively. The measured moments of inertia and viscous torque
coefficients are plotted vs. oil viscosity in figures 10 and 11 respectively.

5. DISCUSSION OF RESULTS

Sufficiency of theoretical treatment

5.7.1 Excellent agreement is observed over the stated range of frequency
between the theoretical response functions derived in Section 2 and
those measured experimentally. This agreement is exemplified by the
results in figures 6 and 7. Further evidence of the agreement is
given by the small residual standard errors given in Tables 1 and 2.
The average deviation in amplitude being less than 1% of the maximum
amplitude, and that of phase being equal to 1°. Information given in
Tables 3 and 4 shows that the fitting errors are generally larger for
the smaller values of viscosity. This trend indicates that some
theoretical assumption is starting to break down for thin oils (possibly
that bearing friction is becoming a significant component at low
frequency).

Because experimental verification of the theoretical treatment for
the response to rotational excitation has been obtained, it may be

inferred that the theory regarding the response to accelerations is also
correct.

5.1.2 The values of the moments of inertia and viscous torque coefficients
(for the 400 cs 0il) calculated in Appendices I and II are tabulated
below and compared with those values actually measured.
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Theory Experimentally
measured
Model 1 Model 2 mean value
Ipitch 17.62 11.74 8.9
(dyne cm s2)
Iml:L 27.60 34,92 25.4
(dyne cm s2)
LpitCh 625 870 776
(dyne cm s)
Lroll 1181 2344 1422
(dyne cm s)

As can be seen from these results, the model calculations were not
very close to the experimental results, but the agreement is close
enough to be useful for design purposes.

In the case of the series of measurements for various oils, the
moments of inertia and viscous torque coefficients are plotted in
Again, there is reasonable agreement, for a range

of viscosities, between the measured values plotted as data points and
the theoretical lines.

figures 10 and 11.

5.2 Fabrication control

The measured values of I, KS and Kg vary widely within the sample of six

units as is seen in Tables 1 and 2.

This variation is also reflected in the

spread of values of natural frequency (from 1.31 Hz to 1.72 Hz and from
0.80 Hz to 0.96 Hz) and zero frequency gain (from 9% to 23% and from 11% to

15%) .
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NOTATION
offset of centre of mass from centre of suspension
thickness of fluid flow region
frequency
frequency of ith reading of system test output
natural resonant frequency
acceleration due to gravity
an index
the imaginary number (-’1)1/2
an index
length of a cylinder
thickness of a plane component
length of a cuboid
width of a cuboid
length of an elemental cuboid
a mass
an index
a radius
radii of a spherical shell of fluid
radii of a hollow right circular cylinder
internal radius of a ring solid
distance between centre of mass and axis of rotation of a body
external radius of ring solid
external radius of segments
internal radius of skin solid
average radius of spherical fluid flow
radius of element of fluid from axis of rotation

radius of a spherical solid
variable in transform plane (of functions of time)
time

speed of fluid flow
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angle of truncation of a circle

cartesian coordinates in calculation of effective moment
of inertia of fluid

magnetic heading

a scale factor (units of length)

complex frequency response of gimbals to rotation input
zero frequency gain (value of G2(0))

complex frequency response of gimbals to acceleration
input

transfer function of gimbals to rotation input
transfer function of gimbals to acceleration input
resolved magnetic field strength

horizontal magnetic field strength

vertical gagnetic field strength

a moment of inertia

kth initial measured moment of inertia

kth measured moment of inertia

moment of inertia of a truncated spherical shell
moments of inertia of a cylinder on axis and diameter
moment of inertia of a cuboid

effective moment of inertia of a truncated spherical shell
with velocity gradient

moment of inertia of a point mass

moments of inertia of a ring solid on axis and diameter
moment of inertia of a spherical solid

moment of inertia of segments of a disc

moments of inertia of item i on pitch and roll axes
moments of inertia due to modification of unit 3
moments of inertia due to fluid flow (model 1)

moments of inertia due to fluid (model 2)

(n=0,1,2,3,5) Definite integrals of cosine to the power n
from O to w
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total spring coefficient of model system
spring coefficients of electrical connections

kth initial measured value of KS
kth measured value of Ks

gravitational spring coefficient of model system

kth measured value of Kg

average (calculated) value of K

estimated values of K, for each axis of the number 3
gimbal system after modification

viscous torque coefficient
relative viscous torque coefficient
initial measured viscous torque coefficient

relative viscous torque coefficient of a truncated
spherical flow

viscous torque coefficients of model 1 on pitch and roll
axes

viscous torque coefficients of model 2

relative viscous torque coefficients of model 1
relative viscous torque coefficients of model 2
mass of item i

angular momentum

theoretical scaled rotation frequency response

total response to a coherent joint rotation/acceleration
input

volume of ring solid
volume of segments of a disc

cartesian coordinates of the model system

rotation driving input
amplitude of s nusoidal rotation driving input
linear acceleration

acceleration driving input
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Yo amplitude.of effective s%nusoidal rotation driving input
(due to linear acceleration)
b phase between & and ¥
7 viscosity
e angular displacement of central body
6 theoretical amplitude of system test output
Gi amplitude of ith reading of system test output
60 angular speed of fluid on inner spherical surface
Gr angular speed of fluid on spherical surface, radius r
6’ co-latitude (in polar axes)
Ak constant scale factor for final processing of parameter
measurements of kth unit
p density of material (solid and liquid)
o4 standard deviation of residual errors in amplitude of
system test output
o standard deviation of residual errors in phase of system
4. test output
Ta rotation driviné torque
Ty acceleration driving torque
Te torque due to gravity
Tg torque due to springs
Ty viscous torque
@ longitude (in polar axes)
@7 theoretical phase of system test output
os phase of ith reading of system test output
) angular frequency )
wy natural resonant angular frequency
Als) Laplace transform of rotation driving input, @(t)
I'(s) Laplace transform of acceleration driving input, @.(t)
AA”AB’ AC contributions of fluid flow regions A, B and C
DCU contribution of cuboid

contribution of ring solid

W o

contribution of spherical solid
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CAK

AP

Ay

0 (s)
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contribution of segments of disc
contribution of cylinder
elemental surface area

moment of inertia of elemental truncated spherical shell
of radius r

change in gravitational spring constant caused by
modifications to unit 3

angular momentum of elemental truncated spherical shell
of radius r

viscous drag on elemental surface area

Laplace transform of system output, & (t).
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APPENDIX T
THEORETICAL ESTIMATES OF MOMENTS OF INERTIA

A model representation of the gimbal system with nineteen component parts is
used for the computation of the pitch and roll moments of inertia. The total
moment on each axis is obtained by summing the contributions of each component on
that axis. A list of the various solid components and their contributions is
given in Table 5. Planar projections of the model system are shown in figures 12
13 and 4. The moment of inertia of any component depends upon its mass, shape,
dimensions and orientation and position relative to the axis of interest.

4

I.1 Cylindrical components

All but five of the components have been considered to be uniform
cylindrical solids. Their contributions to the moments of inertia are
obtained by repeated application of three standard formulae. Given a uniform
hollow right circular cylinder with radii r , r. : length 1 and mass m; then

. . . . . .2 "3
its moment of inertia along its own axis is:

']
_ 2 2
ICA = m(r2 + r3 )/2 (I.1)

and its moment of inertia on a diameter through its centre is:

I, = m((r2 +12)/h +12/12) (1.2)
CD 5 3
If the centre of mass of any body is displaced by a distance r, from the axis
of rotation, then its moment of inertia is obtained as the sum of Ié and that

original moment about the axis that passes through its centre of mass parallel
to the axis of rotation where:

T _ 2 :
! = mry (1.3)

The fourteen cylindrical components and their relevant parameters are
listed in Table 6. The axial displacements are given by:

(x? + 22)1/2

2}
[}

for the pitch axis, and:

12

e}
!

Y2+ 22

for the roll axis. This information is used in equations (I.1),(I.2) and
(I.3) to calculate the contributions given in Table 5.

I.2 The skin component

This item is taken to be a uniform symmetrically truncated spherical shell.
Its internal and external radii are r, = 0.950 cm and r, = 1.397 cm

respectively. The two plane faces are parallel and circular, separated by a
distance 1 = 2.000 cm. The pitch axis is coincident with the axis of
symmetry and the roll axis lies in the plane of symmetry. The material is
taken as having a density p= 0.720 g/cm3.
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For analytic reasons this component is broken down into three adjoining
parts: a cylinder, a sphere and a ring with a spherical external surface and
a cylindrical internal surface; this arrangement is shown in figure I.1.

The contribution of the cylinder component to the skin moments of inertia on
the pitch and roll axes are given by equations (I.1) and (I.2) respectively
with m, e T, and 1 taking the values:

A = = 2 . = -
By M,»1 m o r 1 L.209 g
r =r = (¥ - (l/.2)2)1/2 = 0,976 cm
4 2 e
r = 0
3
1 = 2.000 cm
A I _ 2
¥ I1,p = ICA = 2.052 dyne cm s
— " - 2
Ay I1,r = Iy = 2.462 dyne cm s

The contributions of the sphere component (to be subtracted from the skin
totals) may be obtained from the moment of inertia of a general uniform
sphere on any diameter mass m, radius rsp as:

I 2
I = 2/5mr] (I.4)
using the parameters:
rsp = ri = 0.950 cm
and
_A = = : = -
Ag M m =p7 b/3 1% 2.586 g
then: :
A = \ = - - -
&g 11’p AS 11,r I 0.93%3 dyne cm &

To evaluate the moments of inertia of a general solid ring (with a cylindrical

interior, radius T, and spherical exterior, radius re) we divide it into

elemental thin cylinders of radius r and length 1 as shown below:
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The moments of inertia of this thin cylinder on the axis of symmetry and on

a diameter AIA, AID are obtained by substituting Am for m and r = r in
3 2
equations (I.1) and (I.2) respectively:

i

. _ 2
AIA = ICA = Amr2
1 .
, _ _ 2 22
ALy = I = A.m(ré /2 + 1% /12)
The mass Am is given by:
Am = R’AV

where the elemental volume is given by:

AV = o2mr 1 Ar
2 2

The total moments of inertia and volume of the ring are obtained by

integrating A-,IA, AID and AV over r fromr to r :
. 5 § e

e e
I
/o _ _ 3
Iy = / A1, = anp/ (1‘:2 l)dr2
r r,
a #
r r
’ e e
I/
Lp = / AID = Zﬂpf (r3. 1/2 + r 13/12)ar
gl 2 2
r r
4 4
Ir

<<
~
N
—
0]
o>
<3
H

e
217/ (r 1) ar
2 2

r r
4
noting that:
.
1l = 2r Sin 6
e
' 7 ']
r = 1 Cos @ so dr = -r Sin 6 gf
2 e 2 e
putting W = arccos (r_4/re)

¥
and changing the variable of integration from r, to €8 :
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W v
! 5 3n17 . 21 ! 5
= 1 9 6 9 = N -—
IRA QTpre ]~ (Cos Sin )d Mﬂpre (% (w) % (w))
o
r"ﬂ 3al 2 0! J; Ant
r , 6 in“0 6 inf
I _ 4Wpr5 | Cos Sin + Cos Sin del
RD e ‘ 2 )

:

= qurz <—;— J (w) ——%—Ja (w) -—%—JS (w>

w

v = Lrﬁr;;f (Cos 8’ Sin”8’ )a 6’
0

ot (J (w) - I, (w))
e 4 3

Putting total mass m = R VR’ then:

Il - mrz /J3(W) - J5 (W (1.5)
RA e \J1(w) - Js(w)

1 1 1
'g'J1(W) - ETJ3(W) —‘ETJS(W)
J1(W) - JB(W)

®

RD (1.6)

and m

P 4ﬁrz (J (w) = J (w)) (1.7)
. 1 3

where the functions Jn(w) are defined by:

W
J (W) =[ Cos (6 )ae’
°
Tt can be shown that these integrals may be evaluated from the recursive
formula:

- =1
2—1 J (w) +-1—Sin W Cosn W
n n-2 n

]

J (w)
n

with starting points:
Jo(w) = w , for even values of n,

and

J (w) Sin(w), for odd values of n.
1
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Using the parameters r, = 0.976 cm, r, = 1.397 cm then w = 0.7973 rad

and from equation (I.7) the mass is given as:

A, M = m = 3.017g

Equations (I.5) and (I.6) give the pitch and roll moment of inertia
contributions as:

p
A I = I

® T1,p RA 4,076 dyne cm

1}

1
and AT

R “1,r Trp

2.641 dyne cm &2

The whole skin component has mass given by:

M1: = AY ﬂ1 +AS M1 +AR M1
= Lok g
and moments of inertia:
qu) = AY th +As th +AR lhp
= 5.195 dyne cm sg
and I = AT, +A_ I +A_ I
1,r Y ",r S ,r R ™1,r

4,170 dyne cm &?

I.3 The base plate

The base plate is assumed to be a uniform symmetrically truncated disc,
1, = 0.16 cm thick, with radius re = 1.350 and, made from material with

1
density P = 1.96 g/cm®. The truncated faces are equal plane parallel
rectangles separated by a distance lz = 1,96 cm and aligned so that the
pitch axis passes through their centTes. The roll axis is at right angles
to this and is coincident with a diameter of the disc.

The pitch axis moment is formed by adding the moments of the rectangular
plate and the segments of the disc, as shown in figure I.2. The moment of
inertia of a cuboid of mass m with edges of length 11, 12 and l3 on an axis
through the centre of mass parallel with edges of length l2 is given by:

Ié’U = m(l‘f/’|2+l§_' /12) (1.8)
. 2 1,
But: 1 = ((2rf)2 -1 Y - 1.857 om
and: A
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]

Applying these values to the formula for ICU gives:

A = 0. 2
U I6,p 0.%31 dyne cm s
To evaluate the moment of inertia of general segments (with radius Te

thickness 1 , separated by distance %i) on the axis shown, it is divided into
pairs of elemental cuboids of length %h at radii rg.

1,
‘@'_T‘l

w

\ AXIS OF
2 ROTATION

Ta

The moment of inertia of these two cuboids about the axis shown is obtained
substituting Am for m in equation (I.3) and 1 :Ara * 0 in equation (I.8)
giving: 3

- _ 2 2
AT = ICU + IP = Am(ra + l1 /12)
The mass fm is given by:

Am = pAV

where N = 21 1 Ar
1 4 a

The total moment of inertia and volume are given by:

=
2]

g _ _ 2 2
ISG = ) ALl = 2‘{11 f 14(ra + l1 /12)dra
1,/2 1,/2
T I
VSG = ]‘ AV = 2 l1 [ l4 dra



ERL-00357-TR - 22 -

but:

—_ 1
ra = rf Cos 6
dr = - r_8in8' ae’
a f
and 1 = 2r, sind’
Putting w =

arccos(%'/2rf)

and changing the variable of integration from r, to 6’

r 2 . s.2p0 2 2p1 2 5 .
ISG = hgl&rf /w (8in®6 ”[jrf Cos®6’ + l1 /1%J)dQ
0
= bplr2 (A% /12| (W) =T W) |+ 22 | T (w) =-d (w)%)
1 f 1 _o 2 - f i 2 R

and w o

. 2 s 21 ’

Vg = k4 175 ‘[ (Sin®6’ )ab

o

L1 p2 t.J (w) - J,(w{}
;o 5

1

]

Putting the total mass m = pV_, then:

SG
I, = m(1% /12 +1° [EE(W) - Ja(w)i:'> (1.9)
86 (’ A ENS IR
o iy
and m = L rrzer (w) = J (w) } (1.10)
- () 4 f ‘:7 (o] 2 : e

The functions Jn(w) are the same as defined in Section I.2. Using the

values 1ﬂ = 0.16 cm, 12 = 1.96 cm and r_ = 1.350 cm then:

f
w = 0.812 rad
&SG yL = m = 0.358 g
and B Ié,p = Igg = 0.438 dyne cm &

The total mass and pitch axis moment of inertia contributions of this item are:

6 6 SG g

1.499 g
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= A I o
6,p CU “6,p s I6,p

0.768 dyne cm s°

1

The roll axis moment is constructed by subtracting the moment of the missing
segments from the moment of the disc (cylinder) as shown in figure I.2.
The mass of the disc is given by:

A = = 7T =
v Y m PT. ro 1, 1.7955 g
Using this value of mand r, = r_, = 1.35 em, r_ =0, 1 =1, = 0.16 cm in
s . 1 f 4 1
equation (I.2) we obtain:
— U _ 2
Ay I6,r = Iy = 0.8219 dyne cm s

Equations (I.9) and (I.10) with:

W = arccos (12/2rf) = 0.758 rad
give: ~bggM = m = 0.2962 g
and beg Tgp = - T, = - 0.4058 dyne om s”
s I6,r = AY I6,r * ASG I6,r

0.416 dyne cm s°

It

and as a check on the calculations for the pitch axis

- A A =
M6 = Y M6 + e Mﬁ 1.499 g
is the same as before.

The internal sphere

The space inside the sphere, not occupied by other components is taken to
be a uniform sphere of radius rsp = 0.95 cm of material with density

= 0.111 g/cms. The mass is

M = m = pmi/3 r> = 0.400
. pr.tt/ op g

and using equation (I.4) the moments of inertia are:

/ 2
I17,p = I17,r = I = 0.14l dyne cm s
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1.5

I.6

The gimbal ring

The gimbal ring (which only rotates on the roll axis) is considered as a
uniform solid ring with a spherical exterior (re = 1.750 cm), cylindrical

interior (r, = 1.475 cm) and two plane parallel ring faces separated by
1 = 1,640 cm. For analytic reasons it is divided into two adjoining solids
as seen in figure I1.3%; a uniform hollow cylinder with external radius r, =
1.546 cm, and a ring solid as described in Section I.2. The density of the
material is p= 1.43 g/en? .

The moment of inertia of the cylinder section is obtained by using
equation (I.2) with:

A - = 2 U =
¥ 1"1“3 m pr (I‘1 r )1 1.580 g
/ 2
giving: AY'I18,r = ICD = 2.758 dyne cm s

The mass and moment of inertia of the ring solid are obtained from
equations (I.6) and (I.7) with:

w = 0.4877 rad, and r, = r, = 1.546 cm
which give: AR M = m = 3.303 g
18
and: ) - Y] _ 2
Ao I18,r = Ipp = 4,826 dyne cm s

The total mass and moments of inertia of the gimbal ring are:

M = A, M + A M
18 Y 18 R i8
= 4.883 g
- ?
I18,p = 0 dyne cm s
= A h
I18,r Y I18,r T O I18,r

It

6.994 dyne cm s?

The fluid

The moment of inertia of the fluid can in principle be calculated for a
particular flow pattern but this is complicated by the fact that velocity
shears are present and that the flow pattern changes with viscosity. Two
general cases are examined to determine the moments of inertia of partial
spherical shells of fluid, firstly with no velocity gradient (i.e. the fluid
moving as a solid body) and secondly with a constant velocity gradient across
the gap.
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The - geometry of this problem is indicated below:

Y Yo

=

» x AXIS OF
ROTATION

The moment of inertia of the thin spherical shell (truncated as shown) at
radius r is given by the integral:

where rq is the distance between the element of mass dm in the shell and the

axis of rotation but
I‘Z = rz...Xé

= r%- 1r?C&L6" Cofo

and »
dm = pdV = phr.dA
but , ,
dA = (r Cos® a#)(raf")
= r? Cost’ qf€'ae
hence w o
AL = 2pAr jr [ r2(1 = Cos?0’ Cos??) r2 Cosb’ av a8'’
J
o] (o T

2wpr4 Ar jw (2 Cosg’ - Cos3®p’ ) d o'
g o

2mpr® Ar ‘[2 IROPE m]- (T.11)
. 1 3
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If the fluid within the region shown is moving as one body then its moment
of inertia is obtained by integrating AIr over the limits of radius from ry

to Ty
l‘f
|

r

Ty

-] [
AL = Zmp L? J1(w) - Jz(w)—’j r dr
r

o o
) ~ 5 5
= 2mp (2 J(w) -J (wi} { Yy " Yo } (I.12)
1 3
= - 5 J

In the second case we suppose that the fluid on any spherical shell has a

constant angular speed Br for a given speed 60 at r = r, and zero at r = r .
g
In this case the angular momentum stored in a thin shell of fluid is:

AP = § AT
r r r

Assuming that the angular speed is given by:

5 r -r > 8
= —e
r T - T o}
9 o
The total angular momentum is given by:
P = IAP _ ejf <_5_;_r_>AI
o r -r. /T r
: "l O,
r

The second integral has the same physical significance as a moment of
inertia. We term this the effective moment of inertia of the fluid (with the
specified velocity gradient), i.e.:

~

11/
I, = j ‘<rg"r AT
o}
T,
{ .
S P O Y N e g
r - ro i i 3 1r 1
i U
r
O

[

R O S N R el S (1.13)
15 ° . 1w—3w]t;~r— ro} <15
1

o]
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Two crude models of fluid flow behaviour around the sphere and gimbal ring
are taken by arbitrarily dividing the fluid into regions (as shown in figures
I.4 and 15) within which fluid flow properties are considered constant.

The fluid density has been taken as p = 0.965 g/cm®.  Remembering that the
gimbal ring moves on the roll axis and is fixed on the pitch axis, the flow
behaviours for model 1 are tabulated below.

Axis of Filuid region
rotation A B C
. . Velocity Velocity
Pitch Stationary gradient gradient
Roll Velocity Moving as Velocity
gradient one body gradient

The contribution of region A on the pitch axis is zero:

A = . 2
" If1,p O dyne cm s

The contribution of region B on the pitch axis is obtained from equation
(I.13) with r, = 16397, r, = 1.581 and w = 0.4877 rad. :

A = 1! = 52
5 If1,p Tp 1.276 dyne cm

The contribution of region C on the pitch and roll axes is obtained for
ro = 1.%97 cm, re = 1.905 cm and subtracting the value of If from equation

(I.13) with w = 0.4877 rad from its value with w = 7 2 rad:

b Te,p = b Te,r T 12.807 - k.830 = 7.977 dyne cm s

Region A contributes an amount to the moment on the roll axis obtained
from equation (I.13) with r = 1.750 emy, 7, = 1.905 cm and w = 0.4877 rad:

A I/ = 2.496 dyne cm s?

ater,e © F

Region B acts as if it were a solid body so its moment on the roll axis is
given by equation (I.12) with r = 1.397 cmy v = 1.581 cm and w = 0.4877 rad:
1

A = 1! =
3 If1,r = lB = 2.779 dyne cm &

The total moments on the pitch and roll axes are obtained by summing the
contributions from regions A, B and C:

= A . )
If/lap A If1,p ¥ AB If’l,p + AC If'],p 9.255 dyne cm s

I = AL T + AT + A 1%.252 dyne cm s2

0H
£1,r A Ter,e %8 Tea,e T8 ey
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The aspects of fluid flow in model 2, tabulated below, are illustrated in

figure I.kh.
Axis of Fluid region
rotation A B C
Pitch Not. Velo?lty Not.
moving gradient moving
Roll Velocity Moving as Moving as
gradient one body one body

The contributions of regions A and C to the moment of inertia on the pitch
axis are zero:

AA IfZ,p o IfZ,p O dyne cm s

The contribution of region B on the pitch axis is obtained from equation
(I.13) with r = 1.397 cm, r, = 1.581 cm and w =%1/2; hence:

- T _ 2
AB If2?p = IF = 3,382 dyne cm s
and
- ; _ z
If2,p = A, If2,p + Ag If2,p +.ﬁc IfZ,p = 3,382 dyne cm s

The contribution of region A on the roll axis is obtained by substituting
r = 1.750 cm, r, = 1.905 and w = #/2 in equation (I.13):

— { _ 2
;AA If2,r = IF = 6.618 dyne cm s

1.397 cm,

The contribution of region B is given by equation (I.12) with r,

r, = 1.581 cm and w = #/2:

AB IfZ,r = lé = 7.368 dyne cm g%

The contribution of region C is given by equation (I.12) with r = 1.581 cm,

r, = 1.750 cm and w = 7/2, then subtracting the value of equation (I.12) with
w = 0.4877:

By Tgp . = 10.567 - 3.985 = 6.582 dyme cm 52

The total fluid contribution to the roll axis moment of inertia according
to the second model is:

- 2
A Yoo r A, I = 20.568 dyne cm s

B Tro,r * 8 Lro,r
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The overall results for the system with the 18 solid components and each of
the model fluid contributions are given in Table 5. The contributions of the
fluid for each model are summarized below.

Moment of inertia
Axis of (dyne cm s?)
rotation
Model 1 ' Model 2
Pitch 9.25 3.38
Roll 13.25 20.57

1.7 Changes in the No.3 system

The No.3 system was modified by the removal of the two central balance
screws "D" and "G'", the two holes being left open. The changes in the
system's moments of inertia are assumed to be the same as the original
contributions of these items.

= - 0. 2
Imod,p 0.53 dyne cm s

- - 2
Imod,r = 0.1k dyne cm s

I.8 Total moments of inertia

The sums of the contributions of the 18 solid components in the standard
and modified systems and the sums plus the additional contributions of the
fluid, according to model 1 and model 2, are tabulated below.

I pitch I roll
(dyne cm s2) (dyne cm s2)

Standard : basic 8.37 14.3%5
model 1 17.62 27.60

model 2 1.7k 34,92

Modified : basic 7.84 14,21
model 1 17.09 2746

model 2 11.22 3k .78
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Figure I.3. Geometry for analysis of gimbal ring moment of inertia
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Model 1

Model 2

Figure I.4. Representation of fluid regions for
calculation of contributions to

moments of inertia and viscous torque
coefficients
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APPENDIX IT
THEORETICAL CALCULATION OF VISCOUS TORQUE COEFFICIENTS

A full analysis of time-~varying viscous flow of the damping fluid is not
attempted. Instead, viscous effects for parallel surfaces are considered where
the. angular speed is constant.

The viscous forceA U acting on an elemental areal A is given by:

Ay =<_71‘_(1X>AA

where 11 is the coefficient of viscosity of the fluid, d is the separation of the
surfaces and v is their relative speed. This force acts at right angles to the
surface and is thus also at right angles to the axis of rotation at some distance
Ty from that axis. The speed may thus be expressed as:

v = r 6
s

where § is the angular speed. The elemental applied torque AT is obtained as
the product of the force and its moment arm:

Ar = v AU =71/ r° @A
T rS \ U 26 rs Ay

The total torque due to viscous effects, Tv’ is obtained by integrating AT over

the surface of interest, and if d is constant this is:

T = —TI— i i r2 dA €

d surracg S

Hence the viscous torque coefficient is given by:

L =E,;_ # . dﬂ n (1I1.1)

SURFACE °

!
and we define L' by:

1

L = L/‘q

The torque coefficients of the example system are defined by various combinations
of spherical and truncated spherical component surfaces. Two differing models of
fluid flow are assumed, as described in Appendix I.6, and illustrated in figure I.k
and figure 15.

The integral in equation (II.1) is evaluated for a general truncated spherical
surface, radius T)s truncated at colatitude 6'= w and rotating about the x axis:

2

2
2 = 2 _ p2 !
r2 2 rk Cos 68’ Cos ¢

dA

(rk Cos @' dqo‘)(rkde')
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Thus . w oM
' ¢ p
Ly = 23 (Cos®’ - Cos36’ Cos?p)depde’
(o] (o]
W
.Y 3 : ’
= i’ﬂi_ f (2 Cos8’ - Cos?3g’ )ae’
3 _
(]
Thus 2111'1: :
. = 2J (w) - T (w) (I1.2)
S d i 3

The functions Jn(w) are the same as described in Appendix I.2.

Using model 1, region A is stationary and so adds nothing to the torque
coefficient. Region B contributes an amount on the pitch axis, given by
equation (II.2) with 4 = 0.184 cm being the gap, and r = 1.4890 cm is taken to
be the average radius, and w = 0.4877 rad:

A = ! = i
B qu’P Ly 84.41 dyne cm s/poise

The contributions of region C to both pitch and roll axes are obtained from
equation (II.2) with d = 0.508, r, = 1.651 and subtracting from its value with

w = /2 (the whole sphere) the value with w = 0.4877 rad (that part covered by
the gimbal ring) giving:

' A o .
ZXC Lf1pP = ¢ Lf1,r - Ls 76.32 dyne cm s/poise

The total torque coefficient on the pitch axis is given as:

- X '
Lep = PB Ler,p *oc Lf’l,p:I n

= 160.73 7 dyne cm S

The contribution of region A on the roll axis is obtained from equation (11.2)

with 4 = 0.155 cm, T, = 1.8275 cm and w = 0.4877:

7 _ P .
A Lf'l,r = LS = 227.37 dyne cm s/poise

The contribution of region B to viscous torque on the roll axis is zero since
there is no velocity gradient. The total torque coefficient on the roll axis is

thus given as:
= [ A1 +A | L ‘ i

303,697 dyne cm s

=
!

f1,r
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Using model 2 the only contribution on the pitch axis is from region B. This
is obtained from equation (II.2) with d = 0.18% cm, r = 1.4890 cm and w =7 /2:

k
) _ / _ .
B Lf2,p = Ly = 223.81 dyne cm s/poise
Thus the pitch axis torque coefficient is:
L = 223.81 71 dyne cm s

f2,p

The only contribution, in model 2, to the torque coefficient on the roll axis
comes from region A. Using equation (II.2) with d = 0.155 cm, r, = 1.8275 cm
. k
and w = T/2 we obtain:

A ! = - i
A LfZ,r Lg 602.86 dyne cm s/poise

The torque coefficient on the roll axis is:

Lf2,r = 602.86 ¥ dyne cm s

The results are summarised below

Viscous torque coefficient
Axis of (dyne cm s)
rotation
Model 1 Model 2
Pitch 160.7 71 223.8 1
Roll 303.7 M 602.9 7

and plotted as straight lines in figure 11. The values of density and viscosity
for oils used in the experiments are given in Table 7.
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APPENDIX ITI

THEORETICAL ESTIMATES OF GRAVITATIONAL SPRING CONSTANT

The restoring torque per unit angular displacement (spring constant) due to
gravity is given by:

where

m is the mass of the inner sphere,

g is the acceleration due to gravity (981 cm 57), and

a_ 1s the offset of the centre of mass of the sphere below its centre of

¢} .
SUSpension,

Alternatively, it is equivalent to consider only the centres of mass and masses
of those unbalanced components.

I1T.1

The standard system

The only items unbalanced are the balance adjustment screws, but in the
calculations of Appendix I for the moments of inertia it has been assumed
that the skin component and the six balance screws occupy the same space.
This approximation may be improved here by subtracting from the mass of the
balance screws, the mass of skin material excavated to form the screw holes.

For six holes each 0.7 cm deep, 0.125 cm radius the volume of missing
material is 0.206 cm . Hence,; taking the density as 0.72 g/cm the missing
mass is 0.148 g.

From Table 6 we take the mass of six balance screws as 1.56 g, and their
overall centre of mass offset is a, = 0.508 cm. This produces an effective

mass of 1.41 g offset by 0.508 cm, giving:

Kg = 703 dyne cm

It should be noted that the equivalent offset of the centre of mass of
the sphere (of 10.65 g mass) is 0.067 cm (i.e. 0.026 inch).

Changes in the No.3? system

The two central balance screws were removed and their holes were left
open. The effect of this is to reduce by 0.52 g, the mass offset by
0.508 cm. The change in Kg is thus given by:

A Kg = - 259 dyne cm

If the value of Kg for the No.3 system were exactly as calculated in

Appendix III.1 then the offset of the sphere centre of mass would be
0.017 inch.,.
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TABLE 1. COMPARATIVE MEASUREMENTS OF THE GIMBAL SYSTEMS

(PITCH AXIS: 400 cs OIL)

Best fit parameters Residual Derived
errors parameters
Gimbal

system GG % fN GO
No. I L K, | K | O | (segrees) | () | &)

1 9.3 776 80 551 0.9 1.0 137 13

3 8.3 776 127 849 1.1 2.0 1.72 13

L 8.0 776 18 | 613 0.k 1.1 1.58 23

5 8.7 776 92 70k 0.6 1.3 1.52 12

6 9.6 776 78 756 0.7 0.6 1.49 9

L 7 9.7 776 93 745 1 0.9 0.7 1.48 11
Averages | 8.9 776 109 703 0.8 1.1 1.51 14

TABLE 2. COMPARATIVE MEASUREMENTS OF THE GIMBAL SYSTEMS
(ROLL AXIS: 400 cs OIL)

Best fit parameters Residual Derived
Gimbal errors paramgters
system g a 0@ fN Go
No. 1 | L K_ K, | O | (degrees) | (B2) | (%)

1 23.0 | 1422 | 8% | 496 | 1.2 0.9 0.8 | 15

3 26.1 1422 1105 795 11 0.8 0.94 12

L 24,6 | 1422 87 659 1.1 1.2 0.88 12

5 22.% | 1422 | 106 705 0.8 0.8 0.96 13

6 27.9 | 1422 | 126 746 1.1 0.8 0.89 15

7 28.4 | 1h22 | 106 817 1e1 0.9 0.91 11
Averages | 25.4 | 1422 | 102 703 1e7 0.9 0.9 1%
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TABLE 3. PITCH AXIS MEASUREMENTS OF THE MODIFIED NO. 3

GIMBAL SYSTEM VS OIL VISCOSITY

Fluid Best fit parameters e pifZEifZis
VIii;iity : ) ) ] o o | P )
s g (%) (degrees) (Hz) (%)
20 7.2 48 | 84 | 590 | 3.3 1.6 1.54 | 12
50 6.6 105 6l 590 0.9 2.3 1.58 10
100 7.7 186 6l 590 1.2 1okt 1.47 10
250 8.3 | 512 | 67 | 590 | 0.5 1.0 1.1 10
Loo 9.5 | 8o1 69 | 590 | 0.9 1.2 1.32 | 11
TABLE 4. ROLL AXIS MEASUREMENTS OF THE MODIFIED NO. 3
GIMBAL SYSTEM VS OIL VISCOSITY
Fluid Best fit parameters Riiiiiil p§§2§éf§§s
vi S(c:ss)lty 1. _K . GG ch ‘ fN Go
s g (%) (degrees) (Hz) (%)
20 22.6 97 109 536 1.6 6.0 0.85 17
50 21.7 188 97 536 1.7 3.h 0.86 15
100 22.6 344 13k 536 0.8 1.6 0.87 20
250 26.3 969 101 536 0.9 0.6 0.78 16
40O 28.1 [1486 80 | 536 1.6 1.0 0.7% | 13
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TABLE 5. COMPONENT MASSES AND THEIR MOMENTS OF INERTIA

(dyne.cm.sZ)

parbor Description Mass TroLL IPITcﬁ
1 Skin L, 74 4,170 5.195
2 N Pickup Coil 0.46 0.046 0.173
3 E Pickup Coil 0.46 0.173 0.0k46
n N Excitation Coils 0.15 0.011 0.095
5 E Excitation Coils 0.15 0.095 0.011
6 Base Plate 1.50 0.416 0.769
7 Disc A 0.38 0,446 0.160
8 Disc B 0.38 0. 446 0.160
9 Bush A 0.24 0.4k 0.014
10 Bush B 0.24 o.h1k 0.01k4
11 Screw C 0.26 0.111 0.264
12 Screw D 0.26 0.069 0.264
13 Screw E 0.26 0.111 0.264
14 Screw F 0.26 0.111 0.264
15 Screw G 0.26 0.069 0.26k
16 Screw H 0.26 0.011 0.26h
17 Foam Sphere 0.40 0. k44 0144
18 Gimbal Ring 4. 88 6.99% 0
TOTALS: Basic Model 15, 5k 14,351 8.365
: Model 1 - 27.60 17.62
: Model 2 - 34,92 11.75
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TABLE 7. PHYSICAL PROPERTIES OF OILS
K}nema?lc Density Viscosity
viscosity -3 (voise)

(centi-stoke) (gm cm ) poise

50 0.960 0.480

100 0.968 0.968
250 0.971 2.428
koo 0.972 3.888
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Figure 1. Examples of rotationally excited frequency responses
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Figure 2. Examples of acceleration excited frequency responses
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Figure 3
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Figure 3. Examplés of coherent rotation and
acceleration excited frequency response
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Figure 5. Photograph of the TAPIS gimbal system
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Figure 6. Pitch axis frequency response of the
No. 3 gimbal system
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Figure 7. Roll axis frequency response of the
No. 3 gimbal system
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Figure 8. Fitted pitch axis frequency responses
of the modified No. 3 gimbal system
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Figure 12.

Model geometry for computation of moments of inertia

(gimbal ring, skin and internal sphere components)
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Figure 13. Model geometry for computation of moments of
inertia (magnetometer and base plate components)
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(vertical section on any diameter)

Figure 15. Model geometry of the gimbal system for computation of
viscous torque coefficients, and moments of inertia of fluid
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