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CHAPTER 1

INTRODUCTION ;

The object of this work is to use numerical methods to
solve electromagnetic field problems involving scattering
from rather arbitrarily shaped inhomogeneous penetrable
bodies. While our aim is.to analyze a missile in.the pre-
sence of an electrically inhomogeneops'exhauSF ?luqe,‘the
techniques discussed here are useful in other areas of elec-
tromagnetics, such as scattering by rain drops, power
absorption in biological tissues, dielectric lenses, etc. A
primary requirement of any numerical method is that the
technique should be capable of simulating the actual physical
situation as closely as possible, while simultaneously pro-

viding an efficient method of solution. For a numerical

study of scattering by inhomogeneous dielectric bodies, one
must choose among a variety of techniques, all of which can
be said to fall into one of the following two categories: (a)
Integral equation formulations and (b) Differential equation
methods. The usual svrface and volume integral equation
formulations with numerical solution by the methcd of moments

[1] and the extended boundary condition approach [2] fall
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into the category of (a) while finite difference methods and
the unimoment method [3] fall into (b). Thus a wide variety
of approaches are available. Some of the main features of
each of these methods are given in the following.

The volume integral equation is based on relating the
polarization current in terms of the total field, comprising
the incident field and the scattered field. By associating
an unknown current coefficient with each point inside the
region, the integral equation is converted into a matrix
equation which can be easily solved for the unknown coef-
ficients. Since the region of the scatterer is represented
point by point, an arbitrary inhomogeneity and shape is
easily handled in this approacnhn. The approach, however,
leads to very le-, e matrices which makes the method unat-

tractive due to the limited core storage on the computer,

The integral equation approach is well suited either for

homogeneous penetrable bodies or for a body either modeled

by or made up of layers of homogeneous regions. The usual
procedure in this case is to set up the coupled integral
equations in ter~s of equivalent electric and magnetic cur-
rents on the surfaces of the homogeneous region. By expand-
ing the unknown curr:nts in terms of suitable basis functions
and adopting suitable testing functions, the coupled integral
equations are reduced to a matrix equation for the unknown

coefficients of the basis functions.

s

s cmenave pn . ——— =




T

For a body made up of a large number of layers or for

an inhomogeneous body modeled as being made up of layers of

homogeneous regions, the above approach tan lead to very
large-sized matrices due to a simultaneous soilution of the
equivalent currents on all the layers. Since the fields
induced in any region betwean two layers are due to the
equivalent currents on adjacent layers, the resulting matrix
is block tridiagonal. This property, as recognized by
Pogorzelski [4], yields an iterative procedure for solving for
the currents on the outermost layer in terms of the currents
on the inner layers. Such an iterative procedure has the
advantuge that the sizes of the matrices involved in the
iteration are much smaller than the overall matrix si:e

that would be required if the currents on all layers were to
be solved simultaneously. The surface equivalence approach
is, in principle, applicable to all (layered) inhomogeneous
scatterers, regardless of shape.

The extended bourdary condition apprvach proposed by
Waterman [2] expresses the fields in terms of integrals over
surfaces separating the homogeneous regions around the scat-
terer. However, one uses here the fact that in all regions
complementary to those in which the equivalence 1s valid, the
fields must vanich., Within these nuil field regions, the

integral expressions for the fields are expanded in spherical

- e T P T T R T O T T R R e ey
e T e ST A RTINS T AT OIS R A e T R i -
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{cylindrical) harmonics of the standing wave type for in-
terior three-dimensional (two-dimensional) regions and of
the outgoing type for exterior regions. Jince the fields
vanish, the coefficients of the harmonics must also vanish
and one obtains a set of equations, each of which involves
integrals over the equivalent sources on the surface. The
surface sources, both electric and magnetic, are usually ex-
panded in apherical (cylindrical) harmonics as well and this
eliminates one of the surface sources, thus reducing the

number of unknowns. In the literature, the extended boundary

Anendd An nYenan
Te8C

condition app h ie alse known as

T

he T-matrix approach.
Peterson and Strom [S5] have extended this approach to multi-
layered dielectric scatterers and Strom [6] has further
extended the approach to multiple inhomogeneous scatterers.
Since the method depends on the object having an interior
region in which a circumrcribed sphere (circle) can be
placed, the method is better suited for nearly spherical
(cylindrical) bodies than for thin scatterers.

The unimoment technique developed by Mei [3] and ex-
tended by Chang [7) and Morgan [8] essentially studies the
scattering problem through a differentia) equation formula-
tion. According to this approach, a spherical (cylindrical)
region surrounds the three-dimensional (two-dimensional)

scatterer, The minimum radius of this region should be so

T n e et n e b =
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as to totally enclose the scatterer so that the scattered
fields in the exterior region can be expanded in terms of
outgoing spherical (cylindrical) harmonics. The incident
field, of course, may be expanded in terms of incoming har-
monics. A wave equation for an appropriate field quantity
is next solved for in the interior region. The boundary
conditions for the tangential fields are theun enforced across
the spherical (cylindrical) boundary. This results in a set
of equations which determine the coefficients of the unknown
scattered fielda. As one notes, the major effort involved
in this approach is in solving the differential equation in
the interior regjon. Either a finite difference approach or
the finite element method [9], a numerical approach for solv-
ing differential equations that has been highly developed by
structural engineers, can then be utilized to solve this
differential equation. In the latter approach, the interior
region is typically divided into a number of triangular
sections called elements. Over each element the field is
represented by suitable expansion functions that express the
field within an element as a function which interpolates the
value of the field at the nodes of the element. By minimiz-
ing a stationary formula associated with the differential
operator with respect to the nodal coefficients, one obtains

a matrix equation for the nodal field values on the interior
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in terms of the field values at the nodes lying on the
spherical (cyiindrical) boundary. Then using the spherical
(cylindrical) modes as basis functions to excite the electric
fields at the boundary, one obtains interior fields for each
distinct mode of the harmonics. Orthogonality of the basis
functions enables one to determine the interior fields in
terms of the scattered fields. Equating the exterior and
interior tangential magnetic fields at the boundary yields a
matrix equation which determines the scattered field coef-
ficlents. An inherent feature of the matrix so obtained is
that it is banded and an efficient utilization of this prop-
erty allows one to soive problems involving a rather large
number of unknowns. Furthermore, just as one can express
the interior fields in terms of interpolatory functions over
each element, one can similarly approximate the spatial
variation of the physical parameters viz., the permittivity
and permeahility, by means of the same interpolatory func-
tions. This latter feature of the unimoment method enables
one to solve for fields from arbitrary inhomogeneous (i.e.
not necessarily layered) scatterers. As with the extended
boundary condition approach, the unimoment method is more
suitable for scatterers which are almost circular or spher-
ical in shape.

From the above discussjion it is apparemt that the choice
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of a method should be made from the point of view of sim-

plicity, accuracy, and efficiency of the method as it applies

to the geometry and scatterer in question. In order to more

clearly define some of the considerations involved in the

NI R

TP

choice of the method, we consider the application of the unimo-

ment method to scattering from two-dimensional layered di-
electric cylinders in Chapter I1. We also note some of the
advantages of & local as compared to a global coordinate
formulation., In Chapter I the unimoment method approach is
compared with the iterative solution procedure for the sur-
face integral formulation for scattering by layered dielec~
tric cylinders. Chapter III deals with the application of
the iterative solution procedure for the surface integral
equation to layered bodies of revolution. In Chapter IV, the
approach is extended to treat missile~plume problems, which
ore alsc reduced to a block-tridiagona' form.

In the course of this work, the equivalence principle
is used extensively. One normally uses the equivalence
principle to set up coupled integral equations for unknown
electric and/or magnetic currents. In Appendix A, different
types of integrali equation formulations are considered. The
discussions there parallel and extend slightly the work in

this area by Harrington and Mautz {10}.
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CHAPTER I1
SCATTERING BY INHOMOGENEOUS DIELECTRIC CYLINDERS

In this chapter, we present a comparative study of the
unimoment method and the iterative solution procedure.
Since the principal features of the methods when applied to
a general problem can be illustrated through specific exam-
ples for which alternative solutions are available, we
consider herein scattering by layered dielectric cylinders.
In Section 2.1 a brief description of the unimoment method
is given. While we follow essentially the approach of {7],
we do, however, present a simpler representation of the
unimoment matrix than is found there. Sec, 2.2 gives some
insight into the iterative solution of the surface integral
method which leads to a block—-tridiagonal moment matrix. A
comparison with the unimoment method is then made to point
out the applicability and limitations of the .wo techniques

for general problems involving inhomogeneous dielectric

bodies.

2.1 Unimoment Method for Scattering from Dielectric Cylinders

RIS T T

SR e e g e e e v —— ~ A=At o n ma—

Fig. 2.1 shows an arbitrary cylindrical scatterer upon

which a plane wave is incident, We shall restrict our
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discussions herein to a TM polarized incident wave. The
reader is referred to [7] for the TE polarization case.

The scatterer is enclosed by a circle of radius a. As-
suming that the axis of the cylinder is in the z direction,
II ine
let E_ (r,¢) be the total field inside the circle, E, (r,d)
the incident field,and Ezc(r,¢) the scattered field outside
the circle. The tangential components of the fields must be

continuous across the circular boundary. Thus, we have

B, (a,9) = E."(a,0) + E2%(a,0), (2.1)
aEII aEinc 3Esc
2 - —= + (2.2)
ar ar or i )
r = = g T =3,

Since E:c(r,¢) is a scattered field, we express it in

terms of outgoing cylindrical harmonics as

E:C(r,M = 2 ur(lz)(kor){.\n cos nd + Bn sin n¢} ’
n=o0 (2.3)

where Hiz)(x) is the Hankel function of the second kind,
k= /ﬁ:E; » 1s the free space propagation constant, A
and Bn are arbitrary constants to be determined. Since the
incident field can also be expanded in a series of cylin-

drical harmonics, let us therefore express the field of

e TR
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region II evaluated on the circular boundary in terms of
cylindrical harmonics. Thus, we have

[+
EII(a b) = {(C cos np+D sin no) (2.4)
z ¢ n n ) )
n=o

Each Fourier harmonic in (2.4) can be thought of as repre-
senting the evaluation on the boundary of one term of a

c
complete set of linear independent partial fields, w£8)(t’¢)
which satisfy

¢ ¢
V28 (.00 + e (r, 0002 (1,00 = 0, (2.5)

and the boundary conditions
Wﬁ(a.¢) = co8 n¢ , (2.6a)

W:(a.¢) = gin n¢ . (2.6b)

Thus the interior field is given by

o0

SHCONED W ANCORE XS CORN NS

n=o

We may determine Y

c
gs)(r,¢) with the above boundary conditicns

by solving (2.5) through any of the standard techniques of

pote iy b NS

et e -



- g o v

T e e T e T R T T IO e NP T T

N ST R LT T A T T T TR AT TR T

N T T T L o = Tty

12

solving the second-order differential equation. We shall be
adopting the finite element method, a discussion of which is
reserved until the next section. Using (2.3) and (2.4) in

(2.1), we get

]

:E (Cn cos n¢ + Dn sin n¢) = Einc(a,¢)

Z
n=o0

o0
+ H(z)(k a) [A_ cos n$ + B sin n¢)
n (4] n n d

(2.8)
nsvo
With the use of (2.3) and (2,.7) in (2.2), we obtain
. i
® c 8 ne !
W W E, ;
Ca Tor * D, A * T |
I=a r=a r=a
n=o
+ k H(Z)'(k a) [A_ cos np¢ + B sin no) (2.9)
on o n n ) )
n=1

Invoking standard orthogonality relationships we obtain from

(2.8)

c = anP(ka)+ ¢
nn (o] n

n , (2.10a)

D =B ) (k a) + £°,
0 n

n ndn (2.10b)

where
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27
£€ = 1 Einc(a ¢) cos n¢ d¢ (2.11)
n it A ’ ? .
()
2
1 i
0 - —,-‘fnz"c(a.db) sin n¢ d¢ . (2.12)
()
Substituting (2.10) - (2.12) in (2.9), we obtain finally
@ awc ’
(2) n _ (2)!
' 2 [An {Hn (koa) 3T i koHn (koa) cos n¢}
n=o
ay®
(2) n (2)!
+ Bn {Hn (koa) ETS - koﬂn (koa) sin n¢}]
r=a
inc ot c s
3Lz c ] n s awn
= - fr v t e
r=a r=a r=a-:
n=o0
(2.13)

In computations, the summation in (2.13) must be truncated
to N terms. The choice of N is generally slightly greater
than koa. To obtain a matrix equation for the unknown
coefficients A Bn’ (2.13) may be multiplied by cos n¢
{n =20, 1, 2...N) and gin n¢(n = 1, 2...N), integrated over

the interval 0 to 2m., (Note that this is equivalent to

aterielin Stic . |
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=
expanding the contintity equation (2.2) into Fourier modes).

Once An, Bn have been Eomputed the scattered field is easily

computed from (2.3).

2.2 Interior Problem

The interior field satisfies the differential equation
(2.5). Since the exact solutjon to the inhomogeneous equa-
tion is possible only for limited types of inhomogeneity,
we resort to the so-called finite element method [9] for
solving for wn. In this approach, the solution for wn is
obtained by minimizing a variational functional associated
with the differential equation, The interior of the circle
of radius a is usually divided into a number of triangular
subregions which are known as “elemencte". The function wn
is expanded over rach element in terms of suitable functions
called "trial functions". The values of the trial functions
are specified at certain points (nodes) on the triangies.
Typically these nodes are at the vertices of the triangular
elements, but in higher order schemes [9), may also be at,
say, the mid-points of the sides of the triangles. By using
the trial functions over each element and minimizing the
funciional with respect to the nodal values within an ele-
ment, one obtains a matrix equation. This matrix equation

may be then solved to determine wn at the nodal points.
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For TM polarized waves, wn satisfies

ARERS

+ ke (r, 00 (1,0 = o,

where wn(r,¢) = Ez(r,¢). The solution to this equation is

the same as one would obtain by minimizing the functional

1 -./:ltlvwnlz - kg V(0 Jas, 20
S

where § corresponds to

We divide the region S

(rig. 2.2). Let VY ,
Ay

values, wvheiv K 18 the

region S and K' 18 the

circle. Approximate wn

angle. Minimizing the

the region over which (2.5) is valid.
into a number of triangluar regicns

i =1, 2, ... K+ K', be the nodal
total number of nodes inside the
total number of nodes on the artificial
by a linear function over each tri-

functional I in (2.14) with respect

to Wn , 1 =1, 2...K, one obtsins

i

where

QU = TU' (2.15)
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Figure 2.2, Finite element grid scheme for the
interior region.
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. _—
1 fk+1
wn \Pn
2 K+2
U = . ’ U' - .
\yn Wn
1]
i K i L K+K i

and Q and T are the coefficient matrices obtained from (2.14)
over each element. Since Wn » 1 = K+1, K+2, ....K+K', are

i
known for each mode n, one can solve for U from (2.15). Once

P

wn is known, 75? is evaluated along the artificial

circle. Having obtgl:ed the numerical derivative of wn on
the circle (r=a), we may then evaluate the scattered field
coefficients A Bn from (2.13).

The remaining problem 1is thus the evaluation of the
elements of the matrices Q and T. It‘ié in this step thét
we follow a slightly different derivation than that of Chang
and Mei [7]. If ¢ = wn is the field in any element cor-
responding to the nth mode, Chang and Mei express the

assumed linear variation of this field in terms of a fixed

global (x,y,z) coordinate system as

$ = ax + by + ¢ , (2.16)

where a, b, and ¢ are the expansion coefficients to be

S oms -y
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determined. If (1,2,3) are the nodes of the triangular
element and ¢1, ¢2, ¢3 are the respective nodal values, then
the expansion coefficients a, b, ¢ for this element can be

easily found in terms of ¢1, ¢2, ¢3 as

-1
a ) v ! !
b - x, Y, 1 ¢2 . (2.17)
¢ Xy vy 1 &)

An alternative and simpler representation for ¢ is in terms
of a local coordinate system, wherein ¢ is expressed in terms
of area coordinates [2]. Referring to Fig. 2.3, the field in

the el:ment is written in terms of area coordinates as

1
¢ = x(¢lAl + ¢2A2 + ¢3A3): (2.18)

where A 1s the total area of the triangle and Am, m=1, 2, 3
are the sub-areas shown in Fig. 2.3. It should he noted
herein that the global coordinate and local coordinate rep-
resentations are two different ways of expressing the

agsumed lineay variation. The two representations themselveu

can be related to one another. The relationship between the

two can be obtained as
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- 1
1 1 1 1l A
x| = |x X x ) (2.19)
1 2 It Y ? '
y y y vall A3
! 1 2 M7
> o
A, ] -
1 -l ol by
A Pog Y3 X5 1
A
& P Y. X y
A 12 12 X2 LY
be - -
where P__ = P, = <L [x vy - x_y.]
mn L 2A m' n nml>
1
Ton = Y2 2A {ym - yn]
X =X, = o [x - x] £,m,n = 1,2,3
mn £ 2A m nt ' *E

and (xi,yi) , 1 = 1, 2, 3, are the coordinates of the nodes
of the element. Since the integrand of the functional I in

(2.14) involves derivatives, we note

e Sy T | Ly 38
A’ A ' A A 1 BA LA
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A A >
—B—fliz--—i]-z“l-x-—--af. (2.22)
dy A’ A’ A A "1 3K ¥
i=1
The functional I in (2.14) over the element is

I, = [[[IWIZ- KZe ¢2J ds . (2.23)
o r
123 A

123

We note that

Using (2.18), (2.21) and (2.22), we get

3 ¢1 X 3 ¢i )
Vg = z Tyi x + Z Txi Y, (2.24a)

i=1 i=1
Hence
3, 2 3 4 2
2 i i
[Ve|° = 2: S E:A:ﬁ (2.24b)
1=1 1=1
Minimizing IA with respect to ¢1, one has
123
31,
123 ) 2 2 .2 -
3, 307 (1ve]" - ke 7] ds . (2.25)
8123

v R s3an A YT A iy g T - - - e e hiad
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Substituting (2.24) and (2.18) into the above and noting

the following integrals,

A
.I:’.-i? ds = % , 1 =1,2,3
A123
3
A
ffAiAde'ﬁ,ifj
8123
3
2 A . -
ff(Ai) ds = ==, i = 1,7,3
8123
one obtains
3
aIAlzz = 2 3 35 Y Y, + 2 EE X X
8¢1 A m 1 A m 1
m= 1 m=1
e,
- (20, + ¢, + 4, . (2.26)

Herein we have assumed that Cr is constant over the element.
1f Er varlies over the element, then one can expand sr in
terms of a suitable polynominal (in the area coordinatesg)

and proceed as above to evaluate the second term in (2.25).
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If there are p triangles around node 1, then one has to

evaluate the integral in (2.25) over each of these p tri-

From the above it 1s clear that a proper bookkeeping of the
nodes that make up an element of the finite element mesh is
mandatory. However, it is the nodes which correspond to the
elements of the matrices Q and T. Accordingly, it is the
interconnecting nodal arrangement which plays a key role as
compared to the nodes that make up each element, Computa-
tionally, one could search through a matrix which lists the
nodes making up an element and find which elements of the
mesh contribute to which elements of the ratrix., This
appears to be the procedure adopved in [7]. An alternative
approach that is computationally more efficient, however, is

1,

to define the elements through a connection matrix N = [n
h

13

whose elements are the nodal numbers of the _1t node (num-
bered counter-clockwise) .connected to node 1 (see Fig., 2.4).
Such ar approach has the advantage of immediately identifying
the interconnecting nodes. It also makes the numbering of

the elements superfluous, as we shall see. Expanding out

the terms in (2.26), we obtain

- - e A o - - . - . T A £ AT Lty 2 N Sa

o e




ayvi

e v —

W T 3 s o

B e Y

v T

| AT e

24

i"‘ row

of oconnection

mairix

Figure 2.4,

Interconnecting nodal arrangement and definition
of the connection matrix.

e .




R

e Rhacaie st bt

v AT

| pum ey e X R ST U S

e

War e E B TR

N deh, nent

IS A 7

PRI

’

25
BIA
123 2 ,.2 2
5%, 5 (Xp +¥De,
+3[(xx + Y. Y. )¢ +3(xx + Y. Y.)¢.]
A 172 17272 7 A 7193 1°3°%3
2
ke
o r A A
- =5 [Ad + 5 4, + 5 050 . (2.27)

Define the vector location of node i, with coordinates (xi,

"1) as
r1 - xi + jyi

and the vector from node i to node j as

Note that

With the above convention, (2.27) reduces to

R L
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a1 -2 - . -
a3 _ |23 o +o23°Ta1 o T3 Tia
7, TN WA Y B TRRE . ,
k2€
O r

G RV RN (2.28)
wherein the various vectors are shown in Fig. 2.5 . We note
here that the self-node contribution of the Laplacian term
is proportional to the ratio of the square of the distance
of the side opposite to a node to the area of the element,
while the coefficients of the mutual terms in the Laplacian
are proportional to the cotangent of the angle formed by
the sides at the opposite non-self node

One can obtain the Laplacian verm above in an alterna-
tive way. Expanding ¢ in area coordinates as in (2.18) and
noting that ¥y 1s given by (2.24a), one can use V2¢ = V-Vé

and approximate the divergence as

T X 1 e A
VRS fA A d1, (2.29)

where fi 1s the normal to the contour C (in cthe plane of C)
enclosing the triangles. Using (2.24a) in (2.29), one

obtains exactly the Laplacian term given in (2.27). Such

an observation is very useful when dealing with surfaces
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Vector definttions of nodes in an element,
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that may be irregularly shaped or for problems wherein the
faunctional I cannot be easily formulated.

In general, if there areNi nodes around node i, as shown
in Fig. 2.4, differentiating the ve-iational form with re-

spect to each of the nodal values ¢1, yields

Ny 2
) fj__ml
3 2 1
i 2A
i=1 3
N
i (=1 , =1 ~1 , i
+z 3,9-17 F3-1 0 Tyar,yt Ty o
T=1 2A;_1 ZA; "y
%3 Ny Ny
r i i, .1 i
-5 [¢1 2 Ay + z 7 (A + Ay ¢“1].
j=1 n=1 3
i =1,2...K, (2.30)
wher.
;; - -
Y
LY T ey T Ty

et e s,
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1 -1 -1
g =72 (g

jEl+Q- l)mod N .

Equating (2.30) to zero so as to satisfy the stationarity
property, we obtain the elements - aund tnm of the matrices

Q and T of (2.15) as

Nn
' e 3
z -—3—— Aj . (2.31)
i=1 =1
q -n . on =n , 3N
nw - r|n m-1 rm-l + rm+1 m m
-t n n
nm ZAm-I zAm
2
ke .m < K
- or / (2.32)
3 [ (A + An lﬂ RN Kf .

Using (2.31) and (2.32), we may calculate the interior fields
from (2.15) for each mode specified on the artificial circle.

Once the interior fields are known, a finite difference

v W
n
scheme yields 3t lr=a ° With w and ~5;- =a known, the

scattered field coefficients An, Bn are determined from

(2.13).
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2.3 Numerical Results of Unimoment Method

A computer program was first written using the procedure
in [7) which uses the global coordiiate representation. Lat-
er, a separate program using the local coordinate representa-
tion discussed here was written. Accuracy of the programs
was checked by comparing with the exact solutions for a di-
electric circular cylinder. Figs. 2.6 and 2.7 show the
scattered field patterns for a two-layered circular cylinder
and a two-layered elliptical cylinder, respectively. The
agreement between the exact solution in Fig. 2.6 and the
moment method solution in Fig. 2.7 is quite good. The
minor difference one notices in the backscatter direction

is attributed primarily to inaccuracies introduced by equa-

ting the analytically exact normal derivative of the
exterior field with the numerically de-ived value for the
E interior field which was computed by a backward difference
at the boundary.

A few additional commenta concerning the use of the

local coordinate representation are in order. The use of

the connection matrix simplifies inputting the data to a

computer code as well as saves significantly the time spent
in searching through a list of element numbers to determine
the connecting nodes. This fact becomes more apparent if

one realizes that the element numbers are superfluous as
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compared to the nodes that make up the elements. Further,

the use of the area coordinate vrepresentation allows one to

© e e STAR A
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g e g e g 2
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A AT T, 8

Cansi

Lo i

explicitly write the matrix elements in a simple form.

These two gids to the organization of the finite element

method have resulted in a saving by a factor as large as

twenty in the computation time over that required by the

method described in [7], even though the two approaches can

be verified to be analyticallv and numerically identical.

2,4 A Comparison of Numerical Methods for Application to

Missile Plume Problems

In this section we take a closer look at some
features of the varioug methods indicated earlier,
apply to the specific application we have in mind,
the calculation of the current inducd on a missile

attached electrically inhowmogeneous exhaust plume.

of the
as they
namely,

with an

We may immediately rule out the use of the extended

boundary condition or T-matrix approach [2] for two reasons.

First, the method is slowly converg.nt when the scatterer

is not nearly spherical and hence is not suitable for ap-

plication to the thin missile/plume configuration.

Secondly,

the entire domain basis representation of the fields (typ-

ically in terms of spherical harmonics) used in the method
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is also numerically unstable whencver there are geometrical
singularities such as would occur near the tip of the mis-
sile and at the missile-plume junction point near the rocket
nozzle,

By contrast to the T-matrix approach, the volume polari-
zation current :pproach [1] is a very numerically stable ap-
proach. However, it generally requires a large number of
unknowns since the method requires one to solve for all
three components of an effective polarization current. In
the missile/plume problem, which can be treated as a body
of revolution, if only the circumferentially uniform Fourier
component of the missile current is desired, the number of
vector components in the polarization current is reduced
to two. Nevertheless, several other factors weigh heavily
against this approach. The first is that the matrix that
must be solved is full (i.e. not sparse). Not only does
this fact mneanc that matrix £ill time becomes expensive, but
also because of the large storage requirement, ouc-of-core
matrix solution techniques would be necessary. Secondly,
the density of points at which the polarization current must
be sampled is related to the local wavelength and skin
depth in the medium and the rate at which the local medium
parameters are changing. Thus the method is not suitable

for layered inhomogeneous bodies or regions where the

e e e - .. R
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parameters vary slow enough that layers can be used to
approximate the scatterer.

This leaves for our consideration the unimcment method,
discussed in detail in the previous section, and the surface
integral equation formulation, both of which are numerically
stavie and result in banded matrices. Before comparing the
methods, we consider the surface formulation in further
detail. The approach for layered inhomogeneities is closely
related to the surface field approach for homogeneous lossy
dielectric scatterers, For homogeneocds scatterers, the
approach proceeds as follows. Referring to Fig. 2.8, one
postulates surface currents J and ¥ on the surface S. By
relating the electric and magnetic fields to J and M and
applying the boundary condition on § that the tangential
fields have to be continuous across S, one obtains a pair of
coupled integral equations in J and H. Using numerical

methods, one may then soclve the coupled integral equations

for J and M. To extend the approach to layered inhomogeneous

scatterers, such as the five-layer scatterer shown in Fig.
2.9, one may simultaneously solve for postulated surface
currents on each of the surfaces, using the coupled integral
equations derived by matching the fields at all the inter-
faces. The dimensions of the resultant matrix are such that

a full matrix of those dimensions would quickly exceed the
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X Figure 2.8. A humogeneous scatterer.
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storage available on most computers for most problems. How-
ever, if one recognizes the fact that a body with a layered
inhomogeneity has a moment matrix which is block tridiagonal,
one needs only to simultaneously store three of the much
smalier blocks making up the matrix [4]. To illustrate this,
we consider in some detail the example of the five-layered
inhomogeneous scatterer shown in Fig. 2.9. If Lij is the
moment matrix for scurces on layer j and field points on

layer i, then the overall moment matrix equation is of the

form
~L L 0 0 0 | -Iq ~0 )
11 12 1

L21 L22 L23 0 0 12 0

0 L32 L33 L34 0 13 =10 ’ (2.33)
¢ 0 Ly Lys Lys | |l 0

inc
0 0 0 Lg, Lgs I v
e [ N . o -l

where Ii is the column vector of unknown expansion coef-

ficients of the postulated currents Ji’ Hi on surface Si and
Vinc is related to the tangential incident field on the
outermost layer, We note that the matrix is block tridi-

gonal in form., Beginning with the equation obtained from

the first row of (2.33), vepeated eiimination results in

P T T
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I =-~[L_ -1 M L ]'1 L I
n nn n,n-1 "n-1 "n-1,n n,n+l “ntl
= Mn In+1 s, n = 1,234, (2.34)
= = - inc
with Mo 0, L5,6 I, the identity matrix, and In+l v

for n=5, We note immediately tha’. the dimensions of the matr-
ices which need to be in core at each stage of the iteration
are much smaller than that of the overall matrix in (2.33).
It should be further noted that the iterative approach in
(2.34) uses only the non-zero sub-matrices in (2.33), thus
avoiding storage of any of the zero sub~matrices in (2.33).
In order to compare the accuracy and efficiency of the
surface current formulation approach with the uniroment
method, a few test cases were tried. Figs. 2.6 and 2.7 show
the scattered fields computed by the two methods for various
two dimensional objects. Based on our experience of testing
both approaches, we offer a list or observations presented
in Table 2.1 as a guide to choosing between the two methods.
We note that a number of variations on the approaches
considered here are possible and these can significantly
affect our conclusions. For example, Morgan (8] uszes a
homogeneous core region in bis unimoment methcd application

and obtains a significant saving in the number of unknowns
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required. Some of the features of the various methods dis-

cussed here can a. . -ombined. For example, one might

use 8 finite element mesh,as in the unimoment method, to
determine the fielde interior to the inhomogeneous region
and use a surface current formulation to simultareously de-
termine the fields at the boundary of the region and to

enforce the radiation condition. Such an approach seems to

combine many of the most desirable features of all the meth-
ods discussed here, but,unfortunately, has never been
testad!

O0f the two methods compared in Table 2.1, we choose to
ugse the surface integral equation approacn to treat the
missile/plume problem. This cholce is made because the
missile/plume configuration is a thin structure and there-
fore not so suitable for the unimomeat approach. Further-
more, we are primarily interested in surface currents and
not with scattered fields. For these reasons, together with
some of the complexities associated with extending the
unimoment approach to bodies of revolution, we have chosen
to employ the surface current formulation in the following

chapters, which formulate the missile/plume problem.
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CHAPTER 111
NUMERICAL SOLUTTON PROCEDURE FOR SCATTERING

BY LAYERED DIELECTRIC BODY OF REVOLUTION

In this chapter, the integral equations are formulated
for the surface currents induced by a plane wave incident
on a dielectric layered body of revolution. The equivalence
formulation results in interactions only between adjacent
surfaces and honce we formulate the interactions for only
two such surfaces, the pth and (p-1l)th. Many of the details
of the numerical solution procedure essentially parallel
those described in [11] and hence are not explained in de-
tail. Numerical results for various configurations of
layered bodies are obtained and compared with other results

where available.

3.1 Formulation of the Integral Egquations

Fig. 3.1 shows two layers of a N-layered'dielectric
body of revolution. Thesv layers are formed by revolving
the generator arcs ABC and PQR about the z-axis (assumed to
be the axis of the body of revolution). The regions bounded
by surfaces Sp and Sp_1 are labelled as regions p-1, p. p+l

going from the inner to the outer layer. Note that there

o r————————
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Figure 3.1.

Two layers of a N - layered dielectric
body of revolution.
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may be other regions interior to p~1 and/or exterior to p+l.
The physical parameters of the regions shown are My ei’ Ui’
i = p-1, p, pt+l.

Boundary conditions require that the total fields tan-
gential to the two interface surfaces be continuous. This

implies that

np-l X Ep-l = ﬁp-l X Bp i (3.1a)
) + res -1
oy X By =Ry~ Hp (3.1b)
A xE =f xE 3.2a
P P P pt+l ( )
_ rcs
A xH =f xH P (3.2b)

where (Ei, ﬁi)’ i = p-1, p, p+l are the total fields inside

the respective regions, and ﬁi = 51 x Gi is the outward unit

th

vector normal to the i being the unit

surface, with Ei

vector along the generator arc. On the N-th layer, we have

similarly,

A o n A ‘i

fiy X (EN - EN+1) = iy X gine (3.3a)
- = N =i

Ay x (B - By = Ay x B ne (3.3b)

- - s )
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Using the equivalence principle, we divide the problem into
three parts, one each for the evaluation of the fields in
the three regions. Thus, if we assume equivalent electric
and magnetic currents 31, ﬁi y 1 = p~1, p, on the two sur-
faces, the three equivalernes are obtained as shown in Fig.
3.2. Note that the currents all radiate in a homogeneous
medium in each of the cases depicted in Fig. 3.2. The equi~
valent currents on the interior of a given surface are merely
the negative of those on the exterior to the surface in view
of the continulity of the tangential fields at the surfaces.

The fields in (3.1) and (3.2) can thus be written as

B, (F) = ~Juk, (F) - VO5(F) - -eli- VxF  (F) (3.4a)
R () = -juF (D) - vol(D) + Eli- VxE, () (3.4b)
i = p-1, p, p+l, (3.4b)

where the potentials are defined as follows:

.
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- - -1
p(x‘) —L—jf (r (rr)ds
plff G (r,r)ds'

e
¢p 1(1') = -

m -
¢p-1(r) 2 -

]

M
- - - - - -
Ap(r) —-P-lmff Jp_l(r')GP(r,r') ds'

S

p-1
B S
‘HTfpr(r')GP(r’r') ds'
SP
F (r) EB;IP M :
o olivy- f Mp_l(r')cp(E,E')ds'
Sp-l
Y
- wffMp(r')Gp(r,r') ds'
S

p

1 pm -! - !
XTI p-1(F )Gp_l(r,r ) ds'
Sp-1

(3.5b)

(3.5¢)

(3.5d)

(3.6a)

(3.6b)
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- 1 - - -
¢ (1) = ”"Epff Ppe1 (TG (F,E")ds”

Sp-l

- 1 € = T Rt
4"€pffpp(r )Gp(r,r ) ds
S
P

H

- 1 m - -~ -
0@ - ﬂpp_lu')cp(r,r') ds"
Spo1

1 - - -
4"upffo';(t')cp(r.r')ds'

S
p

- o+l - - - -
p+l(r) = “%;— Jp(r')GP+l(r,r')ds'
S
p

£
- - +1 R - -
Fp+l(r) = —P--,m _UMP(r')Gp+l(r.r')ds'
S
P

q;e (;) = .._-.l‘_.__ pe(; ) hodbt [}
p+l 4"€p+l P o ¥ )Gp+l(r’r )ds
S

(r) = -

>>1

‘p+l
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(3.6¢)

(3.64)

(3.7a)

(3.7b)

(3.7¢)

(3.74)
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and where

(3.8)

i = p-1, p, p+l

%

R = |T=%'] = [p? + p'% = 20p" cos (¢-0") + (z-2")7%] .

Using the continuity equation, one can express the charge

densities in terms of the current densities as

e = l ' . T r!
Py =5 [Vs Ji(r )] (3.9a)
n 3 _
p, = ¢ (VL « Hy(e"] (3.9b)
i = P"l, p.

Using (3.4) through (3.9) in (3.,1) and (3.2), one obtains
the integro-differential equations for the unknown electric

and magnetic currents, shown on the following pages.

< A
3
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~ . W o

n < J d '

p-1 141: f p-1p1 Gpmy ¥ MG, ) ds
p-1

S
A VoS
T e fo (Vg + 3,.9) {—E——+EP-} ds
p-1 P
S-1

*Zﬁvxfj" (G + 6,)ds’ "Lff\]ucdb

S,-1
——J—-V (v' .’j)_(_;_P_d _1._

s
p s,

= 0, res ) {(3.10a)

Sp_1
|
G, 6
+ v I D B T e S I P
A 41w s p-1 U U
S p-1 P
p-1
- 1 J v Jw f
4 e V x f p-l(G -1 + Gp)ds 3 M epG ds
S S
p-1 P

~
o
[72]
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In (3.10) and (3.11), the dependence of the various quanti-
ties on source and/or field ccordinates is implicitly under-

stood. We next note that, for i # j,

Y xffﬁjc(Ei,E;)ds' = -ffﬁj x xc(?i,Ej')ds' (3.12a)

S S
J i T =3 or#H

wherein the curl has been taken inside the integral since

the field point r, and source point r' are on different

3

surfaces and hence G(;i’;j) is non-singular, assuming that

i

the layers do not touch one another. However when r and r'

are on the same surface, then it can be shown [12] that on

the surface S1

T L n '
v xffui(ci+G1+1)ds ﬂui X V(Gi+Gi+1)ds (3.12b)

S 5

where {f indicates a deleted integral around r. Equa-

tions (3.10) and (3.11) can oe written in compact form as

J . M) =0 (3.13a)

p,p-l(jp_l, M ) +s (J,H¥)=0 (3.13b)

4 2 M T Dt R R

ke G o sy L AT s
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where 811(31, ﬁi) represents the contribution to both elec-

tric and magnetic fields on surface i from currents existing

on surface i, while Cij(jj’ ﬁj) represents the electric and
magnetic fields evaluated on surface i duc to currents

existing on surface j. Such a compact form is necessary in
order to generalize the procedure to an arbitrary number of

layers. We can write (3.10) and (3.11) in component operator

form as follows:

r- —
s, ,(J, ) s, . (J, ) s.. (M, ) s,, (M, )
11774 12774, 137 145
s..(J, ) s, .(J, ) s, .(M, ) S,, (M, )
o 21771, 22 1¢ 23271 24 iy
S11 U3y M) =
' s3l(J1t) 332(Ji¢) 833(Mit) 834(Mi¢)
f s, (J.) s..0J.) s,.(M ) s . (M)
i 41774 42 1 4377 44 1, )
(3.14)
ST IR
3
E czl(th) c22(Jj¢) c23(th) c24(nj¢)
3 c..(J,, M,) =
1 r 38 B j
Z | c3l(th) ch(Jj¢) c33(MJc) c34(uj¢)
a0y ) ey ) e 0 )

(3.15)
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with 1 = j+1 or j-1. Herein the first and third row of
operators yield the t-diracted component ofethe tangential
electric and magnetic fields, respectively, while the

second and fourth row of operators yield the ¢-component of
the tangential electric and magnetic fields. The dependence

of the operators S and ¢ on the various current compon-

ij ij

ents is clearly indicated. We next express all the operators

in (3.14) and (3.15) in terms of the local coordinates (t,¢)
on the surfaces. An orthogonal system of unit vectors
(ﬁi’ ¢1, ﬁi), i = p-1, p, are associated with each point

(ti’ ¢i). i = p~1, p on the surface Si' These unit vectors

are defined as follows:
i, = cos y, cos ¢i £ + cos Y,8in ¢i § - sin Yy 2 (3.16a)

b = - N o (3.16b)
¢1 sin ¢i X + cos ¢1 y

ti = gin Y cos ¢i % + sin yisin ¢i § + cos Yy 2 (3.16¢)

i = p~-1, p, where \F is the angle between the tangent to the
gencrating arc, Gi‘ and the z-axis, defined to be nositive
if Ei points away from the z-axis and negative 1if gi points

toward the z-axis, The surface divergence can now be writ-

ten as

“ b T -
haiDVEY A
N ‘&A\’ ..f:\q s - —
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(pi u_ )+ --17 2 (v, ) (3.17)
i
v, = J, or ﬁi’ i = p=-1,p.

Expanding (3.10) and (3.11) into component form and compar-
ing with (3.14) and (3.15), one can easily obtain the
expressions for s and cy - For notational simplicity, we

ij f

introduce the following operators:

Bll(U; U, €, ti’ t;: ¢1) ¢')

h|
- ‘Hf]u[“" v 8in Yj'c°5(¢j'“¢i)
3
+ cos Y

jcos y;] UG(ti.tj)dS'

G(rc
PR R f L2 (o} V) —L 1 g5 (3.18a)
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4nw

BIZ(U; u, e’ ti) t;‘ ¢1)¢3)

ffu sin vy sin((t)j 4’ ) uG(ti,tj)ds

\

G(ti,t )

3 L}
‘I. v (m ds
Py 8¢j €

%3

o

(u

]

x

S

i

sin(¢j-¢i) + (zi-zi)sin Yisin Y!

. g“ : ' '
IR C(ti,tj) ds
s My €y ti’t}" ¢i: ¢3)

+ (z,-2"
( i

i

....1._ .l.l. ' | []
e “ R[(Oj sin v, cos Y) pycos y,sin Yj)

jsin(¢}—¢i)]

L - -
R [pj cos Y, - p,cos Yicoswj ¢y)

i

)sin Yy cos(¢3

d ' '
-¢i)] iR G(ti,tj)ds

57

(3.18b)

(3.18¢)

(3.184)

O
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. | )
21(U9 u' e’ ti’ tjv ¢1, ¢j)

= -}’%fo sin y:'isin(tbi*tbi) uG(ti,tj') ds'

3
G(t,,t})
+ ___1______3__ _L ....@... (D'U) [____i___.J__] dS'
lmmpi 8¢1 p3 atj 3 €
S
k|
622(U; u) C) ti) t:']! ¢i' ¢3)
W
= -}.-"-ffu cos(q>j $,) uG(ti,tj)ds
5
G(t,,t!)
PR 9 _}..._Q.T (u) A d7] 4
dmwp LI P ¢j €
S J
A
Byg (Ui, £, by, t;. L ¢ )
- - —A—l—ﬂ p cos Yj - pjcoa Y. cos(¢ -6,)
J

- (zi-—z"i) sin Y3c05(¢_'1-¢>i)] a-(-ii G(ti,tj)ds'

(3.18e)

(3.18f)

(3.18g)
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= - Z%ﬂ'%(zi-z:'l) Sin(¢;'i_¢i) &%—( G(ti,ti)ds' (3.18h)
S
h

where

e-ij
1y -
G(ti,tj) = (3.19a)
1
- -'- 2 12_ 1] _' _l22
R = Ir1 rj| [P + Py ZDipj cos (¢, ¢j) + (z zj) ]
(3.19b)
With the above definitions we have the various sij and c1j
as:
= ] ]
Sll(Jp_lt) Bll(Jp°1t’ up_li Ep_lt tp_l! t p_l) ¢p_l’ ¢ p_l)
. ' '
3 + Bll(Jp_lt’ Up: EPD tp_lt t p‘l’ ¢p-l’ ¢p_l)
(3.20a)

1
- . )
Slz(Jp_1¢) Blz(Jp_l¢’ up_l’ ep_l) p_l) t p'l’ ¢p_l’ ¢ p_l)

(J HI VR

' t
P p’ tp-l’ t p—l’ ¢p_1: ¢ p-l)
(3.200)

12 7p-1

ERVS AR 20 R bl

ey e
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(M

13V p-1

21

(J
p

SZJ(Mp—l )

I313(Mp_1 ;

B
13(Mp—lt;

14 p=1,?

(M

147 p-1 ;

21'%Vp-1
P t

(J

21 p-lt;

2051 3

22 p-1,°

~ Mo

P p p-1
(3.20¢)
v €
p_l! _1’ t - ’ t'
p p 1 p_1’ ¢p_l) ¢|;"l)
., € t '
p > - ’ t 1]
P’ p-1 p-1" Ppo1 ¢'p-l)
(3.20d)
u €
p-1’ -1? t,- '
P p-10 p-10 %p-10 ¢pon)
B, € t '
P » _1) t
p p 1 p_l’ ¢p_1! ¢'p—1)
(3.20e)
H €
-1 Sperr t ¢’
p p_l’ p_l) ¢p_l’ ¢'P"‘1)
M, €, t t'
)

p p _17 - 4) !
P p-1’ Tp-1’ ¢ p-1

(3.20f)

Mo _1s € 1o '
p 1 P'l p_lr t p_l’ ¢p_l! ¢'p__l)
U, ¢ t !
’ b ] t
P’ p’ Tp-l p-1" ¥p-17 é-l)
(3.20g)
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x . ) \J
SZQ(MP"1¢) SZA(MP"1¢’ l«lp_l’ ep-—l’ tp"'l’ t P_l’ ¢p_1’ ¢ p_l)
t )
+ Bza(“p-1¢; s Epr Toigs Elogs O30 O7500)
(3.20h)
C NP LI I N (3.294)
t t
S350, ) == 80y ) (3.203)
¢ ¢
= . - ‘ ]
533(Mp_lt) Bll(Mp_lt) t—p_lt up"l’ tp_lo t [)"1’ ¢P“1’ ¢ p-l)
1) t
+ Bll(up_lti ep, up’ tp 1’ t p"'l' ¢p_1’ ¢ p"l)
(3.20k)
5 = M ' ]
531‘(Mp_1¢) Blz(Mp_1¢D Ep-l’ up*—l' tp"'l’ t p 1’ ¢P'l’ ¢ p"l)
. ' ]
+ BlZ(MP"1¢’ Ep’ up’ tp_ll t p"l’ ¢p"l’ ¢ P-l)
(3.2048)
Sél(Jp—lt) = - 523(Jp-1t) (3.20m)
SQZ(Jp-lt) = - 824(J _1¢) (3.20n)

A R U S

+ e 4 ¥ A 3SR

S TR S it g e
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543(Mp-lt) - BZl(Mp-lt; Ep-l’ “p-l’ t:p--l’ t'p-l’ ¢p—l’ 4,'p-l)
+ BZl(Mp-lt’ €pr Hpr Toopr Blosgr Gpipe OT010)
(2.200)
844(Mp-1¢) = BZZ(Mp—l¢; €p-1 Mpo1r tpo1r tlpnr Gpopr ®Mg
* Pa2Mpoy 3 S Mpr Fpir Flpire Spurs #Tpl0)
(3.20p)
°11(th) = -Bll(th; Mps Ep to o t', o1 ¢;) (3.21a)
c12(3p¢) - -BIZ(Jp¢; Mpr Epr toyo t', bpo1” ¢;) (3.21b)
c”(Mpt) - -813(Mpt, Mo € Eopo t', ¢p_1, ¢")) (3.21¢)
Cl4(Mp¢) - 814(“p¢‘ Mo Eps to_ g B O 90) (3.214)
c21(th) = ~821(th; Mo €00 T g t;. byo10 Op)  (3.21e)
C22(Jp¢) - —822(Jp¢; up, Lp, tp-l’ t', ¢p-l' ¢;) (3.21%)
c23(Mpt) = -823(Hpt, Moo Eps Eopn t, o5-1 ¢;) (3.21g)

£y
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c“(M%) = 'Bza("p¢; Mo €5t tr'>’ p-1° ¢")) (3.21h)
c31(th) = - c13(th) (3.211)
°41(Jp¢) = - °14(Jp¢) (3.213)
c33(npt) = -Bll(Mpt, ep, p? tp-l’ t"), ¢p_1, ¢;',) (3.21k)
c“(.\x%) = -8,,(4 ¢, Epr Moo Eo t;)’ ¢po1 ¢r'>) (3.212)
¢ 1 :) '°’23(th) (3.21m)
CAZ(J ¢) = -CZA(Jp¢) (3.21n)
c“(Mpt) - -le(Mpt; ep, Moo tp-l' tr'>’ ¢p_l, q»")) (3.210)
c“(M%) = —BZZ(Mp¢; €pr Moo oo t"). o5-1° 4>I',). (3.21p)
We note (3.20) and (3.21) define sp_l’p_l(jp_l, ip_l) and

C (jp, ﬁp) in (3.13a). To find similar expressions for

p-1’

]
PsP( P

in (3.19). However, we replace (p-1) by p and p by (p-1) in

«l o

. ﬁp) in (3.13b), we replace (p-1) by p and p by (p+l)

(3.20) only for the field and source coordinate variables,
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maintaining the medium parameters to be up, ep, to obtain

( Y in (3.13b).

Cp.p-l Jp-l’ Mp-l

We next turn our attention to the numerical evaluation
of the various quantities in (3.14) and (3.15). For this,
we divide the generating arcs into a number of linear seg-

ments as shown in Fig. 3.3. The points ti R ti s ....t1
o] 1 n

se+es 1 = p=~1,p specify the end points of the linear segments.

The half-points, t, , t ,....ti cseey 1 = p~-1,p, are

, ' iy n+s
defined by
(tin + tin_l) i =~ p-1, 1 <n <N -1 + 1
ty = P (3.22).
n-% 2 i=p,1<n<N +1

We next define expansion functions for the electric and mag-
netic currents. Since the scatterer is a body of revolution,

we choose the ¢- variation of the currents to be the Fourier modes
in ¢, while the t-variation is expanded in a pulse

basis set. Thus we have

~ o« Ni
- ty mn _n jmo!
[} ] = )
Jy ey ¢9) Zmp} }E Ly Bp(ey) e?0
t
m=«® ne=1
w Nl
- mn .n, , jag! )
t 9, Iy Pz(ti) e i (3.23)
m = = ngl ¢

e T - w e e e m

- e cc—— -
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Figure 3.3. Linear segmentation of the generating arcs.
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where Ni = Np~1 or Np for i = p-1, p. The derivative of

Ji with respect to ti is approximated as

t
. Ni+l l?n _ In't,n--l
. i
__2___ ' ' ' = _1-__ t t
t M= ~0 n=1 n
S L)
X PZ(ti)e (3.24)
with I?’o = IT'N1+1 = 0. Herein P;(ti) and P;(ti) are
t t

defined as follows, for i = p-1,p:

1, ¢t < ti

A
T

Pi(e)) = ba-k ey (3.25a)
0, otherwise
1, t < t! <t ,
P;(tl) . 11 1 n (3.25b)
0, otherwise
with At = |e, -t (
n n n-1
2 2 )
= [(p, =-p )T+ (2, - = ) jL’ (3.26)
i i i i .
n n-1 n n-1

m n . - .
Iin and Jin are the unknown expansion coefficients of the

t ¢
"total modal current" (2n Py J?n) in the t-direction and
n t

oy

[ —
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the actual modal current density in the ¢-direction. The
expansion of t- and ¢-components in terms of the "total"
current and current density, respectively, arises as a natural
choice, partjicularly when one applies the surface divergence
to the current representation. One observes further that
Jit(t', ¢i) y 1 = ¢-1,p, appears in ail integrals with an
associcsted factor pi, thus making it natural to consider the
product piJit(t', ¢i) the unknown current. Ji¢(t" ¢i),

on the otherhand, does not appear this way and the artificial

introduction of p; factor would introduce unwanted singulari-

ties in some of the integrals. Hence we expand Ji alone.

¢

The magnetic currents Mi(t', ¢i) and their derivatives are

expanded similarly with K?n = 2npi M:n and MT° replacing

mn mn ¢ ¢ i¢
Ii and J respectively,.

1

‘ Featu?es of the current expansion scheme in (3.23) and
(-.24) are further discussed in [l1]. The salient points
are that since the Fourier modes are decoupled, one can
solve for the Fourier components mode by mode. The staggered
pulse basis set in the t-direction permits the modeling of
open and closed (conducting) bodies and bodies with sharp
edges without the placement of observation points for poten-

tial quantities at points wherein the corresponding sources

{current or charge) may be singular.
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We next define the testing functions

-jpd
™9 = pY(r)e 3 (3.27a)
N 173

-ir¢
Pa . pd 3 2
sz Pz(tj)e . (3.27b)

The t-component equations in (3.13a) and {(3.13b) are tested
with (3.27a) while the ¢-component equations in (3.13a) and
(3.13b) are tes.ed with (3.27b). 1In order to perform the

integrations analycically, we expand the Green's functions

in Fourier series, as

1 - IEYCTRTI)
e __o_ - _l_‘ ¢ (t t')e m iw j
Ro 2n im |
m.-w
-ikiR, - im(o,-4!)
A d e - L G'(t.,t')e 173
R dR R 2m it74 7]
0 o o m
ms -
where 1 = p-1,p,p+l and
T -3k,R
'y o e -
Gim(ti,tj) f Ro cos m¢ df (3.28a)
-7

s —- o~ 2 AR =

B e e
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m -jk.R
G:(t ,t}) = 1 d fe T° £ d (3.28b)
i'Fyety R dr R ¢ns m £ .
m o [o] (o) o
2 '2 2.k
Ro = Loy +py = 2050) cos &+ (2,-20)7] %, (3.28c)

L
j
obtained by noting that exp(-jkiRO)/Ro is even in §{. With

where § = ¢i- ¢ The form of the integrand im the above is

this, the surface integrals now reduce to a single integral
over t. Following the procedures similar to those used for

a homogeneous body of revolution [11], we can write the

expressions for the elements gan » where m refers to the mth

ij
m
Fourier mode, while q and n refer to the field and source

indices respectively. For notational simplicity, we define
t

3,
gt , t. 3 t, 3 m) ~f G, (t, , t')de! (3.29a)
17737 4, 1q . i 1q 37773
3
t
.l ) ]32 ( ! (
t, , t, 3 t, ; m) = G t, , t.)p! dt' 3.29b)
IR PRI Pt iq . i iq A h|
3

where Gi (ti, t}) are defined in (3.28). We introduce next
m
the weight functions arising due to the testing in the t-

direction,

e e e - o
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Ati sin Yy + Ati zin Yy
q+l q q

Xg(Aty » ¥, ) = 4 (3.30a)
q q 2
Ati cos v, + At:i sin Yy
X (8t 5 ¥, ) = 9+l d 9 9. (3.300)
q q 2

The various Bqn can now be written explicitly. One notes

13
m
that the Bg? defined in the following pages are of the
m
same {orm as the Bqn defined in (5.25) of {l1], except that

1]
m
the elements there contain contributions from both sides of

a surface and therefore involve two medium properties. The

reason for defining the 82? in terms of the parameters cf
m

a single medium is that 311 involves the computation of Bi

for two media , while iy involves the computatjon of B1

N

m

3

for only one medium, Thus the same computer subroutine for
computing Bij can be used either for the computation of

qn 3
sij or cij' Hence we finally write the Bijm as follows:




e e

817 =

dw
1%1 8n
+ uwi(t

+ %% sin v,
n

+ uwi

Jw
+ 4n

+

1

1
s Wi(c

—_—d 1
imwbt [g ¥y (ty e

71

sin Y xs(Atiq.yiq)[uwi(t ot

s t, 3 m+l)
h | i(

S Y

n

s t s t N m'l)]
jn-% Ia iq

(A, , , . .
et Xg iq Yiq)[uwi(t‘n tjn+%, tiq, m+l)

(tj ity om-1)]

n"Jn+k q

cos an xc(Atiq.viq)luwi(t

cos Y X (4t Yy duy (e

jl‘\""l q q jn jn+35

1
z;;%;;" (s bty ey gt i m)

i
n n n q+k

i

n-1 n q-%

j Pty i m)
n+1 n n+l q+k

> wi(tjn.cJ sty 3w, (3.31a)

n+l q~4
q = 1,2...N1

n=1,2,..N

v

e <ns b8 4 Rt

i R A — R Ay e



4P R ML LR SR TR IRy

72

g7

12
m

- Bqn

21
m

W . .
T Ath sl \rjn[uwi(tJ x t, ; ¢t 3 m+l)

u\bi(t .t t ; m-1)]

Jn—& jn’ 1q-8

w
87 At sin vy

i [ulbj(tj ,tj st ; m+l)

q In+1 n n+Y 1q-5

uwi(tJ ,t Sty om-1))

n ‘jn'“: q-!,

mAti

q 1
= [Z v, (¢ N ; m) |
l.nuupiq_li € i jn-l jn iq—%

mAti

[% Vile, e sty s om ],

4nw5
i +1 -
q-% n " 1%

(3.31b)

{3.31¢)

4Nt v = 3t v ar .t
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qn
B22
m

qn
B13

1]

1
4

Pj
== JwMiq[uw,L (t

+

[}
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’tj ; t l; m+1l)

P
Ry (t .
h jnul In iq—%
jmzAt1
—_— 9 (1 . .
20:001 {Ewi(tj ’ tj ’ ti ’ m)] ’

q-%

(3.31d)

cos Yy
n - .
q q n-%4 n q

cos Y
n+l
j 4n XS(Ati )Yiq) U3 (tj , t

sin vy

X (At vy, ) U, (¢ .
s iq, iq 1 jn_ls i, q
sin v

n+l

) Ul(t s L
q q q “nth
(3.31e)
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0
1 ;3 Dt 3.31¢
) xs(Atiq:Yiq) bz (tj » t y t ; m), ( )

[}
N
[¢]
©
w
<
e
-]
[~
(a4
[y
=]
wn
”~
o d
-
()
-
[ad
-
B
Nt

1
—— \ ; t .
57 CO8 Yj Ati U, (t , t ; m)
L cos Y At b, (e, ,t
an 3

{ J » 3y € y I
o sin Yj At U, (t 3 i )

— sin Yy A:;i U2(cj , t 3oty s m), (3.31g)
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8% = - 3 dbt, UMe, e sy s mw, (3.31h)
m q n-1 n q-%
q~ 1,2, 'Ni+1
n = 1,2..-Nj+1 .

The U's in (3.31) are defined as in (5.26) of [11l] with

(tl, tz) replaced by (t ), tq replaced by t the

] t ]
17 3, iq
field points (p,9$,z) replaced by (pi,¢i,zi), the source

points (p',¢',2') replaced by (pj. ¢j, zj) and (5.27) of
[11] is replaced by
—JkRo

e
G = S (3.32) .
RO +

where k corresponds to the medjium p-1, p,or p+l,as the case \
may be. This completes the definition of the elements of
the self-impedance and mutual i{mpedance matrices,

The incident plane wave figlds are incident on the

Nth or the outermost interface., These can be expressed as,
_ - ay kg BT
Einc - (E; 61+ E; ¢i) N+1 N (3.33a)
- n . ko . neT
gine . (z; §t - kg bh o MU N (3
'N+1

where
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~

81 = cos o' cos ¢i % + cos 8" sin ¢i § - sin R

2 (3.34a)
ai = -gin ¢i ; + cos ¢i ; (3.34b)
f = -sin 8% cos ¢i % - sin 61 gin ¢i § - cos ol 3 (3.34c¢)
}N = Py cos ¢N X + N sin ¢N ; + 2y z (3.344d)

and n

N+l is the characteristic wave impedance of the (N+1)

or outermost region. The tangential components of (3.33)

are the forcing functions of (3.3). The corresponding elements

of the drive vector are given by (5.30) of [11], where the

field coordinates refer to the Nth or outermost interface,

After computing the matrix elements, the iteration

procedure given in (2.34) can now be used to solve for the

th

currents on the N or outermost sgurface. If one requires

the curreunts on all the l.vers, then one has to carry out
a back substitution process beginning with the currents com-

puted on the outermost layer. However, if one is interested

only in the fields on the exterior of the scatterer, then theo

currents on the outermost layer are sufficient.

The above procedure must in principle be carried out

for each of the modes m, =® < m < @,

In practice, however,

one achieves convergence with only a finite number of modes.
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Further, as shown in [11], computation of only the positive
modes is sufficient to obtain the total contribution from
all modes, positive and negative. This is because of vari-
ous symmetry relaticnships between the matrix elements and

currents for the negative modes and those for positive modes.

3.2 Eigenfunction Solution foxr a Three-layered Dielectric

Sphere

In this section, we obtain expressions for the induced
currents on a three-~layered dielectric sphere illuminated by
a plane wave. This is done to obtain a check on the formula-
tion and computer code for the layered body of revolution
discussed in the previous section. The procedure is similar ;
to that for the case of a homogeneous sphere |[13] which
results in the well-known Mie series solution.

Consider the inhomogeneous sphere shown in Fig. 3.4. :
The various media are characterized by parameters (ui, ei,
01)’ i = 1,4. An incident plane wave, assumed to be polari-
zed in the x~direction and travelling in the positive z-

direction, can be expressed as

i ~jkaz ~jk4r cos 6
E> =L e = E e (3.353)
X o o
. B, -lk,z E, k4T cos © (3.35b)
o 47 = — e
H = — e n
y N 4
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wns it e AR b A o

s oadbh e nt 3

PR

P T SN

bawad’il




I‘ Xt 31 L IR T N TR

78

Figure 3.4. A three layered dielectric sphere,
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where N, is the characteristic wave impedance of medium 4.
For convenience in applying boundary conditions, we express
the fields in terms of TM to r and TE to r problems. Thus
we have associated incident electric and magnetic vector

i

potentials, Fr’ A:, respectively, associated with the inci-

dent fields in (3.35) as [13],

i Eo cos ¢ R 1
Ar = —‘*_’W—— Z a, J“(xl‘r) Pn (cos 6) (3.36a)
n=1
{ E0 sin ¢ ~ 1
Fr i e 2 a_ Jn(kér) Pn (cos 9) (3.36b)
4
n=1
where
-n
« J (2n+1)
% n(n+l) . (3.36¢)
Here

kr )
J_(kr) = kr § (kr) = J‘-‘;Jn%(kr) (3.37)

where jn(x) is the spherical Bessel function of order n,

Jn(x) is the ordinary cylindrical Bessel function, Pi(cos 8)

min e e e - S e Lt W 4

Y o s SE «
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is the associated Legendre polynomial of degree n, order
one. We next expand the fields in the various regions in
terms of potentials of the same form as those expressing the
incident field. Thus the fields in the various regions are

expressed in terms of the following potentials:

E0 cos ¢ ~ 1
Ar = — z bn .Jn(klr:)Pn (cosf), r<al (3.38a) ,
1 4
n=1
E sin ¢ ~ 1
Frl = —v——k—;-—-- 2 e, Jn(klr)Pn (cos 8), r <a; (3.38b)
n=1

Eo cos ¢ R . 1
A = -—'-'—(—u'{r;—--‘ 2 dn Jn(kzr) + en Nn(kzr) Pn(COS 9),

r
2 n=1
al < r < az (3.38¢)
E:o sin ¢ - ~ A 1
e, T T, 2 it g0 v, Mo (kg [ Foleos 0, |
“ n=1 ;
i
a, <r <a, (3.384d)
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[+ o]
Eo cos ¢ ~ ~ 1
AL = i }E £ Jn(k3r) + u Nn(k3r) Pn(cos 0,
3 4
n=1
a, <1 < a, (3.38e)
(¢ o]
Eo sin ¢ R ~ 1 1
F, = —4— Z vy Jolkgr) + w Nn(k3r) P _(cos 6),
3 4
n= 1
a2 <r < a3 (3.38¢)
E cos ¢ -
s o ~(2). 1
Az -—-wu4 z r, H % "k,x) P (cos8), r > a, (3.38g)
n=]
E sin ¢ -
s _ o ~(2) 1
Fr = "'TCT_—_' }E s, Hn (kar) Pn(cos 8), r > . (3.38h)
n=1

Herein, ﬁn(kr) and ﬁ§2)(kr) denote kr times the ordinary
spherical Neumann and spherical Hankel function of the
second kind, respectively. Note that the fields in region 1
are rinite while the scattered fields are represented in
terms of outgoing waves. The electric and magnecic fields

can be determined from the potentials as follows [13]:

BFr 32Ar
i 1 i

{(3.39a)

m
]
i
=

Y jue,r ree

A e AR T 0
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oF 32
E, =+ 314 1 i
¢i r 30 jwair sin 8 3rdy
2A_ azpr
£ 1 1 1 i

G r sin 6 3¢ + jwuir 8rab

2
3A. 3 F,
T I 1 1
01 r 936 jupyr sin § 0rdg
i

The bouudar: conditions to be met

E (r,6,¢) = E (r’6$¢) »
ei ei+1

H, (r,0,¢) = H (r,6,9) ,
%, %141

E (r,0,¢) = E (r,6,¢) ,
21 %41

H (r,9,¢) = H (r’69¢) ’
¢y %141

0 < 6

| A

are

at r = a

at r = a

atr = a

at r = a

(3.39b)

(3.39¢)

(3.394d)

1,4,

(3.40a)

(3.40b)

(3.40¢)

(3.404d)

m, =W < ¢ <w, L = 1,2,3,
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In view of the independence of the TEr and TMr modes, we
simply require
E = E at r = 3 (3.41a)
0, | o, .. | g
il
'IEr i+l TE
r
Eei' = Eei+ll at r = a (3.41b)
™ ™
r r
" - H atr = a (3.41c)
8y 8141 1
TEr TEr
H = H at r = 3 (3.414)
eil 6 | i
TMr i+l ™
i=1,2,3,

Application of (3.41) automatically ensures the continuity
of the ¢-components of the fields as well. Use of (3.38)
and (3.39) in (3.41) thus yields

) (3.42a)

cn Jn(klal) = fn Jn(kzal) + Ea Nn(kZal

T - T T
by kg My Jalkyay) =y ky {dn Tnlkaa)) + ey Nn(k2al)}

(3.42b)
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S T TRTETS PSR R ERAATR T TURR I T R

T = 11 g
ky wey e Jplkya)) = ky wey {fn Tnlkyay) + gy Nn(kZal)}

(3.42¢c)

bn Jn(klal) = dn Jn(kzal) + e, Nn(kzal (3.424)

= vn Jn\k3a2) + ¥a Nn(kBaZ)

£, I.(ky3) + g N (kya,)
(3.42e)

A' A' = Al
kqy ¥ {dn Jn(kZaZ) t ey Nn(kZaZ% ka V3 {tn Jn(k332)

~ ' .
+ u Nn(kSaZ)} (3.42€)

. A' A, = '
k3 we, {fn Jn (k282) + 8, Nn(kZaZ)} k2 WE 5 {vn Jn(k332)

o ﬁ;‘(k3a2)} (3.42g)

dn Jn(kZaZ) + €n Nn(kzih) = tn Jn(k382) + Yn Nn(k332)
(3.42h)

_ ~ ) A(2)
= a_ Jn(k4d3) t s H (kaa3)

Vo Jn(k3a3) + Ya Nn(k3a3)
(3.421)

o A et M S f o
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T N = T
k, ¥3 {tn Jalkgag) + u N/ (kya, } ky My {an Talk,a,
~(2),
torg By (ke (3.424)
n A (
] L = )
ka we3 {vn Jn(k3a3)+ LR Nn(k3a3)} k3 wea 1an Jn(k4a3)
~(2),
+ s, Hn (kkaS) (3.42k)
t3(ka)+u§(ka)-a3(ka)+r I3(2)(k<‘3')
n n' 33 n n 33 n "nu 4 3 n n 43
(3.42%)

wherein the orthogonality amongst the modes has been utilized.
Equations (3.42) are 12 equations in the 12 unknown coef-
ficients. The coefficients were numericaliy determined by
solving the system of linear equations (3.42). OUne notes
that if (3.42) is written in matrix form, the matrix can be
partitioned into two independent matrices (involving TEr and
'I‘Mr coefficients) which are individually block tridiagonal.
Hence an iteration scheme, similar to the one used for the
layered body of revolution, can be developed. Equation
(3.42) is to be sblved for each of the modes n. (Note that
only the 6-dependence cf the fields varies from mode to
mode, whereas the ¢-dependence of the fields is fixed.

Because we have considered axial incidence, only the
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el ¢ Fourier mode in ¢ exists as indicated in (3.38)).
The number of modes is truncated at a finite number after

convergence has been achieved.

Having determined the coefficients, we can compute the

surface current on the outermost layer. We have

M3 = - X E4 = --E6 ¢ + E¢ 0 at r = a, (3.43a)
4 4
J3 = r X Hb = Hea¢ - H¢49 at r = ag, (3.43b)
Using (3.38) and (3.39) in (3.43), we get the various com-
% ponents of the currents:
|
| | Eo cos ¢ 2 .
: J = -H - — a J (k,a,)
93 ¢4 r=a, Wy, a4 n n 43 ,
n=1 '
~(2) d .1
+ . Hn (k4a3) a5 Pn(cos 9)
1 E cos ¢
- L
jwu4a3 sin © z % Jn(kloa 3) (3.44a)
o
y n=1
3
a(2)! 1
| + S, Hn (k4a3)} Pn(cos 9)
!
E |
| f
| i
|
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Eo sin ¢ 2.0 ;
J = H = - {a J (k,a.)
¢3 94 muaa3sin6n_1 n n 43
r=a
3
~(2) 1
+ r Hn (k483)} Pn(\_os 6)
o0
E_ sin ¢
L 11 2 (2), 4 .1
+ 3 Wi, 4, 2 {an Jn(k483) + s Hn (kl‘83)} 16 Pn(cose)
n=1
(3.44b)
. E_ sin ¢ - o
Mo, = Eo T Tw el z {“n“ (k,a3)
3 4 43 .
r=a nel
K]
) > (2) d
i + L Rn (kéaB)} 36 P (cos 8)
’ . [+2]
1 EO sin ¢ -
! - t
, jk,a, sin 6 Z {an Jn(kloaf.)
4°3
. n=1
{
I
. ~ 2 1
i + r ll:\ )°(k4a3)} Pn(cos 6) (3.44¢)
,
; i
| :
' H
| 5
ﬁ uuuuu T e e .
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Eo cos ¢ - ~
M¢3 B -E'Gl. = r,a, sin © z {an I (k423)
r = a n=1

+

S, ﬁéz)(k4a3)} Pi(cos 0)

Ja (k4a3)

-+

r Hiz)'(kaa3)} é% Pi(cos 8). (3.444)

Equations (3.44) thus give the surface currents on the
outermost layer. The irfinite summation is truncated to a

finite number, after ascertaining the numerical convergence.

3.3 Numerical Results

The numerical procedure described in Section 3.1 for a
layered dielectric body of revolution has heen incorporated
into a computer code, The resultant computer code is
hereafter referred to as "LDBR". We compare the numerical
results from the code LDBR with the solution for the layered
sphere developed in Section 3.2. After establishing the code,
additional geometries for which exact solutions are not

available are considered.
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The various scattering models considered are assumed to

be illuminated by a uniform plane wave travelling in the
positive z-direction. Since a plane wave incident along the
axis of a body of revolution excites only the n=+1 Fourier

+3¢

mode with e~ variation, the currents on the surface have

the form [11]
J(t,9) = Jt(t) cos ¢ + j J¢(t) sin ¢

M(t,¢) = 3 Mt(t) sin ¢ + M¢(t) cos ¢

where

0
Jp(t) 2 Jp(t)

1 L p=torg,

G|
Mp(t) 2 Mp(t)

e

; and where Jg and Mg are the electric and magnetic currents

resulting from a 6-polarized incident field with a circum-

o

ferential variation of the form ej¢. The figures in this

section show Jt and M¢ in the ¢ = 0° plane, while J¢ and

Mt ar~ in the ¢ = 90° plane.

tions, we have considered some eases wherein the scatterer

. e

i
!

1 ' As a check on the accuracy of the iterative computa-
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is made up of dummy layexrs. That is, the entire scatterer,
though homogeneous, is treated numerically as being made up
of layers, each layer with the same material parameters.
Fig. 3.5 indicates the currents on a sphere of "vacuum di-
electric . " In view of the equivalence theorem, the cur-

rents on the surface should obviously be

Einc

=i

= —-nn X

” =inc

(=)
]

=
x
fos]

One notes that the results obtained from LDBR code agree
well with the expected values., Fig. 3.6 indicates the
currents on a dielectric sphere of dielectric constant

€, = 2, again made up of dummy layers., It is seen that the
eigenfunction solution and the LDBR solution agree favor-
ably, The results are also in good agreement with those of
Wu [14] and Glisson [11], who have studied the homogeneous
dielectric sphere. Fig. 3.7 indicates the equivalent sur-
face currents obtained from LDBR for a homogeneous sphere
with L, = 1 and various values for the conductivity., The

electric currents on a perfect electrically conducting

sphere [15] are plotted for comparison. Fig. 3.8 indicates
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Figure 3.7a. Electric currents on a sphere for various
conductivities.
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the currents computed using LDBR and the eigenfunction
solution procedure for a lossless sphere of €. = 80, to
illustrate the capability of the computer code to treat
"dummy" layers with high dielectric constants. Fig. 3.9

and Fig. 3.10 show currents computed on an inhomogeneous
sphere with different medium parameters on each layer,

The results of LDBR code agree very well with those obtained
from the eigenfunction solution procedure. It should be
noted that the values of conductivity chosen for all the
cases considered here are rather small., This is because

the spherical Bessel functions of complex argument grow
exponentially with increusing conductivity. In fact, with
only moderate conductivities, the function values exceed

the dynamic range of the computer used to perform the cal-
culations, However, the code LDBR does not suffer from

this limitation. Although the LDBR results for conductivities
thus cannotbe checked with those of the eigenfunction formu-
lation, nevertheless, the LDBR results do converge as has
been found by increasing the number of sample points on the
layers. Calculations have also been carried out for the
case of the inhomogeneous sphere in Fig. 3.9, in which
additional dummy layers have been inserted within the homo-
geneous regions. It has been found that treating the three

region problem 1in Fig. 3.9 as a five-~layered sphcre (i.e,

- ———
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two layers are dummy layers) has yielded results that are

in excellent agreement with those obtained using but three
layers. Fig. 3.11 shows the currents on a three layered
inhomogeneous sphere wherein the outermost layer is chosen to
be very thin. One notes that the results of the LDBR code are
still in good agreement with those of the eigenfunction
solution even for a body made up of thin layers.

We finally consider some additional cases. Fig. 3.12
indicates the currents on a finite homogeneous cylinder made
up of dummy layers. Note that in this case, the dielectric
region has surface edges and hence the equivalent surface
currents may be discontinuous or possibly even singular at
these edges. Fig. 3.13 indicates the currents on a homo-
geneous dielectric cone sphere. °‘lso shown is the result
obtained by Glisson [16]. One notes immediately the differ-
ence in the results near the tip of the cone, This difference
is attributed to the layered treatment of the cone sphere
body, which introduces a2 singularity at the conc tip even
for source and field points not on the same surface. Although
the current expansion scheme we adopt does not match the
fields at the tip, nevertheless, the kernels involved will be
highly peaked. By performing the integration around the cone

tip more accurately, this error is easily eliminated.
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Figure 3.13a. Electric current distribution on a
dielectric cone-sphere. € &# & 1indicates
results obtained with improved integration
around the cone tip.
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CHAPTER IV

MISSILE PLUME SCATTERING

In this chapter, the procedure described in Chapter IlI
for obtaining the scattered fields for layered dielectric
bodies of revolution is extended to treat a missile with an
attached inhomogeneous exhaust plume., Calculated missile
currents are presented for selected plume inhomogeneities,

frequencies, and angles of incidence.

4.1 Block Tridiagonal Formulation for Missile Plume Scat-

= tering

The inhomogeneous plume is modeled as a series of layers

= of homogeneous r2gfons. Fig. 4.1 shows an apnroximate model

of the missile plume problem. <(ne boundary conditions
require that the tangential electric and magne.ic fields be
tontinuous across the plume layers and that the tangential
vlectric field vanish along fthe missile surface and along
the missile/plume interface. This leads to a set of coupled

integral equations for the equivalent currants on the sur-

£ o
s e i —————————— = . are =

faces between layers of the plume and on the missile and

missile/plume interface. The numerical procedure

Rt
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indicated in Chapter III leads to a matrix equation for the

representative model in Fig. 4.1 as follows:

L, Ly, O 0 0 1, 0
Lypy  Lgp Lyg Ly, O I, 0
inc
0 Lyg L3y Lgy Lgg| | I3 = V3 7] .04.0)
0 Loz Lgz Lgy O L, 0
inc
0 0 Ly O Lo | | 15 v,
B JL " o
where
J,
T L 1= 1,2,3
S I
i

o= 131 s 1= 4,5

p— -
Eﬁnc
tan
vinc - , vinc . lElnc ] ,
3 5 5
tan
ﬁinc
3
tan

and Llj are the coupling matrices whose elements correspond

e
i
3
]
!
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to the field contribution on surface i due to currents on
surface j. An immediate observation of (4.1) is that the
block tridiagonal nature of the overall system matrix now
appears to have been lost with the presence of the missile.
However, we merely regroup some of the operators, currents

and driving vectors as follows:

' =
Lyg = L3 L,, O]

L3z
! =»
L32 L42
0
r _—
Ly L3y Lss
", ' =
; L3z " |Ma3 Lug O
L 0 L
; N 53 52
g
3 i - ad
I tnd w
: vy Ly
,inc - -
; v 0 o1y 1,
inc
E |'s
4 With these new definitions, (4.1l) may be written as
i i

¥

" ewnn meiviams v = -
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-~ - - - -

L, Ly, O 1, 0

Lyr Lag I Ll=10 , (4.2)
I Y B T A

which retains the block tridiagonal nature, The extension
to an arbitrary number of layers should be obvious. Thus
with suitable partitioning of the matrix equation, the
iteration procedure indicated in Section 2.4 can still be

utilized.

4.2 Boundary Conditions at the Plume-Missile Junction

The boundary condition on the conducting missile is
that the tangential electric field vanish over the missile
surface. On the plume interfaces, however, we require that
the -angential electric and magnetic fields be continuous.
Thus, at the junction of the plume and the missile, we must
have E = 0 and Hy to be continuous. Since J=nx H and
M =E x i, these conditions translate into conditions on
the surface currents which imply that Jt’ the t-directed
component of the electric current, be continuous as one
approaches the junction along any one of the three surfaces
meeting there and that Mt’ the t-directed component of the

magnetic current, vanish at the junction (Here the t-

direction is the direction along the generator arc of the
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body of revolution). Note, however, that J¢ and M¢ may be

singular near the junction since these currents flow paral-~

lel to an edge. With the displaced current expansion scheme ;
(see Fig. 4.2), however, these current components are not

defined directly at the junction, but rather a half-

subdomain away from the junction. The junction point of

the missile and plume is chosen to be at the center of the

t-directed current pulse and continuity of the current at

the junction is enforced. Note that no special boundary

conditions on J, or M¢ at the missile-plume junction are

¢

needed because of the shifted subdomain scheme,

In order to apply the boundary conditions on the t-
directed component of the electric and magnetic currents,
let us consider the equivalent problems, shown in Fig. 4.2,
obtained by the application of the equivalence principle.
Fig. 4.2a 1is the exterlor equivalence, wherein the fields in
the exterior region are only due to equivalent electric cur-
rents residing on the missile surface and equivalent electric
and magnetic currents residing on the outside of the plume
surface. The fields in the interiuvr are assumed to be zero
for this part of the problem. Fig. 4.2b shows the internal
equivalence, wherein the fields in the exterior region are
assumed to be zero. We note herein that the fields on the

interior are due to equivalent electric currents residing on

A S — Ay St g b~ & - v s e cmes - R L R
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Figure 4.2b.
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the interface of the missile/plume and due to electric and

B et

magnetic currents on the {interior of the plume. We also

note that the missile current does not appear in this part

of the problzm, Using the above two equivalent problems,

we note that the following are true:

=

b=

where SP’

surfaces,

- 43 = = =inc

ex(JM’ th, JP‘ MP) + fi x E = 0] , (4.3)
ki = A =inc
ex Ty Jegr Jpo M) + A x H = 0} , (4.4)
Te S, + Sy
x B7 €3, J -3, -M)) =0 (4.5)
int 71 Ty p’ P ) .
x BY €3, 3 -3, -My) =0 (4.6)
int "1 Yteji? P’ P ’ .
re SP + SI

SM and SI are the plume, missile and interface

respectively and

is the electric field produced by the currents
for the exterior equivalence, evaluated just
inside the migsile/plume surface,

is the magnetic field produced by the currents
for the exterior equivalence, evaluated just
inside the missile/plume surface,

is the electric field produced by the currents

for the interior equivalence, evaluated just
outside the plume/interface surface,

»om-
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ﬁ: is the magnetic field produced by the currents for
n the iuterior equivalence, evaluated just outside
the plume/interface surface,
jM is the electric current on the missile surface,
jP’ ﬁP are the electric and magnetic currents on the plume,
th 18 the t-component of the electric current at the
Jjunction,
31 is the electric current on the missile/plume
interface.
Over the plume surface SP’ (4.3)and (4.5) result in
A -2 A o 2 "inc -
n x Eex - x Ein -fix E ,» TE SP’ (4.7a)

Similarly, from (4.4) and (4.6) one obtains

A et A -+ A -inc

n x Hex - 6 x Hin - x H , reSp, (4.7b)
From (4.3) we have,

A s A ‘i

Aox B = -f x E ne | resy (4.8)
From (4.5) we have,

-+ -
fi x Ein = 0 , reSI, (4.9)

where r refers to the point at which the fields are evaluated.
Herein the dependence of the various fields on the appropri-
ete currents are suppressed. Equations (4.7) through (4.9)

are the required equations. For computational purpose, the
layers are chosen in accordance with the contours of the
equivalent problems (see Fig. 4.2). If one uses a testing
procedure similar to that uced in Chapter III for the layered

dielectric body of revolution, the above equations may be

O e
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reduced to a matrix equation. At this stage we excercise
some caution with regard to the equations associated with

the evaluation of the fields at a point due to various cur-
rent sub-domains., For test points on the plume surface,
Equation (4.7) esgentially corresponds to the enforcement of
the continuity of tangential electric and magnetic fields.
Equations (4.8) and (4.9) correspond to the vanishing of the
tangential electric fields over the missile surface and inter-
face , respectively. At the junction, the net effect is to
add together three equations that correspond to (i) enforce-
ment of continuity of the tangential electric field at the
plume/exterior region interface, (ii) the requirement that
the tangential electric field vanish on the missile surface,
and (iii) the requirement that the tangential electric field
vanish at the missile/plume interface. The use of the cur-
rent expansion scheme shown in Fig. 4.2 along with the above
testing procudure results in separate terms in the moment
matrix pertaining to the t-directed component oi the electric
current at the junction. Since these terms correspond to
the same unknown,viz, the unknown current coefficient at the
junction, they are grouped together. Such a procedure
yields an average value of the contribution from the junc-

tion current, the averaging being carried out over all the

T R e s o
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three surfaces that meet at the junction and thus achieves
the continuity of the t-directed component of the electric
current at the junction. Since the t-directed magnetic
current pulses overlap the t-directed electric current

pulses and since the magnetic current on the missile/exterior
region interface and the missile/plume interface is zero,

the t-directed magnetic current pulse coefficient at the
juncticn is forced to be zerc, thus yielding a vanishing
t-directed component of magnetic current at the junc-

tion.

4.3 Numerical Results

The computer code LDBR, described in Chapter III for
solving currents on a layered dielectric body of reveclution,
was modified to incorporate the procudures described in
Section 4.2 which would enable one to solve for the currents
on a composite misgsile-plume structure. This modified code
will be hereafter referred to as the MPLM code., Since the
composite missile-plume body is trin compared to the length,
only the circumferentially uniform Fourier mode (m = 0)
current is considered. This is because for reasonably thin
bodies of revoiution the non-symmetric modes are only weakly
coupled to the plume and thus these modes of missile current,

though perhaps significant by themselves, probably do not

- a e gy Sy M) R e

T YA T o

4 e e e et e AR A

" et

e o e W




ch o g3

122

vary much with the plume precsence.

Due to the lack of either an exact solution or compar-
able measured results for the missile/plume geometry, a few
special geometries were considered and the results ccmpared
with those obtained from other valid computer codes. Figs.
4,3a and 4.3b show the currents on the missile, when the
plume conductivity is set to zero. As one would expect
upon setting the plume conductivity to zero, the currents
induced on the missile should be identical to those induced
on a conducting cylinder excited by a plane wave. Also
shown for comparison in these figures are the results
obtained by a computer code developed by Glisson [16] for
the currents induced on a cylinder due to a plane wave il-
lumination. The results of the MPLM code are in excellent
agreement with those of Glisson. As a further check, the
geometry of a missile with a trailing cylindrical plume (of
the same radius as that of the missile) of uniform conduc-
tivity 0 = 1000 S/m is considered. In this case, the missile
plume combinaticn resembles a perfectly conducting cylinder
whose length is the sum of the lengths of the missile and
plume. Figs. 4.46a and 4.4b show the circumferentially
uniform Fourier mode current on the composite structure,
Alsc shown on these figures are the results obtaired by the

previously mentioned code of Glisson. We note the excellent
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Figure 4.3b. Electric current distribution along a missile
with a surrounded plume of uniform conductivity
o=105/m
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Figure 4.4a. Electric current distribution along a missile
and trailing plume of unifrrm conductivity
0 = 1000 S/m under breoadside illumination.
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Figure 4.4b., Electric currenr distribution along a missile

and rralling plume of uniform conductivity
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agreement in the two approaches., The excellent agreement in
the above two checks, under limiting cases, provide some con-
fidence in the validity of the computer code MPLM. Calcula-
tions were also made for a homogeneous cylindrical plume with
conductivity o = 0.2 S/m. Fig. 4.5 depicts the resulting
currents on the missile-~plume combination. Also shownr are
the results obtained by Wu et.al. {17] for the same case.

One notes a fairly good agreement in the two results. A
possible explanation for the difference is the different

type of treatment of the junction between the missile and the
plume used here as compared to that used by Wu et.al [17].
Further it is known that the junction modeling strongly
influences the currents on the missile [17). Whereas the
procedure need here essenctially averages the boundarv con- ‘
dition on portions of the missile, plume and the misslile/
plume interface that are common to the junction, the

approzch followed by Wu et.al. [17] is t. eutorce only the

USSR,

boundary condition on the wmissile d4nd let the ¢ntorced

continuity of current flowing onto the iemaining surtaces
at the junction take care of the satisfaction of the
boundary conditions on these surfaces. This latter
approach is, in principle, correct; however, in a num-

‘

erical procedure, a certain degree of "averaging" of the
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Figure 4.5, Electric current distribution along missile and
trailing plume of uniform conductivity ¢ = 0.2 S/m
under broadside illumination.
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boundary conditions is desirable because a pulse representa-
tion of the current is, in a sense, a local averaging prccess
and hence one can expect the boundary conditions to be
satisfied only in an average sense as well, Based on these
observations and the excellent agreement in the limiting
cases shown in Figs. 4.3 and 4.4, it is concluded that the
missile/plume junction treatment used here probably yields
more accurate results than those obtained by the treatment
adopted by Wu et.al. [17], and that the differences in the
rasults seen in Fig. 4.5 aredue to the different ways in
which the junction is treated.

For the actual inhomogeneous missile plume, the plume
inhomogeneity is predicted using the LAPP computer code.
This code simultaneously models thermo~chemical reactions and
rocket aerodynamics to establish the electrical properties,
viz., permittivity and conductivity, inside the plume region.
The plume conductivity calculations we have used here model
the plume of a static (zero velocity) Chapparal missile at
a 5000 ft., (1524a) altitude. The calculations show that the
electrical permittivity dves not change much from the free-
space value, but that the conductivity is strongly inhomo-
geneous both radially and axially. A detailed discussion

of the LAPP code is given in [18]. Conductivity values

s omn




130

predicted by the LAPP code result in constant conductivity
profiles shown in Fig. 4.6. Based on this accurate profile,

a judicious choice of layer boundaries was made and the
assumed constant value of the conductivity between the layer
boundaries was obtained by averaging the conductivity between
two contours. Fig. 4.7 shows the resulting layered approxi-
mation to the inhomogeneous plume. We shall be adopting two
models of the plume, the long and ghort plume models. Such

a choice is made for two reasons. It has been found [17] that
the effect of the plume on the currents on the missile is
negligible when the conductivity in the region around the
nozzle of the missile 18 small. Further, the values of the
conductivity in the plume, as predicted by the LAPP code, is
known to be less accurate around the nozzle region as compared
to the values predicted in the regions away from the nozzle.
The extent of the regions of the short and long plume models
are shown in Fig. 4.7. One notes that the region around the
nozzle has a low conductivity value in the long plume model
and a higher conductivity value in the short plume model.
Figs. 4.8 through 4.12 show the computed curreants on the
missile and plume for various angles on incidence and frequen-
cies. Cost of computations has limited a more detailed study
of the short plume model. We note from these figures that the

currents on the missile are not much affected under the long
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plume model situation., Due to the low conductivity in the
plume around the nozzle region, the coupling between the mis-
sile and the plume will be low. Such an observation has been
made by Wu et.al. [17]. For the short plume model case, we
note that that the nozzle of the missile is now in a region
of a higher conductivity than in the long plume model.The
currents on the missile are now more affected by the presence
of the plume. One notes that for angles of incidence grazing
from the plume side, the currents on the missile can be more
than the no plume case. One notes also that the current on
the missile around the nozzle region is much higher than in
the no plume or long plume cases. Thus coupling into the
interior of the missile through apertures placed in the
region around the nozzle of the missile will be greater in
the short plume case than in the long plume case.

The currents on the plume appears to be comparable to
the missile current at low frequencies. However, at frequen-
cies above the first resonance, the current on the plume is
generally much smaller than the missile current. For the 30MHz
case ,(see Figs. 4.8a through 4.8e), an interesting observa-
tion in the plume current is the peak occurring at about 3m
from the junction and a shoulder which occurs at about 4.8m
from the junction. One notes that the skir depths at this

frequency and for the various conductivities involved are much
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greater than the 1radial spread of the plume. Hence assuming a
uniform current distribution across the cross-section of the
plume, an "equivalent admittance", qu, per unit length may

be computed as follows:

qu = o dA ,
where 0 is the value of the conductivity in the elementary
area dA at the cross-sectional surface S at any point along
the axis of the plume. Fig. 4.13 shows the variation of the
equivalent admittance along the plume, One notes that the
location of the peak and shoulder in the equivalent admittance
variation roughly correspond to the peak and shoulder in the

current on the plume,
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Admittance in millimhos
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Figure 4.13.

1,2 2,4 3,6 4,8 6,0 6.9
z(m)

Equivalent admittance variation along the axis
of the plume.
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CHAPTER V

CONCLUSION

In this work, we are concerned with developing an
approach for treating missiles with attached inhomogeneous
conducting exhsust plumes., In Chapter 11, a discussion of
various approaches is presented and a detailed comparison of
the unimoment method and the surface integral equation
approach with a moment method solution has been given. It
has been found that for thin and layered inhomogeneities,
the surface integral equation approach is more efficient,
while the unimoment method is more efficient for highly
varying inhomogeneities and nearly circular objects. Since
the objective here was to model and study a composite missile
plume configuration wherein the axial length of the plume
is large compared to its radial dimension, the surface inte-
gral equation approach was adopted. A computer code was then
developed to compute currents induced on layered dielectric
bodies of revolution. The validity of the computer code was
then verified by comparing the computations with an eigen-~
function formulation for concentric layered lossy dielectric

spheres. The surface integral equation procedure was next

ik




extended to the missile-plume problem and a simple approach
for the numerical treatment of the missile/plume junction
was developed and validated.

The computations on the layered model of the inhomo-
geneous plume have yielded results which are in good agreement
with the surface impedance boundary condition approach used
in [17]., However, the surface impedance boundary condition
approach should be viewed with caution., This is because the
assumed relationship between the electric and magnetic fields
is true only for uniformly i1lluminated cylindrical stuctures
and hence can be expected to be reasonably valid in regions
only far away from the junction, while in the region around
the junction serious errors may result which might alter the
neighboring current distribution along the missile. Under
such circumstances, the layered model approach should yield
more accurate results. Cost of computations has precluded
a more detailed analysis of the short plume model. Based on
the good correspondence of the long plume model results ob-
tained here and the long plume model results obtained in [171],
it 158 believed that the currents on the missile under short
plume model conditions would be more strongly affected by the
presence of the plume.

In this work, the surface integral equation formula-
tions used involve both the electric and magnetic field

egquatlons.
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As shown in Appendix A, these problems can also be formulated
in terms of the E~field alone or H-field equation alone ot
as a combination of both the E and H field equations to
obtain a so-called combined field formulation. These ap-
proaches have been applied here only to homogeneous dielec-
tric cylinders. However, they may be extended easily to
three-dimensional bodies and may provide useful alternative
appreaches.

One worthwhile approach, which has not been considered
here in the evaluation of methods for treating the missile/
plume problem, is to couple an integral equation on the
missile and plume boundaries with a finite element or finite
difference solution of the fields in the inhomogeneous plume
region. Such an approach, which has so far not been carried
out, combines the best aspects of both the unimoment method
and the surface integral equation approach and should be
applicable to rather arbitrary shaped geometries and inhomo-
geneities. Furthermore, the approach also appears as an
attractive method for analyzing coupling through apertures
into the interior of missiles or other structures. In <uch
problems, the exterior region is formulated by a surface
integral equation, while the interior is formulated in terms

of the appropriate wave equation. The two equations are
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then coupled at the aperture with the appropriate boundary

conditions.
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APPENDIX A

SURFACE CURRENT FORMULATIONS FOR

D1ELECTRIC SCATTERING PROBLEMS

Scattering by homogeneous dielectric bodies can be
formulated via the snrface equivalence prirciple. Applica~
tion of the boundary conditions leads to a set of four

integral equations involving the two unknown equivalent

surface currents J and M. However, under suitable conditions,

only two of the equations are sufficient to determine J and
M. Thus various combinations of these four equations

can be used, each combination leading to a different type
of formulation. Some of the more important choices are
described by Mautz and Harrington [10]. One common choice
of the combination leads to the so-called PMCHW formulation
described in [10]. Mautz and Harrington also point out that
the so-called Mueller formulation is related to the PMCHW
formulation in that both approaches are gpecial cases of a
"combined field formulation.'" We consider here those com-
binations and further point out some features of combina-

tions other than those considered in [10]. For the sake of

e
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clarity and completeness, some of the material in [10] is

repeated here.

A.l Surface Integral Equation Formulation

Fig. A.1 depicts the homogeneous scatterer illuminated
by an incident field (Einc’ ﬁinc). The body parameters are
denoted by (ud, ed), the fields inside, by (Ed, ﬁd). The
body is immersed in a medium characterized by parameters
(ue, Ee). The straightforward application of the equivalence
principle leads to the exterior and interior equivalences
shown in Figs., A.2 and A,3 respectively. Equating to zero

the tangential components of the null fields appearing in

Figs. A.2 and A.3 1leads to the following equations:

-4 x EJ(T, ®) = & x 17O (A.1)
-8 x B2(3, ) = @ x ginc ’ (A.2)
A =t - v
- x B3, R) =0, (A.3)
~ "+ > byt
-f x H (3, ) =0, (A.4)

where Ei’ ﬁi are the electric and magnetic fields due to J

and M radiating in a wmedium (ui, ei) and + indicates
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Figure A.l. A homogeneous dielectric scatterer.

(ue.ee)

el

(Einc+is’iinc+§s)

x|

s

Figure A.2. External equivalence.

Figure A.3. Internal equivalence.
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tively.

(A1) -

(a)

(b)

(e)

(d)

O R RN A TG

various ways.

evaluation of the fields just inside and outside S,

respec-

We note that (A.l) - (A.4) is a set of four equa-

tions in the two unknowns J and M. We

(A.4) are as follows:

-& x (B + aEZ) = 4 x ginc

x

b "‘+ A —inc
-f x (He + sud) i x H

-6 x BD = & x B,
- x fy =0,

A x BT = @ x BiNC

1

o+

need to reduce the
number of equations to two and this can be done by ap-
propriately selecting or combining the four equations in

Some of the various possible combinations of

(A.5)

(A.6)

(A.7)

(A.8)

(A.9)

(A.10)

(A.11)

{A.12)

= et
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where o and B are arbitrary complex constants. The first
type of combination in (a) above has been considered by
Mautz and Harrington [10]. As they have pointed out, the
choice of o« = B = 1 leads to the PMCHW formulation, while
the choice of a.=-(£d/€e), g = —(ud/ue) leads to the Mueller
formulation. We designate combination (b) as the H-field
formulation (HFIE), combination (c), the F-field formulation
(EFIE), while (d) is called the combined field formulation
(CFIE). It should be noted that the CFIE formulation pre-
sented here in (d) 1s different from the formulation (a)
above, which was also called a "“combined field formulation"
by Mautz and Harr:ugton [10]. Our CFIE formulatiom (d) is
actually a generalization of their so-called combined field
formulation for perfectly conducting scacterers [19]. Note
that (d) combines two types of field quantities in each
equality, whereas (a) combines the same type of fields from
different regions. We consider in detail the combinations

(b) -~ (d).

A.2 H-Field Formu.ation

The basic equations for this type of formulation are

=
T e s »—WMWM
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-6 x BY(3, ) = o.
Here, we have

= -JuF () - Vel (H) + ﬁL VxR (D),  (A.13)

i

i
”~~
(]
<4}
s

i = d or e,

where Fi(ﬁ) 1s the electric vector potential due to the
magnetic current M in a medium characterized by the para-
meters (ui, Ei), ¢T(ﬁ) is the magnetic scalar potential due
to M in a medium characterized by the parameters (ui, Ei)
and 31(3) is the magnetic vector potential due to the elec~-

tric current in a medium characterized by the parameters

(ui,ei). Expressing the votentials in terms of the integrals

over J and M, one obtains

e I, = e = ~ =inc
(Lpp +3) T+ LS, () = 5 x BI0C (A.14)
wl - 3 @ - o (A.15)
HE 2 HH |

where

U
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(V'-M) i '
a-jue ffMGds—fo(jm)C—;ds,

i = d,e,

where Gi is the appropriate homogeneous
for the medium with the parameters (ui,
for the operators above is as follows:

refers to the evaluation of the type of

Green's function
Ei). The notation
the first subscript

field, which in this

case is the H-field, while the second subscript refers to

the type of source, either electric (indicated by E), or

magnetic (indicated by H).

to the medium characterized by (ud, Cd)

The superscripts d and e refer

and (Lle, Ce) s

respectively. The factor I/2, where 1 denotes the identity

operator, results from the evaluation of V X A on the sur-

face of the scatterer,.

to solve for J and M via moment method.

One may now use (A.14) and (! %)

An alternative ap-

proach would be to use (A.15) to express M ia terms of J as

. (A.16)

M
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Using (A.16) in (A.14), one then obtains

[T
!
|

I e e d -1 - - =inc
[2 + Lyp + Ly (LHH) ( )] J =1 xH . (A.17)

Equation (A.17) can be used to solve fer J. Having deter-

mined J, M can then be obtained from (A.16). We point out

d -1 ,I d
HH) (2 - LHE), which is

computed in the process of determining J, one may compute

that by storing the matrix (L

M directly once J has been determined.

It should be noted that expressing M in terms of 3,

as in (A.16), presupposes the existence of (L:H)-l. How-

ever, it can be shown (see [10]) that LSH

an inverse at frequencies corresponding to resonant fre-

does not possess '

quencies of a conducting cavity formed by the closed surface
S and filled with a material having electrical parameters
(ud, ed). One may, however, solve for J and M from (A.1l4) ;

and (A.15) simultan. >usly at such frequencies [10]}. We

introduce here a terminology to describe these two ap-

proaches, Whenever J and M are simultaneously solved as in

[ETUTRNRIEN

(A.14) and (A.15), we call the approach the two current

formulation, while the use of (A.16) and (A.17), in which

LRI VAN

one solves for one current at a time, is called the single

current formulation.
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A.3 E-Field Formulation
The basic equations in this approach are
-f x B = & x E'"C
e
N =t
- X Ed = 0,
Here we have
- - e, = 1 - -
E, = -jwa, (J) - V¢, () - € V ox F, (). (A.18)

i = d or e,

Expressing the potentials in terms of the currents, we have

e ,~ 1 e = A =inc
LEE(J) + {2 + LEH] M =148 x E . (A.19)
d ,= d 1| =
LEE(J) + [LEH - 7] M =0 |, (A.20)

where

=, G

(V' J3) ___1 ®
LéE(j) = -jwui”3cids' - fo (-jw) ds
S S

—~—
-
[N
-

a3

1 Rk sy s
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i M ™M '
LEH(M) ﬂM b VG1 ds' ,
S

with the notations for the operators paralleling that of the

H~-field formulation. Proceeding in a manner similar to the

H-field formulation, one obtains the single current E-field

formulation as

1 e e d -1 [I d = ~ =inc
[% + LEH + LEE(LEE) [2 - LEH}] M =n x E . (A.2))

with

i

—
 §
~~
(.
[ =N
t=1
N

H
——
rofi—
i
|
a
| S
<4}

| EH . (A.22)

As in the case of the H-field formulation, the single current

E-fleld formulation fails at the interior resonant cavity

{ frequencies., However, as before, one may adopt the two
1

‘ current approach of solving for J and M simultaneously from

(A.19) and (A.20) at such frequencies.

|
i
g{
l A.4 Combined Field Formulation
% The basic equations in this formulation are
i

=inc
tan’

|

% A% BT - X FT - & x ginc
e

H n e

!

Q
Ee,tan n + ne

v
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P d,tan o

where ne and nd are the characteristic impedances of the
exterior and interior nedium respectively. Expressing the
fields in terms of the currents J and M, we obtain the

following equations:

A =inc o =inc
- X H + "ﬁ— tan ’ (A.23)
e
I d B d d . Ji 1 - d o
[ 3 + LHE + ; LEE] J + [LHH nd [2 LEH]]M 0, (A.24)

where the operators are defined as before. A feature of
this formulation is that the fields have been combined in

a manner identical to that of the combined field formulation
for conducting bodies proposed by Mautz and Harrington [19].
This fact makes it relatively easy to incorporate a solution
procedure for both a dielectric object and a conduct:ing
object within the same computer program, This can be easily
seen by noting that (A.23) becomes the combined field inte-
gral equation for a conducting scatterer [19], if one simply

retains only terms involving the electric current on the

v vy e e .-
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left hand side of the equation. Following [10], the
permissible values of a and B can be determined by con-
sidering for what values of a and B the homogeneous equa-

tions

~ - a =-
- ox D - S ED =0, (A.25)
e ’
P gt + B gt = y
n x Hd + N Ed,tan 0, (2.26)

have only the trivial solution. The first step in doing

= - =+
this 1is to show that Ee,tan’ He,tan’ Ed,ta and Hd tan

are all zero. For this, we consider first the complex
power flow into the interior of surface S in the equivalent

problem (A.25):

o~
(14
H
m".
(o1
o i
b d
=]
o 1
*
L]
~
=
~—
(=9
<]

[ fopey
ffEe°(ﬁ><lle)ds
S
ra\
. ?1: f]l e tan ds
raw !
o fl . tan ds, (A.27)

. &)

2
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where (A.25) has been used in (A.27). We consider two cases:

(1) The medium with parameters ue, Ee is lossless.

Then Re(Pe) = 0. But from (A.27), if Re(ﬁL) $ 0,
e

we note E_ = H = 0.
e,tan e,tan

(2) The medium with parameters Hgs €4 ig lossy. 1f
Re(Pe) = 0, then by the uniqueness theorem [13],

Ee = ﬁe = 0 interior to S. If we assume Re(Pe) >0,

we conclude E_ "

= o
e,tan He,tan 0. 1f Re(ﬁ—) 0,

e

then Re(P_) = 0, and, as ahove, we obtain E_
e e,tan

= He,tan = 0.

The argument above 1is also valid for the perfect conductor
case and extends the allowable values of #L bpeyond those

e
cosidered in [19].

Next consider the complex power flow into the exterior

of S in the equivalent problem (A.26):

Ak W
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/-]

- , (A.28)

where (A.26) has been used to obtain (A.28).

If Re(Pd) = 0, then E, = ﬁd = 0 by the uniqueness

theorem [13]. Thus, assume Re(Pd) > 0. Then if we choose

=+

_8_. > =
Re[ ] 0, we conclude Ed tan Hd,tan

n
d
Further, if Re[li] = 0, we have Pe(Pd) = 0 and from the

= 0 from (A.28).

N4
above argument Ed = Hd = 0,
o - 5t
To show next that Ee tan d tan He,tan d tan

implies J = ¥ = 0, we consider the exterior :quivalence shown

in Fig. A.4, wherein E = H = 0, but where we assume
e,tan e,tan

Ee, ﬁe oatside the scatterer to be noa-zero. Similarly for
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=+
the interior equivalence shown in Fig. A.5, we have Ed tan
’

- it = 0, but we assume E,, H, interior to the scatterer
d,tan d d

to be non-zero. Since the interior fields in Fig. A-4 are

zero, we may change the internal medium to (u,,c,)(see Fig.
d’~d

A.6), Similarly, in Fig. A.5, the exterior fields are zero

so that we may change the exterior medium to (ue,ee) (See
Fig. A.7). We note, however, that Figs. A.6 and A.7 depict
identircal situations with regard to sources and media except

for the change in the sign of the sources. Hence, except

for the sign, the fields radiated by the currents should be

the same in both figures. Hence (Ee,ﬁe) = (ﬁd,ﬁd) = (0,0),

which implies, in turn, that

Thus we have shown that (A.25) and (A.26) possess only

trivial solutions and hence that the solutions of (A.23) and

(2.24) are unique,.

One may present a circuit analogy which heips to explain

the conditions on o and B. Referring to Figs. A.8 =2nd A.9,

we may think of Yz = éL and Yd = ﬁi as surface impedances
e d

e
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and (A.25) and (A.26) as surface impedance boundary condi-
tions. The problem of determining whether or not there
exist non-trivial solutions to (A.25) and (A.25) is thus
one of deciding whether or not the internal or external
regions can support a resonance when the region is bounded
by the surface impedance Y: or Y:, respectively., For
example, in the extermnal resonance problem, since there 1is
always some loss due to radiation, then if the surface is
reactive or has a small loss (Re(Y:) > 0), there can be no
resonances. For the internal preblem, if the medium is
lossless, then no resonances are possible if Re(Y:) ¥ 0,
since the surface is either lossy (Re(Y:) > 0) and theretore
the fielde are damped, or supplies power to the interior
region (Re(Yz) < 0) and therefore the fields grow with time
since there 1is no corresponding absorpcion mechanism. In
the lossy case, however, we may not have internal resonances

if Re(Y:) > 0 because of internal and surface lcsses.

A.5 Application of Various Surface Integral Formulations

to TM Scattering by Dielectric Cylinders

To illustrate some of the foregoing observations, we
use the method of momeuts with some of the various formula-
tions discussed here to solve scattering from a homogeneous

dielectric cylinder excited in the TM polarization. Assuming
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that the axis of the

A. 10), we have

cylinder is along the z-direction (Fig.

J = Jz g , (A.29)
ﬁ - MT "f ’ (A.BO)
We note also that V' * J = 0, since the cylinder is infinite
in the z~direction. The various operators can now be writ-
ten as
i .= - B (2) P-4 '
gD = % fop® o 155D e, s
c
i = ___1_.__ _g_ (2) ~_At '
LEH(M) = x } MT Y Ho (k1 Ip-p I) de', (A.32)
c

ki __1_ b (2) ~_R '
L (3) = 4y :f J, m= BT (kg |p-p'|) dc', (A.33)
c

de' , (A.34)
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Figure A.10. Geometry of a homogeneous dielectric
cylindrical scatterer.
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where the two dimensional Green's function i% ng)(ki|5-5'|)
for the medium with parameters (ui,ei) has been used, and
k, = m/—i;E:, i~ dor e. ng)(x) is the Hankel's function
of zecond kind and zero order, p and p'correspond to field
and source points, respectively,

In order to numerically approximate these operators,
we divide the contour of the cylinder inte a number of
stfaight-line segments as shown in Fig. A.ll. Pulse func-’

tion basis sets are used to represent each of the currents

over the subdomains. Thus the current is expanded as

N
3 () = z 1 () (A.35a)
n=1]
N .
(+) =
M_(r) z Mop (1) . (A.35b)
n=1
where
Loe oy S5t
pn(t) = . (A.26)

0, otherwise

and t is the arc length along the cylinder contour. Using

(A.35), the vector potential contributions in (A.31) ~ (A.34)

i e e iy - 4

—

A
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Figure A.ll.

Linear segmentation of the cross-section
of the cylinder.
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can be computed. In order to compute the scalar potential,
we use a scheme similar to that of Glisson [l11], wherein a

pulse representation of the charge is derived from a finite

difference approximation of the continuity equation. Thus

we have
N+1
M - M .
-l oM 3 n n-1
pplt) = 577 = & € Pk () »  (A.37)
n=1
:
}
: where the charge pulses are defined as 1
d
2 1, ¢, st<t,
pn_%(t) - . (A.38)

0, otherwise

Ak PN

=R T

A point matching testing procedure is used to evaluate the
operators at the center of current pulses. The gradient
term in (A.34) is evaluated by a finite differencing pro-

cedure as in [11]. By defining the "total" arc points, t

of the contour to be at possible bends, the fields wil,
always be matched away from points wherein fields may.be
singular, With the above expansion and testing procedures,

the various operators may be approximated as follows:
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n

+ 1 -1-I
(Am + Am+1) An

t
2

n-—

(2) < ot
_ H0 (ki|pm-3i-pn|)] de!

: H
[L;H]mn o ti
n+l
1

An+1

(2) - -
Ho (ki‘pm+5-p;|
Hy

t .
n !

(2) - =
- Ao (k1|pm'& pAl)] de' m¥n
vy ’

C,=Cp+CytC+Cy+Co, m=nm,

1 an s A ————— ~ i
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Computer program subroutines for the evaluation of each
of the operators LEE’ LEH' LHE and LHH were written and
combined in the appropriate manner depending on the type of
formulation used. In Fig. A.12 is shown the currents on a
circular cylinder as found by the various methods. Also
shown is the exact eigenfunction solution. Fig. A.13
depicts the currents on a square cylinder of side 2a. Since
the single current formulation leads to erroneous results
at the resonant frequencies of the interior region, a plot
of the determinant of the moment matrix vs. ka is shown in

Fig. A.1l4, We note that both E and H types of formulations

indicate a sharp dip in the value of the determinant at the
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Figure /..2. Electric and magnetic current distribution along
a circular cylinder excited by a ™ polarized

incident wave, a = 0.1 ko, € = 2.0.
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resonant frequencies, which are the cut off frequencies for
modes of the square waveguide filled with a dielectric with
€, = 2.56. The combined field formulation when solved by

the single current approach, also shows the resonance effect.
This is because the operators on J and M, which otherwise
could be used to express J in terms of M or vice versa, do
not possess an inverse at these resonant frequencies. How-

ever, when one solves (A.23) and (A.24) simultaneously one

avoids this difficulty as shown by the plot of the deter-

minant of the CFIE matrix.
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