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CHAPTER I

INTRODUCTION

The object of this work is to use numerical methods to

solve electromagnetic field problems involving scattering

from rather arbitrarily shaped inhomogeneous penetrable

bodies. While our aim is to analyze a missile in the pre-

sence of an electrically inhomogeneous exhaust plume, the

techniques discussed here are useful in other areas of elec--

tromagnetics, such as scattering by rain drops, power

absorption in biological tissues, dielectric lenses, etc, A

primary requirement of any numerical method is that the

technique should be capable of simulating the actual physical

situation as closely as possible, while simultaneously pro-

viding an efficient method of solution. For a numerical

study of scattering by inhomogeneous dielectric bodies, one

must choose among a variety of techniques, all of which can

be said to fall into one of the following two categories: (a)

Integral equation formulations and (b) Differential equation

methods. The usual surface and volume integral equation

formulations with numerical solution by the methcd of moments

[11 and the extended boundary condition approach [21 fall
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into the category of (a) while finite difference methods and

the unimoment method [3] fall into (b). Thus a wide variety

of approaches are availabl0. Some of the main features of

each of these methods are given in the following.

The volume integral equation is based on relating the

polarization current in terms of the total field, comprising

the incident field and the scattered field. By associating

an unknown current coefficient with each point inside the

region, the integral equation is converted into a matrix

equation which can be easily solved for the unknown coef-

ficients. Since the region of the scatterer is represented

point by point, an arbitrary inhomogeneity and shape is

easily handled in this approach. The approach, however,

leads to very le- 6e matrices which makes the method unat-

tractive due to the limited core storage on the computer.

The integral equation approach is well suited either for

homogeneous penetrable bodies or for a body either modeled

by or made up of layers of homogeneous regions. The usual

procedure in this case is to set up the coupled integral

equations in ter-s of equivalent electric and magnetic cur-

rents on the surfaces of the homogeneous region. By expand-

ing the unknown currents in terms of suitable basis functions

and adopting suitable testing functions, the coupled integral

equations are reduced to a matrix equation for the unknown

coefficients of the basis functions.

1.i
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For a body made up of a large number of layers or for

an inhomogeneous body modeled as being made up of layers of

homogeneous regions, the above approach can lead to very

large-sized matrices due to a simultaneous solution of the

equivalent currents on all the layers. Since the fields

induced in any region between two layers are due to the

equivalent currents on adjacent layers, the resulting matrix

is block tridiagonal. This property, as recognized by

Pogorzelski [4], yields an iterative procedure for solving for

the currents on the outermost layer in terms of the currents

on the inner layers. Such an iterative procedure has the

advantage that the sizes of the matrices involved in the

iteration are much smaller than the overall matrix size

that would be required if the currents on all layers were to

be solved simultaneously. The surface equivalence approach

is, in principle, applicable to all (layered) inhomogeneous

scatterers, regardless of shape.

The extended bourdary condition approach proposed by

WaLerman [2] expresses the fields in terms of integrals over

surfaces separating the homogeneous regions around the scat-

terer. However, one uses here the fact that in all regions

complementary to those in which the equivalence is valid, the

fields must vaniEh. Within these null field regions, the

integral expressions for the fields are expanded in spherical
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(cylindrical) harmonics of the standing wave type for in-

terior three-dimensional (two-dimensional) regions and of

the outgoing type for exterior regions. Oince the fields

vanish, the coefficients of the harmonics must also vanish

and one obtains a set of equations, each of which involves

integrals over the equivalent sources on the surface. The

surface sources, both electric and magnetic, are usually ex-

panded in spherical (cylindrical) harmonics as well and this

eliminates one of the surface sources, thus reducing the

number of unknowns. In the literature, the extended boundary

condi. on approach is. also known as the T-matrix approach.

Peterson and Str3m [51 have extended this approach to multi-

layered dielectric scatterers and Strim [61 has further

extended the approach to multiple inhomogeneous scatterers.

Since the method depends on the object having an interior

region in which a circumrcribed sphere (circle) can be

placed, the method is better suited for nearly spherical

(cylindrical) bodies than for thin scatterers.

The unimoment technique developed by Mei [31 and ex-

tended by Chang [71 and Morgan [8] essentially studies the

scattering problem through a differential equation formula-

tion. According to this approach, a spherical (cylindrical)

region surrounds the three-dimensional (two-dimensional)

scatterer. The minimum radius of this region should be so
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as to totally enclose the scatterer so that the scattered

fields in the exterior region can be expanded in terms of

outgoing spherical (cylindrical) harmonics. The incident

field, of course, may be expanded in terms of incoming har-

monics. A wave equation for an appropriate field quantity

is next solved for in the interior region. The boundary

conditions for the tangential fields are then enforced across

the spherical (cylindrical) boundary. This results in a set

of equations which determine the coefficients of the unknown

scattered fields. As one notes, the major effort involved

in this approach is in solving the differential equation in

the interior region. E;.ther a finite difference approach or

the finite element method [9], a numerical approach for solv-

ing differential equatians that has bee, highly developed by

structural engineers, can then be utilized to solve this

differential equation. In the latter approach, the interior

region is typically divided into a number of triangular

sections called elements. Over each element the field is

represented by suitable expansion functions that express the

field within an element as a function which interpolates the

value of the field at the nodes of the element. By minimiz-

ing a stationary formula associated with the differential

operator with respect to the nodal coefficients, one obtains

a matrix equation for the nodal field values on the interior

iit
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in terms of the field values at the nodes lying on the

spherical (cylindrical) boundary. Then using the spherical

(cylindrical) modes as basis functions to excite the electric

fields at the boundary, one obtains interior fields for each

distinct mode of the harmonics. Orthogonality of the basis

functions enables one to determine the interior fields in

terms of the scattered fields. Equating the exterior and

interior tangential magnetic fields at the boundary yields a

matrix equation which determines the scattered field coef-

ficients. An inherent feature of the matrix so obtained is

that it is banded and an efficient utilization of this prop-

erty allows one to soive problems involving a rather large

number of unknowns. Furthermore, just as one can express

the interior fields in terms of interpolatory functions over

each element, one can similarly approximate the spatial

variation of the physical parameters viz., the permittivity

and permeability, by means of the same interpolatory func-

tions. This latter feature of the unimoment method enables

one to solve for fields from arbitrary inhomogeneous (i.e.

not necessarily layeced) scatterers. As with the extended

boundary condition approach, the unimoment method is more

suitable for scatterers which are almost circular or spher-

ical in shape.

From the above discussion it is apparent that the choice
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of a method should be made from the point of view of sim-

plicity, accuracy, and efficiency of the method as it applies

to the geometry and scatterer in question. In order to more

clearly define some of the considerations involved in the

choice of the method, we consider the app]ication of the unimo-

ment method to scattering from two-dimensional layered di-

electric cylinders in Chapter II. We also note some of the

advantages of a local as compared to a global coordinate

formulation. In Chapter II the unimoment method approach is

compared with the iterative solution procedure for the sur-

face integral formulation for scattering by layered dielec-

tric cylinders. Chapter III deals with the application of

the iterative solution procedure for the surface integral

equation to layered bodies of revolution. In Chapter IV, the

approach is extended to treat missile-plume problems, which

ore also reduced to a block-tridiagonal form.

In the course of this work, the equivalence principle

is used extensively. One normally uses the equivalence

principle to set up coupled integral equations for unknown

electric and/or magnetic currents. In Appendix A, different

types of integral equation formulations are considered. The

discussions there parallel and extend slightly the work in

this area by Harrington and Mautz 1101.
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CHAPTER II

SCATTERING BY INHOMOGENEOUS DIELECTRIC CYLINDERS

In this chapter, we present a comparative study of the

unimoment method and the iterative solution procedure.

Since the principal features of the methods when applied to

a general problem can be illustrated through specific exam-

ples for which alternative solutions are available, we

consider herein scattering by layered dielectric cylinders.

Tn Section 2.1 a brief description of the unimoment method

is given. While we follow essentially the approach of [7],

we do, however, present a simpler representation of the

unimoment matrix than is found there. Sec. 2.2 gives some

insight into the iterative solution of the surface integral

method which leads to a block-tridipgonal moment matrix. A

comparison with the unimoment method is then made to point

out the applicability and limitations of the ;wo techniques

for general problems involving inhomogeneous dielectric

bodies.

2.1 Unimoment Method for Scattering from Dielectric Cylind rs

Fig. 2.1 shows an arbitrary cylindrical scatterer upon[ K which a plane wave is incident. We shall restrict our

I
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CIA
Figure 2.1. Geometry of the scattering problem.

~ I i

K
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discussions herein to a TM polarized incident wave. The

reader is referred to [7] for the TE polarization case.

The scatterer is enclosed by a circle of radius a. As-

suming that the axis of the cylinder is in the z direction,

let E l(r, ) be the total field inside the circle, E inC(r, )
z ' z

the incident field,and EzC(r,O) the scattered field outside

the circle. The tangential components of the fields must be

continuous across the circular boundary. Thus, we have

E l(a,O) - E inC(a ,) + ESC(aO) (2.1)z ~ z

aIIa inc aEI
- + - I (2.2)

r r-a r a r a.

8c

Since E z (r,O) is a scattered field, we express it in

terms of outgoing cylindrical harmonics as

Ezc(r,6) H 0(2) (kr){A cos nt + B sin n}
n = o (2.3)

where H(2) (x) is the Hankel function of the second kind,
n

k = W , is the free space propagation constant, A0 0 n

and B are arbitrary constants to be determined. Since the

incident field can also be expanded in a series of cylin-

drical harmonics, let us therefore express the field of
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region II evaluated on the circular boundary in terms of

cylindrical harmonics. Thus, we have

E" (a'q) -" (C cos no +D sin no). (2.4)
z n n

n wo

Each Fourier harmonic in (2.4) can be thought of as repre-

senting the evaluation on the boundary of one term of a

(C')
complete set of linear independent partial fields, 'n s()r,o)

which satisfy

c c
2(s) 2 (S)V2 ' n(r,o) + ko r(r,o)in (r,o) 0, (2.5)

and the boundary conditions

c

'n(a,o) - cos n¢ , (2.6a)

s

n (ao) - sin no , (2 .6b)

Thus the interior field is given by

E (rr,) + D 'ps(rO) (2.7)
n=o

We may determine 0pC(r, ) with the above boundary conditions
n

by solving (2.5) through any of the standard techniques of

'St
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solving the second-order differential equation. We shall be

adopting the finite element method, a discussion of which is

reserved until the next section. Using (2.3) and (2.4) in

(2.1), we get

CO
(C cos no + D sin n@) - E inC(a,4)

n n z

n i o

+ H(2)(koa ) [A cos nob + Bn sin n,!. (2.8)

n v o

With the use of (2.3) and (2.7) in (2.2), we obtain

3r ( r a n r ]r

Xk H( 2 )'
+ 1(ko [An cos no + B sin no] (2.9)n n n

nl

Invoking standard orthogonality relationships we obtain from

(2.8)

(2)C A H(2)(koa) + fc (2.10a)

(2)D -B H (k a) + f ,(2.10b)
n n n 0 n

where

I-t
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C 1 in
f n i ElnC(aO) cos no do, (2.11)

0

2 r

8 i inc
n E E (a,O) sin no do (2.12)

0

Substituting (2.10) - (2.12) in (2.9), we obtain finally

A n  H (2)(koa) k r (a o k (ka) cos n}

+ B H 2)(koa) r- k H (2 ) ' ( k a) sin no

~inc p
L r a - s

z f fc n+ 3p

r n D--r +fn ;r

r ra r -a r an o

(2.13)

In computations, the summation in (2.13) musE be truncated

to N terms. The choice of N is generally slightly greater

than koa. To obtain a matrix equation for the unknown

coefficients An: Bn, (2.13) may be multiplied by cos no

(n 0, 1, 2.. N) and -in no(n = 1, 2. ..N), integrated over

the interval 0 to 2w. (Note that this is equivalent to

I

V
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expanding the contirnity equation (2.2) into Fourier modes).

Once An , Bn have been computed the scattered field is easily

computed from (2.3..

2.2 Interior Problem

The interior field satisfies the differential equation

(2.5). Since the exact solution to the inhomogeneous equa-

tion is possible only for limited types of inhomogeneity,

we resort to the so-called finite element method [9] for

solving for tpn" In this approach, the solution for n is

obtained by minimizing a variational functional associated

with the differential equation. The interior of the circle

of radius a is usually divided into a number of triangular

subregions which are known as "elemente". The function

is expanded over rach element in terms of suitable functions

called "trial functions". The values of the trial functions

are specified at certain points (nodes) on the triangles.

Typically these nodes are at the vertices of the triangular

elements, but in higher order schemes [9], may also be at,

say, the mid-points of the sides of the triangles. By using

the trial functions over each element and minimizing the

functional with respect to the nodal values within an ele-

ment, one obtains a matrix equation. This matrix equation

may be then solved to determine n at the nodal points.
n



Fi

15

For TM polarized waves, satisfies
n

2 2V 2 n(r, ) + k2e (r,)P (r, ) = 0,

where n (ro) - E%(r,O). The solution to this equation is

the same as one would obtain by minimizing the functional

i2
i f(V~nI2 - k% (ro)0 (r,o) ds, (2.14)

where S corresponds to the region over which (2.5) is valid.

We divide the region S into a number of triangluar regions

(Fig. 2.2). Let i , - 1, 2, ... K + K', be the nodal

-I values, wheLe K is the total number of nodes inside the

region S and K' is the total number of nodes on the artificial

circle. Approximate *n by a linear function over each tri-

angle. Minimizing the functional 1 in (2.14) with respect

to 1ni, i 1 1, 2...K, one obtains

QU - TU' , (2.15)

where

': '

!.I
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Figure 2.2. Finite element grid scheme for the
interior region.
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nK+1

n 2  n K+ 2

U = •U1

K  nK+ K

and Q and T are the coefficient matrices obtained from (2.14)

over each element. Since 'n , i - K+l, K+2, ....K+K', are

known for each mode n, one can solve for U from (2.15). Once

n is known, --- is evaluated along the artificial
n ar r-a

circle. Having obtained the numerical derivative of n on

the circle (r - a), we may then evaluate the scattered field

coefficients Ano B from (2.13).r n

The remaining problem is thus the evaluation of the

elements of the matrices Q and T. It is in this step that

we follow a slightly different derivation than that of Chang
and Mel 171. If * n is the field in any element coJ-

thresponding to the n mode, Chang and Mel express the

assumed linear variation of this field in terms of a fixed

global (x,yz) coordinate system as

- ax + by + c , (2.16)

where a, b, and c are the expansion coefficients to be

~' ~2
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determined. If (1,2,3) are the nodes of the triangular

element and I 1 2' 2 3 are the respective. nqdal, values, then

the expansion coefficients a, b, c for this element can be

easily found in terms of 01, 02' *3 as

a x l i [1

b x2  Y2 12 (2.17)

C x 3  Y3 ] 3

An alternative and simpler representation for 0 is in terms

of a local coordinate system, wherein 0 is expressed in terms

of area coordinates [9]. Referring to Fig. 2.3, the field in

the el,'ment is written in terms of area coordinates as

I
A + # 2 A2 + 3 A3 ) ,  (2.18)

where A is the total area of the triangle and Am, m - 1, 2, 3

are the sub-areas shown in Fig. 2.3. It should he noted

herein that the global coordinate and local coordinate rep-

resentations are two different ways of expressing the

assumed linear variation. The two representations themselvea

can be related to one another. The relationship between the

two can be obtained as



19

#1 2

A a A, + As + As

Figure 2.3. Area coordinate representation.

r
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I'

V4

i



20

AI"

A x x x A2 (2.19)
13  Y2 3 -

S12 1Y2 -12 Y

nA

where Pn Py " . (XY - x 1,

A. 2 A p

Ymn" Yg = 2A Ym-

A 1 31[x1 2.0

A 3 pf

"ex P "A [x x y2.212
an I~ 2A a n

and (x,$yi) ,ia1, 2, 3, are the coordinates of the nodes

of the element. Since the integrand of the functional I in

(2.14) involves derivatives, we note

aA A
i-i

a x. . . . . . .. .A A... . . .
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3

[yf AA 2 I x- (2.22)

The functional I in (2.14) over the element is

123- = jv$I2 - k 2 rJ ds . (2.23)123 fl

A123

We note that

x ' + y

Using (2.18), (2.21) and (2.22), we get

V*~~- = tx+ Xt  . (2.24a)

Hence

2x} 2

V =1 -- Y + i  (2.24b)

Minimizing I12 with respect to one has

k - 2 ds (2.25)

A 

r

~123
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Substituting (2.24) and (2.18) into the above and noting

the following integrals,

A12
ds - , i - 1,2,3

123

A3ff A ds - i I i

123

dAi2 _ A ,j 1,2,3

A 123 1

112
one obtains

IA m

o 6 r (2*1 + *2 + *3) (2.26)

Herein we have assumed that c is constant over the element.
r

If c r varies over the element, then one can expand c r In

terms of a suitable polynominal (in the area coordinates)

and proceed as above to evaluate the second term in (2.25).
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If there are p triangles around node 1, then one has to

evaluate the integral in (2.25) over each of these p tri-

angles t'o'*bain*a single elemehft-of the matrix Q' or'T.

From the above it is clear that a proper bookkeeping of the

nodes that make up an element of the finite element mesh is

mandatory. However, it is the nodes which correspond to the

elements of the matrices Q and T. Accordingly, it is the

interconnecting nodal arrangement which plays a key role as

compared to the nodes that make up each elenent. Computa-

tionally, one could search through a matrix which lists the

nodes making up an element and find which elements of the

mesh contribute to which elements of the ratrix. This

appears to be the procedure adopted in [7]. An alternative

approach that is computationally more efficient, however, is

to define the elements through a connection matrix N - [nI,
ii

th
whose elements are the nodal numbers of the j node (num-

bered cointer-clockwise) connected to node i (see Fig. 2.4).

Such ar approach has the advantage of immediately identifying

the interconnecting nodes. It also makes the numbering of

the elements superfluous, as we shall see. Expanding out

the terms in (2.26), we obtain
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ni 3 i

n2 1

in

niN

I i th rowfl nnl • ' • l 0 . • oof tom tl% 2 K

rmotriR

Figure 2.4. Interconnecting nodal arrangement and definition
of the connection matrix.
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I A
1 2 3  2 (X2 2

_____ = x l + YI)€

A I~ 1 1

2 2+A[(X I X2 + Y Y22 + T (X X 3 + Y Y3)3

2
o r (AO A A

3 [ 1 + 2 0 2 + 2 031 . (2.27)

Define the vector location of node i, with coordinates (x1 ,

yi) as

ri x + jyl

and the vector from node I to node j as

r -r r

Note that

H. A = i -2 I - - 1 -

A -z r x r ur xr r xr
2 12 23 2 23 31 2 31 12

With the above convention, (2.27) reduces to

I::



26

A123 1r231  +r23 r 31  +r23 r1
S 2A 1 +  "2 2A 3

k2C
o r [A0I + A A
3 1 + 22 + 2 3] (2.28)

wherein the various vectors are shown in Fig. 2.5 . We note

here that the self-node contribution of the Laplacian term

is proportional to the ratio of the square of the distance

of the side opposite to a node to the area of the element,

while the coefficients of the mutual terms in the Laplacian

are proportional to the cotangent of the angle formed by

the sides at the opposite non-self node

One can obtain the Laplacian Lerm above in an alterna-

tive way. Expanding 0 iv area coordinates as in (2.18) and

noting that 7.4, is given by (2.24a), one can use V = V V

and approximate the divergence as

VA -Aa •a dl, (2.29)

where fl is the normal to the contour C (in the plane of C)

enclosing the triangles. Using (2.24a) in (2.29), one

obtains exactly the Laplacian term given in (2.27). Such

an observation is very useful when dealing with surfaces
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I\r2I3

origin

Figure 2.5. Vector definitions of nodes in an element.

n

I
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that may be irregularly shaped or for problems wherein the

functional I cannot be easily formulated.

In general, if there areN nodes around node i, as shown

in Fig. 2.4, differentiating the ve-lational form with re-

spect to each of the nodal values *j yields

N 2

r- j

2A +i]

NNN

++ J'-l - 1 n "+ ' r

S i i 7J-1

-i - -

r r n

rj+1,j r ij+l ri

n n
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Aj 2 (rj+1 x

j I + (j -
1 )mod N

Equating (2.30) to zero so as to satisfy the stationarity

property, we obtain the elements q and t of the matrices

Q and T of (2.15) as

N Nn

N n -n -n , C n

,.m-I rr-I + r m+n

-tnm 2A n 2An

oer[I(,n + n)] m (2. 32)3 2 + m- x > K,

t1sing (2.31) and (2.32), we may calculate the interior fields

from (2.15) for each mode specified on the artificial circle.

Once the interior fields are known, a finite difference
a* .j4 known, the

scheme yields - ra With in and -
T-r w a n 3r ra kn-n th

scattered field coefficients A , B are determined from
nn

(2.13).

; I

It
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2.3 Numerical Results of Unimoment Method

A computer program was first written using the procedure

,n 17] which uses the global coordlaate representation. Lat-

er, a separate program using the local coordinate representa-

tion discussed here was written. Accuracy of the programs

was checked by comparing with the exact solutions for a di-

electric circular cylinder. Figs. 2.6 and 2.7 show the

scattered field patterns for a two-layered circular cylinder

and a two-layered elliptical cylinder, respectively. The

agreement between the exact solution in Fig. 2.6 and the

moment method solution in Fig. 2.7 is quite good. The

minor difference one notices in the backscatter direction

is attributed primarily to inaccuracies introduced by equa-

ting the analytically exact normal derivative of the

exterior field with the numerically de-ived value for the

interior field which was computed by a backward difference

at the boundary.

A few additional commenta concerning the use of the

local coordinate representation are in order. The use of

the connection matrix simplifies inputting the data to a

computer code as well as saves significantly the time spent

in searching through a list of element numbers to determine

the connecting nodes. This fact becomes more apparent if

one realizes that the element numbers are superfluous as
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compared to the nodes that make up the elements. Further,

the use of the area coordinate representation allows one to

explicitly write the matrix elements in a simple form.

These two aids to the organization of the finite element

method have resulted in a saving by a factor as large as

twenty in the computation time over that required by the

method described in [7], even though the two approaches can

be verified to be analytically and numerically identical.

2.4 A Comvarison of Numerical Methods for Application to

Missile Plume Problems

In thia section we take a closer look at some of the

features of the various methods indicated earlier, as they

apply to the specific application we have in mind, namely,

the calculation of the current inducd on a missile with an

attached electrically inhomogeneous exhaust plume.

We may immediately rule out the use of the extended

boundary condition or T-matrix approach [2] for two reasons.

First, the method is slowly converg.:nt when the scatterer

is not nearly spherical and hence is not suitable for ap-

plication to the thin missile/plume configuration. Secondly,

the entire domain basis representation of the fields (typ-

ically in terms of spherical harmonics) used in the method
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is also numerically unstable whenever there are geometrical

singularities such as would occur near the tip of the mis-

sile and at the missile-plume junction point near the rocket

nozzle.

By contrast to the T-matrix approach, the volume polari-

zation current Ppproach [1] is a very numerically stable ap-

proach. However, it generally requires a large number of

unknowns since the method requires one to solve for all

three components of an effective polarization current. In

the missile/plume problem, which can be treated as a body

of revolution, if only the circumferentially uniform Fourier

component of the missile current is desired, the number of

vector components in the polarization current is reduced

to two. Nevertheless, several other factors weigh heavily

against this approach. The first is that the matrix that

must be solved is full (i.e. not sparse). Not only does

this fact mteans that matrix fill time becomes expensive, but

also because of the large storage requirement, ou.-of-core

matrix solution techniques would be necessary. Secondly,

the density of points at which the polarization current must

be sampled is related to the local wavelength and skin

depth in the medium and the rate at which the local medium

parameters are changing. Thus the method is not suitable

for layered inhomogeneous bodies or regions where the



35

parameters vary slow enough that layers can be used to

approximate the scatterer.

This leaves for our consideration the unimment method,

discussed in detail in the previous section, and the surface

integral equation formulation, both of which are numerically

staule and result in banded matrices. Before comparing the

methods, we consider the surface formulation in further

detail. The approach for layered inhomogeneities is closely

related to the surface field approach for homogeneous lossy

dielectric scatterers. For homogeneous scatterers, the

approach proceeds as follows. Referring to Fig. 2.8, one

postulates surface currents J and X on the surface S. By

relating the electric and magnetic fields to J and R and

applying the boundary condition on S that the tangential

fields have to be continuous across S, one obtains a pair of

coupled integral equations in J and M. Using numerical

methods, one may then solve the coupled integral equations

for J and H. To extend the approach to layered inhomogeneous

scatterers, such as the five-layer scatterer shown in Fig.

2.9, one may simultaneously solve for postulated surface

currents on each of the surfaces, using the coupled integral

equations derived by matching the fields at all the inter-

faces. The dimensions of the resultant matrix are such that

a full matrix of those dimensions would quickly exceed the
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EqJc

Figure 2.8. A homogeneous scatterer.
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(Ere1w

Figure 2.9. A five-layered dielectric scatterer.
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storage available on most computers for most problems. How-

ever, if one recognizes the fact that a body with a layered

inhomogeneity has a moment matrix which is block tridiagonal,

one needs only to simultaneously store three of the much

smaller blocks making up the matrix [4]. To illustrate this,

we consider in some detail the example of the five-layered

inhomogeneous scatterer shown in Fig. 2.9. If Lij is the

moment matrix for sources on layer J and field points on

layer i, then the overall moment matrix equation is of the

form

L L 0 0 0 I 0
11 12 1

L2 1  L2 2  L 2 3  0 0 I2 0

0 L32  L3 3  L34  0 1 = 0 (2.33)

0 0 L4 3  L4 4  L4 5  14 0

0 0 0 L L I V inc
54 55 5

where I is the column vector of unknown expansion coef-

ficients of the postulated currents JiI Mi on surface Si and

V inc is related to the tangential incident field on the

outermost layer. We note that the matrix is block tridi-

gonal in form. Beginning with the equation obtained from

the first row of (2.33), repeated elimination results in
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In =-[Lnn Ln,nIM n- 1 Ln l,n ]  n,n+l n+

ffi MLnn++(2n34

Mn I , n = 1,2,3,4, (2.34)

with M - 0, L - I, the identity matrix, and I =nVinc
o 5,6 n+ 1

for n-5. We note immediately tha. the dimensions of the matr-

ices which need to be in core at each stage of the iteration

are much smaller than that of the overall matrix in (2.33).

It should be further noted that the iterative approach in

(2.34) uses only the non-zero sub-matrices in (2.33), thus

avoiding storage of any of the zero sub-matrices in (2.33).

In order to compare the accuracy and efficiency of the

surface current formulation approach with the univoment

method, a few test cases were tried. Figs. 2.6 and 2.7 show

the scattered fields computed by the two methods for various

two dimensional objects. Based on our experience of testing

both approaches, we offer a list ot observations presented

in Table 2.1 as a guide to choosing between the two methods.

We note that a number of variations on the approaches

considered here are possible and these can significantly

affect our conclusions. For example, Morgan [8] uses a

homogeneous core region in his unimoment method application

and obtains a significant saving in the number of unknowns
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required. Some of the features of the various methods dis-

cussed here can a, -ombined. For example, one might

use a finite element mesh, as in the unimoment method, to

determine the fielis interior to the inhomogeneous region

and use a surface current formulatior, to simultaneously de-

termine the fields at the boundary of the region and to

enforce the radiation condition. Such an approach seems to

combine many of the most desirable features of all the meth-

ods discussed here, but, unfortunately, has never been

testzd

Of the two methods compared in Table 2.1, we choose to

use the surface integral equation approach to treat the

missile/plume problem. This choice is made because the

missile/plume configuration is a thin structure and there-

fore not so suitable for the unimomeat approach. Further-

more, we are primarily interested in surface currents and

not with scattered fields. For these reasons, together with

some of the complexities associated with extending the

unimonment approach to bodies of revolution, we have chosen

Lo employ the surface current formulation in the following

chapters, which formulate the missile/plume problem.
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CHAPTER III

NUMERICAL SOLUTION PROCEDURE FOR SCATTERING

BY LAYERED DIELECTRIC BODY OF REVOLUTION

In this chapter, the integral equations are formulated

for the surface currents induced by a plane wave incident

on a dielectric layered body of revolution. The equivalence

formulation results in interactions only between adjacent

surfaces and hence we formulate the interactions for only

two such surfaces, the pth and (p-l)th. Many of the details

of the numerical solution procedure essentially parallel

those described in fill and hence are not explained in de-

tall. Numerical results for various configurations of

layered bodies are obtained and compared with other results

where available.

3.1 Formulation of the Integral Equations

Fig. 3.1 shows two layers of a N-layered dielectric

body of revolution. Thesv layer3 are formed by revolving

the generator arcs ABC and PQR about the z-axis (assumed to

be the axis of the body of revolution). The regions bounded

by surfaces S and S are labelled as regions P-l, P; p+l
p p-1

going from the inner to the outer layer. Note that there



p4. pp pp

R p

Figure 3.1. Two layers of a N - layered dielectric
body of revolution.
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may be other regions interior to p-I and/or exterior to p+l.

The physical parameters of the regions shown are i'i CiP oi'

i = p-1, p, p+l.

Boundary conditions require that the total fields tan-

gential to the two interface surfaces be continuous. This

implies that

n x E M fi X E (3.1a)

rS 1

nl x p -f x (3.2b)

p p p p+l1

where (E H' i - p-1, p, p+l are the total fields inside

the respective regions, and hi M - x t is the outward unit

vector normai to the i surface, with ti being the unit

vector along the generator arc. On the N-th layer, we have

similarly,

^- -E+) ^ x Einc (3.3a)
nN N N+1 N

fi x(H - H ) n -inc (3.3b)

• I

• "" !> I
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Using the equivalence principle, we divide the problem into

three parts, one each for the evaluation of the fields in

the three regions. Thus, if we assume equivalent electric

and magnetic currents Jil Mi I i = p-l, p, on the two sur-

faces, the three equivaler'es are obtained as shown in Fig.

3.2. Note that the currents all radiate in a homogeneous

medium in each of the cases depicted in Fig. 3.2. The equi-

valent currents on the interior of a given surface are merely

the negative of those on the exterior to the surface in view

of the continuity of the tangential fields at the surfaces.

The fields in (3.1) and (3.2) can thus be written as

) - -- - 1 VxFi(r) (3.4a)

- -i Vl( 1) + VxXi(r) (3.4b)
i -l

i p-l, p, p+l, (3.4b)

where the potentials are defined as follows:

- -lff j (r) p-l (i, r') ds' (3.5a)

sp-1

11
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F- =---~ ('G (r,,r )ds' (3.5b)

e 1 e aI
p _1 -r 4 itE ,1ff p 1p Gi (-1r,r )ds' (3. 50

sP- 1

(r) p - 47* f (r )Gpirr ds' (3. 5d)

(r) = ( ) (,ri) ds'

s p- 1

()~ff(r')G (r ,re) ds' (3.6a)

p

4 ff R1 _(r')GG,r)ds'p 4

ff p(- 'G(r- ds' (3.6b)

4 7fT G)Pi:i~

s p
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(i) c P ff p P Gp i ,, s(.)

p

- .. f ~ ~C( i) ds' (.cp4nci P f p p

p

A ii o-r'c. rj'dds

p~l47 P~(.a
sp-1

pp

p

ii pe
4) r+II r' r r)ds' 3.a*~~~ Tr e+ 7 ppl

p

(m) m (r)G (r,r')ds'(3bp+ 1 fp ~
S
p
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and where

- iR
G (rr,) e- e R (3.8)

R

i = p-l, p, p+1

-- 2
R = Ir-r'I = [p2 + pt 2 _ 2pp' cos (-0') + (z-z') .

Using the continuity equation, one can express the charge

densities in terms of the current densities as

e j [VI • J '(3.9a)
i WA 8

S[V' " (r')] (3.9b)

i = p-l, p.

Using (3.4) through (3.9) in (3.1) and (3.2), one obtains

the integro-differential equations for the unknown electric

and magnetic currents, shown on the following pages.

*
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n P- 4 r f P- P- P- + p G p)ds'

s~J P-i'- -

+ (V vffP-1- + Pds'

1Tr Vft P- IE P 1
+-.-VXu RK(G + G )ds' - ffpp C ds'

4rw Jf pp p 4 iTJJ p p

p p

0, o r S P1(3.10a)

p-i

n P1 Vff 1(c M- -1 ( p G +) ds'
4iw

5p-1

2 x V ff-1 Pi~o + G I ds' ~JJ
--i-- pf ppp1A

j VI I(V; p 1
4 Jds k ) ds' +1T V xJ Gpuds'} 0,

Sf p Sf
p p

reS (3.10b)
p-i



52

n {1.ffj PPG + Iip+i Gp+i) ds'

p

+ V v (V, G + GPIl ds'
4iiw 1.1 ( p l

s pl

p

+jFu -L VxfR(+G ds' - - p Gc ds l
OrwJ s p- c~ 41 f Jp- pa (V 1Gs

sp~ p s p~

reS (3.11a)

x 'J.ffM (c Cp + £ +G +)ds'
p p47p pl 1

p

f(V * H + P ds'

p

v xff (G +G +1 )ds' - jw R cG ds'

- J(V' R ~ -- d s + - V x i~G ds'j 0,
4w f s p-i ii 4 7T JJP-

p-irES *(3.llb)
p



53

In (3.10) and (3.11), the dependence of the various quanti-

ties on source and/or field ccordinates is implicitly under-

stood. We next note that, for i # j,

V X JUG(r,rj)ds' = -J x GrGir)ds' (3.12a)

Si Si - -
U = 3 or Mi.

wherein the curl has been taken inside the integral since

the field point ri and source point r' are on different

surfaces and hence G(rt,r') is non-singular, assuming that

the layers do not touch one another. However when r and r'

are on the same surface, then it can be shown (12] that on

the surface S

V XJ f (Gi+Gi l)ds' - x V(GI+Gi+I)ds' (3.12b)

Si Si

where j indicates a deleted integral around r. Equa-

tions (3.10) and (3.11) can oe written in compact form as

S (0 - + C M ) -0 (3.13a)p-lop-I P-i' Pp-l-p p' p

Cpp-l(J + S (J , = 0 (3.13b)

P,3(..L ! ~ M,

I i ,~~---.---.-
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where S MI) represents the contribution to both elec-

tric and magnetic fields on surface i from currents existing

on surface i, while Cij(Jj, M) represents the electric and

magnetic fields evaluated on surface i duc to currents

existing on surface J. Such a compact form is necessary in

order to generalize the procedure to an arbitrary number of

layers. We can write (3.10) and (3.11) in component operator

form as follows:

Sll (Jt s 12(Jt1 Sl3(Mit sl4(Mi

s21(Jit )  s2 2 (J ) s2 3 (Mi t) s2 4 (Mi )

ii(Ji ,0 ) s

t t
s31t s2 0 s33(Mit s34(Ml

s41Jit) s42(J¢ s43(Mt s44(Mi1

(3.14)

cll1 0 t C 1l2 (a1 ) c13 (M it c 14 (M ;

c2 1 (J1  ) c 22(J 1 c2 3 (Mi ) c2 4 (M1  )

C (O i =
ijJ M c 3 1 (JJ ) c 3 2 (JJ ) c 3 3 (Mj ) c 3 4 (M. )

t t

c4 1(Jt ) c 4 2(JJ ) c4 3 (Mt ) c4 4 (Mj )
t 3 t

(3.15)

-



55

with i = j+l or J-1. Herein the first and third row of

operators yielO the t-directed component ofothe tangential

electric and magnetic fields, respectively, while the

second and fourth row of operators yield the O-component of

the tdagential electric and magnetic fields. The dependence

of the operators sij and c j on the various current Lompon-

ents is clearly indicated. We next express all the operators

in (3.14) and (3.15) in terms of the local coordinates (t,o)

on the surfaces. An orthogonal system of unit vectors

(ni', *j' i) i = p-l, p, are associated with each point

(ti, i) i I p-l, p on the surface Si. These unit vectors

are defined as follows:

n:1= cos y cos *i 2 + cos yisln i - sin y. (3.16a)

ii -sin 2 +csi (3. 16b)

ti  sin yicos *i 2 + sin yisin i 9 + cos Y i (3.16c)

i = p-1, p, where yi ip the angle between the tangent to the

gencrating arc, Ei. and the z-axis, defined to be iositive

if t points away from the z-axis and negative if ti
Spoints

tuward the z-axis. The surface divergence can now be writ-

ten as



56

v= - at (P U + 1 (U ) (3.17)
Si i ii' P 0i

Ui = i or Mi' i = p-lp.

Expanding (3.10) and (3.11) into component form and compar-

Ing with (3.14) and (3.15), one can easily obtain the

expression s for .and c J For notational simplicity, we

introduce the following operators:

11I(U; 11, 1, ti  , 0i. Op

~~fJ [sin Y sin y cos(4 ~.

Si

+ cos yiCos yJ G(t 1 1t )ds'

+4-na (U) ds' (3.18a)

s S
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sin y~sn%~ IiG(t,,t')ds'

S i

j- 3 L (U) ds' (3.18b)

S i

t 1 (u 1, , t1, -J' Oil

- iffg((PJ sin y Cos Y, - PCos y sin yp

x sin 2 + (z zj)sin Y sin Yjsin(4j-,Pi)I

dR i

[p -Cos - pCos y cos(o -

i* (z -Z')si n y cos(O' -o)] TR G(t lt!)ds' (3.18d)
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J-W sin y!sin(o%-O~ 1G(tjttj) ds'

Si

+ p) cds' (3.18e)

S

22(U; 11, C, ti t,)i

j~J u os%- p) G(t,9tj)ds'

Si

+ a (U ds' (3.18f)

Si

$23 (U; 1~ 3: 1 t>

.CO toco - P Cos 'cos( -

Si

-(z -Z') sin Y'cos(0'-0,)] dRG( ,tds (3.18g)
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( 1 E, di i

-! sin(4oj- 1 ) -d G(tjtj)ds' (3.18h)

Si

where

R

1

1r1-r1 = [p- + p01co( ) + (zi- z!) 22

(3.19b)

jWith the above definitions we have the various s ijand c i

as:

+ 1(3 0 P , c, t t

11 P- t p p p-i' p-i' 1 -

(3.20b)
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+ a 1 3 (M 1 t; 1' p , ' c - oP-1 -,op 1

( 3. 2 0c)

(3. 20d)

+1 P- 21 3P-1; lt p Epi - 1 ~ p-i'~ p1

(3. 20e)

s (J )-f 2 (~ 1~~ -1' uP-11 ' t to P-1 l p-i' 4 P-1~22 P 12 -

+ a 2 2 ( 1 ; I cp t P 1 1 t' -1 -lVP1

(3. 2 O)

= 23(m - a3P-i O'p-i' £p-I9 P-1 'P-, p-i' 'P-1)

+ B2 3 (m P- 0 To ' , 7p' t - - -

(3. 20g)
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+ I 24 (M.. P-1; , c p , t 4p-i'1 Pl 4
'-1

(3.20h)

s 3 1 (J. 1 t) S 1( P1 t(3. 201)

) 32 P- s1 4 (1 P- ) (3.20j)

+, 4,;cp11 p 11tP 1 p 1

p t

tt

+ 12 (M 1 ; E, p t p-is 'p-i P ,-1 ,'l p-i)

(3. 20t)

1 0=s( (3. 20m)
41Pt 2 3 p- 1 t

) W 2 ( (3.20n)
42 p-44,-

Nt
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+ a 21 (M P- t £ , t P1It' 1 - -

(31.20o)

+ 2 2 (M P 1  c p p tP1 t P-1 O1 o'p-1)

(3. 20p)

) W p E, t~1  t p-1 (3.21a)

t tit t , 32b

12 p - 1 2( p ,, t', P-1 p

c1(Pt) - -6 1 3 (M Pt ; Pl p-i p-1 ' tp *),o (3.21c)

- 14mp )- -1 MI;1 t P- ,b .,op 1 (3.21d)

21 0 2 J -a Uo c, t 1  t; %-' (3.21f)

) ( - a (M t tp', %. p_.1 0') (3.21g)

c2 3( ) =- 2 3( ; p, p, t-1, ~ 3

t t
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) 2 -a 2 4 (M p; 1 s, t 1  , ;I)P-1' (3.21h)

C 31 (j pt - ) (3.211)

c(3) = - cl4 (Jp) (3.21j)

c33(MPt) -611(MPt; Cp , P -l t' Op-l' Y (3.21k)

C 3 4 (M Po) - -0 1 2 (M P; , Pp tp, t t;', Op-l' Op) (3.21t)

c41(J) = -c 2 3(JPt ) (3.21m)

c42Jp = -c (J ) (3.21n)
42p 24

c4(Mp) - 21(Mp; ep  P, 9 t ,tp' (3.21o)

c ) -82 2  ; C p ,p tp, pppM, t, _ ') (3 .21p)

We note (3.20) and (3.21) define Sp 1 1p(Jp 0 , Mp 1 ) and

Cl, (Jp, I R) in (3.13a). To find similar expressions for

S, (p , p ) in (3.13b),we replace (p-i) by p and p by (p+l)

in (3.19). However, we replace (p-i) by p and p by (p-1) in

(3.20) only for the field and source coordinate variables,
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maintaining the medium parameters to be p , E, to obtain

C -i(p Rp 1 ) in (3.13b).

We next turn our attention to the numerical evaluation

of the various quantities in (3.14) and (3.15). For this,

we divide the generating arcs into a number of linear seg-

ments as shown in Fig. 3.3. The points ti , ti .... ti
0 n

i - p-l,p specify the end points of the linear segments.

The half-points, t, t ,.... t .... , i = p-l,p, arehafpit't 1 n+

defined by

(t + t
i n i ) i _-, 1 < n < N + 1

ii

i - (3.22).Sn- 2 1 p, 1 < n < N + 1
p

We next define expansion functions for the electric and mag-

netic currents. Since the scatterer is a body of revolution,

we choose the 4- variation of the currents to be the Fourier modes

in p, while the t-variation is expanded in a pulse

basis set. Thus we have

OD Ni
]it , )  2i imn n em4)

t (, , I 1  Pl(t') e

m- n1

00 N +1Nil

n n P2(t) e(3.23)
S - i  2

M n
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z

tp-NO+

tp,

tp-li t p+

tt

tp I p x

I tp. tp..111p

0t

Figure 3.3. Linear segmentation of the generating arcs.
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where Ni = Np_ 1 or Np for i = p-1, p. The derivative of

J. with respect to ti is approximated as
iti

O[ Nit+i mn mn-l

1P i' -r t1
m#--o =-0 n

X Pn (t')e (3"?4)

with Im = I mNi+l 0. Herein Pn(t) and Pn(t') are

ii tii 2 1i t

defined as follows, for i = p-l,p:

1 t ' t' < t
pn ') 1 n-k i n+ ' (3. 25a)

1 , otherwise

10, t < t'l < t
P n(t) i n - i - n (3.25b)

0, otherwise

with At n = It i t i
n n n-I

= [(Pi n Pi )2 + (z i  - z )2] (3.26)
n n-i n n-i

Im n and J !n are the unknown expansion coefficients of the
it
total modal current" (21T p, in the t-direction and

n t
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the actual modal current density in the 0-direction. The

expansion of t- and 0-components in terms of the "total"

current and current density, respectively, arises as a natural

choice, particularly when one applies the surface divergence

to the current representation. One observes further that

i (t,, 0,) , i -- l,p, appears in all integrals with an

associated factor p thus making it natural to consider the

product p'J (t', 0j) the unknown current. J, (ti, *i
St 1 ol

on the otherhand, does not appear this way and the artificial

introduction of p factor would introduce unwanted singularl-

ties in some of the integrals. Hence we expand J alone.

The magnetic currents Mi(ti, and their derivatives are
mn 2 m n a n elcn

expanded similarly with K t 27rp M and replacing
St i

Imn and jmn
Iand I respectively.

Features of the current expansion scheme in (3.23) and

(,.24) are further discussed in [11]. The salient points

are that since the Fourier modes are decoupled, one can

solve for the Fourier components mode by mode. The staggered

pulse basis set in the t-direction permits the modelini of

open and closed (conducting) bodies and bodies with sharp

edges without the placement of observation points for poten-

tial quantities at points wherein the corresponding sources

%current or charge) may be singular.

iP
AI
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We next define the testing functions

T Pq = P q(t )e -j (3.27a)
-jpck.

il 1 j

Tp q . Pq(tj)e- (3.27b)
32 2

The t-component equations in (3.13a) and (3.13b) are tested

with (3.27a) while the -component equations in (3.13a) and

(3.13b) are tesued with (3.27b). In order to perform the

integrations analyLically, we expand the Green's functions

in Fourier series, as

-ikiRo Jm(

LR R G G (tit )e

m i anO

I -JkiRo

G e , d(ti,, J
0 0 m _

where i = p-l,p,p+l and

,ti o cos m dF, (3.28a) ,

-iT
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7r -jk R
Gi ti )f 1I d_ Je 1

dR tR C')S m& dC (3.28b)
m f 0 0 0

-T

2 ,2 z 2' (.2
R 2 [ 1 + - ! cos + (zi-z!) 2 .3.28c

0

where J = i- %. The form of the integrand in the above is

obtained by noting that exp(-JklRo)/R is even in C. With

this, the surface integrals now reduce to a single integral

over t. Following the procedures similar to those used for

a homogeneous body of revolution [111, we can write the

expressions for the elements In , where m refers to the m t h

Jm

Fourier mode, while q and n refer to the field and source

idices respectively. For notational simplicity, we define

tJ 2

2  q m I
til

tPj J2,
(tj t t q  M) f G i ( t i  t )P dt' (3.29b)

t 1

where G i (tit, !) are defined in (3.28). We introduce next
m

the weight functions arising due to the testing in the t-

direction,

I.i
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Ati  sin Y + Ati sin

Xs (At, q 2 (3.30a)q q 2

At Cos + At sin

Xc (Ati y ) +I q q q (3.30b)
q q 2

The various qn can now be written explicitly. One notes

that the qn defined in the following pages are of the

same form as the Bqn defined in (5.25) of [11], except that

the elements there contain contributions from both sides of

a surface and therefore involve two medium properties. The

reason for defining the Bq m in terms of the parameters of

a single medium is that s involves the computation of a

for two media , while cij involves the computation of Oij

for only one medium. Thus the same computer subroutine for

computing 1 can be used either for the computation of

s or c Hence we finally write the qn as follows:ii iji ~ii

Am
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1 h 8r n s iq 'iq in- v in

pjp1 (t ,n t1 ,nt ti ; M-1)]

8 nn l q qqa n+

+ iij' (ti n 1  n+ q ; -1)]

4rc q q i n- o in q

C irinlq q 'in 9 in+ q l

4irwAt £ t1~ M)

n 7W n nt ; ;in

n-11 nq+

; i(i P m)j (3.31a)
n n+l 1

q -1*2...N

n 1,2...
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q n ( A t i t l p ttt+ I12 n q q in-!' in q

in-I9 in q

-M i)

n-I' in i ;_ (n]3.31b)

q - .

in 1,2 ...N

q rw Aw i d tt t1
m T q in n-11 n q- ;m

, i t i q - ; m-I)

+ ' At 1  sin y i' (
81 q in+l in' (t n+ t 1  in+1

n n+ 1q-

MA t

I-t t ; t. ; i)
q- -

mAt

1,2. .N

n 1, 2 .. .iqN
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22 4 jt 1 LP j Lmq q in-i n q m+1

p.
+ 4iA (t inI't.i ; t q ; rn-i)]

2 1n~ i in-l in- q

q - 1,2... N +1

n - 1,2. ...N +1

cI

tiq13 'n xs(Atq ly u) U 3 (t t; t1  Mi)

s yin l

+ I1 4'I X 5 (At , y ) u (t in$ t ; t ; i )

siny

+ j. 3 ni x (Ati y )u (t t ; t Mn)4 CT c 1 oj q
qq q n- 1 n q

siny

l 41 + X (At i ly ) U (t t . ; t ; )

q q n- 11 q

s r

4 1 n j Ji+
q q q n+ q

(3. 3ile)

q = 1,2. ...N,

n=i1,2 ...N



74

1pqn I tq ) U 1 (t t ; t i ; m)4iq q 4 n- n q

I X(Ati ,y ) Uj (t ,t ; t; M), (3.31f)
2 q q n-i n q

q - 1,2...N

n - 1,2...Nj+1

pi
0 qn _ R3 Cs y At u (t t

qn3 = _ i_ At i  5st j ; t i  ; m)

23m 2 co in q n- n q-

2P- Co i AJ U5 (t t ; ;t i  ; M)
n+l n n+ n+ q-

os At1. U6  , t1 ; t1  ; m)

n q n- n q-

Scos Y At U t ; in)

n+ q n n+ q-

+ sin y A u (t t t

2 sin itq n- n q-

1 sin At U2(t ,t t (3.31g)
271 i n+l Atq n2 t in+ 1 q_

q 1,2...N i +1

n - 1,2...N.

, J
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aqn U t t ; ) (3. 31h)

mq n-I ~n iq-3i

q -1,2...N +1

n -1,2...N +1.

The U's in (3.31) are defined as in (5.26) of [Il] with

(t I , t 2 ) replaced by (ti , th ), t replaced by ti , the1 2 q q

field points (p,O,z) replaced by (Pi,Oi,zi), the source

points (p',O',z') replaced by (pi, 0 , ) and (5.27) of

[111 is replaced by

-J K~o

G - e (3.32)Ro

where k corresponds to the medium p-1, por p+l,as the case

may be. This completes the definition of the elements of

the self-impedance and mutual impedance matrices.

The incident plane wave fields are incident on the

Nth or the outermost interface. These can be expressed as,

Einc - (E. 6^k+ EN (3.33a)

Hinc . _ 1 i -kN+ln. r.
-c N (E E 0) e (3.33b)

where

hI3
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O = cos 6 cos i £ + cos 0 sin *iy - sin 6 z (3.34a)

-sin *tx + Cos Y (3. 34b)

i i i i
S-sin 6 cos x - sin 0 sin y 9 - cos 6 z (3.34c)

r N "ON cos 0N x + PN sin dN y + ZN z (3.34d)

and TN+l is the characteristic wave impedance of the (N+I)

or outermost region. The tangential components of (3.33)

are the forcing functions of (3..3). The corresponding elements

of the drive vector are given by (5.30) of [II], where the

th
field coordinates refer to the N or outermost interface.

After computing the matrix elements, the iteration

procedure given in (2.34) can now be used to solve for the

currents on the N t h or outermost surface. If one requires

the curreats on all the l.vers, then one has to carry out

a back substitution process beginning with the currents com-

puted on the outermost layer. However, if one is interested

only in the fields on the exterior of the scatterer, then thc

currents on the outermost layer are sufficient.

The above procedure must in principle be carried out

for each of the modes m, -- < m < . In practice, however,

one achieves convergence with only a finite number of modes.



77

Further, as shown in [il], computation of only the positive

modes is sufficient to obtain the total contribution from

all modes, positive and negative. This is because of vari-

ous symmetry relaticnships between the matrix elements and

currents for the negative modes and those for positive modes.

3.2 Eigenfunction Solution for a Three-layered Dielectric

Sphere

In this section, we obtain expressions for the induced

currents on a three-layered dielectric sphere illuminated by

a plane wave. This is done to obtain a check on the formula-

tion and computer code for the layered body of revolution

discussed in the previous section. The procedure is similar

to that for the case of a homogeneous sphere [131 which

results in the well-known Mie series solution.

Consider the inhomogeneous sphere shown in Fig. 3.4.

The various media are characterized by parameters (i, E

ol), i = 1,4. An incident plane wave, assumed to be polari-

zed in the x-direction and travelling in the positive z-

direction, can be expressed as

-jk4 z -jk 4r r cos 0
E E e =E e (3. 35a)

E -jk z E° -jk 4 r cos 0 (3.35b)
Hi O e
y n4
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I~01

14

x

Figure 3.4. A three layered dielectric sphere.
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where q4 is the characteristic wave impedance of medium 4.

For convenience in applying boundary conditions, we express

the fields in terms of TM to r and TE to r problems. Thus

we have associated incident electric and magnetic vector

i i
potentials, Fra Ar' respectively, associated with the inci-

dent fields in (3.35) as [13],

cos~A

Ai  go an Jn(k4 r) Pl (cos 6) (3.36a)r WP 4n4 n
n 1

Fi E sin~ $ A ̂

Fr k4  a Jn(k4 r) Pl (cos 0) (3.36b)
nl 1

where

a j (2n-4l) 3.36c)

n n(n+).

Here

3 (kr) - kr j (kr) (kr) (3.37)
n n

wherej (x) is the spherical Bessel function of order n,

p1
J (x) is the ordinary cylindrical Bessel function, P (cos 0)n n
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is the associated Legendre polynomial of degree n, order

one. We next expand the fields in the various regions in

terms of potentials of the same form as those expressing the

incident field. Thus the fields in the various regions are

expressed in terms of the following potentials:

E Cos
A o b Jn(k OP (cosO), r < a1  (3.38a)
r1 n 1 n

nl

E sin 1
Fr cn Jn(kr)Pl (cos 0), r <a (3.38b)

n 1

E cos 4 1
Ar2  wi4 d Jn(k 2 r) + en Nn (k 2r) p(cos 0),

nl

na < r <a (3.38c)

F E inf (k r) + g N (k 0) P I(Cos 0) ,

a < r < a 3.38d)

1 2
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E CosE cos 43 (kr) + Nn p(Cos 0),
Ar14 n n n 3  n

nl

a 2 < r < a3 (3.38e)

COE__sin__ (k +r w N (k rj Pl(cos ),
Fr 3  k 4  1 vn 'n k3 r +)  n3 n

n= 

a 2 < r < a 3  (3.38f)

E cos 4 -()o
A= r n H(2k 4 r) P (cose), r > a3  (3.38g)r r4nn

n-i

E sin zs  o(2)
Fs H n (k r) P (cos 0), r > a (3.38h)r 4  4 n 3

Herein, Nn(kr) and H(2)(kr) denote kr times the ordinary

spherical Neumann and spherical Hankel function of the

second kind, respectively. Note that the fields in region 1

are tinite while the scattered fields are represented in

terms of outgoing waves. The electric and magnetic fields

can be determined from the potentials as follows [13]:

SaF a2Arl 1 r1

E (3.39a)
r17 T-c;
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2
1 r. 1r__

E + (3. 39b)p. r ;0 iwcr sin 0 r

2

r rHi + (3.39c)

H0 r 3F jwli r sin 0 Dr3d

1 1,4.

The bouudar,, conditions to be met are

H (r,0,0) H E (r.60) *at r - a (3.40b)
4 1+

E (r,0,4) -E r,4)*at r = a (3.40c)

H (r , 0,) =H (r,e,4) ,at r - a (3.40d)

0 < < v 7 < < i, = 1,2,3.
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In view of the independence of the TE and TM modes, we
r r

simply require

Eel " E at r - ai (3.41a)

r TE

r

E il E0  at r- a (3.41b)

1+11

TM TM

r r
' H~I~ (3.41c)

He1 = at r =ai
' iTE TE

r r

H H at r = ai (3.41d)
TM i+lIr TM

r

1 1,2,3.

Application of (3.41) automatically ensures the continuity

of the 4-components of the fields as well. Use of (3.38)

and (3.39) in (3.41) thus yields

cn In(klal ) =  n Jn(k 2 ai) + g Nn(k 2 a (3a.1 42a)

II

AIn d '(~ I  e N(k a, )bn k2 IJ'kll 2ldn I n n2

~(3.42b)



84

k we1 c J'( a ief '''k a,) Nnk ai
2 1 (ka) kl 2 fn J k 2 a gn 2

(3.42c)

bn Jn(k 1 a) dn J n(k 2 a) + en Nn(k 2 a1 ) (3.42d)

f J (k 2 a2 ) + gn N(k 2 a2 ) = v J (k 3 a 2 ) + w N (k 3 a2 )nna)+ gn n2n n 32 n n32

(3.42e)

k ^d ( e N~ J'(k a

k 3  2 dn J'n(k 2 a 2 ) + e n k 2  P 3 {tn n 3 a 2

+,u Nv(k a) }  
(3.42f)

i (kN~kk J'(k-~

k 3 e2f n 1, 2a g n 2 a2 1 2 F3 ivn n 3 2

+ wn Nn'(k3a2 )  (3.42g)

d i(k 2 a) + e N(k 2 a 2) J(k 3 a 2 ) + u N (ka)ln 2 )  n n 22 n 3n 3a n n 3 a 2)

(3.42h)

V Jnk a)+ w k a ) = a k a ) + s H( 2 )(k 4 a 3 )
n k3a3 wn Nn (k3 a3 an Jn (k4a3 sn Hn (k43

(3.421)

Hl



85

k4 11 t (k a) + u N '(k a3 ) k3 P4 {a. S'(k a)

2 )'(k an )i (3.42)

Wn J1'(k a 3) wn n'(ka 3)j k 3 we aJ' (k 4a 3)

(2),}

+ sn n ((ka3)} (3.42k)

tn Jn(k 3 a 3 ) + u Nn (k 3 a 3  a J (k4 a3  + r n 2 (k 4 a 3 )

(3.42Z)

wherein the orthogonality amongst the modes has been utilized.

Equations (3.42) are 12 equations in the 12 unknown coef-

ficients. The coefficients were numerically determined by

solving the system of linear equations (3.42). 'ine notes

that if (3.42) is written in matrix form, the matrix can be

partitioned into two independent matrices (involving TE and

TMr coefficients) which are individually block tridiagonal.

Hence an iteration scheme, similar to the one used for the

layered body of revolution, can be developed. Equation

j(3.42) is to be sblved for each of the modes n. (Note that

only the O-dependence cf the fields varies from mode to

mode, whereas the -dependence of the fields is fixed.

Because we have considered axial incidence, only the
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ej o Fourier mode in * exists as indicated in (3.38)).

The number of modes is truncated at a finite number after

convergence has been achieved.

Having determined the coefficients, we can compute the

surface current on the outermost layer. We have

3 - x 4 4 E0 4 + E4 0 at r - a 3  (3.43a)

A43 M r X H4 H e4 - 0 at r - a 3 . (3.43b)

Using (3.38) and (3.39) in (3.43), we get the various com-

ponents of the currents:

J E OB~ {an "n~k4a3

- H ir -a 3 - i1 4 a 3  n1

H Cos 0

o j,(kj r =4 a 3  XP a (3.44a)
H (2 n+ r H(2)(k a3 p(csO)

n n 4 on

i o n0 0 a V(~ 34a

j 1 a3nn 3

!n

+, k4a ) Cs0
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3 H = - E0  sin ~o i {a

413 rI. n-l

+ r H(2) (k 4a3 )} P(Cos 0)

co

+ n a J(k a 4a3),k d (CosO)
3 4 a3  z n 4 3) Sn n

+ r H()ka3)n Pl-~ n

(3.-44b)

E sinl 00t0

M 0  E41 , k 4a3 an Jn(k 4a 3)

, r a3  n-i

+s (2) (k P1 (Cos 6)

E0  sin 6 a J'(ka.)

Jk 4a 3 sin n n ,
i n,,

H + r fi2)(k a)} pn(cos 0) 3.44 )

[I1
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CO

E~ cosos

Ml {a sn a sian3 4r a a3 n 1

+ 1(2) (k a )I PI(Cos 6)
+ n fn 43 )  n

E co A()(~3 lco ) 34d

nk4 n Jn 43

Equations (3.44) thus give the surface currents on the

outermost layer. lhe infinite summation is truncated to a

finite number, after ascertaining the numerical convergence.

3.3 Numerical Results

,' The numerical procedure described in Section 3.1 for a

layered dielectric body of revolution has been incorporated

into a computer code. The resultant computer code is

hereafter referred to as "LDBR". We compare the numerical

results from the code LDBR with the solution for the layered

sphere developed in Section 3.2. After establishing the code,

additional geometries for which exact solutions are not

available are considered.
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The various scattering models considered are assumed to

be illuminated by a uniform plane wave travelling in the

positive z-direction. Since a plane wave incident along the

axis of a body of revolution excites only the n=+l Fourlor
tJo

mode with e variation, the currents on the surface have

the form [11]

i J(t,q) = (t) cos 0 + j J (t) sin 0

M(t,*) j Mt(t) sin + M (t) cos

where

J (t) - 2 J (t)
p p

p t or ,

M (t) - 2 M 0 (t)
p p

and where J and M are the electric and magnetic currents
p p

resulting from a 0-polarized incident field with a circum-

ferential variation of the form ej o. The figures in this

section show Jt and M in the 00 plane, while J and

Mt ar, in the 4 90 plane.

As a check on the accuracy of the iterative computa-

tions, we have considered some cases wherein the scatterer
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is made up of dummy layers. That is, the entire scatterer,

though homogeneous, is treated numerically as being made up

of layers, each layer with the same material parameters.

Fig. 3.5 indicates the currents on a sphere of "vacuum di-

electric . " In view of the equivalence theorem, the cur-

rents on the surface should obviously be

M E
-n x Einc

n -inc

One notes that the results obtained from LDBR code agree

well with the expected values. Fig. 3.6 indicates the

currents on a dielectric sphere of dielectric constant

Cr 2, again made up of dummy layers. It is seen that the

eigenfunction solution and the LDBR solution agree favor-

ably. The results are also in good agreement with those of

Wu 114j and Glisson [11], who have studied the homogeneous

dielectric sphere. Fig. 3.7 indicates the equivalent sur-

face currents obtained from LDBR for a homogeneous sphere

with L = 1 and various values for the conductivity. The
r

electric currents on a perfect electrically conducting

sphere [151 are plotted for comparison. Fig. 3,8 indicates
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the currents computed using LDBR and the eigenfunction

solution procedure for a lossless sphere of r = 80, tor

illustrate the capability of the computer code to treat

"dummy" layers with high dielectric constants. Fig. 3.9

and Fig. 3.10 show currents computed on an inhomogeneous

sphere with different medium parameters on each layer.

The results of LDBR code agree very well with those obtained

from the eigenfunction solution procedure. It should be

noted that the values of conductivity chosen for all the

cases considered here are rather small. This is because

the spherical Bessel functions of complex argument grow

exponentially with increasing conductivity. In fact, with

only moderate conductivities, the function values exceed

the dynamic range of the computer used to perform the cal-

culations. However, the code LDBR does not suffer from

this limitation. Although the LDBR results for conductivities

thus cannotbe checked with those of the eigenfunction formu-

lation, nevertheless, the LDBR results do converge as has

been found by increasing the number of sample points on the

layers. Calculations have also been carried out for the

case of the inhomogeneous sphere in Fig. 3.9, in which

additional dummy layers have been inserted within the homo-

geneous regions. It has been found that treating the three

region problem in Fig. 3.9 as a five-layered sphere (i.e.
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two layers are dummy layers) has yielded results that are

in excellent agreement with those obtained using but three

layers. Fig. 3.11 shows the currents on a three layered

inhomogeneous sphere wherein the outermost layer is chosen to

be very thin. One notes that the results of the LDBR code are

still in good agreement with those of the eigenfunction

solution even for a body made up of thin layers.

We finally consider some additional cases. Fig. 3.12

indicates the currents on a finite homogeneous cylinder made

up of dummy layers. Note that in this case, the dielectric

region has surface edges and hence the equivalent surface

currents may be discontinuous or possibly even singular at

these edges. Fig. 3.13 indicates the currents on a homo-

geneous dielectric cone sphere. 'Iso shown is the result

obtained by Glisson [16]. one notes Immediately the differ-

ence in the results near the tip of the cone. This difference

is attributed to the layered treatment of the cone sphere

body, which introduces a singularity at the cone tip even

for source and field points not on the same surface. Although

the current expansion scheme we adopt does not match the

fields at the tip, nevertheless, the kernels involved will be

highly peaked. By performing the Integration around the cone

tip more accurately, this error is easily eliminated.
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CHAPTER IV

MISSILE PLUME SCATTERING

In this chapter, the procedure described in Chapter III

for obtaining the scattered fields for layered dielectric

bodies of revolution is extended to treat a missile with an

attached inhomogeneous exhaust plume. Calculated missile

currents are presented for selected plume inhomogeneities,

frequencies, and angles of incidence.

4.1 Block Tridiagonal Formulation for Missile Plume Scat-

tering

The inhomogeneous plume is modeled as a series of layers

of homogeneous regions. Fig. 4.1 shows an approximate model

of the missile plume Problem. Zhe boundary conditions

require that the tangential electric and magne,,ic fields be

continuous across the plume layers and that the tangential

electric field vanish along the missile surface and along

the missile/plume interface. This leads to a set of coupled

integral equations for the equivalent currents on the sur-

faces between layers of the plume and on the missile and

missile/plume interface. The numerical procedure



INHOWOENEOUS PLUME

I Figure 4. 1. Geometry of a mnissile with a trailing
inhoinogeneous plume.
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indicated in Chapter III leads to a matrix equation for the

representative model in Fig. 4.1 as follows:

LI1 LI2 0 0 0 I1  0

L21 L22 L23 L24 0 12 0

L L Linc
0 L32 L33 L34 L35 13 V3  ,(4.1)

o L4 2  L4 3  L4 4  0 14 0

0 0 L 0 L 15 V n c

where

Ii i , i - 1,2,3

[3i '1 4,5

-inc

tan
.inc V inc Inc

= -in, 5  5 tan

Ij tan

and L are the coupling matrices whose elements correspondli

ii
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to the field contribution on surface i due to currents on

surface J. An immediate observation of (4.1) is that the

block tridiagonal nature of the o',erall system matrix now

appears to have been lost with the presence of the missile.

However, we merely regroup some of the operators, currents

and driving vectors as follows:

L' L O

23 [L2 3  24

LL2 3

L 33 L 34 L 35

L ;3 L 4 3 L 4  0

L 53 0 L 55?

:1m

3 3

V ,n 0 13

V nnWith, I t= 4 i

With these new definitions, (4.1) may be written as
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L L 0 (4.0

L 2 1  L 2 2  23 2

0 L '1 ' ' vinc l

32 33 13

which retains the block tridiagonal nature. The extension

to an arbitrary number of layers should be obvious. Thus

with suitable partitioning of the matrix equation, the

iteration procedure indicated in Section 2.4 can still be

utilized.

4.2 Boundary Conditions at the Plume-Missile Junction

The boundary condition on the conducting missile is

that the tangential electric field vanish over the missile

surface. On the plume interfaces, however, we require that

the -angential electric and magnetic fields be continuous.

Thus, at the Junction of the plume and the missile, we must

have E t 0 and Ho to be continuous. Since J = x H and
t

M E x j, these conditions translate into conditions on

the surface currents which imply that Jt, the t-directed

component of the electric current, he continuous as one

approaches the Junction along any one of the three surfaces

meeting there and that Mt, the t-directed component of the

magnetic current, vanish at the Junction (Here the t-

direction is the direction along the generator arc of the
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body of revolution). Note, however, that J and M may be

singular near the junction since these currents flow paral-

lel to an edge. With the displaced current expansion scheme

(see Fig. 4.2), however, these current components are not

defined directly at the Junction, but rather a half-

subdomain away from the junction. The junction point of

the missile and plume is chosen to be at the center of the

t-directed current pulse and continuity of the current at

the junction is enforced. Note that no special boundary

conditions on J or M at the missile-plume junction are

needed because of the shifted subdomain scheme.

In order to apply the boundary conditions on the t-

directed component of the electric and magnetic currents,

let us consider the equivalent problems, shown in Fig. 4.2,

obtained by the application of the equivalence principle.

Fig. 4.2a is the exterior equivalence, wherein the fields in

the exterior region are only due to equivalent electric cur-

rents residing on the missile surface and equivalent electric

and magnetic currents residing on the outside of the plume

surface. The fields in the interior are assumed to be zero

for this part of the problem. Fig. 4.2b shows the intvrnal

equivalence, wherein the fields In the exterior region are

assumed to be zero. We note herein that the fields on the

interior are due to equivalent electric currents residing on

-It
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JJ*

Figure 4.2a. External equivalence and current expansion,
scheme for the missile plume configuration,
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the interface of the missile/plume and due to electric and

magnetic currents on the interior of the plume. We also

note that the missile current does not appear in this part

of the problzm, Using the above two equivalent problems,

we note that the following are true:

X t J OW j' J P) + -x Rinc . 0, (4.3)
ex M tj P L1/L'

~ x He M, JJ' JP' MP) + - x rinc (4.4)

E: Sp + SM

S-JP -MP) - (4.5)

nx 0n 19 0t'-p -p (4.6)

re Sp + SI
where Sp, SM and SI are the plume, missile and interface

surfaces, respectively and

E is the electric field produced by the currents
ex for the exterior equivalence, evaluated just

inside the missile/plume surface,

H is the magnetic field produced by the currentseX for the exterior equivalence, evaluated just

inside the missile/plume surface,

i is the electric field produced by the currents
in for the interior equivalence, evaluated just

outside the plume/interface surface,

I,2•
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-+ is the magnetic field produced by the currents forin the interior equivalence, evaluated just outside

the plume/interface surface,

JM is the electric current on the missile surface,

Jp,, Mp are the electric and magnetic currents on the plume,

J t is the t-component of the electric current at theti junction,

j is the electric current on the missile/plumeinterface.

Over the plume surface Sp, (4.3)and (4.5) result in

x-+ _. -^ inc -x ex - x Em -nx Ec , r Sp, (4.7a)

Similarly, from (4.4) and (4.6) one obtains

A R- _ x g+ -. x -inc
n ex in , rcSp, (4.7b)

From (4.3) we have,

x - - - inc
n ex - rcSM , (4.8)

From (4.5) we have,

t -+ 0 , reSl, (4.9)

xEin
where r refers to the point at which the fields are evaluated.

Herein the dependence of the various fields on the appropri-

ate currents are suppressed. Equations (4.7) through (4.9)

are the required equations. For computational purpose, the

layers Are chosen in accordance with the contours of the

E equivalent problems (see Fig. 4.2). If one uses a testing

procedure similar to that aced in Chapter III for the layered

dielectric body of revolution, the above equations may be

it *
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reduced to a matrix equation. At this stage we excercise

some caution with regard to the equations associated with

the evaluation of the fields at a point due to various cur-

rent sub-domains. For test points on the plume surface,

Equation (4.7) essentially corresponds to the enforcement of

the continuity of tangential electric and magnetic fields.

Equations (4.8) and (4.9) correspond to the vanishing of the

tangential electric fields over the missile surface and inter-

face , respectively. At the junction, the net effect is to

add together three equations that correspond to (i) enforce-

ment of continuity of the tangential electric field at the

plume/exterior region interface, (ii) the requirement that

the tangential electric field vanish on the missile surface,

and (iii) the requirement that the tangential electric field

vanish at the missile/plume interface. The use of the cur-

rent expansion scheme shown in Fig. 4.2 along with the above

testing procudure results in separate terms in the moment

matrix pertaining to the t-directed component oi the electric

current at the junction. Since these terms correspond to

the same unknown,viz. the unknown current coefficient at the

junction, Lhey are grouped together. Such a procedure

yields an average value of the contribution from the junc-

tion current, the averaging being carried out over all the

K I
I'I
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three surfaces that meet at the junction and thus achieves

the continuity of the t-directed component of the electric

current at the junction. Since the t-directed magnetic

current pulses overlap the t-directed electric current

pulses and since the magnetic current on the missile/exterior

region interface and the missile/plume interface is zero,

the t-directed magnetic current pulse coefficient at the

junction is forced to be zero, thus yielding a vanishing

t-directed component of magnetic current at the junc-

tion.

4.3 Numerical Results

The computer code LDBR, described in Chapter III for

solving currents on a layered dielectric body of revolution,

was modified to incorporate the procudures described in

Section 4.2 which would enable one to solve for the currents

on a composite missile-plume structure. This modified code

will be hereafter referred to as the MPLM code. Since the

composite missile-plume body is ttin comparee to the length,

only the circumferentially uniform Fourier mode (m = 0)

icurrent is considered. This is because for reasonably thin

bodies of revolution the non-symmetric modes are only weakly

coupled to the plume and thus these modes of missile currenL,

though perhaps significant by themselves, probably do not

1
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vary much with the plume presence.

Due to the lack of either an exact solution or compar-

able measured results for the missile/plume geometry, a few

special geometries were considered and the results ropared

with those obtained from other valid computer codes. Figs.

4.3a and 4.3b show the currents on the mi.ssile, when the

plume conductivity is set to zero. As one would expect

upon setting the plume conductivity to zero, the currents

induced on the missile should be identical to those induced

on a conducting cylinder excited by a plane wave. Also

shown for comparison in these figures are the results

obtained by a computer code developed by Glisson [16] for

the currents induced on a cylinder due to a plane wave il-

lumination. The results of the MPLM code are in excellentIii
agreement with those of Glisson. As a further check, the

geometry of a missile with a trailing cylindrical plume (of

the same radius as that of the missile) of uniform conduc-

tivity a = 1000 S/m is considered. In this case, the missile

plume combination resembles a perfectly conducting cylinder

whose length is the sum of the lengths of the missile and

plume. Figs. 4.4a and 4.4b show the circumferentially

uniform Fourier mode current on the composite structure.

Also shown on these figures are the results obtained by the

previously mentioned code of Glisson. We note the excellent



iI

123

22

20

18

16

14

12

(mA) 10

8

GL IS S~I

26

313 CMPLX

:,0 .3 .6 .-9 1.2 1.5 1.8 2.1 2.4 2.7 3.0

z in

t~1Pigure 4.3a. Electric current distribution along a missile
with a trailing plume of uniform conductivity

=0 S/r.

I ii

k



124

24 127

22 f- 5OMlizI

20
200

18

16

14

(mA)
12.24

10 
0 0

1 6L 4

Figure 4.3b. Electric current distribution along a missile
with a surrounded plume of uniform conductivity

= 0 S/M.



125

11

10

9

f- 5OM0z

I*3.Om "~.0m'I
S-1000 S/M

6 
0

MA 5

4 - CLISSON

KI 3

21

0 1.0 2.0 3.0 .0 5.0 6.0

z (a)

Figure 4.4a. Electric current distribution along a missile
and trailing plume of unifnrm conductivity
* - 1000 S/a under broadside illumination.

-T



126

20

18 Z 0~

16 3001"-1000 SIM .127m

14 GISSON
X XX JHPN

12

I It 10

6

4

2

0
0 1.0 2.0 3.0 4.0 5.0 6.0

z(u)

Figure 4.4b. Electric current distribution along a missile
2_nA trailing plume of uniform conductivity
or 1000 S/m under obii u in.,-idonre.



121

agreement in the two approaches. The excellent agreement in

the above two checks, under limiting cases, pcovide some con-

fidence in the validity of the computer code MPLM. Calcula.-

tions were also made for a homogeneous cylindrical plume with

conductivity a - 0.2 S/M. Fig. 4.5 depicts the resulting

currents on the missile-plume combination. Also showy are

the results obtaine4 by Wu et.al. j17] for the same case.

One notes a fairly good agreement in the two results. A

possible explanation for the difference is the different

type of treatment of the junction between the mis3ile and the

plume used here as compared to that used by Wu et.al 1171.

Further it is known that the junction modeling strongly

influences the currents on the missile [171. Whereas t)e

procedure ,,-ad here essentially averages the boundary con--

dition on portions of the missile, plume and the missile/

plume interface that are common to the junction, tile

approach followed by Wu et.al. 1171 Is t- enturce only tile

boundary condition on the missile and let the entorced

continuity of current flowing onto the temaining su rat.-s

at the junction take Late of th~e satisfaction of tile

boundary conditions on these surfaces. This latter

approach is, in principle, correct; however, in a num-

erical procedure, a certain degree of "averaging" of the

a
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boundary conditions is desirable because a pulse representa-

tion of the current is, in a sense, a local averaging process

and hence one can expect the boundary conditions to be

satisfied only in an average sense as well. Based on these

observations and the excellent agreement in the limiting

cases shown in Figs. 4.3 nnd 4.4, it is concluded that the

missile/plume junction treatment used here probably yields

more accurate results than those obtained by the treatment

adopted by Wu et.al. [17], and that the differences in the

results seen in Fig. 4.5 are due to the different ways in

which the junction is treated.

For the actual inhomogeneous missile plume, the plume

inhomogeneity is predicted using the LAPP computer code.

This code simultaneously models thermo-chemical reactions and

rocket aerodynamics to establish the electrical properties,

viz., permittivity and conductivity, inside the plume region.

The plume conductivity calculations we have used here model

the plume of a static (zero velocity) Chapparal missile at

a 5000 ft. (1524a) altitude, The calculations show that the

electrical permittivity does not change much from the free-

space value, but that the conductivity is strongly inhomo-

geneous both radially and axially. A detailed discussion

of the LAPP code is given in [181. Conductivity values
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predicted by the LAPP code result in constant conductivity

profiles shown in Fig. 4.6. Based on this accurate profile,

a judicious choice of layer boundaries was made and the

assumed constant value of the conductivity between the layer

boundaries was obtained by averaging the conductivity between

two contours. Fig. 4.7 shows the resulting layered approxi-

mation to thc. inhomogeneous plume. We shall be adopting two

models of the plume, the long and short plume models. Such

a choice is made for two reasons. It has been found [17] that

the effect of the plume on the currents on the missile is

negligible when the conductivity in the region around the

nozzle of the missile is small. Further, the values of the

conductivity in the plume, as predicted by the LAPP code, is

known Lo be less accurate around the nozzle region as compared

to the values predicted in the regions away from the nozzle.

The extent of the regions of the short and long plume models

are shown in Fig. 4.7. One notes that the region around the

nozzle has a low conductivity value in the long plume model

and a higher conductivity value in the short plume model.

Figs. 4.8 through 4.12 show the computed currents on the

missile and plume for various angles on incidence and frequen-

cies. Cost of computations has limited a more detailed study

of the short plume model. We note from these figures that the

currents on the missile are not much affected under the long



131

co

oo
-

C4 0

N -i

00

Ln 0

oo oo

CLN 0



132

to oW x.

6.

-Ong 6

0~f 0

o o o

rxU



1 33

0~5 0

z 0i

*,0 0

zGo

r. 0

rY4

000

1-4

'00IL b
.,.4 

41



134

doo

000

p.*000 14 -C

~ 0l% t;ozt'
r. 0

C0H .

.44

\-%

%

coo

2.3
:7 .... - . ..:V" ':". .... ... ...... . ..



135

-- 41

z 0

-r 0

% /.

OO~x

N f U 44-

I 00

LA *w m N0
t-4

4JO



136

j4 E- 41I

zo Go

I4

a
LA T-4

t 4

4/ $4
q0

C'! 04 0

u.. - ,-

4z co fl, \ Ln t



137

z -4
00I
zI

C4

Iu0

1-4

4

:Ln~g



138

.4

* CL
Im

r 04
~~ 0-

l0, it
0.0

15-I

a. 00(



-H

0A
m-

I40
0

3t 4
"4 u

31 C
"4 ~ I~ V

00 ~ ~ 00b
F- r -4 Cl)



140

dou

C6 -

zr 0 0

H u

II, Cu

N U

r414

00 0\C 0 V 0 Go CO r0 0 N



wjw
C144

15.*

0 00

I a-

e1 I

Ij

U 04
0 0 ~ I, C

000

4J%



142

C4".

0 03

-4

C: 0
I0

% -A

Iii'I
0

0~~ GoC



143

0 0

t I

- .4-

r. 0

0 0)
%-44

%

II
*i

w: C

P 
I 4



144

/ Q 0

% 0 0U

M-

U 44

CL

IX

Go r-LA IV te N V-4

- - -- - - -



145

100

V4

0 0 C

% *0
%

CD

4I 1

00

I.
LL"- ,1 ,f I~ -,I,,.

4.1

.=,.1-

:'0

g C

. oC



146

00

doH

-~r-4

'a 0

* 0

a * a

%H

% vi

CU

0 0 * - 00
co C o A04V

OC%4



147

Ia.

0 0 0-*-

I °*

CO 6 -4

|*° .4-

% r 0

I o-%

%%

. 0

IW

%

00* -4L 0J

.4

00

0)

I IVm

'4 -'



148

00

I

00

* 0

SI u'

I

" u

I o Uw

4 1

I

I,,



149

00

r. 0
0 v-0

0 CD

Ip 0

< ItZ

o o L U

000

00 co H
I-. C



150

0%0

0 0 "

0 U)

H u

140

0 0 0

00I
r-4%

41 I



151

4

Ic

0 Qw

4)
* * r4
*4 U, l

Cu

Go a :3



152

ala

C! 00

,-4

t $r4

0 0

4e

Co

V
4-4-

co N . 00

41o



153

41

0

I0

c.0
41 4 0



154

I

I *

00 00-4

0 U

% -

% 54

0 f \0 Un m l:

1--4

'4 *

'4 * -r



155

, .,,CC

,aJ

0

II

0 0 0
0 o"

I °,
% CO -H

I N (C

% .. u

% ~ CC

% r

-4

I'0

r-4~

Ln r-I

60

44

,- 0 O



156

aa,

a 0

% 4

% z4

%3 t4 C)

I 4j

,0 0

Lt
am--4

0-4 41



157

000

I 4

44

00

Go .-*1na VA
fX4



158

plume model situation. Due to the low conductivity in the

plume around the nozzle region, the coupling between the mis-

sile and the plume will be low. Such an observation has been

made by Wu et.al. [17]. For the short plume model case, we

note that that the nozzle of the missile is now in a region

of a higher conductivity than in the long plume model.The

currents on the missile are now more affected by the presence

of the plume. One notes that for angles of incidence grazing

from the plume side, the currents on the missile can be more

than the no plume case. One notes also that the current on

the missile around the nozzle region is much higher than in

the no plume or long plume cases. Thus coupling into the

interior of the missile through apertures plazed in the

region around the nozzle of the missile will be greater in

the short plume case than in the long plume case.

The currents on the plume appears to be comparable to

the missile current at low frequencies. However, at frequen-

cies above the first resonance, the current on the plume is

generally much smaller than the missile current. For the 30MHz

,ase ,(see Figs. 4.8a through 4.8e), an interesting observa-

Lion in the plume current is the peak occurring at about 3m

from the junction and a shoulder which occurs at about 4.8m

from the junction. One notes that the skin depths at this

frequency and for the various conductivities involved are much
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greater than the radial spread of the plume. Hence assuming a

uniform current distribution across the cross-section of the

plume, an "equivalent admittance", Yeq' per unit length may

be computed as follows:

Yeq = S o dA

where a is the value of the conductivity in the elementary

area dA at the cross-sectional surface S at any point along

the axis of the plume. Fig. 4.13 shows the variation of the

equivalent admittance along the plume. One notes that the

location of the peak and shoulder in the equivalent admittance

variation roughly correspond to the peak and shoulder in the

current on the plume.
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of the plume.
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CHAPTER V

CONCLUSION

In this work, we are concerned with developing an

approach for treating missiles with attached inhomogeneous

conducting exhaust plumes. In Chapter II, a discussion of

various approaches is presented and a detailed comparison of

the unimoment method and the surface integral equation

approach with a moment method solution has been given. It

has been found that for thin and layered inhomogeneities,

the surface integral equation approach is more efficient,

while the unimoment method is more efficient for highly

varying inhomogeneities and nearly circular objects. Since

the objective here was to model and study a composite missile

plume configuration wherein the axial length of the plume

is large compared to its radial dimension, the surface inte-

gral equation approach was adopted. A computer code was then

developed to compute currents induced on layered dielectric

bodies of revolution. The validity of the computer code was

then verified by comparing the computations with an eigen-

function formulation for concentric layered lossy dielectric

spheres. The surface integral equation procedure was next

ii
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extended to the missile-plume problem and a simple approach

for the numerical treatment of the missile/plume junction

was developed and validated.

The computations on the layered model of the inhomo-

geneous plume have yielded results which are in good agreement

with the surface impedance boundary condition approach used

in [17]. However, the surface impedance boundary condition

approach should be viewed with caution. This is becau3e the

assumed relationship between the electric and magnetic fields

is true only for uniformly illuminated cylindrical stuctures

and hence can be expedted to be reasonably valid in regions

only far away from the junction, while in the region around

the junction serious errors may result which might alter the

neighboring current distribution along the missile. Under

such circumstances, the layered model approach should yield

more accurate results. Cost of computations has precluded

a more detailed analysis of the short plume model. Based on

the good correspondence of the long plume model results ob-

tained here and the long plume model results obtained in [17],

it is believed that the currents on the missile under short

plume model conditions would be more strongly affected by the

presence of the plume.

In this work, the surface integral equation formula-

tions used involve both the electric and magnetic field

eqaations.
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As shown in Appendix A, these problems can also be formulated

in terms of the E-field alone or H-field equation alone or

as a combination of both the E and H field equations to

obtain a so-called combined field formulation. These ap-

proaches have been applied here only to homogeneous dielec-

tric cylinders. However, they may be extended easily to

three-dimensional bodies and may provid, useful alternative

approaches.

One worthwhile approach, which has not been considered

here in the evaluation of methods for treating the missile/

plume problem, is to couple an integral equation on the

missile and plume boundaries with a finite element or finite

difference solution of the fields in the inhomogeneous plume

region. Such an approach, which has so far not been carried

out, combines the best aspects of both the unimoment method

and the surface integral equation approach and should be

applicable to rather arbitrary shaped geometries and inhomo-

geneities. Furthermore, the approach also appears as an

attractive method for analyzing coupling through apertures

into the interior of missiles or other structures. In -uch

problems, the exterior region is formulated by a surface

integral equation, while the interior is formulated in terms

of the aopropriate wave equation. The two equations are

II
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then coupled at the aperture with the appropriate boundary

conditions.

-Io,
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APPENDIX A

SURFACE CURRENT FORMULATIONS FOR

DIELECTRIC SCATTERING PROBLEMS

Scattering by homogeneous dielectric bodies can be

formulated via the surface equivalence principle. Applica-

tion of thq boundary conditions leads to a set of four

integral equations involving the two unknown equivalent

surface currents j and M. However, under suitable conditions,

only two of the equations are sufficient to determine J and

M. Thus various combinations of these four equations

can be used, each combination leading to a different type

of formulation. Some of the more important choices are

described by Mautz and Harrington [10]. One common choice

of the combination leads to the so-called PMCHW formulation

described in [10]. Mautz and Harrington also point out that

the so-called MUeller formulation is related to the PMCHW

formulation in that both approaches are special cases of a

"combined field formulation." We consider here those com-

binations and further point out some features of combina-

tions other than those considered in [10]. For the sake of

f
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clarity and completeness, some of the material in [10] is

repeated here.

A.1 Surface Integral Equation Formulation

Fig. A.1 depicts the homogeneous scatterer illuminated

by an incident field (inc, linc). The body parameters are

denoted by (vd' Cd )' the fields inside, by (Ed$ Hd), The

body is immersed in a medium characterized by parameters

Ode , ). The straightforward application of the equivalence

principle leads to the exterior and interior equivalences

shown in Figs. A.2 and A.3 respectively. Equating to zero

the tangential components of the null fields appearing in

Figs. A.2 and A.3 leads to the following equations:

x Einc

-6 x HR(J, R) n - -inc (A.2)

e

x E-JM 0 ,(A.3)
d

f H(3 i) = 0, (A.4)
d

where Eit Hi are the electric and magnetic fields due to J

and M radiating in a medium (i' ci ) and + indicates
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s ss

Id- (E H

(Ud E d) le ,c.

04, 
(iic' 0wnc)

Figure A.1. A homogeneous dielectric scatterer.

ee c
(-inc+i-Vnic+ s)

S

Figure A. 2. External equivalence.

if

0 d E d) 1o d

(EJ
(d' d) -M (0,0)

S

Figure A.3. Internal equivalence.
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evaluation of the fields just inside and outside S, respec-

tively. We note that (A.1) - (A.4) is a set of four equa-

tions in the two unknowns J and R. We need to reduce the

number of equations to two and this can be done by ap-

propriately selecting or combining the four equations in

various ways. Some of the various possible combinations of

(A.1) - (A.4) are as follows:

(a) -n x (R + aR) -inc (A.5)

-fl x (R- + 1I n) x inc (A.6)
e d

(b) - x - A x Rinc
(b) -n x e (A.7)

e

n -+ 0 ,(A.8)
d

Sx d  '-inc(c) -f x E f x E (A.9)
e

-A× + 0 (A.10)

(d) -ft x - - " -inc + a zinc (A.11)
e ie e, tan 'e tan

+n x -- - =(A.12)d + ~d d,tan
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where a and B are arbitrary complex constants. The first

type of combination in (a) above has been considered by

Mautz and Harrington [10]. As they have pointed out, the

choice of a 1 leads to the PMCHW formulation, while

the choice of a -- (6d/Ee), B - -(Pd/e ) leads to the Meller

formulation. We designate combination (b) as the H-field

formulation (HFIE), combination (c), the F-field formulation

(EFIE), while (d) is called the combined field formulation

(CFIE). It should be noted that the CFIE formulation pre-

sented here in (d) is different from the formulation (a)

above, which was al&o called a 'combined field formulation"

by Mautz and Harr:Lrgton [10]. Our CFIE formulation (d) is

actually a generalization of their so-called combined field

formulation for perfectly conducting scatterers (191. Note

that (d) combines two types of field quantities in each

equality, whereas (a) combines the same type of fields from

different regions. We consider in detail the combinations

(b)- Cd).

A.2 H-Field Formulation

The basic equations for this type of formulation are

x x ) = g x inc
e
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-t x 0(, R) - o.

Here, we have

R) i V x X (), (A.13)

i - d or e,

where Fi(M) is the electric vector potential due to the

magnetic current M in a medium characterized by the para-

meters ( , i), m(R) is the magnetic scalar potential due

to R in a medium characterized by the parameters (pI' E1 )

and AI(J) is the magnetic vector potential due to the elec-

tric current in a medium characterized by the parameters

('iw,). Expressing the notentials in terms of the integrals

over J and R, one obtains

e I e -ine (An4
(LUE + 2) + LHH , (A.14)

(Ld  I d+ L(d ) 0 (A.15)HE 2 + H

where

, I
I
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i IF
L = X VG ds
HE

S

Li _jUi RGids' - V (-icA))LHH f i _f (- ds ,)

S S

i = d,e,

wheLe Gi is the appropriate homogeneous Green's function

for the medium with the parameters (Vi' Ci). The notation

for the operators above is as follows: the first subscript

refers to the evaluation of the type of field, which in this

case is the H-field, while the second subscript refers to

the type of source, either electric (indicated by E), or

magnetic (indicated by H). The superscripts d and e refer

to the medium characterized by (d Cd) and (Ie, ce),
de

respectively. The factor 1/2, where I denotes the identity

operator, results from the evaluation of V x A on the sur-

face of the scatterer. One may now use (A.14) and (2 !')

to solve for J and R via moment method. An alternative ap-

proach would be to use (A.15) to express M ia terms of J as

d L - I I  dE)

(L HH) ( L H d (A.16)

r1
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Using (A.16) in (A.14), one then obtains

+ + L (LHH) - L' x (A.17)L2HE LHH ( He"

Equation (A.17) can be used to solve for J. Having deter-

mined J, R can then be obtained from (A.16). We point out

that by storing the matrix (L d) (! - L d ) , which is

computed in the process of determining J, one may compute

F directly once J has been determined.

It should be noted that expressing M in terms of 3,

as in (A.16), presupposes the existence of (LdH) -. How-

ever, it can be shown (see [10]) that Ld does not possess
HHoen p

an inverse at frequencies cortesponding to resonant fre-

quencies of a conducting cavity formed by the closed surface

S and filled with a material having electrical parameters

(%d Cd). One may, however, solve for 3 and R from (A.14)

and (A.15) simultan. )usly at such frequencies [10]. We

introduce here a terminology to describe these two ap-

proaches. Whenever T and W are simultaneously solved as in

(A.14) and (A.15), we call the approach the two current

formulation, while the use of (A.16) and (A.17), in which

one solves for one current at a time, is called the single

current formulation.
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A.3 E-Field Formulation

The basic equations in this approach are

-n x- = E l x Einc
e

-n x E+ . 0.

Ed

Here we have

E V1 V x i(R). (A.18)
ii

i = d or e.

Expressing the potentials in terms of the currents, we have

Le -in + L n (A.19)VEE 2EHJ

L (3) + L E (A.20)E 'E 2
E H j

where

i - Vff ('. j) " d.

EE = -JIji ff jG da' d p

S S

................................................................................- * 4) %lt4.A.*l '
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L (M) = XIM × VG, ds'Eli S

with the notations for the operators paralleling that of the

H-field formulation. Proceeding in a manner similar to the

H-field formulation, one obtains the single current E-field

formulation as

[ e + e (L -1 { d R] = inc

+ EH LE(LE) - LE 1  , (A.2l)

with

d (L -i [I - . (A.22)S-(EE) 12 -EH

As in the case of the H-field formulation, the single current

E-field formulation fails at the interior resonant cavity

frequencies. However, as before, one may adopt the two

current approach of solving for J and M simultaneously from

(A.19) and (A.20) at such frequencies.

A.4 Combined Field Formulation

The basic equations in this formulation are

- - - -inc + -inc

-n~~ - E nixH + -E i
e fe e,tan ne tan'

1e

I
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-X +-- =0
d Td d,tan

where Ie and Id are the characteristic impedances of the

exterior and interior medium respectively. Expressing the

fields in terms of the currents J and M, we obtain the

following equations:

A x Rinc + L incA.

e  tan

[ L d + B- LE [LH - L H]M 0, (A.24)
+ LHE +i Ei ] jcd H (A 2 3

where the operators are defined as before. A feature of

this formulation is that the fields have been combined in

a manner identical to that of the combined field formulation

for conducting bodies proposed by Mautz and Harrington [19].

This fact makes it relatively easy to incorporate a solution

procedure for both a dielectric object and a conducting

object within the same computer program. This can be easily

seen by noting that (A.23) becomes the combined field inte-

gral equation for a conducting scatterer [19], if one simply

retains only terms involving the electric current on the

!,I
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left hand side of the equation. Following [10], the

permissible values of a and 0 can be determined by con-

sidering for what values of a and 0 the homogeneous equa-

tions

A -

- x e- - Ee tan -0, (A.25)

-n x R+ + 0, (A.26)
nxd nd d ,tan

have only the trivial solution. The first step in doing

this is to show that Ee,tan' Hetn E+ and H
,tan d,tan d,tan

are all zero. For this, we consider first the complex

power flow into the interior of surface S in the equivalent

problem (A.25):

P E x H (-n-) dse f x

S

- ]* fn^ taf d

lIe,tanl ds, (A.27)

2
la/ni 1

4l . 4' a
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where (A.25) has been used in (A.27). We consider two cases:

(1) The medium with parameters p e' e is lossless.

Then Re(P e ) 0. But from (A.27), if Re(-) 0,e 
r

we note E = P - 0.e,tan e,tan

(2) The medium with parameters e , Ce is lossy. If

Re(P e ) 0, then by the uniqueness theorem [131,

E H 0 interior to S. If we assume Re(P ) >0,e e eP

we conclude E H 0. If Re(--) - 0,
etan e,tan

then Re(P) 0, and, as above, we obtain Eee e, tan

= ii - 0.
e,tan

The argument above is also valid for the perfect conductor

case and extends the allowable values of - beyond those
qe

cosidered in [191.

Next consider the complex power flow into the exterior

of S in the equivalent problem (A.26):
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d ff-+ d= IE d xH d  •fl ds

S

dff x ) d

S

ff E+ 2ds

d, tan s
S

( ff 2 g

SS (A.28)

where (A.26) has been used to obtain (A.28).

If Re(Pd) 0 0, then Ed " Hd 0 by the uniqueness

theorem [131. Thus, assume Re(Pd) > 0. Then if we choose

ReI-I > 0, we conclude E+ = H 0 from (A.28).
d,tan d,tan

Further, if ReI 0, we have Pe(P d 0 and from the

above argument Ed = Hd = 0.

To show next that E - H - +0
e,tan d,tan etan d,tan

implies J =H 0, we consider the exterior aquivalence shown

in Fig. A.4, wherein E = H = 0, but where we assume

e,tan e,tan

Ee) II outside the scatterer to be non-zero. Similarly for
e



179

-+

the interior equivalence shown in Fig. A.5, we have Ed,tan

Hda f 0, but we assume Ed' Hd interior to the scattererd, tand d

to be non-zero. Since the interior fields in Fig. A-4 are

zero, we may change the internal nedium to (d,Cd)(see Fig.

A.6). Similarly, in Fig. A.5, the exterior fields are zero

so that we may change the exterior medium to (pe,'e) (See

Fig. A.7). We note, however, that Figs. A.6 and A.7 depict

identical situations with regard to sources and media except

for the change in the sign of the sources. Hence, except

for the sign, the fields radiated by the currents should be

the same in both figures. Hence E ,He) = (EdHd) (0,0),

which implies, in turn, that

j n xHe
e

e

Thus we have shown that (A.25) and (A.26) possess only

trivial solutions and hence that the solutions of (A.23) and

(A.24) are unique.

One may present a circuit analogy which helps to explain

the conditions on a and B. Referring to Figs. A.8 !nd A.9,

Ye __ d ot
we may think of ye _ and Y = as surface impedances

s ne s nd



(too A,) in (0,10)

?igure A.4. Exteflor cquivn1ence 17igure A.'. Interior equivale-
wiLh a ;uned non-zero with assumed non-i,: ;",i
fielsi in the exterior fieldn in the
re iinterior region.

((eta

:'gure A.6. Exterior equivalence Figure A.7. Interior equivlct 'e
with interior medium with exterior -diim
parameters (Ij d* £d). parameters (U', iu).
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and (A.25) and (A.26) as surface impedance boundary condi-

tions. The problem of determining whether or not there

exist non-trivial solutions to (A.25) and (A.25) is thus

Wone of deciding whether or not the internal or external

regions can support a resonance when the region is bounded

e d
by the surface impedance Ye or Y, respectively. Fori s Ys

example, in the external resonance problem, since there is

always some loss due to radiation, then if the surface is

e
reactive or has a small loss (Re(Y ) > 0), there can be no

resonances. For the internal problem, if the medium is

lossless, then no resonances are possible if Re(Ye) 0 0,
e8

since the surface is either lossy (Re(Y ) > 0) and therefore
5

the fields are damped, or supplies power to the interior

region (Re(Y ) < 0) and therefore tte fields grow with time

since there is no corresponding absorpcion mechanism. In

the lossy case, however, we may not have internal resonances

if Re(Y ) > 0 because of internal and surface losses.
A s

A.5 Application of Various Surface Integral Formulations

to TM Scattering by Dielectric Cylinders

To illustrate some of the foregoing observations, we

use the method of moments with some of the various formula-

tiuns discussed here to solve scattering from a homogeneous

dielectric cylinder excited in the TM polarization. Assuming
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A
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that the axis of the cylinder is along the z-direction (Fig.

A. 10), we have

2 J j z (A.29)

M - M T (A.30). T

We note also that V' • - 0, ,since .the cylinrde.r is infinite

in the z-direction. The various operators can now be writ-

ten as

LE (f) - f ( 2 ) (kIfr-P'I) dc' (A.31)
EE 4 0

C

Lt ( _L) + H0 ) f M RH(k, I) dc', (A.32)

C

a2) (2)
L (J) H ( ' dc', (A.33)
HiE C _ Hn o

LiHM f MF-H (k15-5I) dc'
C

f RM1 H (i2)(kiP-5'I)+w~ a dc' (A.34)

C i



185

y

..inc
z

Figare A.10. Geometry of a homogeneous dielectric
cylindrical scatterer.



186

l (2) k l _ ,i
where the two dimensional Green's function 1 o4j o

for the medium with parameters O1i,6i ) has been used, and

ki 2 (- d or e. H Cx) is the Hankel's function
i = ii 0

of second kind and zero order, p and 'correspond to field

and source points, respectively.

In order to numerically approximate these operators,

we divide the contour of the cylinder into a number of

straight-line segments as shown in Fig. A.11. Pulse func-

tion basis sets are used to represent each of the currents

over the subdomains. Thus the current is expanded as

Nz(t) I j nPn(t) (A.35a)

n-l

N

Mt)- n(t) , (A.35b)
nl

where

It_ t <tn+

Pn(t) ( -A.36)

0, otherwise

and t is the arc length along the cylinder contour. Using

(A.35), the vecLor potential contributions in (A.31) - (A.34)
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NN

Figure A.11. Linear segmentation of the cross-section
of the cylinder.
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can be computed. In order to compute the scalar potential,

we use a scheme siriilar to that of Glisson [11], wherein a

pulse representation of the charge is derived from a finite

difference approximation of the continuity equation. Thus

we have

Pm(t) 4 - j Mn n-ip (t) , (A.37)
n --1

where the charge pulses are defined as

, t_ t < t
pnh(t)  4 -- - n (A.38)

0, otherwise

A point matching testing procedure Is used to evaluate the

operators at the center of current pulses. The gradient

term in (A.34) is evaluated by a finite differencing pro-

cedure as in [11]. By defining the "total" arc points, t n

of the contour to be at possible bends, the fields wili

always be matched away from points wherein fields may be

singular. With the above expansion and testing procedures,

, i the various operators may be approximated as follows;
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t+ 
0

2 r.

[LI { I ( t. + (1 [I n(t -t

n+h n

-t + 1-in~(t -t m nn

t h nnh n

1 (2)n-

( t+

tn h k R 2 (k I m P' nf, p - ' dc',

[L HE'rn o
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t

t

1+ li 21 ( 0 ' 1 m

+ t 2 n-1f o

H (2 )(k I0i n- dc'

[L I -
-1

- i mn t I(2)2)-(ki

+~ ((k + A+i)

t

o (kI Pr-)-P~ i)] c'

1 2 3 4 5 6

where

[C1 -~m [" ( - y1  i
2 ( t " - ,

C,~ [P (In+ t n]

c I t In nf - 'l t [ i In n(t ltfl)
2 2 I n t n++ --

- n+ ~

t in (t t

It+ _ 2+k n3+C 5 + 6 , m-
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t
n

C3  WI 0A f (2)(kI P1 dc'

tn-i

t

n+ H 2 (k p - ' ) dc'
C4  4wV An  on'

n

-~ 1 (1- . -ykil + 1
S1 2 Ii

!c5" 4wjji  Ir 2 2)rp o  2

I 2 .k,) ___n+l

C6  (1 - in + ( in)6 4U' i  7T 2 21wp ° 2

Computer program subroutines for the evaluation of each

of the operators LEE, LEH, LHE and LHH were written and

combined in the appropriate manner depending on the type of

formulation used. In Fig. A.12 is shown the currents on a

circular cylinder as found by the various methods. Also

shown is the exact eigenfunction solution. Fig. A.13

depicts the currents on a square cylinder of side 2a. Since

the single current formulation leads to erroneous results

at the resonant frequencies of the interior region, a plot

of the determinant of the moment matrix vs. ka is shown in

Fig. A.14. We note that both E and H types of formulations

indicate a sharp dip in the value of the determinant at the
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resonant frequencies, which are the cut off frequencies for

modes of the square waveguide filled with a dielectric with

r - 2.56. The combined field formulation when solved by

the single current approach, also shows the resonance effect.

This is because the operators on J and M, which otherwise

could be used to express J in terms of R or vice versa, do

not possess an inverse at these resonant frequencies. How-

ever, when one solves (A.23) and (A.24) simultaneously one

V avoids this difficulty as shown by the plot of the deter-Iminant of the CFIE matrix.

i

K!

I.
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