AD=A073 133 COMMAND AND CONTROL TECHNICAL CENTER WASHINGTON DC F/6 9/2
WORLDWIDE MILITARY COMMAND AND CONTROL SYSTEM (WWMCCS). H=6000 ==ETC(U)
SEP 78 B M WALLACK: G H GERO

UNCLASSIFIED CCTC=TM=180=78=VoL=3

i 'i COMMAND AND CONTROL TECHNICAL CENTER

g ‘ /(I/\LTechnical){emcipAwdm T™M 180-78

L‘szylisep!-iizinn7s)

@) 11c |

H-6000 TUNING GUIDE4

I

Voﬁi_lgme III,

(29fcere-T 1g8-78-VOL-3 |

—.

Worldwide Mi lita
System (WWMCCS)
Volume IIT,
Procedures,

ry Command and Conﬂttol
ol H<6000 Tuning Guide,
Response Time Analysis

'\Jé,\f’ Barey M Jwatiac K

Cq.. CY ‘é;"

MER L

OJECT PE NEL
Eomyn{liflach
ARRY M. CK
GEORGE H. GERO JR.
CCTC/CPE/C702
Rm BE685, The Pentagon
Washington, D.C. 20301

AV - 692-2725
COMM - 697-2725

DISTRIBUTION STATEMENT A

Approved for public release;
Distribution Unlimited

226 <

Ho9 5%

Fok TIPTON P. MOTT-SMITH
Colonel, USAF
Deputy Director,

Computer Services

Copies of this document may be obtained from the Defense Documentation
Center, Cameron Station, Alexandria, Virginia 22314,

79 07

h g

ap,
24 U

RIS

BRI\ =~ o
W

e

Sl

$

2
*

£
#%
3
3

PREFACE

This report is based on detailed analysis of a large amount of
technical information. The results address procedures for the analysis
of batch turnaround time and GCOS Time Sharing System response time in
World Wide Military Command and Control Systems (WWMCCS). Because of
the complexity of the analysis procedures and their dependence on the
WWMCCS workloads and operational environments, generalizing the pro-
cedures beyond the environment described or extracting conclusions
without their respective qualifying conditions is not possible.
Questions related to this report or to the possibility of extending the
stated conclusions or recommendations should be addressed to the
Computer Performance Evaluation Office, (C702), the Pentagon.

To gain a general understanding of the approach of the H-6000
Tuning Guide, Volume I Section II, Volume II Section II, and Volume III
Section 11 should be read. One or more of the hypothesis tests (search
procedures) in Volume II Sections IV-XII and Volume III Sections III-X
should also be read. Not all these tests have to be read at the start
of a tuning effort. Each should be read as it needs to be applied. To
start a tuning effort, Volume I should be read and applied. The pro-
cedure for analysis of batch turnaround time begins in Volume II
Section III. The procedure for analysis of Time Sharing response time
begins in Volume III Section II.

The H-6000 Tuning Guide has never been tested by a novice in
performance evaluation, although field tests have been conducted by
FEDSIM personnel. For this reason, it remains a preliminary version.

Accession For

ACKNOWLEDGMENT

This is to acknowledge the time and effort of
Dr. John Peterson of FEDSIM in the development of the
H-6000 Tuning Guide.

u
S vy

o

II.

III.

CONTENTS

Section

PRBFACE .] . . L] . . L] [} . L] . L] . L] . (] . .
ACKNOWIIEDGMENT e o o o e o e e o 8 e s e e o

A N e e

INTRODUCTION ccccccccccsccsccccccccscncsnsasse
A. BACKGROUND .:cccccccccovscncscoconcscnscsns
B. PROJECT OBJECTIVE .cccceccoccccccssnnnsnss
C. CONTENTS OF THE GUIDE .c.ccccecccccscsccscs
SEARCH PROCEDURES ..cccccccccccccccscncncsscse
A. THE TSS RESPONSE TIME MODEL ..cccveccoscacs
B. TSS RESPONSE TIME ANALYSIS PROCEDURES
C. CONSTRAINTS TO THE SEARCH PROCEDURES
SUBSYSTEM CPU TIME SEARCH PROCEDUREcc00s..
A. PROCEDURE SUMMARY .ccccceccccccccscscsccscs

B. DETERMINE SUBSYSTEMS WITH UNACCEPTABLE
RESPONSE ® 9 0 0 0 0 00 00 0000 PP e TP e e NN

C. DETERMINE DOMINANT SUBSTATES OF SUBSYSTEM
CPU TIMB ® . 0 80 00000 00 P S PO L O SNBSS

D. ADJUST SUBSYSTEM DISPATCH PARAMETERS
E. REDUCE CPU DEMAND AND/OR INCREASE CPU

PmR ® 0 5000000000000 0L 000 LOLOGNIOGBLLIEBOLSLEELES

iv

229<

Page
ii

iii

® W W e

15
16
16

19

21
23

25

Sl i o

i it

Section .
IV. TSS EXECUTIVE CPU TIME -SEARCH PROCEDURE

An PROCEDURE stY @ e e v e e e e 0B 000000000

B. ADJUST SUBSYSTEM DISPATCH LENGTH
C. ADJUST WAIT TIME PERIODSccccccceenee
D. INVESTIGATE SSA MODULE RESIDENCE
E. INVESTIGATE I/O QUEUE SPACE DENIALS
F. REDUCE DEMAND FOR EXECUTIVE SERVICES
V. TSS WAIT FOR CPU TIME SEARCH PROCEDURE

A« PROCEDURE SUMMARY ..ccccecovccssscscssnsnne

INVESTIGATE TSS PRIORITY ..cccccccocccccns

C. TSS DISPATCH LENGTHcccc0

INVESTIGATE

D. INVESTIGATE PRIORITY B DISPATCH BLOCKING .

E. INVESTIGATE SSA MODULE RESIDENCEccc..

P. IWESTIGATE I/o QUEUE SPACE ® & 0 00 0088000 e

G. INVESTIGATE LINE SERVICE INTERVAL .cccccee

H. INVESTIGATE INTERMITTENT PROBLEMS

DISK I/O TIME SEARCH PROCEDURE .:ccccecccccces

AO PRwEDURE sumny ® 6 9 0 0 0 00PN ENENS NS

B. DETERMINE LOCATION OF TSS WORK FILES

C. EXECUTE BATCH VOLUME TESTS ...cccccecccccs

D. INVESTIGATE I/O QUEUE SPACEccccccvncs

E. REDUCE I/O DMND U B B B B B

e ow,-‘ﬂ:“f’"’ BN i, By i el 5 e
-

Page
28
28
28
30
30
32
32
33
33

36
37

40
40

41

42

42
44

44

46

47

48
49

el s e e e o b W—m - . .
|
|
i

4 ‘? g

4 ¥ |

i - Section Page i
i VII. MEMORY WAIT TIME SEARCH PROCEDURE ...e.evvnnon 51 %
3 A. PROCEDURE SUMMARY . :sosvivesonsnesansosnne 51 ?
B. INVESTIGATE SWAPPING PROBLEMco..... 54 |
C. INCREASE TSS MEMORY SIZE ..u.vevveevennnnn 58 i
D. ADJUST MEMORY PRIORITIES «vveevnneeennnnnn 69 ?
E. REDUCE MEMORY DEMANDccovvvoeeocccnns 74 ;
VIII. GWAKE WAIT TIME SEARCH PROCEDUREe..cce.. 76 .
A. PROCEDURE SUMMARY «.vveveeveennncnnnnnnnns 76 ;
‘ B. ANARYZE CWAKE TIME ..occcvucscobncnnsasnss 76 :
% G UOENG R i i asa s e e s ke 78 j
§ IX. OUTPUT WAIT TIME SEARCH PROCEDURE «.cceveeeons 80
% A. PROCEDURE SUMMARYcecoceesoccccsncacss 30
B. INVESTIGATE USER ERRORS ..c.veevnvcncencen 82
, C. INVESTIGATE I/O QUEUE SPACE «evvveencanann 84
‘; D. INVESTIGATE OUTPUT VOLUME «.cvevvecconnenn 84
EI 4 E. INVESTIGATE POSSIBLE DATANET DELAYS 85
E X. NON-TSS SERVICE WAIT TIME SEARCH PROCEDURE ... 87
A. PROCEDURE SUMMARYoceneeneennnnannnns
B. ISOLATE TYPE OF NON=TSS PROCESS «...ceeven
C. FILE MANAGEMENT SYSTEM PROCESSES
D. GCOS INTERROGATION PROCESSES «.eveevecenses
B. LINE LENGTH PROCESS ..ccovscescavsevausains

3
|
i
i
L 1

Section
F.
G.
H.

DISTRIBUTION

DD FORM 1473

SPECIAL BATCH PROCESS

NORMAL BATCH PROCESS

@0 e e vo 00000 s

CONSOLE INTERACTION PROCESS «.vvveeeens

@ e e 0000000 000000000

. L

e e 0 e *0 0 v e o000

. *

NP TSRS S P SCPSCRRET W NS R

T TRy

H
i

Figure
II-1
11-2
II-3
II-4

III-1
III-2
Iv-1
V-1
V-2
VI-1
VII-1
VII-2

VII-3

VIII-1

IX-1

ILLUSTRATIONS

Page
TSS Response Time MOdelccceeeeecccnceces 4
TSS Response Time Model States Example 6
TSS Response Time Analysis SUMMAXY e.ceececeee 9
INttin) Data FOEM iiicisdinnalDasosnsnnsvinans 11
Subsystem CPU Time Search Procedure 17
Subsystem CPU Time Search FOXmcccccceseee 18
TSS Executive CPU Time Search Procedure 29
TSS Wait for CPU Time Search Procedure 34
7SS Wait for CPU Time Search FOrMc...... 35
Disk I/0 Time Search Procedureccceeeeeee 45
Memory Wait Time Search Procedure 52
Memory Wait Time SearcCh FOIMccceveeecees 55
Sample Calculatian?bf the Percentage Less Than
STABED cevcenvsvissnvsvassessnvdvicssossas v 62
GWAKE Wait Time Search Procedurececeeee 77
Output Wait Time Search Procedurecccceee 81

Output Wait Time Search FOIM .ccceccccccccacce

Non-TSS Service Wait Time Search Procedure ...

Non-TSS Service Wait Time Search FOrm .c.cccee

_‘ TABLES {
" NuphBer Page :]
,z II-1 Search Procedure SeCtiOnSceeeecscsccscss 13 ;
_ E
L III-1 Reports Used in the Subsystem CPU Time >
% search Procedure ® ® ® 9 9 0 4 00 P PO O OO P e e e 19
IV-1 Intervals Between Executive Routine E
ExecutionS'.ooo-o..oo.n-oonoo-..o...--ooc-oo.o 31 g 1
V-1 Reports Used in the TSS Wait for CPU Time i Q
Search Procedure ® 9 © 2 0 O 4 00 0 9 P S OO OSSO eSS e e 36 :
t
| E
VI-1 Reports Used in the Disk I/O Time Search i i
Procedure ® ® ® 8 0 0 & 0 0 0 P PSP 0O O PO OB OO0 00t P e e e e 44 % ,‘3
VI-2 Maximum TSS Users versus Number of SSA's 49
2 VII-1 Reports Used in the Memory Wait Time Search
‘~ Procedure ® © ® 9 0 9 0 0 OO OSSP O SN OO SISO e 0o 54
- VII-2 Urgent User Classification Parameters 64
3 VII-3 Other TSS Memory Size Parametersceceeecee 68

VII-4 Memory Wait Periods Required for Urgent User
Status ® © 0 9 0 0 0 0 0 O 00 O PG S W OO S OSSN 73

IX-1 Reports Used in the Output Wait Time Search
Procedure ® © 9 0 0 0 0 00 P PO N OO P PO SO e eSS eSS e 82 1

X-1 Non-TSS Service Wait Time Search Procedure
sections ..O....I....ll..".‘....l..‘l....l.... 92

\) ABSTRACT

The Federal Computer Performance Evaluation and Simulation
Center (FEDSIM) has developed a document for WWMCCS instal-
lations that can be used by site personnel to analyze the
performance characteristics of their Honeywell 6000 (H-6000)
computer systems. This document, called an H-6000 Tuning

Guide, incorporates detailed analysis procedures that guide
the analyst in applying specific techniques to improve
system performance.

The four vol
‘precisely struc
of the perfo

s of the H-6000 Tuning Guide present a
red system of procedures for the analysis
nce of WWMCCS computer services and systems:

Volume I “WWMCCS System Tuning Process. The first volume
/ describes the overall structure and application
vy of the Tuning Guide. It explains the approach,
/ procedures, and processes taken by the Tuning
/// Guide to provide analyses of batch job turn-

around time and GCOS Time Sharing System (TSS)
response time.

VoAume II Batch Turnaround Time Analysis Procedures. The
second volume presents a set of procedures for
analysis of batch job turnaround time. It first
presents a model of the processes and queue
points associated with batch job turnaround time

and then describes nine tests that use the model
\\‘_____~__ES direct the analysis of turnaround time.
Volume III TSS Response Time Analysis Procedures+s The
third volume serves the same general purpose and
has the same general structure as Volume II.
Volume III presents a complete set of procedures
for investigating the response time of GCOS Time
Sharing System (TSS) interactions. The volume
first presents a model of the processes and
queue points associated with TSS response tinme

and then describes eight tests to direct an
‘analysis of TSS response time.‘L_\\\

Volume IV . H-6000 Tuning Guide Appendices. The fourth

volume provigés the appendices referenced by the
other volumes of the Tuning Guide. The volume
contains detailed descriptions of report formats
and other referenced data.

. cubibindiad Bt i $ A st

e

'SECTION T. INTRODUCTION

A. BACKGROUND

The Office of the Joint Chiefs of Staff (JCS) has directed
that the Command and Control Technical Center (CCTC) develop
a computer performance analysis capability to support the
World Wide Military Command and Control System (WWMCCS).

CCTC, acting at the direction of the JCS, specified that
WWMCCS ADP managers should apply various computer performance
evaluation (CPE) tools and techniques to the systems now
running at their sites. CCTC also defined the need to
instruct WWMCCS technical personnel in the selection and
application of tnhe CPE tools and techniques appropriate to
individual WWMCCS ADP sites.

CCTC asked FEDSIM to plan and implement a document that
could be employed by WWMCCS ADP personnel to diagnose problems
and to propose changes that would improve the performance of
WWMCCS ADP systems.

B. PROJECT OBJECTIVE

The objective of the resulting FEDSIM project was to
provide all WWMCCS installations with a document that could
be used by staff personnel to analyze the performance
characteristics of their ADP systems. This document, called
an H-6000 Tuning Guide, was to contain sets of analysis
procedures to improve system performance.

The product of the completed FEDSIM project is a four-
volume H-6000 Tuning Guide (referred to hereafter as the
Guide). The Guide volumes present a precisely structured
system of procedures for the analysis of WWMCCS computer
services and systems. The titles of the four volumes are:
(1) WWMCCS System Tuning Process, (2) Batch Turnaround Time
Analysis Procedures, (3) TSS Response Time Analysis Pro-
cedures, and (4) H-6000 Tuning Guide Appendices.

C. CONTENTS OF THE GUIDE

Computer jobs may be submittea by WWMCCS users to run as
either batch jobs or as interactive jobs. Batch jobs, as
processed by the WWMCCS systems, may be submitted by users
at the site or may be initiated via a process called "job

——— aunuumnwu--wln!

e e

Y ORRE,

<. ox a3

R e o ——— P S S — SRS —— < OSSR RS Y —

spawning" through the WWMCCS Time Sharing System. Inter-
active jobs addressed by the Guide are the subsystems that

& { run under control of the WWMCCS Time Sharing System. The

: ' performance of both batch and interactive jobs can be
measured and analyzed with reference to the amount of

elapsed time that the system takes to process them. Batch

job elapsed processing time is called batch turnaround time.
Interactive job elapsed processing time is called TSS response
time.

s L it s aasihiiatiaih A0

Volume III of -the Guide presents an integrated set of
procedures for investigating TSS .response time. The volume
first presents a model of the processes and wait states
associated with TSS response times and then describes an
overall plan and eight search procedures that direct an
analysis of TSS response time. Both the model and the
procedures are specifically designed for the WWMCCS system

" environment.

o Bt b 854

In order to use the procedures in this Guide it will be
necessary for the analyst to be familiar with the Generalized
Monitor Facility Time Sharing Tuning Guide - Data Collector,
the TSTAT Monitor and the TSS Response Time Analysis System.

The Generalized Monitor Facility is the tool used to
collect the data needed by this guide. Without that data,
the procedures described in this guide cannot be executed.
All information for running the data collector can be
found in the Generalized Monitoring Facility - Users Manual
- CSM UM 246~-78 1 April 78 % appendix J of the Tuning Guide
Document.)

% The TSS Response Time Analysis System is the program
2 used to reduce the data tapes and produce all reports

8 referenced in this guide. The format of all reports and
an explanation of the reports is contained in appendix H
of the Tuning Guide Document. A description of the run-
time procedures for operating the data reduction program
can be found in Appendix J of the Tuning Guide Document.

s The TSTAT Monitor is an independent monitor which
b gathers statistics from within internal tables of the Time »

5 Sharing Subsystem, formats these statistics and prints
out a report. This program is completely described in
Appendix K of the Tuning Guide Document.

2

:aﬁl7h=.z5;“.

SECTION II. SEARCH PROCEDURES

A. THE TSS RESPONSE TIME MODEL

The Search Procedures are based on the TSS Response Time
Model (Figure II-1l). This model defines TSS response time
and divides it into waits and services associated with CPU
time, disk input-output (I/O) time, memory, and special
processes. The model subdivides each of these states into
two or more substates. The amounts of response time asso-
ciated with each state and substate indicate areas where
response time may be improved.

1. The Definition of Response Time

The TSS Response Time Model defines TSS response time as
starting with TSS's receipt of a user command, and ending
with TSS's request for further input. Front-end processing
time (before TSS receives the command and after TSS requests
further input) is not included because it cannot be easily
and_reliably measured. Despite their exclusion from the
model, excessively long delays through front-end processing
can be indicated by the analysis procedures (see Section
IX).

Many models of TSS response time define the end of TSS
response time as the first output sent to the user. The
model of TSS response time used in this volume includes all
outputs to the user until TSS requests further input. This
extra inclusion has the following advantages:

a. It is more realistic for certain important commands.
For example, the CARDIN "RUN" command results in two
separate outputs to the user. Frequently, there is a
significant pause between the two outputs. Only the
second output frees the user to enter another command.

b. This definition includes ail time during which TSS
is actively using and/or reserving system resources on
behalf of the user.

c. Certain conditions, such as terminals too slow for
the application, can best be identified by including the
time between the first output and the request for input.

e ciciiog

e i i Gt T TRV e T = T T

1-11 {NOIA

8830014 SS1-UON
Inayng [ewWION

3INaAxIng [eyoads pad1oa demas pue peo]
AV TewION uoyjedy1ddy
s3feM 1ejoads ITen KXIowen 071 ¥s1d

TAJOW dWIL ASNO4SaAY SSL

ndD wa3isdsqns i1se3w3Isqns
ndd 103 91qybyIa ;893938
<« {
swjlL bujsseo01d ssi (NI z

3wyl buyssadoxq jFaueleq (I3

Nndd SS1-uoN
ndD @Ay3INdax3z
ndD walsisqns 13y3o

o

be :

swtl 9suodsay

ATIIATALALT ARLLAUARALAEADESEATARLARLAL A LA L E L EEEEL LA LA LALAL AL L LA L LLLLLLY
LULLLL 0Lt I g gy I L i Qg faaisiefsstisfts

|
A\

buydAy dsuodsady 3IsSITd :
30 pua S3ATaoay 198N
juag Indug 3uas 1LNoYaY

aey3zang 103 1NO¥AD Indang 38174

\\\i\\\\\\\\\\\\\\\\\\\\n 19uy] swyl esuodsay

Isanbay asuodsay
SsaAya03y SSIL s3isonbay aasn

T e

e e

d. All time spent by users at terminals is included in
one of two classifications: time spent waiting for user
action (user think time and user typing time) and time
spent waiting for system action (response time). There
is no time that fits in both or neither category.

2. Model States

The model divides each TSS response into several different
time segments. No time segment overlaps another time segment
for the same user, and the sum of all the time segments for
a particular response is equal to the total elapsed TSS
response time. A time segment may (and usually does) overlap
time segments for other users. During each time segment,
the user involved is considered to be in one of four states:
Eligible for CPU, Disk I/0, Memory Wait, and Special Waits.
While the user is waiting for or using the CPU, he is con-
sidered to be in the Eligible for CPU state. While he is
waiting for or using disk read or write capabilities, he is
in the Disk I/O state. While he ,waits for memory to become -
available, he is in the Memory Wait state. Time segments
not associated with CPU, Disk I/0O, or Memory resources are
considered part of the Special Waits state.

Each response time is considered separately. The state
to which a time segment (and consequently a user during that
time segment) belongs does not depend directly on the states
of other users. The state of the user depends only on the
type of delays being incurred by that user. During simul-
taneous responses, several states may be in effect at the
same time, each state associated with a different user and
response. The model does not attempt to define any states
for TSS as a whole. The states merely classify what each
user is trying to do.

Figure II-2 gives an example of simultaneous states.
Two users enter commands and receive responses during the
same second. The first user waits for memory (A to B), is
swapped in from disk (B to C), and uses some CPU time (C to
D). Then TSS requests more input (at D). The second enters
his command a little sooner (at E). He is already in memory,
SO nO memory wait or swap-in is involved. He uses some CPU
time (E to F), reads data from disk (F to G), and uses some
more CPU time (G to H). Then TSS requests more input (at H).
Note that both similar and dissimilar states overlap in
time. Even on a machine with only one CPU, two users may be
in the Eligible for CPU state at the same time because one
or both may be waiting for the CPU. During the one second

.

¢-1II INOId

ATAWYXE SALVLS TAAOW AWIL IASNOIS SSL

Je8) puodesg

, . ® ® @ ®
4
oTIPI we3skeqng ndd 103 e1qyby1a 0/1 ¥sia ndd 303 e1qybyia Vv
O
3 *99s SZ°0 ‘098 §T°0 *o8s ST°0 *o8g §T°0 w

aes() 03 Jusg S8 seyowsy puvmso)

u aesn 3Isxja
E] @ ® ®
_ o1pI weisisqng ndd 203 e1qybrIa 0/1 %sya

i ‘098 0Z°0 *oeg 0Z°0 *298 0Z°0

e pucoes euo

T

E———— - - - %

N k=l

r s i ol e o 5 " - e AT (TR TR0 T

R ————————— = - - R—

of wall clock time, the model recognized 1.35 seconds of
response time: 0.70 seconds of Eligible for CPU time, 0.45
seconds of Disk I/0O time, and 0.20 seconds of Memory Wait
time. The time (i.e., user think time) that is not con-
sidered part of response time is reported by the TSS Response
Time Analysis System as if it were a fifth state called
Subsystem Idle time. 1In Figure II-2, 0.65 seconds of Sub-
system Idle time occurred.

The Eligible for CPU state is divided into four sub- g
states: Subsystem CPU, Other Subsystem CPU, Executive CPU, {
and Non-TSS Process CPU. A user is in the Subsystem CPU i
substate when he is actually using a CPU. He is in the
Other Subsystem CPU substate when he is waiting for a CPU
and another user is using a CPU. If the TSS executive is
using a CPU, all users in the Eligible for CPU state are in
the Executive CPU substate. If the TSS executive is not
using a CPU and no user is using a CPU, all users in the
Eligible for CPU state are in the Non-TSS CPU substate.
These substates help isolate reasons for long CPU service
times.

The Disk I/0 state is divided into two substates: (1)
Application and (2) Load and Swap. When a disk read or
write is being used to swap the user's subsystem in or out
of memory, the user is in the Load and Swap substate. All
other disk accesses fall into the Application substate.
These two substates indicate whether long disk service times
are related only to TSS executive files (swap files and
program files) or whether they are part of a more general
disk service time problem.

e i pe—r——

The Memory Wait state is divided into two substates:
Normal and Forced. A user is in the Forced substate when-
ever he has just been "force swapped", i.e., swapped because
he was in memory too long. All other waits for memory are
treated as Normal waits. Separating Normal from Forced
memory waits is important, because Forced waits tend to be
longer than Normal waits and because long Forced waits may
be tolerated at some sites as a means of penalizing those
commands that use memory for long periods.

o U . Y

The Special Waits state is divided into four substates:
GWAKE, Special Output, Normal Output, and Non-TSS Process.
Those users waiting by their own request (having executed a
DRL GWAKE) are considered to be in the GWAKE substate.

Those users waiting for the end of certain executive outputs
(such as error messages) are in the Special Output substate.
Those users waiting for their own output to finish are in

RIEER B AR s T e

i Ko

i

C;‘_‘

the Normal Output substate. Those users waiting for some
task to be performed outside TSS are in the Non-TSS Process
substate. These substates are not closely related to one
another, and their division is necessary to separate indi-
cators of vastly different problems.

3. Use of the Model by the TSS Response Time Analysis
Procedures

The TSS Response Time Model provides the framework on
which the TSS Response Time Analysis, Procedures are based.
The model's definition of response time is assumed by the
procedures. Model states and substates with high percent-
ages of response time are chosen for investigation and
possible tuning. These states represent general areas that
are then investigated by one or more of the procedures.

Comparing the total time spent in each substate to the
total response time allows an analyst to estimate improve-
ments in response that can be achieved by tuning various
parts of TSS or the host system. The model cannot predict
the results of a tuning effort, but applied properly, it can
provide approximate bounds for TSS response time improve-
ment.

B. TSS RESPONSE TIME ANALYSIS PROCEDURES

The procedures in the following section begin the
analysis of TSS response time. Figure II-3 summarizes the
analysis. The procedures in this section (except Section
II.B.1) should not be applied until the problem is defined,
the enviranment understood, and the current tuning objective
is formulated (see Volume I).

Section II.B.1 must be applied before the current tuning
objective can be formulated; it discusses how to define
acceptable TSS response. A definition of acceptable TSS
response is assumed by many of the procedures ir this
Volume, and is necessary for their proper execution.

Section II.B.2 describes the method of gathering initial
data to start the analysis. Section II.B.3 describes how to
use the initial data to start further analysis.

Section II.B.1 (Define Acceptable TSS Response) covers
part of the activities discussed in Volume I, Sections III.C
(Understand Installation Service Objectives and Priorities)
and III.D (Specify Current Tuning Objective). Section
II.B.2 (Gather Initial Data) corresponds to Volume I Section

|
|
|
i

e

sl B it

P TCE VTIPS SO,

e i e

IR e v

it S LS e R e S < AL

IV.B (Run the Appropriate Analysis System). Section II.3.3
(Choose and Execute Search Procedures) corresponds to Volume
I Section IV.C (Evaluate Analyzer Output) and Section IV.D
(Follow Guide Test Procedures).

1. Define Acceptable TSS Response

Each WWMCCS site must develop its own definition of
satisfactory TSS response in order to use the TSS Response
Time Analysis Procedures. An analyst needs this definition
to decide whether to start a tuning effort, and he frequently
needs it to define.the tuning objective (for example, reduce
response time to site-defined acceptable level). The site
definition of acceptable response is frequently used in
the procedures to make investigation and tuning decisions.
If no well-thought out definition of acceptable response has
been made, no clear criteria will exist for making these
decisions. The resulting tuning effort may be disorganized
and blunted in purpose.

No standard definition of acceptable response time
exists, either inside or outside WWMCCS. A definition of
acceptable response depends both on the workload (e.g.,
trivial or lengthy commands) and on user requirements.

Since the goal of the TSS Response Time Analysis Procedures
is to help produce acceptable response, the site must
determine what is acceptable. An unrealistically optimistic
definition would necessitate expensive and/or time-consuming
measures to achieve that "acceptable response." A pessimistic
definition would keep site management from recognizing a
true response time problem. Defining acceptable response as
"all responses under X seconds" is also unlikely to be
satisfactory. Some commands involve much more work (I/O and
CPU time) than others. One possible definition is that

90% of the response times are below a specified value and
that the average response for all (or the longest 10%) is
below another specified value. A better definition might
involve different response limits for different commands --
X seconds for responses to the RUN command, Y seconds for
certain kinds of data base searches, etc. TSS response can
be checked with the TSS Response Time Buckets Report (known
to the TSS Executive as the TSS Response Time Histogram) of
the TSTAT monitor. It may also be checked with the TOTAL
line on the TSS Response by Subsystem Report of the TSS
Response Time Analysis System. If a site uses different
response limits for different workloads/commands, it may

be able to use the full TSS Response by Subsystem report to
check response. Each separate workload/command may use its
own set of subsystems. ©One of these reports should be used

3 LOCAL SITE VALUES

DEFINE ACCEPTAALE
RESFONSE

PERIODS OF BAD RESPONSE

TAPSED TDNE
/| 1» woDEL STATES
GATHER o]
/’ PERCENT STATE
INITIAL DATA ' VALUES
1

[
LARGE PEXCENT STATR VALUES

CHOOSE SUBSTATE
FOR FURTHER
INVESTIGATION

O .

/
SECTIONS III-X

EXECUTE SEARCE
PROCEDURES

ol R et ebtiae S I
.

e

TSS RESPONSE TIME
ANALYSIS SUMMARY

FIGURE II-3

9

e

R S ._v,—.vww-rp,-’w,-.—-evw

to measure the performance of the current system and to
compare it to the site's definition of acceptable response
time. The cost of a proposed tuning effort or change to the
system should be weighed against the possible improvement in
response.

A definition of acceptable TSS response time assumes a
definition of TSS response time. The type of workload may
dictate the definition that is best for a particular site.
Each system for reporting TSS response time assumes a
particular definition of TSS response time. The TSS Response
by Subsystem Report uses the definition of the TSS Response
Time Model discussed in Section II.A.l1 above. The TSS
Response Time Buckets Report uses a definition of TSS response
time that does not include any time after the first output
is sent to the user. The definition of TSS response time
used in the definition of acceptable response time must
agree with the site's perception of TSS response and with
the method of data collection (TSTAT monitor or TSS Response
Time Analysis System).

2. Gather Initial Data

If TSS response time is considered unsatisfactory, and
if the preliminary steps discussed in Volume I have been
taken, proceed to gather data using the TSS Response Time
Analysis System. Collect data only during periods which are
likely to experience poor TSS response. Verify that poor
TSS response did occur during data collection. If necessary,
do this by entering commands at a terminal and noting
acceptable and unacceptable responses. Use the data re-
duction START/STOP option to restrict the data reported to
periods in which poor TSS response was actually observed.
Continue the data collection for several days or longer, if
needed, to sample data from different types of TSS and batch
workload that exist during periods of poor response. Discard
data for periods of a few minutes or less.

Use the Initial Data form (Figure II-4) to record per-
tinent data from the Elapsed Time in Model States report
(Report 1) of the TSS Response Time Analysis System.

a. Record Dates and Times.

(1) Report Values. The Start Time field in the
upper right corner of the Elapsed Time in Model
States report records the date in MMDDYY format. It
also records the starting time in HHMM.ffff format,
where ffff represents a fraction of a minute in
decimal form.

e b i 2

P-II INOIJ

o

WiOd Wlva TVILINI

e g

,_!
|
‘:!

TR
e

(2) Form Entry. Enter the date and time in the
proper rows for each separate period of poor TSS
response. :

Record Period Length

(1) Report Value. The TSS Activity For field in
the upper right corner of the Elapsed Time in Model
States report records the number of seconds for
which TSS traces were received.

(2) Form Entry. Enter the value in the Length row
for each period of poor TSS response.

Record Subsystem CPU Percentage

(1) Report Value. The Percent States value in the
SS CPU row of the Elapsed Time in Model States
report represents the percentage of total terminal
time user subsystems were using a CPU. Total
terminal time is the sum of all time users spent at
a terminal connected to TSS during data collection.

(2) Form Entry. Enter the value in the Subsystem
CPU row for each reported time period.’

Record Other Percent States Values

(1) Report Values. The Percent States values for
the other substates below SS CPU represent the
percentages of terminal time spent in the various
substates of the TSS Response Time Model.

(2) Form Entries. Record the Percent States value
for each substate in the proper row of the form.
Record these values for each period reported. Note
that the Percent State values for the model states
(Eligible for CPU, SS Disk I/0, SS Memory Wait, and
Special Waits) are not recorded. These are simply
sums of the values for the substates.

Record the SS Idle Percent State Value

(1) Report Value. The Percent States value for SS
Idle represents the percentage of total terminal
time TSS was waiting for user input.

(2) Form Entry. Enter the value in the Subsystem
Idle row for each period reported.

12

it e ancndiae: i S it

é 3. Choose and Execute Search Procedures

a. Choose Search Procedures. Each substate of the TSS
Response Time Model is associated with one of the i

Search Procedures in Sections III through X of this
volume (see Table II-1l). Choosing a search procedure to
follow is the same as choosing a substate to inves- |
tigate. The substates to be investigated would usually : 3
be those associated with the largest percentages recorded
on the Initial Data form. If one substate shows the
highest percentage value for each time period, follow |
the search procedure associated with that substate. If |
a few substates always have the highest percentages, ?
follow the search procedure (s) associated with each of ;]
these substates. Following more than one procedure |
simultaneously may reduce the time and effort needed ?
for the study. Special attention should be given to
investigations or tuning steps proposed by more than
one of the search procedures being followed. These
investigation or tuning steps may reduce simultaneously 4
the time spent in two substates.

TABLE III-1.
SEARCH PROCEDURE SECTIONS ¥
RESPONSE TIME MODEL SEARCH PROCEDURE SECTION ;
SUBSTATE NUMBER TITLE]
Subsystem CPU Time II1 Subsystem CPU Time Search { :
Other Subsystem CPU Time Procedure |
Executive CPU Time v TSS Executive CPU Time Search
Procedure 4
: Non-TSS CPU Time V TSS Wait for CPU Time Search :
Procedure
. Application Disk I/0 Time VI Disk I/O Time Search Procedure
Ioad and Swap Disk I/0 Time

Normal Subsystem Memory Wait Time VII Memory Wait Time Search

Forced Subsystem Memory Wait Time Procedure
GWAKE Special Wait Time VIII GWAKE Wait Time Search
: Procedure
Special Output Wait Time IX Output Wait Time Search
Normal Output Wait Time Procedure 35

Non-TSS Process Wait Time X Non-TSS Service Wait Time %
Search Procedure 2

B o Bl) o

P

An analyst may want to modify his choice ot pro-
cedures somewhat according- to the following consider-
ations:

(1) Relatively small amounts of GWAKE time may be
important if they occur in subsystems which do not
normally use GWAKE's. In addition, some sites
occasionally show large amounts of system resources
consumed by status subsystems such as DJST. The
amount of resources consumed by these subsystems
can frequently be cut with little degradation of
service to the users. Execute the GWAKE Wait Time
Search Procedure to investigate these problems.

(2) Occasional long time periods spent in a sub-
state may warrant investigation even though the
percentage value for that substate is not high.
These occasional long time periods may cause
response to be erratic and thus unacceptable.
Identify occasional long time periods using the
Standard Deviation and Maximum Value columns of the
Elapsed Time in Model States report. Verify that
the occasional long time periods occur in all
periods of poor response. Execute the search
procedure associated with that substate, keeping in
mind that occasional long time periods are the
problem being investigated. For example, an
investigation of occasional long disk service times
would emphasize disk device errors and I/0O gqueue
space exhaustion, both of which could cause occa-
sional long service times without affecting all disk
service times.

(3) Long time periods spent in the Memory Wait
substates (Forced and Normal) may be the result of
bottlenecks elsewhere in TSS. Alleviating bottle-
.necks in CPU and disk service and in some types of
Non-TSS Process will cause subsystems to be in
memory for shorter periods and so will tend to lower
memory wait times. If other substates show percent-
ages almost as high as the memory wait substates, an
analyst may wish to investigate the non-memory
related substates first.

b. Execute Search Procedures. Execute the search
procedure (s) chosen above either singly or in parallel.
Follow any tuning steps recommended. Evaluate whether
the Tuning Objective has been met. This evaluation is
a separate step in the tuning effort described in
Volume I (see Volume I, Figure II-1l).

ti et s SIS

b

If the tuning ‘effort is to be continued, obtain
initial data and choose search procedures again. Only
if no tuning steps were taken and the workload has not
changed can the original initial data be used again.
Choose search procedures again, according to the per-

> e . i @ ki
e —————— T AR
5

3 centages recorded on the form. If the procedures chosen
| were previously executed, redundant steps may be skipped
i and different decision paths taken. Any tuning steps
x| made when the procedures were previously executed may
B | have seemingly unrelated influences on which decision

path to take. Care should be taken that changes
in the data are not overlooked.

C. CONSTRAINTS TO THE SEARCH PROCEDURES

1 f The procedures cannot cover every possible cause of poor
A 5 TSS response time. Including procedures to handle improbable
o cases is costly, time-consuming, and confusing to the analyst
| following the procedures. ‘

The procedures in this document are guidelines only. If
acceptable response cannot be achieved with them or if the
data fit none of the conditions treated, the analyst should
seek outside help.

Brackets (i.e., []) around a value or expression in the
text signal that the value or expression is suggested only.
These suggested values are used in the search procedures to
avoid vagueness about decision making; but, because these
values remain suggestions, they will not be correct in every
g case. If a situation does not seem to "fit" the assumptions,
: or if a decision value is nearly equal to the bracketed
4 expression, one of two actions may be expedient: (1) explore
J ‘ both logical paths leading from the decision in gquestion,
and/or (2) seek outside help.

Not all the parameter and system changes discussed are
; expected to significantly affect response time at most
! sites. These changes are included because they may signif-
{ icantly affect certain systems under certain workloads
: with certain sets of site parameter values. At any one *
site, many of the changes discussed may produce little
improvement to response. Therefore, the analyst should not
labor too long over one part of the procedure and neglect
parts that might be much more helpful.

e §

a4 3, il

BT N o S i i

SECTION III. SUBSYSTEM CPU TIME SEARCH PROCEDURE

The procedures for analyzing subsystem CPU time de-
scribed in this section should be used if response times are
unacceptable and if the TSS Response Time Analysis System
indicates that a major portion of response time is spent
in the Subsystem CPU or Other Subsystem CPU Substates.

A. PROCEDURE SUMMARY

A system with unacceptable TSS response time may achieve
acceptable response for most types of commands but achieve
unacceptable response for a few. The commands that achieve
unacceptable response may do so because certain dispatch
parameters discriminate against them. The Subsystem CPU
Time Search Procedure tries to adjust these parameters to
achieve acceptable response on all types of commands. This
adjustment usually will achieve success only if three
characteristics are present: (1) many of the unacceptable
responses are associated with a small number of subsystems,
(2) these subsystems spend a large percentage of time in the
Other Subsystem CPU substate, and (3) these subsystems have
certain characteristics in common, making it possible to
adjust the dispatch parameters in their favor.

Frequently, this adjustment will not be successful.
Reducing the amount of CPU time needed by the TSS workload
and/or increasing the CPU power available to TSS users are
more likely to help. Both of these solutions are discussed
later in this section. The dispatch parameter adjustment is
discussed first because it involves less cost and less
effort than the other two solutions.

The Subsystem CPU Time Search Procedure includes four
steps: (1) Determine Subsystems with Unacceptable Response,
(2) Determine Dominant Substates of Subsystem CPU Time (SS
CPU oy Other SS CPU), (3) Adjust Subsystem Dispatch Param=
eters, and (4) Reduce CPU Demand and/or Increase CPU Power.
Figure III-1 charts the procedure steps.

A form (see Figure III-2) is provided with this procedure

to guide and document the data collection. Several copies
of the form will be required for each analysis effort.

The reports used in the Subsystem CPU Time Search
Procedure are listed in Table III-l.

é
-%

CLASS OF sumsY

SITE CRITERIA g A8 A SURSYSYDNS
CHOOSE SUBSYSTEMS WITH SUBSYSTEMS ELIMINATE ALL
e PERCENT ASSOC. WITH PERCEWT
UNACCEPTAALEZ RESPONSE UNACCEPTABLE ‘s"u::,““ ASSOC. 308
RESPONSE T CLASS A)
CLASS A SUBSYSTEMS
” [E2P5E Tz v wooR]
- $
DETERMINE DOMINANT [CALCULATE RAT20, -
SUBSTATES OF OP SUBSYSTEM |
8 CPU TO OTHER PERCENT STATES
SUBSYSTEM CPU TIME pi g

CALCULATE RATIO
OF SUBSYSTEM

CPU TO OTHER [——

SUBSYSTEM CPU
(OVERALL)

CLASS A SUBSYS.

ELIMINATE SUB-
SYSTEMS WITH
RATIOS LOWER
THAN OVERALL

y

FAVOR CLASS A SUBSYSTEMS

FRIL. DISTRIB. OF
& CALCULATE
ADJUST SUBSYSTEM Do BT MEANS AND STND)
DISPATCE sgccm DEV. FOR ALL
PARAMETERS ERAILS SUBSYS. LEFT
VALUE IN CLASS A
ADJUST

NO ADJUSTMENTS HELP

REDUCE CPU DEMAMND
INCREASE CPU POMER

PARAMETERS

FIGURE III-1

SUBSYSTEM CPU TIME SEARCH PROCEDURE

sacad

Lol

———— e - o T—— T~ o m

.
! !
]
A
| sumsysTew cPu TIME SEARCH omw | | DATE: BRE - 1
; SUGGESTED
PO DOMI
SUBSYSTEMS WITH UNACCEPTABLE RESPONSE NANT SUBSTATE ot
NAME MEAN S OVER | \ THIS UBSYS' OTHER DISPATCH | NUMBER
mrouszlnmsaog Ss d CPU UBSYST e / j_x.nm'n DERAILS 3
f :
? E
!
l
; l
!
|
; !
! i
i
i
{
. 3
B OVERALL VALUES: E
. . : X
E: (2R
1% o3 b,
E " * SUBSYSTEM CPU TIME SEARCH FORM i
1 --f», B
,, s FIGURE III-2
b S
) o 2
Ik 89 =3
CE A 18
| Znd<

TABLE III-1,

REPORTS USED IN THE SUBSYSTEM
CPU TIME SEARCH PROCEDURE

SYSTEM REPORT
TSS Response Time Analysis l. Elapsed Time in Model
System States by Subsystem

2. Elapsed Time in Model
States

3. Frequency Distribution of
Subsystem Dispatch Lengths
(by Subsystem)

4. Frequency Distribution of
Derails Executed Between
CPU Eligibility Losses
(by Subsystem)

5. TSS Response by Subsystem

B. DETERMINE SUBSYSTEMS WITH UNACCEPTABLE RESPONSE

The objective of this procedure step is to isolate those
subsystems that are responsible for most of the unacceptable

responses.

Use the TSS Response Time by Subsystem report

of the TSS Response Time Analysis System. Enter the data on
the Subsystem CPU Time Search Form (Figure III-2). Use a
separate form for each time period monitored. Note the date
and time of the monitored period at the top of the form.

1. Decision: Subsystems Associated With Unacceptable Response

Using the site-specific definition of acceptable response,
note which subsystems are associated with unacceptable
response times. Use the Mean Response Time, Standard
Deviation, and/or Percent Greater than Threshold columns of
the TSS Response by Subsystem report. The columns to be used
and their method of use depend on the particular definition of

SRR 5t R I <ot i

e B

s re————————————

acceptable response. The objective is to eliminate from
consideration those subsystems that nearly always achieved
acceptable response and derive a list of subsystems which
account for [60%8-90%] of the unacceptable responses.

2.

3.

Record Subsystem Names

a. Report Value. The four character subsystem names

are given in the Subsystem column of the TSS Response
by Subsystem report.

b. Form Entry. ‘For each subsYstem determined above to
be associated with unacceptable, response, enter the
subsystem name in the Name column of the form.

Record Mean Response Time

This value and the Percent Greater than Threshold value

are recorded for documentation only. An analyst may prefer
to record other information depending on the criteria for
deciding which subsystems were associated with unacceptable
response.

a. Report Value. The Mean Response Time, given for each
subsystem, is the arithmetic average of all TSS responses
with which the subsystem was associated in some way.

b. Form Entry. Enter the value in the Mean Response
column for each subsystem with an entry in the Name
column.

Record Percent Greater Than Threshold

a. Report Value. The Percent Greater than Threshold
value represents the percentage of responses which were
longer than the value listed in the Threshold column.

b. Form Entry. Enter the value in the Percent Over
Threshold column for each subsystem associated with
unacceptable response.

Record Percent Associated With This Subsystem

These values are used in the decision step below.

a. Report Value. The Percent Associated With This
Subsystem value represents the percentage of the response
time reported for a subsystem during which that sub-
system was actually active. During the rest of the
response time, other subsystems were active.

20

256< -

i

ESSINCRE S NS SERSSE S SRS ARS SR A

S, TRP <7 SRR

b. Form Entry. .Enter the value in the Percent This
Subsystem column for each subsystem associated with
unacceptable response.

6. Choose Subsystems for Further Investigation

Subsystems that were associated with unacceptable
responses should not be considered responsible for those
responses if they were active only a small portion of the
time.

a. Decision. Eliminate all subsystems whose Percent
This Subsystem values are [<30%].

b. Form Entry. Place a check in the checkmark (V)
column for each subsystem not eliminated.

c. Multiple Time Periods. Repeat the six entries and
decisions for each time period monitored that experienced
unacceptable TSS response. Continue analysis with the
next section.

C. DETERMINE DOMINANT SUBSTATES OF SUBSYSTEM CPU TIME

The objective of this procedure is to determine if the
subsystems checked above cause unacceptable responses
because they are denied proper CPU service. This procedure
uses the Elapsed Time in Model States by Subsystem report to
calculate the ratio of Subsystem CPU time to Other Subsystem
CPU time. A low ratio indicates that the subsystem may
benefit from a change in dispatch parameters.

1. Record Subsystem CPU Percent

For each time period with poor response and each sub-
system checked above in Section III.B.6, record the per-
centage of time spent in the Subsystem CPU substate.

a. Report Value. Use the Percent States value for the
Subsystem CPU substate. This value is listed on the
Elapsed Time in Model States by Subsystem report of the
TSS Response Time Analysis System. A separate report is
used for each subsystem. The nearby Percent All Sub-
system value should not be confused with the Percent
States value.

R

S —

e

3.

b. Form Entry. For each subsystem checked above in
Section III.B.6, enter the value from the subsystem's
Elapsed Time in Model States report in the Subsystem CPU
column. Insure that.the data being recorded are from
the same time period and date as the data already on the
form.

Record Other Subsystem CPU Percent

a. Report Value. Use the Percent States value for the
Other Subsystem CPU substate. This value is listed on
the Elapsed Time in Model State$s by Subsystem report.

b. Form Entry. For each subsystem checked, enter the
value from that subsystem's Elapsed Time in Model States
report in the Other Subsystem column.

Record Overall Subsystem CPU Percent

For each time period monitored, record the overall

Subsystem CPU Percent.

5.

a. Report Value. For each time period, use the Percent
States value for the Subsystem CPU substate from that
time period's Elapsed Time in Model States Summary
report.

b. Form Entry. For each time period, enter the value
in the row provided at the bottom of the form, in the
Subsystem CPU column.

Record Overall Other Subsystem CPU Percent

a. Report Value. Use the Percent States value for the
Other Subsystem CPU substate from each time period's
Elapsed Time in Model States Summary report.

b. Form Entry. For each time period, enter the value
in the row provided at the bottom of the form, in the
Other Subsystem column. 5

Calculate Ratio

a. Calculation. For each time period and subsystem,
divide the Subsystem CPU value by the Other Subsystem
value. For each time period, divide the Overall Sub-
system CPU value by the Overall Other Subsystem value.

DR

e A

b. Form Entry. Enter the results in the Ratio column.
6. Decision
a. Eliminate Subsystems. Eliminate from further

investigation all subsystems whose ratios are higher
than [the Overall ratio for that time period].

b. Form Entry. Place a check in the checkmark (v)
column next to each subsystem not eliminated.

c. Decision. If less than [half] the subsystems
checked in Section III.B.6 above were checked again in
this section, skip Section III.D and proceed directly to
Section III.E. Otherwise continue with Section III.D.

D. ADJUST SUBSYSTEM DISPATCH PARAMETERS

The objective of this procedure is to adjust subsystem
dispatch parameters to favor those subsystems whose lack of
CPU resources is causing long response times. The common
dispatch characteristics (length of CPU service and number
of Derails desired between losses of CPU Eligibility) of
these subsystems must first be determined. If these
characteristics vary widely among those subsystems respon-
sible for long response times, no adjustment can be made
that will favor them all. If these characteristics are no
different than those of the other subsystems, no adjustment
can be made to specially favor them.

1. Determine Subsystem Characteristics ~ Dispatch Length

Obtain the Frequency Distribution of Subsystem Dispatch
Lengths report for each subsystem being investigated (those
with a check on the form next to the Ratio column). This
report shows the lengths of CPU time that a subsystem would
have taken if it were granted endless, uninterruptable
dispatches.

a. Suggested Dispatch Length Setting. For each such
subsystem, determine the Suggested Setting for dispatch
length. One of the following is advised: (1) the value
below which approximately [75%] of that subsystem's
dispatches lie or (2) if most of the [25%] above the
first value are clustered in a single bucket, the upper
limit of that bucket. The objective is to find a
dispatch length that allows the checked subsystems have
as long a time slice as they need, and interrupts
subsystems that could use longer time slices.

23
59&

P

N

b. Form Entry. Enter the Suggested Setting value for
each subsystem in the Dispatch Length column.

2. Determine Subsystem Characteristics - Number of Derails

This procedure determines the number of Derails each
subsystem executes between exits from the Eligible for CPU
state. Obtain the Frequency Distribution of Derails Executed
Between CPU Eligibility Losses report for each subsystem
under investigation..

a. Suggested Number of Derails»Settigg. Choose the ‘
Suggested Number of Derails Setting for each subsystem ‘
using the same two rules used above for the Suggested

Dispatch Length Setting. }

b. Form Entry. For each subsystem, enter the Suggested
Setting value in the Number of Derails column.

3. Calculate Means and Standard Deviations

a. Calculation. For each time period, calculate the
mean and standard deviation of the values in the Dispatch
Length column. Do the same for the Number of Derails
column.

b. Form Entry. Enter the means and standard deviations ;
at the bottom of their respective columns. '

4. Decision to Change Dispatch Parameters

Standard deviations less than [0.2] times their means
are considered low; otherwise, they are considered high. 1If
one or both standard deviations are low for most time
periods, modify the dispatch parameters as described in
Section III.D.5. If both are high for most time periods,

" proceed directly to Section III.E below.

5. Changing Dispatch Parameters

This procedure involves changing one or more parameters
and observing the effects on response times. The parameters
to be changed are: (1) the length of CPU time allowed for
each dispatch to a subsystem and (2) the number of Derails
allowed before dispatch to another subsystem. If both the
standard deviations used in Section 4 were low, both para-
meters should be changed. If only one was low, only the
single corresponding parameter should be changed.

24

ey
y
2605 .-

i, il .

T ———

The parameters should be changed with system patches as
explained in Appendix I. One parameter is .TCDEL in TSSA.
The other is changed by patch number nine in Appendix I.

The objective is to favor as much as possible the entire
group of subsystems being investigated. If the dispatch
length is to be changed, the new value should be the [next
to the largest representative value recorded in the Dispatch
Length column of the form]. If the number of Derails allowed
is to be changed, the new value should be the [next to the
largest representative value recorded in the Number Derails
cclumn of the form]. If three subsystems or less are being
investigated, use the largest representative value. If the
new values are the same as the old, there is nothing to
change; proceed to Section III.E.

Do not lower the value of .TCDEL without installing a
patch to .MFALT to restore the timer register after a MME
GELBAR interval. See Appendix I patch number ten.

Monitor response times to see if they become and remain
adequate. If the new response times are adequate, exit the
procedure here. If they are still not adequate, go to
Section III.E.

E. REDUCE CPU DEMAND AND/OR INCREASE CPU POWER

If the analyst arrives at this section, the amount of
CPU time used by subsystems is probably a major contributer
to long response times and a simple adjustment to dispatch
parameters is not likely to help. The remaining procedures
to alleviate this problem will, in most cases, be expensive
and/or hard to accomplish. 1It, therefore, may be better to
try the search procedures associated with other model substates
that also consume a large part of response time. These
other procedures may provide cheaper or easier ways to
reduce response time.

The methods of reducing subsystem CPU time are: (1)
find alternative subsystems or commands, (2) shift applications
to batch, (3) discontinue wasteful practices or marginal
applications, and (4) optimize user (FORTRAN or BASIC) ;
problems that execute under TSS supervision. All of these
alternatives involve close communication and cooperation
with management and users. Methods of increasing effective
CPU power are: (1) split a multiprocessor system into two
systems with some of the users on each system, and (2)
upgrade to a faster processor. These six alternatives are
discussed below. /

-

1. Find Alternative Subsystem or Commands : 4

Another subsystem or command may achieve the same or]
similar results and use less CPU time. A frequently-run
BASIC program recoded in FORTRAN might use less than half
the CPU time. One job status query might use less CPU time
than another.

If all the functions of a command or subsystem could be
assumed by other commands or subsystems, the command or
subsystem usually could be made unavailable with a single
patch. This would insure that all “users switched to the new
commands or subsystems. In either case, the users must be
informed and persuaded that the change is in their interest.

2. Shift Applications to Batch

Some applications migh: be processed as batch programs
with little or no inconvenience to the user. Batch jobs
would interfere less with other TSS applications (i.e.,
Other Subsystem substate time would be reduced) and might ,
even be run at night. Prime batch candidates would be
FORTRAN or BASIC jobs that use a relatively large amount of !
CPU time and are not truly interactive, i.e., the user ‘
simply enters parameters at the start and receives a series i
of outputs at the end. ; 3

il et el L dud

3. Discontinue Wasteful Practices or Marginal Applications

Some practices are convenient but wasteful, e.g.,
turning on the DJST job status message, leaving the terminal,
and returning from time to time to check on the latest
~status. The status of the job must be requested from GCOS
every few seconds (whether it has changed or not). A VIDEO
monitor in the terminal room would help eliminate this
practice. The time interval between requests for status may
also be increased. Marginal applications would be any appli-
cations that are not important (e.g., games) or that could
be done as well manually or with a calculator.

4. Optimize User Programs

With present TSS instrumentation, it is difficult to
identify user programs that should be optimized. This task
would therefore involve primarily education and cooperation
with the users. Some billing systems summarize terminal
time and CPU time by user and session. A relatively high
ratio of CPU time to session time might indicate a user

program that consumes large amounts of CPU time. A sub-
sequent interview might determine if this indication were
true and might persuade the user to optimize his program or
allow his program to be optimized by an experienced pro-
grammer.

5. Split a Multiprocessor System

This solution would allow two processors to execute TSS
at once, because there would be a copy of TSS in each machine.
This results in: (1) possible access problems to common
data, ' (2) memory wastage because two copies of GCOS and TSS
use memory at the same time, and (3) decreased efficiency of
batch applications. However, if the installation had enough
memory, peripherals, front-end processors, and CPU's to
split into two systems, splitting might be a relatively cheap
and effective way to reduce response time.

A variation of this approach is to change to an operating
system that allows more than one processor to execute TSS
simultaneously. Commercial releases 3/I and after and
WWMCCS 7.1 permit this.

6. Upgrade to a Faster Processor

A faster processor can execute the same subsystem in
less time. It will be free to execute other subsystems
sooner. Variations of this approach are: (1) add cache
memory, (2) expand existing cache memory, and (3) recon-
figure memory so that interlacing is possible.

7ir. Summary

It is impossible for this document to weight the many
considerations that influence the relative desirability of
the above alternatives. Rapport with users, staffing con-
siderations, available equipment, pricing changes, and other
changeable and unique factors preclude any specific recom-
mendation among alternatives. Discussion, consultation, and
thorough planning are needed when deciding how to attack the
problem of long responses caused by subsystem CPU time. As
stated earlier, it may be best to attempt optimization of
other areas (Disk I/O Time, Memory Wait Time, etc.) first,
and return to this section if these attempts are not successful.

S ke bt et

SECTION IV. TSS EXECUTING CPU TIME SEARCH PROCEDURE

This section describes the procedures for analyzing TSS
Executive CPU time. These procedures should be used if
response times are unacceptable and the TSS Response Time
Analysis System indicates that a major portion of response
time is spent in the Executive CPU substate.

A. PROCEDURE SUMMARY

The amount of TSS Executive CPU time is controlled by
several factors: the types of demards made by user sub-
systems, the various intervals of time waited between
pericdic executive functions, and the numbers of I/0O Queue
Space denials and Slave Service Area (SSA) module loads.
There is usually only one way to ask the TSS executive for a
certain type of function. Therefore, the only way to .
influence the types of demands made is to lower the number '
of demands of a particular type or types. This requires a |
thorough understanding of user needs and how TSS meets these |
needs; therefore, it is discussed last even though it may
yield more results.

The procedure steps executed under the TSS Executive CPU
Time Search Procedure are: (1) Adjust Subsystem Dispatch
Length, (2) Adjust Wait Time Periods, (3) Investigate SSA
Module Residence, (4) Investigate I/O Queue Space Denials,
and (5) Reduce Demand for Executive Services. Figure IV-1
charts the procedure steps to be executed under the TSS
Executive CPU Time Search Procedure. Those procedure steps
requiring forms use forms from other sections of this volume.

B. ADJUST SUBSYSTEM DISPATCH LENGTH

The subsystem dispatch length, .TCDEL, is the length of
CPU time given to a subsystem with each dispatch. If this
parameter is set very low, it may cause high Executive CPU
times.

Determine the setting of .TCDEL from system patches and
a listing of TSSA (see TSSA Parameters in Appendix I). If
this parameter is at the default (25 milliseconds) or higher,
proceed to Section IV.C. 1If it is lower, raise it to the
default by removing the patch or altering the code. This
adjustment will probably change the amount of time spent in
the various substates of the TSS Response Time Model; there-
fore, new Initial Data should be taken and the procedure in
Section II repeated.

v o e e ot oS e) O

s g :v'—L“,,g, = e — = por .

! (E)

f

i 1

: /

LOCAL SITE VALUE '

: PATCE LISTING SYSTEM PATCH ;
i ,/| PATCE LISTING
4 : INVESTIGATE SUBSYSTEM / YES
: A VALUE OF |- | mazsz ©
1'-) DISPATCH LENGTH y e 25 msec.
.: g 4

g
v ¥

ik

gl

PERIODIC SERVICES

CAPSED TD® IN

, | SYSTEM PATCHES WOOEL STATES

LS RS

|
ADJUST WAIT 4 f— |
ADJUST WAIT [~ = EXECUTIVE CPU |—- |
7]
TIME PERIODS 2 TIME PERIODS PERCENT STATE }
, A S
- :) |
ol : SECTION V
i & INVESTIGATE
= i SSA MODULE
‘ RESIDENCE
i
l 4
x
1 \
SECTION VI
b INVESTIGATE
y 1/0 QUEVE
| wf SPACE DENIALS
| 1
2
.. | ‘[i
! P y
! 4)
! "4‘ IWESTIGATEZ MORXLOAD SOURCES
E | {
] 4 REDUCE DEMAND
| i
| 3 FOR EXECUTIVE
| 4 SERVICES
{ &
{ 5
| G
| ! \ y
|]
X EXIT
“ i
3 ,
\ ‘l
B TSS EXECUTIVE CPU TIME SEARCH PROCEDURE

s
FIGURE IV~1

T

C. ADJUST WAIT TIME PERIODS

1. Parameters to Adjust

The times the TSS executive waits between various executive :
routines are given in Table IV-1l. Not all these parameters
are likely to influence Executive CPU time. Since .TAMRI
and .TATYI are usually so long (see Table IV-1), little
Executive CPU time is attributable to their routines. Do
not adjust these parameters unless they have been assembled
or patched to a value less than [one minute]. .TSTAT normally
will be zero and so will not be adjusted. This leaves
A.SD3I, .TLNLM, and .TLTLM as the candidates for adjustment,
with the possible addition of one or more of .TAMRI, .TATYI,
and .TSTAT. All these parameters are TSSA parameters
discussed in Appendix I. Determine from system patches and
a TSSA listing the values of these parameters being used.

2. Adjustment

Increase each parameter to be adjusted, either to
[twice] its current value or to its default value, whichever
is higher.

3. Decision

E Collect data on the time spent in model states using the
4 Initial Data form and procedure described in Section II. 1If
; the percentage of time spent in the Executive CPU substate

3 is not obviously reduced (for example, cit in half over
several time periods), change the parameters back to their
previous values and continue with Section IV.D. 1If the
percentage of time spent in the Executive Substate is
obviously reduced, experiment with various settings of these
parameters to achieve optimum settings. Because the para~
meter change has changed significantly the time spent in
various model states, any further investigation of TSS
response time should start again in Section II.

s

D. INVESTIGATE SSA MODULE RESIDENCE

. Placing certain SSA modules in main memory can signif-
il icantly reduce the amount of Executive CPU time by reducing
e : the overhead needed to use these modules. This can also
reduce the percentages of time spent in the Non-TSS CPU
substate, because TSS is forced to relinquish the processor
TR while a SSA module is loaded. The procedure for this investi-
‘| g gation is contained in Section V.E. Follow that procedure
e and return here if placing more SSA modules in main memory
is not necessary.

B i it a3 S S A &

TABLE IV.l,
INTERVALS BETWEEN EXECUTION ROUTINE EXECUTIONS

" DEFAULT
VALUE

EXPLANATION

A.SD3I

. TAMRI

.TATYI

1 second

S minutes

15 minutes

3 seconds

0.5 second

0.0

Wait time between executions of routine

that identifies urgent users and
initiates special actions on their
behalf

Time between executions of routine to
consider a memory size reduction

Interval between generation of the
console status message and between
swap file size reduction considera-
tions

Time between executing a status
GEROUT to each user to detect breaks
and disconnects

Time between Line Service routine
executions

Time between TSRI executions. TSRI
is a subsystem that periodically
monitors TSS if .TSTAT is non-zero.
.TSTAT should remain zero unless the
TSRI statistics are being used in
some worthwhile manner.

e it i

&

T e T

T

E. INVESTIGATE I/O QUEUE SPACE DENIALS

I/0 Queue Space denials may also cause higher Executive
CPU times. The procedure for this investigation is given in
Section VI.D. Follow that procedure and return here if no
change in I/0 Queue space is recommended.

F. REDUCE DEMAND FOR EXECUTIVE SERVICES

The most reliable method of reducing Executive substate
time is to reduce the number of requests for TSS executive
services. The drawback to this method is in finding a way
to reduce the number of requests. The analyst must under-
stand how and why the users use TSS and how TSS processes
their commands. Since this depends on the details of the
workloads and their implementations, only suggestions can be
made in this document.

Reducing demand for executive services usually means
reducing the numbers of Derails executed, especially those
Derails that require significant processing (i.e., Derails
causing disk accesses, subsystem changes, file system module
executions, etc.). Some ways this may be accomplished are:
removing some applications from TSS entirely, restructuring
a database to require fewer files or fewer disk accesses,
and lengthening the period between some services. For
example, some sites make extensive use of the' DIST subsystem
to report continuously the status of batch jobs. The DJST
subsystem obtains the status through a Derail. In some
cases, the length of time this subsystem waits between
requests for job status can be increased without reducing
service to the users. This increase reduces the number of
swaps as well as status requests and may significantly
reduce the workload on the TSS executive.

A suggested approach to reducing demand is to talk to
users to find out what specific types of work TSS does and
what sequences of commands are entered to cause this work to
be done. The details of how TSS processes these commands
should then be researched (i.e., what subsystems are used,
when disk accesses are required, etc.). A more efficient
way to accomplish the same work may be suggested by these
details.

SECTION V. TSS WAIT FOR CPU TIME SEARCH PROCEDURE

The procedures described in this section analyze time
spent while TSS is waiting for a CPU. These procedures
should be used if response times are unacceptable and if the
TSS Response Time Analysis System indicates that a major
portion of response time is spent in the Non-TSS CPU substate.

A. PROCEDURE SUMMARY

The TSS Response Time Analysis System accumulates Non-
TSS CPU time only when a user is waiting for some type of
CPU service to be performed on his behalf. This means that
Non-TSS CPU time represents time during which TSS needed to
use a CPU and could not because other programs or GCOS
functions had possession of the CPU(s).

The obvious solution to this problem is to grant TSS
priority over the other jobs waiting for CPU service. This
can be done by granting TSS Priority B, a well-known feature
of the GCOS dispatcher.

Even if TSS has such priority, several other factors may
cause TSS to wait for CPU service. If TSS's dispatch length
is too short, TSS is forced to relinquish a processor before
it has finished using it. It may relinquish a processor
because it needs to execute an SSA module that is busy or
out of core. It may be blocked from dispatch because of
certain Priority B parameters. It may relinquish a proc-
essor because it has insufficient I/0 queue entry space.

It may be forced to relinquish a processor while certain
GCOS functions are completed. Other Priority B jobs (if
present) will compete with TSS for processor time. The
procedures in this section investigate each of these possible
problems.

This procedure includes seven steps: (1) Investigate
TSS Priority, (2) Investigate TSS Dispatch Length, (3)
Investigate Priority B Dispatch Blocking, (4) Investigate
SSA Module Residence, (5) Investigate I/O Queue Space,
(6) Investigate Line Service Interval, and (7) Investigate
Intermittent Problems. Each procedure step is described in
this section (see also Figure V-1).

A form (see Figure V-2) is provided with this procedure
to guide and document the data collection. Each analysis
effort requires a separate copy of the form.

33

ALL SSA MODULES

INVESTIGATE
SSA MODULE
RESIDENCE

MASS STORE MON|

INDIVIDUAL

RESIDENT

. : = - - — —
DISPATCHER OPTIONS
INVESTIGATE
TSS PRIORITY
y
LOCAL SITE VALUE
PATCH LISTING FREQ. DISTR. OF
sy
IWESTIGATE ‘;&5_"-'3‘_‘7“"__ Yes VO PRI
TS BETORITY S —>{ PERCENT USING e men
DISPATCE LENGTH OPTIONS FULL DISPATCE LG
A
DISPATCH BLOCKING
LT 1] SYSTEM PATCH
PRIORITT B DECREASE
BLOCKING BLOCKING

LINE SERVICE

SYSTEM PATCH

(RO Tites|

LOWER VALUE

NON-TSS CPO

TSS WAIT FOR CPU TIME SEARCH PROCEDURE

FIGURE V-1

—————

5
}
. i :
‘ | TSS WAIT FOR CPU TIME SEARCH FORM { {
% . DATE: | E
; EXECUTIVE LENGTH ‘ 3
SUBSYSTEM LENGTH .
] 3
EFFECTIVE LENGTH i
s FULL
b TIME | prspaTcH |
P ———— |
i
i |
J
:1
2 { ‘
ks
7
MEAN
e
A >
o oA o
TR TSS WAIT FOR CPU TIME SEARCH FORM
£ R FIGURE V-2

The reports used.in the TSS Wait For CPU Time Search
Procedure are listed in Table V-1. i i

TABLE V-1. REPORTS USED IN THE TSS WAIT FOR CPU TIME SEARCH PROCEDURE

SYSTEM REPORT
TSS Response Time 1. Frequency Distribution of |
Analysis System Dispatch Lengths

2. Elapsed Time in Model States

Mass Store Monitor " 1. Individual Module Activity

oo s

B. INVESTIGATE TSS PRIORITY

The objective of this procedure step is to grant TSS the
highest priority possible. If TSS already has Priority B
status, proceed to Section V.C.

Most sites run with the Urgency Throughput and/or 1/0
Priority dispatcher options. However, these options may not -
help TSS compete for CPU time very well. Urgency Throughput !
T will allow any high urgency job (including most system
A programs, i.e., CALC, PALC, etc.) to have equal priority
3 : with TSS. Because TSS's (CPU Time)/(I/O Channel Time) ratio
¥ may be larger than many batch jobs, selecting the I/O Priority
Bl - dispatcher option may not shorten TSS response. When Urgency
Throughput and I/C Priority are used together, both objections
are valid. The Priority B option assures that TSS will
receive high priority at all times. Priority B also makes
it possible to charge the length of the CPU time slice given
to TSS.

Many sites are reluctant to grant TSS Priority B, sy
fearing degradation to other jobs in the system. Experience -
and field tests have shown that batch jobs are rarely
degraded. Granting TSS Priority B causes TSS to complete
its work quickly, disconnect entirely from the CPU wait

f

T ——
:
§
!
1

gueue, and allow other jobs full control of the CPU until
TSS is given more work. Priority B for TSS may degrade
other on-line jobs, and abuse of TSS priority by users may
degrade performance. Users should be informed not to use
commands that take inordinate processor time. This can be
enforced partially by setting .TASTM in TSSA (see Appendix
I) and by monitoring the CPU time consumed by each user.

A Ve o L e

Implement Priority B for TSS as shown in Appendix I.
Monitor the results with the TSS Response Time Analysis ;
System (using the Initial Data form and recording procedure E {
in Section II) and note whether response becomes acceptable. ;
If response is acceptable, the tuning effort may be ended. ? |
If response remains unacceptable, continue the analysis in |
one of two ways. If the percentage of response time asso-
ciated with the Non-TSS CPU substate is still high, continue
with Section V.C. Otherwise, follow the procedures in 4
Section II to select the substate which now shows the :
highest percentage of response time. In any case, remove]
the Priority B patches only if evidence is found that other
jobs are being unacceptably degraded.

C. INVESTIGATE TSS DISPATCH LENGTH

The objective of this procedure is to determine if the
CPU time granted to TSS upon each dispatch should be length-
ened. Unless a site has implemented the Timer Register
Patch (patch 10) discussed in Appendix I, the length given
to TSS is the shorter of two times: the normal dispatch
length given to TSS by the dispatcher, and the dispatch
length given by TSS to its subsystems (.TCDEL).

D b s

l. Determine TSS Executive Dispatch Length

a. Value. Determine the amount of CPU time allowed TSS
at dispatch. If TSS has Priority B, this time is
specified in the Priority B patch (see Dispatcher Para-
meters in Appendix I). If TSS does not have Priority B,
this time will depend on the number of processors
configured. It will probably be 64 milliseconds, plus
32 milliseconds times the number of processors con-
figured.

R P S T T T

e

b. Form Entry. Enter the value in the Executive Length
box on the form.

i DA A e

‘M;

R

r‘."vvu"v‘ e " T v St o o s PRI RN T

2. Determine Subsystem Dispatch Length

a. Value. Determine the size of .TCDEL by examining
the patch deck and a current listing of TSSA (see
Appendix I for location and interpretation).

b. Form Entry. Enter the value (in milliseconds)
in the Subsystem Length box on the form.

3. Determine Effective Dispatch Length

a. Decision. The amount of CPU time per dispatch that
TSS can actually use is the smaller of the two dispatch
lengths, unless the Timer Register patch has been imple-
mented. In that case it is the Executive Length value.

b. Form Entry. Enter the value (depending on whether
the Timer Register patch is implemented at this site) in
the Effective Length box on the form.

4. Obtain Distribution of Dispatch Lengths Report

Obtain the Distribution of Dispatch Lengths report for
the same period as the Initial Data currently being used.
Adjust the bucket sizes before the reports are produced so
that one bucket includes only the Effective Dispatch Length
and a small range on either side. For example, if the
Effective TSS dispatch length is 64 milliseconds, one bucket
should be 60-70 milliseconds. The TSS dispatches that fall
in this bucket will be those in which TSS used the entire
dispatch length and was prevented from continuing by a timer
runout.

5. Enter Dates

a. Report Value. Use the Start Time recorded in the
upper right corner of the report.

b. Form Entry. Enter the starting date and time in the
Date and Time columns on the form. Repeat this for each
separate Distribution of Dispatch Lengths report.

6. Determine Percentages Using Full Dispatch

a. Report Value. Note the percentage of "Other Dis-
patcﬁesi falling in the bucket surrounding the Effective

Dispatch Length. Few dispatches should fall in the

R

T
-

R

i

A
28

buckets reported below this one. If they do, recheck
the Effective Dispatch Length determination to see if

it was correct. A small increase in the size of the
bucket (e.g., from 60-70 milliseconds to 60-75 milli-
seconds) may also alleviate the problem. If these steps
do not help, seek professional assistance.

b. Form Entry. Enter on the form the percentage of
dispatches that fell in the bucket surrounding the
Effective Dispatch Length. Use the Percent Full Dispatch
column. The percentage should be entered on this form
for each separate Distribution of Dispatch Lengths

report obtained.

7. Calculate Mean

a. Calculation. Calculate the mean (arithmetic average)
of the Percent Full Dispatch valuyes.

b. Form Entry. Enter the mean in the box at the bottom
of the Percent Full Dispatch column.

8. Decision

i
|
i
#
i
}

Raise the TSS dispatch length if the mean is greater
than [10%]; otherwise, proceed to Section V.D. The following ;
paragraphs explain how to raise the effective dispatch
length given to TSS.
|

The first method is by implementing the Timer Register ;
patch (number 10) discussed in Appendix I. This patch will |
raise the Effective Dispatch Length from the subsystem 3
dispatch length to the executive dispatch length (which is
normally larger). If that patch has already been implemented
or further increases are desired, the executive dispatch
length should be raised.

If TSS does not have Priority B, raising its executive
dispatch length is too complex to be covered in this document.
If TSS does have Priority B, one can add up to 192 milli-
seconds to the executive dispatch length by changing the
Priority B patch as explained in Appendix I.

However the Effective Dispatch Length is changed, re-
execute this procedure using new data to see if it should be
further lengthened. (The site should also ensure that the
Priority Parameters Change time interval (.TAGPM) has been :
changed as recommended in Appendix I. Otherwise, it is E

possible that TSS will change its dispatch length back to 64 RS
milliseconds at some point in the day.) 5
- Y_&’

39

)
b T - 14
275<" £
| A
IEVE Ry 5 g - DRERICTHT RIS R ,
pY s .

g T o T e — i b 3 s T

If response becomes acceptable, the tuning effort may be
ended; otherwise, continue the analysis by recording the
latest data on percentages of time spent in substates as
instructed in Sectimn II. Continue with Section V.D. if the
Non-TSS CPU substate continues to have a high percentage of
response time; otherwise, choose another substate and pro-
cedure as instructed in Section II. Leave the TSS Effective
Dispatch Length at the new value unless no improvement was
realized and other high priority jobs were impeded demon-
strably by the new dispatch length.

D. INVESTIGATE PRIORITY B DISPATCH BLOCKING

In order to keep Priority B jobs from totally locking
other jobs out of CPU time, GCOS periodically blocks all
Priority B jobs from execution. When this blocking occurs
too often, it can degrade TSS performance. The objective
of this procedure step is to investigate the possibility of
blocking Priority B jobs less often than before. Skip this
section if TSS does not have Priority B.

Since there is no instrumentation for measuring the
effects of blocking, simply change the parameters to block
Priority B jobs half as often and collect new Initial Data
according to Section II. If the Non-TSS CPU substate
continues to have high percentages of response time (for
example, not cut in half) continue with Section V.E. If the
Non-TSS CPU substate shows significantly lower percentages
of response time, experiment with various values of the
parameter to find the point at which a higher value (less
blocking) will not significantly reduce the percentage of
response time spent in the Non-TSS CPU substate. Then
proceed to Section V.E. if this substate's percentage is

.8till the highest (or next to highest). Otherwise, proceed

to Section II to choose another substate and procedure for
investigation.

E. INVESTIGATE SSA MODULE RESIDENCE

Most sites with significant TSS usage should have some
Slave Service Area (SSA) modules in main memory because:
(1) those not in main memory must be loaded from disk, and -
if they call another module, they must be rolled out ("pushed
down") to disk if the called module is not in main memory,
(2) the I/0 to disk consumes a certain amount of CPU over-
head, and (3) no main-level processing on behalf of any user

Y

takes place until the "SSA module processing is done. This
section attempts to identify which modules should be put
into main memory so that they do not have to be loaded from
disk each time they are called.

The present -instrumentation does not record which
programs used SSA modules, so it is hard to separate the
SSA modules used by TSS (generally File Management System
modules named .MFSxx) from those used by batch jobs. Patch
number three in Appendix I causes MCOUNT (standard SSA
module activity counter) to count only modules used by TSS.
Use this patch, or assume that the SSA modules used most
frequently by the total workload are also used the most
frequently by TSS.

Obtain data on SSA module usage for several days using
either MCOUNT or the Mass Storage Monitor Individual Module
Activity report. If possible, restrict the data so that it
reflects only periods of poor response (i.e., obtain data at
the start and end of such a period and subtract to find the
module usage during the period). Put the [six] SSA modules
with the highest activity levels into hard core or private
SSA spaces in TSS (see Appendix I, patches four and six).
Hard core is preferrable because other programs may use SSA
modules in hard core. Another alternative is to increase
the size of SSA cache. Obtain new Initial Data and note if
the response time percentage spent in the Non-TSS CPU sub-
state has dropped. If it has dropped during each period,
experiment with more/fewer or a different combination of SSA
modules in main memory until the best combination and number
have been found. If it has not dropped in each period, take
the modules out of main memory and continue to the next
section.

F. INVESTIGATE I/0 QUEUE SPACE

When TSS can find no I/0 queue entry space for a user's
I/0 request, TSS relinquishes the processor. This means
that TSS will get no attention from the CPU until some out-
standing I/0 request terminates. Because all subsystems
that are eligible for CPU attention simply have to wait,
they accumulate Non-TSS CPU time.

An I/0 queue space problem is properly an I/O problem
and tends also to elongate disk service time. Procedures
for diagnosing and treating this problem appear in Section
VI-D. Proceed to that section, execute the procedure, and
return to Section V.G if I/0 queue space was not a problem.

41

STI< v

ey S o PRGN

2kt A

G. INVESTIGATE LINE SERVICE INTERVAL

The objective of this procedure is to determine if there
should be a different length of time between executions of
the line service routine. Many routines will store status
information and wait for the next line service routine
execution to pick up the status and transfer to the right
routine. This is done chiefly to avoid executing too much
code in Courtesy Call mode. Much of the time spent waiting
for line service may be reported as Non-TSS CPU Time.
Because tracing the start and end of such waits in order to
separate them from.Non-TSS CPU Time would be cumbersome,
they are treated experimentally in this section.

Halve the line service interval (.TLTLM) as explained in
Appendix I and obtain Initial Data (see Section II) on the
changed system. Compare the percentages of time spent in

- the Non-TSS CPU substate. If Non-TSS CPU time has decreased
in each instance, experiment with different settings of the
line service interval. Note that an excessively low setting
will increase Executive CPU time significantly. If Non-~TSS
CPU time has not decreased during every period of poor
response, return the line service interval to its original
setting and proceed to Section V.H.

‘i
|
3
o

H. INVESTIGATE INTERMITTENT PROBLEMS

Several conditions may cause intermittent poor response
time in a way that causes more time to be spent in the Non-
TSS CPU substate. Since no tool collects data on these
conditions and they involve management aspects as well as
technical considerations, definite procedures concerning
them do not exist. They are mentioned here in an attempt to
give all possible guidance in case the other solutions in
this section fail to eliminate all response problems.
Solutions to these problems depend on local conditions
(except perhaps the swap file space problem, which can
nearly always be solved easily and cheaply by increasing the
minimum size); only suggestions are made.

Bl 5 The conditions discussed here are mainly interactions
AEY with the operating system where conditions outside TSS ‘
B| 558 temporarily prevent TSS from continuing. If TSS tries to
Sed write to the accounting file while the accounting tape is
s experiencing errors or is being changed, TSS waits until the i
problem is resolved. The same situation occurs if TSS |
attempts to write its status message to the console and the {
console is down or so busy the message cannot be gueued.

il

S <l SR e L il

R

e

o

i
i
;

DI AL N, 1 R ALY IR KPY N

The solutions to these problems are to keep the accounting
file and console error-free and to avoid writing unnecessary
information to either. 1In particular, do not write type 14
or type 19 accounting records from TSS (see .TSTAT and

.TSSAS in Appendix I) unless the information definitely is
required.

Frequent memory size changes or swap file size changes
can cause response time problems. System loading and/or
WWMCCS security reguirements may cause TSS response to be
delayed noticeably each time a memory size or swap file
size change occurs. Lengthen the size reduction interval
(.TAMRI) or raise the minimum TSS memory size (.TASMS)
during prime usage periods to cut down on the number of size
changes. Raise the minimum swap file size, as discussed in
Section VII.C, to cut the number of swap file size changes.

When TSS detects nothing to do, it “goes to sleep" via
a MME GEWAKE for .TAGMI (default of 14) seconds. At some

‘sites, TSS may not always be "awakened" immediately if some

process ends during that interval. If this happens, a
period of up to .TAGMI seconds may be added to the response
concerned. This extra time can be reduced by lowering
.TAGMI, although TSS overhead will be somewhat greater.

If TSS is not the only Priority B job at this site,
other Priority B jobs prcbably will interfere with good TSS
performance periodically. Raising TSS dispatch length and
lowering its frequency count (see Appendix I) will help
somewhat. Optimization and/or careful analysis of the
execution characteristics of the other job may also help.
A site may want to experiment with making the other job a
non-priority job and using Urgency Throughput or I/0 Priority
dispatch options to try to elevate it over the rest of the
workload.

A &
4 ..M gl
L5 W

¥ h,, 2V 3 Pl T T

[9

S e il s L i

y ¥

SECTION Vi. DISK 1/0 TIME SEARCH PROCEDURE

This section describes the procedures for analyzing the
time spent waiting for disk I/0 to complete. These pro-
cedures should be used if response times are unacceptable
and the TSS Response Time Analysis System indicates that a
major portion of response time is spent in the Subsystem
Disk I/O state.

A. PROCEDURE SUMMARY

High Disk I/0 times may be caused by a general disk I/0
problem (such as gqueuing for channels or devices), by wrong
usage or placement of TSS work files, by insufficient I/0

gueue space in TSS, and by excessive numbers of disk accesses.

The general disk I/0 problems are referred to the disk-
related tests of the Batch Turnaround Time Analysis Pro-
cedures. The usage and placement of TSS work files is
addressed as part of these tests. Occurrances of insuf-
ficient 1/0 queue space are counted and extra space added,
if needed. Suggestions are given to reduce the numbers of

disk accesses.

This procedure includes four steps: (1) Determine
Placement of TSS Work Files, (2) Execute Batch Volume Tests,
(3) Investigate I/O Queue Space, and (4) Reduce I/0 Demand.
Each procedure step is described in this section. Figure
VI-1l charts the procedure steps that analyze Disk I/O Time.

The reports used in the Disk I/O Time Search Procedure
are listed in Table VI-l.

TABLE VI-1,

REPORTS USED IN THE DISK I/O TIME SEARCH PROCEDURE

SYSTEM REPORT

TSS Response Time Analysis 1. Elapsed Time Spent in Model
System States

2. Elapsed Time Spent in Model
States by Subsystem

TSTAT l. Status

[

1
;
4
73

o

LOAD AND SWAP SUBSTATE

DETERMINE LOCATION

SYSTEM PATCHES

TSS WORK FILES

~TSFDV VALUES

NOTE/SET
OP TSS WORK PILES .TSSF VALUES
PROGRAM DESCR. VALUES
GENERAL DISK I/0
EXECUTE BATCH
VOLUME TESTS
|
TSS DISK 1/0
QUEUE PATCH EXTRA SSA
INVESTIGATE 1/0 YES
NUMBER INCREASE 1/0
QUEUE SPACE OF SPACE
EXHAUSTIONS QUEUE SPACE
o
TSS DISK 1/0
REDUCE 1/0
DEMAND

DISK 1/0 TIME SEARCH PROCEDURE

FIGURE VI-1

AT A8

£V s

Gl
withe ~F'

{
1
q
|

B. DETERMINE LOCATION OF TSS WORK FILES |

Three types of problems may cause the Disk I/0O Time
Search Procedure to be executed: (1) too much time spent in
the Application substate, (2) ‘too much time spent in the
Load and Swap substate, and (3) too much time spent in both
substates. The location of TSS work files can affect only
the Load and Swap substate, so proceed to Section VI.C if
this substate is not a problem (i.e., always has a per-

bl ot oo g

centage value less than [1.0%]). However, problems asso-

ciated with TSS work files may be intermittent because they
depend on the placement of many files that may be in a
different place each day. This is éspecially true if the
locations of the TSS work files are not specified in .TSFDV
(see Appendix I), because then they may change locations
from day to day. Do not proceed to Section VI.C unless the
amount of time spent in the Load and Swap substate is always
small. '

el AL i

Determine from system patches whether the table starting
at .TSFDV has been patched to specify the work file locations. 4
If not, pick a location for each of the work files and patch i i
the table accordingly. Leaving the locations unspecified
almost guarantees that some of the files will be on the same <
device (causing queuing because both files tend to become |
busy at the same time) and/or on a very busy device or
channel (encountering queuing). Pick the locations on
different devices and channels, so that minimum interference
would occur if all the work files become busy at the same
time. The swap files (#S, #T, #U, #V) are usually the most
important, because they tend to be busier than the program
files (#P and #Q). #V in particular tends to be used most
often. Try also to place the work files on the fastest disk .
devices available. Some sites with little free disk space &
or very large temporary files may have trouble starting TSS
with specified-location work files. This trouble can be
overcome by defining the work files as system files at start-
up, so0 that space is always reserved for them (see Appendix
I).

T R W T

Note the locations of the work files, whether fixed
previously or as a result of the above discussion. Keep
these locations in mind when executing the tests in Section
VI.C below. If a file relocation is recommended by the
tests, give the TSS work files preferential treatment.
Depending on the number of TSS users and the relative
importance of TSS at a site, it may be justifiable to keep
some disk devices or channels relatively idle, locate the
work files on these devices/channels, and so ensure minimum
queuing delay when accessing the work files.

46

-~

.TSSF should also be patched so that the maximum number
(4) of swap files are used. The swap files are relatively
small, so that little disk space would be saved by using
fewer swap files. A larger number of swap files enables TSS
to swap more subsystems at a time.

In heavily used systems, two or more users often may be
trying to load subsystems from the program files (#P and #Q)
at the same time. Most of these systems will experience
heavy queuing for #P and little activity on #Q, because each
subsystem resides on #P unless TSS is patched to request #Q
for that subsystem. This problem has two solutions. The
first solution is to put enough subsystems on #Q to even out
the usage. The second solution is to put the highly used
subsystems on both #P and #Q, so TSS can choose the file
that is most idle at the time the load is needed. The second
solution does not even the usage between #P and #Q because
TSS will load from #P if both files are idle. A combination
of the two solutions may be used.

The information needed for this change is given in the
TSTAT output. The number of loads of each subsystem is
given in the "# Times Executed" column. Appendix I (.TPD)
explains how a subsystem's program descriptor chooses the
program file the subsystem will use.

C. EXECUTE BATCH VOLUME TESTS

Execute the Pathway Utilizations, Seek Elongation, and
Device Errors tests from the Batch Turnaround Time Analysis
Procedures. Note that the tuning steps for the Pathway
Utilizations Test may erase gains previously made by executing
the Seek Elongation Test. To some extent, the reverse also
happens. It may be advisable to execute the Pathway Utili-
zations Test first and then to execute it again following
execution of the Seek Elongation Test if significant numbers
of files are moved.

If no significant tuning steps are taken as a result of
these tests, proceed to Section VI.D. If significant tuning
steps are taken, gather another Initial Data set according
to Section II. Continue to Section VI.D unless the per-
centage of response time spent in the Subsystem Disk I/O
state has dropped significantly and consistently (every time
period significantly lower). 1In this case, return to
Section II to choose a substate and procedure.

S

e g A
i
$

D. INVESTIGATE 1/0 QUEUE SPACE

Every I/0 to disk or terminal requires I/O gueue space.
When TSS cannot find space for a new I/O to start, it simply
relinquishes the CPU and waits for an ongoing I/O to finish.
Meanwhile, the requested I/0 and all users waiting for CPU
processing simply wait. This type of situation is suf-
ficiently injurious that it should never be allowed to
happen.

Apply the I/O Queue patch (Number 1) from Appendix I to
count the number of TSS relinquishes of the CPU due to
insufficient I/O queue space. This patch will not count all
such relinquishes, but should count some if insufficient 1/0
gueue space is a problem. The patch accumulates counts of
relinquishes into a word within TSS. The contents of this
word must be examined before TSS is terminated to see if its
contents have changed. Any change sig:. fies that I/O queue
space has been exhausted at some point since TSS was initiated.

Use the patch for several days or for several periods of
poor response, whichever is longer. If no counts are ever
accumulated, proceed to Section VI.E. Otherwise, take the
tuning steps below.

The TSS parameter limiting the number of concurrent
users also governs the amount of I/0 queue entry space. A
small increase in this parameter (i.e., one additional con-
current user) will often provide an additional SSA, part of
which is used for I/O queue space. The number of SSA's for
the various numbers of concurrent users allowed is given in
Table VI-2. Ascertain the current maximum number of users
(see .TFMAX in Appendix I) by checking system patches and a
listing of TSSA. To increase the amount of I/0O queue space,
.TFMAX should be increased enough to cause an additional SSA
to be allocated.

i e

Increase .TFMAX if TSS relinquish counts were observed.
Verify that an extra SSA (extra 1K below the LAL) is being
allocated. If not, .MPOPA should be patched (see Appendix

I patch number 5) to allocate more SSA's to TSS initially.

WD R 77, St

P

VO

AR Sddculiad s o 4 b 1 i

¢ TABLE IV-2. MAXIMUM TSS USERS VERSUS NUMBER OF SSA'S

MAXIMUM NUMBER OF USERS
PARAMETER SETTING NUMBER OF TSS SSA'S

PR T RN

1-18
19-36
37-54
55=72

S T - L D ¥ L B N)

73-90
18(n-1)+1 to 18n n+2

E. REDUCE I/0 DEMAND

If the above sections fail to find a disk 1/0 problem,
it may be that the large amount of time spent in the Disk
I/0 state of the TSS Response Time Model is simply due to
large numbers of I/O requests to disk. It may be possible
to reduce the number of I/O requests. The subsystems
responsible for the most I/0 requests may be isolated with
the Elapsed Time in Model States by Subsystem report of the
TSS Response Time Analysis System. Subsequent interviews
with these subsystems' users could determine why these
subsystems are used and how the number of I/O requests could
be . reduced. Some suggestions are:

l. Programmers who continually run the same large
program should be encouraged to compile it and run
it using the object code.

2. If one small section of a large file is changed
often, it should be made a separate file. Other-
wise, the entire file has to be read at least twice
to make the change. When the entire file is to be
used, the two parts can be merged or concatenated by
using certain features of the RUN, OLD, and SAVE
commands.

3. Periodic status subsystems that are responsible for
large numbers of disk I/O requests (see the Number
of Entries for the Disk I/O state on the subsystem's
Elapsed Time in Model States by Subsystem report)
should have their periods increased. Periodic
status subsystems are those subsystems (such as
DJST) that repeatedly ascertain the status of some
part of the system. By increasing the period (so
the status is ascertained less often), fewer disk
I/0's would be required.

Ml S ¢

P
% ;
i < Ay F
| g rég
ER -~ B,
I e
s

SECTION VII. MEMORY WAIT TIME SFARCH PROCEDURE

This section describes the procedures for analyzing time
spent in the Memory Wait model state. These procedures
should be used if response times are unacceptable and if the
TSS Response Time Analysis System indicates that a major
portion of response time is Memory Wait time.

A. PROCEDURE SUMMARY

Long Memory Wait times are caused by a lack of TSS
memory in which to load subsystems. This lack may be caused
by three types of problems: (1) a bottleneck (not related
to memory) that keeps subsystems from efficiently accom-
plishing their work once they are in memory, (2) some type
of swap file problem that prevents swapping of subsystems to
let other subsystems into memory, and (3) too little memory
allocated to TSS.

The other sections of this volume address problems of
the first type; the Memory Wait Time Search Procedure addresses
problems of the second and third types. Obviously, all
problems of the first type should be solved before an analyst
executes this section; otherwise, the steps recommended here
may not help. For example, allowing more subsystems into
memory will not help if there is not enough CPU and disk
channel time to service those that are already in memory.
An analyst should first execute the search procedures
associated with the Eligible for CPU, Disk I/0, and Non-TSS
Process states and substates that show large percentages of
response time.

This search procedure assumes that all problems in those
areas have been alleviated as much as possible. It isolates
swapping problems and assumes that other problems imply too
little memory allocated to TSS. If more memory can not be
allocated, one can reduce the effective sizes of applications
or adjust the memory priority of various subsystem sizes.
Excessive "forced" swapping may complicate the situation in
some systems. These, and other more minor problems, are .
treated in the Memory Wait Time Search Procedure.

This procedure includes four steps: (1) Investigate
Swapping Problem, (2) Increase TSS Memory Size, (3) Adjust
Memory Priorities, and (4) Reduce Memory Demand. Figure
VII-1l charts the procedure steps that analyze Memory Wait
Time. Table VII-1 lists the reports used in this section..

T

L0 o st i

e

or

P S—

TSS SWAP FILES

RSO SIS

IWESTIGATE "’? o TSS SWAP FILES
NAPPING coer swp INCREASE
— s1zE
©
H A < =IT ’
.TDSPC
comer swr
FILI SIZR
INCREASES
MAX OR DYNAMIC
o] [DERERE
INCREASE 7SS | SSTRIBUTIOR J
TSS PERCENTAGE
MDORY SIZE MAXINUN
e AT MAXIMUM
DY e SYSTEM PATCHES
Yes
] wromor s
ol URGENT USER @
L PARANETERS
w
;s g“ 4 m!l!l!l SYSTEM PATCE
PERCENTAGE -
JTASID JIASID
w©
1SS CORE SIZF |
| DISTRIBUTION | PATCH LISTING
CALCULATE
TOTAL SIZE aoUNT OF TOTL AT
DECREAS S1ZE OF DECREASE
- DECREASE

SYSTEM PATCHES

vl puaO)

MEMORY WAIT TIME SEARCH PROCEDURE

FIGURE VII-1

52

’ Al

A s

SYSTEM PATCHES

ADJUST SIZE
INCREASE .
PARAMETERS

ALL TSS SUBSYSTEMS

ADJUST MEMORY

PRIORITIES

1S SBREFeNN |

A o

SUBSYSTEMS WI

UNACCEPTABLE
RESPONSE

SUBSYSTEM
SIZES

SYSTEM PATCHES

ADJUST LOW
PRIORITY
SERVICE

ke

SYSTEM PATCHES

| ADJUST NORMAL
PRIORITY
SERVICE

MEMORY WAIT TIME SEARCH PROCEDURE

FIGURE VII-1 (Cont.)

O \._v;..‘&-‘-...- .

TABLE VII-1. REPQRTS USED UN THE MEMORY WAIT TIME SEACH PROCEDURE

TSS Response Time Analysis 1. TSS Core Size Distribution
System 2. Urgent Memory Wait Time
Versus Requested Memory

3. TSS Response by Subsystem

4. Memory Sizes of Subsystems

Console Log l. TSS Status Messages

A form (see Figure VII-2) is provided with the procedure
to guide and document the data collection. A separate copy
of the form will be required for each analysis effort.

B. INVESTIGATE SWAPPING PROBLEM

If TSS is delayed in swapping subsystems which have no
work to do, an artificial memory shortage is created.
Delays in swapping subsystems can be caused by (1) too few
swap files (which causes file contention), (2) too little
space on the swap files, and (3) long I/O times to the swap
files. The last cause is treated in Section VI. The first
two causes are treated in this section.

1. Use the Maximum Number of Swap Files

Determine from a TSSA listing and from the patch deck
the value of .TSSF. If it is less than the maximum (4),
raise it to the maximum. This alleviates (as far as
possible without modifying TSS) the problem of too few swap
files. This problem is hard to diagnose and the solution of
adding more swap files costs relatively little disk space;
consequently, this solution is recommended at once. The
problem of insufficient space on the swap files is decided
by measurement.

2. Measure Swap File Size Changes

TSS swap files are dynamic. They can change size at any
time if TSS decides there is a need to add or delete space.
However, this feature brings attendant problems: (1) the

Ll B

T T TN D e

[moory wart Tive searcs romn | |

] o=

E

SUBSYSTEMS ASSOCIATED WI
INVESTIGATE SWAPPING PROBLEM SWAP FILE SIZE ESTIMATE N ccERT T .,;?;m“'
SWAP SPACE | SIZE MEAN S5 | MAXDMUM TE
RATY REFUSALS | INCREASES DATE SIZE s I lm;nu:L j .musL I
== —
NME | percewmace| v | meaw s1ze
3
INVESTIGATE DEPENDENCE ON INCREASE 7SS SIZE S
MAXIMUM MEMORY SIZE BENEATH MAXIMUM :
MAXIMUM | PERCENTAGE URGENT | PERCENTAGE MEMORY
DATE/TINE s1zE AT MAX DATE/TIME LEHCTY WAITS < .masp | PPCREASES | pppase

MEMORY WAIT TIME SEARCH FORM

FIGURE VII-2

o i

i SN e bl

TSS executive is engaged during a size change and cannot
service users (various factors may cause delays during this
process, so that users are denied service for a significant
time) and (2) extra space to add to a swap file may not
always be available. For these reasons it is advisable

to keep size changes to a minimum. The patch discussed
below counts the number of times the extra space was not
available, and the TSS executive itself already keeps count
of the size changes.

a. Swap Space Refusal Value. Use the patch (number 7)
discussed in Appendix I to count swap space refusals.

(1) Location of Value. At the end of each day, use
the PEEK console verb to examine the cell into which
the patch accumulates swap space refusals. This
cell may change from site to site and is chosen by
the person applying the patch.

(2) Form Entry. Enter the value and the date in
the Swap Space Refusals and Date columns, respectively.

b. Swap File Size Increases.

(1) Location of Value. The TSS executive counts
swap file size increases in the upper half (bits 0-
17) of .TDSPC in TSSA. To find the value, use the
PEEK console verb at the same time as above. Note
that this value is reset to zero only when TSS is
TERM'ed and restarted.

(2) Form Entry. Enter the value in the Size

Increases column.

c. Decision. If there were [no] swap space refusals
and fewer than (5] size increases per day, proceed to
Section VII.C. Otherwise, increase the minimum swap
file size as described below.

d. The New Parameter Setting. The parameter most
likely to alleviate the problem is the minimum swap file
size. A large setting for this parameter assures that
TSS will usually have enough swap file space for most
needs without requesting additional space from GCOS.
This avoids the overhead, delays, and possible denials.

Since the fiqgures kept by TSS on swap file space
needs are incomplete, a gnod candidate parameter setting
can only be estimated. The following calculations
provide a method for making the estimate. Using the
TSTAT Program Load and Swap in Sizes histogram, obtain
the average subsystem swap/load size, as follows:

(1) CcCalculation. Calculate the average subsystem
load size.. Multiply each Number of Occurrences

) value in the left column by the Maximum Size value
opposite it ip the right column, add the results,
and divide by the Total value. The result will be
slightly larger than the average subsystem load
size.

(2) Form Entry. Enter this size in the Mean Sub-
system Size column on the form (Figure VII-2).
Enter the date of the data in the Date column.

(3) Report Value. The Largest Number of Users
value, on the first page of the TSTAT output, gives
i the maximum number of simultaneous users.

(4) Form Entry. Enter the value in the'Maximum
Users column. Repeat these four steps for each
date. Note that this data comes from internal TSS
data that is never reset. TSS must be TERM'ed and
restarted each day for the data to be valid.

(5) Calculations. Calculate the means of the data
in each column.

(6) Form Entry. Enter each mean at the bottom of
’ its column.

' (7) Calculation. The new parameter setting (expressed
in "1llinks" or 320-word blocks) is given by the
formula:

New = MSS*3,2*Max:2.0 = 1.6*MSS*Max

where MSS is the Mean Subsystem Size in 1024 word
blocks, 3.2 converts from 1024 word blocks to 320
word blocks, Max is the mean Maximum Users number,
and 2.0 compensates for multiple swap files. (The

Tpe—

2.0 would be 4.0 except for allowances for data
bias and swap file space fragmentation.) The patch
to .TSFS will cause each swap file to use this
figure as its minimum size.

e

e. Increase Swap File Space. Change the minimum swap
file size as described above. Monitor swap space refusals
and the contents of .TDSPC for several days. Make
further increases to .TSFS if swap space refusals

X continue or if the number of increases does not drop to |
b less than [5] per day. j
£ f. Follow-up. If Memory Wait Time continues to be high .
. compared to other states and substates, continue this]
S procedure at the next section. Otherwise, return to _
i Section II and choose another substate and procedure.

4 E
°4 C. INCREASE TSS MEMORY SIZE

‘ }

The objective of this procedure is to increase the
memory available for TSS subsystems, and, thereby, to
shorten memory waits. Increasing TSS memory size can occur
in three basic ways. If TSS spends .most of its time at its
self-imposed maximum size, that size could be raised. If it
seldom reaches that limit, it may be that GCOS denies TSS
core increase requests or that TSS does not recognize the
need to request an increase. The second and third ways to
increase TSS memory size are, therefore, to make GCOS core
more available and to induce TSS to request memory more
often. The third way concerns the parameters and variables
TSS uses to decide (1) whether a user has waited long enough
to be considered "urgent" and (2) what special actions are

o to be taken on his behalf, such as requesting more memory
g from GCOS.

5 J—'“n.ﬂ.nﬁ-mm-l!‘ml“_.‘.y

1. Investigate Dependence on Maximum Memory Size

[ot W A, AP

This step determines whether to increase the maximum
TSS memory size.

g4 a. Determine Maximum Size. Determine the TSS maximum
‘, memory size from system patches and a listing of TSSA.
] <o Since this can be dynamically altered from the console,
« JE determine (from the console log, if necessary) whether

E Vo operators ever change it. If they do, determine what
< TP it is at the various times during the shift.

2.

(1) Report Values. The location for any patch of
maximum TSS size 1s .TAMMS (see Appendix I). The

maximum TSS size is reported at the console in the
first line of the TSS console status message.

(2) Form Entry. Record the maximum size in the
Maximum Size column. If this size varies, make a
separate entry each time the value changes.

b. Determine Actual Size. Determine what sizes TSS
actually assumes during the data collection periods. If
the maximum size is constant over each period of data
collection, obtain the TSS Core Size Distribution
Report; otherwise, use the TSS status messages from the
console log.

(1) Calculation. Determine what percentage cf time
TSS is at its maximum size.

(2) Form Entry. Enter this figure on the form in
the Percentage at Maximum column.

(3) Calculation. Average the values in the Per-
centage at Maximum column.

(4) Form Entry. Enter the mean value in the labeled
box at the bottom of the column.

c. Decision. If the mean Percentage at Maximum value

is greater than [30%), or if most of the unacceptable
response is experienced while TSS is at its maximum core
size, experiment with increased maximum TSS core sizes
(Section VII.C.2). Otherwise, try to increase TSS size
beneath the maximum by proceeding to Section VII.C.3. If
the figure is close to [30%], an analyst may want to
execute both sections.

Increase Maximum Memory Size

Raise the maximum size of TSS memory (.TAMMS). Each

site must decide for itself how much to raise the parameter.
The number and type of considerations that affect this
decision preclude a specification of an amount to add. 1If
possible, try to add enough that TSS rarely reaches the

maximum
periods to show whether the increased memory size clearly

size. This could be attempted for a short period or

reduces response times. Experiment with various sizes to

b e

find one at which all the trade-offs (response times, avail- ‘
able memory for the rest of GCOS, etc.) are equal. If &
raising the TSS maximum size does not demonstrably reduce ﬁ
response times, reset it to its previous value and proceed
to Section VII.D. If response times are reduced, proceed to
Section II and choose a new substate and procedure (perhaps
this one) based on new Initial Data. If response times are
reduced enough, the tuning effort may be ended.

3. Increase TSS Size Beneath the Maximum !

If TSS size is too small but the TSS maximum size is

rarely reached, one of the following is true: (1) TSS
cannot obtain additional memory, (2) TSS rarely classifies
users as urgent, (3) TSS rarely tries to increase memory on

g behalf of an urgent user, or (4) TSS decreases its memory |
too much. This section attempts to find which of these four ’
possibilities is true. More than one possibility may be ‘
true. -Note that the site may simply wish to raise the ;
minimum size of TSS (.TASMS). This would eliminate the need '
to distinguish between the four possibilities and would ‘
directly cause TSS to increase its size. It will, however, | 74
cause TSS to remain at a high memory size during periods of ’
relative idleness, thus wasting some memory. If the solutions |
proposed in this section fail to work, the site may wish to i
raise .TASMS depending on the priority of TSS and the avail-
ability of memory during periods of TSS idleness.

akna

Obtain two reports of the TSS Response Time Analysis

. System--the TSS Core Size Distribution report and the Urgent ‘
! Memory Wait Time Versus Requested Memory report. Note that *
certain parameters are required to be input to the data

: reduction for the latter report to be meaningful (see Appendix ,
5 H for the parameter names). These may be obtained by =
i consulting the patches made to TSS (patch edit and startup ’
3 deck), a TSSA listing, and Appendix I. 1In addition, use a
E threshold value equal to the value of .TASID (see the same
' sources) .

3 : | a. Date and Session Length

(1) Report Values. The Start Time, given in the
upper right corner of the report, gives the date and
time data collection was started. The Session

Xioe Length, in the same corner, gives the length of the
b data collection in seconds.

i

=

D ovE i3 i’ Wh o o
Y <"»Z,.>‘ ¥ ¥

-t " _t -
st 3 e Y 3

i

o AR S

i o

e ——

d.

(2) Form Entry. Enter the date, time, and length
in the Date/Time and Length columns in the part of

.the form labeled Increase TSS Size Beneath Maximum.

Number of Urgent Waits '

(1) Calculation. Total the Number of Waits column
from the Urgent Memory Wait Time versus Requested
Memory report.

(2) Form Entry. Enter the total on the form in the
Urgent Waits column.

Percentage Less Than .TASID.

(1) Calculation. For each Urgent Memory Wait Time
versus Requested Memory report, calculate the mean
Percent Less Than Threshold value for all the rows
(all memory sizes) in that report in the following
way: For each row with a non-zero Percentage Less
Than Threshold value, multiply that value times the
Number of Waits value for that row. Write the
result in a column next to the Percentage column on
the report, as shown in Figure VII-3. Total this
new column (total is four in the figure) and divide
by the total (20 in the figure) for the Number of
Waits column calculated above in Section VII.C.3.b.(1l).

(2) Form Entry. Enter the result as a percentage
in the Percentage Less Than .TASID column on the
form. 1In the figure, this percentage is 4:20 = 20%.

Size Decreases

(1) Report Value. The total number of size decreases
is given at the bottom of the TSS Core Size Distri-
bution report.

(2) Form Entry. Enter the 'value in the Decreases
column.

Amount of Decrease

(1) Value. Consult TSS patches and a listing of
TSSA to obtain the value for the amount of memory
that TSS relinquishes each time it decreases its
size. This is the value of .TASRI (see Appendix I).

i o

s,

et

T

P

et R it

_, €-1IA FWNOI

QISVL® NVHL SS37T 39VINID¥Ed
FHL 3O NOILVINOTVYO ATIWNS

— P
[AL TTY) 1°7669 e 00008 0 06°1] *i*a (S2) ¥5 3340
0 “ . 06001 e " " -0 0 205 -2f
2° 05292 € us6) 0 0°000) (TIRLR 62°31 s 89 ey SE1] n9E -42
6209 §°962 | & 0°0201 462°n LT 4 09 s [3X1} 92 -2
. e L ey 0°0008 0 ‘u ° e 0 2z -9
[XYY LRIV | sscss 00001 "2 1 £ $5°01 $°2) nsh =21
‘0] ‘e 0°000} ‘e ‘v ° ‘0 M niE -6
4° 2661 82061 o] °0008 9 96° 1] 91 e nw -2
-....Su 60y] 005 0°0008 §22°y sE° 2 s2°2 "2 %9 -5
LAR 7Y 9°tub6l e 8°000t 0 86°)] 9°% 2 an ¢
6° 4468 6°548) 00°0s 0°0001 1550 s 2 e (3] e
*e . . ‘s s°o0v} ‘0 ‘v (] ‘0 ‘0 Al
1S3:5m) .:.mv.. anl uni (S345%) (5339 €53.95) Stivm 30 12a 153:35) 03153003
A WA $$3V 174 010nS Jamki A30 01S L) ¥lenin il s
A niw NV Liwm

AQOM M Q31S3N0V4 °SA Inat Alun AcONIK INIJBN

$0592 *90532 *305%2 5,0 Jev)
3 $33S 2412 ¥0s ANIALIIY SSu
0269°7831 2212020 3410 401>
290005 s220020 :miL LAvLS
BN ¢3335) mI%N3Y NCIESDS 21 je0ada

=y

T T
2
5

I———

e

(2) Form Entry. Enter the value (in 1024 word
blocks) on the form in the box labeled . TASRI.

(3) Calculation. For each data period, multiply
the number of decreases by the value of .TASRI
(expressed in 1024 word blocks).

(4) Form Entry. Enter the products in the Memory
Released column on the form.

f. Average Values

(1) Calculation. Average each column just completed
except the Date/Time and Decreases columns.

(2) Form Entry. Enter each average at the bottom
of its column. :

g. Decision. If the average Urgent Waits figure is
less than the average session length (expressed in
seconds) divided by [30), assume that TSS rarely
classifies users as urgent and adjust the urgent user
parameters as described in Section VII.C.2,h. If the
Percentage Less Than .TASID figure is greater than

[90%], assume that TSS rarely tries to increase memory
on behalf of an urgent user and adjust .TASID as
explained in Section VII.C.2.i. If the average Memory
Released value is more than the session length (in
seconds) divided by [20] (15K per five minutes of session
length), assume TSS decreases its memory too much and
adjust the TSS size decrease parameters as described in
Section VII.C.2.j. If none of the above conditions is
true, assume that GCOS may be denying TSS requests for
additional memory and proceed to Section VII.C.2.k

below. After making the recommended adjustments, collect
new data during periods of high memory wait. - Fixing -

one problem may cause another to become evident. Follow
steps a. through g. once again.

h. Adjust Urgent User Parameters. If the user has
reached this section, Memory Wait times are high but
few users are classified as urgent users. The para-
meters involved in this classification are listed in
Table VII-2. The "Desired Direction of Change" provides
the direction in which the parameter should be changed
to cause more users to be classified as urgent. This
section describes how to choose candidate parameter
settings. Specific settings are not recommended here.

63

£ i ean da

R P T Tt e w " S

Sbpiln b

| TABLE VII-2,
| URGENT USER CLASSIFICATION PARAMETERS
1

SYMBOLIC DEFAULT DESIRED
PARAMETER VALUE DIRECTION
NAME . OF CHANGE DESCRIPTION

A.SD3I 1 Second Lower Urgent user classification
is performed every A.SD3I
seconds.

« TASWT 3 Seconds . Lower User must wait at least §
.TASWT seconds before he |
can be classified urgent. é

« TASWF 4K Words/Second Higher User's subsystem size is \ :
divided by .TASWF to
determine how many seconds
he must wait before he is
classified urgent. (A 16K
subsystem would wait 4

4 seconds.)

ke o i

: . TAMIS 36K Words Higher Any program above .TAMIS
| must wait .TALPP times as
] long as he normally would
before he is classified
urgent (36K means a wait
of 36 seconds).

. TALPP 4 Lower See .TAMIS description.

The first parameter, A.SD3I, limits the execution of
the code that (1) identifies urgent users and (2) tries L il
to increase memory on their behalf. This parameter L
should be smaller than the average response desired; %
otherwise, it would be possible for a response to be so
: long that it would be unacceptable even before TSS
o | identified it as needing the extra priority of being an -
! "urgent" user request. A.SD3I should not be smaller R
than [.5) of both .TASWT and .TASID (Default = 1 second):;
& | the status of urgent users would otherwise be taken two
il or more times before any change occurred. The default
value should usually work well.

T Wi T

i

A user cannot be considered urgent until he has
waited .TASWT seconds. If the site wishes to guarantee
a certain response time, .TASWT must be below that
response time; otherwise, users will be able to exceed
the desired response, not yet be in memory, and TSS will
not recognize that there is any reason to give them
special treatment. However, .TASWT should not be set so
low that most memory waits become urgent waits. This
will tend tc make TSS use more main memory than it
really needs, and may even cause excessive swapping if
A.MTQ is low (see Appendix I).

Once a user has waited .TASWT seconds, .TASWF
controls the additional time (if any) the user must wait
to be classified urgent. The core size of the user's
subsystem (in 512-word blocks) is divided by .TASWF
(default of 8). The result is the number of seconds the
user must have waited to be classified urgent. Using
default values, a 12K subsystem must therefore have
waited three seconds; a 16K subsystem must have waited
four seconds. An 8K subsystem must still have waited
three seconds, because all subsystems must have waited
.TASWT seconds. .TASWF must be large enough that users
can be declared urgent before they have waited so long
that their response will be unacceptable. If .TASWF is
very large (e.g., 36K per second), it allows all sub-
systems of all sizes to become urgent upon waiting
.TASWT seconds. This is not necessarily good or bad; it
depends on the relative priority the site wishes to
afford larger subsystems.

.TAMIS and .TALPP exist to penalize subsystems that
are considered at the upper limits of memory size. If
a subsystem is .TAMIS or over in size, .TALPP is
multiplied by the normal amount of time (calculated
using .TASWF) that the subsystem would have to wait
before becoming urgent. Normally, .TAMIS should not be
so small that most subsystems are penalized. It is in-
tended only that the largest subsystems be so penalized.
In fact, the site might want to set .TAMIS so high that
no subsystem is penalized. If the site decides to set
.TAMIS low enough to penalize a significant number of
subsystem memory requests, care should be taken in
setting .TALPP. (The Memory Wait Time Versus Requested
Memory report of the TSS Response Time Analysis System
will report the number of memory requests of various
sizes and will make it possible to determine what per-
centages are .TAMIS and over. It will also provide

65
301< LT

e e

Mg S T 5 e
S e

e 0 Bt e S i ST e

ot

r-—"rw——w-—-vw-— e

.-eters . from system patches and Appendix I. Compare

feedback on the time these subsystems must wait.)
.TALPP should not be set so large that many memory
requests must wait longer than the acceptable response
before they can become urgent. On the other hand, a
.TALPP setting of "1" means no penalty at all.

o e L e o bt sl Sl i A a0

Determine the current settings of these five param« : |

these values to the ranges suggested in the paragraphs

above. If all values are in their range or are outside

it in the desired direction of change (Table VII-2), an

anomalous situation arises that cannot be resolved by

these procedures. If one or more of the parameters is

outside its range in a direction opposite that desired,

change it along the lines recommended above. If it is

impossible to change the parameter or the change does

not increase TSS memory size, return to the beginning of '

Section VII.C. If a second execution of this section

does not increase TSS memory size, proceed to Secticn i
5
{

B IO it 0 i M

VII.D.

i. Adjust .TASID. The existence of an urgent user will

cause TSS to increase its memory size only if that user

has been urgent at least .TASID seconds. In order to
arrive at this procedure, the analyst has identified
that urgent users exist but that few of them are urgent
as long as .TASID. This may mean that .TASID is too
long; it also may mean that users have to wait too long
before they are classified as urgent.

Usually, .TASID should not be lowered to zero because
of the way TSS treats urgent users. TSS attempts three
actions on behalf of an urgent user: (l) reserve an
area in TSS memory for the user (referred to as a "core
fence"), (2) force swap any user in memory over A.MTQ
seconds (default is seven seconds), and (3) increase TSS
memory size. The first two actions are attempted
immediately after the user becomes urgent. The last,
more drastic action, is instituted only after .TASID
seconds. The first two remedies are therefore given no
chance to work if .TASID is lowered to zero.

The minimum value for .TASID depends on (1) the length o
of time it takes for the first two remedies to work, (2)
the length of time the site defines as acceptable response,
and (3) the relative abundance of memory. No minimum is
specified in this document. The site will have to
experiment with various values of .TASID.

St o

s A< 2

e —

Determine the site value of .TASID (Appendix I) from
system patches and a listing of TSSA. Experiment with
lower settings of .TASID. With settings under one
second, the analyst should reduce A.SD3I to the same
value as .TASID so that urgent users are recognized
before .TASID is exceeded. This gives TSS a chance to
force swap or to set up a core fence before increasing
memory. Unnecessary memory increases are thereby
avoided. If TSS memory size is not increased, retain
a lower setting of .TASID and return to the beginning of
Section VII.C. If a second execution of this section
does not help, proceed to Section VII.D.

j. Adjust TSS Size Decrease Parameters. If the analyst
reaches this section, excessive memory size decreases
have been detected in Section VII.C.2 above. Selecting
the default values of .TAMRI (time interval between
possible memory reductions) and .TASRI (size of each
reduction) would easily keep excessive decreases from
happening; the solution is to set these parameters to
the default values of five minutes and 5K words, respect-
ively. See Appendix I for parameter locations and bit
positions. If TSS size does not increase with these
parameter changes, return to the beginning of Section
VII.C or proceed to Section VII.D.

k. GCOS Denial of Additional Memory Regquests. The TSS
statistics that directed the analyst to this section
indicated that the TSS memory wait time problem was
probably due to denials by GCOS of TSS requests for
memory. This may indicate a GCOS memory availability
problem or a GCOS urgency code problem. However, the
decision to come to this section was based cn lack of
evidence of internal TSS problems--not on any proof of
actual GCOS denials of TSS memory requests. Use Patch
Number 2 in Appendix I to count GCOS denials of TSS
increase requests. If there are ever more than [100]
over a day's period, assume GCOS denials of TSS memory
requests are a problem, and proceed to paragraph (2)
below. If these are never more than [100] counted,
assume they are not a problem, and proceed to paragraph
(1) below.

(1) Some TSS memory-related parameters are not
likely to influence TSS memory size unless large
changes are made in their values. For this reason,
they are not treated in the other memory parameter

6303<

R ik S (B

r—

sections. These parameters should be examined in
this section before the analyst requests profes-
sional CPE help. The parameters are listed in Table
VII-3. The values of these parameters should be the
default values or should differ from the default
values only in the direction indicated in the
"Desired Direction of Change” column of the table.
See Appendix I for the patch locations and bit
positions of these parameters. If any parameter
differs from the default value in the direction
opposite to the Desired Direction in Table VII-3,
change its value back to the default value. If the
subsystems at a site are unusually large (a signif-
icant percentage [30%] of entries in the Memory
Sizes of Subsystems report over 20K), increasing
.TAMII beyond the default may be advisable. Unless
a dramatic improvement to TSS response takes place,
proceed to Sections VII.D and VII.E.

TABLE VII-3. OTHER TSS MEMORY SIZE PARAMETERS

DESIRED
DEFAULT DIRECTION
PARAMETER VALUE OF CHANGE DESCRIPTION
. TASCP 30 seconds Lower Minimum interval between
urgent user size increases
.TAG 14 seconds Lower Minimm interval between
any size increase
- TAMII 7K Higher Menory size increase

amount

(2) The cause of GCOS denials of TSS memory requests
is likely to be a special site operating constraint:
one large, unswappable program in the same quadrant
as TSS, special constraints on where TSS can be

loaded, etc. Normal batch programs, even with very

i
]
|
|

high (i.e., 62) urgencies may be swapped to make
room' for TSS. Only those with the "dead bit" (bit
26 of the program state word, .STATE) set would
normally be expected to keep TSS from expanding.
Investigate any such causes that may exist at this
site and attempt to change them to allow TSS to
grow. If this is impossible, proceed to Sections
VII.D and VII.E. If those sections do not help, and
if more memory would allow TSS to grow when needed,
consider increasing the total memory configured

on the system.

D. ADJUST MEMORY PRIORITIES

When TSS response is unacceptable, it may be that unac-
ceptable responses occur only when users execute subsystems
requiring more memory than the average subsystem. Because
TSS memory is normally allocated to the smaller subsystems
first, and because larger subsystems must wait longer before
becoming urgent, the normal problems of finding an available
space in memory are compounded for these subsystems. Several
parameters related to urgent users can be changed to give
more priority to large subsystems. This section focuses on
these parameters.

All subsystems are divided into two groups for memory
allocation priorities. The parameter .TAMIS (default 36K)
divides the two groups. The subsystems less than .TAMIS in
size receive what this document calls "standard priority
service." The subsystems of size .TAMIS or larger receive
what this document calls "low priority service." The
procedure below isolates subsystems with poor response and
adjusts the memory allocation priorities to favor those
subsystems. This adjustment may be to standard and/or low
priority service, depending on whether the subsystems with
poor response are under and/or over .TAMIS in size.

The remedies prescribed in these sections involve shift-
ing priority from one subsystem size to another. Some
previously . acceptable responses may become unacceptable,
especially if forced swapping and core fences are used too
much. If this happens, it may mean that the problem is
impossible to solve by rearranging priorities. However, it
is possible to cut forced swapping by raising A.MTQ, and to
control both forced swapping and core fences by raising
.TASWT (making it harder for small subsystems to become
urgent). If these remedies simply correct one response
problem by creating another, proceed to Section VII.E.

e b e

ki et

“i’m‘}'f”'".- .

1. Gather Data

Obtain the TSS Response by Subsystem report and the
Memory Sizes of Subsystems report of the TSS Response Time
Analysis System.

a.

Date and Time

(1) Report Value. The Start Time, in the upper
right corner of either report, gives the date and
time of.the data collection.

(2) Form Entry. Enter the date and time in the
labled-boxes of the part of the form labeled "Sub-
systems Associated with Unacceptable Response."

A separate copy of the form will be required for
each separate date and time.

Subsystem Name

(1) Report Value. Using the TSS Response by Sub-
system report, determine which subsystems logged
unacceptable response according to the site def-
inition of acceptable response. If the site def-

inition of response time is not the same as the TSS

Response Time Model definition (see Section II),
the response times reported in the TSS Response
by Subsystem report will be reported differently
than they would under the site's definition of

response time. If the main difference in definition

is that the site considers response time to end at
the first output to the user, compensation can be
made for the difference in the following way. For
each subsystem, note the Normal Output and Special
Output time on that subsystem's Elapsed Time in
Model States by Subsystem report. This time spent

waiting for output to complete would not be part of
the site-defined response time. Therefore, it may be
subtracted from the responses recorded for that sub-

system in the TSS Response by Subsystem report.

(2) Form Entry. Enter the names of the subsystems
that Togged unacceptable responses into the Name .
column.

Nl Sl 6 i iAo

PRy L e

N

i N 5

c. Percentage Associated With the Subsystem.

(1) Report Value. The Percentage Associated With
This Subsystem value reports the percentage of a
subsystem's Total Response Time value (see the Total
Response Time column) during which the subsystem was
} active. Because only one subsystem is active at a
time for any one user, this subsystem was actually
responsible for this percentage of the response
time reported on its row.

(2) Form Entry. Enter the percentage in the
Percentage column on the form.

y d. Decision. Place a check next to each subsystem

| entered on the form that has a Perceritage figure greater

| than [30%]. These subsystems are the ones mainly respon-
sible for unacceptable response.

e. Mean Memory Size. Obtain the Memory Sizes of

Subsystems report for each subsystem checked on the
form.

(1) Calculation. Multiply the midpoint of each
bucket (the midpoint of 7K-9K is 8K) times the value
in the "PCT" column for that bucket. Sum those
products and divide by 100. The result is the mean
memory size for that subsystem. Many subsystems

will have a constant size and the mean will simply
‘ be that size.

(2) Form Entry. Enter the mean size for each
subsystem in the Mean Size column.

b f. Overall Mean Size. Also obtain the Memory Sizes of
Subsystems Report that is the summary for all subsystems.

(1) Calculation. Calculate the average size over
all subsystems by using this report as if it were a
\ report for a particular subsystem.

, (2) Form Entry. Enter the mean size over all
. subsystems at the bottom of the Mean Size column on
the form.

k]

M,
S

-

71

307<

Wy

Kenis 2 AR

Maximum Standard Priority Size.

(1) Value. From the patches, a listing of TSSA,
and Appendix I, determine the current value of
. TAMIS.

(2) Form Entry. Enter the value on the form in the
box provided §n 1024-word blocks (example - 36K).

Decision. Repeat steps a. through g. for several
data collection perxods. If [any] mean size of a
checked subsystem is smaller than, or the same as, the
mean size for all subsystems, proceed to Section VII.E.
Response time for these subsystems would be increased by
the changes to memory priorities made in this section.

.TAMIS represents the memory size at which a sub-
system is considered too large and is given a low priority
for memory allocation. Two ranges of memory size are
discussed here: (1) greater than the mean size over all
subsystems, but less than .TAMIS and (2) greater than or
equal to .TAMIS. If all individual subsystem means fall
in the first range, follow the procedures in Section
VII.D.2. If all the means fall in the second range,
follow the procedures in Section VII.D.3. If the means
fall in both ranges, follow the procedures in Section
VII.D.2 and then follow the procedures in Section VII.D.3
if it is necessary to improve response further for those
subsystems over .TAMIS in size.

2. Standard Priority Service

In order to be classified urgent, a user's subsystem
must have waited longer than both of two time periods. The
first is a constant--the value of .TASWT in seconds (default
is three seconds). The second is the number of 512-word
blocks the subsystem requires divided by .TASWF (default is
eight). The dividend is expressed in seconds. Table VII-4
shows the waiting times at which a user is first classed
urgent.

The purpose of this section is to give higher priority
to subsystems at the upper memory sizes of standard priority
service. This can be done by raising .TASWF so that a sub-
system would have to be quite large to have to wait an extra
second. It can also be done by raising .TASWT so that the
small subsystems have to wait the same amount of time. It

st

PR TR

is suggested that .TASWF first be tried at values of 16 and
24. This would lower the waiting times for a 32K subsystem
from eight seconds to four seconds and three seconds,
respectively.

TABLE VII-4., MEMORY WAIT PERIODS REQUIRED FOR URGENT USER STATUS

SUBSYSTEM SIZE WAIT PERIOD1
(K WORDS) (SECONDS)

2K 3

8K 3
12K 3
16K 4
24K 6

32K 8

1Assumes default parameter settings.

Experiment with selected values of .TASWT and .TASWF to
find the best parameter settings. Obtain the TSS Response
by Subsystem report for any periods of poor response
to determine the effect of the change.

3. Low Priority Service

Any subsystem of size .TAMIS or larger will have to wait
.TALPP times as long to become urgent. If standard priority
service parameters and .TALPP are at their default values, a
36K subsystem would have to wait nine seconds to be urgent
if .TAMIS were 40K; it would wait 36 seconds if .TAMIS were
36K.

Either .TAMIS or .TALPP can be changed to grant large
subsystems higher priority. Changing .TAMIS to 200K or

changing .TALPP to one (the default is four) would give all i
subsystems the standard priority service (standard, but not :
necessarily equal, depending on .TASWT and .TASWF). Setting et
.TALPP at two would give low priority service a little higher b
priority than a setting of four but would keep the priority :
lower than normal.

R ; ..

-

Deciding what settings to use for these parameters
involves management objectives and the site's definition of
what constitutes acceptablé response. Various settings
should be tried, since the results may not be predictable
quantitatively. If acceptable response is not achieved,
follow the procedures in Section VII.E below.

E. REDUCE MEMORY DEMAND

The objective of this section is to reduce the demand
for TSS swap core. Since this reduction involves decisions
and questions outside the scope of this document, only
suggestions are made here.

This is the last section that concerns memory wait time.
If none of these suggestions helps, try another substate of
TSS response time (Section II).

1. List Largest Users

Use the Memory Sizes of Subsystems Report to determine
the memory sizes of all subsystems. Multiply each size by
the time spent at this size. ‘This gives a figure that
reflects both the size of memory used and how long it was
used. A small part of memory used for a long time may
lengthen memory wait times as much as a large part used for
a short time. A list of the subsystems in their order of
size-time products might suggest which of the actions below
could best reduce memory demand. If a particular application
or set of users appears responsible for most of the largest
items on the list, the users involved may be able to fix
the problem themselves or suggest ways to fix it.

2. Shift from One System to Another

Shifting work from one subsystem to a similar one (i.e.,
BASIC to FORTRAN) might reduce memory demand. One subsystem
might use less memory and/or might use its memory for a
shorter length of time. The Memory Sizes of Subsystems
Reports for two subsystems doing the same work would indicate
relative memory and time efficiencies.

3. Shift to Batch

Applications that involve little interaction and that
are not time critical might be shifted to batch jobs.

? gk o e Co b Ze.
P S Ensaess a3 Aggiie S 4 S s

4. Optimize User Code

Sites that use the FORTRAN (.YPO or FRTN) or BASIC
(BASY) subsystems can try to influence users to write
programs that use less memory or that use memory for shorter
periods. An often-used subsystem could be recodeé in GMAP
and perhaps broken into several smaller subsystems grouped
by the frequency of use of various parts of the code.

5. Reduce Disk I/0 Time

Because subsystems are locked in swap core while they wait
for disk I/0 to complete, memory demand will be reduced if
the time needed for I/0 to disk is significantly reduced.
Resolving disk I/0 problems, and optimizing subsystems and
user code so that both use fewer disk I/0's would help.
This is true only if the time spent in the Disk I/O state of
the TSS Response Time Model is significant.

6. Reduce CPU Time Required

The total demand for the CPU by TSS subsystems also
influences how long these subsystems remain in swap core.
Reducing the time subsystems and user code spend executing
instructions will also reduce memory demand if significant
amounts of time are spent in Eligible for CPU state of the
TSS Response Time Model.

7. Reduce Non-Swappable Non-TSS Process Time

The common types of Non-TSS Process Time lock the user's
subsystem in one place in core for the duration of the Non-
TSS Process. Execute Section X if any significant time is
spent in non-swappable Non-TSS Processes. Table X-1 lists
which types of Non-TSS Processes are swappable.

- Omatia

SECTION VIIT, ‘G!?KE<!§IT‘TIME‘SEARCH\PROCEBURE

The procedures for analyzing GWAKE time should be used
in nearly every response time tuning effort. The tuning
scteps proposed are inexpensive and effective, and relatively
small amounts of GWAKE time can point to severe problems.

A. PROCEDURE SUMMARY

Figure VIII-1 charts the procedures described in this
section. The report used here is the Elapsed Time Spent in
Model States by Subsystem report.

’ > 1}

Execution of a GWAKE Derail instruction causes a sub-
system to be ignored for a period of time that is specified
by the subsystem when the Derail is executed. A subsystem
normally must request a GWAKE. It may be requested because
the subsystem wishes to do nothing for a time. The TSS
monitor subsystems TSAR and TSRI and the batch job monitor
subsystem DJST use the GWAKE to sample data every few
seconds. Subsystems may also use GWAKE's to output a
message at regular intervals. Subsystems may use a GWAKE
when a request to the executive is denied. The subsystem
can try again later, when conditions may have changed.

The TSS executive can also cause a subsystem to use a
GWAKE Derail. The TSS executive will make it seem as thoucgh
the subsystem requested GWAKE time if: (1) the File System
returns a System Master Catalog (SMC) busy status to a TSS

request for File System action, or, (2) the user's subsystem

tries to close the deferred user gate (.TSDGT) while the
gate is already closed. (The SMC busy status informs TSS
that some process [e.g., TSS user or batch job] is creating/
purging/requesting access to/relinquishing access to some
file or catalog eminating from the same SMC TSES wants to
use. The SMC stays busy until that user finishes his change
to the catalog structure. The SMC is not busy during a
normal read/write to a file.)

B. ANALYZE GWAKE TIME

Use the Elapsed Time Spent in Model States by Subsystem
report to isolate the subsystems that are responsible for
the GWAKE time. DJST, TSAR, and TSRI can be expected to use
GWAKE's, as can subsystems that do something periodically
(e.g., write a message to the terminal). GWAKE time charged
to these subsystems represents no problem, unless the sub-
system consumes a significant amount of CPU time, channel

RINAIONd HYVAS FIWIL LIVM EAYMO

SNLVLS
THRIONEY

T-IIIA NOIA

SLVYOILSAANT

==

W3TE0Ud

xsnd SOIVLYD |

YALSYW WALSAS
ALVSOILSAANT

T

qd4aco

[SONILSIT
WALSASENS

IWIL DINNO
HLIM

SWALSASENS ALVIOSI

SWALSASENS SS1

e .

e

time, or memory space. Subsystems that have no reason to
use GWAKE's may be experiencing error returns from the TSS
executive functions or may be having problems with busy
SMC's or deferred user gates. Examine a source listing of
the subsystem and note any GWAKE Derails that are coded and
why they are executed. If there are no Derails in the
source, there must be a SMC busy problem or contention for
the deferred user gate. Use Patch Number 11 (see Appendix I)
to measure contention for the deferred user gate. No counts
with this patch implies the problem is an SMC busy problém. : {

i Sl

C. TUNING STEPS

The tuning steps are divided between those for sub- [3
systems that voluntarily execute GWAKE's and those for | 9
subsystems experiencing SMC busy problems. No tuning steps |
currently =:iist to reduce contention for the deferred user gate. : .

{
1. Voluntary Use of GWAKE's I
|

Subsystems that voluntarily use GWAKE's are not a f
problem as such. However, the length of the GWAKE that is L
executed can be increased to cause the subsystem to use less g
CPU time and disk channel time. Determine how much CPU and
disk time is used via the Elapsed Time in Model States by é

v

P >
NGk A s - d

Subsystem report. Determine whether and how the data col-
lected by the subsystem are being used. Weigh the use
versus the cost in terms of CPU and disk time and adjust the
GWAKE length accordingly by patching the subsystem.

2. SMC Busy Status

Excessive SMC Busy Status returns may be caused by
several things.

B a. Poor Hash Distribution. Many or most of the Userid's
B at a site may hash to the same SMC. This will tend to
” cause contention and overutilization of this particular |
SMC while the other 31 SMC's are idle. Procure a Master f
Save listing of the Userid's and note whether large l
numbers of Userid's hash to the same SMC. If so, change |
the Userid's or the hashing scheme. |
5
%

b. File Restores. Any file restore (user or Master)

may tend to lock one of the SMC's almost continuously.

Any TSS users whose Userid's hash to the same SMC will

experience degraded response time. Start a policy of ;
not running Restores during periods of heavy TSS usage. -8
Have operators TERM any file restores started by accident/ ﬂ?
subterfuge during those periods. \ iﬂ

S A Vi R

T N PR e

B - - T = T e e

i T o

c. Poor Catalog Structure. Each catalog or subcatalog
has space for:recording links to 15 subcatalogs or
files. More than this number of subcatalogs/files
directly under a particular catalog causes one Or more
extensions to be allocated in which to store the extra
links (19 subcatalogs or files per extension). Each
disk access brings in one main record (15 subcatalogs/
files) or one extension. This means that a set of 225
files cataloged directly under a Userid (i.e., "quick
access" files) would take one main record and 12 exten-
sions, with an average of six to seven disk accesses
required to locate a file. Actually, the average might
be higher since the newer and therefore more active
files would be cataloged on the newer extensions, which
will be further from the main catalog record. The same
set of 225 files could be cataloged using 15 subcatalogs,
each subcatalog containing 15 files. Each file locate
would then require exactly two disk accesses; one to
read the Userid record and get the subcatalog pointer,
and the other to read the subcatalog record containing
the file pointer. The smaller disk access requirement
reduces response for the user locating the file, as well
as reducing the time during which other users will find
this particular SMC locked.

Educate users to look for this problem and check
system catalogs and user catalogs to the extent possible
and/or needed to eliminate the problem. One way this
can occur is for extensive numbers of commands to be
implemented using the command loader. Each command
requires a separate quick access file under the same
catalog (CMDLIB). Some of these commands could be
implemented using command lists and primitives in TSSA,
thus, eliminating/moving some of the files. Outmoded/
never-used commands and/or files should be eliminated.

d. Excessive File Scrubbing. Excessive allocations/
deallocations and excessive lengths of files that are
allocated/deallocated often can cause unnecessary
scrubbing (zeroing-out) of file space that is never
used. The SMC involved in the allocation/deallocation
stays locked during this procedure, which means that it
may be locked five times longer than necessary if the
space requested is five times larger than needed. As
possible, reduce all files to the size actually used.

e. Important SSA Modules Not in Memory. A series of File
Management System SSA modules takes control while an SMC

is locked. The SMC will be locked longer if the heavily-
used modules in this series are not in main memory. Follow
the procedure in Section X.C to correct this problem. Do
not restrict MCOUNT to TSS module usage only, because, in
this case, the modules used by batch jobs are as important
as the modules used by TSS.

79
gy, d10<

e
PO

b e Sl N R

e

e ———

SECTION IX, * WWA‘I‘!‘.‘ TIME- SEARCH' PROCEDURE

The procedures in this section analyze output wait time.
These procedures should be used if response times are unaccept-
able and if the TSS Response Time Analysis system indicates
that a major portion of response time is Normal Output Wait
Time or Special Output Wait Time.

A. PROCEDURE SUMMARY

Output wait time is accumulated while a subsystem is
blocked from execution waiting for output to the terminal to
finish. Three basic conditions can block a subsystem from
execution until output to the terminal is finished. One
condition is a user error that results in a TSS executive
error .message. The user is in the Special Output substate
while the error message is printed. Another condition
involves the execution of certain Derails while output is
in progress. Perhaps the most common occurrence of this is
the Return Derail, signifying the subsystem is finished.

The user Waits in the Normal Output state until his output
is finished. A third condition is that buffer space can be
exhausted when more output is desired. Part of swap core is
allocated for extra buffers (EBM) when the subsystem's
original buffer has been filled. The extra buffer space
holds almost 4,000 characters. Subsystems that fill or
nearly £ill this extra buffer space and then relinguish (via
a Return Derail) may account for much of the output wait
time. Sometimes the extra buffer space is not available.
This is most likely to happen in a lightly loaded system
with a very large subsystem that fills all available TSS
memory .

Several conditions can decrease effective terminal speed
and aggravate the previous three conditions. Insufficient
I/0 gueue space can cause an output request to wait until
gueue space becomes available. Insufficient Datanet capacity
may mean that output is delayed in the Datanet front-end
processor (FEP). Inordinately long disk access times to the
swap files may delay output because the extra buffers are
stored on the swap files once the subsystem is swapped.

The Output Wait Time Search Procedure includes four
steps: (1) Investigate User Errors, (2) Investigate I/0
Queue Space, (3) Investigate Output Volume, and (4) Investi-
gate Possible Datanet Delays. Figure IX-1 charts the steps
for analyzing Output Wait Time.

PR 7SRRI A G

b

bR S 52 <2

i
.

SPECIAL OUTPUT SUBSTATE

[INDICATE DATANET DELAYS

INVESTIGATE
DATANET
DELAYS

OUTPUT WAIT TIME SEARCH PROCEDURE

FIGURE IX-1

TSTAT
INVESTIGATE DIVIDE NUMBER
TYPE 3 OF SPECIAL
USER ERRORS DERAILS OUTPUTS BY
(USER INPUTS) TYPE 3 DERAILS
RESULTN_ YES REDUCE USER
> 0.02? ‘
ERRORS
NO
y
SECTION VI
INVESTIGATE
1/0 QUEUE
SPACE
REDUCE QUTPUT
INVESTIGATE
OUTPUT
VOLUME

A form (see Figure IX-2) is provided with this procedure
to guide and document the data collection, A separate copy
of the form will be required for each analysis effort,

The reports used in the Output Wait Time Search Procedure
are listed in Table IX-1l.

TABLE IX-1l. REPORTS USED IN THE OUTPUT
WAIT TIME SEARCH PROCEDURE

SYSTEM REPORT

Subsystem Memory Available

7SS Response Time 1.
in Largest Block

Analysis System
2. Elapsed Time in Model States

TSTAT 1. Status

B. INVESTIGATE USER ERRORS

This section investigates the numb
’ i - : er of user errors.
sglp Fhls section unless a significant percentage of response
ime 1s spent in the Special Output substate.

Obtain the Elapsed Time in Model S '
t tates report for
2§Zg£:i p:riﬁds of poor response. Try to obtain TSTAT
a e approximate start and
collection period. Bt

1. Date and Time

a. Report Value. The Start Time, in the i

: upper right
corner of the report, gives the dét i
data collection. y = 200 RSSals

b. Form Entry Enter the date and ti i
. . time
Time columns on the form. R SISeoakSyand

[ourpur warT TIME SEARCH FoRM

USER INPUTS

B

TR A IR

;
|
E
{

OUTPUT WAIT TIME SEARCH FORM

FIGURE IX-2

o Loy Seisusds

G i R we d

Shda

O Bt ey B 2 €1

&

s

T e

-
o

L

Y RT A \4! Poe

et

)
¥

|
|
|

2. Number of 'Errors

a. Report Value. Use the Number Entries value in the
Special Output row.

b. Form Entry. Enter the value on the form in the
Number of Errors column.

3. Number of User Inputs

a. Report Value. The number of Type 3 Derails (out of
the 60+ types) executed gives an estimate of the number
of separate user input messages.

b. Form Entry. Enter the value in the User Inputs
column.

4. Calculation of Means

a. Calculations. Calculate the mean of the Number of
Errors values and the mean of the User Inputs values
over all data collection periods.

b. Form Entry. Enter the means at the bottoms of their
respective columns.

5. Decision

If the mean Number of Errors value is less than [2%] of
the mean User Inputs value, consider user errors to be low g
and proceed to Section IX.C. If not, attempt to reduce user
errors. Interviews with users will provide clues about
the kinds of errors users make. Information can then be
distributed about avoiding such errors. Making modifi-

cations to the command language and its meaning may also
help.

C. INVESTIGATE I/0 QUEUE SPACE

These procedures and objectives coincide with those of

Section VI.D. Execute that section and return here if I1/0
queue space is not a problem.

D. INVESTIGATE OUTPUT VOLUME

The objective of this procedure is to determine whether
the volume of output to the terminals can be reduced.

AD=AD73 133

COMMAND AND CONTROL TECHNICAL CENTER WASHINGTON DC F/6 9/2
WORLDWIDE MILITARY COMMAND AND CONTROL SYSTEM (WWMCCS), H=6000 ==ETC(U)
SEP 78 B M WALLACK: G H GERO

UNCLASSIFIED CCTC=TM=180=78=VOL=3

{N

FILMED

1 feiiated it s Sl
b 4

m_......_m_.,...._w__
m_m_m_m_m_.m

Interviews with users will usually decide this issue.
The TSTAT status report will report the number of characters
of output by subsystem. This may help isolate the users who
require the most output. There may be other commands,
subsystems, or ways to structure files to reduce the volume

of output.

If the output volume cannot be reduced, the site may
weigh the costs and benefits of increasing the speed of
output. One might try to reduce the time spent in other
substates of the TSS Response Time Model and then return to
consider upgrading terminal speeds if these efforts fail to
achieve acceptable response.

The amount of improvement is hard to estimate. Doubling
terminal speeds would probably halve Output Wait time; it
could conceivably eliminate it. But the eliminated Output
Wait time may become added user think time (Subsystem Idle
state). If the user must read most or all of the output
before entering the next command, faster output may mean
that the user simply spends more time trying to catch up to
the computer.

E. INVESTIGATE POSSIBLE DATANET DELAYS

The objective of this section is to suggest ways to
explore the possibility that the Datanet front-end processor
is a delay to terminal I/0. Since this document does not
attempt to tune the Datanet, outside help must be used to
isolate the problem and recommend solutions if the Datanet
is a suspected source of delays.

Significant Datanet delays to TSS response are rare.
They are also hard to isolate and prove. There are two
"tests" that may help in deciding whether to commit more
resources to an effort to prove whether the Datanet is a
source of delay.

One test involves repeated entering of the same short
(five or fewer characters) line of "code" with a numeric
first character (for a line number). This should be done
while the user is in the BIN (Build Input) mode, frequently
called "star level" because TSS puts an asterisk (*) at the
start of each line. Except for a buffer write to disk once
every 6-20 input lines (depending on line and buffer length),
TSS simply takes the input, adds it to an in-core buffer,
sends another asterisk, and waits for further input. All

i “._“"~ e el

25

this is done in one courtesy call, so that the delays inside
the mainframe should be negligible except when the buffer is
dumped to disk. The number of lines input between buffer
dumps should not change by more than one because the line and
buffer lengths are not changing. If all long responses at
this terminal are evenly spaced (for example, on the 7th,
13th, 19th, 26th, and 32nd lines input), they may be due

to delays encountered trying to dump the buffer to disk.

Any long response times that are unevenly spaced would tend
to imply Datanet delays.

The second test calls for simultaneous monitoring of
response by stopwatch and the TSS Response Time Analysis
System. Because other users will probably be on the system
at the same time, it is suggested that the "test user"
use a subsystem (e.g., MASA) that other users are unlikely
to use. This will make it possible to separate their responses
from his. Have the test user go through a scenario likely
to reproduce poor response of the type that is suspected to
be due to Datanet delays. Carefully time each response with
a stopwatch, using the TSS Response Time Model's definition
of response time (see Section II). Either note when the TSS
Response Time Analysis System begins to collect data, or use
the Start Time option to restrict data reduction to include
only the period during which responses were timed. Run a series
of data reductions with only two responses on each reduction,
so that each response may be individually compared to the
stopwatch time. Compare the stopwatch timings with the
responses recorded for that user in the TSS Response by
Subsystem Report. Significant differences (over two seconds)
would presumably be due to Datanet delays.

Note that these two tests do not necessarily prove whether
the Datanet is a source of delays. 1If delays are noted,
they conceivably could emanate from some error in the GCOS
modules handling I/O to the Datanet. If no delays are
noted, it could be that the Datanet was temporarily not
causing delays, or it could be that the Datanet delays only
certain types of interactions and the test user never used
that type.

v

L e

SECTION X, “ NON~TSS-SERVICE WAIT TIME SEARCH PROCEDURE

These procedures analyze Non-TSS Process time. They
should be used if response times are unacceptable and the
TSS Response Time Analysis System indicates that a major
portion of response time is spent in the Non-TSS Process
substate.

A. PROCEDURE SUMMARY

The Non-TSS Process substate is used to describe sub-
systems that are waiting for service to be performed outside
TSS. The normal types of service performed are File Manage-
ment System (FMS) functions (create, delete, grow, gain
access to files) and interrogations of GCOS functions
(USERID from LOGN, SNUML entry from SYSOUT).

The response times of the interrogations depend primarily
on conditiocns outside TSS. The time they take depends on
general CPU time availability, I/O device and channel avail-
ability, and memory availability. Tests for the absence of
these resources are provided in the Batch Turnaround Time
Analysis Procedures. CPU time availability can be influenced
by the type of priority the job in question is ‘given (Priority
B, I/0 Priority, or Urgency Throughput). Memory availability
can be influenced by the urgency of the program. Procedures
for analyzing the interrogations' wait time are based on
(1) the urgency and priority of the program involved and
(2) the Batch Turnaround Time Analysis tests for memory,

CPU, and 1/0 resources availability.

Processing for the FMS functions takes place in FMS SSA
modules (.MFSxx). The speed of processing these functions
depends on the locations of the modules involved and the
availability of the SSA within TSS as well as the avail-
ability of processor time and disk channel time to TSS.
Busy SMC's (see Section VIII) can also delay them.

Unlike delays encountered in other model states, delays
to Non-TSS Process functions tend to cause delays to other
users besides those executing the functions. A user cannot
be swapped or moved during most Non-TSS Process functions.
Consequently, certain blocks of memory lie idle for relatively
long periods and fragment the rest of TSS memory, increasing
memory wait times for other TSS users and increasing TSS

memory size. The FMS functions lock SMC's, causing other
users and batch jobs to encounter SMC busy statuses. A
large amount of Non-TSS Process time can, therefore, be
more serious than the same amount of time in another sub-
state.

This procedure includes seven parts: (1) Isolate Type
of Non-TSS Process, (2) File Management System Processes,
(3) GCOS Interrogation Processes, (4) Line Length Process,
(5) Special Batch Process, (6) Normal Batch Process, and
(7) Console Interaction Process. Figure X-1 charts the
procedure parts that analyze Non-TSS Process time.

A form (see Figure X-2) is provided with this procedure
to guide and document the data collection. A separate copy
of the form will be required for each analysis effort.

The Non-TSS Process Time report and the Elapsed Time
Spent in Model States by Subsystem report are used in this
section. The Batch Turnaround Time Analysis Procedures
tests used are the Memory Constraint Test, and the Urgency
Codes Test.

B. ISOLATE TYPE OF NON-TSS PROCESS

The objective of this procedure is to identify which
types of Non-TSS Processes are major contributors to the
Non-TSS Process time.

Obtain the Non-TSS Process Time report for the same time
periods as the data that brought the analyst to this section.

l. Date and Time

a. Report Value. The Start Time, in the upper right
corner of the report, gives the date and time of the
data collection.

b. Form Entry. Enter the date and time in the Date
and Time rows on the form.

Percent State: Non-TSS Process

a. Report Value. Use the Percent State value for the
Non-TSS Process substate recorded on the Elapsed Time
spent in Model States (summary) report. This is the
same report used in Section II when the analyst was
directed to this section.

e e oo okl Sl

e ""A"

ik

7 P T

[

ALL NON-TSS PROCESSES

ISOLATE TYPE
OF NON-TSS
PROCESS

PERCENT STATE

EACH TYPE

(NON-TSS
PROCESS)

WEIGHTED AVG.=
PERCENT TYPE
¢ PERCENT

FIGURE X-1

- -‘“0. %<

NON-TSS SERVICE WAIT TIME SEARCH PROCEDURE

FAVOR LOGN
AND/OR SYSOUT

g

i

| MON-TSS SERVICE WAIT TINE SEARCE FORN] [oare: i

DATE

TR
WEIGKTED
AVERAGES

POCDNT TYPE

WEIGHTID PDRCDR e

PERCENT TYPE

WEIGHTED PERCENT

PERCENT TYPE

WEIGHTED PERCENT 1

PERCENT TYPE

WEIGHTED PERCENT
E

NON-TSS SERVICE WAIT TIME SEARCH FORM

FIGURE X-2

row.

Percent Type

l .
f ‘ b. Form Entry. Enter the value in the Percent State
3.

a. Report Values. The Percent Type values for each
type give the percentage of total Non-TSS Process time
of that type.

b. Form Entries. For each type, enter the Percent Type k
value in that type's Percent Type row. Repeat the Date,
Percent State and Percent Type steps for each time
period monitored.

4. Weighted Percent Type Means ‘

This step calculates the mean percentage for each type,
weighting the data for each time period by the Percent State
value for the Non-TSS Process substate for the time period.

a. Calculation. For each Percent Type value, muitiply
the Percent Type value by the Percent State value for
the same time period.

b. Form Entry. Enter the result in the Weighted Per-
cent row for that type of Non-TSS Process Time.

Values, calculate the mean of the values in that row.
. The mean will serve as the Weighted Average for that

|
3
3
& .
1 c. Calculation. For each row of Weighted Percent
i type of Non-TSS Process Time.

i % ! d. Form Entry. Enter the mean at the right of its
B - Weighted Percent row.

1

2

5. Decision

If the Weighted Average for any type of Non-TSS Process
exceeds [1%), consider that type of wait high. Otherwise,
consider it low. Execute the appropriate subsections of
this section for each type of Non-TSS Process that is high.

The associated subsections appear in Table X-1. The
table also indicates whether the subsystem awaiting the Non-
TSS Process can be swapped. Since Line Switch Process time
is part of no TSS response problem, it is not discussed

1 here. During Line Switch Process time, the subsystem is
‘ swapped and the user is entering commands to and receiving
responses from some on-line system outside TSS,

TABLE X-l. .
NON-TSS SERVICE WAIT TIME SEARCH PROCEDURE SECTIONS

- E

SUBSYSTEM i
CAN BE ASSOCIATED PROCEDURES !
TYPE OF WAIT SWAPPED SECTION NUMBERS § 3
; : |
i FILACT GEFYSE NO X.C ‘
' CGROUT USERID NO X.D
File Grow * NO X.C ;
JOUT SNUML NO X.D | o
Line Length NO X.E -
IDS Attributes NO X.C |
File Deaccess NO x.C
Special Batch YES X.F | 4
l Normal Batch YES X.G { E
: Console Interaction YES X.H i
Line Switch YES Non

o

C. FILE MANAGEMENT SYSTEM PROCESSES

The FILACT GEFYSE process occurs when TSS executes a MME
GEFYSE instruction to satisfy the request of a subsystem : .
that executed a DRL (derail) FILACT instruction. This
process is used to access files, modify catalog structure,
: create and purge files, etc. The File Grow process is used
O T to add more disk space to permanent files. The IDS Attributes
i » process is used to obtain necessary information for accessing
A an Integrated Data Store (IDS) file. The File Deaccess
process is used to deaccess files (mark them idle). All
four of these processes are accomplished by executions of
various File Management System (FMS) SSA modules. Several L g
FMS modules may be used each time one of these processes is s B¢
involved, and the same module may be executed more than
once, necessitating its being copied to disk and then back
into memory. The execution, read from disk, execution, copy
to disk, read from disk, execution sequence is strictly
serial - each execution or disk I/0 must be completely ended

R e
4

before the next execution or disk I/0O can occur. Besides
reducing the number of times these processes are needed, the
main method for eliminating some of the time spent in these
processes is to make some of these FMS modules "core resident."
Then they do not have to be loaded from disk each time they
are invoked and they do not have to be copied to disk. Sites
with significant TSS usage should have one or more core
resident FMS SSA modules.

Use the MCOUNT option or the Mass Store Monitor to count
the number of executions of each FMS SSA module. Those
executed the most are prime candidates for core residence.
An analyst may wish to limit the counts to executions by TSS
only (use patch number three in Appendix I). An Analyst may
also want to trace certain very important paths (such as
File Grow, if the Non-TSS Process Time report shows in-
ordinate lengths of time spent in that process) through the
code to determine exactly what FMS modules will be used to
accomplish that process.

Once the candidates for core residence are picked, have
them loaded into hard core at ‘Startup, if possible. Include
the modules in the $§ LOAD section of the startup deck, or
patch the Startup program and the entry word of each module.

If no room exists in hard core, load the modules into
TSS core. Apply patch four (see Appendix I) to TSS to
enable the private SSA module code in TSSO to work. Then
apply patch six to cause TSS to load the modules. (While
this can be done using commercial releases of GCOS, it may
not be possible with all WWMCCS releases.) If the modules
cannot be loaded into TSS, increase the size of SSA cache.
A final possibility is to alter the modules into TSS (say,
between TSSN and TSSO) and relink TSS. Note that the entry
words of the modules must be modified to show the existence
and location of these private SSA modules. Note also that
the addresses and address fields of any patches to TSSO must
be changed to reflect the new location of TSSO and any
patches to the FMS modules must become patches to TSS as
well or be altered into the TSS version of the modules: The
TSS modules will be used by TSS; all other programs will use
the disk-resident versions of these modules.

D. GCOS INTERROGATION PROCESSES

The CGROUT USERID and the JOUT SNUML processes interrogate
parts of GCQS outside TSS for needed information. The
CGROUT USERID process obtains a new user's USERID from LOGN.
The JOUT SNUML process obtains information from SYSOUT on

F,‘v.-v,--mrﬁ-qmv- ™ T T " T—— T Lz TN . T o » " " m“—- a

job output. Both processes accomplish their aims by putting
an entry in the queue of the proper GCOS system program and
waiting for a return to be made to TSS by courtesy call or
an entry in TSS's queue.

No accepted method to speed these processes is currently
known; further understanding and experience with actual
problems involving these processes are needed. One sug-
gestion is to make SYSOUT and/or LOGN permanently resident
(do not allow them to swap) if the problem is of sufficient
importance to justify the allocation of core for this purpose.

E. LINE LENGTH PROCESS

The Line Length process simply changes the line length
field in a table in GCOS hard core. This process requires
no I/0 and no passive resource (i.e., it cannot be delayed
by file busy conditions). The one possible delay is a
closed gate, which cannot delay the process significantly.
If this process consumes enough time to become a problem,
research the local versions of the code executed and/or
request professional help.

F. SPECIAL BATCH PROCESS

The objective of this procedure is to reduce the amount
of time spent waiting for special batch activities to
terminate. The simplest and most effective remedy is to
reduce the number of special batch activities. If users
recompile the same interactive programs frequently, they
should be shown how to save the compiled form of the program
so that it can be run again without recompiling. It may also
be possible to switch to a different compiler or language that
accomplishes the compilation within TSS.

If the above two remedies do not work, a special batch
activity could be speeded through the system in two ways:

(1) Raise its relative urgency for memory. The sub-
system sets the urgency of the special batch activity.
Currently TSS will not allow the subsystem to submit a
special batch activity with an urgency over 40 (decimal).
Raising the urgency higher than 40 requires patches to
both TSS and the subsystems involved. Another way to
raise the relative urgency of special batch activities
is to lower the urgencies of batch jobs in the system.

b S i i

s

AR ST 0 5 s

(2) Raise its relative priority for the CPU. The
priority of a special bat¢n activity could be changed by
switching the dispatching algorithm to Urgency Through-
put (presumably its urgency is relatively high) or
perhaps to I/0 Priority, depending on the amount of I/O
done by other jobs in the workload mix. This can be
done while TSS retains its Priority B status.

Like all batch jobs, Special Batch Process jobs are
slowed by the type of bottlenecks treated by the Batch
Turnaround Time Analysis Procedures. Executing several of
the tests from those procedures may help cut Special Batch
Non-TSS Process time. The Memory Constraint Test (which
references three other tests), is especially recommended.
The Urgency Codes Test would be changed somewhat to test for
too many jobs with urgency codes approximately equal to or
higher than the Special Batch Process jobs. Note that these
jobs bypass the System Scheduler, the Peripheral Allocator,
and SYSOUT. They may not appear on the Batch Turnaround
Time Analysis System reports, or may appear in an erroneous
manner. This may make it impossible to execute the Turn-
around Time Model Scan procedure on their behalf.

G. NORMAL BATCH PROCESS

The submission of a batch job (i.e., through CARDIN)
does not usually entail any Non-TSS Process time. A Normal
Batch Non-TSS Process occurs only when the user informs TSS
that he wants to wait until the batch job is finished. A
response time problem caused by long Normal Batch Non-TSS
Process times is probably a batch turnaround time problem.
Use the Batch Turnaround Time Analysis Procedures in Volume
II of the Guide.

It may be that users do not realize the reason they
are waiting so long. They should be informed that they are
running and waiting for a batch job, not a TSS interaction.
Perhaps they do not actually intend to wait for the batch
job to finish, but intend merely to start the job and go
on to other work.

H. CONSOLE INTERACTION PROCESS

It is unusual for Console Interaction to contribute .
significantly to response. Console interactions should, of
course, be allowed only when necessary. For that reason,

AL SR i tsi i S

the Derail to initiate,them is normally privileged (i.e.,

only a Master user can do it). The site should examine the
console log and determine whether the interaction is necessary.
If it is, some change to the system might make it unnecessary.
It can then be made impossible by patches to TSSK.

Sl et inidindin.

Cl24
Cl24
Cl26
C702

! DCA Code

Addressee

' CCTC Code

DISTRIBUTION

(Reference and Re
(Stock) v iy
(Reference and Re

cord Set)

cord Seé)

Defense Documentation Center, Cameron

b LA s

R g s

Station,
Cameron Station, Alexandria Virginia 22314

Copies

H OMNOW

364

e o oo

s e ——
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE ngz%gbc'g:;fg%‘:g"fou !
¢ [T, REFORT NUMBER 2. GOVY ACCESSION NOJ 3. RECIPIENT'S CATALOG NUMBER
TM 180-78 l
- 4. TITLE (end Subtitte) H-6000 Tuning Guide 5. TYPE OF REPORT & PERIOD COVERED
WWMCCS SYSTEM TUNING PROCESS
Volume III

6. PERFORMING ORG. REPORT NUMBER

¥ 7. AUTHOR(s) ®. CONTRACT OR GRANT NUMBER(e) |

Barry M. Wallack
George H. Gero JR.

9. PERFORMING ORGANIZATION NAME AND ADDRERS 10. PROGRAM ELEMENT, PROJECT, TASK
Command and Control Technical Center AREA & WORK UNIT NUMBERS

CPE, (C702), The Pentagon, Rm BE685
Washington, D.C. 20301

11. CONT LLl &’ncs 1‘0 Aooviesa 12. REPORT DATE

Comman ntr echnic enter 1 September 1978 =
CPE, (C702), The Pentagon, R, BE685 . nul:unuor PAGES 3
Washington, D.C. 20301 109

YT WONITORING AGENCY NAME & ADDRESS(if different from Controlling Office) | \5. SECURITY CLASS. (of this report)

Unclassified
182, DECL ASSIFICATION/ DOWNCRADING
SCHEOULE

[16. DISTRIBUTION STATEMENT (of this Repor() 3
DISTRIBUTION STATEMENT A 1

3 Approved for public release;
! Distribution Unlimited

;
b
E 17. DISTRIBUTION STATEMENT (of the aLstract entered In Block 20, If different from Report)

* 18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverese side i necessary and identily by bleck number)
Tuning, H-6000, WWMCCS, Computer, Performance Evaluation

B e 20, ABSTRACT (Continue en reverea side If necossary and Identify by block mumber)
: | The Federal Computer Performance Evaluation and Simulation Center (FEDSIM) \ AR
. s has developed a document for WWMCCS installations that can be used by site :
i T personnel to analyze the performance characteristics of their Honeywell 6000 \¢
ioh e (H-6000) computer systems. This document, called an H-6000 Tuning Guide, in- b
~~ corporates detailed analysis procedures that guide the analyst in applying .
ey 2 specific techniques to improve system performance. 2

(cont 'd on reverse)

DD o' 473 comion or 'munmtn’a Unclassified
CEFNBITY 1 GER P AVIAS AR TUNE BAAT (Bhan

T

S
The four volumes of the H-6000 Tuning Guide present a precisely structured = |
system of procedures for the analysis of the performance of WWMCCS computer g
: services and systems: ’

Volume I WWMCCS System Tuning Process. The first volume describes the
overall structure and application of the Tuning Guide. It explains
the approach, procedures, and processes taken by the Tuning Guide
to provide analyses of batch job turnaround time and GCOS Time v
Sharing System (TSS) response time.

Volume II Batch Turndround Time: Analysis Procedures. The second volume -
presents a set of procedures for analysis of batch jub turnaround
time. It first presents a model of the processes and queue points
associated with batch job turnaround time and then describes nine
tests that use the model to direct the analysis of turnaround time.

Volume III TSS Response Time Analysis Procedures. The third volume serves 1
the same general purpose and has the same general structure as volume {
II. Volume III presents a complete set of procedures for investigating
the response time of GCOS Time Sharing System (TSS) interactions. The
volume first presents a model of the processes and queue points
associated with TSS response time and then describes eight tests to
direct an analysis of TSS respomse time.

oSt
e,

Volume IV H-6000 Tuning Guide Appendices. The fourth volume provides the 4
appendices referenced by the other volumes of the Tuning Guide. The 3
volume contains detailed descriptions of report formats and other
referenced data.

e ¥ 5 St 354

