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PREFACE 

The body of this report is organized into three parts.    Part I is an 
Executive Summary which briefly outlines the purposes and accomplishments of 
the study.    Part II explores the nature of weapon systems, requirements, front- 
end problems, characteristic activities and problems of front-end development 
phases, and candidate tools for addressing those problems.    Part III presents 
formal mathematical  foundations for front-end requirements engineering and 
design, and outlines a methodology that can be supported by a fully integrated 
set of tools. 

A structured evolutionary development plan that leads to a fully inte- 
grated set of tools in six years, with usable interim increments, is reported 
in a separate interim report, TRW Document No.  32697-6921-001, which is CDRL 
Item A002 of this contract. 
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EVALUATION 

By the early 1970's, the high cost and poor quality of software develop- 

ment was recognized as a critical issue on large high-technology DoD programs. 

Techniques for software development were not keeping pace with the increase 

in system complexity.  Software Engineering, as an emerging discipline, 

was focusing on the more visible activities of software construction and 

test; however, the major cause of inadequate software, poor requirements 

definition and design, had been relatively neglected by the R&D community. 

The few efforts which did. address the more tangible pre-coding and pre-design 

activities, yielded prototype developments for specific and limited 

applications.  These were products of isolated research teams.  Lacking was 

a documented and useful description of the system and software development 

process.  A broad and comprehensive view of the initial user-developer 

interactions was needed; one which portrayed goals and alternative solutions, 

in spite of complexity, being successively defined and refined within a 

framework of effective common understanding. 

This contractual effort, part of RADC TPO 5, Software Cost Reduction, 

addresses three principal technical needs: (1) Definition of front-end 

processes (concept definition, requirements validation, and preliminary 

design); (2) Identification of capabilities and limitations of existing 

automated support tools and methods; and (3) a comprehensive R&D plan to 

evolve and demonstrate an integrated requirements engineering support system. 
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The comprehensive study draws heavily upon pioneering research of the 

U.S. Army Ballistic Missile Advanced Technology Center (BMDATC) which 

has been concentrating on disciplined system and software engineering 

methods.  A promising methodology approach, based upon formal mathematical 

foundations, has been identified. A common tool approach has been 

suggested wherein all development phases would be supported by a single 

nucleus of software utilities employing a single meta-language, data base 

analysis, and simulation generation concept. 

The recommended approach takes into account the DOD emphasis on a high 

level programming language (DOD-1/Ada) and on critical technical issues 

involved in the design of distributed processing systems.  The methodology 

underlying the Proposed Development addresses known problems elsewhere 

unaddressed; hence it represents a significant advance, possibly a 

breakthrough, toward early identification and resolution of critical data 

processing issues in the system design front-end. 

ROGER W. WEBER 
Project Engineer 
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PART I 

1.0 EXECUTIVE SUMMARY 

1.1 INTRODUCTION AND BACKGROUND 

The development of large, high-performance weapon systems has always been 
one of the most technology-stressing activities undertaken by man. In modern 
times, these systems consume large amounts of technical and economic resources, 
but all too often do not work as intended, or do not work at all. Because the 
need for these systems is driven by the potential capabilities of hostile adver- 
saries, development takes place in an atmosphere of constant schedule pressure. 
To meet schedules, large groups of people, often involving many agencies and 
organizations must work in close coordination at the breaking point of prac- 
tical manageability. In this environment, solutions to problems cannot await 
the natural evolution of powerful technical and management techniques to com- 
fortably deal with the issues. 

Computer software plays a vital role in the modern weapon system-- either 
as a controller of weapon system operations and resources, or as a critical 
link in the organization and presentation of information to human tactical com- 
manders. Software, because of its abstract nature and relatively short history 
as an engineering discipline, has been costly and difficult to develop for large, 
complex weapon systems. 

By the early '\970,s  the high cost of software development (and the fact 
that software often did not meet operational needs) was becoming a critical and 
visible programmatic issue on ultra-high technology defense programs. The tech- 
niques for software development were simply not keeping pace with the increasing 
complexity of weapon systems. Several major studies identified poor software 
requirements definition as a major cause of costly, inadequate software. In 
the past few years the software problems, first perceived in the high-technology 
defense community, have become increasingly visible in commercial and industrial 
systems. The degree of concern is indicated by the number of conferences and 
workshops devoted to the topic. In the month of April 1979, three such 
events in the United States and Europe will focus on requirements and related 
problems. 

Pioneering research in requirements engineering by the U.S. Army Ballistic 
Missile Advanced Technology Center (BMDATC), the ISDOS project at the University 
of Michigan, and others, produced a number of tools and techniques (e.g., CARA, 
SREM, PDS) to address requirements-related problems. However, these tools were 
developed for specific applications and specific phases of front-end develop- 
ment, and were developed by groups working in isolation from each other. A 
broad, comprehensive view of the entire front-end system development process 
and its impact on software requirements has been needed to provide a basis for 
an integrated attack on the total requirements problem. 

1.2 PROJECT PURPOSE AND SCOPE 

In FY 1978, RADC sponsored the Software Requirements Engineering 
Methodology (Development) study. The purpose of the study was to define a 

1 



unified methodology approach and recommend an evolutionary development plan 
for construction of an integrated requirements engineering system supported by 
automated tools to address Air Force requirements problems. 

The statement of work consisted of five tasks: 

Identify current state-of-the-art tools and techniques applicable to 
software requirements and preliminary design. 

Investigate the front-end problems of data processing system develop- 
ment. 

Investigate how the identified tools and techniques can be applied to 
the front-end problems, identify gaps, and recommend improvements and 
additional tools. 

Identify approaches for a methodology to effectively use the tools. 

Prepare an evolutionary development plan for constructing an inte- 
grated requirements engineering system. 

Because software problems often originate from earlier system level de- 
cisions, the scope of the study was to include all development effort from 
first perception of the need for a weapon system to preliminary software design. 

1.3 PROJECT ACCOMPLISHMENTS AND CONCLUSIONS 

The project has performed all of its tasks and met its objectives. Speci- 
fically, the project made the following accomplishments. 

• The characteristics of weapon systems, of the development of weapon 
systems, and of requirements were identified and studied. 

• The phases of weapon system and software front-end development, and 
their problems, were analyzed. Although each phase has its own mani- 
festation of problems, the various phases were found to have a common 
set of problems associated with human thought processes, information 
organization, decision-making and communication. 

• More than fifteen existing automated systems of tools and techniques 
were evaluated for application to the front-end problems. Of these, 
nine were selected for further consideration, because of unique pro- 
perties, or global concepts that could be applied across an integrated 
system. 

t  Three approaches for integration of the tools were evaluated. Of 
these, a common tool approach was selected, wherein all development 
phases would be supported by a single nucleus of software utilities 
employing a single meta-language, data base analysis, and simulation 
generation concept. The single meta-language provides the foundation 
for an extensible language capability to express the specialized 
vocabulary and Concepts appropriate to each development phase. 

• A promising methodology approach based upon formal mathematical foun- 
dations was identified and evaluated. This approach is based upon 
break-throughs made on two TRW programs for BMDATC (Axiomatic Require- 
ments Engineering, and Advanced Data Processing Concepts) in 1978. 



These basic research results have been evaluated as they emerged and 
are found to be applicable to Air Force weapon system problems. In 
particular, they provide formal foundations and insights for the proper 
placement of tools within an integrated system. 

•  An evolutionary development plan for the construction of an integrated 
requirements development system and its transfer to the Air Force was 
prepared. Aggressive implementation of this plan could lead to a 
complete capability in six years. Forty-nine R&D tasks in the areas 
of technology consolidation, technology extension, and technology 
transfer were identified and evaluated. These tasks were then grouped 
into twenty-nine packages for time-phased procurement with considera- 
tion for incremental capability delivery. (This plan is separately 
reported in TRW Document 32697-6921-001, which is CDRL Item A002 of 
this contract.) 

This project has found a common body of requirements-related problems 
existing across all phases of front-end development. An integrated approach 
to solving these problems using a common nucleus of automated tools appears to 
be feasible, practical, and beneficial. 

1.4 RECOMMENDATIONS 

Timely and aggressive research in this field is needed because the advent 
of distributed processing systems and startling advances in hardware technology 
foretell an explosive increase in the complexity of technically feasible systems. 
We have barely mastered fairly good software engineering approaches for conven- 
tional single-processor systems, yet we are about to be engulfed by a tidal 
wave of hardware capabilities that offer the potential of spectacular software 
successes or failures. We now have to run when we barely know how to walk. 

It is recommended that the Air Force give critical consideration to early 
sponsorship of critical-path research increments identified in the evolutionary 
development plan. Initial introduction of the powerful DoD-I programming 
language into operational use is expected in 1982-83. If substantial progress 
is not made in reducing front-end development problems by the early 1980^, the 
downstream software engineering problems will be compounded far beyond the 
levels that arouse alarm today. 

It is further recommended that on-going research in the ballistic missile 
defense community be continuously monitored for application and adaptation to 
Air Force use. Earlier research sponsored by BMDATC has been of great poten- 
tial benefit for real-time systems outside the BMD focus of interest  Continu- 
ing research is expected to refine and clarify the gross methodology themes 
presented in Part III of this report, and is expected to introduce new tools 
of potential interest to the Air Force. 



PART II 

1.0 INTRODUCTION 

This report documents the results of a one-year study of the front-end 
problems Involved in the development of complex weapon systems and their em- 
bedded real-time software, and means to alleviate those problems through an 
integrated requirements engineering system supported by automated tools. 

1.1 BACKGROUND 

The development of large, high-performance weapon systems has always been 
one of the most technology-stressing activities undertaken by man. In modern 
times, these systems consume large amounts of technical and economic resources, 
but all too often do not work as intended, or do not work at all. Because the 
need for these systems is driven by the potential capabilities of hostile ad- 
versaries, development takes place in an atmosphere of constant schedule pres- 
sure, To meet schedules, large groups of people, often involving many agencies 
and organizations, must work in close coordination at the breaking point of 
practical manageability. In this environment, solutions to problems cannot 
await the natural evolution of powerful technical and management techniques to 
comfortably deal with the issues. 

Nowhere are the problems of complexity more apparent than in the area of 
software development. Software, by nature, is an abstraction. It is an 
entity that produces actions and behavior completely unrelated to its physical 
form. Correctly defining the requirements for software (i.e., the actions it 
will cause based on specified information) is a major logical and conceptual 
effort, even when schedule is not a consideration. Yet the correct definition 
of software requirements is critical to the development of successful weapon 
system software and vital to the success of the weapon system mission. This 
is because software exercises partial or nearly total control over the opera- 
tion of the modern weapon system and its resources. Even where its control 
functions are minimal, software plays a vital role in processing and displaying 
the information that is the basis for tactical judgements by humans. 

By the early 1970^ the high cost of software development was becoming a 
critical and visible programmatic issue on ultra-high technology programs such 
as ballistic missile defense. Several studies at that time revealed the stag- 
gering cost penalties of late detection of requirements and design errors. 
Figure 1-1 illustrates the relationship. 

Realizing the high cost leverage of error-free requirements, in 1973 the 
U. S. Army Ballistic Missile Defense Advanced Technology Center (BMDATC) ini- 
tiated pioneering research to address the issues of requirements engineering 
and process design for real-time weapon system software. This effort culmi- 
nated in 1977 with the delivery of the TRW Software Requirements Enaineering 
Methodology (SREM) and the Texas Instruments Process Design System (PDS). 
Current BMDATC research is focused on bringing the same rigor to system engi- 
neering disciplines related to data processing, and to problems in distributed 
processing. 
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Figure 1-1 The Penalty of Requirements Errors 

Sufficient research experience has been gained to postulate that an 
integrated set of requirements engineering tools to address the requirements 
definition problems from initial weapon system concept to preliminary soft- 
ware design is feasible and practical. RADC has funded the present Software 
Requirements Engineering Methodology (Development) study to confirm that 
belief and to define an evolutionary development plan for a system adapted 
to Air Force requirements engineering problems. 

Timely and aggressive research in this field is needed because the advent 
of distributed processing systems and startling advances in hardware technology 
foretell an explosive increase in the complexity of technically feasible 
systems. We have barely mastered fairly good software engineering approaches 
for conventional single-processor systems, yet we are about to be ingulfed 
by a tidal wave of hardware capabilities that offer the potential of spec- 
tacular software successes or failures. We now have to run when we barely 
know how to walk. 



1.2 OVERVIEW OF PART II 

Section 2.0 presents a context for investigation of the problems and 
issues surrounding requirements engineering for weapon systems and their 
embedded software. Section 2.1 describes some of the properties of weapon 
systems, emphasizing fundamental concepts common to all weapon systems, re- 
gardless of their detailed design or implementation technology. In Sections 
2.1.1, 2.1.2, and 2.1.3 we discuss generic characteristics, components, and 
component interactions. In Section 2.1.4 we discuss the one-on-one encounter 
between a weapon system unit and a threat. The encounter level of considera- 
tion is readily amenable to standard engineering analyses and is the usual 
first step toward modeling the system's operation. In Section 2.1.5 we 
discuss weapon system engagements -- concurrent encounters between a weapon 
system and multiple threats. Engagements present complex control and resource 
management problems. Operations research disciplines have found these problems 
to be difficult, sometimes impossible, to analyze and model with any fidelity. 
We conclude Section 2.0 by recapitulating the current primary specification 
types applicable to weapon systems, subsystems, and software as defined in 
MIL-STD-490. 

Section 3.0 discusses requirements. In Section 3.1 we present a 
hierarchy of requirements types (processing, non-processing, development) 
affecting software. In Section 3.2 we discuss various other characteristics 
of requirements, and the relationship between requirements and design. In 
Section 3.3 desirable attributes of software requirements specifications are 
summarized. 

Sections 4.0 and 5.0 examine front-end development problems and their 
manifestations in the various development phases. Section 4.0 discusses five 
specific problems: complexity, communication, validation, traceability, and 
change response. These problems appear to be at the root of many observable 
symptoms of poor requirements. In Section 5.0 we characterize six phases of 
the front-end system and software development cycle, and for each phase, 
discuss the scope, content, and problems of the phase. In Section 5.7 we 
conclude that, despite superficial differences, the phases have a common set 
of problems. 

In Section 6.0 we identify and summarize our evaluation of candidate 
tools and integration approaches for producing an integrated requirements 
engineering system. References cited in Part II are listed in Section 7.0. 



2.0 PROBLEM CONTEXT 

Our investigation deals with the front-end development problems for a 
particular class of software: that developed to support the operation of 
weapon systems. Before we examine the accompanying requirements definition 
problems, let us examine the features of weapon systems to determine why 
they present exceptional software development problems. 

In Section 2.1, we begin by stating the salient characteristics of 
weapon systems. Next we identify the fundamental generic components common 
to all weapon systems and examine the types of interactions between these 
components, and between the components and the threat and environment. Finally 
we examine the characteristics of single weapon system/threat encounters and 
then discuss aggregates of encounters called engagements. In Section 2 2 
we summarize the current specification standards for weapon system software 
and for systems and subsystems in which the software is embedded. 

2.1 THE WEAPON SYSTEM CONTEXT 

The problems of software development for weapon systems differ from those 
of civilian applications in many respects. This is due to the unique nature 
of weapon systems. In this section we will discuss the characteristics, com- 
ponents, interactions and encounter sequences of weapon systems that form the 
context of the requirements development problem. 

2.1.1 Characteristics of Weapon Systems 

In the modern world, six characteristics are implicit in the concept of 
a "weapon system": 

1) A weapon system is an organization of men and equipment designed for 
use against specific classes of enemy targets under certain presumed 
operating conditions and rules of engagement. The input to the system 
is an enemy target or group of targets. The output of the system is 
the destruction of the enemy targets, usually required to be accom- 
plished before the targets can contribute to significant damage upon 
friendly forces or facilities. 

2) A weapon system is a real-time system.    The effectiveness of the 
system is dependent upon the ability to respond to an input within 
a specified time.    The required performance of a defensive weapon 
system is defined by the characteristics of the input enemy offensive 
threat and the desired reduction of that threat.    The required per- 
formance of an offensive weapon system is defined by the characteris- 
tics of the target, the characteristics of enemy systems defending 
the target, and the minimum acceptable damage to be inflicted on 
the target. 

3) Without modifications to the system, the effectiveness of any weapon 
system is reduced with the passage of time. The enemy will upgrade his 
offensive threat in numbers and sophistication to maximally stress 



and hopefully break the defense.    He will also upcjrade his defense 
to minimize damage to his own targets.    Because each side strives to 
minimize its resource expenditures, the requirements for a weapon 
system must change and evolve over time. 

4) A weapon system is embedded in a chain-of-command hierarchy reaching 
to the highest levels of government.    Although local commanders may 
be given discretionary authority to use ordinary tactical weapons in 
response to given situations, authority to use a weapon system is 
always conditional and granted from above.    The weapon system designer 
must meet requirements for interfaces with one or more command and 
control systems, and must incorporate features to preclude unautho- 
rized use of critical weapon systems. 

5) A large weapon system is difficult or impossible to test under realis- 
tic combat loads and conditions prior to operational deployment and 
use.    Simulation methods must be used to represent the threat, environ- 
ment, and certain system components and actions.    The question then 
becomes "Do the simulators accurately model real physical phenomena, 
event timing, threat characteristics, and enemy tactics?" 

6) A weapon system is actually engaged in a mission for a miniscule 
fraction of its deployed lifetime.    For critical strategic systems, 
there is no opportunity to resolve erroneous assumptions by trial- 
and-error means.    Such systems are designed to be used once, and 
failure would be catastrophic. 

These characteristics separate weapon systems from most systems used in the 
commercial and industrial world.    We should also expect that the methods of 
system development would be different.    We find this to be true.    Because the 
penalty for error is so high, all requirements that the system is to satisfy 
must be more carefully developed and validated.    Because the system is pitted 
against an intelligent opponent, the requirements will be in a state of flux 
and will tax the limits of state-of-the-art technology. 

Before we consider better means of developing requirements for weapon 
system software, we will examine the components, interactions and operating 
behavior of a typical weapon system. 

2.1.2 Weapon System Components 

While weapon systems exhibit many different forms and levels of complexity, 
all weapon systems are variants of a common underlying structure. A weapon 
system can be categorized as a responsive system, also called a second-order 
feedback system. A responsive system has a defined goal or mission, and has 
the capability to choose, from alternative tactics, the tactic most effective 
in the current operational situation. The basic weapon system model, presented 
in Figure 2-1, can be used to grossly describe responsive weapon systeas ranging 
from a man with a rock to a sophisticated air defense system. 
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To effectively direct a weapon against a target, one must be able to: 
1) detect the presence of a potential target, 2) establish that the detection 
is a desired target, and 3) predict the probable location and motion of the 
target at the time of intercept. A sensor of some type (eye, ear, radar, 
optical device) is required to permit these actions. Sensors may be active 
(e.g., radar) or passive (e.g., eye, electro-optical telescope). In either 
case, controls are generally needed to shift the field-of-view and adapt to 
environmental variations. A given system may employ a single sensor, a 
number of sensors of the same type, or a mix of sensors. Multiple sensors 
may operate independently (e.g., monostatic radars) or cooperatively (e.g., 
multistatic radars). 

A weapon delivery mechanism is also needed to bring the weapon to the 
target if the target is outside the weapon's lethal radius. The oldest weapon 
delivery mechanism is the arm and hand used to throw the rock. Modern weapon 
delivery systems are often multi-stage (e.g., manned aircraft + air-air missile) 
All weapon delivery means have a limited action radius, velocity envelope, and 
correction capability. Effective weapon delivery therefore requires careful 
timing, aiming, preplanning and, where practical, real-time compensation and 
control. These activities in turn require knowledge of weapon delivery capa- 
bility and limitations, estimation of current weapon delivery system state, 
prediction of future target state, a sense of time, and computational capa- 
bility. Such a system must have memory. 

Facilities for memory, computation, and timing coordination are provided 
by the data processing subsystem (DPSS). Until recently, the human brain 
served as the data processing subsystem for most weapon systems. As threat 
performance has increased, sensors and weapon delivery systems have become 
more complex. The unaided human operator can no longer keep pace with the 
data throughput encountered in modern systems. Hence, the bulk of data pro- 
cessing activities have been off-loaded onto computers or networks of computers. 

Operation of a sophisticated weapon system requires situation assessment, 
timely selection of strategies and tactics, allocation of resources to accom- 
plish chosen goals, and positive control over the system. Thus, every weapon 
system has a command and control (C&C) subsystem -- a decision making element. 
Ultimately, all command and control components of the system are human. Ma- 
chines are used to structure information displays for humans and to assist in 
executing decisions made by humans, but they do not choose goals or make inde- 
pendent decisions except as preprogrammed. Although great progress has been 
made in computer systems, the human operator will not be totally replaced, 
because only he can respond to novel and unanticipated situations which call 
for original responses and value judgements. 

The fifth necessary component of a weapon system is the internal commu- 
nications subsystem. The other subsystems are ineffective unless they operate 
as an orchestrated whole. Coordinated action requires the capability to move 
information from one part of the system to another when needed. The internal 
communications subsystem provides this capability. 

10 



The weapon system does not exist in isolation. It is surrounded by the 
system environment, which is simply everything in the outside universe that 
is affected by, or has appreciable effect on the system. It is useful to 
separate the system environment into the controlled environment and the uncon- 
trolled environment. The controlled environment is simply that which the 
system designer or operator can modify, or influence in some degree. Local 
air temperature, local electromagnetic radiation, interfacing system message 
formats, and engagement rules for external friendly systems are examples of 
controlled environment elements. 

The uncontrolled environment is that which the designer or operator can- 
not modify or must accept as fixed. Final decisions by higher authority, 
tables of military organization and responsibility, the weather, the laws of 
physics, and the initial threat scenario are not controlled by the designer or 
operator. Even if these factors cannot be controlled, their range can be 
anticipated within limits and the system design can compensate for them to 
an acceptable degree. The hardest factor to anticipate is the threat, since 
it is the only component purposefully trying to defeat the weapon system. 

The definitions of system, subsystem, and system environment are relative. 
Certainly what we define as a weapon system is merely a subsystem in the con- 
text of the total U.S. defense posture. In the other direction, the subsystems 
of a weapon system may be "systems" in their own right, with an environment 
consisting of the original system environment plus all other subsystems in the 
weapon system. For instance, we can focus on the sensors which search for and 
detect threats and call these a surveillance system or early warning system. 
Similarly, we can detach the sensors and weapon delivery subsystems and call 
the remainder a command, control, and communication (C3) system. An important 
task of the weapon system analyst is to develop an understanding of the rela- 
tionships between a system and its superordinate, subordinate, and coordinate 
systems. 

2.1.3 Weapon System Component Interactions 

The basic weapon system exhibits a characteristic pattern of interactions 
between its components and with the environment. These are shown as paths in 
Figure 2-1. Necessary paths are those found in all weapon systems. Optional 
paths are those characteristic of the classes of components used in the speci- 
fic weapon system. These interactions define the nature of the information 
flow through the system. 

The C&C subsystem interfaces with external systems and the chain of higher 
command. At some time, the system is activated by external authorization, per- 
haps accompanied by specific mission tasking orders, intelligence inputs and 
forward acquisition data from other systems. Supplemental directives and a 
termination order will enter the system at subsequent times during an engage- 
ment. At appropriate intervals the C&C subsystem will release situation re- 
ports, kill reports, and casualty reports to higher command levels, and will 
transmit processed mission data to other systems if needed. The C&C subsystem 
supervises transfer of bulk data between the data processing subsystem and 
external systems. 
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The C&C subsystem interacts with the rest of the weapon system through 
the data processing subsystem, and voice or teletype communication with 
various subsystem operators (not shown in the diagram). The C&C subsystem 
establishes the initial mission configuration of the DPSS which then imple- 
ments lower level activities to bring the weapon system to readiness. During 
the mission, the C&C subsystem may provide resource allocation directives, 
tactical decisions, and requests for information to the DPSS. The DPSS pro- 
vides data for summary information displays and responses for requested infor- 
mation to the C&C subsystem. The allocation of decision-making responsibility 
between the C&C subsystem and the DPSS is a function of the required system 
response time, the load on the system, and the variability or novelty of 
engagement situations. However, the C&C subsystem always controls termination 
of the mission and deactivation of the system. 

The DPSS communicates with sensor and weapon delivery subsystem elements 
via the internal communication subsystem. The DPSS issues control commands to 
the sensor and the sensor returns partially processed observation data to the 
DPSS. The presence of a potential threat or target is indicated by sensor 
detection of electromagnetic or acoustic energy reflected or radiated by the 
object. Thus, there always exists a directed interaction path from the threat 
to the sensor. With active sensors (e.g., radar, sonar) the sensor transmits 
the energy reflected by the object. Hence, there is an interaction path from 
sensor to threat, not used with passive sensors. The interactions between 
threat and sensor occur in the uncontrolled environment, which attenuates the 
sought-after signals and corrupts them with noise. Further noise is introduced 
within the sensor itself (thermal noise). Complex analog or digital processing 
is required to recover the desired signal. 

Before weapon delivery elements are committed, the weapon delivery sub- 
system provides health and status reports to the DPSS. When a target is iden- 
tified and designated, a specific weapon delivery unit is selected by the DPSS 
(or by the C&C subsystem via the DPSS) to engage the target. The DPSS then 
transfers intercept planning information to the selected unit. This may con- 
sist of a completed intercept plan, or only target state vector data if the 
unit is to form its own plan. The DPSS may provide state vector updates to 
the weapon delivery unit at intervals. 

Once the unit is launched, interactions with the remainder of the weapon 
system depend upon the type of weapon. Manned aircraft may be vectored to 
the target via communications from ground elements. Missiles may be guided 
through the sensor or separate guidance transmitters. Or, the weapon delivery 
unit may function autonomously, using on-board sensors to acquire and home in 
on the target. 

Th 
sensor 

here is usually an interaction path from the weapon delivery unit to the 
.., because the unit will appear in the sensor's field-of-view as another 

object.    The sensor capacity must allow for both threats and weapon units. 
Observations of the unit as it closes on the target may be used for active 
guidance or for passive kill assessment. 
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Finally, there is an interaction between the weapon delivery unit and 
the threat (a hit or a miss) which decides the outcome of the encounter. A 
detected miss would lead to commitment of another weapon delivery unit, if 
feasible. 

2.1.4 Weapon System Encounter Sequence 

From the general description of a basic weapon system we can see potential 
for major variations of the basic system interactions, determined by the par- 
ticular choices of weapon delivery subsystem, guidance mode, sensor/DPSS pro- 
cessing allocation, and command and control philosophy. However, there is an 
underlying commonality expressed in the encounter sequence of events shown in 
Figure 2-2. Within this sequence, there are dominant information flows and 
types of data processing activity. In this section we will describe an encoun- 
ter typical of a defensive weapon system. With minor changes, the sequence 
could apply to an offensive weapon system. 

An encounter can be divided into three basic phases -- observation, deci- 
sion, action. The observation phase begins when the sensor commences search 
and ends when enough information has been gathered to determine if a threat 
exists. The decision phase begins with a decision that a threat exists and 
ends with a decision that launches a specific interceptor. The action phase 
begins with interceptor launch and ends with a positive kill assessment. 

The observation phase can be further subdivided into search, detection, 
track, and discrimination subphases. Throughout the observation phase, the 
dominant information flow and data processing in the weapon system is between 
the sensor and the DPSS. The flow from sensor to DPSS is characterized by 
high throughput, repetitive signal processing, thresholding, peak detection, 
correlation, association, and state estimation. The information arriving in 
the DPSS is used to adjust sensor control parameters and, for active sensors, 
define and schedule sensor transmission and reception. The tight coupling 
between the sensor and DP, the large bandwidths of modern sensors, and the 
precise synchronization to be maintained lead to stringent real-time performance 
requirements on the DPSS. In the past, these requirements could only be met by 
expensive special purpose hardware or high throughput "super-computers". The 
advent of low cost LSI components and microprocessors offers the potential for 
specialized high performance architectures at reasonable cost. However, this 
potential cannot be realized until data processing considerations are given 
more weight in system definition activities. 

Is the object a threat? 

Should it be engaged? 

Can it be engaged? 

What interceptor shall be assigned? 

Is a back-up feasible and necessary? 

When should the interceptor be launched? 

What are the side effects? 
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Figure 2-2 Nominal Encounter Event Model 



The measurements made during the observation phase are designed to reveal the 
observable characteristics of the object and determine its possible or probable 
destination. Comparison of the observations against a data base of friendly 
and hostile force observables results in a probabilistic identification of the 
object. Projected friendly and hostile force movement data may be used to 
refine the identification. In the event of a high system load, objects not 
likely to be threats may be dropped from the system in favor of more likely 
threats. 

The decision to engage a threat is a function of the reliability of iden- 
tification, the defended target threatened, the available system resources, 
and the overall battle situation. The identification and engagement decisions 
may be performed entirely in the DPSS using prespecified decision algorithms. 
Or, the decisions may be made by human operators in the C&C subsystem, on the 
basis of supporting computations from the DPSS and other information. 

The remaining decisions leading to interceptor launch are performed within 
the DPSS based upon interceptor performance envelopes and current status data, 
or are performed by some combination of DP and C&C subsystem resources. Pro- 
cessing loads are not severe, unless a large number of alternatives must be 
examined. However, the processing can be logically complex and potentially 
requires access to data on any element in the system. 

During the decision phase, the sensor and DP subsystems are holding the 
target in maintenance track. When an interceptor has been selected, target 
state information is routed to that interceptor and updated as necessary until 
interceptor launch. 

The two major problems of the action phase are: 1) vectoring the inter- 
ceptor to the target, and 2) determining if the intercept was successful. The 
data processing rate required for interceptor control is proportional to the 
acceleration characteristics of the interceptor and the maneuverability of the 
target. Ground-based guidance offers the potential to apply large-scale data 
processing power and centralized battle management, but can place a high load 
on the DPSS and sensors and can create serious resource scheduling conflicts 
and response lags. On-board guidance eliminates many of the problems of a 
tightly coupled system, but data processing capacity is severely constrained 
by size, weight, and power restrictions. 

Kill assessment requires that the intercept be observed and that a kill 
can be distinguished from a non-kill. This activity is academic if there is 
no opportunity for a second shot at the target. 

2.1.5 Weapon System Engagements 

A weapon system engagement can be defined as a discrete set of encounters 
followed by a period of inactivity. Typically, an engagement must be fought 
with the resources on hand at the start of the engagement because repair and 
replenishment of resources is not feasible. 
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The visualization and design of a system to handle a single encounter is 
relatively easy compared to the task of visualizing and designing a system 
capable of successfully fighting the majority of possible engagements. The 
difficulties at the system level are essentially the same as those faced by 
the designer of a responsive data processing facility with uncertain demand, 
but compounded by more stringent response times, a hostile "user", and the 
fact that engagements vary in the space domain as well as the time domain. 

Engagements are presumed to be fought under conditions of limited re- 
sources. To ensure that an attack is successful, the attacker must bring suf- 
ficient force to bear such that the defense is eventually overloaded or depleted. 
The defender is anxious to avoid development and maintenance costs for defensive 
capacity that is unlikely to be needed. Hence, he sizes his system according 
to the maximum force attack believed within the practical capability of the 
attacker, with some allowance for stronger attacks believed to be improbable. 
While the key element in winning a single encounter is performance, the key 
elements in winning an engagement are: adequate resources, effective manage- 
ment of scarce resources, and a system design such that overall performance 
degrades "gracefully" under overload (i.e., does not suddenly collapse under 
a small increase in attack strength). 

There are numerous tradeoffs to be made between system performance and 
required resources in the design of an effective weapon system. To complicate 
matters, the effect of a performance change in one part of a system may show 
up as a significant change in resources needed in a completely separate part 
of the system. 

To illustrate this point, we will consider a simple system responding to 
an attack scenario, as shown in Figure 2-3. For simplicity we will ignore the 
spatial geometry of the attackers and consider only their time sequencing. We 
shall first consider a system where the reaction time is just adequate to des- 
troy a single attacker before he can inflict damage on the defended target. 
As described in the previous section, we will consider an encounter to be 
divided into observation, decision, and action phases, each phase demanding 
different resources. We will also consider that n concurrent encounters in 
a given phase demand n units of resource for that phase. We will further 
assume that one-half unit of observation resources will be committed to each 
attacker in the decision and action phases for purposes of maintenance track. 
All encounters and each phase within encounters will consume the same time for 
all attackers. Figure 2-3 shows the relative amounts of each resource needed 
versus time (i.e., the system load profile) to successfully fight the engagement, 

Now let us postulate a performance improvement in the observation phase 
(e.g., improved track filter convergence, improved identification algorithm) 
such that the time required from first detection to threat identification is 
reduced by twenty percent. This reduces the system reaction time by 10 percent 
for a single encounter and introduces a slack time interval between first 
possible detection and latest permissable intercept. The revised engagement 
timeline and system load are shown in Figure 2-4. The heavy dots at the left 
of the engagement timeline represent the earliest detection point for an 
attacker and the X's at the right indicate the latest permissible intercept. 
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Because of the slack time in the encounter, handling of certain encounters 
can be delayed somewhat until busy resources are freed. Hence, the maximum 
needed amount of resources can be reduced. Strangely enough, the performance 
improvement in the observation phase permits 40 percent reduction of decision 
resources and 17 percent reduction of action resources, but only 13 percent 
reduction in observation resources. Even stranger phenomena occur in sched- 
uling theory where it can be shown that sometimes improved performance of 
individual tasks (i.e., greater speed) can actually lengthen the minimum 
schedule to perform a set of tasks [Ref. 1]. 

The principle problems of engagement planning and analysis can be charac- 
terized as widely-studied resource allocation and scheduling problems addressed 
by operations research. One type of problem is the 1 x n assignment problem 
(i.e., given one interceptor and n targets, which target should be inter- 
cepted?). Another is the m x 1 assignment problem (i.e., given m intercep- 
tors and one target, which interceptor should be tasked to perform the inter- 
cept?). The solutions to these problems are highly context-dependent. The 
general problem is the m x n assignment problem which is practically solvable 
under very restricted conditions and simplifying assumptions. The 1 x n sched- 
uling problem can be stated as: given one resource and n tasks that utilize 
the resource (with specified arrival times, execution times and possibly pre- 
decessor-successor constraints) what is the sequence of task execution that 
results in the minimum completion time for all tasks. The general m x n sched- 
uling problem permits variable allocation of resources to minimize the schedule. 

Despite all the research devoted to these problems by operations researchers 
over three decades, practical techniques for finding optimal solutions without 
extensive computation have not been found except for very limited cases. Some 
heuristic techniques have been invented that yield near-optimal solutions with 
certain assumptions. The absence of powerful analytical techniques has led to 
reliance on simulation as the primary tool for verifying the adequacy of pro- 
posed weapon system designs. 

Engagement management has traditionally been performed by human tactical 
commanders, and the role of automation has been to collect, consolidate, and 
display relevant data for input to human decisions. This permits the commander, 
trained in military science, to make a variety of situation assessments and 
introduce novel tactics in response to the particular real-time situation. 
When engagement management is automated, the designer must anticipate all 
possible contingencies and develop algorithms to yield effective system 
response. If the appropriate tactical responses are not delineated in the 
system requirements, the military user is effectively surrendering command of 
the system to technologists who may be completely ignorant about military 
science. 

2.2 SPECIFICATION STANDARDS 

The current specification standards for requirements statements in the 
weapon system development process are stated in MIL-STD-490 and amplified in 
MIL-STD-483.    These standards apply to all  services.    The pertinent Type A, 
B, and C specifications for systems, subsystems, and software are described 
below.    The following text is excerpted directly from MIL-STD-490. 
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2.2.1 Type A - System Specification 

This type of specification states the technical and mission requirements 
for a system as an entity, allocates requirements to functional areas, and 
defines the interfaces between or among the functional areas. Normally, the 
initial version of a system specification is based on parameters developed 
during the concept formulation period or an exploratory preliminary design 
period of feasibility studies and analyses. This specification (initial 
version) is used to establish the general nature of the system that is to be 
further defined during a contract definition, development, or contract design 
period. The system specification is maintained current during the contract 
definition, development, or equivalent period, culminating in a revision that 
forms the future performance base for the development and production of the 
prime items and subsystems (configuration items), the performance of such 
items being allocated from the system performance requirements, 

2.2.2 Type B - Development Specifications 

Development specifications state the requirements for the design or 
engineering development of a product during the development period. Each 
development specification shall be in sufficient detail to describe effectively 
the performance characteristics that each configuration item is to achieve 
when a developed item is to evolve into a detail design for production. The 
development specification should be maintained during production when it is 
desired to retain a complete statement of performance requirements. Since 
the breakdown of a system into its elements involves items of various degrees 
of complexity which are subject to different engineering disciplines or speci- 
fication content, it is desirable to classify development specifications by 
sub-types. The characteristics and some general statements regarding each 
sub-type are given in the following paragraphs. 

2.2.2.1 Type Bl - Prime Item Development Specification 

A prime item development specification is applicable to a complex item 
such as an aircraft, missile, launcher equipment, fire control equipment, 
radar set, training equipment, etc. A prime item development specification 
may be used as the functional baseline for a single item development program 
or as part of the allocated baseline where the item covered is part of a 
larger system development program. Normally items requiring a Type Bl speci- 
fication meet the following criteria: 

a) The item will be received or formally accepted by the procuring 
activity on a DD Form 250, sometimes subject to limitations 
prescribed thereon. 

b) Provisioning action will be required. 

c) Technical manuals or other instructional material covering operation 
and maintenance of the item will be required. 

d) Quality conformance inspection of each item, as opposed to sampling, 
will be required. 

20 



2.2.2.2 Type B2 - Critical Item Development Specification 

A Type B2 specification is applicable to an item which is below the level 
of complexity of a prime item but which is engineering critical or logistics 
critical. 

a) An item is engineering critical where one or more of the following 
applies: 

1) The technical complexity warrants an individual specification. 

2) Reliability of the item significantly affects the ability of the 
system or prime item to perform its overall function, or safety 
is a consideration. 

3) The prime item cannot be adequately evaluated without separate 
evaluation and application suitability testing of the critical 
1 tem, 

2-2.2.3 Type B5 - Computer Program Development Specification 

This type of specification is applicable to the development of computer 
programs, and shall describe In operational, functional, and mathematical 
language all of the requirements necessary to design and verify the required 
computer program in terms of performance criteria. The specification shall 
provide the logical, detailed descriptions of performance requirements- of a 
computer program and the tests required to assure development of a computer 
program satisfactory for the intended use. 

2.2.3 Type C - Product Specifications 

Product specifications are applicable to any item below the system level, 
and may be oriented toward procurement of a product through specification of 
primarily function (performance) requirements or primarily fabrication (detailed 
design) requirements. 

a) A product function specification states: 1) the complete performance 
requirements of the product for the intended use, and 2) necessary 
interface and interchangeability characteristics. It covers form, 
fit, and function. Complete performance requirements include all 
essential functional requirements under service environmental condi- 
tions or under conditions simulating the service environment. Quality 
assurance provisions include one or more of the following inspections: 
qualification evaluation, pre-production, periodic production, and 
quality conformance. 

b) A product fabrication specification will normally be prepared when 
both development and production of the item are procured. In those 
cases where a development specification (Type B) has been prepared, 
specific reference to the document containing the performance require- 
ments for the item shall be made in the product fabrication specifi- 
cation. These specifications shall state: 1) a detailed description 
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of the parts and assemblies of the product, usually by prescribing 
compliance with a set of drawings, and 2) those performance require- 
ments and corresponding tests and inspections necessary to assure 
proper fabrication, adjustment, and assembly techniques. Tests 
normally are limited to acceptance tests in the shop environment. 
Selected performance requirements in the normal shop or test area 
environment and verifying tests therefore may be included. Prepro- 
duction or periodic tests to be performed on a sampling basis and 
requiring service, or other, environment may be prepared as Part II 
of a two-part specification when the procuring activity desires close 
relationship between the performance and fabrication requirements. 

2.2.3.1 Type Cl - Prime Item Product Specifications 

Prime item product specifications are applicable to items meeting 
the criteria for prime item development specifications (Type Bl). They may 
be prepared as function or fabrication specifications as determined by the 
procurement conditions. 

2.2.3.1.1 Type Cla - Prime Item Product Function Specification 

A Type Cla specification is applicable to the procurement of prime items 
when a "form, fit and function" description is acceptable. Normally, this 
type of specification would be prepared only when a single procurement is 
anticipated, and training and logistic considerations are unimportant. 

2.2.3.1.2 Type Clb - Prime Item Product Fabrication Specification 

Type Clb specifications are normally prepared for procurement of prime 
items when: a detailed design disclosure package needs to be made available; 
it is desired to control the interchangeability of lower level components and 
parts; and service maintenance and training are significant factors. 

2.2.3.2 Type C2 - Critical Item Product Specifications 

Type C2 specifications are applicable to engineering or logistic critical 
items and may be prepared as function or fabrication specifications. 

2.2.3.2.1 Type C2a - Critical Item Product Function Specification 

Type C2a specification is applicable to a critical item where the item 
performance characteristics are of greater concern that part interchange- 
ability or control over the details of design, and a "form, fit and function" 
description is adequate. 

2.2.3.2.2 Type C2b - Critical Item Product Fabrication Specification 

A Type C2b specification is applicable to a critical item when a detailed 
design disclosure needs to be made available or where it is considered that 
adequate performance can be achieved by adherence to a set of detail drawings 
and required processes. 
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2.2.3.3 Type C5 - Computer Program Product Specification 

A Type C5 specification is applicable to the production of computer 
programs and specifies their implementing media, i.e., punch tape, magnetic 
tape, disc, drum, etc. It does not cover the detailed requirements for 
material or manufacture of the implementing medium. When two-part speci- 
fications are used, Type B5 shall form Part I and Type C5 shall form Part 
II. Specifications of this type shall provide a translation of the performance 
requirements into programming terminology and quality assurance procedures 
necessary to assure production of a satisfactory program. 
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3.0 WHAT IS A REQUIREMENT? 

The totality of interactions between any real deployed system and the 
rest of the universe is unknown, in large part unmeasurable, and, thus, 
unknowable. What we conceive as the "system" is, in all cases, an abstraction 
from reality that retains a limited set of measurable parameters meaningful in 
fulfilling the system objectives. 

Within the range of these system parameters, and others with measurable 
effects on the system or its environment, there are "desirable" and "undesir- 
able" values. The purpose of stating requirements is to define the boundary 
between desirable and undesirable, and especially that between acceptable and 
unacceptable. A requirement is simply a statement of something needed to 
ensure that the system meets an operational objective at the proper time. 

This does not mean that real operational needs will always be within 
current technological capabilities at acceptable cost. Practicality demands 
that only those needs that are technically and economically feasible be 
addressed at a given time. Thus, a requirements engineering discipline must 
provide mechanisms to avoid infeasible combinations of requirements early, 
before ill-fated developments are undertaken. 

Beyond the concept of a requirement as "something needed", there are 
different types of requirements, different notions of what separates require- 
ments from design, and certain properties of good requirements that make things 
easier for the development team. The following sections explore some of these 
issues. 

3.1 A HIERARCHY OF SOFTWARE REQUIREMENTS 

Figure 3-1 decomposes the totality of requirements affecting software into 
a hierarchy of categories of requirement types. Each of the three major cate- 
gories is discussed in the following paragraphs. 

3.1.1 Processing Requirements 

Processing requirements are those that define the active role of the 
software in the weapon system and those features of the software that affect 
the proper operation of other subsystems. Processing requirements can be 
further decomposed into three categories: 

• Functional Requirements -- define the conditions for initiation and 
termination of software elements and define "what the software is to 
do" during its period of operation. 

• Performance Requirements -- define "how well" the software is to 
perform its functions, principally in terms of computational 
accuracy and response times to given stimuli. 

• Interface Requirements -- define the agreed-upon assumptions that the 
developers of one subsystem can make about the operation of other sub- 
systems, and the physical or information links between subsystems. 
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Figure 3-1    Types of Software Requirements 



At early stages in the development of a system it is preferable to state 
the requirements in a computer-independent form (i.e., not presuming a partic- 
ular processor or operating system). This provides a baseline to accommodate 
later changes in host processors and encourages attention to portable software. 
As system design proceeds, specific machine-dependent requirements may be levied, 
but they should be identified as such for traceability purposes. 

In this report, we are primarily concerned with the problems of processing 
requirements. These are concerned predominantly with technical considerations. 
The non-processing requirements and project requirements are driven primarily 
by management considerations. 

3.1.2 Non-Processing Requirements 

Non-processing requirements are those that deal with the software as a 
manufactured component rather than an action-producing entity. Included in 
this category are requirements on the form and content of supporting documen- 
tation, constraints on programming languages, structural design restrictions 
(e.g., structured programming), requirements on the physical medium for soft- 
ware delivery (e.g., punched cards, tapes), and restrictions on routine length. 

The non-processing requirements deal with things that can usually be 
verified by inspection of physical items, including program listings and 
support documentation. They generally affect the methods of production only 
when the consequences of those methods are visible directly in the deliverable 
software, or its representation. Most non-processing requirements evolve from 
practices that are proven or believed to produce higher quality software. 

3.1.3 Requirements on the Project 

Requirements on the project are those that constrain cost and schedule, 
and promote management visibility and orderly progress. Examples are require- 
ments for design reviews, progress reporting, implementation plans, quality 
assurance plans, and configuration management plans. These developmental 
requirements affect the software indirectly by promoting an orderly and manage- 
able development environment. 

Generally, requirements on the project are established through contractual 
provisions independent of the specifications on the product. Although this 
study is not concerned with generating these types of requirements, it should 
be pointed out that a disciplined requirements engineering methodology for 
product requirements makes it easier to comply with project requirements and 
can provide auxiliary information to demonstrate compliance. 

3.2 REQUIREMENTS ISSUES 

In this section, we will discuss the relationship between requirements and 
design and explore some other characterizations of requirement types. 
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3.2.1 Requirements and Design Freedom 

At any level of system development, the requirements at that level should 
state the needs of the system without inappropriate assumptions or constraints 
on the solution. In this way, the designer is left with the maximum latitude 
to find an effective solution. 

Design freedom is not an exercise in technical democracy; it must be 
justified from the overall systems development point-of-view. It cannot be 
assumed to be obviously good just because it sounds good (i.e., who can be 
against freedom?). Its real justification must stem from the concept that 
some design decisions are more appropriately made at a lower level upon con- 
sideration of: 

t Information available 

• Technical skills required to properly make the decisions 

• Cost associated with delaying decisions 

• Cost associated with making wrong decisions 

• Interdependence of decisions with other decisions at the same level 

• Lead time, resources, schedule impact of implementing the decisions. 

In particular, a decision made as soon as possible has many benefits if 
it is made correctly. Furthermore, in many cases there are many workable 
("correct") approaches and the quest for an optimum is not cost-effective. 
Therefore, feasibility must be considered and design decisions made at all 
levels, else the process may proceed down costly, impractical paths. The 
requirements development process should, therefore, provide data to support a 
growing confidence that the system is feasible, and consider potential feasi- 
bility problems when making design decisions. 

For instance, the following are considered to be examples of process 
design decisions: 

• Algorithm approach (e.g., decoupled vs. fully coupled Kalman filter 
for tracking) 

• Software packaging (e.g., data base organization, algorithm 
boundaries) 

• Computer scheduling approach (e.g., specific interrupt priority 
scheme). J 

The following are not process design decisions, and are to be specified 
in the software requirements: 

t  Paths of processing steps to be applied to DP stimulus data 

• Data to be saved and output (functional description) 

• Accuracies and time responses. 
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Certain requirements on lower levels of development will, of course, 
automatically follow from design decisions at a higher level. However, con- 
straints that are not implied by these decisions are to be avoided. For 
instance, if the operation of the weapon system demands that certain informa- 
tion be available within a given response time, it is appropriate for the 
system engineer to specify the information items and the response time. It is 
not appropriate for him to specify the structure of the data base. As long as 
the information is available at the right time, he can be indifferent to the 
organization of the data base. 

3.2.2 Requirements by Choice and Inescapable Requirements 

"Requirements by choice" are, in effect, design decisions already made. 
Inescapable requirements are those that automatically follow from design 
decisions or from uncontrollable threat and environment characteristics. 

All system developments evolve from a single "requirement by choice" -- 
that choice being to build a system. Immediately, a large set of inescapable 
requirements are imposed by that choice. For instance, it is known that an 
opponent has just developed, and intends to deploy, a tactical fighter-bomber, 
X, with maximum attack speed, V knots, and weaponry including air-to-ground 
missiles with 50 NM range. Aircraft X can be used in attacks against a class 
of point targets, Y, (and presumably can attack from any azimuth). The choice 
here is whether or not to defend Y against X. If the answer is yes, the first 
requirement on the system is "defend Y against X". 

From this "requirement by choice", a set of inescapable requirements 
immediately follows, defined by the properties of X. One of these is that no 
X can be allowed to penetrate within 50 NM from a defended target (the range 
of X's weaponry). A second requirement is, given a defense system reaction 
time, tR, between first detection and intercept, the range of the attacker from 

the target, Rp, at which detection is assumed must obey the relationship 

Rn >  vtD + 50     (in nautical miles). 

We still have freedom to vary tD and R , but the relationship that must be 
K     U 

maintained between them is an inescapable requirement. 

The same interaction between design choices and requirements holds at each 
level of system development. Let the requirements for a Level N system compo- 
nent be defined from functional analysis and design decisions at Level (N-l) 
as shown in Figure 3-2. The designers at Level N receive these requirements 
and evaluate them. Through decomposition of the functional and performance 
requirements on the component, alternative designs are proposed to satisfy the 
requirements. Each alternative design is described in terms of subcomponents 
that perform subfunctions of the functions allocated to the component. After 
evaluation of the alternatives, a "best" design is selected for development. 
Inherent in this design are several design decisions, and a definition of sub- 
components. For each subcomponent, a set of requirements dictated by the 
design at Level N is prepared. These requirements are input to the subcompo- 
nent designers at Level (N+l). 
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Figure 3-2    Interaction of Requirements and Design 
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The legitimate requirements to be passed to the Level (N+l) designers are 
the necessary "requirements by choice" at Level N, the inescapable requirements 
that follow, and the inescapable requirements from higher levels. If many 
alternative design choices are possible at Level (N+l) and they are all satis- 
factory in terms of the design at Level N, then the Level (N+l) designer 
should make the choice, not the Level N designer, unless there are explicit, 
defensible reasons for doing otherwise. 

3.2.3 Problem-Oriented Versus Solution-Oriented Requirements 

A requirement is problem-oriented (i.e., "top-down") if it states a need 
in terms of a higher level context or mission, and levies that requirement 
upon the entire unit that is tasked with satisfying that requirement. If we 
are identifying requirements for a data processing subsystem (DPSS), the 
requirement should be stated as, "The DPSS shall .,.", and not, "Routine X of 
Program Y shall ...". 

A requirement is solution-oriented (i.e., "bottom-up") if the need is 
stated indirectly, in terms of specific components of the unit that is tasked 
with the requirement, or in terms of how the need is to be fulfilled. The 
abstract statement of the linear filtering problem with all attendant assump- 
tions explicitly stated is a problem-oriented requirement for a "tracking 
filter". The description of a seven state-variable Kalman filter that "shall 
be implemented" is a solution-oriented requirement for a tracking filter. 

The danger of solution-oriented requirements is that they obscure the real 
problem at a given level. The presumed solution may not be the best or most 
practical one, and in some-cases may be completely inappropriatft. At best, the 
solution-oriented requirement complicates the traceability of the solution to 
the real problem, and at worst delays the detection of erroneous assumptions. 
It may also complicate the satisfaction of other requirements where a strong 
relationship between the requirements is not obvious. 

3.2.4 Soft and Firm Boundary Requirements 

The designation of the hardness of constraints, restrictions, and boun- 
daries of performance are of two classes: 

(i) Statistical or probabilitic (soft), and 

(ii) Absolute or deterministic (firm). 

Example: 

3.2 The estimate of range shall not differ from the actual value 
(computed from precision trajectory generation as discussed 
in ...) by: 

Type (i) - A normally distributed distance error with zero 
mean and standard deviation of 1500 feet. 

Type (ii) - 1000 feet in absolute value. 
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Statistical or probabilistic requirements, when well-defined, are funda- 
mentally complex. They are usually couched in terms of stochastic processes 
with associated probability distributions seldom defined. However, the 
performance boundaries erected by these requirements provide an excellent 
environment for design freedom. Due to the boundary elasticity, so-called 
off-nominal cases are easily covered. This type of requirement is easily 
levied when ideas and details are fuzzy. Even when not well-defined, those of 
type (i) still communicate important gross information. 

Type (11) requirements are fundamentally simple because they are in terms 
of elementary inequalities. They are easily stated with high precision. 
Mathematical analysis and proofs of type (11) propositions are more easily 
accomplished. It is clear that improper allocation of these requirements can 
yield overly-restrictive design constraints. Type (ii) requirements are not 
usually levied when ideas are fuzzy, but only when details and underlying 
structures are readily seen. 

Type (i) requirements are more numerous in early stages of system 
development, whereas type (ii) requirements occur more frequently in the later 
stages of development (see Figure 3-3). It should be noted that some types of 
requirements (e.g., reliability, availability) will always be type (i) because 
of the probabilistic definition of the parameters. 

3.2,5 Long and Short Time-Span Requirements 

Two categories of requirements applying to periods of system action are: 

(a) End item or whole process, and 

(b) Intermediate item or segmented process. 

These are illustrated in Figure 3-4. 

Example: Two type (a) requirements are: 

3.2.a The system shall obtain at least a 40 percent defended 
target survivability. 

3.2.b The leakage due to the DP shall be no more than 10 percent 
of the system leakage. 

The type (b) requirements are: 

3.2.c After three valid track returns have been received, the 
estimate of object state shall be known sufficiently well 
so that   

3.2.d Radar power usage shall satisfy the short term restrictions .. 

The type (a) requirements are more strategic in nature. They are levied 
in the early stages of the development process because they deal more directly 
with the system goals and objectives. As a result, these requirements affect 
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many parts of the system and apply to the time interval elapsed by the 
complete system engagement. Generally, the terminology in the type (a) 
requirements is simple and easy to understand. The impact of the type (a) 
requirements on design freedom is at two extremes. On one hand, if the state- 
of-the-art is not pushed, design choices are quite numerous. On the other 
hand, if type (a) requirements are improperly levied or the circumstances 
dictate very difficult goals and objectives, then most alternative designs are 
eliminated from consideration. It is clear that requirements of type (a) 
require entire system dynamics for testing. 

The type (b) requirements have tactical implications. These are more 
often levied in the later stages of system development and apply to fewer parts 
of the system. The type (b) requirements apply to specified segments of the 
system engagement period. The terminology usually is not simple and is filled 
with minute system details. The segmenting of the system process interval 
usually admits many design decisions so that freedom is diminished by intro- 
ducing (b) requirements. Testing of type (b) requirements is much more like 
"Unit Testing" and requires only a limited interval of system dynamics. 

3.2.6 Open System Versus Closed System Requirements 

An example of an open system requirement is that proposed to be levied 
upon the guidance software for a strategic missile: 

The software shall ensure that the warhead target miss distance in 
operational use upon enemy targets shall be no more than X (3a) 
from the aim point in a horizontal plane. 

This simple statement transfers to the guidance software all responsibility 
for: faulty inertial measurement units, control misalignments, propel 1 ant 
faults, geodetic measurement errors, reentry vehicle aerodynamic variations, 
and weather variations in the target area. If taken literally, a full-scale 
war (carefully instrumented and monitored) would be necessary to test the 
software for compliance with the requirement, and the test results would be 
inconclusive. In any case, no contractor can rationally be responsible for 
unspecified environmental conditions beyond his knowledge or control. The fact 
that "open-ended" requirements are accepted implies that no one takes them 
seriously or literally. In many cases this eventually results in turbulent 
misunderstandings between customer and contractor. 

A more reasonable and objectively testable statement of the requirement 
would read something like this: 

Using identical stimuli and responses provided by Missile and 
Environment Model A, the software shall ensure that the computed 
target miss distance in a horizontal plane (at simulated burnout) 
varies by no more than X (3cr) from that computed by Model B, 

The combination of Model A and Model B in this case forms a closed reference 
system. The combination of Model A and the software under test forms another 
closed system. The differences in results between Model B and the subject 
software are amenable to analysis. A word of warning is appropriate here. 
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If one wishes to levy such requirements, he must ensure that Model B is the 
most accurate model of the desired behavior obtainable, and be ready to prove 
it. 

In real-time system development, the high fidelity Model B generally 
cannot meet the renl-time performance requirements. Otherwise, it probably 
would have been the basis for the actual software. Although not perfect, the 
concept of testing in the context of a closed system model (and stating 
requirements in those terms) is better than stating open-ended requirements 
that are not subject to test, hence, meaningless. 

3.3 ATTRIBUTES OF A GOOD REQUIREMENTS SPECIFICATION 

Analysis of the aforementioned problems and issues leads to a better 
understanding of the necessary attributes of a good requirements specification, 
Although the requirements development process must be capable of producing 
specifications which address a long list of "abilities", eight attributes seem 
to be dominant, and are summarized below: 

1) Correctness -- A specification is said to be correct if, when all 
of the requirements in the specification are satisfied, the pro- 
duct will satisfy the originating specification. 

2) Modularity -- Requirements should be modular for the same reasons 
that the software should: a) Change is to be expected as.a way 
of life -- if the requirements are modular, then changes are 
easier to analyze, invoke, and control, b) As the details get 
filled in and the total volume of material and work grows, division 
of labor becomes a must. Modularity allows a rational division 
of labor. Useful modularity means that each "module" of require- 
ments be internally complete and that it fits into the entire system 
through very well-defined (controlled and traceable) interfaces 
with other "modules". 

3) Completeness -- "What you see is what you get" is the rule. If a 
capability, feature, or performance parameter is not specified as 
a requirement, there is absolutely no reason to believe that it 
will appear in the final product. Engineers and programmers are 
typically honest and professional, but they are subject to schedule 
and budget constraints. Implementing things that are not specified 
1s poor management on their part. Therefore, it is imperative that 
the requirements specification must contain everything expected of 
the system. 

4) Explicitness -- This attribute is a corollary to completeness and 
testability. The requirements must be stated explicitly. The 
specification should not require the reader to "read between the 
lines", correlate two statements to obtain an implied requirement, 
or to otherwise apply analysis to discover what is required. 
Additionally, all terms used must be unambiguous. The law of 
perversity guarantees that if two meanings can be applied to a 
statement in a specification, the wrong one will be followed. 
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5) Testability -- It is obvious that the system should be tested for 
conformance to the specification to which it was built. However, 
it is surprisingly simple to write requirements which look very 
good only to discover later that there is absolutely no way to 
test the end product for compliance. Every requirement specified 
must be examined for testability. If it is found to be untestable 
or unverifiable, it should be changed. 

6) Traceability -- In a large system where several levels of require- 
ments and design specifications exist, modularity enhances trace- 
ability. Both upward and downward traceability must exist. Downward 
traceability allows one to verify that every requirement in a 
specification has been considered in lower level documents and allows 
identification of where a change in requirements affects design. 
It allows verification of performance against the parent requirements 
and allows an impact analysis to be made in the event that a detailed 
performance requirement cannot be met. If the requirements speci- 
fication is intended to serve more than one user, special constraints 
are imposed in presenting the information content. If lateral 
traceability is imposed on the specification, and a change occurs 
in one part of the specification, its impact can be traced throughout 
the specification to maintain consistency of requirements. 

7) Feasibility -- A specification is said to be feasible if there is 
at least one design for the product which will meet the specification. 
We distinguish between analytical feasibility (given the input data, 
there exists a sequence of algorithms which will achieve the speci- 
fied performance), and real-time feasibility (there exists algorithms, 
a data processor, and a software design which will satisfy both the 
analytic and timing requirements). Obviously, real-time feasibility 
cannot be insured without performing a real-time design for at least 
one data processor. 

8) Design Freedom -- The software designer must be told what degrees 
ot freedom are available to meet the constraints. This includes: 

• Design Independence -- A requirements specification should state 
"what" is to be done, when, and how well, but not "how" it is 
to be accomplished for real-time software. A good requirements 
specification should allow a maximum of freedom in the subsequent 
design and implementation phases. This does not imply that 
design decisions are not made in the development of the require- 
ments -- they are. But, no design decision should be arbitrarily 
made which unnecessarily restricts the design freedom of the next 
phase of the development cycle. This means that the techniques, 
formats, and means of presenting the requirements must not 
inadvertently introduce unintentional design choices. 

• Sufficiency -- A requirements specification must not only state 
everything which is required of the system, but must also supply 
information needed by the designer to do his job. Information 
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known to the requirements engineer should not be left for the 
designer to reinvent or rediscover. Information which would be 
useful to the designer, and does not logically fit into the 
specification itself, can be included in a for-information-only 
appendix or in separate documents. 
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4.0 FRONT-END PROBLEMS 

Several recent studies have examined the problems of the requirements 
generation process. In nearly every software project which fails to meet 
performance and cost goals, requirements inadequacies play a major and expen- 
sive role in project failure. In too many projects, requirements have been 
late, incomplete, inconsistent, ambiguous, overconstraining, or incorrect. 
Analysis of problem reports from various projects indicates that incorrectness 
is the dominant requirements problem. A consistent one-third of such reports 
deals with incorrect or infeasible requirements. Incompleteness is the second 
most serious problem, resulting in 21 to 29 percent of the problems reported. 
Ambiguity causes 25 to 30 percent of early problem reports, but as a project 
matures the percentage decreases to less than 10 percent. Inconsistency, 
however, causes a stable 9 to 10 percent of reports at all stages of a 
project [2}. 

It would be convenient, but superficial, to say that these errors origi- 
nated with the persons who actually wrote the software requirements. While 
many errors do emerge from this source, there are many earlier errors in 
system analysis and system engineering not found until late in a project. 
These errors are critical, sometimes resulting in cancellation of projects. 

The fact that requirements errors occur is merely symptomatic of under- 
lying factors and issues encountered in modern weapons system development. We 
believe that the most significant factors are: 

Complexity 

Communication 

Validation 

Traceability 

Change response. 

4.1 COMPLEXITY 

Modern military systems are complex technology products involving many 
scientific disciplines and specialized engineering expertise. This will 
always be so because military systems operate in an environment where the 
enemy is constantly trying to complicate the problem and the mission of the 
system. 

The inherent complexity of any system arises from several sources: 

• Total number of components 

t  Intricacy of interconnection 

• Number of different types of components 

• Strongly coupled interactions between components 
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• Variety of system responses 

t  Number of operational mission objectives. 

The complexity of a given type of system tends to increase faster than the 
capacity of the system, indicating a general "diseconomy of scale" with respect 
to the number of system components. For instance, in a telephone switching 
network connecting N parties to N trunks without blocking, the number of 
switches increases, at best, proportionally to N In N [3]. 

The inherent complexity of the system is a primary factor of the system 
operational cost and its components, such as training and maintenance. It is 
also reflected in increased development complexity. The development complexity 
of a system is indicated by several factors: 

• Number of contractors 

t  Total number of people on the project 

• Number of product versions 

• Number of requirements 

t  Number of interfaces with other systems 
■ 

• Number of alternative solutions 

• Number of distinct design decisions 

0 Degree of abstraction of the product 

• Number of distinct technical disciplines. 

To some extent the inherent complexity of the delivered system may be 
reduced at the expense of increased development complexity. This can be done 
by increased design effort to find a better solution and rigorous planning and 
control of the design process. In military systems, the increased development 
complexity is often needed to predict the performance of elements that cannot 
be tested under operational loads in the true environment. 

Approaches to reducing both the inherent and development complexity of 
large systems are well advanced in the area of hardware engineering. Less 
progress has been made in the area of software engineering because the product 
is an abstract entity, not subject to physical measurement and inspection. 

Several means for reducing complexity have been used in system develop- 
ment. These include: 

Abstraction 

Decompos i ti on/Al1ocati on 

Refinement/Partitioning 

Analogy/Simulation 

Hierarchical Organization 

Specialization. 
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The first three concepts are means for reducing multi-dimensional prob- 
lems (and multi-dimensional solutions) to simpler, more easily comprehended 
parts. While these methods describe wholes in terms of parts and relation- 
ships between parts, they are static representations that give little insight 
into the dynamic interactions of the system. By use of analogy and simulation, 
we make decisions about the dynamic behavior of a system by evaluating the 
dynamic behavior of system models. 

Hierarchical organization is widely used, both to define management res- 
ponsibility and to conceptually structure a system. This is because the human 
brain is able to perceive and manipulate only about five to nine distinct 
things at a given moment. Hierarchical structure is a device that allows the 
human brain to span a larger set of distinct things in a systemmatic manner. 
Similarly, specialization is a means to allow groups of human beings to per- 
form more tasks or consider more distinct ideas than otherwise possible. 

The complexity of a system has an immediate impact on the problems of 
requirements definition, analysis, and maintenance. We can expect that, the 
more complex the system, the greater the number of requirements. Further, 
because relationships exist between requirements, the complexity of require- 
ments analysis and subsequent system design grows faster than the number of 
requirements. 

Let n be the number of distinct requirements and let p be the proba- 
bility that any two requirements are inconsistent or otherwise conflict with 
each other. The expected number of inconsistencies is given by 

E = n(n-l) 
2 

The average number of inconsistencies per requirement is E/n. We can tabu- 
late E and E/n as a function of p as follows: 

n E E/n 
10 45p 4.5p 

100 4950p 49.5p 

1000 499500p 499.5p 

10000 49995000p 4999.5p 

This example is conservative because conflicts between sets of individually 
consistent requirements are not considered, and because more requirements 
implies more people generating requirements, which increases the probability 
of inconsistency. However, the example indicates that the amount of work 
necessary to remove requirements inconsistencies in large systems can be 
substantial, even if the probability of inconsistency is very small. 
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4.2 COMMUNICATION 

The specialized division of knowledge and labor forced by system com- 
plexity leads to the communication problem. The complete documentation of all 
requirements for a system and its components requires a multi-level hierarchy 
of specifications with many separate specifications and interface documents 
at each level. Many people with different backgrounds and specialties contri- 
bute to this effort. Hence, identical words in different parts of a specifi- 
cation may have different intended meanings, and may be interpreted in yet 
another way by the reader. The effects of interpretation and transformation, 
propagated through a specification hierarchy, lead to erroneous mutation of 
requirements which is later detected as ambiguity, inconsistency, and 
incorrectness. 

The communication problem can be separated into three subdivisions: 

• Horizontal  communication 

• Vertical  communication 

• Self-communication. 

Horizontal communication is between parties operating at the same level 
of system development, either within a technical discipline or across technical 
disciplines. Communications between process designers, or between data pro- 
cessing subsystem engineers and radar subsystem engineers are examples. 

Vertical communication is between parties operating at different levels 
of system development. Communications between system engineers and process 
designers or between software designers and programmers are examples. The 
party at the higher level generally has a broader but more shallow view of 
the system than the party at the lower level. The system engineer will know 
what effect a particular tracking algorithm has on the outcome of an engage- 
ment, but may be unaware of and unconcerned about how that algorithm is imple- 
mented on a particular computer. The programmer, on the other hand, will know 
the most efficient coding of the algorithm in assembly language for a particu- 
lar machine, but may have no idea of the role of the algorithm on the total 
system. 

Self-communication is between a party and himself at a later time. This 
is the process of memory and recall, perhaps augmented by external recording 
of information. 

In each of these types of communication, both parties must share a common 
definition of terms, relationships, and concepts. This is very difficult in 
advanced technology work where implied relationships are multi-dimensional and 
abstract concepts are poorly understood, and is made even more difficult by the 
need for specialization which emphasizes the difference in knowledge and view- 
point between individuals. 
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A second difficulty in communication is the limitations inherent in the 
communication medium.    Natural  language, in addition to its semantic ambi- 
guity, is presented in a one-dimensional  sequence (i.e., relationships between 
n    parts are described one at a time).    Diagrams and pictures capture two- 
dimensional  relationships and three-dimensional  relationships by projection. 
Three-dimensional models and holographic projections capture three-dimensional 
relationships  (and four-dimensional  projections), but are generally impracti- 
cal  to reproduce and distribute in large quantity.    Fifth-dimensional  and 
higher relationships can be represented only abstractly in tables, mathematical 
equations, and lately, in computer data bases. 

Effective communication of data processing requirements is particularly 
difficult because we are dealing with abstract entities:    information and 
actions on information.    Our abilities to visualize the dynamic behavior of 
software are severely limited.    The limited success in specifying software 
requirements to date is probably due more to the assumptions associated with 
single sequential data processors  (one program in execution at any instant) 
than to advances in requirements technology.    As multiprocessors and distri- 
buted processing are exploited, we are becoming aware that we have great 
difficulty in representing and describing concurrent behavior, and that even 
basic dynamic concepts such as "process" are ill-defined and poorly understood. 

Within small  project groups, interpersonal  communication can be reasonably 
effective without impairing productivity.    As a project grows in size, commu- 
nication becomes indirect, the reliability of information exchange decreases, 
and a significant fraction of the project staff is involved solely with docu- 
mentation and liaison functions.    This has a direct impact on the cost of a 
project and the feasible minimum-time schedule. 

Project productivity is the amount of useful work produced by a project, 
divided by the elapsed time required to produce it (task output/time).    Indi- 
vidual productivity is the average rate of output per individual   (project 
productivity/manpower).    The general  trends of project productivity and 
project cost as functions of the manpower applied to a project are shown in 
Figure 4-1. 

As manpower is added to a project, productivity improves rapidly at first. 
As the group becomes larger, pressure to produce grows and a synergism of 
effort develops.    At some point, however, the project becomes so large that 
coordination of effort starts to become a problem.    A peak in individual  pro- 
ductivity is reached.    This corresponds to the minimum of project cost. 

If more manpower is added, an increasing fraction of it will be devoted 
to coordinating the activities of others.    Individual productivity declines, 
slowly at first.    The additional work output of the added manpower stays ahead 
of the loss in individual productivity.    Finally, however, we reach a point 
where individual  productivity losses start to exceed the work produced by 
additional manpower.    This is at the peak project productivity, which corres- 
ponds to the minimum time in which the project can be done. 
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After this point, addition of manpower will lead to a breakdown of coor- 
dination and saturation of supervision. Individual productivity drops off 
rapidly and the project actually takes longer to complete. Since more men are 
working for a longer period, cost rises rapidly. Fewer men could have done 
the project in the same time, at less cost. 

Two approaches can be pursued to reduce the communication problem and 
increase project productivity: 1) reduce the need for communication, and 2) 
improve the effectiveness of communication. 

In the software development field the so-called "Parnas Principle" [4,5] 
is a design rule that exemplifies the first approach. Parnas defines "modules" 
as things that have to be designed and developed together — in effect, a 
natural work assignment. Parnas identifies the connections between modules 
as the assumptions modules make about each other. The criterion for modularity 
proposed by Parnas is that each module should implement a design decision and 
isolate and hide that decision from other modules (i.e., every module hides 
a secret). In this way, the inter-module interfaces must remain constant even 
if the internal design decisions change. Under this principle, different work 
groups need only agree on interface assumptions and do not need to exchange 
information on details of internal design decisions. Effective use of the 
principle demands that the "problem structure" (i.e., the requirements) be 
defined in a structured, analyzable form, and that work units be assigned 
according to that structure. 

The second approach to reducing communications problems is typified by 
requirements statement languages (e.g., RSL, URL) and program design languages 
(e.g., PDL). Each of these languages provides an English-like, yet structurally 
constrained, form of expression that is computer-analyzable to some degree. 
The intent of these languages is to reduce ambiguity, ensure consistency, and 
minimize the chances of incompleteness. 

4.3 VALIDATION 

Many requirements problems would be detected before they caused signifi- 
cant harm if requirements were effectively validated at each stage of system 
development. However, requirements expressed in free-form English text are 
difficult to validate with any objective degree of confidence. Two approaches 
have been widely tried in the past: independent review and simulation. Inde- 
pendent review has been partially effective because the reviewers are con- 
sciously questioning and critical. But, there is no objective evidence that 
a review has been thorough and many discrepancies slip by unnoticed because 
of incorrect assumptions and communication problems. 

Simulation is useful in uncovering faulty assumptions about dynamic, 
phenomena resulting from static visualizations, but is plagued with all of 
the difficulties of requirements interpretation in main-line software develop- 
ment. There is no assurance that the simulation faithfully models the charac- 
teristics intended in the specification because it is not even subjected to 
the degree of testing and scrutiny demanded for deliverable software. 
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The question to be asked in requirements validation is "do the stated 
requirements conform to the problem?". The question to be asked in product 
validation is "does the software product conform to the requirements?". Ob- 
viously, objective product validation is not possible if the stated require- 
ments are not testable. Yet, requirements are often stated without thought 
to their specific testability. Much later it is realized that a particular 
requirement is not testable, hence, meaningless, or has several possible 
meanings, each subject to a different test. 

In developing the Software Requirements Engineering Methodology (SREM), 
TRW found a means to guarantee that stated performance requirements are test- 
able. The techniques also provide the means to remove ambiguity about the intent 
of the test through identification of precise "validation points" on stimulus- 
response paths through the software. 

In current software development practice, about 10 to 15 percent of the 
budget is allocated to requirements definition, while 40 to 50 percent of the 
budget is spent on testing. Anyone with extensive experience in software 
integration and test is familiar with the inordinate amount of time and 
effort needed to interpret requirements and the relationships between them 
in order to generate efficient and effective test plans. It is our hypothesis 
that a significant percentage of testing costs are the result of inadequate 
requirements definition practices, and that the investment of time and money 
in the requirements definition effort will be more than recovered by avoidance 
of the "hidden costs" of bad requirements in the testing phase. Unfortunately, 
proof of this hypothesis on a conclusive and scientific basis would require 
costly and impractical experiments on large-scale projects, with provision for 
independent and parallel "control experiments". 

4.4 TRACEABILITY 

In any large system, the original requirements can be expected to change, 
after operational deployment and, in today's environment, during system de- 
velopment. These changes result from changing missions, changing threats and 
technical difficulties, either at a lower level or in a different subsystem. 
To completely incorporate the effects of changes at any level, detailed trace- 
ability between all related elements of the system must be ensured. In the 
past, the effects of change were laboriously traced from document to docaraent, 
manually and subjectively. The process was expensive and inefficient. Effects 
of changes were accounted for in one passage of a specification, but related 
items in other sections were often overlooked. This resulted in inconsisten- 
cies to be detected at a later date. Recent data management practices have 
improved the situation from one level to the next. But, comprehensive trace- 
ability, backward and forward, from initial problem assumptions to preliminary 
design, has not yet become common practice, even though it is technically 
feasible. 

One of the advantages of using automated data base systems to retain and 
maintain requirements is that traceability relationships can be established as 
an integral and disciplined part of the requirements generation process, rather 
than as an afterthought. Once established, the structured relationships 
between requirements can be displayed at will (or suppressed if answers to 
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different queries are being sought). Unlike manually generated documents, the 
automated data base implicitly keeps track of all references to a given element 
at a given development level. Between development levels (e.g., system engi- 
neering to DP engineering, or system engineering to process design) human inter- 
vention to establish traceability relationships is still required. This is 
because the elements and representations are different. For instance, the 
relationship that (Task X) implements (Requirement Y: The radar shall be com- 
manded to track a given object at no more than 10 HZ) is a matter for humans 
to decide. To those who object that this mapping process is unnecessary, we 
reply that it must be done at some point to ensure design responsiveness, 
management visibility, adequate testing, and adaptability to change. Enforced 
traceability from the beginning reduces the risk of unresponsiveness and inflex- 
ibility at a later date when time may be critical. 

4.5 CHANGE RESPONSE 

_    Manual  change control  procedures result in significant delay between the 
initiation of a change proposal and the propagation of necessary changes to 
other affected parts of the system.    Designers must either continue work on 
elements made obsolete by change, or must halt work until  the change is 
approved, resulting in non-productive work or lost schedule time.    Often, the 
customer wants to know the detailed impact of specific changes before he 
decides to formally request them.    With manual  procedures, impact assessment 
is costly and slow.    Automated requirements systems, such as SREM, with 
designed-m traceability features, have significantly reduced change delay 
times and have made impact assessment into a fast, practical  procedure.    Ex- 
tension of these techniques to the entire front-end development process will 
improve productivity and reduce development cost. 
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5.0 DEFINITION OF THE FRONT-END OF DP DEVELOPMENT 

The "front-end" of a data processing development encompasses all of the 
analysis and engineering activity from the time that the need for a system is 
perceived until a preliminary design for the system is specified. Six broad 
generic steps are necessary to systematically proceed through the preliminary 
design stage. They are illustrated in Figure 5-1, and briefly outlined below. 

t  System Analysis -- When first perceived, most operational problems 
are ill-defined and not quantified. The job of the systems analyst 
is to precisely formulate and structure the problem, and to analyze 
alternative solution concepts so that decision makers can choose 
necessary actions. The analyses at this level are intended to iden- 
tify the threat, define the system mission, estimate the performance 
and cost of alternative system constructs, examine the sensitivity 
and risk inherent in the alternatives, and compare the alternatives 
on a common metric. 

t  System Engineering — One or more of the most promising alternatives 
are selected for intensive system engineering study. Threat models 
are quantified and the system concept is refined to include functional 
subsystem models, subsystem interactions and system operating logic. 
Major tradeoff studies are conducted, cost and performance are quan- 
tified, and a preferred system is selected. System performance is 
allocated among the subsystems and subsystem interfaces are established. 

•  Data Processing Subsystem (DPSS) Engineering — The early DP subsystem 
work is in concert with and supports the system engineering tradeoff 
studies. When subsystems have been established for the preferred con- 
struct, the DPSS definition is expanded by subsystem engineers. The 
functional capabilities of the DPSS are defined and traced to system 
level requirements. The performance allocated to the subsystem is 
decomposed and allocated to the subsystem functions. These elaborated 
requirements are expressed in terms of system level parameters, such 
as "threat leakage". The subsystem interfaces are refined and the 
system operating rules are interpreted from the standpoint of the DPSS 
in relation to other subsystems. A major portion of the DPSS engineer- 
ing work is concerned with hardware/software, tradeoffs, identifica- 
tion of suitable DP architectures, evaluation of candidate processors, 
and allocation of requirements to hardware, software, and firmware. 
The DPSS engineer is concerned with DP availability, reliability, 
maintainability, and cost, in addition to performance. Although he 
may defer hardware selection until after process design in some cases, 
he is responsible for the selection. In current practice, the hardware 
is usually selected before detailed software requirements engineering 
and process activities are done. 

t  Software Requirements Engineering -- The software requirements engi- 
neering step transforms the DPSS functional definition and performance 
requirements, based on system parameters, into a more detailed defini- 
tion of requirements, expressed in data processing terms. SRE is data 
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oriented. The contents of messages passing through input and output 
interfaces are defined to the data item level. Data hierarchies 
about entities which must be maintained by the DPSS are defined. The 
logical structure of the problem and system operating rules are 
analyzed to determine how the data are to be processed within the 
system. The end of this phase is reached when a logical structure 
defining the problem in DP terms has been validated, so that only DP 
software and hardware knowledge is required for the design activity. 
This structure includes definition of all data paths through the DPSS, 
precise location of measurement points for response time requirements, 
and models of tests which verify that the performance requirements 
are testable. 

Process Design — The primary function of process design is to derive 
and develop the properties of a software/firmware/hardware combination 
which simultaneously satisfies all functional and performance require- 
ments. The process designer must decompose the DPSS into a set of 
software tasks which are the lowest unit scheduled by the operating 
system. He is responsible for defining the application system, opera- 
ting system, and hardware, and for ensuring that they work as a uni- 
fied system. His responsibilities also encompass algorithm develop- 
ment and evaluation, global data base definition and maintenance, and 
timing/sizing budgets to the task level. Ultimately, he is responsible 
for integrating tasks and construction of the real-time process. 

If the project demands selection of commercially available computers, 
the process designer may be responsible for benchmark testing and 
evaluation of alternative condidates. The advent of problem-oriented 
distributed data processing systems expands the process designer's job. 
He will be called upon to devise system and component architectures 
for specialized problems, and to define interconnection networks and 
protocols. Distributed systems will require additional levels of 
software specifications for multiple computers. 

Preliminary Design (Software Design, Hardware Design, and Test 
Engineering) — The expanded design activities leading to the Prelimi- 
nary Design Review (PDR) vary in scope and complexity, dependent on 
the problem and process design. The purpose of a PDR is to verify 
that the design developed to that point is feasible, and is consistent 
with the stated requirements. Documents available for review at PDR 
include the Preliminary Software Design Specification, Preliminary 
Hardware Design Specification, Acceptance Test Plan, and Preliminary 
User's Manual. The preliminary design effort expands the process 
design to a greater level of detail, primarily, definition of task 
structure and timing/sizing budgets for routines. The integrity, 
testability and feasibility of the process design is confirmed by 
analysis. Algorithm selection is validated, and design approaches 
for critical issues are defined in detail. 

48 



Figure 5-1 implies a strict sequential ordering of the phases (i.e., 
completion of one phase before commencing the next). This occurs rarely in 
practice, and considerable overlap in time is the usual case. Another useful 
view of the process, the organizational hierarchy shown in Figure 5-2, clarifies 
the relationships between the phases. 

The sponsor has responsibility for the entire system development, initiates 
the system analysis work to justify engineering development, and uses those 
results to decide whether or not to proceed with system engineering. The 
system engineering organization is responsible for the definition, coordination, 
and integration of the various subsystem engineering efforts. The DP subsystem 
engineering organization is responsible for the definition, coordination, and 
integration of the software requirements engineering, process design, and 
hardware engineering activities. The process designer is responsible for the 
overall software system architecture, and defines, coordinates, and integrates 
the various software preliminary design efforts. The only strict sequence is 
between system analysis and system engineering. The remaining phases are 
initiated earlier than their successors, but because of their coordination and 
control functions, proceed interactively with the phases at the next lower level, 

In our definition of the phases we have strived to isolate the most sig- 
nificant activities that characterize that phase. In truth, in any given 
phase, many of the activities of other phases are pursued to some extent. We 
are seeking here to identify the principal emphasis, and show the similarities 
of problems between phases. 

In very large projects the work of the various phases is performed by 
separate organizations and may involve a community of government agencies, 
civilian contractors, and subcontractors. For smaller projects, all of the 
phases may be done within one organization and may be abbreviated or prolonged 
according to the nature of the development (e.g., new system, upgrade, minor 
modification). For instance, system analysis, system engineering, and sub- 
system engineering are often lumped together as system engineering. Process 
design and preliminary design are often combined. We feel that it is important 
to separate the phases as much as possible for this report because future 
distributed systems will demand increased engineering specialization and, 
possibly, additional phases in the development process. 

The front-end development phases defined herein differ somewhat from 
those typically described. Figure 5-3 correlates these phases with the usual 
MIL-STD-490 specification cycle and DoD Life Cycle milestones as found in 
most projects. 

5.1 SYSTEM ANALYSIS PHASE 

5.1.1 Scope 

A simple, but elegant, definition of "system analysis" has been provided 
by J. D. Couger [6]: 

"System analysis consists of collecting, organizing and evaluating 
facts about a system, and the environment in which it operates. The 
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objective of system analysis is to examine all aspects of the 
system — equipment, personnel, operating conditions, and its 
internal and external demands -- to establish a basis for de- 
signing and implementing a better system." 

In the context of the modern incremental and measured approach to weapon system 
procurement, system analysis can be characterized as the initial  investigations 
to determine whether or not further expenditures toward solution of a perceived 
problem will be productive and with predictable results.    System analysis is 
an on-going activity at various levels within the defense establishment.    The 
scope and perspective of analysis varies widely, from consideration of the 
entire U.S. defense posture and major force mix strategies to detailed con- 
sideration of alternatives for limited-mission tactical systems.    In all  cases, 
however, major activities are: 

Verification that the problem-as-given exists 

Mission identification and definition 

Threat and environment definition 

Formulation and evaluation of alternative approaches 

Identification of feasible and superior approaches 

Assessment of sensitivities, uncertainties, and risks. 

Evaluation activities must consider all  aspects of the system (e.g., performance, 
life-cycle cost, growth, reliability, schedule, resource needs). 

While system analysis activities occur all  through the development pro- 
cess, we will characterize the "system analysis phase" for our purposes as 
those activities which aid a decision-maker in choosing a course of action 
relative to a weapon system problem, and in defining a mission package to 
implement that course of action.    Accordingly, the objective of the system 
analysis phase is to define a mission package in sufficient detail  so that a 
decision maker 1) can be satisfied that the program is feasible and cost 
effective, and 2) can compare the package against other programs contending 
for budgeted funds.    For small programs the system analysis phase may be 
brief.    On major programs it may be a multi-level effort involving both 
government analysts and contractors, with an extensive concept definition 
period prior to DSARC I. 

5.1.2    Content 

Rudwick [7] describes three related problems that are useful in charac- 
terizing the initial steps of the system analysis phase. These are: the 
"problem as given" (PAG), the "problem as understood" (PAU), and the "problem 
to be solved" (PTBS). 

The PAG is an initial statement of the perceived problem that initiates 
the system analysis effort. Typically, it may consist of a vague notion that 
no current system is adequate to deal with a certain class of energy threat, 
or that the remaining operating cost of a deployed system is too high with 
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respect to system worth or technological alternatives. The PAG generally is 
not quantified, and often is incomplete and/or inconsistent. It tends to be 
symptomatic rather than diagnostic. 

The PAU is a structured and quantified elaboration of the PAG, developed 
by the system analyst. It consists of those factors and relationships iden- 
tified by the analyst as relevant to the original PAG. Moreover, it may be 
expanded beyond the PAG to include a broader class of related problems and/or 
solutions of which the PAG is a subset. 

In the course of evaluation of the PAL), the decision-maker or the analyst 
may decide that the problem is too broad with respect to proposed solutions, 
that certain factors have insignificant impact, or that certain postulated 
threat scenarios are unlikely. The agreed-upon PTBS is a subset of the PAD 
which forms the basis for the system requirements. While the PAU is essentially 
an implementation-independent statement of the problem, and a set of candidate 
system alternatives, the PTBS is constrained by state-of-the-art technology 
projections for the system development period, and by solution cost and worth 
considerations. 

The analyst develops the PAU from the PAG in a series of steps typified 
in Figure 5-4. The first step is to formulate mission objectives and the 
surrounding context from the information in the problem as given. This step 
surfaces many key questions and undefined aspects of the problem, and may lead 
to larger issues not previously considered. 

The mission definition identifies a threat or classes of threats to be 
addressed by the system. Before candidate systems can be defined, we must 
characterize the observables and performance envelope of the threat; the 
weapons, sensors, and penetration aids used by the threat, and an attack 
sequence of events. In addition, the properties of the environment, as they 
affect the threat observables and performance, must be defined. Much of the 
information may be tentative or unknown. Many of the threat and environment 
characteristics can be estimated from known physical relationships and simi- 
larities to other threat systems. Another facet of the environment to be 
identified is composed of other systems with which the proposed system may 
or must interface. 

The definition of effectiveness measures that capture the essence of the 
problem is critical to both the further elaboration of the problem and the 
identification and evaluation of candidate solutions. Generally, several 
pertinent effectiveness measures could be defined for a system, each one em- 
phasizing certain aspects of the problem at the expense of others. The chosen 
measures should reflect the capability, availability, and dependability com- 
ponents of system effectiveness, and should also consider the utilization of 
system resources in the engagement environment. 

When the foregoing information has been assembled and organized, the 
analyst has a basis from which possible system alternatives can be considered. 
The actual synthesis of alternatives is a highly individualistic and creative 
process that probably cannot be mechanized. However, the ability of the 
analyst to visualize alternatives can be substantially augmented by automatable 
methods of organizing and structuring the relevant data for his consideration. 
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The first alternative to be explored in any problem is the "null alterna- 
tive" (i.e., what happens if no action is taken). Evaluation of this alterna- 
tive often reveals that the perceived problem does not exist, or is not as bad 
as perceived. Sometimes it will be shown that no alternative solution is 
significantly better than the current system or no system at all. In any 
case, the null alternative is the yardstick for comparison of other alternatives 

For each suggested alternative two models are developed, usually in an 
iterative manner. The system configuration model is a static description of 
the system in terms of its components and the relationships between components. 
This model essentially describes "what the system is" and how it is deployed. 
The system engagement model is a dynamic description of how the system operates 
and interacts with the threat. This model describes "what the system does". 
While the system configuration model is described in terms of physical compo- 
nents and interconnections, the system engagement model is described in terms 
of distinct system functions and events. 

Ideally, one would like to have a single system engagement model, applica- 
ble to all alternative systems. This can be done, but only at a high level of 
abstraction. As the system functions are progressively decomposed into sub- 
functions, the definition of the sub-functions becomes more dependent upon the 
characteristics of physical devices. Since the system analysis phase is 
oriented toward high level assessment of technological feasibility within 
given cost and schedule constraints, the analyst can often use a single engage- 
ment model for several alternatives. If he cannot, then the performance of the 
system must at least be described by effectiveness measures common to all models 

The system effectiveness model establishes the relationship between the 
system description parameters and the effectiveness measures. Typically, it 
is a procedure for collecting engagement simulation outputs and computing 
values for the effectiveness measures. This model may also determine effec- 
tiveness as a function of system resources employed. 

The component cost models are parametric cost estimating relationships 
based upon current technology and projections into the future. Typical parame- 
ters for radars would be power, frequency, waveform types and number of units 
produced. For data processors, typical parameters are instruction execution 
rate (MIPS), word size, and memory capacity. Life-cycle cost estimates for 
each system alternative are generated by applying the models to the set of 
parameter values for each alternative. 

The combination of mission definition, threat and environment definition 
effectiveness measures, and the set of models described above comprise the 
description of the problem as understood. Evaluation of PAU will isolate the 
"best" alternative and provide the information needed to determine the problem 
to be solved. 

The process of evaluating each candidate system is represented in Figure 
5-5. Generally, the process is one of iterative optimization because the 
initial estimates of system parameters and operating rules are usually sub- 
optimal. Representative threat and environment characteristics are combined 
into engagement scenarios. Fixed and variable system parameters from the 
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system configuration model are combined with the system engagement model to 
form a simulation of the candidate system. The system simulation is exercised 
against each engagement scenario in an engagement simulation. Monte Carlo 
replications are generally desirable because weapon system engagements are 
highly stochastic. The system effectiveness model is then applied to evaluate 
the results of the engagement. 

The measured effectiveness values are then compared against the system 
objectives. If the system fails to meet the objectives, the variable system 
elements and the engagement model are modified to improve the performance. 
Because the system is ill-defined, this "tuning" is usually a trial-and-error 
process, supported by trade-off analysis to the extent possible. The output 
of this exploratory evaluation is a set of response surfaces defining the 
system effectiveness over a range of system, threat, and environment parameters. 

The above analysis is conducted based on nominal assumptions about the 
mission, system threat, and environment. The next step is to question the 
nominal assumptions and examine the system performance under different condi- 
tions. This step is called sensitivity and risk analysis. The effects of 
system cost and system resource constraints should be examined as part of 
this analysis. 

There are two general approaches for selecting the preferred candidate 
system: 

• Fixed Effectiveness Approach -- the system that meets the required 
effectiveness level at the lowest cost is selected. 

• Fixed Cost Approach — the system that has the highest effectiveness 
for a given cost is selected. 

Occasionally, but rarely, one candidate system dominates the others (i.e., has 
the highest effectiveness at all levels of cost). In this case the selection 
is obvious, provided the candidate is acceptable on the basis of sensitivity, 
risk, and development schedule. As a rule, however, none of the candidates 
dominate and selection calls for expert judgement considering all factors of 
effectiveness, cost, uncertainty, and schedule. An excellent discussion of 
the selection problem can be found in Quade and Boucher [8]. 

Eventually, one preferred candidate system or a pair of closely ranked 
contenders must be selected for further development, provided that at least 
one of the candidates is acceptable. At the same time, the scope of the mission 
may be narrowed and certain threat scenarios might be discarded as unlikely. 

The problem to be solved (PTBS) is formally documented in a preliminary 
system specification (Type A). The system is described in terms of its opera- 
tional functions (i.e., system engagement model) and operating rules. The 
specification should explicitly contain the following: 

• Mission definition 

t  Background assumptions 

• Threat definition (present and extrapolated) 
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Physical environment definition 

System interfaces with other systems 

Operating modes and concepts 

Performance requirements 

Availability, reliability requirements 

Survivability, graceful degradation requirements 

Other constraints  (size, weight, power) 

Growth requirements 

Logistics requirements 

Human factors. 

Schedule constraints are defined in the RFP.    Cost constraints may be contained 
in the RFP (design-to-cost systems), or may be withheld from prospective 
bidders. 

At this point, the system analysis effort has established the technologi- 
cal, performance, cost and schedule credibility of the system.    Decision makers 
have evaluated the analyses, the uncertainties and the risks, and have found 
them acceptable.    The next step is to proceed with the system engineering 
phase. 

5.1.3    Problems 

Quade and Boucher [8] contains a detailed discussion of the pitfalls and 
limitations of system analysis. Fisher [9] summarizes the more common pitfalls 
as follows: 

Failing to allocate and spend enough of the total time available for 
a study deciding what the problem really is. 

Examining an unduly restricted range of alternatives. 

Trying to do too big a job. 

Determining objectives and criteria carelessly. 

Using improper costing concepts. 

Becoming more interested in the details of the model than in the 
real world. 

Forcing a complex problem into an analytically tractable framework 
by over-emphasizing ease of computation. 

Failing to take proper account of uncertainty. 

Treating the enemy threat too narrowly. 
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These pitfalls are symptomatic of a single underlying problem -- complexity. 

The system analyst is faced with starting from an ill-defined and, per- 
haps, wrongly perceived problem, and developing a comprehensive analysis of 
that problem with limited time and resources to do the job.    His apparent pro- 
ductivity is low because he must spend a large amount of his time gathering 
information and gaining an understanding of the relevant factors involved in 
the problem.    To gain this understanding he must do experimental modeling and 
simulation.    Much of this work will be discarded.    To handle the breadth of 
his task, the analyst must usually sacrifice depth.    Yet the decision maker, 
who uses the analysts' work, expects to see an analysis supported by quanti- 
tative information and mathematical  relationships, even if approximate. 

If the analyst considers a large number of alternative system concepts, 
he runs the risk of addressing each one superficially without time for adequate 
sensitivity analysis.    If he restricts himself to a limited set of alternatives, 
he runs the risk of omitting an unrecognized superior candidate. 

While the analyst can generally represent the performance of system com- 
ponents  (such as radars and weapons) by relatively simple mathematical equations; 
he has great difficulty representing data processing needs in a meaningful way. 
Consequently, data processing issues tend to be deferred until  late in the 
system engineering phase.    At that time, however, significant and irreversible 
decisions about system structure have been made.    These often place such bur- 
dens on the data processing system that the entire system concept becomes 
infeasible or far more expensive than originally estimated. 

In addition to the problems of complexity, the system analyst is faced 
with communication and validation problems.    The communication problems fall 
into four categories: 

• Organization and retention of data for the analyst's own use. 

• Representation of concepts and information for review by operational 
users of the system. 

• Representation of analysis results for decision-maker consideration, 

f      Representation of system requirements in system specifications. 

The efficiency and effectiveness of the analyst is largely determined by 
his ability to organize, retain, and structure a large body of data relevant 
to the mission, threat, environment, and potential  system components.    In the 
past, much of the needed information has been widely scattered in reports, 
textbooks, notes, and undocumented experience.    Modern data base technology 
offers a powerful means of organizing and retaining often used data, particu- 
larly within agencies dedicated to specific-mission system areas. 

The analyst rarely has the military combat experience to view the system 
from the eyes of the operational  user.    The operational  user often lacks the 
specialized technical expertise needed to evaluate system details.    Hence, a 
communication gap exists between the user and designer, in addition to the 
fact that direct consultation between them is rare.    Unless this gap can be 
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filled by representations of concepts and information that are easily under- 
stood by both parties, the designed system may be a complete mismatch to 
operational needs. 

The system analyst does not select the system option to be pursued. That 
choice is in the hands of a decision maker who makes a judgement from a broader 
perspective than that of the analyst. The objective of system analysis is to 
assist decision makers by providing a better basis for judgement. The decision 
maker is not served if the critical system issues are lost in obscure represen- 
tations and mazes of details, or if the form of the presentation is not com- 
parable to data for other systems competing for funding. 

Finally, the system requirements formalized in the system specification 
must reflect the true needs of the operational user, and must be presented in 
such a way that the intent cannot be misunderstood. While it is important to 
allow the system designer maximum design freedom, it is not wise to let him 
decide how the system is to be operated. Yet, the weakest parts of most speci- 
fications are those dealing with operating concepts and rules of engagement. 

Despite the fact that the results of the system analysis are used to 
make far-reaching program decisions, little effort is applied to validation 
of the analysis. The tight cost and schedule constraints of the system analy- 
sis phase, the communication gap between analyst and operational user, and the 
faith that later system engineering work will uncover any faults, are the 
factors responsible for this curious lack of validation. However, once a 
project is headed in the wrong direction from the start, it is difficult and 
expensive to undo the effects of a faulty system analysis. 

Effective system analysis, particularly for very large systems, is in- 
creasingly dependent on large-scale simulation models that require significant 
software development. This software is usually defined for the problem of the 
moment. Little effort is devoted to construction and maintenance of standardized 
software libraries that can be used for a variety of projects. Because the 
software is not a formal deliverable, rigorous testing and validation is not 
pursued. Yet, because errors in these models have significant impact, some 
means must be found to subject them to formal software engineering practices 
without stressing the limited resources available. 

To address these problems and permit increase in the system analyst's 
productivity, the following capabilities are needed: 

• Better tools for structuring and retaining information about the 
problem. 

• Representation techniques that present information understandable to 
analysts, operational users, and decision makers. 

• Better tools for constructing and validating simulation models which 
can be exercised at low cost and built with limited resources. 

• Better tools for post-processing, summarization, and presentation 
of simulation-generated data. 
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• Techniques for defining data processing needs and issues earlier 
in the system definition effort. 

• A methodology for defining and describing system operating concepts 
and engagement rules. 

5.2 SYSTEM ENGINEERING PHASE 

5.2.1 Scope 

The system engineering phase confirms the results of the system analysis 
phase and extends them into a detailed plan for system composition, operation, 
development, and support. The focus of the system analysis phase is on defi- 
nition and selection of feasible goals and objectives. The focus of the sys- 
tem engineering phase is on implementing those goals and objectives within the 
technological state-of-the-art. The principle task is the direction and coor- 
dination of subsystem design activities which produce a set of sub-optimal 
subsystems that function together as a well-balanced system. 

Although system engineering activities continue throughout system develop- 
ment, the primary requirement definition activities are completed with the fi- 
nal ization of the system specification and the generation of subsystem speci- 
fications and interface control documents (ICDs). Thus, what we call the 
system engineering phase generally corresponds with the "validation phase" of 
the system life-cycle. The validation phase typically begins after DSARC I 
and a System Requirements Review (SRR) and concludes with DSARC II and a System 
Design Review (SDR). The lower level activities of Data Processing Subsystem 
Engineering, Software Requirements Engineering, and Process Design also fall 
within this timespan. 

The system analysis phase is usually carried out within DoD agencies, 
supported by study contracts to advisory groups or industry. The system engi- 
neering phase is carried out by industry contractors, either System Engineering 
and Technical Direction (SETD) contractors retained by the sponsoring agency 
or the prime contractor for the specific system development. 

The system analysis phase tries to examine the entire spectrum of practi- 
cal solutions to the particular weapon system problem. During this phase one 
or two of the most promising solutions are selected for possible development 
and the rest are discarded. The system engineering phase then elaborates and 
refines the definition of the chosen constructs, performs any remaining analy- 
sis necessary to select a single system design, and guides the lower level 
design of component subsystems. 

System engineering is concerned with life-cycle cost, development cost, 
schedule, risk, logistic support, training and maintenance, as well as all 
aspects of nominal and off-nominal system performance. Hence, system engi- 
neering requires multi-disciplinary expertise involving all engineering special- 
ties, physics, mathematics, computer science, psychology, economics, and 
management sciences. 
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5.2.2 Content 

The preliminary system specification developed in the system analysis 
phase provides the basic information about "what the system does". The final 
system specification completed in the system engineering phase, additionally 
completes the definition of "what the system is" and "how the system is made". 
The definition of "what the system is" requires identification of lower level 
parts or components of the system (e.g., system segments, subsystems, prime 
configuration items) and definition of how these components are interconnected 
and interact to form the system. The definition of how the system is made 
involves planning for assembly, integration, and testing of system components; 
and specification of standards constraining design and development practices. 

The requirements on the system as a whole consist explicitly of "what the 
system does" (functional requirements) and "how well the system does those 
things" (performance requirements), and explicitly or implicitly of the system 
operational need date and lifespan, and what it costs (i.e., the system's capa- 
bilities are valuable only within a certain time interval and have only a 
finite value). The "acceptable solution" defined by the system engineers 
identifies "what the system is" (parts and interconnections), how it is made 
(development and production plan) and "how it is used and maintained" (logis- 
tics, operations, and maintenance plans). The solution is not necessarily 
unique, but aims to be nearly optimal over the ranges of important parameters 
considered. 

The additional constraints on the system imposed by the system engineer's 
design decisions then set the context for and become part of the requirements 
on development of the identified subsystems. One of the system engineer's 
objectives is to achieve a well-balanced system. This also means that the 
degree of engineering difficulty and complexity should be fairly distributed 
across the subsystems. 

It would be impossible to capture in a short paragraph all of the diverse 
disciplines, views, and techniques in the system engineering process. Indeed, 
the textbooks written to date can only state high level rules, and highlights 
of important disciplines. However, the essence of system engineering is the 
decomposition of complex problems into simpler, more tractable sub-problems 
that can be attacked by specialist groups in a manageable manner, followed by 
balanced synthesis of sub-problem solutions into a system solution. In general 
the approaches used by the system analyst are applicable. However, the system 
engineer generally has more resources committed to his support and is consi- 
dering a specific system concept, rather than a broader set of alternatives. 

5.2.3 Problems 

With respect to data processing requirements, one problem in the system 
engineering phase has been perceived for some time, and has resulted in the 
promulgation of DoD Directive 5000.29 requiring that DP be treated as a sub- 
system on an equal basis with other subsystems.    The symptoms of the problem 
have surfaced as systems that would not work because the software requirements 
could not be satisfied. 
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The system engineer is of necessity a generalist, working with a limited 
set of descriptive subsystem parameters to define a balanced system.    As dis- 
cussed below, a lack of appropriate DP parameters that can be traded-off 
against other subsystems has forced DP issues into the background at the system 
level.    This postponement of concern, coupled with a blind faith that software 
can resolve any hardware interface problems has resulted in irrevocable system 
decisions  that preclude a satisfactory DP solution.    Unfortunately, the problem 
is getting worse. 

The exploding technological capabilities emerging in computing hardware 
today (semiconductor logic and memories, optical  processing, holographic 
devices, and distributed systems) may revolutionize the design and construc- 
tion of large systems.    Increased functional  performance and decreased com- 
ponent cost is leading to new tradeoff opportunities in system engineering 
that must be considered in the early requirements phase to exploit their 
benefits. 

Previously, monolithic centralized data processing was tacit in weapon 
systems development, and DP requirements were generally characterized by 
specifying: 

0     DP interfaces with other subsystems 

• The computation required at a centralized location 

• The limitations and performance indices. 

Now, however, with distributed systems and newer supporting technology, 
several  practical problems arise which accentuate the widening gap between 
system engineering and DP requirements needs  (Table 5.1).    All of these DP 
issues have moved higher on the list of critical  areas, due to the necessity 
to distribute system elements in the advanced constructs being considered 
and the cost/reliability economies of modern microcomputer technology. 

Effective interaction between DP and system engineers has been hindered 
by the lack of appropriate descriptive performance parameters.    As indicated 
in Figure 5-6, the other subsystems can be represented at the system level 
by specifying the values of a small set of defining parameters which also 
serve as top-level  requirements for those subsystems  (e.g., maximum range for 
a radar, fly-out time for a missile).    No such parameters exist for data 
processing.    The lack of such parameters for DP has been a major interest in 
establishing an effective interface between DP and system engineers.    If 
appropriate quantitative parameters could be found which characterize DP 
performance at the system level  and represent system requirements levied on 
the DP subsystem, then the DP subsystem could be considered directly in 
system level  trade-offs at a very early stage of system design. 

The difficulties of specifying DP requirements in the absence of a well- 
defined set of characteristic top-level  parameters, and the complexities 
associated with specifying the requirements on a set of distributed DP ele- 
ments, have led to the practice of defining system constructs and their 
resulting DP requirements in terms of a "preferred" construct design.    This 
practice not only limits the design freedom available at subsequent stages, 
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Table 5.1 Current Practical Problems in Specifying DP Requirements 

i 
CD 

HOW MUCH DISTRIBUTION OF PROCESSING IS APPROPRIATE WITHIN OTHER SUBSYSTEMS? 

WHAT IS THE EFFECT OF DP TECHNOLOGY LIMITATIONS ON SUBSYSTEM DEFINITION AND 
OPERATING RULES? 

HOW MUST RESOURCES BE MANAGED, INCLUDING THOSE OF DP? 

HOW AND WHEN ARE THE MULTITUDE OF INTERFACES TO BE SPECIFIED? 

TO WHAT EXTENT DOES COMMUNICATION' PLAY A ROLE IN THESE CONSIDERATIONS? 

HOW DO YOU SHOW EVIDENCE OF DP FEASIBILITY? 

HOW CAN DP REQUIREMENTS BE CONFIGURED SO AS TO BE ADAPTABLE TO CHANGE? 

AT WHAT POINT IN THE SYSTEM LIFE-CYCLE SHOULD DP REQUIREMENTS DISTINGUISH 
BETWEEN SOFTWARE, FIRMWARE, AND HARDWARE? 

HOW ARE THE CRITICAL ISSUES IDENTIFIED? 

HOW DO YOU OBTAIN EARLY RELIABLE ESTIMATES OF DP COST, SCHEDULES, SIZE, 
WEIGHT, AND POWER? 

HOW ARE DP/C, DP/SENSOR, DP/WEAPON TRADES IDENTIFIED? 
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but it also firmly obscures the real requirements. If this practice is to 
be eliminated, we must develop a true "requirements first" point of view 
which concentrates on the definition of the real requirements without re- 
sorting to describing them in the context of a specific design. 

It is clear that the "distribution", "DP parameter" and "requirements 
first" issues have a multitude of facets. Our objective is to limit our 
attention to a practical methodology which: 

Makes DP integral to the system definition process. 

Identifies critical issues early. 

Relates subsystem requirements to the tradeoffs among alternate 
system configurations. 

Develops complete and consistent system operating rules and 
function descriptions through simulation. 

Documents system models, performance requirements and design 
variables. 

Emphasizes early formation of system level performance requirements 
and exhibits alternatives in subsystem structure to meet them. 

Treats DP as a finite resource. 

Another problem, one of complexity for the system engineer, but one of 
communication for those involved downstream, concerns the allocation of data 
processing functions to subsystems. Consider a weapon system with identified 
subsystems including a radar subsystem and a DP subsystem. The DP subsystem 
can be conceived as providing all DP support of other subsystems, and must act 
in an integrated manner to support the system mission. Many of the DP func- 
tions, however, are relatively autonomous in that they are bound to a specific 
subsystem (e.g., radar) and are transparent to other subsystems. Moreover, 
the testing of the radar subsystem as an entity depends on the presence of 
these DP elements. Question: Should the system engineer allocate these DP 
functions to the radar subsystem or the DP subsystem for development purposes? 
A good practical case could be made for either choice. Yet, either choice 
complicates the human interface and coordination problems downstream. 

5.3 DATA PROCESSING SUBSYSTEM (DPSS) ENGINEERING PHASE 

5.3.1 Scope 

DP subsystem engineering activities are a subset of the on-going system 
engineering effort. The DPSS engineer provides specialized knowledge during 
the definition and tradeoff studies that identify the required characteristics 
of the various subsystems. Working with other subsystem engineers (e.g., 
sensor, command and control, weapon delivery) the DPSS engineer helps to 
identify workable system operating rules, DP limitations imposed by physical 
laws and the technology state-of-the-art, and the characteristics of inter- 
faces between subsystems. 
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During the system engineering phase, the system requirements are decom- 
posed until  subrequirements are sufficiently detailed that they can be uniquely 
allocated to subsystems.    In parallel, a functional system model  is synthesized 
and exercised against simulated threat scenarios.    The system model  includes 
submodels defining the behavior of each subsystem, and the interactions be- 
tween subsystems and between subsystems and the threat/environment model.    By 
systematic variation of model   parameters  and operating rules,  satisfactory 
conditions of system behavior are identified, and decisions are made about 
preferred system parameters and values.    The DPSS engineer is responsible for 
DPSS functional modeling to support these activities. 

When the system requirements have been decomposed and allocated to the 
subsystems, the DPSS engineer is responsible for consolidating the require- 
ments allocated to the DPSS and refining them to form a coherent subsystem 
requirement package of functional, performance, interface, and development 
requirements.    The DPSS requirements may be documented in various ways  (e.g., 
a Bl  specification, a B2 specification, or an informal  technical  report). 
There is much variation in the documentation of DPSS requirements because 
MIL-STD-490 is ambiguous about the proper specification (e.g., 81, B2) for a 
DP subsystem as an entity. 

At this point, the functional  and performance requirements on the DPSS 
are stated in terms of weapon system parameters and in the context of the 
system mission.    The remaining DPSS engineering activities are concerned with 
the selection and development of a hardware/software/firmware combination 
that meets these requirements and has acceptable availability, reliability, 
maintainability and cost properties.    The DPSS engineer is ultimately respon- 
sible for both the hardware and software architecture of the DPSS and the 
selection and procurement of appropriate hardware.    As part of this responsi- 
bility, he monitors and coordinates the efforts of the software requirements 
engineering, process design and hardware engineering phases, and reports 
upward to the system engineering organization. 

An important part of the DPSS engineer's job is maintaining upward trace- 
ability between the DPSS requirements and the system requirements, and down- 
ward traceability from the DPSS requirements to the separate packages of 
software, hardware, and firmware requirements.    It is generally more difficult 
to maintain downward, traceability because the lower level  requirements are 
stated in DP-oriented terminology rather than system terminology. 

5.3.2    Content 

The discussion in 5.2.2 is applicable to DPSS engineering as well as 
system engineering. The primary difference is that the DPSS engineer is 
focused in a more limited area. His "system" is the DPSS. His "environment" 
is all other components of the weapon system plus the environment of the weapon 
system. The components that he must select to form a problem solution are 
processors, memory, communications links, peripheral devices, and various 
classes of software. While the primary emphasis in the past has been on 
digital devices and discrete phenomena, new technological advances (e.g., 
optical processing, holographic processing) are demanding that DPSS engineers 
become involved with essentially analog devices and continuous phenomena. 

67 



The DPSS engineer must move from a consideration of "what the DPSS does" 
to "what the DPSS is" in a series of steps. What the DPSS does is stated in 
terms of information and actions on information. The information is about 
things in the outside world (e.g., aircraft; position, speed and heading of 
aircraft) of interest to the system. The actions on information (e.g., provide 
launch signal to interceptor missile when target is within ten mile range and 
...) are related to the functions and operating rules of the total weapon sys- 
tem. The functional requirements on the DPSS are, thus, concerned with "infor- 
mation processing". 

"What the DPSS is" is described in terms of "data processing" and the 
physical components necessary to do the data processing. "Data processing" is 
concerned with the representations of information and the logical or arithmetic 
manipulation of those representations. Thus, topics such as word size, for- 
mats, addressing mechanisms, paging, and queue management are data processing 
concerns, not information processing concerns. 

Thus, before the data processing needs and physical components can be 
accurately assessed, a well-defined statement of the information processing 
requirements must be available. This statement can be defined in terms of 
in-coming and out-going discrete packets of information called "messages", the 
individual information items contained in the messages, the logical information 
structure (i.e., the logical data base model) to be maintained, the information 
processing responses to given stimuli, and the relative priority or importance 
between information processing actions. For each information item the appro- 
priate range of values should be identified (e.g., slant range varies between 
10,000 feet and 600,000 feet). The highlights of the major information groupings 
and high level processing steps can be summarized in diagrams such as Figure 5-7. 

The next step is to identify the information processing performance require- 
ments and the load (both average and peak) on the DPSS. The response time 
requirements are defined by identifying each stimulus-response path through 
the DPSS and determining an acceptable response time for each path, based on 
system simulation model behavior. Each path can be further broken down by 
assigning time budgets to each action along the path. The peak and average 
load estimates can then be developed by functional simulation techniques. 

At this point the DPSS engineer can begin to identify'candidate processing 
algorithms for each subsystem action and estimate instruction counts and memory 
needs for each action. He can then examine various functional processing 
architectures that seem appropriate to the problem and identify required 
instruction execution speeds for candidate hardware. Certain critical paths 
and algorithms will be identified and engineering effort can be applied to 
find acceptable solutions. 

The emphasis of the early efforts in DPSS engineering is not to develop 
comprehensive designs for the DPSS, but to develop reasonable estimates of 
feasible DP performance, identify critical issues, assess the ability to meet 
system requirements, develop a satisfactory allocation of DPSS requirements 
between hardware, software, and firmware, and chart the direction of further 
engineering work in those areas. 
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5.3.3 Problems 

The lack of an effective set of DP performance parameters for system 
engineering tradeoff studies has been discussed in 5.2.3. The impact on the 
DPSS engineer has been that the resultant allocation of performance require- 
ments to the DPSS has been unduly difficult or impossible to satisfy. 

Hardware selection is usually one of the critical issues in DP Subsystem 
Engineering. In the past, hardware has been selected early in a project based 
on gross estimates of software memory and execution time needs. This approach 
has been successful when the properties of the application are relatively well 
known from past experience. In applications where prior experience is absent, 
the software sizing and timing estimates tend to be much lower than true 
values. Consequently, the selected hardware must operate at near-saturation 
levels. Boehm [10] has illustrated the effect on software development cost 
for real-time systems, as shown in Figure 5-8. 

In the future there will be a wider choice of computer architectures, and 
general purpose architectures will be "modifiable" by microprogramming. To 
extract maximum performance from these configurations, the architecture and 
the software algorithms must be carefully matched. At present, there is no 
effective, widely available, set of tools to rapidly identify high performance 
architecture/algorithm combinations and evaluate hardware/software/firmware 
tradeoffs in a systematic manner. The problems of geographically distributed 
systems add another dimension of complexity because communications factors 
(bandwidth, delay) must be considered to determine where data processing 
nodes should be located. In the face of these complications, how can anyone 
be sure that preliminary DP estimates are credible? 

Little has been done in the past to characterize the total information 
processing needs of a system before the boundaries between subsystems have 
been chosen. The traditional radar has included analog devices and custom- 
made signal processors (analog or digital). The traditional DP subsystem has 
usually consisted of one or more general purpose digital processors. Today, 
digital techniques are becoming competitive with traditional analog solutions, 
and networks of general purpose microprocessors provide a means to build cus- 
tomized special purpose processors from standard components. As a result, 
several tradeoffs may be needed to define the best sensor/DP boundary. Similar 
problems exist in defining DP/communications boundaries. Many communications 
functions are now supported by digital devices and the communication subsystem 
itself is increasingly dedicated to data transfer in support of the DP subsystem, 

It is clear that the growing complexity of DPSS engineering must even- 
tually force a more structured approach to this phase -- grossly, a three-stage 
approach: 1) information processing requirements, 2) data processing require- 
ments, and 3) processing hardware requirements. For this to be possible (in 
a visible and controllable way) the MIL-STD-490 specification hierarchy needs 
to be reconsidered and altered to address the unique problems of DP subsystems. 
The present abrupt transition from system level A spec to computer program 
level B5 spec leaves most of the critical DP requirements and design decisions 
invisible and undocumented. 
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This "documentation gap" creates a problem in maintaining traceability 
between system requirements and software requirements. As a result, the im- 
pact of system requirements changes on software cannot readily be assessed and 
serious problems may not be discovered until the system is deployed. 

5.4 SOFTWARE REQUIREMENTS ENGINEERING PHASE 

5.4.1 Scope 

The purpose of the software requirements engineering phase is to transform 
the DPSS functional and performance requirements, expressed in system termi- 
nology and parameters, into a more detailed definition of requirements ex- 
pressed in data processing terms.    The high-level  information processing 
description of the DPSS, derived in the DPSS engineering phase for estimation 
and assessment purposes, is extended and refined to a level of detail  suffi- 
cient to state precise software requirements.    In a sense the term "software 
requirements engineering" is a misnomer because the same techniques can be 
used to specify information processing requirements for hardware and firmware. 

Traditionally, software requirements engineering has been one of the 
activities of the DPSS engineering phase. The concept of a separate software 
requirements engineering phase was first introduced in the development of the 
BMDATC Software Development System (SDS) [11]. The TRW Software Requirements 
Engineering Methodology (SREM) was explicitly designed to meet the needs of 
this phase as conceived by BMDATC. 

The software requirements engineering phase provides a necessary bridge 
between the system engineer's view of the DPSS and the software designer's view 
of the DPSS.    The software designer should not require expertise in weapon 
systems in order to do his job.    He should be able to understand the DP 
problem in terms of messages arriving and departing through interfaces, infor- 
mation flow and information maintenance within the DPSS, and processing actions 
upon that information.    The software requirements engineering phase is com- 
pleted when:    1) the system functional and performance requirements allocated 
to the DPSS have been stated in these terms, 2) the software requirements are 
traced to the DPSS requirements, 3)  the software requirements have been vali- 
dated for completeness, consistency and other desirable properties, 4) the 
requirements have been evaluated for feasibility, and 5)  the requirements and 
supporting information have been documented for input to the process design 
phase. 

5.4.2 Content 
  

The traditional approach to software requirements generation has revolved 
around writing a specification document, with little thought given to an 
orderly methodology for determining actual requirements. Typically, a group 
of people knowledgeable about the system problem would be convened to describe, 
in English, what the software should do. The job was considered finished when 
the allocated time and money ran out, and a decently readable document in some 
approved format was published. Major difficulties were that management had no 
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reliable interim visibility into how the job was progressing, and at comple- 
tion there were no objective criteria for determining the quality of the 
requirements document. 

• 5 Although many requirements generation aids and description tools (e.g 
CARA) have evolved in recent years, specific methodologies for using them 
have been avoided. The major exception was the TRW SREM, where an explicit 
methodology for the SRE phase was a prime objective of BMDATC research. We 
will describe the content of the software requirements engineering phase in 
terms of the SREM viewpoint since that research was oriented specifically 
toward real-time software requirements for weapon systems. 

Figure 5-9 presents an overview of the software requirements engineering 
activities for real-time weapon system software. It is presumed that work 
during the DPSS engineering phase has identified the logical input and output 
interfaces (i.e., the sources and sinks of information) to the DPSS, and the 
information content of messages passing those interfaces. Further, it is 
presumed that the types of appropriate responses to various stimuli and condi- 
tions have been defined in terms of the system operating rules and the gross 
nature of the processing to generate these responses has been identified. It 
is also presumed that the various subsystems that interact with the DPSS have 
been functionally defined to a level of detail sufficient to support dynamic 
system modeling and that performance allocations to the subsystems have been 
made in terms of system performance parameters. 

Although desirable, it is not necessary to have all of this information 
in final form before beginning the software requirements engineering activities, 
SRE will usually proceed iteratively with the system and subsystem engineering 
tradeoffs and will expose new issues for resolution as analysis proceeds. As 
the level of technical awareness of software issues increases, decisions can 
be made about combination of interfaces (i.e., communication multiplexing) and 
higher level system control issues. 

The first activity in the computer-aided SREM methodology deals with the 
development and analysis of a functional requirements data base. This begins 
with a structured definition of input and output interfaces, messages that 
are passed through each interface, data elements and files that make up each 
message, and data available at system initialization. Next, attention is 
turned to the paths of processing steps that are involved in reacting to the 
various input message stimuli to cause state changes in the DPSS and/or output 
messages to other subsystems. In SREM the sequences of functional processing 
steps are described as requirements networks (R-Nets) that must conform to 
certain structure rules. Next, attention is focused on the logical structure 
of data maintained internal to the DPSS and the input-output and creation- 
destruction operations of each processing step. During this process, data 
base analysis procedures are employed to ensure the completeness and consis- 
tency of the defined data base. As information becomes available or necessary, 
detailed attributes and descriptions of each element in the data base are 
defined, and traceability relations are established between elements of the 
requirements data base and the original documentation provided by DPSS 
engineering. 
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As the definition of the functional  requirements passes specific mile- 
stones, appropriate parts of the evolving data base are subjected to formal 
(in the programmatic sense) static validation by automated procedures.    When 
all  appropriate validation tests have been passed, documentation of those 
requirements can be started. 

While documentation proceeds, the completed data base is subjected to 
dynamic validation through construction and execution of functional simula- 
tions directly linked to the requirements data base elements, attributes, 
relationships, and structures.    This process uncovers deficiencies not detec- 
table by static analysis alone, and provides increased confidence in the 
validity of the requirements. 

At this point, attention is turned to the precise definition of performance 
requirements  (e.g., timing, accuracy)  that specify "how well" the DPSS is to 
perform the functional  processing.    The performance requirements allocated to 
the DPSS expressed in system terminology are decomposed, analyzed, and related 
to specific points on the processing paths through the DPSS.    As part of this 
effort the SREM approach demands definition of the particular test data to be 
recorded, and procedures (i.e., pass/fail  tests) necessary to analyze that 
data to ascertain that the requirements are met.    Thus,  "testability" of the 
stated performance requirements is ensured. 

The validation of the performance requirements employs the static analysis 
aids and functional  simulations previously used in validating the functional 
requirements.    Frequently the functional models are insufficient to express 
the relationships needed for performance requirement validation and more de- 
tailed analytic models are constructed, perhaps including prototype algorithms. 

After the performance requirements have been validated and documented, 
the DPSS software requirements are complete and detailed process design acti- 
vities can be started.    There is one major engineering issue that has not been 
resolved, however.    That is, can a software design be developed that will meet 
the stated requirements?    The last phase of SREM, analytic feasibility demon- 
stration, addresses this issue concurrently with early process design activities. 
This demonstration involves the development of a candidate design (analytic 
models and algorithms) which meets all  of the stated requirements except those 
associated with timing.    The objective is to demonstrate that, at least one 
computational solution to the problem exists, whether or not this solution is 
adequate for real-time performance.    This step provides assurance that the 
functional  requirements are computationally feasible and provides "calibration" 
models for assessment of the eventual  real-time software.    The real-time 
feasibility of the requirements is a major process design issue. 

It should be pointed out that modifications to and reappraisals of earlier 
activities are often required by discoveries in later analysis activities.    The 
methodical  approach of SREM ensures that these iterations are confined as much 
as possible within SRE steps and that major requirements problems have surfaced 
before substantial  design effort is expended. 
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5.4.3 Problems 

The problems of traditional software requirements definition approaches 
have long been acknowledged and have been the topic of major DoD investigations 
[12, 13, 14] as well as research by major software contractors (e.g., [2]). 
These investigations have indicated the major problems identified in Section 4, 
and various symptoms (e.g., incompleteness, inconsistency, ambiguity, over- 
constraint, incorrectness, volatility). Indeed, the research leading to the 
TRW SREM was motivated by these deficiencies and the fact that they had become 
critical in the ballistic missile defense (BMD) technology area [11]. 

The SREM approach has received favorable comment during evaluation studies 
and initial production usage [15, 16, 17]. However, current experience indi- 
cates problems that hinder the full effectiveness of SREM, and many other 
advanced development techniques. These can be considered "growing pains" in 
the transfer of new technology. 

The first problem concerns the time and effort allocated to software 
requirements engineering. Traditionally, 3 to 6 months and 7 to 12 percent of 
the^development budget have been allocated to the primary requirements defini- 
tion effort with an additional 5 percent perhaps devoted to requirements main- 
tenance activities throughout the project schedule. Despite the inadequacies 
of the generated requirements, program managers, customer agencies, and pro- 
curement agencies have come to expect and demand the traditional allotments to 
requirements activities. Modern requirements engineering approaches and 
research have indicated that the traditional allotments result in superficial 
definition of requirements and that thorough requirements engineering, although 
more productive, may demand more resources. The resulting benefits, in terms 
of time and cost saved and risks avoided, cannot be substantiated without a 
long "track-record" of successful projects. However, management inertia with 
regard to resource allotments inhibits the use of new technologies and makes 
the demonstration of the full capabilities of the technology difficult. 

A second problem is that the full efficiency of a methodology for a 
specific phase (e.g., SRE) is not realized as long as the products from pre- 
vious phases are lacking in information or quality. Trial applications of 
SREM to existing system or subsystem specifications often indicates that 
critical information is either absent or superficially treated. The most 
frequent deficiency is that concepts of operation and system operating rules 
are either completely absent or obscured in lower level details. Further 
development of software requirements in a systematic manner would require 
protracted coordination and data-gathering sessions with system and subsystem 
engineering personnel, thus stretching the SRE schedule. 

The dependency of an effective software requirements engineering disci- 
pline upon equally rigorous system and subsystem engineering disciplines that 
recognize data processing needs has created growing awareness that system 
engineering methodologies are non-existent, beyond general high-level approaches 
to problems. The Axiomatic Requirements Engineering (ARE) program sponsored 
by BMDATC is a current research thrust to fill this gap. 
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A third problem is that of profitably using the products of a new tech- 
nology. Until a new tool or technique has been installed and in use for some 
time, and until downstream users have been shown how to use the outputs, busi- 
ness will go on as usual in the downstream areas and the output products will 
be largely ignored. In the case of SREM, it is so recent that few process 
designers have had the opportunity (or the slack time) to experiment with the 
new possibilities for analysis that the SREM outputs provide. Other potential 
uses of the SREM output, particularly in test planning, have been identified, 
but needed research has not yet been funded. 

These problems indicate that mere introduction of new technology into 
isolated phases of the front-end development process is not sufficient to 
solve even the problems of that phase, let alone global problems. What is 
needed is an orchestrated and balanced attack on the problems of all phases 
in an integrated manner, with consideration of the proper downstream use of 
the products, and strenuous attention to the training and education of users, 
project managers, customer agencies and procurement agencies. 

5.5 PROCESS DESIGN PHASE 

5.5.1 Scope 

The dictionary definition of a "process" is "a continuing development 
involving many changes". The term is commonly used in engineering to refer 
to the complex evolution of a system from an initial state to a terminal 
state (e.g., a chemical process, a manufacturing process). Complex phenomena 
in the physical environment (e.g., rainstorms) are often described as pro- 
cesses. In weapon system engineering the interacting offense-defense encoun- 
ters and engagements can profitably be viewed as processes. 

In the world of computer science the term "process" has a similar conno- 
tation, and is a higher-level abstraction than the term "program". The concept 
is necessary to describe the activities and status of real-time event-driven 
systems, interactive time-sharing systems and distributed systems. 

Consider an interactive time-sharing system where multiple users may have 
concurrent access to the same set of software programs. To describe the state 
of the system at any time, it is necessary to account for the allocation of 
resources among the users and the nature and status of each user's activities. 
A useful way to accomplish this is to view each user's interactive session as 
a process which may be active or inactive, and when active may be ready, run- 
ning, or blocked. The overall system activity is a process which includes all 
of the user processes plus the actions of higher-level system control functions 
such as resource allocation, scheduling, and data management. 

A geographically distributed system such as ARPANET, can be described as 
a single process, composed of the network control and processes representing 
each site's activity. The process at each site is composed of the site control 
and the user processes which have access to that site. Note that user pro- 
cesses may "migrate" from site to site (i.e., may be active at one site and 
inactive at all others) or may span several sites (i.e., be concurrently 
active at more than one site). These concepts are also useful in dedicated 
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real-time weapon systems where the "users" of the system are the encounters 
and engagements needing service. 

The concept of "process design" in weapon system data processing engi- 
neering has arisen from the notion that to properly service the encounter and 
engagement processes (i.e., the system requirements), the DP subsystem must 
perform as a set of computational processes (usually asynchronous and inter- 
acting) which contribute to the system mission in a harmonious and non-inter- 
fering manner. The role of the process designer, therefore, is to devise a 
top-level software architecture and control scheme that satisfies the DP sub- 
system requirements and provides coordinating constraints on further software 
design. 

Marker [18] separates the software in embedded computer systems (such as 
in weapon systems) into three distinct classes: 

• System Support - the operating system 

• Computational Modules - the application routines 

• System and Process Logic - the process design. 

The process design consists of three inter-related components that implement 
the strategy and tactics of the system: 

a) The system decisions made based on the outputs of the computational 
modules. The decisions which comprise a weapon system firing doctrine 
or an electrical power routing policy are examples. 

b) The software execution policy or scheduling criteria. In the absence 
of infinite computing resources, a choice must be made to determine 
which computational module gets executed next. This scheduling 
policy has a significant impact on the performance of the system, 
particularly during periods when the computer is saturated or nearly 
saturated. 

c) The organization of the system data base and control of the data flow 
between computational modules. In most real-time systems, the data 
base organization and the control of data flow have an overwhelming 
influence on the responsiveness and load-degradation characteristics 
of the data processor and, hence, of the system. The design of the 
data base and data flow is, therefore, of top-level importance to 
the overall software design and is very sensitive to the load and to 
the strategy of the system. 

This particular view has been useful in development of software for a 
single data processor (or for a multi-processor with stringent constraints on 
allowable concurrent activities). An implicit assumption is that there is a 
single process resident in the configuration. Distributed data processing 
necessitates a generalization of the concept to allow a hierarchy of processes, 
with concurrently active concurrent processes under control of a higher-level 
process (either conceptual or real). 
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The primary inputs to the process design phase are the refined functional 
and performance requirements on the DP subsystem as a whole (produced in the 
software requirements engineering phase), and the DP load profile or "path load 
timelines" (produced in the DP subsystem engineering phase), plus the hardware 
and software constraints imposed by earlier subsystem design decisions. 

The output products of the process design phase are designs for the top- 
level software architecture and control scheme; and derived requirements for 
individual software processes and tasks. These include requirements for direct 
and indirect support software, as well as primary mission software. In order 
to state the requirements within the restrictions of the MIL-STD-490 specifi- 
cation hierarchy, processes are often designated as CPCI's while tasks are 
designated as CPC's. Thus, the process design phase will produce B5 and pre- 
liminary C5 specifications, to be finalized in the preliminary design phase. 
(The restrictions of the MIL-STD-490 format cause severe confusion between 
processes and programs, which will be discussed in 5.5.3.) If the specific 
development program has adopted a "software first" strategy, the process 
design phase will also produce software-imposed requirements constraining the 
selection or design of computers and communication hardware. 

5.5.2 Content 

The traditional activities of process design have been the following: 

Allocation and tracing of software requirements to application 
processes and the operating system. 

Decomposition and partitioning of application process software 
requirements into sets of requirements for independently scheduled 
tasks. 

Definition of scheduling/dispatching criteria, priority structure, 
inter-task communications, error handling and recovery, overload 
control mechanisms, and process control structure. 

Definition and control of global data base and refinement of 
external interface specifications. 

Definition of data management constraints and data access protocols 
necessary to maintain data base sanity. 

Estimation and allocation of timing and storage budgets for each 
task, and analysis of port-to-port thread timing, system respon- 
siveness, and overhead. 

Identification and analysis of critical algorithms. 

Maintenance of requirements traceability from the subsystem 
requirements to the software design and impact analysis of 
requirements changes. 

Verification that the subsystem requirements will be met if the 
task timing, sizing, and accuracy requirements are met. 
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In the future, process design will be increasingly involved with multi- 
processor architectures, distributed processing networks, hardware/software/ 
firmware tradeoffs and concurrency issues not found in sequential processors. 
Advances in LSI and VLSI technology, lower hardware costs, and evolving DP 
architecture synthesis techniques will offer a wide range of problem-oriented 
DP system alternatives. The high performance requirements for weapon system 
applications will demand hierarchical sets of concurrent processes operating 
in distributed configurations under the supervision of multi-level operating 
systems. The process designer will be faced with an exponential explosion in 
the dimensionality of possible design decisions. 

A real-time application process includes multiple stimulus-response paths 
that are activated by events outside the DPS. Thus, the order of demands for 
processing cannot be controlled by the DP designer. In sequential single pro- 
cessor systems, a major issue is how to partition the application into tasks 
in a way such that response time delays are distributed fairly across all 
stimulus-response paths. Partitioning of the application into numerous, 
rapidly executed tasks permits effective multiplexing of many processing paths 
on a single processor. However, dispatching overhead becomes significant as 
a task becomes smaller and response time delay eventually increases due to 
inefficiency. Thus, there is an optimum size task determined by the particular 
stimulus-response paths and the load profile on the DPS. Another factor in 
defining the tasks is that processing on different'paths may not be independent 
(i.e., the paths must be synchronized at some point). Thus, some tasks may be 
designed to lie across two or more paths for the purpose of synchronization. 

In distributed systems the problem becomes more complex, because the 
number of processors and their interactions must be considered. For a given 
set of processing paths and load profiles there is a maximum number of pro- 
cessors that can be effectively used (i.e., all stimuli are serviced instantly). 
As the number of processors are reduced, the load increases and saturation 
may be reached, indicating the minimum number of processors. There is a trade- 
off between cost (number of processors, software difficulty) and other con- 
siderations (reliability, availability, threat expansion, system growth, 
vulnerability). For various numbers of processors and configurations, alter- 
native allocations of stimulus-response paths to processors must be examined 
and optimum task sizes determined. The processor memory size and optimum 
task size should be compatible to avoid further complications. 

In order to do a meaningful analysis, the process designer must know the 
structural relationships among the stimulus-response paths and must know the 
sequences of required processing steps to a level of detail such that reliable 
estimates of instruction counts and memory needs can be made. In addition, 
the arrival statistics of the stimuli for each path and the performance 
requirements on each path must be known. The maximum path execution speed 
(path instruction count x feasible processor rate) can be compared to the 
response time requirement to determine the slack time available for dispatching 
overhead and waiting for resources. At this point, the feasible degree of 
processing path partitioning can be determined and minimum-competition groups 
of paths can be identified. If slack time is low or non-existent, the affected 
path is designated a critical path and algorithm studies are initiated to 
improve performance. 
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Another important consideration in the partitioning of processing is the 
flow of data between processing steps and the access patterns within the 
system. Generally, processes and tasks should be structured so that inter- 
process and inter-task transfers are minimized and interfaces are simplified. 
The necessity for inter-process and inter-task communication leads to require- 
ments for access protocols, process synchronization, and complex control logic 
in order to preserve data base coherence and sanity, and can severely limit 
the scheduling flexibility of the system. The added overhead limits available 
memory and degrades response time. 

Arbitrary interfacing of tasks and processes by scattered groups of de- 
signers usually results in disaster. Thus, the process design group is respon- 
sible for centralized definition of the global data bases and configuration 
control of the data bases as development proceeds. As part of this effort, 
the process designers establish the allowable data structures (queues, data 
sets, etc.) and provide design rules for data access. These considerations 
lead to requirements for operating system services. 

If adequate DP resources are available to support any set of system 
demands without delay, the scheduling of tasks is automatically accomplished 
by the external stimuli and by the predecessor-successor relationships among 
the tasks. Generally, however, DP resources are scarce for practical cost 
reasons and resource contention must be arbitrated by a scheduling algorithm. 
For any engagement scenario within the weapon system design load limits there 
exists a set of schedules of system actions that result in a "successful" 
engagement outcome. Embedded in each of these schedules is a schedule for 
necessary DP actions that support the system schedule. These schedules of DP 
actions are requirements upon the DP scheduling algorithm (i.e., every schedule 
produced by the algorithm must be a member of the set of "successful" schedules) 
One job of the process designer is to find an algorithm that meets these 
requirements. 

A major difficulty is that computationally inexpensive techniques for 
determining the class of "successful" schedules for even a single engagement 
scenario are non-existent. Operations research investigations have shown that 
the search for an optimum solution to complex scheduling problems is usually 
impractical, although some heuristic methods provide near-optimal schedules. 
Thus, both the requirements for a scheduling algorithm and the formal identi- 
fication of a satisfactory solution are difficult. Moreover, most optimal or 
near-optimal algorithms would be expensive to implement in terms of data 
processing overhead. 

The usual approach taken by the process designer is to adopt a simple 
scheduling discipline (e.g., FIFO with or without preemption) and augment it 
with a task priority structure. The priority structure is tuned by trial-and- 
error simulation against representative engagement scenarios until a solution 
believed to be satisfactory is obtained. This procedure has usually been 
adequate for most systems, but its success is uncertain for future distributed 
systems. 
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When a viable software architecture and supporting design constraints 
have been identified, the process designer must develop requirement specifi- 
cations for each of the independently-schedulable tasks. These requirements 
are either derived from the DPSS requirements or are induced by process design 
decisions. Since several tasks may participate in the satisfaction of a single 
DPSS functional or performance requirement, the DPSS requirements must be 
decomposed and restated so that they are meaningful in the specific process 
design context and reflect the data processing terms of the task designer. 
Response time requirements on the DPSS and memory constraints are decomposed 
in the sense that each task is given a specific execution time and memory 
budget. Failure to adequately decompose and restate the DPSS requirements 
results in ambiguity of design responsibility and traceability problems 
discussed in 5.6.3. 

5.5.3 Problems 

Process design, as a distinct technical discipline, originated within the 
Ballistic Missile Defense (BMD) community, and with few exceptions (e.g., OTH-B) 
has not yet been widely applied outside that problem area. Nonetheless, the 
principles and techniques of process design are generally applicable and are 
of significant benefit in the development of complex real-time systems. Unfor- 
tunately, the current literature on process design is fragmentary and based 
upon specific application assumptions. Most of the generalized knowledge is 
carried in the heads of practitioners and is undocumented. What is needed is 
a definitive text on the subject, collecting and generalizing existing know- 
ledge to a wider range of application. Such a consolidation is necessary to 
provide a framework for extensions to distributed processing, and to define 
the use of recent software requirements engineering products in the process 
design phase. 

Effective process design techniques for single computers have been empi- 
rically developed, but basic theory has been somewhat neglected. As we begin 
to consider distributed systems, however, we realize that even such basic 
terms as "process" are intuitive notions rather than precisely defined con- 
cepts. Until we develop a better understanding of non-trivial processes and 
concurrent interacting phenomena, the powerful new capabilities of concurrent 
programming languages (e.g., DoD-1) will not be used to full potential, or may 
lead to disastrous failures. Basic research is needed to clarify the concepts 
of real-world and abstract processes in a broader sense than is currently 
treated, to develop, and analyze systems of interacting concurrent phenomena, 
and to address problems of multi-process/multiprocessor real-time scheduling, 
process control, data management, dynamic reconfiguration, deadlock avoidance, 
and resource management. Without this research the process designer will soon 
be overwhelmed by the complexities of distributed systems. 

Effective methods for describing and specifying processes and concurrent 
phenomena are sorely needed. The current MIL-STD-490 format for B5 specifica- 
tions was defined over a decade ago in the world of second-generation computers, 
and views software as a static collection of programs. A process, however, is 
a dynamic entity, not simply a collection of application and operating system 
programs. It is a concept of action and behavior, not just components. 
Efforts to describe a process within the B5 format have not been entirely 
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successful, because the dynamic qualities are not captured and confusion be- 
tween processes and programs results. 

In a distributed system, the DPSS may be spread across geographically 
distributed physical sites or nodes. Each node may contain one or more clusters 
of processors, depending on how a node is defined. Some conceptual processes 
may involve the activities of only one processor. Others may involve notions 
of competition for variable numbers of processors. Some processes may span 
multiple nodes. Others may "migrate" from node to node. Hierarchical struc- 
tures of processes must be considered. The same locus of action may even 
belong to different processes simultaneously, according to the viewpoint of 
the particular analysis. To accommodate various perspectives and additional 
levels of design, new types of specifications must be considered for complete 
communication and traceability. 

A process supporting a complex weapon system is a finely-tuned simulta- 
neous solution to a large number of software requirements. If the system 
operating rules and process logic are implemented throughout tasks and low 
level routines, evolutionary changes in weapon system requirements, even 
small ones, can lead to extensive redesign of the software. If traceability 
from requirements to design is weak, staggering costs may be involved just 
to determine the software affected, as well as to modify it. One approach to 
avoiding these problems, a technique called "process construction", is explained 
by Marker [18]. The essence of the concept is centralized control of data and 
process logic by specific routines or macros. Interestingly enough, the 
necessary conditions defined by Marker for "process-constructible" software 
are reflected in at least two Higher Order Software (HOS) axioms. 

Even with process construction and modern software requirements engineering, 
careful attention must be given to traceability during the process design phase. 
In previous phases, the software is viewed in terms of a problem-oriented descrip- 
tion (i.e., "what the software does"). In subsequent phases, after process design 
has defined the software architecture, the software is viewed in terms of solution- 
oriented description (i.e., what the software is; how modules, data files interactV 
The process designer must follow disciplined rules for requirements decomposition 
to ensure that traceability between requirements, software components, and test 
procedures can be clearly maintained. 

The quality of the process design is heavily dependent on the quality of 
the DPSS loading profiles, engagement scenarios, and system operating rules 
input to the process designer. If these are deficient, as they often have 
been, it is very difficult to validate the process design and ensure that the 
software architecture conforms to operational needs. More dangerous, the 
process designer may make assumptions about operating rules to fill in gaps 
in their definition. These assumptions may seem perfectly reasonable to make 
the process design more efficient, but may not be consistent with the needs of 
the weapon system as a whole. 
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5.6 PRELIMINARY DESIGN 

5.6.1 Scope 

Preliminary design can be factored into software preliminary design and 
hardware preliminary design activities. Generally, we are not concerned with 
the hardware design activity except in the cases where software considerations 
drive the hardware design or selection, or where significant hardware/software 
trade-offs are possible. 

Software preliminary design can be divided into three components activi- 
ties: application system preliminary design, operating system preliminary 
design, and support software preliminary design. Associated with these 
activities is test engineering, which determines a need for much of the 
support software. 

The output of the process design phase consists of requirements for 
mission software and support software down to the CPC level. For each soft- 
ware process, the process design defines a set of independently-schedulable 
software "tasks", a scheduling algorithm that provides proper task synchroni- 
zation and sequencing, a set of operating system services available to 
application programs, a global data base structure, and control algorithms 
that enforce the weapon system operating rules. The preliminary design phase 
addresses the internal design of tasks within the framework established by 
the process design. 

The primary outputs of the preliminary design phase are designs for tasks, 
including sets of internal (informal) specifications for routines, evidence 
that each task can meet its requirements within the context of the process 
design, and preliminary test plans to demonstrate that the process design 
structure is testable. These outputs are formally presented and discussed at 
the Preliminary Design Review (PDR). During this phase, the B5 development 
specifications are finalized and updates to the preliminary C5 product 
specifications are generated. The preliminary design phase is ended when all 
action items from the PDR have been satisfactorily resolved, and the B5 
specifications have been baselined. 

5.6.2 Content 

We will discuss the content of the preliminary design phase separately 
for each of the major software areas: application, operating system, and 
support. We will also discuss impacts on test engineering and hardware pre- 
liminary design. 

5.6.2.1 Application System 

Working from response time, accuracy and storage budgets, and a set of 
requirements to be satisfied by the task, the application task designer must 
devise a structure of lower-level modules (e.g., routines) that collectively 
meet the requirements, and a task data base structure that supports task 
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private data and inter-routine transfers. The results of this design activity 
will also refine the definition of the global data base and will increase con- 
fidence that the task budgets can be met. 

During preliminary design, problem areas and critical algorithms at the 
task level will be identified. Prototype code for certain key algorithms may 
be developed to benchmark alternative designs. The behavior of alternative 
module structures may be examined by functional simulation or emulation. 

The work of the process designer should insulate the task designer from 
real-time interference problems (e.g., process deadlock, scheduling conflicts, 
memory access conflicts) and relieve application task designers from needing 
detailed knowledge of the operating system. Except for response time require- 
ments, a task can be viewed as a stand-alone batch program. 

Commonly, a task executes under control of a main program or task control 
routine. This routine handles all global data input transfers at the start of 
execution and provides all global data outputs at the end of execution. The 
structure of a task is usually hierarchical and in concert with structured 
software design principles. 

A task typically performs a specific function (e.g., assimilation of radar 
returns, correlation of observations with tracks, scheduling of radar pulses). 
Usually the job to be done can be very well-defined, and the major design 
problem is to find a near-optimal way of doing the job within the timing, 
accuracy, and storage budgets. 

While task design is still a creative process, many software engineering 
principles and tools are available to aid the designer. The earliest of these 
are the traditional flowchart and decision tables. Structured textual des- 
criptions (e.g.. Program Design Language) are augmenting graphical techniques. 
Principles of structure and organization are typified by Parnas' concepts of 
information hiding [4, 5] and program families [5]; the structured design 
strategies of Yourdon and Constantine [19]; Higher Order Software [20]; and the 
Michael Jackson Design Methodology [21]. Although structured programming 
constructs have proven to be more useful than previous unstructured constructs, 
new concepts of Functional Programming [22] show promise because they elimi- 
nate undesirable consequences of structured programming. 

The requirements output of the application preliminary design activity 
is a set of requirements for each module within each task. These specifica- 
tions are not deliverable in any MIL-STD-490 document. Hence, they are 
informal, and their quality is determined by the software engineering standards 
of the particular contractor. The module requirements may be indirectly 
reflected in the C5 specification which describes the design of each CPC. 
However, it is often difficult to separate design details from actual 
requirements under the current format. 
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5.6.2.2 Operating System 

The most difficult problems in implementing the process design are often 
the responsibility of the operating system designer. While the application 
task designer is insulated from the problems posed by hardware and concurrent 
asynchronous software, the operating system designer is fully exposed to them. 

The usual problem of the operating system designer in weapon system 
applications is to meet the needs of the weapon system application by aug- 
mentation of a general purpose commercial operating system, usually provided 
by the computer hardware vendor. The operating system designer must inter- 
face, on one hand, with the existing operating system and, on the other hand, 
with the application needs as specified by the process designer's requirements 
for scheduling and control algorithms, and operating system services. Other 
interfaces are defined by the characteristics of peripheral devices, and much 
of the operating system designer's job may be concerned with the development 
of special purpose I/O handlers and device controllers. The operating system 
designer must also be concerned with problems of interrupt structure, 
scheduling, task enablement and disablement, resource allocation, timing, 
deadlock prevention and resolution, data management, error detection, and 
error recovery. In most weapon systems, these functions are performed by 
executive or supervisor software operating in conjunction with the vendor- 
supplied general purpose operating system. 

In rare cases, the operating system designer may be faced with the 
problem of designing an operating system from scratch, to interface an appli- 
cation with a specific set of data processing hardware. Even more rarely, 
the designer may be asked to design an operating system for an application and 
develop specifications for the hardware to execute the software. The rapidly 
dropping cost of hardware, the expanding capabilities of micro-electronics, 
and better understanding of distributed architectures may make the "software 
first" approaches more frequent in the future. 

The operating system designer has fewer tools to help him than does the 
application system designer because concurrent concepts are hard to represent. 
The major issues faced in distributed processing have confronted operating 
system designers for some time, even in serial machines. Hence, operating 
system design has been a creative, highly experimental "black art". 

The requirements outputs of the operating system preliminary design 
activity are much the same as those of application design, and are incorporated 
in B5 and C5 specifications. Sometimes the operating system will be designated 
as a separate CPCI. Often the system-specific operating system additions will 
be treated as an executive CPC within a CPCI covering the entire application. 
Requirements for operating systems have been difficult to write and are often 
fragmented due to representational difficulties. This does not mean that we 
should avoid stating requirements for operating systems. Rather, we should 
intensify efforts to find better representations. 
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5.6.2.3 Support Software 

In addition to the mission software, other deliverable software packages 
must be provided to support development, operation, and maintenance of a 
weapon system. These may include software to construct software (e.g., com- 
pilers, assemblers, process construction programs, PA tools), software to 
exercise and test software (e.g., simulators, test drivers, diagnostic 
packages, data reduction programs) and software to exercise and test the 
system equipments (e.g., calibration software, system readiness verification 
tools, performance monitors). These needs must be considered in the DPSS and 
process designs because they are usually executed in the same hardware under 
the same operating system as the mission software. 

The B5 and preliminary C5 specifications for deliverable support software 
are developed in the same manner as those for application software. However, 
the requirements for the support software are usually dependent upon both the 
requirements and design of the mission software and/or other system elements. 
Because much of the support software is needed to test the mission software 
as it becomes available, the support software development is often on the 
critical path of the schedule. Hence, the needs for support software 
requirements traceability and change response may be even more critical than 
those for mission software. 

5.6.2.4 Preliminary Hardware Design 

Hardware design is not an issue of interest to us unless the software 
design drives the hardware requirements or the software and hardware designs 
are being done concurrently with software/hardware trade-offs involved. 

In the first case, the hardware designer needs to know characteristics of 
the software and its operations that form the basis of the hardware require- 
ments. These include the instruction set used by the software, a definition 
of the operations commanded by these instructions, word sizes, data types, 
addressing modes, data manipulations, data stream, and instruction stream 
dimensionality, I/O interfaces, instruction speed, memory access speed, and 
memory size requirements. While some of these items are easy to describe 
(e.g., the functional requirements for a one-bit adder are described by a 
truth table) the operation of a complex system is better described through 
use of high order hardware description languages (e.g., SMITE). 

Concurrent hardware/software design is a risky process justified only in 
cases of extreme need. Because it is highly interactive, coordination must 
be frequent, communication must be effective, and requirements traceability 
and change response needs are extreme. The Flexible Analysis Simulation and 
Test (FAST) facility concept [23] has been advanced as an exploratory solution 
to this class of problems. 

5.6.2.5 Test Engineering 

Among the items to be evaluated at the PDR is the initial version of the 
software acceptance test plan. This document contains test requirements and 
acceptance criteria, and information on classes of tests as follows: 
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Test purpose 

Software requirements to be demonstrated 

Special software, hardware, and facility configurations to be used 

Generic test input environment and output conditions 

Critical analysis techniques relating test outputs to acceptance 
criteria. 

By the time of Critical Design Review (CDR) the document must be refined to 
describe the test case structure and identify the following for each test 
case: 

Requirement to be demonstrated 

Test inputs 

Software and hardware configuration to be used 

Support software to be used 

Major software entities to be exercised by the test 

Test outputs 

Test output analysis method 

Uniquely identified test acceptance criteria. 

Preliminary test engineering has been one of the most undisciplined 
activities in the software development cycle, primarily because of the free 
text, unstructured presentation of requirements in current specification 
formats. There has been no rigorous test engineering methodology, and probably 
there cannot be one without a rigorous requirements engineering methodology. 
The reason is clear: the ability to define an efficient, workable structure 
of test cases depends on the ability to identify structural relationships 
between the requirements being demonstrated. 

5.6.3 Problems 

Complexity should not be a major problem in preliminary design (except 
for software with stringent time/accuracy/storage budgets) given that the 
process design has been carefully done. The major problems are communication 
of precise requirements, traceability of requirements from higher levels, 
change response, and validation of the design. 

A common practice in conventional software engineering procedure is to 
allocate software requirements to tasks. The statement of a requirement is 
generally excerpted verbatum from a B5 specification or some higher-level 
specification. It is not uncommon for a requirement to be allocated to 
several tasks, such that each task is to contribute to the total satisfaction 
of the requirement. Unless the requirement is carefully decomposed and 
restated as several sub-requirements, the responsibility of each task is 
ambiguous. Unfortunately, lack of time or manpower is a common excuse for 
omitting the extra effort of decomposition. Prevention of errors then rests 
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on the degree of communication between the designers of the various tasks. 
However, one of the reasons for partitioning an application in the first place 
is to permit independent development without excessive coordination. 

When a requirement is changed, the problem is amplified. What is the 
impact of the change on each task? What is the impact on routines within the 
task? Without a mechanism to decompose each requirement as necessary, and 
record the relationships between the requirement, the sub-requirements, and 
the tasks, the evaluation of change impact is an error-prone and time-consuming 
process. 

A task will often participate in the satisfaction of several higher-level 
requirements. The means of satisfying these requirements will be further 
constrained by process design decisions, and assumptions about the behavior of 
other tasks. A precise and understandable statement of the task requirements 
must consider the relationships between the higher-level sub-requirements, 
design decisions, and assumptions. The failure to adequately decompose, trace, 
and relate requirements leads to inconclusive testing and validation at the 
routine and task levels. All that can be ascertained is that "the tester 
thinks that the coder did what the designer thought the process designer 
intended". Actual testing for satisfaction of requirements must then be 
deferred to system integration and acceptance tests, where subtle errors are 
difficult to find. 

The major problems of preliminary design are inter-related, and stem from 
a single cause -- failure to state requirements in a decomposable, unambiguous, 
traceable, testable, structured representation. Without automated aids, a 
satisfactory requirements statement consumes substantial time and effort. 
Even with automated aids, sound requirements development will consume more 
resources than alloted in the past. However, a new benefit will accrue over 
the life of a project because testing, modification, and maintenance costs 
will be reduced. 

5.7 CONCLUSIONS 

Although many phase-specific issues appear during the course of front-end 
development, the underlying problems of complexity, communication, validation, 
traceability, and change response appear in different guises throughout the 
entire process. This is hardly surprising because the real nature of engi- 
neering, whether labeled requirements definition or design, is problem-solving 
and decision-making according to human thought processes. All human decision 
making, no matter how abrupt or hasty, seems to involve the following ten 
steps to some degree: 

Formulate the problem 

Search for key parameters and relationships 

Identify alternative solution candidates 

Predict consequences and side effects of alternatives 

Compare alternatives 

Evaluate sensitivities, uncertainties, risks 

89 



• Accept the risk of being wrong 

• Make the decision (i.e., select one alternative) 

• Accept the negative consequences 

t Communicate the decision. 

Effective aids to support this process would seem to involve the following for 
complex problems: 

• Reliable methodologies for conceptual decomposition of problems 
into simpler, tractable sub-problems. 

• Computer-maintained data bases for organization and retention of 
multi-dimensional information beyond the span of simultaneous human 
contemplation. 

• Machine-readable languages for expression of ideas in terms of 
fundamental concept types: entities, attributes, relationships, 
and structures. 
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6.0 CANDIDATE TOOLS, TECHNIQUES, AND INTEGRATION APPROACHES 

Given that the problems of the various front-end phases are fundamentally 
similar (with superficial differences), is there a set of tools and techniques 
existing today that can be integrated together to attack the major front-end 
problems of requirements definition and validation? To explore this question, 
we examined the characteristics of over fifteen systems, developed and/or used 
by TRW, or reported in the software engineering literature. Of these, nine 
were selected for further consideration as components of an integrated system. 
In addition, three current research programs advancing the state-of-the-art, 
and expected to yield future tools, are identified. Brief descriptions of the' 
tool/technique systems evaluated, and the rationale for selection of the chosen 
nine are reported in Section 6.1. 

In Section 6.2, we correlate the chosen systems with the front-end 
development phases and examine the applicability of the tools to each phase. 
In Section 6.3, we summarize the assessment of the tools against capabilities 
useful in the statement and validation of requirements. 

In Section 6.4, we discuss the three approaches considered for integration 
of the tools. In Section 6.5, we summarize the rationale for the recommended 
approach. 

6.1 TOOLS AND TECHNIQUES 

To date, no single set of tools has been developed to support the entire 
front-end development process. However, many tools and techniques have been 
independently developed by university researchers to attack portions of the 
front-end problem (e.g., ISDOS), software organizations using Independent 
Research and Development (IR&D) funds (e.g., SADT, I0RL), software organiza- 
tions using contract funds to develop tools to solve specific problems (e.g., 
ALF, PERCAM). Lately, considerable funding has been provided by research- 
oriented DoD agencies to advance the state-of-the-art in software development -- 
RADC and BMDATC being the most significant ones. 

Three categories of tool/technique systems are discussed in this section: 
selected systems, other systems, and expected systems. First, a set of 
selected tools are discussed which satisfy five criteria: 

• Non-proprietary -- The systems are available for use by U.S. 
Government agencies. 

• Maturity -- The techniques have reached sufficient maturity to 
be considered for use in a weapon system development. 

• Demonstration -- The techniques have been used on real projects 
of sufficient size to be realistic. 

• Tool availability — The technique is supported by a computer- 
based tool. 

• Capability -- The systems are unique, or incorporate most of the 
capabilities of similar systems. 
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For comparative purposes, a set of systems which have appeared in the 
software engineering literature, called "other systems", are then discussed 
and related to those selected. A set of applicable research programs which 
are expected to lead to additional tools and techniques are also discussed. 

6.1.1 Selected Tool/Technique Systems 

A review of the non-proprietary tools reported in software engineering 
literature led to the identification of nine systems which satisfy the five 
criteria identified above. These are discussed below. 

• PERCAM -- For four years, TRW has used a system performance simulator 
called PERCAM (Performance and Cost Analysis Methodology) to support 
analysis and planning for U.S. Army tactical missile systems at the 
Missile Research and Development Command, Huntsville, Alabama. 
PERCAM was designed for modeling and analysis of combat engagement 
situations. A system is modeled with an Event Logic Tree (ELT) 
which describes the engagement functions and decisions within the 
defense system, A standard library of engagement components is 
used to define the status of the system, the logic for changing the 
attacker state as the engagement progresses, and, ultimately, system 
performance and resource consumption measurements. Using this 
approach, a system can be modeled initially at a high level and 
adapted to lower levels of detail as needed. The modular structure 
and standard library components permit a quick turn-around capability 
ideal for systems analysis support. PERCAM has been transferred to 
several organizations. The ELTs can be traced to the system operating 
rules. 

• DP PERCAM -- When PERCAM is augmented to output the number of objects 
in each state as a function of time, a post-processor is used to 
calculate critical resource utilization (e.g., radar pulses per 
second, data processing instructions per second, etc.). This has 
been used to estimate DP resources of the systems engineering level 
to perform sensitivity and trade-off analyses. 

• SREM -- The Software Requirements Engineering Methodology (SREM) was 
developed by TRW for the U.S. Army Ballistic Missile Defense Advanced 
Technology Center (BMDATC). SREM was designed to significantly 
improve the specification and validation of real-time software 
requirements for ballistic missile defense systems. Subsequent 
experience shows that SREM can be applied to broad categories of 
military sensor, and command and control systems. SREM includes a 
practical methodology; the Requirements Statement Language (RSL), an 
extensible, machine-processable language for stating requirements; 
and the Requirements Engineering and Validation System (REVS), an 
integrated set of tools for analysis, validation, and simulation of 
requirements. SREM has been transferred to several organizations. 

• CARA -- The pioneer system for machine-analyzable software require- 
ments is the ISDOS system developed by Professor Daniel Teichrow and 
his group at the University of Michigan. AF/ESD sponsored extensions 
to ISDOS under the Computer-Aided Requirements Analysis (CARA) program. 
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Basic CARA facilities include a User Requirements Language (URL) and 
a User Requirements Analyzer (URA). URA operates on URL statements 
to produce a number of fixed reports and summaries, including printer 
graphics in a convenient 8-1/2 x 11 format. Extensions of this 
approach are being addressed by the CADSAT Program. ISDOS was 
originally designed to support development of business information 
systems. Hence, many of the features designed into SREM, such as 
configuration management and simulation generation, are absent. 
Current work on CADSAT is aimed at extending the software for the 
military development environment. TRW has participated in this 
effort. Under contract to RADC, TRW designed a Consistency Checker to 
logically validate the CARA data base. 

Comparison of SREM and CADSAT reveals that they are complementary, 
rather than competing systems. The more recent SREM drew heavily from 
the ISDOS experience, but was designed primarily for generation of 
real-time software requirements rather than analysis of requirements. 
SREM design decisions consciously limited the user's ability to 
express internal DP design concepts, so that the requirements engineer 
could not over-constrain DP design choices. CARA is far higher in 
design concepts, and is more suited to support of process design. 

PPL -- Program Design Language (PDL), developed by Caine, Farber, and 
Gordon, Inc., is supported by extensive documentation and a tool 
called the PDL Processor. Although labelled a program design 
language, PDL is really more of a design description language, used to 
express procedure flows in simple structured English. It supports 
top-down design in that single-line statements can be expanded to 
complex procedures in an orderly, cataloged manner. The PDL Processor 
is basically a text editor with cross-reference capability. 

Output reports are easy to understand and review, and are directed at 
non-programmers, managers, auditors, and customer personnel. Thus, 
PDL functions as a design documentation tool and communication medium 
rather than as a design aid. TRW has been using PDL for two years on 
a limited basis, and project experience has been favorable. 

PDS -- Texas Instruments has developed a Process Design System (PDS) 
uncfer contract to U.S. Army BMDATC. PDS is designed to start where 
SREM finishes, and provides a set of tools for support of process 
design and software development. PDS incorporates tools for configu- 
ration management, library management, simulation control, data 
collection, and documentation. Models and techniques for monitoring 
of project costs and schedules are included. Facilities for 
compilation and process construction are provided. PDS is supported 
by the PDL2 language (not to be confused with Program Design Language 
discussed previously). PDL2 is a version of PASCAL extended to 
support operating system development and vector processing on the TI 
ASC computer. The PDS objective was complete support of software 
development from design trade-offs to final code. Early design issues, 
involving methods for decomposition of requirements and allocation to 
modules, have been particularly stubborn. Further research is needed 
to fill gaps between SREM and PDS. While PDS was designed for support 
of a specific language and computer, it serves as a prototype for more 
generalized tools. 
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• ALF -- The Analytic Load Formulator (ALF) was developed by TRW and 
used extensively on the Systems Technology Project (nee Site Defense 
Program) and subsequent projects to aid in the process design. It 
accepts the definition of a set of tasks, including such attributes 
as loading time, data to be accessed, data access times, execution 
time distributions, proposed scheduler parameters, and estimates 
(via analytical queuing analysis) the response time characteristics 
of the proposed process over a specified domain of arrival rates. 
This analytical technique has been found to be a cost-effective tool 
for process design in comparison to the cost and schedule to perform 
simulation analysis of the response times. 

• H0S_ -- Higher Order Software (HOS) is a formal methodology developed 
by Charles Stark Draper Labs, and now actively advanced by HOS, Inc. 
Although it is promoted as a requirements methodology, HOS is actually 
an approach to decomposing systems and designing modular software 
structures. The methodology is based upon six axioms which explicitly 
define hierarchical control, where control implies responsibility, 
data access rights, and control authority. 

A system described as a tree structure in HOS can be analyzed for 
consistency on both a static and dynamic basis. A specification 
language and checker program are currently being developed to auto- 
mate HOS. Although HOS has no current tools at present, it is 
sufficiently unique to be included in the list. 

• SMITE -- The Software Machine Implementation Tool using Emulation 
(SMITE) is a higher order computer description language for program- 
ming the microprogram components of a diagnostic emulator. Its 
principle benefit is the ability to define (or modify) a DP 
architecture, and use this to emulate the execution of applications 
code to assess the ability of the DP to support the required load. 
This provides a .high visibility approach to performing H/W trade-offs. 
It can emulate only serial uniprocessors, and has not been used on a 
real application (although it has been demonstrated for microprocessors, 
e.g., Z8080). 

These nine systems span the front-end system development cycle from system 
analysis to DP Software/Hardware preliminary design, except for distributed 
processing design. Each has been in use for system design except HOS and SMITE, 
and the collection spans the capabilities of other systems in use. These other 
systems are discussed next. 

6.1.2 Other Tool/Technique Systems 

Other well-known tools and techniques addressed during the study include 
the following: 

• SADT -- This manual technique for describing systems and software was 
developed by SofTech, and has been used for a number of years on a 
variety of projects. It has been discussed in several Software Engi- 
neering Conferences, but is not supported by any automated tools. It 
is similar in nature to CARA (describes a functional hierarchy), but 
has a rather extensive methodology. 
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• SAMM -- This computer-based technique will extend and automate the 
SADT approach with an automated data base and consistency checkers. 
It is still under development by Boeing for the Air Force as part of 
the ICAM project. Its capabilities are similar to those of CARA. 

• IQRL -- The Input-Output Requirements Language was developed by 
Teledyne Brown Engineering and is used in Huntsville on in-house 
projects. It is automated on a PDP-11 and is maintained as a pro- 
prietary product. It is similar in nature to SAMM. 

t  SVD -- System Verification Diagrams (SVD) were developed by Computer 
Sciences Corporation (CSC) as an aid to specification of top level 
system requirements and design. It is also similar to SAMM and I0RL. 
The extent to which it is automated is not known, and it is proprie- 
tary. 

• HDS, -- The Hierarchical Design System was developed by Stanford 
Research Inc. (SRI) for the specification and design of software. It 
was sponsored in part by BMDATC, and is similar to SAMM and I0RL, and 
is proprietary. 

• Simulation Languages -- Simulation is known to be an important 
technique for validating system and software performance. Simulations 
are generally developed using Procedure Oriented Languages (e.g., 
SIMULA, SIMSCRIPT, SIMSCRIPT II), using general simulation support 
packages (e.g., GASP II, GASP IV, SALSIM), or specific problem 
oriented simulation packages (e.g., COMO is the standard simulation 
framework for U.S. Army air defense analysis). These simulation 
facilities were not selected due to their general lack of traceability 
to the design elements represented. 

These techniques are used for the statement of requirements and software 
design at various places. A large number of similar capabilities exist at 
other places supported by proprietary software packages which will not be 
reviewed here. Similarly, the manual techniques for software design (e.g., 
HIPO Diagrams, Nassi-Schneidermann charts, Top-Down Design, the Michael 
Jackson Design Methodology, Yourdon's Structured Design) are not addressed. 

6.1.3 Research Programs 

There are a number of research programs underway which promise the 
development of new tools and techniques to deal with the front-end system 
problems. Although not exhaustive, the following projects are significant in 
terms of scope of effort and unique approaches. 

• ARE -- The Axiomatic Requirements Engineering project is being 
sponsored by Ballistic Missile Defense Advanced Technology Center 
(BMDATC) to address the front-end problems of specifying the data 
processing requirements at the systems engineering level. Parallel 
programs are being funded to TRW, Systems Control Incorporated (SCI), 
and General Research Corporation (GRC). This research is still in 
the conceptual stage, and has not yet resulted in the development of 
computerized tools. 
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• DDP — The Distributed Data Processing program is also sponsored by 
BMDATC to address the problems of selecting distributed processing 
hardware and specifying and developing distributed software. No 
tools have yet been developed and demonstrated by the two contractors, 
GRC and TRW. 

• ADPC — The Advanced Data Processing Concepts program is being funded 
by BMDATC to address the top level estimation of cost and performance 
of data processing solutions to BMD problems. It is synergistic with 
TRW's ARE program in providing a data base to support the more 
theoretical ARE research approach and using early ARE research results. 

6.2 CORRELATION WITH DEVELOPMENT PHASES 

The correlation of the front-end development phases against the initially 
selected set of tools are presented in Table 6.1. As indicated by the legend, 
a "U" in an intersection of a tool and a development phase signifies the 
current use of the tool on one or more projects for that development phase. 

A "U" was assigned to PERCAM, DP PERCAM, SREM, PDL, and ALF because they 
are currently in use on several projects by TRW. PDS is in use at the Naval 
Research Laboratories and by Texas Instruments, although it is not supported 
by TI as a product, and HOS has no current support tool. CARA and ISDOS are 
used for design purposes by a large number of companies. 

A "P" signifies that a tool is currently potentially useful for a phase, 
but has not been used on a real project. DP PERCAM is assessed as potentially 
useful for establishing DP and communications loads during the Requirements 
Engineering and Distributed Process Design phases. CARA was assessed as 
potentially useful because of its ability to express hierarchies of functions 
with inputs and outputs for systems, software requirements, and preliminary 
design. SMITE was developed to address the impact on overall DP performance of 
changes to the DP hardware architectures, but has not been used on an actual 
project to date. 

A "C" concepts potentially useful was awarded to HOS for preliminary design 
due to its six axioms for module definition. Although claims have been made 
for its application at the system level, its utility has yet to be accepted. 
Similarly, PDL, PDS, and ALF were awarded "C's" for Distributed Design because 
their concepts appear to be useful in describing distributed designs. 

An "E" was awarded to SREM, PDL, PDS, ALF, and SMITE because their 
capabilities appear to be extendable to other phases. 

6.3 ASSESSMENT OF TOOLS 

The existing tools have currently known deficiencies even for claimed 
applicabilities. Table 6.2 presents an overview of the features which existing 
tools are claimed to address. The capabilities addressed here are the 
following: 
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Table 6.1 Development Phase/Tool Correlation 
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Table 6.2 Current Tool Capabilities 
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• Functions -- CARA is claimed to be able to state function hierarchies 
at the system and software levels, although techniques are not 
described for linking the separate data bases. SREM addresses the 
statement of DP functional requirements, while PDS and PDL address 
the statement of functions of a software design. No current tool is 
currently used specifically to state the distributed processing 
functions, although CARA is claimed to be applicable here also. 

• Performance -- SREM is the only tool which is claimed to be able to 
state testable performance requirements for any phase of requirements 
development. PDS allows for the statement of software budgets for 
procedures, while CARA and PDL allow such statements in a textual 
format. 

t  Consistency/Completeness Checking -- SREM contains a fairly complete 
set of tools for static checking for various types of completeness 
and consistency. PDS allows the user to request a set of cross- 
reference tables to be used to perform such analyses. CARA has 
added that static checking to CARA, but because SREM allows the 
definition of precedence, its consistency checking is much more com- 
plete than that of CARA; however, even SREM does not include 
consistency checking of processing of legal sequences of messages. 

• Simulation facilities are provided by PERCAM, DP PERCAM, SREM, PDS, 
and ALF. Traditionally, stand-alone problem-oriented simulators 
have been used; only SREM, PDS, and ALF tie the simulation to 
specific design or requirements statements. SMITE provides a simu- 
lation of a given DP architecture. 

• Representation of the allocation of requirements to design elements 
and its traceability is represented only in SREM (originating 
requirements to functions and performance), and ALF (task budgets). 
Traceability capabilities exist between levels only in terms of 
stand-alone capabilities. 

This table is the source for several observations. First, there are a 
number of current deficiencies: the statement of performance requirements for 
systems and distributed systems, the traceability between requirements and 
design, and consistency checking of designs are not well addressed. Second, 
except for SREM and PDS, simulations are not well tied to the requirements or 
design; hence, the statement of requirements and design generally proceed 
independently of their validation via simulation. Finally, no tool can be 
used through the various phases of the system development. CARA comes the 
closest, but it does not provide a traceable link from one phase to another. 
These conclusions hold true for the other tools examined as well. 

Another significant feature of these techniques is the availability of a 
specific methodology to obtain maximum effect from the usage of the tools. At 
the current time, ALF, CARA, PDL, and SMITE do not have documented methodologies 
for their use. CARA particularly has been subject to severe criticism due to 
this fact. On the other hand, SREM, PDS, PERCAM, and DP PERCAM have methodolo- 
gies documented to some degree. The availability of a methodology has a 
profound impact on the ability to transfer technology effectively. 
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6.4 INTEGRATION APPROACHES 

There are various approaches for combining the capabilities of a set of 
tools and techniques to address the front-end problems. Even after an under- 
lying methodology is developed for addressing all phases of the front-end 
development, and the role of each tool is identified, there remains the 
problem of how these tools are to be tied together operationally. The critical 
problem to be addressed is how the information resident in one tool is to be 
translated to be available for use in the next tool to be used (e.g., if CARA 
is used to state requirements for a system, and PERCAM is used to simulate 
the system performance, information should be translated between the two). 
Three approaches are considered for accomplishing this translation: user 
translation, automated aids, and full integration. Each approach is discussed 
below. 

6.4.1 Manual Translation 

The cheapest and least desirable approach is for an analyst to use the 
tools in a stand-alone fashion, with the analyst providing the translation 
capabilities. This approach is undersirable for a number of reasons. 

• Efficiency -- A great deal of effort and time may be required to 
accomplish the translation, and the translation effort may become a 
bottleneck. This is particularly true of the development of large 
scale systems, where the software specifications may involve the 
statement of 1,000 to 10,000 separate requirements. 

• Training -- Training analysts to use a number of different tools 
and to become proficient in their separate idiosyncracies and usage 
can present a large initial start-up training effort. 

§  Reliabi1ity/Traceabi1jty -- When translation is handled manually, 
the reliability of the translation is subject to question; moreover, 
the additional effort to provide traceability (particularly for 
system modifications) can become prohibitive. 

• Completeness -- As previously described, the current set of tools 
and techniques do not contain all of the required capabilities. Thus, 
use of current stand-alone capabilities would still require the 
development of additional tools and techniques. 

• Methodology -- A significant existing problem is that there is no 
underlying methodology for tying current capabilities together, and 
some capabilities have no documented methodology. Thus, even if 
existing tools were used in a stand-alone fashion, a significant 
effort would be required to develop and validate an integrated 
methodology to use them effectively. 

For these and other reasons, some automated mechanism is desirable for 
tying the tools together in an integrated framework. The use of ad-hoc 
automated translators is discussed next. 
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6.4.2 Ad-Hoc Translators 

When a substantial effort has already been invested in a set of existing 
tools, a cost-effective solution to integrate these tools sometimes lies in 
the area of the development of a set of ad-hoc translators which leave the 
tools invariant. In some cases, this approach is simply not possible. For 
example: 

• Augmentation of CARA to provide a simulation capability has been 
found to require an extensive modification of its basic concepts 
of stating requirements in terms of elements, attributes, and 
relationships (these cannot easily express the notions of 
parallelism and precedence necessary for simulation). 

t  Translators alone cannot provide the required traceability linkages 
between the different levels of requirements and design. For example, 
CARA states a design in terms of a design hierarchy; traceability 
between the hierarchy of system functions (e.g., tracking, discrimi- 
nation) and the hierarchy of processing functions (e.g., radar 
returns processing is used for both tracking and discrimination) 
requires that both be expressed in the same data base. 

This approach does address the problems of efficiency and reliability/trace- 
ability, but leaves the more fundamental problems of training, completeness, 
and methodology unaddressed. Thus, the automated translator route is 
unsatisfactory, and cost advantages of using current tools must be compared to 
its deficiencies. The integrated tool approach is addressed next. 

6.4.3 Common Tool Approach 

The advantages of a common tool in terms of efficiency of training and 
operational usage, traceability, and reliability are obvious. The largest 
problems for devising a common tool for the front-end system development lie 
in the problems of feasibility, extensibility, cost, and methodology develop- 
ment. Such questions as the following need answers. 

Is enough known about the problem to devise a comprehensive tool? 

Can additional facets of the problem be easily incorporated into the 
tool at a later date? 

Are the development costs for such a tool prohibitive? 

Would the cost of using a comprehensive tool in an operational 
environment be excessive over those of separate stand-alone tools? 

Would the additional capability of the comprehensive tool be worth 
the additional cost over current capabilities? 

Will the knowledge gained on current tools be lost in the transition? 

What is the risk of developing such a comprehensive tool in terms 
of cost, schedule, and even risk of completing it at all? 

• How can such a tool be transitioned into an operational environment? 
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The questions of feasibility and extensibility can best be addressed by 
the identification of a common underlying structure of the front-end system 
development discussed in the Final Report in some detail: that the front-end 
development process can be described in terms of concepts of: 

Functions (or transformations) 

Inputs/outputs of functions 

Sequences/parallelism of functions and inputs/outputs 

Decomposition of functions 

Decomposition of inputs/outputs 

Performance of functions 

Allocations of functions to subsystems 

Projection of inputs/outputs to a common interface 

Traceable simulations obtained by mapping functions onto simulation 
procedures (e.g., as accomplished by REVS and PDS). 

Recording of decisions and alternatives evaluated. 

Because of this underlying structure, it is possible to express all of these 
concepts in terms of language with a simple meta-language consisting of only: 

• Elements (the "nouns" of the language, e.g., DATA, FUNCTION). 

• Attributes (the "adjectives" of the language, e.g., DATA has UNITS 
and TYPE). 

• Relationships (the "verbs" of the language, e.g., FUNCTION INPUTS 
DATA). 

• Structures to express parallelism, sequentiality, and precedence 
relationships in a compact form (e.g., first A, then B and C or D). 

It is noted that all of the Requirements Statement Language of REVS is 
stated in terms of these concepts, while CARA concepts are stated in terms of 
the elements, attributes, and relationships alone. Moreover, the current 
utility of SREM and CARA, and the research results of the ARE and DDP programs 
suggest that such a meta-language is sufficient for the statement of all levels 
of functional and performance requirements, design allocations, and traceability. 
Experience with SREM, ALF, and PDS, and research results of ARE suggest that 
simulations can be generally developed from a statement of requirements and 
design which include the structural components expressing parallelism, prece- 
dence, and inputs/outputs. 

Current experience with SREM and CARA-CC, and the research results of ARE, 
suggest that much consistency checking can be accomplished using only the 
element/attribute/relationship features, while others require structures of 
precedence relationship. 
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This covers the entire range of capabilities presented previously in 
Table 6,2. Thus, all currently envisioned capabilities of such an integrated 
tool appear to be possible if based on a common meta-language. 

The structure of such a common tool, and its feasibility, can be discussed 
in relations to the current organization of REVS presented in Figure 6-1. 
Currently, all user input (except for direct graphics input) is routed through 
the REVS Executive. REVS supports an extensible RSL language by allowing 
additional elements, attributes, and/or relationships to be added via the RSL 
Extension Translation function. These extensions are added to the REVS data 
base (ASSM), and are used by the RSL Translation function and the generalized 
query capabilities of the Requirements Analysis and Data Extraction (RADX) 
function. The Simulation Generation facilities access this data base to 
create simulators coded in PASCAL. 

To implement a generalized front-end tool, this same structure would be 
possible with the following augmentations: 

• The current structure segments are fixed; some mechanism is needed 
for adding new types (e.g., add new structures to the translator, 
or add the capability of structures of user-defined structures to 
the Extension Translator). 

• Extend the structure checking capabilities of RADX to check the new 
structures for completeness and consistency. 

• Modify the interactive R-Net Generation function to generate the 
new structures and check them for the new structural rules. 

• Modify the simulation generation function to utilize the new 
structures. 

0  Modify the REVS Executive to recognize new components (e.g., a 
systems level simulation generator for PERCAM). 

• Add additional tools to accomplish specific analyses (e.g., ALF). 

• Add additional tools to compare data bases for configuration 
management. 

To avoid the creation of an unwieldy data base, the output capabilities 
of RADX could be used to extract the relevant portions of a systems level 
data base to allow the definition of the software requirements; and a subse- 
quent extraction of the end requirements to allow definition of traceability 
and the software design. This process is illustrated in Figure 6-2. A 
compare capability is shown to enable the comparison of two data bases to 
identify differences -- necessary for configuration control. 

6.5 ASSESSMENT 

Assessment of the previous discussion leads to the following con- 
clusions: 
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• Development'of a common tool based on REVS is 

- Based on an underlying methodological structure 

- Feasible 

- Extensible and flexible 

- Low risk (based on current REVS design) 

- Comprehensive. 

• All but the structure and simulation facilities are immediately 
available via the extension capabilities of RSL today. 

• Development of such a tool could take advantage of current experience 
using 

- SREM (because it is based on REVS) 

- CARA (because of an overlap of meta-languages) 

- PERCAM (simulation obtained by translations of the system logic) 

- DP PERCAM (simulation post-processor based on translation of 
the system subfunctions) 

- PDL (RADX can provide a more extensive data extraction capability) 

- PDS (RADX could extend the completeness/consistency checking) 

- ALF (RADX could provide the ability to tie the design to the PDS 
implementation) 

- HOS (concepts useful for software design) 

- SMITE (used as an off-line analysis tool to estimate resource 
requirements for the preliminary design). 

Because of the existing structure of REVS, the approach of using REVS as 
the baseline for augmentations appears to be cost-effective for adding new 
tools or for using automated translators: RSL/REVS appears to provide an 
existing structure for low cost augmentations, while RADX may well be suffi- 
cient as a base for the automated translators. The advantages in efficiency, 
training, and reliability are obvious. A recommended approach for development 
of the integrated set of tools is presented in a separate evolutionary develop- 
ment plan, CDRL Sequence No. A002 of this contract [24]. 
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5 

PART III 

1.0 INTRODUCTION 

This portion of the report addresses the description of an overall unified 
methodology to address the system development front-end problems described in 
the previous section. The approach Is based upon formal foundations developed 
under the Axiomatic Requirements Engineering (ARE) program supported by the 
Ballistic Missile Defense Advanced Technology Center (BMDATC) in Huntsville. 
Alabama. The key to this approach is a formal definition of decomposition 
and allocation, and definition of a framework in which systems analysis and 
design decision can be described and compared for different decompositions. 
This leads to the definition of a unified methodology to be applied from the 
front-end needs analysis down to the definition of the software design for 
each of the data processors. This in turn leads to the identification that 
a common metalanguage is possible which can be used to define languages for 
the precise statement of requirements at each level of the hierarchy, thereby 
providing the basis for a common set of methods and procedures. 

The purpose of this report is not to define the completed methodology 
(that is beyond the scope of the effort); the purpose is to identify the formal 
foundations and to outline the features of the methodology which should be 
developed in detail. 

The purpose of a methodology is not to provide a mechanical set of steps 
which, if followed, will result automatically in an optimal end product; no 
matter how good, a methodology cannot make up for deficiencies in engineering. 
It is commonly agreed that any design effort is comprised of one percent 
inspiration and 99 percent perspiration; it is the purpose of the methodology 
to assure that the inspiration is not drowned by the perspiration. In other 
words, the purpose of the methodology is to identify the steps which should 
be passed on the way to the end product, and the properties of the intermediate 
and final milestones which should be reached in order to have an acceptable 
end product. This provides the foundations from which requirements for auto- 
mated tools are developed to aid in the requirements and design process. 

1.1 BACKGROUND 

Before defining a new methodology for systems engineering and design for 
the front-end of system development, it is useful to review the systems engi- 
neering literature to determine current deficiencies. Table 1.1 presents a 
set of the systems engineering and software engineering methodologies and their 
authors. Table 1.2 presents a comparative overview of the major steps of 
these methodologies, showing rough equivalence of overall contents and se- 
quences of steps, although different in the Individual step definitions. A 
more detailed review leads to the conclusion that all of these methodologies 
lack a formal definition of a consistent set of system properties, and tools 
to address those properties. All of the methodologies offer only generalized 
procedures for accomplishing the methodology steps (e.g., none offer specific 
procedures for checking the consistency of a decomposition). None offered 
the identification of specific steps of the development process. This result 
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Table 1.1 Representative Methodology Frameworks and Techniques 

o 

• SOME SYSTEM ENGINEERING METHODOLOGIES 

- SYSTEM DESIGN PROCESS LIFSON, KLINE 

- PROBLEM SOLVING HALL 

- DESIGN PROCESS ASIMOW 

- ANATOMY OF DESIGN ROSENSTEIN, ENGLISH 

- DESIGN PROCESS GOSLING 

- ENGINEERING DESIGN PROCESS ALGER, HAYS 

- SYSTEM ENGINEERING PROCESS AFFEL 

- PHASES OF OPERATIONS RESEARCH CHURCHMAN, ACKOFF, ARNOFF 

• SOME SOFTWARE ENGINEERING METHODOLOGIES 

- SUCCESSIVE REFINEMENT DIJKSTRA 

- PROGRAM DESIGN JACKSON 

1 - STRUCTURED PROGRAMMING DAHL. DIJKSTRA, HOARE 

- S/W DEVELOPMENT SYSTEM DAVIS/VICK 



Table 1.2    Representative System Engineering Methodologies 
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Syslem design 
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solving 

Design 
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Design 
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Engineering 
design 
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process research 
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gathering and 
organizing 
(need) 

Formulation of 
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alternative 
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and/or test 

Evaluation 
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Optimization 
Xiteration)      y 

Communication 

Problem 
definition, 
selecting 
objectives 

Systems 
synthesis 

Systems 
analysis 
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the best 
system 

Communicating 
results 
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problem 
situation 

Synthesis of 
solution 
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identification 
of need 

Identilication 
of system 
variables; 
criteria 
development 

Synthesis 

Evaluation 
and decision 

Optimization 
(revision) 

Implementation 

Test and 
evaluation 

Decision 

Optimizing 
(iteration) ^ 

Communication 
and 
implemen- 
tation 

Description of 
input and 
environment 

Measure of 
value 
(system worth) 

Formation of 
system models 

>    Realization     > 

>    Optimization 
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Recognizing 

Specifying 

Proposing of 
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Evaluating 
alternatives 

Deciding on 
solution 

Implementing 
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system 
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System 
synthesis 

System 
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Formulating 
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Constructing 
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Densing 
solution from 
model 

Tesimj' model 
and solution 
derived from 
it 

Establishing 
controls over 
solution 

Putting 
solution lo 
work; 
implemen- 
tation 



is typical of the "heuristic" methodologies, including the MIL-STD Systems 
Analysis techniques. 

At the other end of the spectrum are the mathematical descriptions of 
General Systems Theory. Mesarovic et al. [1, 2] is typical of attempts to 
describe general systems properties based on mathematical formalism; unfor- 
tunately, these attempts are too limited to be successful. For example, 
Mesarovic [1] addresses the formal description of one system decomposition 
at one level ~ this is insufficient to address multiple possible designs to 
meet a set of requirements for a complex system ultimately composed of a 
large (e.g., 100,000) number of parts containing complex data processing 
functions. 

These conclusions (lack of a consistent set of formally defined properties, 
lack of unified tools) hold true at all levels of the front-end of system 
design, from Systems Analysis to Data Processing Engineering to process design. 

1.2 OUR APPROACH 

Our approach to defining a unified methodology and supporting tools is 
illustrated in Figure 1-1. First, the underlying formal foundations are 
identified, a methodology based on those foundations is described, the meth- 
odology Is demonstrated on example problems, and then tools to support the 
methodology are developed and demonstrated„ 

Section 2.0 provides the formal foundations in terms of definitions of 
decomposition and allocation to subsystems. Section 3.0 provides an overview 
of a methodology based on these foundations. First, a generic methodology is 
provided, and then it is particularized to the design of data processing 
subsystems to the software preliminary design level. These concepts are 
solidified using examples from a preliminary analysis of a strategic sur- 
veillance system. Section 4.0 presents conclusions. Section 5.0 presents 
the references for Part III of this report. 
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2.0 FORMAL FOUNDATIONS 

2.1 OVERVIEW 

A system is viewed in many different ways during the system development 
process.    Figure 2-1  presents three specific views and their relationships: 

• The system requirements  (i.e., what the system does).    This is 
described at various levels of detail, from a system mission level 
(e.g., save the world for democracy), and at more detailed levels 
(e.g., input message A).    These levels of detail  are usually ex- 
pressed hierarchically in terms of "decompositions" of one level 
into another. 

• The system design, i.e., the physical  pieces of the system, variously 
called subsystems, critical  items, assemblies, or parts.    The system 
can thus be viewed as a hierarchy of these elements terminating at 
the bottom of a set of "parts".    At any level of this hierarchy, 
there is an allocation of the requirements of what the overall element 
(or system)  is to do in terms of what the sub-elements  (or subsystems) 
are to do.    The data base of such requirements can get very large 
(e.g.,  100,000 to 1,000,000 parts for an aerospace system). 

• The system integration and test plans, i.e., the system is not a 
collection of subsystems,  it is an integrated collection of sub- 
systems.    Resources  (e.g., time, cost) are required to integrate the 
sub-elements into the overall element (e.g., bolt them together) and 
to verify that the overall element requirements are satisfied (i.e., 
test).    An integral  part of the system's design process is the iden- 
tification of how the parts are assembled and tested.    Note that the 
overall element is tested against the element specification, not the 
sub-element specification.    Note also that, in order to test the 
element, test tools and test procedures must be developed.    The cost 
and schedule of the development is thus calculated from the cost and 
schedule of developing the sub-elements, plus the cost and schedule 
of developing the test tools and procedures, plus the cost and sched- 
ule of actually integrating and testing the element from sub-elements. 

These three views of a system should have the properties: 

• The detailed requirements at one level should be "decompositions" of 
the initial  requirements at that level. 

t     The allocation of requirements at a level onto sub-elements should 
be unique. 

• The test plan should identify the sequence and manner of verifying 
that each of the system actions are accomplished by the cooperating 
sub-elements. 

• The integration and test plan at one level should be a "decomposition" 
of that of the previous level. 
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Note that four concepts are central to this discussion: 

t  The concept of a function (of a system, of a subsystem, or of the 
integration and test process). 

• The concept of sequences of functions (of system actions, of 
tests). 

t  The concept of decomposition, i.e., of describing a function in 
terms of a collection of more "detailed" functions. 

• The concept of allocation (of functions to pieces and tests). 

To achieve the definition of system properties and relationships, these con- 
cepts must be formally defined. 

Note further that these views of a system are not static, i.e., that 
decomposition and allocation are non-unique mappings. Thus, changes in the 
system requirements ripple into changes in the design, and into changes in 
the integration and test plan. Similarly, if a part cannot be fabricated 
for a specific cost and schedule, an alternate design may be necessary. 
During the life of the system, the whole information structure of the system 
is in a continuous state of controlled change — continuous change in response 
to changes in requirements, design, or testing capabilities, but controlled 
and managed to achieve specific ends (i.e., delivery of systems with agreed-to 
performance, cost and schedule). 

Formalizing the abovg, we have the following definition: A system set S 
is a five-tupal, S ■ (R, D, T, W, Z) where 

R = A set of requirements for system actions. 

8 = A set of design elements (SS-i SSn)  each of which is a system, 
and a description of the environment E. 

T = An integration test and plan. 

W = A set of estimating relationships. 

Z = A set of preference rules for comparing systems. 

Each of these will now be examined in turn. 

2.2 SYSTEM FUNCTIONS 

We start with the definition of structures of data identifiers, systems, 
and then formally define the notion of decomposition. 

Definition 1: (SDT). A Structured Data Tree (SDT) is a triple (S, d, T) 
where T is a tree with nodes which are identifiers from the set, S, and d is 
a function on the nodes of the tree such that d maps nonleaf nodes into 
(+.&.*,§), where: 
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+ indicates that exactly one of the subtrees are included, 

& indicates that all  subtrees are included in parallel. 

* indicates that the subtrees are replicated some number of times. 

@ indicates that the subtrees are included in a left-to-right sequence. 

Remark.    This notation is a variation of Jackson's  [3] terminology which 
will  prove useful  later.    Figure 2-2 gives a graphical  representation of an 
SDT with the following interpretation.    The identifier A is composed of the 
identifiers B,  C, and D in that sequence.    B consists of either B-,  or Bg.    D 

consists of two parallel  streams, E and F, where E consists of a sequence 

E,, E„, and F consists of the sequence F,, Fp From 

this, the tree, T, the identifier set, S, and the mapping, D, can be 
constructed for the SDT, with root identifier, A.    In general, the 
name of the SDT will  be the same as the name for the identifier of the 
root node. 

The structure of identifiers is used to represent inputs/outputs, system 
parameters, and system performance indices of a system.    These identifiers may 
themselves have values, or may represent a subtree of other identifiers.    This 
concept will prove useful  in providing structure to the inputs and outputs of 
a system. 

Definition 2 (Function).    A system function, F, is a six-tupal, F = (I, 0, 
U, P,  D, C), where 

I = an SDT of inputs. 

0 = an SDT of outputs. 

U = an SDT of system parameters. 

P = an SDT of performance parameters. 

D = the definition of a transformation, D: (I, U) ■*  (0,P) 

C = a completion condition. 

Remark. A system function, F, is viewed here as a "black box" which has 
inputs I and outputs 0. The input is assumed to contain any relevant environ- 
ment parameters, e.g., rain. The system function is viewed as incompletely 
defined until the system parameter set, U, is specified: thus F can be viewed 
as a family of functions, where the selection of U will result in the selection 
of exactly one transformation of inputs and environment into the function 
system outputs and performance, P. The transformation will continue until 
a completion criterion, C, is satisfied. 
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For example, we may describe a system function for detection of an 
object.    The input, I, might consist of the real  object position and radar 
cross-section.    The environment, e, might represent the rain rate in inches- 
per-hour which will  tend to attenuate the radar detection capability.    The 
performance, P, might be the probability of detection, while the system param- 
eters might be the radar power-aperture product and receiver noise level»    From 
these system parameters, object location, and rain rate, the probability of 
detection can be estimated analytically. 

2.3 COMPOSITION 

The concept of decomposition involves the notion of one function being 
described in terms of a number of other functions; in other words, a number of 
functions are "composed" into another function, and it is this function which 
may have a decomposition relationship with the original function. The manner 
of this composition is defined precisely below. 

Definition 3 (GMF). Let FQ,  F,  F be functions, where FQ  is an 

external node, and F. = (I., 0., U., P.., D., Cj) i = 1 n. Let G be a 

directed graph with nodes F. and edges E.. such that; 

1) Edge E.. connects two nodes, i.e., E- ■ (F., F^) for some j, k. 

2) There exists mappings Bj and BQ with 

'+ indicating the function F.. is initiated by activating 

any of the input edges connected to it. 
B,  :  Fr< 

indicating the function F.  is initiated when all  of 

the input edges connected to it are activated. 

3) (+    indicating F.  causes activation of exactly one edge 

B0  :  Fr< 
when C.  is satisfied. 

&    indicating F. causes activation of all output edges 

when C.  is satisfied. 

4)    If Bn  :  F. -> +, then C maps (I, U) onto j, indicating that edge E.. 
u       1 1 is to be activated.      ,J 

Remark.    This definition is an adaptation of the definition of a Graph 
Model of Computation in Computer Science (e.g., see [4]).    The graph consists 
of edges which define precedence relationships among functions.    The concept 
of precedence or sequence is defined in the following ways.    Assume 
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Then when C. is satisfied, one of the following is the case: 

• If BQ : F1. + *  and Bj : F. -> +, F. will be immediately initiated. 

t  If BQ : Fi -> + and Bj : F. -> +, then F. may be initiated if that 
edge is selected by C. 

• If BQ : Fi -> *, Bj : p. ->- *, then F. will be activated if, and only 
if, F. selects edge E.. and all other edges to F. are activated. 

• If B0 : Fi ^ +,  BI : Fj ^ *' then Fi W111 be activatecl "if. and only 
if, F.j selects edge E.. and all other edges to F- are activated. 

This allows the synchronization of functions to be specified. Because of the 
close similarity of the GMF and GMC, many results of the GMC (e.g., liveness) 
can be used without modification; these will not be discussed here. 

Example. Figure 2-3 illustrates a GMF. Note that G has two input edges 
and three output edges. It can be initiated by edges E, or E2, leading to Fr 

After F3, all of F^, Fg, Fg, and edge Eg are activated. When all of F^, Fg, 
and Fg are completed, Fj  is initiated, leading to activation of F3, or edges 
Ell or E12. 

Definition 4 (Composition).    Let G be a GMF over nodes F, , F , 

with a single entry.    Define Fo = (I  . 0o, Uo, P  , D , C ) where 

O^G^.). 

uo=Uiur 

Pn =U.P.. o       i  i 

D0 =  (G, F1 Fn). 

Co = G(Cl V' 
The F    is called a composition of F, ,F . 

Remarks.    Composition is the technique used to compose a "Super Function" 
F0, from a set of functions, F1 Fn.    The inputs I    to F   are the inputs 

to an F. which are not outputs of other F..    The outputs 0   of F   are some 
' J r o o 

subset of all  outputs of all  F...    The system parameters U    and performance 

indices, Po, are simply the union of those of the Fi.    The description, D , 
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Figure 2-3 Example Graph Model of Functionality 
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of the transformation of F is the Graph over the F.. And the stopping condi 
tions, 
the F. 
tions, C of F , are determined from the graph over the stopping conditions of 

The inputs, I, and outputs, 0, of F are more than just a simple union of 
the inputs, I., and the outputs 0., of the F.. The notions of sequence and 

parallelism must be preserved also. Figures 2-4, 2-5, and 2-6 present typical 
data compositions derived from the GMF with sequential, selection, parallel 
functions. Note that the input data, I., to a function, F., may be composed 
of subtrees output by previous functions and subtrees with an external source. 
Thus the definition of the input data, I., for each function F,, and the data 
available from preceding or concurrent functions. The output, 0 , is a sub- 
tree of a maximal output SDT; the selection of the specific subtree is a 
design decision. 

2.4 DECOMPOSITION 

The approach of defining inputs and outputs in terms of SDTs (rather than 
sets of data identifiers) allows the definition of decomposition of data, or 
refinement. 

Definition 5 (Data Refinement). Let d, and d2 be SDTs. Then dp is said 
to be a refinement of d-, if d? can be constructed from d, by adding subtrees 
to a subset of the leaves of d-,, denoted by d, 4- d^. 

Example. In Figure 2-7, d^  is a refinement of d,. 

Remark. This definition of refinement of data satisfies our intuitive 
notion that the refinement of a refinement should be a refinement. The fol- 
lowing theorem is a confirmation. 

Theorem 1 (Transitivity of Refinement). If d-, + d^i and $2  + ^ then 

d1 + d3. 

Proof. The subtrees to add to d, to yield d3 are obtained by combining 

the constructions for d, + dp and dp. + do. 

Remark. The concept of refinement of data provides the critical concept 
for the definition of decomposition. 

Definition 5 (Decomposition). Let F and F be system functions 

F = (I, 0, U, P, D, C) 

Fo = (V V Uo' Po' Do' Co) 
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Then F is said to be a decomposition of F, denoted by F 4- F , if and only 
o o 

if: 

a) I + I0 

b) 0 + 0o 

c) U = ^(U0) 

d) P = ^U^ PO) 

e) C=Co 

f) D is a projection of D ,  i.e. 

i f i  e I,  i    E I  . 1 + 1 
oo o 

0  e 0,  Oo  e  Oo5   0 +  O0, 

then 

Remark. This definition of decomposition requires several criteria to 
be satisfied: 

a) The input and output data of F must have the same structure and 

sequence as that of F (i.e., I + Io, 0 + Oo). Thus, I may be defined 

as a sequence of "messages", and Io may define the contents of those 

messages, with the requirements that I have the same top-level struc- 

ture as I. Similarly, 0 can only be elaborated by 0 . 

b) The system parameters U must be calculatable from the U . This pro- 

vides the link between the system parameters selected at one level 
of analysis and the system parameters selected at the next, more 
detailed level. Similarly, the performance indicates P must be 
calculatable from the performance indices P and the system 
parameters. U . 0 

o 

c) The completion criteria C and C0 must match. This requires that 

i)  both F and FQ complete at the same time; and 

ii) a branch selected by C be also selected by C . 
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d) If D maps an element of I onto 0, then D must preserve this mapping; 
and the associated performance indices. This assures that the nature 
of the mapping not change from level to level of analysis. 

On the other hand, it is also clear that a large number of decisions are 
made with each decomposition step: 

a) The subtrees of I and 0 . 

b) The functions F., F . 

d) The sequence of these functions defined by G. 

e) The completion criteria C.. 

f) The nature of the transformation D.. 

Note that none of these are unique, and that each requires a specific decision. 
Thus, with each decomposition F + F , we can identify a rationale for its 
selection. 

Theorem 2 (Decomposition Transitivity). If F, + F? and F? 4- F^,  then 
F, * F3. 

Proof. 

a) From Theorem 1, I, + !« and !« + I3 imply I, + I, 

b) Similarly, 0, 4- (L and (^ + 03 imply 0, + 0, 

c) Since U, = $2  (^o) anc:, U2 = ^3 ^3)' 

Then U, = fa  U3 (U3) ). 

d) Similarly 

P = ^2 (U2, P2) 

- ^ (*3 (U3)' ^3 ^3' P3) ) = ^2 (Uj' P3) 

e) If i, + i' 4- i" , 0, 4- Op + o3, then 

D(i,) = o, implies D^ (i^) = O*. and 

^2^2^ =  ^2 ^mPHes D3 (''3) = ^3' hence 

Do is a projection of D,. 
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Remark. This concept of decomposition as a transitive relationship on 
system functions induces a partial ordering on any set of system functions 
which represents a hierarchy of decisions. Figure 2-8 illustrates such a 
tree with a root node F , with F + F,, F + F0-, F + F0 representing alter- o olo2o3     r 3 

nate decompositions.    Such a tree graphically portrays the relationships of 
the F-,  in terms of the alternatives which were examined at each level  of decom- 

position.    The tree also allows the identification of the specific decisions 
which led to the form of the function (i.e., F,0 is the result of the decisions 

Fo + F3'  F3 + F7 + F10)- 

The concept of decomposition is common-place in systems theory literature. 
A treatment of this subject is given by Mesarovic, Macko, and Takahara 
for hierarchical systems [2] and general systems [1], 

It is treated by Softech [5], Peters [6], Hamilton and Zeldin [7], 
Dijkstra in his description of successive refinement [8], Fitzwater [9], 
Wymore [10], and in military specification standards [11]. None of the 
treatments simultaneously address the concepts of I/O sequence, functional 
sequence, system parameters, and performance. 

Several special cases of decomposition are of interest. These are 
summarized in Figure 2-9 and discussed briefly below. 

1) Functional Refinement. In this special case, I0 + I-, and 0n -i- 0,, 

but F1 has the same graph as FQ and U] = uo' Pi = Po- Tlle refinement 

of IQ and 0g induces the need for a refinement on F-, which has an 

elaborated range and domain of its transformation D0 and completion 

criteria C . This sometimes is used to provide a motivation for 

further decompositions. 

2) Concurrent Decomposition. In this case, F is represented as the 
0 1  2     3 

interaction of three concurrent functions, F2, F2, and F^, which 

interact via exchange of inputs and outputs, and set together to 
accomplish the transformation. This is similar to traditional 
definitions of decomposition in [5], [6], [10], and [11]. 

3) Hierarchical Decomposition. In their book on Hierarchical Systems 
Theory [2], Mesarovich, Macko, and Takahara elaborated the point that 
any system which has inputs I which can be decomposed into streams 
111 1 

I-jf  U 1.:. can be represented as the interaction of functions Fl 

which deal with inputs I. and measurements system control parameters 

U., and have outputs 0. and measurements M.; this can be done as long 1 1    i i 
as a function Fo is defined (called a control or coordination function) 

which has as inputs (M], MJ) and as outputs (u] U^). Note that 

this can be viewed as a special case of the concurrent decomposition. 
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4) Sequential Decomposition. If I consists of the sequence I,, Ig. ^ 
then we can construct the sequence F,, F2, F3 which has these as 
inputs. This type of decomposition is used most often in simulation 
modeling of a system. 

5) Selection. If I consists of inputs I, followed by I2, where I2 is 

either ^ i or ^ 2' then ^  can be rePresentec:l as |ri followecl by 
either F2 or F,. 

6) Iteration. If I consists of a sequence I,, I2S..., In, then a 
function F can be defined in terms of a sequence of functions F-j 
whi ch map I-, onto 0, 

We call these special cases the "structured decompositions", and conjec- 
ture that any system function can be derived by a sequence of structured 
decompositions. Note that structured programming is based on the concepts 
of sequential, selection, and interaction decompositions, and have no analogs 
of hierarchical, concurrent, and refinement decompositions. 

Example. The relationship between system classes, data refinement, and 
function decomposition can now be made clear. Figure 2-10 illustrates how a 
pair of top-level functions (one for the system, one for the environment) are 
refined, based on the assumptions on the system classes. 

If we postulate a passive sensor (e.g., passive optics) and a directed 
energy weapon, then the system inputs, I, consist of passive energy and the 
outputs are directed energy (e.g., laser, neutrons. X-rays). If we postulate 
an active sensor, then the inputs consist of the energy reflected by the 
threat objects, and the outputs consist not only of the directed energy but 
also the transmitted energy (e.g., laser radar, radar). If we assume a 
passive sensor and physical weapons, then the inputs might be the passive 
energy, and the outputs of the system might be the physical effects of the 
weapon at impact or detonation time. 

Note that whenever we refine the inputs and outputs, we have in mind a 
class of device which accepts the inputs and produces the outputs. It is 
an open question of which comes first; our concept of the physical device 
which might correspond to such transfer functions, or the identification of 
the class of input. 

In the same fashion. Figure 2-11 illustrates how a decomposition into 
system actions depends on the nature of the components taking those actions. 
If a weapon system consists of a sort of "mine" or unguided round with a 
proximity fuze, then its function is to detect a target and explode. If the 
weapon system has a passive sensor which is used to guide a missile, the 
system actions include the functions of tracking, discriminating, launching 
and guiding a missile to detonation. If the sensor is active and the weapon 
uses directed energy, the target is detected, track, and the weapon is 
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physically aimed and fired. Thus the system actions (nature, sequence, inputs, 
and outputs). All depend on the nature of the components to take them. 

2.5 SIMULATION 

It is well known that simulation is an important tool for performing the 
estimating of the performance indices P given approximations of the inputs 
system parameters, and environment. It is also well known that the simulation 
should somehow be "traceable" to the system description. These concepts can 
be formalized as follows: 

Definition (Typed SDT). Let I be an SDT. A typing of I, denoted by I , 
is the refinement of I obtained by assigning a type (e.g., boolean, real) and 
range of values to the leaves of I. 

Definition (Simulator). Let F be a system function. F is called a 
simulator of F if 

F+ = (I+, 0+, D+, U+, P+, C+) where 

I , 0 , u , P are typed SDTs 

and D is a procedure which maps 

(I+, U+) to (0+, P+), and 

C is a procedure which maps I onto the set of output edges of F. 

Definition (Simulator traceability): A simulator F is said to be 
traceable to function F if m 

D+ = (G, FJ,   F+) 

i.e., if both have the same precedence graph. 

Remark. This definition of traceability is quite strong: it requires 
that procedures exist for each system function F. , and traceability between 

system inputs, outputs, system parameters, and performance indices. This 
definition attempts to formalize the approach used to build simulations of 
software requirements written in the Requirements Statement Language (see 
Bell [12]). 

Note that various levels of simulation exist as a consequence of having 
different levels of decomposition of the system requirements. This provides 
a key link for concepts of validating one level of simulation by lower levels 
of simulation.i.e., one should be a decomposition of the other). 
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2.6 ALLOCATION TO SUBSYSTEMS 

We start by defining the Systems Requirements, R, in terms of the root 
function, F . 

o 

Definition (Functional Requirements).  A system, S, is said to have 
functional requirements, R, If 

R = (X, Y, F, P) 

where F is the root function of the system, F = (I, 0, D, U, P, C). 

X = domain of input space I 

Y = required range of the output space 0 

_ 
P = range of performance indices P. 

A second view of a system is "what it is", i.e., as a set of interacting 
parts with a common goal. These parts are here called "subsystems", denoted 
by SS-|, SS2, ♦ssn' anc' 1:he description of the environment, E. 

The description, E, of the environment plays a special role in the 
development of a system. The root function, F, maps a threat scenario onto 
the engagement results; the nature of the interaction between the environment 
and the system components depends on the nature of the components. Thus, E 
will describe radar reflection properties of the threat if a radar is a 
component of the system, while E will describe optical emissions if the 
system includes an optical sensor. The subfunctions to describe the environ- 
ment must, therefore, be developed as part of the decomposition process, 
and then "allocated" to the environment description. Noje that F describes 
the closed system, while F-E describes the open system, F, which maps all 
environment inputs (e.g., radar returns) onto all system outputs (e.g., radar 
pulses, blast effects). 

The relationship between the subsystems and the system requirements 
should include the following: 

• The subsystems SS-i, SS2 ,SSn and the environment model E 

should collectively perform all of the system actions defined by 
some decomposition F . m 

f  The subsystems have interconnections between them to transmit 
precedence relationships and information. 

• Each subsystem SS^ can be considered as a system. 

The implications of these properties are profound: if SS. can be con- 

sidered as a system, then the decomposition and allocation process can be 
repeated successively to yield a hierarchical structure for defining a 
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system in terms its lowest level parts, subassemblies, assemblies, critical 
items, prime items, and top-level subsystems. If the collection of subsystems 
must perform all of the actions of F . then each subfunction of F should be 

m m 
uniquely allocated to exactly one subsystem. This provides the stopping 
criterion for the decomposition process; in effect, decomposition stops when 
each subfunction of a functional decomposition can be mapped uniquely to one 
subsystem SS.. Finally, the interfaces between the subsystems must pass all 

information and enablement information between the subfunctions allocated to 
the subsystems; this provides the requirements for the interface design. 
These concepts are formalized below. 

Definition (Subsystem Allocation Relationship). Let M be a relationship 
between the subfunctions of F and the subsystem elements SS-,, SS2, , SS 

and the environment model E. Then M is said to be a subsystem allocation 
relationship. 

Definition (Subsystem Allocation).  If M maps each lowest level sub- 
;ion F onto i 

m 
be an allocation. 

function Fm onto one subsystem or the environment model E, then M is said to 
m J 

Remark. A subsystem allocation relationship can exist between any level 
of decomposition of the system function F^ and the subsystem (including the 

environment model E). Note that, as Fn is further decomposed, eventually M 

becomes single valued, and hence, an allocation. Further decomposition of Fn 

after M is an allocation, explicitly imposes "design constraints" on the 
subsystem to which the subfunctions are allocated. This provides the 
key to the definition of "design freedom" as a quality. Note further that 
the qualities of design freedom and allocatability (i.e., several different 
allocations to subsystems can be explored without further decomposition) 
appear to be incompatible -- the further F is decomposed, the finer granu- 
larity can be considered for allocation to subsystems, but then "neighboring 
subfunctions" will be allocated to one subsystem, thereby giving a finer 
description than "necessary". It appears that one may "recompose" the 
subfunctions into higher level functions after the allocation has been made to 
reduce the design constraints of the subsystem requirements; the "validation 
points" on the R-Nets of the Software Requirements Engineering Methodology 
have this property. 

Note that an allocation, M, not only allocates the subfunctions to the 
subsystems, but induces an allocation of system parameters and performance 
functions to the subsystems SS. and the environment E, and induces the 

mapping on inputs and outputs of the subfunctions onto the inputs and outputs 
of the subsystems. 
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This is formalized below. 

Definition (Subsystem Graph). Let M map F onto subsystems m 
SS, , »SSm- The subsystem graph G. is the graph 

Gi =  (ers)' 

where ers = (Fr, Fs) where Fr or Fs (or both) are in SS.. 

Thus G^ contains all edges connected to any F. mapped by M into the 

subsystem SS-. 

Definition (Subsystem Composition). Let M map F onto subsystem 

SS-j, SSnJ E having subsystem graphs G1 Gn, Gp. Define 

SS. = (1^ 6^ U^ P^ 6^ C^ 

where 

Di  = (G^ {F. where F. is in SS.}) 

I,  = G.(I.) - G.(0.) 
1     i J    1 J 

0,  =^(0^ 

for all j such that F. is in SS. 
J 

Remarks. Given the mapping M, the actions of SS. can be specified in 

terms of the graph of its subfunctions (the subsystem graph), and then the 
inputs, outputs, system parameters and performance indices, and completion 
criteria follow. The interfaces between the subsystems now consists of the 
common edges of G and the common input/output information between functions of 
the subsystems. This information transfer can be accomplished with one or 
several different "links" between subsystems. These concepts are explored 
below. 
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Definition (Link): A Link L... between subsystems SS. and SS. 
is a pair 

1    = (r*        r**  ) Lijk   ^ijk' ijkj 

where C*  and Ct*  are communication functions assigned to SS. and SS.; 

respectively. The interface between SS. and SS. can consist of a number 
of links. 

Definition (Interface Design). Let M be an allocation of F onto 
m 

SS-j ,SSm and E. Let Q.. be a collection of messages, 

= iqrs is an outPut of an F
r belonging to SS. and q  is input 

^to an Fo belonging to SS. s     3 3    j 

Let E.. be a collection of edges between SS. and SS., 

Eij = | ers = edge ^'"V where Fr e SSi and Fs e SS'' 1 

Let N be a relationship between (Q.j9 Q..., E..,  E..)  and {I   } L1jk) 

If N is a mapping, then N is called an interface design. 

Remarks: N is a design because it specifies that all interfaces between 
subsystems will occur across well-defined links. It is the function of the 
communication functions C*  and C** to accomplish the transfer of precedence 

and information between functions. Note that Cif.. and C^. must have consistent 
decompositions, i.e., both must be decomposed in a consistent fashion. Some 
links between subsystems are highly serial (e.g., using a single wire), while 
others can be highly parallel (e.g., buffer storage). In any case there are 
general requirements to merge data, send the data to the other function, 
where it is sorted and communicated to the appropriate functions. Note 
therefore, that two kinds of decisions are necessary to define the SS.: the 

boundaries of the SS., and the nature of the interfaces between the subsystems 
(e.g., the number of input/output links determines whether inputs to a 
subsystem are parallel or interleaved). Thus, we arrive at the following: 

Definition (Design). A design D of a system is the 4-tupal 

D = (F[Ti, M, N, SS) 

where F is a decomposition of F, 
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SS is the set (SS., ,SS , E) 
i     n 

M is a mapping of F onto SS 

N is an interface design. 

Example. In Figure 2-12, we see the allocation process in action. In 
Figure 2-T27 we have a function defined in terms of a decomposition of two 
parallel sequences; in b), SS,, and SS?, and the interface A are defined in a 
straight-forward way. 

In Figure 2-13, the inputs are parallel and the functions F,, F?, and F^ 

are also seen as parallel. When M allocates the outputs A,, A-, and A- to a 

single interface link, then we create the need for a SORT function to 
examine the input stream into its constituents A,, A?, and A_, which are then 

input to F., F , and F . This SORT function is not part of the original 

requirement, but is made necessary by the mapping of the inputs to SS, onto a 
single input link; thus, SORT is a derived requirement. 

Note that the definition of SS. can be described in terms of hierarchy of 

functions which are different than those of the requirements. And note that 
the SS.. becomes the initial requirement for any further decompositions. 

The design of a system can thus be viewed as a series of decompositions 
leading to an allocation to subsystems; the subsystem functions are in turn 
decomposed and then allocated to critical items; the critical item functions 
are decomposed and allocated to smaller items, assemblies, and so forth, 
until the lowest level part is identified. 

As previously discussed, the allocations are not unique. What then leads 
to the selection of one allocation over another? It appears that properties 
of reliability, modularity, testability, use of existing pieces, interface 
complexity, and producibility are dominant considerations. 

It is further noted that some system indices are properties of the 
pieces of the system alone — reliability is such an index. The reliability 
of the system is calculated from the reliability of the subsystems -- the 
reliability of the system is not normally calculated in terms of the 
reliability of its functions. 

Finally, some of the most important indices (cost and schedule) are 
functions of the subsystems and the resources necessary to construct the system 
from the subsystems. These are addressed next. 
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Figure 2-12 Allocation of Sequential Functions 
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Figure 2-13 Allocation of Parallel Functions 
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2.7 INTEGRATION AND TEST 

A system is not merely a collection of its constituent subsystems: time 
and resources are required to integrate the pieces together and to verify that 
they work together to accomplish the system functions. Several things are 
required to accomplish the construction of the system: 

• The constituent subsystems. 

• A set of test tools. 

• A set of test procedures. 

• A sequence of integration and test steps. 

The integration and test of a system can be considered as a system decomposed 
into a sequence of steps which have inputs, outputs, and performance (in 
particular, cost and schedule). Several points are significant: 

• After integrating two or more subsystems, these subsystems can be 
tested according to a test procedure. The test procedure has as 
its objective the verification that one or more specific system 
functions are satisfied. Consider a system function, F, decomposed 
into the interacting functions, F, to F7, which are allocated to 

SS,, SS2, and E, as indicated on Figure 2-14. Then some specific 

tests should verify that function, F, is in fact accomplished 
by the cooperative action of the subsystems if the environment 
performs the functions assigned to E, and its performance in- 
dex, P, is satisfactory. 

• To verify that F is performed satisfactorily, it may be necessary to 
have a test tool to provide the initial data, I,, to the function, 

F,, and to emulate the environment, E, by accepting an I. and an I34 

to produce the 1.- to SS2. The test procedure then defines the 

inputs, the expected outputs, and the criteria for accepting the 
performance of the function, F. The definition of the characteris- 
tics of the functions assigned to the environment (in our case, F.) 
then become the requirements on the test tool. 

• Resources (e.g., time, manpower, computer time, costs) are required 
to develop both the test tools and the test procedures. Thus, the 
development of the test tools and the test procedures are the 
distinct steps in the integration and test plan. 

These concepts are formalized in the following. 

Definition (Integration and Test Plan). An Integration and Test Plan, T, 
is a six-tupal, 1 = (I, 0, U, P, D, C) where 

I = inputs necessary for construction of the system, e.g., raw 
materials, labor, machine resources, and specifications. 
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0 = outputs, i.e., the system. 

U = the parameters affecting the system development, including 
the parameters U . 

P = system development performance indices including cost, schedule, 
and utilization of critical resources. 

C = completion criteria, including the test acceptance criteria. 

D = the sequence of steps necessary to develop and test the system. 

Remarks. Figure 2-15 presents an example of the first level of decompo- 
sition. The steps to develop SS-,, SS?, and SS- have the definitions of SS,, 

SSo. and SS3 as input. The Test Procedures are developed using the definition 

of the system function decomposition, F , as input; the test tools are 

developed from the definition of E and the test procedures. In this case, an 
SS-,, SS2, and SS-, must be available to integrate, and the system must be 

available with test tools and procedures to test it. The Completion criteria, 
C, is the satisfaction of the tests. 

The first steps are always the development of the subsystems; the next 
level of decomposition the system development will decompose this into the 
development of the constituents of SS. plus their integration and test. Also, 

the definition of the test procedures can be initiated, given only the F and 
the anocatlon, M. 

How far is the testing decomposed? This question is similar to that of 
how much software testing is necessary. Several criteria are possible: 

§  All system functions are exercised at least once. 

•  All paths through the system logic are exercised at least once. 

t  The boundaries between the input regions resulting in different 
system paths are verified. 

2.8 ESTIMATING RULES 

Given a decomposition F of the system requirements which has system 

parameters U , given values of U , we can map the U onto the performance 

indices P using either analysis or simulation. However, to perform cost/ 
performance tradeoffs, we need some technique of estimating the cost of a 
system which has those values of U . This results in the need for estimating 

rules, designated as the set W. The estimating rules have to be a function of 
the following: 
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As the design D changes, subsystem costs and schedules should change 
(i.e., due to differences in interfaces and subfunction allocation). 

Given a design D, there are still cost/performance relationships 
which exist for the subsystem (i.e., you can buy a cheap unreliable 
low-performance component or an expensive high-performance ultra- 
reliable component for any value of U ). 

Given subsystem component estimates given U , the cost of the system 

must still include the cost of integration and test; hence, estimat- 
ing rules must exist for constructing integration and test tools, 
developing the testing. 

The estimating rules, W, must map the system parameters U onto the set of 
performance indices of the integration and test functions; the decomposition 
then can be used to map these back onto the resource constraints for the 
development system, T, This is the way to change the development, 
integration and test cost, and thus yield cost/performance trades. 

2.9 PREFERENCE RULES 

The term "preference rules" is used to denote the set of rules by which 
one system is compared to another; ultimately, one system is preferred to 
another. And thus the rules for determining preference are an important 
factor in the system design. 

The content of the rules includes as a minimum the performance indices of 
F and the resource indices of T. The rules should identify the desired 
relationships of these indices (e.g., maximize performance for specified cost, 
minimize cost for a specified performance and development risk and schedule, 
or get the best performance for the least resources). These rules can merely 
state preference, or can rule out catagories of solution (e.g., if the cost 
is over a specified amount, don't consider it). The rules can also include 
design constraints such as "use component type XYZ" or more nebulous factors 
such as "use component type XYZ unless performance penalties are 'too severe 
or include factors such as growth potential, modularity, etc. 

■ ii 

The set of preference rules for system selection are usually never 
written down fully; it is mandatory that some of them be written down in order 
to reduce the size of the design and test space to be examined (e.g., maximize 
performance for fixed cost and deployment schedules), but factors such as 
modularity are usually handled subjectively and informally. 

2.10 CONCLUSIONS 

In the overview, a system set was defined as the five-tupal 

S = (R, 6, T, W, Z) 

where R identified the requirements set, 6 the design set, T, the test and 
integration plan set, W the set of estimating rules, and Z the preference rules 
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We see from the analysis that these factors are not independent: the 

decompositions of R are mapped onto the subsystems defined by D; the T 
describes how these specific subsystems are integrated and tested, and decom- 
poses the resource requirements into those of the integration and test steps; 
W must contain estimating relationships for the resource requirements for 
subsystem development and the integration and test; and Z must identify 
preference rules for all of the performance indices and resource requirements. 

The above discussion concentrates on the features of performance, 
development cost and schedule, and deployment cost and schedule; the factors 
of life-cycle cost (including logistics and maintenance costs) require the 
addition of additional factors; preliminary indications are, however, that 
these factors can be handled in a manner analogous to those of the development 
resources. 

Note the dimensionality of the system design problem even at this one 
level. There are a large number of decompositions of F;given a decomposition 
F, there are a large number of ways of packaging these functions into sub- 
systems and their inter-connections; there are a large number of possible 
values for the system parameters; there are a large number of possible ways 
of integrating and testing the system; and even if the cost-estimating 
relationships are fixed, different system designers might have different rules 
for selecting one design over another which he unconsciously applies during 
the design process. Because of this large dimensionality, it is necessary 
to have a methodology to assure that all factors have been taken into account 
without enumerating all possible designs. This is the subject of the next 
section. 
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3.0 METHODOLOGY OVERVIEW 

The foregoing formal foundations laid the groundwork for a methodology 
for allocating system requirements to subsystems by precisely defining basic 
concepts of precedence relationships of actions, decomposition, allocation, 
simulation, and interface design. In this section, the implication of these 
foundations on a methodology for the front-end system design is discussed. 

A methodology for the front-end system design must address two types of 
issues: the selection of the sequence of design elements (e.g., system, sub- 
system, prime item, critical item), and the tools and techniques used to define 
requirements for a component and allocate requirements to the next level of 
components. The classes of components are established by the state-of-the-art 
of the application (e.g., radars, radar transmitters, data processors divided 
into hardware and software). The specific nomenclature for the system 
functions is application-specific. However, the general outline of the steps 
for performing the requirements definition and allocation to components is 
essentially application independent. Although a detailed methodology has not 
been fully worked out for the front-end system design activity, a top-level 
description appears below. 

3.1 OVERALL APPROACH 

Table 3.1 and Figure 3-1 present a top-level view of the methodology inv 
plied by the preceding formal foundations. At any level of component design, 
the functions and performance of the component as a whole are first identified: 
for the top-level system, this includes the systems analysis step of performing 
the needs analysis, defining the mission and threat, and defining the top-level 
performance indices and preference criteria (e.g., minimum cost, fixed deploy- 
ment date), for systems which are components of other systems, the relevant 
allocated requirements are identified. 

The second step is the identification of the appropriate component types. 
There are generally classes of components which could be considered as candi- 
dates for inclusion into the system design. Depending upon the preference 
criteria, whole classes may be excluded (e.g., due to weight restrictions, 
deployment dates, reliability factors), or the class of components may be sub- 
ject to design restrictions (e.g., consider only specific approved data pro- 
cessing hardware). 

Based on a specific set of component types, there are actions appropriate 
for a system which has that set of components to address the objects of the 
system's environment. This is first done in terms of describing how the system 
addresses each object that it deals with (commonly referred to as stimulus/ 
response relationships), and then in terms of subfunctions which are allocatable 
to the components. In both cases, decomposition is used to express the higher 
level actions in terms of lower level ones. In both cases, analysis and/or 
simulation is used to predict the performance of the system, and the utilization 
of system resources. 
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Table 3.1 Overall Methodology Steps 

STEP 1 DEFINE MISSION 

STEP 2 IDENTIFY COMPONENT TYPES 

STEP 3 DECOMPOSE TO SYSTEM LOGIC 

STEP 4 DECOMPOSE TO ALLOCATABLE SEQUENCES 

STEP 5 ALLOCATE AND ESTIMATE FEASIBILITY 

STEP 6 IDENTIFY CRITICAL ISSUES AND RESOURCES 

STEP 7 IDENTIFY RESOURCE MANAGEMENT RULES, ALTERNATE 
LOGIC PATHS. AND ALTERNATE DECOMPOSITIONS 

»-4 
STEP 8 OPTIMIZE OVER COMPONENT CLASSES 

S STEP 9 PLAN INTEGRATION AND TEST 

148 



10 

I 

Figure 3-1 Overall Methodology Approach 



The next step of the methodology is the allocation of subfunctions to 
subsystems, and application of the estimating relationships to predict system 
cost, schedule, etc. These are then evaluated using the preference rules to 
identify a feasible system (if any) which best satisfies the subsystem and 
system objectives. 

The cornerstone of system engineering is the identification of critical 
issues, and working of the critical Issues first — without their resolution, 
there may be no solution. This rule, and the knowledge of the state-of-the- 
art, guides the analysis in terms of restricting the classes of system com- 
ponents considered, the range of the system design parameters, and the inclu- 
sion in the first model of control rules for the critical resources of the 
system with given configurations. It is not necessary to identify all system 
action models, followed by all possible subfunctions for their implementation, 
followed by all possible allocations, followed by the selection of the "best" 
of all possibilities. In fact, considerable iteration usually takes place 
between the selection of component types, the definition of the system logic, 
the selection of candidate system parameters, and the prediction of performance 
using simulation. Whole classes of systems are eliminated from consideration 
using quite crude estimation rules and performance predictions. Because of 
the state-of-the-art in components, only a subset of the possible allocations 
are considered at first, in order to assure feasibility and to identify the 
possible range of the cost-performance relationships, and to identify the 
critical issues -- these critical issues then become the drivers of the 
analysis process. 

There is a feedback between the preliminary identification of the critical 
issues, critical resources, and cost-performance relationships of the subsys- 
tems, and the definition of the system logic. When critical resources are 
identified, the rules for the allocation,of these resources must be identified. 
Alternate paths may be needed in the system logic to implement the resource 
management rules. In the case of a surveillance system, an object may not 
be placed into track if insufficient radar and data processing resources are 
available to maintain the track— this results in resource allocation rules 
(e.g., allow only 10 objects in track) and additional system logic (e.g., if 
10 objects are in track, and an additional object is detected, drop track on 
the object and modify the search volume to assure redetection). This will, in 
turn, modify the prediction of the system performance in high load situations, 
thereby changing the cost-performance relationships. If the performance 
degradations are severe enough, new classes of components may have to be 
considered to find a feasible solution. 

A second general guideline is to parameterize as much as possible. Thus, 
the classes of components will be expressed hierarchically with parametric 
performance and the class of active sensor systems (e.g., radars) may be 
compared to the class of passive sensor systems (e.g., optics) before considera- 
tion of specific waveforms of the radar. In either case, the frequency of the 
sensor would be a system parameter whose value would determine the approximate 
cost estimating rules. 

150 



Several types of computerized tools would be useful in support of the 
above type of methodology: 

• A formal language for stating the original requirements. 

• A language for expressing the decompositions, and tools for checking 
these decompositions for consistency. 

• Tools for defining simulations based on a system function decomposition, 
The simulation would then be guaranteed to be traceable to the system 
performance degradation due to resource, constraints and to validate 
the system resource management rules. 

t  Tools for defining the allocations, the specific interface design, 
and aiding in the presentation of the resulting subsystem specification. 

These types of tools are appropriate for all levels of the system design, and 
prototypes of these tools exist for many levels of analysis. 

To illustrate these concepts, an overview of their application to a 
specific problem is presented below. The problem chosen is that of performing 
surveillance of aircraft in a large area, with missions of identification, pro- 
viding navigational assistance, and providing tactical control of aircraft 
interception of unknown objects--this problem was chosen because it typifies 
many of the features of Air Force systems. The following analyses are illus- 
trative, and are not meant to reflect actual performances or costs. 

3.2 SYSTEM ANALYSIS 

The purpose of the system analysis step is to identify the system mission 
in quantified terms (e.g., deployment date, performance bounds, expected 
environment for operation), and to assess feasibility. This phase is charac- 
terized by the identification and analysis of a large number of potentially 
feasible system classes, and their evaluation to yield a smaller number of 
preferred constructs. The overall methodology described in the last section 
can be followed as described to perform the systems analysis using fairly crude 
rules of approximation to narrow the class of solutions. 

3.2.1 Step 1 -- Define Mission 

Assume that the purpose of the system is to perform surveillance of 
aircraft in a large area,to identify aircraft (i.e., friently or hostile), 
provide navigational assistance as requested, and provide tactical control of 
interceptor aircraft to intercept unknown objects. A reasonable set of per- 
formance and life-cycle indices include the following: 

Cumulative probability of detection versus time. 

Probability of identification versus time from first detection. 

Track accuracy versus time from first detection. 

Development schedule and cost. 

Maintenance cost versus time. 
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The first three items are related to the ability to perform the mission of 
identifying the aircraft (whether friendly or hostile) and the accuracy of the 
navigational and interceptor guidance data; the last two might have constraints 
or minimum cost goals. The system inputs would be the aircraft entering the 
monitored air space, the interceptors entering the observed air space, and the 
range of environmental factors (e.g., rain, blizzard, hail). The end product 
system outputs would be the aircraft track data and the guidance data to the 
interceptors—these are summarized in Figure 3-2a. 

3.2.2 Step 2 -- Identify Component Types 

Figure 3-2b presents the class of components which might make up the 
system. The candidate classes include a set of individual sites, a communica- 
tion net linking these sites to a central control, and a central control point 
with consoles and operators. The individual sites must have sensors to detect 
the aircraft and beacons to interrogate the aircraft transponders; constraints 
on the state-of-the-art and the nature of the environment (e.g., rain, blizzards) 
quickly reduces the total class of sensors to the class of radars of specified 
frequency bands. Fault detection equipment is included to quickly detect 
faults in the radar and other equipment; data processing (hardware and soft- 
ware) is contained to process all of the radar data, command the fault detection 
equipment and analyze the results, monitor the facilities equipment, and commu- 
nicate with the central control. Facilities include the building power 
generation, air conditioning, etc. 

Although classes of components need to be identified in order to perform 
the decomposition of the system functions, we need not yet specify design 
details of that equipment (e.g., radar frequency, waveforms); in this way, 
classes of designs are considered before specifics —these classes are charac- 
terized by parameters (e.g., radar effectiveness for large classes of radars 
can be described by frequency, power-aperture product, noise level, and resolu- 
tion). Analysis occurs at this level before specific designs are addressed. 

This level of description is sufficient to perform the first few levels 
of decomposition, discussed next. 

3.2.3 Step 3 -- Decompose to System Logic 

Figure 3-2c presents a first possible decomposition of a system having 
such components. The overall surveillance function of the system can be 
described in terms of the surveillance performed by each radar site plus the 
interactions of coordination and control. Note that coordination is necessary 
to cope with the possibility of overlapping radar coverage, aircraft passing 
from one radar region to the next, and coordination and control of interceptors. 
Even at this level, there are a large number of tradeoffs which can be made. 
Figure 3-3 presents two different deployment concepts for the same region using 
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five and nine radar sites, respectively. Note that a given site should be 
dependent upon the effective range of its operation, and hence different 
numbers of sites which cover the area should give rise to different costs for 
individual sites, and hence different total development costs and maintenance 
costs. Note that, if siting costs are high (for facilities or maintenance), 
this will drive the design towards a single radar. On the other hand, since 
radar power is a function of the fourth power of required detection range, if 
power costs are dominant, this will drive the design towards a large number 
of smaller radars. The optimal design will balance these two factors to yield 
a design region (e.g., nine to 15 radar sites) for further analysis. Note 
that this type of analysis is not in terms of component design factors, out 
in terms of their costs. This type of analysis is not new, but its need is 
immediately obvious when the decomposition requires expression of total per- 
formance and cost in terms of the unit's cost/performance and the number of 
units deployed. 

The next level of decomposition is presented in Figure 3-4. In this 
decomposition, the actions of a unit of the system are described in terms of 
the actions with respect to each aircraft in its surveillance volume, plus the 
coordination function (necessary for the allocation of critical resources). 
Note that the performance of the system against an aircraft depends on re- 
sources available which depends on the total system load, and the resource 
management rules. The nature of the critical resources has yet to be deter- 
mined. Figure 3-5 presents a decomposition of the unit engagement of an air- 
craft in terms of the actions of the system. The system actions depend on the 
type of aircraft being engaged: 

• Friendly aircraft with beacons are to be identified via beacon 
response, and provided navigation assistance as required. 

• Friendly aircraft without beacons are to be identified by radio 
or by interceptor visual identification, and provided navigational 
assistance as required. 

• Hostile aircraft with jammers are to be immediately identified and 
tracked by triangulation of radar units and interceptor visual 
identification. 

The left side of Figure 3-5 describes the actions of the aircraft. Friendly 
aircraft with beacons reflect radar, respond to beacon pulses, and may request 
navigational assistance. Friendly aircraft without beacons, which respond to 
radio, reflect radar and may request navigational assistance. Friendly air- 
craft without radio response merely reflect radar (and require visual inspec- 
tion). Hostile aircraft may turn on a jammer. 

The right side represents the actions of the system. Detection can occur 
by radar or by jammer. A radar contact will result in an initiation of track 
and a beacon pulse. If a beacon response occurs, identification is complete 
and the aircraft is tracked. Navigational assistance is provided as required. 
If no beacon response occurs, radio contract is attempted. If contact occurs, 
the aircraft is tracked as before. If no contact occurs, aircraft are 
scrambled and information is provided. If the detection is by jammer 
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detection (yielding angle but no range information), interceptors are scrambled 
(if not already scrambled), and the jamming signal is tracked and jammer burn- 
through is attempted by the radar. Coordination is required at the multi-unit 
level to triangulate jammer tracks between units. 

Note that this logic assumes that hostile aircraft do not have transpon- 
ders, and can be identified from radio contact. If a hostile aircraft has a 
normal-appearing transponder, it will be classified as friendly and not con- 
tacted, or, if it does not have a transponder and it responds correctly to 
radio contact, it will be classified as friendly. Thus, if the definition of 
the threat is to include hostile aircraft with bogus transponders and/or cor- 
rect radio responses, additional system logic is necessary. A solution to 
this problem might lie in the area of comparing aircraft locations and trans- 
ponder identifications with pre-filed flight plans available at the central 
control location -- this would result in an additional step in the logic to 
compare locations and transponder locations with planned flights, with addi- 
tional paths to handle unauthorized deviations from flight plans. This would 
have the effect of changing the mission to control of air-space rather than 
simple surveillance. 

This level of decomposition is sufficient to enable the prediction of 
system performance as a function of the system parameters of the system actions, 
e.g., probability of detection as a function of range and radar cross-section, 
track accuracy as a function of time and track rate, time to accomplish beacon 
interrogation and analysis, etc. The creation of such a simulation is a useful 
technique for assuring that relevant threat, environment, and system parameters 
and their relationship to the function and system performance, have been 
identified. The use of such a simulator requires definition of threat scenarios, 
threat parameters (e.g., radar cross-section values), site locations, and 
values of system parameters (e.g., scan rate, time delay to interrogate a 
beacon and analyze the results), thus identifying feasible ranges of such 
parameters. The results of the simulations are used to identify feasible 
classes of solutions, identify typical loading parameters (e.g., a worst case 
unit must track 100 aircraft simultaneously), and provides information of the 
sensitivity of system performance to the parameters, thus allowing the 
identification of the critical system issues. 

3.2.4 Step 4 -- Decompose to Allocatable Subfunctions 

Figure 3-6 presents a possible decomposition of the system actions into 
the subfunctions appropriate to data processors, radars, beacons, and operators. 
Note that this particular decomposition explicitly assumes a "schedulable" 
radar; a "track-while-scan mode" radar would be decomposed into a different 
set of subfunctions. 

3.2.5 Step 5 -- Allocation and Feasibility Estimation 

Figure 3-7 presents an allocation, designated in the upper right hand 
corner of each subfunction. Note that alternate decompositions are possible: 
for example, the radar pulse scheduling functions could be allocated to the 
radar. 
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Until now, the methodology being described is common for all subsystems. 
At this point, the feasibility and resource requirements for the subsystems 
are to be determined. Estimation techniques are the proper study of the 
various technology areas (e.g., radar, weapons). For the data processing 
subsystems, the estimation of feasibility and resource requirements has been 
based on simplistic measures of MIPS (Millions of Instructions Per Second) 
and estimates of memory size. In today's technology of PROMS, ROMs, federated 
microprocessors, bubble memories, etc., this technique has been found to be 
too simplistic. For example, a problem requiring 100 MIPS might require a 
100 MIPS serial processor, or may be decomposable into the independent execu- 
tion of around 100 1 MIPS microprocessors -- the latter is clearly feasible, 
while the former is beyond the state-of-the-art. To close this gap, we offer 
the following methodology for the data processing and communications (DP/C) 
estimation. 

3.2.5.1 Step 5a — Allocate Subfunctions to DP/C 

In this step, the subfunctions to be allocated to the DP/C network are 
identified. The data processing and communications subsystems are combined 
at this point to be able to later perform local tradeoffs between the data 
processing facilities and the communications capabilities (e.g., increasing 
data processing load to pack information and decode it at the other end of the 
link will decrease required communications transfer rate). 

3.2.5.2 Step 5b -- Summarize DP/C Requirements 

In this step, the required data processing and communications are sum- 
marized in the form of data flow diagrams which abstract out all of the pre- 
cedence information by combining like functions for each of the objects being 
engaged. Figure 3-8 presents such a data flow diagram. Note that the functions 
of SORT and MERGE have been added as a consequence of assuming that a single 
radar will be used to transmit the radar pulses and process the returns (an 
alternate interface assumption might be to separate the search returns, track 
returns, and jammer returns into separate channels). 

Note that the data flow diagrams are derived from the previous allocation 
of system subfunctions (which decompose the system logic); they are not simply 
asserted as today's technology does. This provides an important link of 
traceability between the system design and the initial requirements for the 
data processor and communications subsystems. 

3.2.5.3 Step 5c -- Identify Maximum Dimensionality Architecture 

In this step, analysis or simulation is used to identify the maximum 
number of processors which could be used to perform the data processing, and 
the maximum number of communications links which could be used to transfer the 
data among the geographical locations. The purpose at this step is to preserve 
the dimensionality of the problem to assess the feasibility of using some type 
of parallel data processing architecture to solve the problem. In this way, 
the potential parallelism of the data processing architecture is derived from 
the parallelism of the problem to be solved, rather than trying to analyze it 
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after the problem has been stated in serial terms. This allows the identifi- 
cation of applications of vector processing, Single Instruction Multiple Data 
architectures, etc. 

The approach to discovering the maximum dimensionality is to combine the 
estimates of the parallelism of the processing with the parallelism of the 
subfunctions, and the estimates of the load, and the allocated response times. 
These factors combine in the following way: 

• If a processing subfunction has an inherently parallel transformation 
(e.g., compare an aircraft position against those of all aircraft in 
track), the processing subfunction has a "natural dimensionality". 

• Depending on the scenario, there is a maximum number of objects in 
each phase of the engagement. 

• The total dimensionality of each phase depends on the total number of 
objects and the required response times, e.g., if 100 objects are in 
track, but the response time is 1 millisecond for tracking, then the 
track dimensionality is one, (i.e., only one processor could be used 
to do track processing). 

Figure 3-9 presents the results of such an estimation using a simulation. 
For a specified scenario. Figure 3-9 presents the time history of the search 
rate, number of aircraft in the search volume, number of search returns (both 
total and false), and the number of objects to be tracked. This information 
is used to estimate the maximum dimensionality of the data processing and 
communications by establishing the maximum number of objects in each phase 
of the engagement versus time. 

Figure 3-10 presents the results of such an analysis. Assume the 
following: 

All subfunctions have inherent dimensionality one. 

Threat scenarios are not allowed to contain aircraft flying in 
formation. 

A maximum of 100 aircraft are visible at any time. 

Ten second search scan time. 

Track rate of one per second per aircraft in track. 

Search and track response times allocated to the data processor 
are 20 milliseconds. 

Under these assumption 
which could be used to 
of 29 processors and i 
in track at one track 
a maximum of five trac 
meet response time obj 
one beacon analysis, 
cessors might be used 

s. Figure 3-10 presents the maximum number of processors 
accomplish each subfunction. This results in a total 

s derived in the following way: assuming 100 aircraft 
return per second, with a 20 millisecond response time, 
k returns could be processed simultaneously and still 
ectives, and 3 search returns, one jammer track, and 
Because radar returns are coded, as many as nine pro- 
to perform the sort (i.e., one for each simultaneous 
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return). Only one processor can be used to schedule the search pulses and 
merge the track commands together, and perform unit coordination. 

Further analysis along each path (e.g., analyze track returns and schedule 
track must be performed within 20 (milliseconds) reduces this number to 14 pro- 
cessors: one for scheduling, one for merging, three for searching, five for 
analyzing track returns and scheduling track pulses, one for angle track, one 
for sorting, one for beacon scheduling and analysis, and one for coordination. 
This strongly suggests that vector processors and parallel processors with a 
single instruction stream (which generally require 20 or more parallel streams 
of data to process in parallel to be efficient) are not applicable to this prob- 
lem, thus ruling out whole classes of data processing architectures. However, 
multi-processors or federated processing architectures are still feasible. 

This information is important for identifying the classes of architectures 
for which estimates of processing time for each subfunction is necessary -- 
estimates of processing time for vector processing is estimated differently 
than for serial processors, and these estimates are needed to perform the data 
processing sizing. 

3.2.5.4 Step 5d — Estimate DP/C Loads 

In this step, the processing requirements for each unit are projected 
using estimates of required processing for each subfunction, and communication 
requirements are estimated using estimates of the size of each information 
transfer between subfunctions and the allocated response times. To include 
all of the engagement interaction effects, this is best done in a simulation 
in which resource utilization for each system function is identified. 

The average data processing load is not sufficient for processor sizing. 
If a processing step requiring 20,000 instructions is executed once per second, 
its average rate is 20,000 instructions per second (0.2 MIPS). However, if 
this subfunction has a response time of 1 millisecond, then the required rate 
is 20 MIPS -- this shows the effect of response time requirements on required 
data processing capacity. Similarly, if one message having 1000 bits is 
required to be sent once per second, this requires an average communication 
capacity of 1 kilobit per second; but if this must be sent in one millisecond, 
this results in a required capability of one megabit per second. 

Table 3.2 presents an example analysis of the required average and peak 
data processing load. The columns indicate the average execution rate of the 
processing functions (e.g., number of search pulses, number of track returns 
obtained from simulations), the number of serial instructions per execution 
(obtained from Data Processing engineers knowledgeable in the state-of-the- 
art), and the resulting average MIPS. The right-hand side of the table includes 
the peak number of executions required in the indicated response time, which 
results in the calculation of the peak MIPS. Totals are included for conve- 
nient reference. Note that for this case three kinds of critical issues are 
identifiable: 
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• The peak instruction rate is due to track returns processing, thus 
the number of objects in the surveillance volume and track rate are 
critical drivers of DP capacity. 

• The effect of the 20 millisecond response times is to more than 
double the required data processing capacity -- from 0.4 MIPS to 
over 1.0 MIPS. Reducing the response time (either by reducing the 
overall requirement or by reducing the DP allocation) would reduce 
the required DP capacity. 

• If the estimate on track processing rate were off by 25 percent, the 
required DP size would have to be increased almost as much. On the 
other hand, estimates on jammer track could be off by a factor of two 
without changing the DP size significantly. 

From this level of information, it is possible to identify critical issues. 
If the estimate of tracking instructions is firm, if the estimate of number of 
aircraft to be tracked is firm, and if the response times are not reduced, then 
the processing can be performed by a serial processor of approximately 1 MIPS 
capacity -- this is on the ragged edge of technology, but appears to be feasi- 
ble. Candidate architectures to accomplish this are identified next. 

Table 3.3 presents an analogous analysis for the communications sizing. 
If the number of bits per track message is 200 bits, this results in an average 
communications rate of 20 Kilobits per second (KBS). However, if there is a 
requirement to pass this information to the central control point in 10 milli- 
seconds, this results in a peak rate of 100 KBS. Other subfunctions communi- 
cating with central control include the jammer track and others with communi- 
cations at a much lower rate which are included in the miscellaneous estimate. 
Thus the average communication rate is 21.5 KBS and the peak is 111 KBS. Since 
the human perception time is close to 100 milliseconds, and the track rate is 
one per second, if the response time were relaxed to 50 milliseconds, the peak 
communications rate would reduce to the average of 21 KBS. This communication 
rate is feasible with today's technology. 

3.2.5.5 Step 5e -- Postulate DP/C Functional Architecture 

In this step we identify feasible architectures for the data processor 
and communications subsystems which are consistent with the above loads and 
parallelism. From this, rough approximations of costs, deployment schedules, 
power requirements, etc., can be derived. This is done by consulting a data 
base of existing and proposed subsystems. 

For data processing, a MIL-STD processor with serial processing capacity 
of over 1 MIPS is available from RCA (ATMAC has an advertized capability of 
1.4 MIPS at a cost of $35K). At this price, one could afford to have two 
spares for a cost of about $100 K. If this option were not available, a next 
choice might be a 4PI/MLI processor having about 0.38 MIPS for a cost of about 
$30 K each. Since the peak processing requirement has dimensionality of about 
nine, a federated architecture containing three or four of these processors 
appears to be feasible, with reconfiguration logic to enhance the reliability 
of the combined set. Thus the hardware would cost between $100 K and $150 K 
per unit. 
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Table 3.2 Expected DP Instruction Load 

AVERAGE 
NO. INSTRUCTIONS MIPS (AV) 

PEAK 
NO AT PEAK MIPS 

SEARCH 300 x    TOO 30,000 — — 30,000 

SEARCH PROCESSING 12 x   1200 14,400 3 .02 180,000 

TRACK 100 x   3000 300,000 5 .02 750,000 

JAMMER TRACK 5 x   1000 5,000 1 .02 50,000 

Mi 
COORDINATION 1 x  50,000 50,000 50,000 

i 399,400 1,060,000 

00 

Table 3.3 Expected Communication Loads 

I 

TRACK 

AVERAGE 
NO BITS 

AVERAGE 
KBPS 

PEAK 
NO Al 

PEAK 
KBPS 

100 200 20 5 .01 100 

JAMMER TRACK 5 100 .5 1 .01 10 

MISCELLANEOUS 1 1000 1 1 .01 1 

21.5 in 



The communications system to carry a load of 100 KBS could be built using 
RF links with repeater stations (on the ground or via satellite) at a cost in 
excess of $400 K per unit. If the load were more like 20 KBS, then standard 
telephone links might be possible for appreciably less. This is to be com- 
pared to radar and facilities costs of perhaps $1 Million per copy. 

3.2.6 Step 6 -- Identify Critical Issues and Resources 

In this step, the critical issues are identified. The critical data 
processing issues have been discussed -- the processing appears to be feasible 
under the worst conditions, but increases in estimates of the instructions 
required for tracking or decreases in the required response time allocation 
would be critical issues. Under these conditions, the data processor hardware 
does not drive feasibility, cost, schedule, power, or any other resource 
constraints. Various serial and distributed processing architectures are 
applicable. 

Communications appear to be feasible but critical; response time alloca- 
tions are definitely critical, and would require more analysis of alternate 
configurations. 

Note that additional data processing and communication requirements will 
stem from the design of the fault diagnosis, fault isolation, and reconfigu- 
ration requirements for the facilities, radar, communications equipment, and 
data processing design. If high reliabilility were a preference factor (e.g.. 
Mean Time To Failure of 1000 hours for any component. Mean Time To Failure for 
the system of three years. Mean Time To Repair of 1 hour), then the detailed 
radar design and test equipment would have to be developed and the test pro- 
cedures would have to be developed to complete the data processing require- 
ments. This would probably not be a large DP load, but would require a large 
amount of instructions. In this case, the development of the software would 
then become a critical item in both development cost and, particularly, 
development schedule. 

3.2.7 Step 7 -- Identify Resource Management Rules 

In this step, rules to allocate the critical resources are identified -- 
this includes how the resources are to be allocated (e.g., when radar resources 
approach maximum, reduce load by reducing track rates on objects in track), and 
any additional system logic paths (e.g., if load is at maximum and track rate 
per object is at a minimum, drop track on objects near to exiting the track 
volume). These rules become incorporated in the system logic by decomposition 
of the "coordinate unit" function, and the effect of limitations of critical 
resources on system performance can be estimated by additional simulations. 
This provides sensitivity information for later optimization. 

3.2.8 Step 8 -- Optimization 

In this step, the sensitivity of cost versus capability and capability 
versus system performance are used to perform cost/performance trades for 
subsystems. For our surveillance system, such trades include the following: 
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• Radar pulse rate versus system performance 

0  Data processor instruction rate versus-system performance 

• Allocation of response time between 

- Data processor 

- Communication system 

- Console display 

- Operator. 

The costs of different types of decompositions are compared (e.g., track-while- 
scan versus directed-track radars). 

The result of these analyses should be an identification of classes of 
system configurations which are feasible, and are worthy of further analysis. 

3.2.9 Step 9 -- Plan Integration and Test 

In this step, the foundations for the development plans are laid, includ- 
ing the identification of the required resources to develop, integrate, and 
test the subsystem. The necessity for such a step was discussed in the formal 
foundations -- to account for all of the resources required to develop a 
system, the resources necessary for integrating the subsystems, developing the 
test tools, and developing and applying the test procedures must be included 
in the total resource estimates. These factors will in part be configuration 
dependent (e.g., the costs of building test tools), but may in part be configu- 
ration independent (e.g., a prototype of the system may be built and tested 
before production is authorized for any configuration). 

There may be considerable feedback between the decomposition and allo- 
cation of the system requirements and the definition of the integration and 
test plans. For the case of complex systems, as much as 40 percent of the 
development effort may be spent in this phase of the system development; thus 
selection of the system configuration should be influenced by these considerations, 

It is noted that in the standard methodologies for systems development, 
there is little recognition that integration and test requirements should 
influence the final configuration. Although this step comes last in this dis- 
cussion, it is clear that such considerations should enter the system develop- 
ment process no later than the allocation and feasibility estimation step, 
and that the system design is not complete until the feasibility and costs of 
the integration and test of the system have been considered. 

3.2.10 Discussion 

Note that this approach surfaces critical data processing issues early in 
the system analysis phase* The traditional approach to data processing 
sizing is to focus on the average processing time. The above analysis clearly 
identifies that the effects of response time are critical, and can be addressed 
during the system analysis phase. The failure to address the response time 
issues is partly responsible for the "data processing growth" which occurs 
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during the development of the system. The data processing estimates are 
usually small to begin with, and when the response time effects are finally 
incorporated into the data processing design, the data processing size 
"suddenly grows" by factors of two or more, and the system and subsystem 
designs are so far along that changes in the response time allocations be- 
come painful to implement. 

Secondly, note that the data processing requirements and the feasibility 
estimates are strictly traceable to the system logic by a string of decompo- 
sitions and allocations. Changes in the system components result in changes 
to the system logic and lead to traceable changes in the data processor sizing 
estimates. This strict traceability is a new feature of front-end system 
design, and is a fallout of the formal definition of decomposition and 
allocation. 

Finally, the inclusion of integration and test requirements into the 
preference relationships should highlight the relationship between allocation 
of data processing to subsystem components and its impact on integration and 
test. For example, if one allocates all radar scheduling to the data pro- 
cessor, special purpose scheduling software must be developed to be able to 
test the radar or the testing might be delayed until the data processor was 
completed in order to test the maximum tracking rate of the operational system. 
This might heavily influence where the scheduling software was allocated. 

3.3 SYSTEM ENGINEERING 

The system engineering phase has the same methodology steps as the system 
analysis phase -- starting with the mission requirements and the candidate 
subsystem classes from the system analysis phase, identify requirements for 
the subsystems. The critical differences are in intent and depth: the intent 
of the system analysis phase was to identify feasible classes of solutions, 
while the system engineering phase has the goal of finding the best configu- 
ration (where "best" is with respect to all of the preference rules), freeze 
the allocation of the requirements to the subsystems, and definitize the inte- 
gration and test plans. This means that fewer gross classes of configurations 
will be addressed, but the system logic will be scrubbed to identify all 
possible paths (including the failure mode paths), alternate decomposition 
and allocation decisions will be examined to assure the most preferred boun- 
daries between the subsystems, and alternate subsystem configurations will be 
analyzed to re-estimate the performance and resource requirements for the data 
processing and communication subsystems. 

Thus the same basic nine steps will be followed, but more alternative 
decompositions, allocations, test plans, and subsystem configurations will 
be analyzed to assure the most preferred system has been identified. The 
results will then be incorporated in the equivalent of a Type A Systems 
Specification with supporting documentation. 

3.4 DP SUBSYSTEM ENGINEERING 

In this phase, the requirements allocated to the Data Processor/Communi- 
cations subsystems are analyzed and allocated to hardware (e.g., analog 
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processors, special purpose processors like Fast Fourier Transform boxes 
Surface Acoustic Wave Devices (SAWD), special purpose communications hardware 
including crypto processors, and the general purpose processing nodes). The 
end result will be the identification of the processing and communication 
hardware components and software processes which utilize the programmable 
components. In some cases, classes of components will be identified whose 
parameters (e.g., number of federated processors) will be later established 
in the process design. Included in this phase is the tradeoff between analog 
and digital processing, general purpose versus special purpose processing, 
digital versus communications capabilities, and the selection of the approach 
to meet reliability constraints (e.g., fault tolerance versus high reliability 
components). The same basic nine steps apply. 

3.4.1 Step 1 -- Define Mission 

The mission requirements for the DP/C subsystems are the system require- 
ments allocated to the subsystems, including functions, loads, and response 
times. The particular version of these requirements is baselined for 
analysis. 

3.4.2 Step 2 — Identify Component Types 

A larger class of component types are identified for this phase of the 
analysis than were considered in the systems analysis phase. Thus the whole 
range of analog devices (including SAWD), special purpose digital devices, 
special purpose microprocessors, and classes of general purpose processors 
and components (vector processors, parallel processors, multiprocessors, 
federated architectures, ROM memories, bubble memories, etc.) are open for 
analysis. These will be subjected to the preference criteria to limit the 
range of components considered (e.g., optical processors are not yet feasible, 
but bubble memories are now available). 

3.4.3 Step 3 -- Decompose to System Logic 

In this step, the actions of the DP/C subsystems are decomposed to iden- 
tify their actions with respect to the objects they deal with. Two critical 
types of objects are the interfaces with other subsystems and the messages 
crossing those interfaces. Two examples are used to illustrate this type of 
analysis. 

First, consider a requirement to transfer information from point A to 
point B. Because response time and reliability of transfer are relevant 
factors, one approach is to simply send the message -- another is to send 
the message periodically until an acknowledgement is received. Yet another 
is to send the message along different routes of a communications network and 
wait for an acknowledgement. There are a large number of possible actions of 
the system to send the message and assure that it is in fact correctly 
received — these are commonly referred to as communications protocols, and 
each has its own data processing load and reliability characteristics across 
communication links of specified reliability. 
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Next, consider the processing of measurements. Depending upon the 
measurement device characteristics, one might be able to use an analog 
filter followed by an A/D converter to sample the data, or digitize the data 
and use the general purpose processor to filter the data using a digital band 
pass filter. Each of these combinations of components can be used to sample 
and filter the data, and the system actions differ depending upon the compo- 
nents utilized. 

3.4.4 Step 4 -- Decompose to Allocatable Subfunctions 

Further decompositions are performed to analyze at a fine level of 
detail where to draw the boundaries. Thus, message formatting might include 
encryption, or encryption might follow the message formatting. Both decompo- 
sitions are feasible, and both could be performed by the data processor or a 
specialized communications processor (e.g., the IMP of ARPANET). 

3.4.5 Step 5 -- Allocation and Feasibility Estimation 

This step is where the different allocations are identified, and the 
resource requirements are estimated. This requires the same type of DP archi- 
tecture estimation schemes as discussed in the system analysis phase, but with 
an expanded scope (e.g., costs of SAWD along with reliability, development 
schedules, etc., must be available if such devices are to be considered). 

3.4.6 Step 6 -- Identify Critical Issues and Resources 

As before, critical issues and resources are to be identified. For the 
case of our example, communications resources to accomplish communication of 
information within the required response time might be a critical issue. 

3.4.7 Step 7 -- Identify Resource Management Rules 

As new classes of devices and their functions are introduced, new critical 
resources are identified, and new resource management rules are needed. In 
our example, if communications resources are identified as a critical issue, 
then a priority scheme might be introduced to assure that high priority 
messages meet their response times by slightly delaying the other non-critical 
traffic. 

3.4.8 Step 8 -- Optimization 

In this step, the different configurations are compared using the system 
preference rules to select the best subsystem configurations. This in turn 
is used to update the feasibility estimates and sensitivities back to the 
system engineering level to assure that the proper choices have been made -- 
if not, this will call for a further iteration at the system engineering level. 

3.4.9 Step 9 — Plan Integration and Test 

In this step, the impacts of testing the combined subsystem are analyzed 
in terms of the integration and test resource requirements. These elements 
are factored into the optimization process to assure that the preferred 
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solution is testable' and has test resources included in the total development 
resource requirements. 

3.4.10 Discussion 

The consideration of alternate designs incorporating special purpose ana- 
log and digital devices in addition to more exotic data processing architectures 
is a necessary one to assure the subsystem designs have considered the classes 
of alternatives available with the current state-of-the-art. The identifica- 
tion of the alternatives considered is the proper subject of a design review 
to assure that a wide enough set of subsystem components have been considered 
to yield a preferred design. 

The completion of this phase may require significant interaction with the 
software requirements, distributed processing design, and process design 
phases to assure the feasibility estimates. When completed, however, those 
efforts must take their requirements from the baseline requirements output by 
this phase. 

3.5 SOFTWARE REQUIREMENTS ENGINEERING 

In this phase, the requirements allocated to the Data Processing/Communi- 
cations subsystems are refined into testable stimulus-response relationships. 
Figure 3-11 illustrates this type of analysis. 

Figure 3-lla presents the subfunctions allocated to the data processor for 
each object engaged related to tracking. The track processing function is 
decomposed in Figure 3-llb into an iterated function which processes a single 
track return from the object. Since it is always possible to describe a 
function with sequential inputs in terms of a repeated function with a single 
input, this decomposition is always possible. 

Figure 3-llc presents a partial path of an R-Net which processes a single 
track return for a single object. When a track message arrives from the 
radar, it is converted to R-A-E coordinates, its quality is assessed, and if 
good, the track state estimate is updated. Note that the last track estimate 
must be stored between pulses for each object in that phase. The usage and 
quality of the track are used to determine whether another track pulse is to 
be sent (the time of which depends on the track rate assigned by the unit 
coordination function), or the object is set to an "exit" status to exit this 
function. 

Figure 3-1 Id presents an R-Net fragment which integrates these paths 
into other paths. When a message arrives from the radar, other radar messages 
are sorted out and only track returns are routed down this path. The specific 
track command information is accessed to obtain the information to translate 
the return information (e.g., time of return, amplitude, off-axis azimuth and 
elevation) into range, azimuth, elevation, and radar cross-section. Objects 
in other states are routed to other paths (e.g., in track initiation), and 
the track information for this specific object is accessed, denoted by the 
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select node, (S). The R-Net for composing a frame of radar information is iden- 
tified, and the radar commands are created and transmitted to the radar and 
saved for later retrieval. Validation points are appended and performance 
requirements are written in terms of data accessible at the validation points. 

Note that these requirements are fully traceable to Figure 3-lla via 
two levels of decomposition and three levels of integration (integrate over 
all objects, all phases, and all return message types). This results in the 
R-Nets which form the key to the Software Requirements Engineering Methodology 
(SREM) technique of specifying processing requirements. 

The requirements engineering phase thus starts with the output of the 
Data Processing Subsystem Engineering phase which identifies the digital 
processing to be performed in terms of functions, inputs, outputs, interfaces, 
performance requirements and loads, and decomposes the processing to the 
stimulus-response requirements for the DP/C subsystems as a whole. This is 
equivalent to Step 3 of the overall methodology for decomposing the initial 
requirements into the system logic: these requirements must be met no matter 
how the processing is distributed between the processing nodes and the commu- 
nications subsystem. The actual allocation is addressed in the next phase. 

3.6 DISTRIBUTED PROCESS DESIGN 

This step was not explicitly identified in Part II as a necessary phase 
of the front-end system development, but was included as part of the overall 
process design. The distributed process design is called out here as a special 
step in order to emphasize the importance of the decisions — this phase 
addresses the issues of balancing the data processing between geographically 
separated nodes, tradeoffs between the data processor and communications 
capabilities, issues of system vulnerability and reliability as affected by 
distribution of processing and data base among the data processing nodes to 
result in the identification of testable requirements for the processing nodes 
and requirements on the individual communication links. 

Step 1 of this analysis identifies the baseline requirements from the 
data processing subsystem engineering phase. Step 2 corresponds to the iden- 
tification of the classes of data processing and communications subsystems 
left open in the data processing subsystem engineering phase. Step 3 corres- 
ponds to the definition of the R-Nets in the software requirements engineering 
phase. We now go into the methodology proper. 

3.6.1 Step 4 -- Decompose to Allocatable Subfunctions 

The R-Nets specify all processing to be performed by a combination of the 
Data Processor/Communications network and forms the basis for testing such 
networks. These R-Nets are partitioned to form packages of processing alloca- 
table to subsystem classes. The subsystem classes in this case are the DP 
nodes and the communication links. Figure 3-12 illustrates this process. 

Figure 3-12a presents a fragment of an R-Net which processes search 
returns, sorts out the images of objects already in track, and prepares to 
put the new objects into track. The comparison of the new detections to 
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objects in track by other units could be performed at the unit or at the 
central coordination point: in this case the comparison is allocated to 
the central node, while the others are allocated to the unit node. 

3.6.2 Step 5 -- Allocation and Feasibility Estimation 

In this stage, candidate allocations of processing steps and data are made 
to the data processing nodes — this results in an allocation of communication 
rates to communication links. Several different allocations are possible, 
resulting in different R-Nets for each of the nodes. In addition, the response 
times for the process of a whole are allocated to the nodes and links. 

Figure 3-12b presents a resulting allocation of stimulus response 
relationships to: 

The Unit Processor -- process the data and form a message to the 
central node. 

The Comm Link -- transfer the message to the central node. 

The Central Node -- accomplish the comparison and form messages to 
each affected unit. 

The Comm Links -- transfer the messages to the units. 

The Units -- update the information base at the units with the 
correct designation. 

Note that this level of information is necessary to completely size the 
data processors at the nodes and the communication links between them. The 
trade-off analyses can utilize the DP PERCAM type of simulations to great 
advantage. 

The end result of the analysis is a set of R-Nets for each node which are 
traceable to the R-Nets for the network, and a set of definitized communica- 
tions link requirements. 

For each allocation, a feasibility estimate is performed to yield estimates 
of cost, schedule, vulnerability, and other preference factors. This may 
require considerable interaction with the process design activity to establish 
feasibility of meeting response times for all nodes by performing a process 
design for the node. 

3.6.3 Step 6 -- Identify Critical Issues and Resources 

In this step, the critical issues of the distributed design are identified. 
Critical issues include the effect of distribution of response times to the 
nodes and links, and their effects or overall data processing and communication 
costs. Critical resources particularly include the communication rates, and 
the distribution of the data base elements among the processing nodes and the 
impact of this distribution on system vulnerability, and the design of the 
communication network and its relationship to cost and vulnerability. 
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3.6.4 step 7 -- Identify Resource Management Rules 

In this step, the rules for managing the critical resources are identified. 
Communication protocols and priority rules for message transmissions are defined 
to control communications. Schedulers for the processors are defined using the 
tools and techniques of process design to message processor resources. This 
may result in the identification of additional logic (e.g., additional R-Net 
paths to define the protocols), reallocation to the nodes and links, and re- 
estimation of feasibility. 

3.6.5 Step 8 -- Optimization 

In this step, the different designs are compared using the preference 
rules. This is the place where the performances and resource requirements of 
the different allocations and the best designs of each class are compared to 
yield the "best" configuration, determine the sensitivity to the assumptions, 
and validate the previous level of feasibility estimation. 

3.6.6 Step 9 -- Plan Integration and Test 

Again, the effects of integration and test are factored into the optimi- 
zation. In particular, the relationship between the tools to test the sub- 
systems and the tools to test the integrated data processing/communications 
network need clarification. 

3.6.7 Discussion 

The techniques to perform distributed process design are new, and the 
proper subject of further research. The above methodology outlines the appro- 
priate steps, but the definition of the performance indices for survivability 
and reliability, and the toolis and techniques to identify allocations and 
evaluate alternatives require further development. 

3.7 PROCESS DESIGN 

The process design for a processing node addresses the definition of the 
schedulable units of software, the allocation of these units to processors, 
and the definition of the scheduling techniques to assure satisfaction of the 
functional and performance requirements, especially the response times. The 
requirements are the R-Nets for the node: "subsystem classes" are the peri- 
pheral processors (to handle the input/output), the executive, the applications 
code modules and the scheduler. Figure 3-13 presents a partial set of modules 
for our example problem: 

• A radar input handler to input all radar returns and store them in 
memory. 

• A radar output handler to output all radar commands from a queue in 
memory. 

• A scheduler to schedule the next applications task. 
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• Application task modules are defined to: 

- sort all radar returns and schedule new commands -- these functions 
are merged into one module due to the close data interactions. 

- perform track processing. 

- perform search processing. 

• Operating system utilities to control access and update of data 
communicated between modules. 

The same general methodology is followed. 

3.7.1 Step 1 -- Define Mission 

The applicable R-Nets are identified, along with the stressing design 
scenarios. 

3.7.2 Step 2 — Identify Component Types 

The classes of "subsystems" include the software modules on peripheral 
processors, operating system modules for the executive. I/O handlers, data 
access/update, and the applications code modules. 

3.7.3 Step 3 -- Decompose to System Logic 

In this step, the R-Net processing steps are expanded to identify addi- 
tional requirements, protocols, access and storage and data queues applicable 
to specific machine architectures. 

3.7.4 Step 4 -- Decompose to Allocatable Subfunctions 

In this step, the R-Net processing steps are decomposed to show the access 
update of data, and algorithms are decomposed to "chunks" with processing 
times small enough to be allocated to modules. 

3.7.5 Step 5 -- Allocation and Feasibility Estimation 

In this step, candidate allocations are made to classes of modules, exe- 
cution times are estimated (including data access/update times for specific data 
storage structures), and total DP laods and response times are predicted for 
the design scenarios. Because of the complexities involved, some sort of 
analytical load analyzer (e.g., ALF) and/or simulator is useful to aid in such 
predictions. A variety of scheduling techniques (e.g., priority schemes, 
polling schedulers, and use of pre-emption) may be necessary to achieve all 
response times for a given allocation. Multiple allocations to different 
machine sizes are also explored. 

3.7.6 Step 6 -- Identify Critical Issues and Resources 

In_this step, the large contributors to DP load and the driving factors 
for satisfaction of response times are identified. Processing time on modern 
processors can be divided into three categories: idle time (processor is 
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doing nothing), load time (processor is loading a task to be executed into 
executable memory) and execution time (processor is actually transforming the 
data). The load time is generally a function of the task and scheduler design, 
while the execution time is load dependent.  The whole trick to process design 
is to meet all response times while making the load time as small as possible: 
efficiency is obtained by processing many instances of a task at a time in order 
to spread out the load time over many instances; this results in a long queue 
time waiting for enough instances to arrive, and results in a longer average 
respo-nse time for each instance. Short response times require more frequent 
execution, thus increasing total load time; in time-sharing systems design 
this is known as thrashing. 

The critical issues step identifies the response time and load charac- 
teristics which make the scheduling difficult. Other critical resources may 
include I/O channel times, memory, etc. 

3.7.7 Step 7 -- Identify Resource Management Rules 

In this step, the data access rules to prevent deadlock, lockout, 
and the rules for allocation of data to memory modules are formulated. De- 
tailed simulations may be necessary to validate their operation. The precise 
scheduling algorithm constants for various design scenarios may be necessary to 
demonstrate feasibility. Special failure mode identification and reconfigura- 
tion rules are formulated to meet reliability requirements. 

3.7.8 Step 8 - Optimization 

In this step, different allocation approaches are considered and a "best" 
allocation is selected. This allocation will then be the initial one for the 
preliminary design step. This includes optimization over allocations to several 
candidate hardware configurations, and includes preference factors of growth, 
graceful degradation, etc. 

3.7.9 Step 9 -- Plan Integration and Test 

Part of the design job is the identification of the design verification 
techniques. A persistent problem for load testing is that of recording data 
required to measure data processing resource utilization -- thus the tactical 
process is difficult to observe without disturbing its operation. The specific 
scenarios for load testing are identified, and the techniques for inputing the 
scenario, recording the results, and analyzing the results for satisfaction are 
identified. This results in a set of requirements for the test tools including 
general utilities for data logging (generally allocated to the operating system) 
and post-process analysis. 

These tools are generally ignored until they are needed for test -- and 
then they are needed badly. 

3.7.10 Discussion 

The techniques of process design for real-time processes are just emerging 
into the general state-of-the-art. Tools like ALF have been found to be indis- 
pensible for performing design studies, and then the designs are later vali- 
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dated with design simulations. This allows the design analyses to be per- 
formed with quick-reaction tools, and validated with the high fidelity, longer 
running simulations. 

The techniques for process design of non-real-time software concentrate 
on efficiency and wall-clock-time to complete a normal run. These techniques 
are discussed in the literature (e.g., Don Knuth's Empirical Study of FORTRAN 
Programs discusses how such programs can be optimized). 

3.8 PRELIMINARY DESIGN 

In this phase, the allocated processing requirements for each task (or 
schedulable software module) are identified and allocated to a hierarchy of 
software routines, subroutines, and procedures to a level where each can be 
described and sized. The overall approach for development, integration and 
test are identified for applications code and operating system modules. The 
requirements for test tools are expanded, and the test processes are defined. 
For the DP hardware, the details of the hardware design are solidified (e.g., 
bus structure), and the performance estimates used in the process design are 
validated by the more detailed designs. If significant differences occur, the 
process design is reiterated. 

The activity of preliminary design for a task is fairly well understood 
by today's software practitioners. Dijkstra, Jackson, and Yourdon and 
Constantine all have methodologies for this level of design, to name but a 
few. The nine-step approach for the design does, however, suggest a shift in 
emphasis: 

t  Step 1, to identify requirements, is recognized by all. 

• Step 2, to identify alternate types of modules for allocation, is not 
generally discussed. For example, software can be divided into 
modules for different types of action (refinement), or in different 
levels of action (e.g., all software is isolated from memory by a 
data manager). Both types of modules should be addressed. 

• Step 3, different mathematical approaches should be examined for 
accomplishing a function. 

• Step 4, the approaches are decomposed into steps to be allocated to 
modules. 

t  Step 5, different allocations are proposed, especially from the view- 
point of testability. 

• Step 6, feasibility is estimated, particularly from the accuracy, 
execution time, and memory budget points-of-view. 

• Step 7, the resource requirements are estimated (e.g., total instruc- 
tions, total memory, development time). 

• Step 8, a best design is selected. This is the place where execution 
time, development time, and memory size are traded-off. 

• Step 9, integration and test plans, test tools, and their impact on 
design are identified, including the approach for testing the completed 
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code. This can include program correctness proof techniques, use 
of code analyzers, etc., during the design stage. 

3.8.1 Discussion 

Note that the nine-step approach is consistent with many of the design 
methodologies, but does explicitly include features which are ignored by many 
other methodologies. If the problem is stated as one of allocating require- 
ments to classes of design elements, this tends to give the software design 
process a new dimension which has not been fully explored in the literature 
(e.g., the HOS design rules address the allocation of responsibilities for 
input data checking between modules are in the right direction). Existing 
tools to support these phases include PDL and PDS to describe the design, and 
PDS to aid in simulating the total effect of the design and maintain configura- 
tion management. 

3.9 CONCLUSIONS 

The overall methodology discussed in Section 3.1 appears to be sufficiently 
general to describe the system design front-end activities by its repeated 
application to four levels of allocation: 

t System to DP/C 

t DP/C to DP nodes and communication links 

• DP node to process design 

• Process to preliminary design. 

The concerns of the steps are changed as the nature of the "subsystems" 
to be allocated change, but the sequence and types of activities remain the 
same. 

The methodology has been found to work rapidly and quickly during the 
system analysis phase, and to highlight the data processing issues at the 
earliest possible time. This represents a significant advance towards early 
identification and resolution of DP issues in the system design front-end. 
Explicit phases and steps are included to address known problems (e.g., 
distributed process design, influence of test planning) unaddressed elsewhere. 

Prototype tools exist for aiding many of these steps. The role of PERCAM 
and DP PERCAM in the system analysis and engineering phases, the role of SREM 
in the requirements engineering phase, the role of ALF and PDS in the process 
design phase, and PDL and PDS in the preliminary design phase has been dis- 
cussed. 

The generality of this methodology suggests that a series of languages 
based on a common meta-language could be developed to exploit the similarities 
to yield a common tool framework. This meta-language would have the following 
concepts: 

• Elements -- containing the functions, subfunctions, structured data 
trees, performance indices, and system parameters at each level. 
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• Attributes -- providing the descriptions of the elements, type for 
data (including units and range), etc. 

• Relationships -- providing linkages between elements such as func- 
tions INPUT data, traceability, decomposition between functions, 
allocation to subsystems, etc. 

• Structures -- providing the graphs of the functions and sequences of 
the structured data trees. 

If such a series of languages were developed on a common base, a common 
set of tools which utilized this deep structure could be developed to manipu- 
late the data bases regardless of level of analysis. This would simplify the 
development and use of automated tools to perform consistency/completeness 
checking, traceability analyses, and simulation generation. 

The above comments form the justification for the approach taken in the 
Evolutionary Development Plan published earlier. 
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4.0 CONCLUSIONS 

In this part of the report, we have presented formal foundations for a 
methodology, and the overview of a methodology based on those foundations. The 
concepts of decomposition and allocation were found to be key concepts of the 
methodology for elaboration of the requirements, relating the requirements to 
the design, and for the definition of integration and test tools and the test 
plans and procedures. 

This approach addresses the five issues previously identified in the 
following way: 

• Complexity -- the complexity inherent in the many possible subsys- 
tem classes, system logics, and allocations is addressed by first 
identifying feasible solutions for subsystem classes, identifying 
the critical issues, and then optimizing to alleviate or eliminate 
these critical issues. The natural level hierarchy of system, sub- 
systems, critical items, etc., are used, with strict decomposition 
and allocation used to link these levels together. 

• Communication -- emphasis on testability and performance decomposi- 
tion leads to the description of the system actions in terms of 
sequences of functions with specified inputs, outputs, and perfor- 
mances. This is a "natural" way to describe the actions of the 
system in terms of the integrated effect of subsystem actions; the 
precise definition of the decomposition also tends to eliminate 
ambiguity. The definition of a extensible machine-processible lan- 
guage for the expression of these concepts (e.g., the Requirements 
Statement Language of SREM) will further aid communication by re- 
stricting the vocabulary to a precisely defined set. 

• Validation -- emphasis on formal decomposition and allocation leads 
not only to naturally testable requirements, but to the identification 
of verifiable properties of the specifications (e.g., consistency of 
inputs/outputs defined for requirements written in RSL). In addition, 
the emphasis on simulations to verify performance predictions which 
are traceable to the statement of requirements provides validation 
of the dynamic behavior of the system. Finally, the emphasis that 
the allocation is not complete without the integration and test plan 
leads to early emphasis on validation. 

t  Traceability -- the rigorous definition of decomposition and allo- 
cation provides an unbroken chain of decisions from any requirement 
or design feature back to the mission requirements. In addition, 
incorporation of these concepts in an automated data base (e.g., the 
REVS data base) provides the tools to perform the traceability analy- 
sis upward or downward. 

• Change Response -- the definition of the requirements in an automated 
data base and the availability of tools to aid in the traceability 
analysis provides the capability to extract traceability information 
rapidly, perform an analysis of the impact of a change in top-level 
requirements or the infeasibility of meeting lower-level subsystem 
constraints on the total set of requirements. The ability to copy 
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the data base, modify it, perform automated analysis for consistency, 
completeness, traceability, and to generate simulations to predict 
system performance provides to the system analysts the capability to 
quickly identify impacts, make changes, and verify their impacts. 

A comparison of the types of tools (e.g., automated data base of require- 
ments, automated consistency/completeness checking, automated simulation genera- 
tion from the requirements statements at various levels of the system design) 
needed to support such an overall methodology with the tools which currently 
exist suggest that prototype of many of these tools already exist: 

• RSL is a prototype of the user-extensible requirements definition 
language for the definition of the system fucntions which incorporates 
most relevant URL features. 

• REVS is a prototype of the types of tools to verify the static proper- 
ties of the requirements, and to generate simulations of the specified 
system actions, which also incorporate most of the features of CARA. 

• PERCAM is a prototype of the simulator to develop system-level simu- 
lations traceable to the system logic. 

t  DP PERCAM is a prototype of the simulator to develop system-level 
simulations of critical resource utilization. 

t  ALF is a prototype of the types of tools needed to predict the suffi- 
ciency of a process design. 

• PDL and PSL are prototypes of tools to define the software preliminary 
design, and to simulate its performance. 

The availability of these tools suggests that the consolidation of these 
tools into a unified set, and the detailed definition of a methodology which 
uses them is feasible. The details of tool consolidation, tool extension, 
methodology development, and technology transfer are discussed in the Evolu- 
tionary Development Plan previously published. 

187 



5.0 REFERENCES 

1. Mesarovic, M.D. and Y. Takahara, "General Systems Theory Mathematical 
Foundations", Academic Press (1975). 

2. Mesarovic, M. D., M. Macko, and Y. Takahara,"Theory of Hierarchical Multi- 
level Systems", Academic Press (1970). 

3. Jackson, M. W., "Principles of Program Design", Academic Press (1975). 

4. Cerf, V. C, "Multi-Processors, Semaphores, and a Graph Model of Computation", 
Department of Computer Science, University of California Los Angeles, 
Report UCLA-ENG-7223, April 1972. 

5. Ross, D., "Structured Analysis (SA): A Language for Communicating Ideas", 
IEEE Transactions on Software Engineering. Volume SE-3, Number 1, January 

6. Lamb, S. S., et al., "SAMM: A Modeling Tool for Requirements and Design 
Specification", COMSAC 78 Proceedings. IEEE Catalog 78 CHI 338-3 C. 
November 1978. 

7. Hamilton, M. and S. Zeldin, "Higher Order Software - A Methodology for 
Defining Software", IEEE Transactions on Software Engineering. Volume SE-2. 
Number 1, pp 9 - 32, March 1976.  2- 

8. Dahl, R., E. Dijkstra, C. Hoare, "Structured Programming", Academic Press 
(1972). 

9. Fitzwater, D. R., "A Decomposition of the Complexity of System Development 
Processes", COMSAC 78 Proceedings. IEEE Catalog No. 78 CHI 338 - 3 C, 
November 1978. 

10. Wymore, A. W., "Systems Engineering Methodology for Interdisciplinary 
Teams", John Wiley (1976). 

11. MIL-STD-490, "Military Standard Specification Practices", 30 October 1968. 

12. Bell, T. E., D. C. Bixler, M. E. Dyer, "An Extendable Approach to Computer- 
Aided Software Requirements Engineering", IEEE Transactions on Software 
Engineering. Volume SE-3, Number 1, pp 99 - 60, January 1977.  

£11.8. GOVERNMENT PRINTING OFFICE: 1979-614-023/208 

188 



t0^&rZt0rXj#fXUSfZt&^j0^ e 

MISSION 
of 

Rome Air Development Center 

RAOC plam and zxccuteA fizAzanch,  dzvzlopmunt,  tut and 
toltctzd acqiLUltion pKogfiOM, In AappoKt oi Command,  Control 
CommuyvicatlonA and IntztUgmcz  (C3I)  actlvlUu.    Tzdhwidal 
and mglnzznlnq bappoit within aA&cu, ofi tzchnlcal competence 
^s ptovldad to ESV Vnogfum OUICM   [P0t>]  and othafi ESV 
eZmznt*.    Thz principal tzchnlcal miMZon aAza* OAQ, 
commLLnlcatloni,   eluctftomagmtic galdancz and donJjiol, AUA- 
veManca oi ground and anAoipaaa objzcti, IntztUgznce. data 
aottcLCtion and handling, Inionmation Ayttm tzchnology, 
-Lonotphafilc propagation,  t>otid ztatz Aclznczi,  mlcAowavz 
phyilu and elactAoyvic fisZiabltity,  mtUntalnabltUy and 
compatibility. 

ti&'<tt4n*4fXj!!f&&^&^^ 


