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PREFACE

The body of this report is organized into three parts. Part I is an
Executive Summary which briefly outlines the purposes and accomplishments of
the study. Part II explores the nature of weapon systems, requirements, front-
end problems, characteristic activities and problems of front-end development
phases, and candidate tools for addressing those problems. Part III presents
formal mathematical foundations for front-end requirements engineering and
design, and outlines a methodology that can be supported by a fully integrated
set of tools.

A structured evolutionary development plan that leads to a fully inte-
grated set of tools in six years, with usable interim increments, is reported
in a separate interim report, TRW Document No. 32697-6921-001, which is CDRL
Item A002 of this contract.
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EVALUATION

By the early 1970's, the high cost and poor quality of software develop-

ment was recognized as a critical issue on large high-technology DoD programs.
Techniques for software development were not keeping pace with the increase
in system complexity. Software Engineering, as an emerging discipline,

was focusing on the more visible activities of software construction and
test; however, the major cause of inadequate software, poor requirements
definition and design, had been relatively neglected by the R&D community.
The few efforts which did address the more tangible pre-coding and pre-design
activities, yielded prototype developments for specific and limited
applications. These were products of isolated research teams. Lacking was

a documented and useful description of the system and software development
process. A broad and comprehensive view of the initial user-developer
interactions was needed; one which portrayed goals and alternative solutionms,
in spite of complexity, being successively defined and refined within a

framework of effective common understanding.

This contractual effort, part of RADC TPO 5, Software Cost Reduction,
addresses three principal technical needs: (1) Definition of front—end
processes (concept definition, requirements validation, and preliminary
design); (2) Identification of capabilities and limitations of existing
automated support tools and methods; and (3) a comprehensive R&D plan to

evolve and demonstrate an integrated requirements engineering support system.

X111



The comprehensive study draws heavily upon pioneering research of the

U.S. Army Ballistic Missile Advanced Technology Center (BMDATC) which

has been concentrating on disciplined system and software engineering
methods. A promising methodology approach, based upon formal mathematical
foundations, has been identified. A common tool approach has been
suggested wherein all development phases would be supported by a single
nucleus of software utilities employing a single meta-language, data base

analysis, and simulation generation concept.

The recommended approach takes into account the DOD emphasis on a high
level programming language (DOD-1/Ada) and on critical technical issues
involved in the design of distributed processing systems. The methodology
underlying the Proposed Development addresses known problems elsewhere
unaddressed; hence it represents a significant advance, possibly a
breakthrough, toward early identification and resolution of critical data
processing issues in the system design front-end.

ofO w. Warber

ROGER W. WEBER
Project Engineer
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PART 1
1.0 EXECUTIVE SUMMARY
1.1 INTRODUCTION AND BACKGROUND

The development of large, high-performance weapon systems has always been
one of the most technology-stressing activities undertaken by man. In modern
times, these systems consume large amounts of technical and economic resources,
but all too often do not work as intended, or do not work at all. Because the
need for these systems is driven by the potential capabilities of hostile adver-
saries, development takes place in an atmosphere of constant schedule pressure.
To meet schedules, large groups of people, often involving many agencies and
organizations must work in close coordination at the breaking point of prac-
tical manageability. In this environment, solutions to problems cannot await
the natural evolution of powerful technical and management techniques to com-
fortably deal with the issues.

Computer software plays a vital role in the modern weapon system -- efither
as a controller of weapon system operations and resources, or as a critical
Tink in the organization and presentation of information to human tactical com-
manders. Software, because of its abstract nature and relatively short history
as an engineering discipline, has been costly and difficult to develop for large,
complex weapon systems.

By the early 1970's the high cost of software development (and the fact
that software often did not meet operational needs) was becoming a critical and
visible programmatic issue on ultra-high technology defense programs. The tech-
niques for software development were simply not keeping pace with the increasing
complexity of weapon systems. Several major studies identified poor software
requirements definition as a major cause of costly, inadequate software. In
the past few years the software problems, first perceived in the high-technology
defense community, have become increasingly visible in commercial and industrial
systems. The degree of concern is indicated by the number of conferences and
workshops devoted to the topic. In the month of April 1979, three such
events in the United States and Europe will focus on requirements and related
problems.

Pioneering research in requirements engineering by the U.S. Army Ballistic
Missile Advanced Technology Center (BMDATC), the ISDOS project at the University
of Michigan, and others, produced a number of tools and techniques (e.g., CARA,
SREM, PDS) to.address requirements-related problems. However, these tools were
developed for specific applications and specific phases of front-end develop-
ment, and were developed by groups working in isolation from each other. A
broad, comprehensive view of the entire front-end system development process
and its impact on software requirements has been needed to provide a basis for
an integrated attack on the total requirements problem.

1.2 PROJECT PURPOSE AND SCOPE

In FY 1978, RADC sponsored the Software Requirements Engineering
Methodology (Development) study. The purpose of the study was to define a

1



unified methodology approach and recommend an evolutionary development plan
for construction of an integrated requirements engineering system supported by
automated tools to address Air Force requirements problems.

The statement of work consisted of five tasks:

Identify current state-of-the-art tools and techniques applicable to
software requirements and preliminary design.

Investigate the front-end problems of data processing system develop-
ment.

Investigate how the identified tools and techniques can be applied to
the front-end problems, identify gaps, and recommend improvements and
additional tools.

Identify approaches for a methodology to effectively use the tools.

Prepare an evolutionary development plan for constructing an inte-
grated requirements engineering system.

Because software problems often originate from earlier system level de-
cisions, the scope of the study was to include all development effort from
first perception of the need for a weapon system to preliminary software design.

1.3 PROJECT ACCOMPLISHMENTS AND CONCLUSIONS

The project has performed all of its tasks and met its objectives. Speci-
fically, the project made the following accomplishments.

The characteristics of weapon systems, of the development of weapon
systems, and of requirements were identified and studied.

The phases of weapon system and software front-end development, and
their problems, were analyzed. Although each phase has its own mani-
festation of problems, the various phases were found to have a common
set of problems associated with human thought processes, information
organization, decision-making and communication.

More than fifteen existing automated systems of tools and techniques
were evaluated for application to the front-end problems. Of these,
nine were selected for further consideration, because of unique pro-
perties, or global concepts that could be applied across an integrated
system.

Three approaches for integration of the tools were evaluated. Of
these, a common tool approach was selected, wherein all development
phases would be supported by a single nucleus of software utilities
employing a single meta-language, data base analysis, and simulation
generation concept. The single meta-language provides the foundation
for an extensible language capability to express the specialized
vocabulary and c¢oncepts appropriate to each development phase.

A promising methodology approach based upon formal mathematical foun-
dations was identified and evaluated. This approach is based upon
break-throughs made on two TRW programs for BMDATC (Axiomatic Require-
ments Engineering, and Advanced Data Processing Concepts) in 1978.

2



These basic research results have been evaluated as they emerged and
are found to be applicable to Air Force weapon system problems. In
particular, they provide formal foundations and insights for the proper
placement of tools within an integrated system.

e An evolutionary development plan for the construction of an integrated
requirements development system and its transfer to the Air Force was
prepared. Aggressive implementation of this plan could lead to a
complete capability in six years. Forty-nine R&D tasks in the areas
of technology consolidation, technology extension, and technology
transfer were identified and evaluated. These tasks were then grouped
into twenty-nine packages for time-phased procurement with considera-
tion for incremental capability delivery. (This plan is separately
reported in TRW Document 32697-6921-001, which is CDRL Item A002 of
this contract.)

This project has found a common body of requirements-related problems
existing across all phases of front-end development. An integrated approach
to solving these problems using a common nucleus of automated tools appears to
be feasible, practical, and beneficial.

1.4 RECOMMENDATIONS

Timely and aggressive research in this field is needed because the advent
of distributed processing systems and startling advances in hardware technology
foretell an explosive increase in the complexity of technically feasible systems.
We have barely mastered fairly good software engineering approaches for conven-
tional single-processor systems, yet we are about to be engulfed by a tidal
wave of hardware capabilities that offer the potential of spectacular software
successes or failures. We now have to run when we barely know how to walk.

It is recommended that the Air Force give critical consideration to early
sponsorship of critical-path research increments identified in the evolutionary
development plan. Initial introduction of the powerful DoD-I programming
language into operational use is expected in 1982-83. If substantial progress
is not made in reducing front-end development problems by the early 1980's, the
downstream software engineering problems will be compounded far beyond the
Tevels that arouse alarm today.

It is further recommended that on-going research in the ballistic missile
defense community be continuously monitored for application and adaptation to
Air Force use. Earlier research sponsored by BMDATC has been of great poten-
tial benefit for real-time systems outside the BMD focus of interest. Continu-
ing research is expected to refine and clarify the gross methodology themes
presented in Part III of this report, and is expected to introduce new tools
of potential interest to the Air Force.



PART II
1.0 INTRODUCTION

This report documents the results of a one-year study of the front-end
problems involved in the development of complex weapon systems and their em-
bedded real-time software, and means to alleviate those problems through an
integrated requirements engineering system supported by automated tools.

1.1 BACKGROUND

The development of large, high-performance weapon systems has always been
one of the most technology-stressing activities undertaken by man. In modern
times, these systems consume large amounts of technical and economic resources,
but all too often do not work as intended, or do not work at all. Because the
need for these systems is driven by the potential capabilities of hostile ad-
versaries, development takes place in an atmosphere of constant schedule pres-
sure, To meet schedules, large groups of people, often involving many agencies
and organizations, must work in close coordination at the breaking point of
practical manageability. In this environment, solutions to problems cannot
await the natural evolution of powerful technical and management techniques to
comfortably deal with the issues.

Nowhere are the problems of complexity more apparent than in the area of
software development. Software, by nature, is an abstraction. It is an
entity that produces actions and behavior completely unrelated to its physical
form. Correctly defining the requirements for software (i.e., the actions it
will cause based on specified information) is a major logical and conceptual
effort, even when schedule is not a consideration. Yet the correct definition
of software requirements is critical to the development of successful weapon
system software and vital to the success of the weapon system mission. This
is because software exercises partial or nearly total control over the opera-
tion of the modern weapon system and its resources. Even where its control
functions are minimal, software plays a vital role in processing and displaying
the information that is the basis for tactical judgements by humans.

By the early 1970's the high cost of software development was becoming a
critical and visible programmatic issue on ultra-high technology programs such
as ballistic missile defense. Several studies at that time revealed the stag-
gering cost penalties of late detection of requirements and design errors.
Figure 1-1 illustrates the relationship.

Realizing the high cost leverage of error-free requirements, in 1973 the
U. S. Army Ballistic Missile Defense Advanced Technology Center (BMDATC) ini-
tiated pioneering research to address the issues of requirements engineering
and process design for real-time weapon system software. This effort culmi-
nated in 1977 with the delivery of the TRW Software Requirements Engineering
Methodology (SREM) and the Texas Instruments Process Design System ?PDS).
Current BMDATC research is focused on bringing the same rigor to system engi-
neering disciplines related to data processing,-and to problems in distributed
processing.
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Sufficient research experience has been gained to postulate that an
integrated set of requirements engineering tools to address the requirements
definition problems from initial weapon system concept to preliminary soft-
ware design is feasible and practical. RADC has funded the present Software
Requirements Engineering Methodology (Development) study to confirm that
belief and to define an evolutionary development plan for a system adapted
to Air Force requirements engineering problems.

Timely and aggressive research in this field is needed because the advent
of distributed processing systems and startling advances in hardware technology
foretell an explosive increase in the complexity of technically feasible
systems. We have barely mastered fairly good software engineering approaches
for conventional single-processor systems, yet we are about to be «engulfed
by a tidal wave of hardware capabilities that offer the potential of spec-
tacular software successes or failures. We now have to run when we barely
know how to walk.



1.2 OVERVIEW OF PART II

Section 2.0 presents a context for investigation of the problems and
issues surrounding requirements engineering for weapon systems and their
embedded software. Section 2.1 describes some of the properties of weapon
systems, emphasizing fundamental concepts common to all weapon systems, re-
gardless of their detailed design or implementation technology. In Sections
2.1.1, 2.1.2, and 2.1.3 we discuss generic characteristics, components, and
component interactions. In Section 2.1.4 we discuss the one-on-one encounter
between a weapon system unit and a threat. The encounter level of considera-
tion is readily amenable to standard engineering analyses and is the usual
first step toward modeling the system's operation. In Section 2.1.5 we
discuss weapon system engagements -- concurrent encounters between a weapon
system and multiple threats. Engagements present complex control and resource
management problems. Operations research disciplines have found these problems
to be difficult, sometimes impossible, to analyze and model with any fidelity.
We conclude Section 2.0 by recapitulating the current primary specification
types applicable to weapon systems, subsystems, and software as defined in
MIL-STD-490.

Section 3.0 discusses requirements. In Section 3.1 we present a
hierarchy of requirements types (processing, non-processing, development)
affecting software. In Section 3.2 we discuss various other characteristics
of requirements, and the relationship between requirements and design. In
Section 3.3 desirable attributes of software requirements specifications are
summarized.

Sections 4.0 and 5.0 examine front-end development problems and their
manifestations in-the various development phases. Section 4.0 discusses five
specific problems: complexity, communication, validation, traceability, and
change response. These problems appear to be at the root of many observable
symptoms of poor requirements. In Section 5.0 we characterize six phases of
the front-end system and software development cycle, and for each phase,
discuss the scope, content, and problems of the phase. In Section 5.7 we
conclude that, despite superficial differences, the phases have a common set
of problems.

In Section 6.0 we identify and summarize our evaluation of candidate
tools and integration approaches for producing an integrated requirements
engineering system. References cited in Part II are listed in Section 7.0.



2.0 PROBLEM CONTEXT

Our investigation deals with the front-end development problems for a
particular class of software: that developed to support the operation of
weapon systems. Before we examine the accompanying requirements definition
problems, let us examine the features of weapon systems to determine why
they present exceptional software development problems.

In Section 2.1, we begin by stating the salient characteristics of
weapon systems. Next we identify the fundamental generic components common
to all weapon systems and examine the types of interactions between these
components, and between the components and the threat and environment. Finally,
we examine the characteristics of single weapon system/threat encounters and
then discuss aggregates of encounters called engagements. In Section 2.2,
we summarize the current specification standards for weapon system software
and for systems and subsystems in which the software is embedded.

2.1 THE WEAPON SYSTEM CONTEXT

The problems of software development for weapon systems differ from those
of civilian applications in many respects. This is due to the unique nature
of weapon systems. In this section we will discuss the characteristics, com-
ponents, interactions and encounter sequences of weapon systems that form the
context of the requirements development problem.

2.1.1 Characteristics of Weapon Systems

In the modern world, six characteristics are implicit in the concept of
a "weapon system":

1) A weapon system is an organization of men and equipment designed for
use against specific classes of enemy targets under certain presumed
operating conditions and rules of engagement. The input to the system
is an enemy target or group of targets. The output of the system is
the destruction of the enemy targets, usually required to be accom-
plished before the targets can contribute to significant damage upon
friendly forces or facilities.

2) A weapon system is a real-time system. The effectiveness of the
system is dependent upon the ability to respond to an input within
a specified time. The required performance of a defensive weapon
system is defined by the characteristics of the input enemy offensive
threat and the desired reduction of that threat. The required per-
formance of an offensive weapon system is defined by the characteris-
tics of the target, the characteristics of eneny systems defending

the target, and the minimum acceptable damage to be inflicted on
the target.

3) Without modifications to the system, the effectiveness of any weapon
system is reduced with the passage of time. The enemy will upgrade his
offensive threat in numbers and sophistication to maximally stress



and hopefully break the defense. He will also upgrade his defense
to minimize damage to his own targets. Because each side strives to
minimize its resource expenditures, the requirements for a weapon
system must change and evolve over time.

4) A weapon system is embedded in a chain-of-command hierarchy reaching
to the highest levels of government. Although local commanders may
be given discretionary authority to use ordinary tactical weapons in
response to given situations, authority to use a weapon system is
always conditional and granted from above. The weapon system designer
must meet requirements for interfaces with one or more command and
control systems, and must incorporate features to preclude unautho-
rized use of critical weapon systems.

5) A large weapon system is difficult or impossible to test under realis-
tic combat loads and conditions prior to operational deployment and
use. Simulation methods must be used to represent the threat, environ-
ment, and certain system components and actions. The question then
becomes "Do the simulators accurately model real physical phenomena,
event timing, threat characteristics, and enemy tactics?"

6) A weapon system is actually engaged in a mission for a miniscule
fraction of its deployed lifetime. For critical strategic systems,
there is no opportunity to resolve erroneous assumptions by trial-
and-error means. Such systems are designed to be used once, and
failure would be catastrophic.

These characteristics separate weapon systems from most systems used in the
commercial and industrial world. We should also expect that the methods of
system development would be different. We find this to be true. Because the
penalty for error is so high, all requirements that the system is to satisfy
must be more carefully developed and validated. Because the system is pitted
against an intelligent opponent, the requirements will be in a state of flux
and will tax the limits of state-of-the-art technology.

Before we consider better means of developing requirements for weapon
system software, we will examine the components, interactions and operating
behavior of a typical weapon system.

2.1.2 Weapon System Components

While weapon systems exhibit many different forms and levels of complexity,
all weapon systems are variants of a common underlying structure. A weapon
system can be categorized as a responsive system, also called a second-order
feedback system. A responsive system has a defined goal or mission, and has
the capability to choose, from alternative tactics, the tactic most effective
in the current operational situation. The basic weapon system model, presented
in Figure 2-1, can be used to grossly describe.responsive weapon systems.ranging
from a man with a rock to a sophisticated air defense system.
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To effectively direct a weapon against a target, one must be able to:
1) detect the presence of a potential target, 2) establish that the detection
is a desired target, and 3) predict the probable location and motion of the
target at the time of intercept. A sensor of some type (eye, ear, radar,
optical device) is required to permit these actions. Sensors may be active
(e.g., radar) or passive (e.g., eye, electro-optical telescope). In either
case, controls are generally needed to shift the field-of-view and adapt to
environmental variations. A given system may employ a single sensor, a
number of sensors of the same type, or a mix of sensors. Multiple sensors
may operate independently (e.g., monostatic radars) or cooperatively (e.g.,
multistatic radars).

A weapon delivery mechanism is also needed to bring the weapon to the
target if the target is outside the weapon's lethal radius. The oldest weapon
delivery mechanism is the arm and hand used to throw the rock. Modern weapon
delivery systems are often multi-stage (e.g., manned aircraft + air-air missile).
A11 weapon delivery means have a limited action radius, velocity envelope, and
correction capability. Effective weapon delivery therefore requires careful
timing, aiming, preplanning and, where practical, real-time compensation and
control. These activities in turn require knowledge of weapon delivery capa-
bility and limitations, estimation of current weapon delivery system state,
prediction of future target state, a sense of time, and computational capa-
bility. Such a system must have memory.

Facilities for memory, computation, and timing coordination are provided
by the data processing subsystem (DPSS). Until recently, the human brain
served as the data processing subsystem for most weapon systems. As threat
performance has increased, sensors and weapon delivery systems have become
more complex. The unaided human operator can no longer keep pace with the
data throughput encountered in modern systems. Hence, the bulk of data pro-
cessing activities have been off-loaded onto computers or networks of computers.

Operation of a sophisticated weapon system requires situation assessment,
timely selection of strategies and tactics, allocation of resources to accom-
plish chosen goals, and positive control over the system. Thus, every weapon
system has a command and control (C&C) subsystem -- a decision making element.
Ultimately, all command and control components of the system are human. Ma-
chines are used to structure information displays for humans and to assist in
executing decisions made by humans, but they do not choose goals or make inde-
pendent decisions except as preprogrammed. Although great progress has been
made in computer systems, the human operator will not be totally replaced,
because only he can respond to novel and unanticipated situations which call
for original responses and value judgements.

The fifth necessary component of a weapon system is the internal commu-
nications subsystem. The other subsystems are ineffective unless they operate
as an orchestrated whole.. Coordinated action requires the capability to move
information from one part of the system to another when needed. The internal
communications subsystem provides this capability.
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The weapon system does not exist in isolation. It is surrounded by the
system environment, which is simply everything in the outside universe that
is affected by, or has appreciable effect on the system. It is useful to
separate the system environment into the controlled environment and the uncon-
trolled environment. The controlled environment is simply that which the
system designer or operator can modify, or influence in some degree. Local
air temperature, local electromagnetic radiation, interfacing system message
formats, and engagement rules for external friendly systems are examples of
controlled environment elements.

The uncontrolled environment is that which the designer or operator can-
not modify or must accept as fixed. Final decisions by higher authority,
tables of military organization and responsibility, the weather, the laws of
physics, and the initial threat scenario are not controlled by the designer or
operator. Even if these factors cannot be controlled, their range can be
anticipated within limits and the system design can compensate for them to
an acceptable degree. The hardest factor to anticipate is the threat, since
it is the only component purposefully trying to defeat the weapon system.

The definitions of system, subsystem, and system environment are relative.
Certainly what we define as a weapon system is merely a subsystem in the con-
text of the total U.S. defense posture. In the other direction, the subsystems
of a weapon system may be "systems" in their own right, with an environment
consisting of the original system environment plus all other subsystems in the
weapon system. For instance, we can focus on the sensors which search for and
detect threats and call these a surveillance system or early warning system.
Similarly, we can detach the sensors and weapon delivery subsystems and call
the remainder a command, control, and communication (c3) system. An important
task of the weapon system analyst is to develop an understanding of the rela-
tionships between a system and its superordinate, subordinate, and coordinate
systems.

2.1.3 Weapon System Component Interactions

The basic weapon system exhibits a characteristic pattern of interactions
between its components and with the environment. These are shown as paths in
Figure 2-1. Necessary paths are those found in all weapon systems. Optional
paths are those characteristic of the classes of components used in the speci=
fic weapon system. These interactions define the nature of the information
flow through the system.

The C&C subsystem interfaces with external systems and the chain of higher
command. At some time, the system is activated by external authorization, per-
haps accompanied by specific mission tasking orders, intelligence inputs and
forward acquisition data from other systems. Supplemental directives and a
termination order will enter the system at subsequent times during an engage-
ment. At appropriate intervals the C&C subsystem will release situation re-
ports, kill reports, and casualty reports to higher command levels, and will
transmit processed mission data to other systems if needed. The C&C subsystem
supervises transfer of bulk data between the data processing subsystem and
external systems.
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The C&C subsystem interacts with the rest of the weapon system through
the data processing subsystem, and voice or teletype communication with
various subsystem operators (not shown in the diagram). The C&C subsystem
establishes the initial mission configuration of the DPSS which then imple-
ments lower level activities to bring the weapon system to readiness. During
the mission, the C&C subsystem may provide resource allocation directives,
tactical decisions, and requests for information to the DPSS. The DPSS pro-
vides data for summary information displays and responses for requested infor-
mation to the C&C subsystem. The allocation of decision-making responsibility
between the C&C subsystem and the DPSS is a function of the required system
response time, the load on the system, and the variability or novelty of
engagement situations. However, the C&C subsystem always controls termination
of the mission and deactivation of the system.

The DPSS communicates with sensor and weapon delivery subsystem elements
via the internal communication subsystem. The DPSS issues control commands to
the sensor and the sensor returns partially processed observation data to the
DPSS. The presence of a potential threat or target is indicated by sensor
detection of electromagnetic or acoustic energy reflected or radiated by the
object. Thus, there always exists a directed interaction path from the threat
to the sensor. With active sensors (e.g., radar, sonar) the sensor transmits
the energy reflected by the object. Hence, there is an interaction path from
sensor to threat, not used with passive sensors. The interactions between
threat and sensor occur in the uncontrolled environment, which attenuates the
sought-after signals and corrupts them with noise. Further noise is introduced
within the sensor itself (thermal noise). Complex analog or digital processing
is required to recover the desired signal.

Before weapon delivery elements are committed, the weapon delivery sub-
system provides health and status reports to the DPSS. When a target is iden-
tified and designated, a specific weapon delivery unit is selected by the DPSS
(or by the C&C subsystem via the DPSS) to engage the target. The DPSS then
transfers intercept planning information to the selected unit. This may con-
sist of a completed intercept plan, or only target state vector data if the
unit is to form its own plan. The DPSS may provide state vector updates to
the weapon delivery unit at intervals.

Once the unit is launched, interactions with the remainder of the weapon
system depend upon the type of weapon. Manned aircraft may be vectored to
the target via communications from ground elements. Missiles may be guided
through the sensor or separate guidance transmitters. Or, the weapon delivery
unit may function autonomously, using on-board sensors to acquire and home in
on the target.

There is usually an interaction path from the weapon delivery unit to the
sensor, because the unit will appear in the sensor's field-of-view as another
object. The sensor capacity must allow for both threats and weapon units.
Observations of the unit as it closes on the target may be used for active
guidance or for passive kill assessment.
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Finally, there is an interaction between the weapon delivery unit and
the threat (a hit or a miss) which decides the outcome of the encounter. A
detected miss would lead to commitment of another weapon delivery unit, if
feasible.

2.1.4 Weapon System Encounter Sequence

From the general description of a basic weapon system we can see potential
for major variations of the basic system interactions, determined by the par-
ticular choices of weapon delivery subsystem, guidance mode, sensor/DPSS pro-
cessing allocation, and command and control philosophy. However, there is an
underlying commonality expressed in the encounter sequence of events shown in
Figure 2-2. Within this sequence, there are dominant information flows and
types of data processing activity. In this section we will describe an encoun-
ter typical of a defensive weapon system. With minor changes, the sequence
could apply to an offensive weapon system.

An encounter can be divided into three basic phases -- observation, deci-
sion, action. The observation phase begins when the sensor commences search
and ends when enough information has been gathered to determine if a threat
exists. The decision phase begins with a decision that a threat exists and
ends with a decision that Taunches a specific interceptor. The action phase
begins with interceptor launch and ends with a positive kill assessment.

The observation phase can be further subdivided into search, detection,
track, and discrimination subphases. Throughout the observation phase, the
dominant information flow and data processing in the weapon system is between
the sensor and the DPSS. The flow from sensor to DPSS 1is characterized by
high throughput, repetitive signal processing, thresholding, peak detection,
correlation, association, and state estimation. The information arriving in
the DPSS is used to adjust sensor control parameters and, for active sensors,
define and schedule sensor transmission and reception. The tight coupling
between the sensor and DP, the large bandwidths of modern sensors, and the
precise synchronization to be maintained lead to stringent real-time performance
requirements on the DPSS. In the past, these requirements could only be met by
expensive special purpose hardware or high throughput "super-computers". The
advent of low cost LSI components and microprocessors offers the potential for
specialized high performance architectures at reasonable cost. However, this
potential cannot be realized until data processing considerations are given
more weight in system definition activities.

Is the object a threat?

Should it be engaged?

Can it be engaged?

What interceptor shall be assigned?

Is a back-up feasible and necessary?
When should the interceptor be launched?
What are the side effects?

13
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The measurements made during the observation phase are designed to reveal the
observable characteristics of the object and determine its possible or probable
destination. Comparison of the observations against a data base of friendly
and hostile force observables results in a probabilistic identification of the
object. Projected friendly and hostile force movement data may be used to
refine the identification. In the event of a high system load, objects not
1ikely to be threats may be dropped from the system in favor of more likely
threats.

The decision to engage a threat is a function of the reliability of iden-
tification, the defended target threatened, the available system resources,
and the overall battle situation. The identification and engagement decisions
may be performed entirely in the DPSS using prespecified decision algorithms.
Or, the decisions may be made by human operators in the C&C subsystem, on the
basis of supporting computations from the DPSS and other information.

The remaining decisions leading to interceptor launch are performed within
the DPSS based upon interceptor performance envelopes and current status data,
or are performed by some combination of DP and C&C subsystem resources. Pro-
cessing loads are not severe, unless a large number of alternatives must be
examined. However, the processing can be logically complex and potentially
requires access to data on any element in the system.

During the decision phase, the sensor and DP subsystems are holding the
target in maintenance track. When an interceptor has been selected, target
state information is routed to that interceptor and updated as necessary until
interceptor launch.

The two major problems of the action phase are: 1) vectoring the inter-
ceptor to the target, and 2) determining if the intercept was successful. The
data processing rate required for interceptor control is proportional to the
acceleration characteristics of the interceptor and the maneuverability of the
target. Ground-based guidance offers the potential to apply large-scale data
processing power and centralized battle management, but can place a high load
on the DPSS and sensors and can create serious resource scheduling conflicts
and response lags. On-board guidance eliminates many of the problems of a
tightly coupled system, but data processing capacity is severely constrained
by size, weight, and power restrictions.

Kill assessment requires that the intercept be observed and that a kill
can be distinguished from a non-kill. This activity is academic if there is
no opportunity for a second shot at the target.

2.1.5 MWeapon System Engagements

A weapon system engagement can be defined as a discrete set of encounters
followed by a period of inactivity. Typically, an engagement must be fought
with the resources on hand at the start of the engagement because repair and
replenishment of resources is not feasible.
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The visualization and design of a system to handle a single encounter is
relatively easy compared to the task of visualizing and designing a system
capable of successfully fighting the majority of possible engagements. The
difficulties at the system level are essentially the same as those faced by
the designer of a responsive data processing facility with uncertain demand,
but compounded by more stringent response times, a hostile "user", and the
fact that engagements vary in the space domain as well as the time domain.

Engagements are presumed to be fought under conditions of limited re-
sources. To ensure that an attack is successful, the attacker must bring suf-
ficient force to bear such that the defense is eventually overloaded or depleted.
The defender is anxious to avoid development and maintenance costs for defensive
capacity that is unlikely to be needed. Hence, he sizes his system according
to the maximum force attack believed within the practical capability of the
attacker, with some allowance for stronger attacks believed to be improbable.
While the key element in winning a single encounter is performance, the key
elements in winning an engagement are: adequate resources, effective manage-
ment of scarce resources, and a system design such that overall performance
degrades "gracefully" under overload (i.e., does not suddenly collapse under
a small increase in attack strength).

There are numerous tradeoffs to be made between system performance and
required resources in the design of an effective weapon system. To complicate
matters, the effect of a performance change in one part of a system may show
up as a significant change in resources needed in a completely separate part
of the system.

To illustrate this point, we will consider a simple system responding to
an attack scenario, as shown in Figure 2-3. For simplicity we will ignore the
spatial geometry of the attackers and consider only their time sequencing. We
shall first consider a system where the reaction time is just adequate to des-
troy a single attacker before he can inflict damage on the defended target.

As described in the previous section, we will consider an encounter to be

divided into observation, decision, and action phases, each phase demanding
different resources. We will also consider that n concurrent encounters in

a given phase demand n units of resource for that phase. We will further
assume that one-half unit of observation resources will be committed to each
attacker in the decision and action phases for purposes of maintenance track.

A1l encounters and each phase within encounters will consume the same time for
all attackers. Figure 2-3 shows the relative amounts of each resource needed
versus time (i.e., the system load profile) to successfully fight the engagement.

Now let us postulate a performance improvement in the observation phase
(e.g., improved track filter convergence, improved identification algorithm)
such that the time required from first detection to threat identification is
reduced by twenty percent. This reduces the system reaction time by 10 percent
for a single encounter and introduces a slack time interval between first
possible detection and latest permissable intercept. The revised engagement
timeline and system load are shown in Figure 2-4. The heavy dots at the left
of the engagement timeline represent the earliest detection point for an
attacker and the X's at the right indicate the latest permissible intercept.
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Because of the slack time in the encounter, handling of certain encounters
can be delayed somewhat until busy resources are freed. Hence, the maximum
needed amount of resources can be reduced. Strangely enough, the performance
improvement in the observation phase permits 40 percent reduction of decision
resources and 17 percent reduction of action resources, but only 13 percent
reduction in observation resources. Even stranger phenomena occur in sched-
uling theory where it can be shown that sometimes improved performance of
individual tasks (i.e., greater speed) can actually lengthen the minimum
schedule to perform a set of tasks [Ref. 1].

The principie probiems of engagement planning and analysis can be charac-
terized as widely-studied resource allocation and scheduling probiems addressed
by operations research. One type of problem is the 1 x n assignment problem
(i.e., given one interceptor and n targets, which target should be inter-
cepted?). Another is the m x 1 assignment probiem (i.e., given m intercep-
tors and one target, which interceptor should be tasked to perform the inter-
cept?). The solutions to these problems are highly context-dependent. The
general problem is the m x n assignment problem which is practically solvablie
under very restricted conditions and simplifying assumptions. The 1 x n sched-
uling probliem can be stated as: given one resource and n tasks that utilize
the resource (with specified arrival times, execution times and possibly pre-
decessor-successor constraints) what is the sequence of task execution that
results in the minimum complietion time for all tasks. The general m x n sched-
uling probiem permits variable allocation of resources to minimize the schedule.

Despite all the research devoted to these problems by operations researchers
over three decades, practical techniques for finding optimal solutions without
extensive computation have not been found except for very Timited cases. Some
heuristic techniques have been invented that yield near-optimal solutions with
certain assumptions. The absence of powerful analytical techniques has led to
relfiance on simulation as the primary tool for verifying the adequacy of pro-
posed weapon system designs.

Engagement management has traditionally been performed by human tactical
commanders, and the role of automation has been to collect, consolidate, and
display relevant data for input to human decisions. This permits the commander,
trained in military science, to make a variety of situation assessments and
introduce novel tactics in response to the particular real-time situation.
When engagement management is automated, the designer must anticipate all
possibie contingencies and develop algorithms to yield effective system
response. If the appropriate tactical responses are not delineated in the
system requirements, the military user is effectively surrendering command of
thg system to technologists who may be completely ignorant about military
science.

2.2 SPECIFICATION STANDARDS

The current specification standards for requirements statements in the
weapon system development process are stated in MIL-STD-490 and amplified in
MIL-STD-483. These standards apply to all services. The pertinent Type A,
B, and C specifications for systems, subsystems, and software are described
below. The following text is excerpted directly from MIL-STD-490.
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2.2.1 Type A - System Specification

This type of specification states the technical and mission requirements
for a system as an entity, allocates requirements to functional areas, and
defines the interfaces between or among the functional areas. Normally, the
initial version of a system specification is based on parameters developed
during the concept formulation period or an exploratory preliminary design
period of feasibility studies and analyses. This specification (initial
version) is used to establish the general nature of the system that is to be
further defined during a contract definition, development, or contract design
period. The system specification is maintained current during the contract
definition, development, or equivalent period, culminating in a revision that
forms the future performance base for the development and production of the
prime items and subsystems (configuration items), the performance of such
items being allocated from the system performance requirements.

2.2.2 Type B - Development Specifications

Development specifications state the requirements for the design or
engineering development of a product during the development period. Each
development specification shall be in sufficient detail to describe effectively
the performance characteristics that each configuration item is to achieve
when a developed item is to evolve into a detail design for production. The
development specification should be maintained during production when it is
desired to retain a complete statement of performance requirements. Since
the breakdown of a system into its elements involves items of various degrees
of complexity which are subject to different engineering disciplines or speci-
fication content, it is desirable to classify development specifications by
sub-types. The characteristics and some general statements regarding each
sub-type are given in the following paragraphs.

2.2.2.1 Type Bl - Prime Item Development Specification

A prime item development specification is applicable to a complex item
such as an aircraft, missile, launcher equipment, fire control equipment,
radar set, training equipment, etc. A prime item development specification
may be used as the functional baseline for a single item development program
or as part of the allocated baseline where the item covered is part of a
larger system development program. Normally items requiring a Type Bl speci-
fication meet the following criteria:

a) The item will be received or formally accepted by the procuring
activity on a DD Form 250, sometimes subject to limitations
prescribed thereon.

b) Provisioning action will be required.

c) Technical manuals or other instructional material covering operation
and maintenance of the item will be required.

d) Quality conformance inspection of each item, as opposed to sampling,
will be required.
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2.2.2.2 Type B2 - Critical Item Development Specification

A Type B2 specification is applicable to an item which is below the level
of complexity of a prime item but which is engineering critical or logistics
critical.

a) An item is engineering critical where one or more of the following
applies:

1) The technical complexity warrants an individual specification.

2) Reliability of the item significantly affects the ability of the
system or prime item to perform its overall function, or safety
is a consideration.

3) The prime item cannot be adequately evaluated without separate
evaluation and application suitability testing of the critical
item.

2.2.2.3 Type B5 - Computer Program Development Specification

This type of specification is applicable to the development of computer
programs, and shall describe in operational, functional, and mathematical
Tanguage all of the requirements necessary to design and verify the required
computer program in terms of performance criteria. The specification shall
provide the logical, detailed descriptions of performance requirements of a
computer program and the tests required to assure development of a computer
program satisfactory for the intended use.

2.2.3 Type C - Product Specifications

Product specifications are applicable to any item below the system level,
and may be -oriented toward procurement of a product through specification of
primarily function (performance) requirements or primarily fabrication (detailed
design) requirements.

a) A product function specification states: 1) the complete performance
requirements of the product for the intended use, and 2) necessary
interface and interchangeability characteristics. It covers form,
fit, and function. Complete performance requirements include all
essential functional requirements under service environmental condi-
tions or under conditions simulating the service environment. Quality
assurance provisions include one or more of the following inspections:
qualification evaluation, pre-production, periodic production, and
quality conformance.

b) A product fabrication specification will normally be prepared when
both development and production of the item are procured. In those
cases where a development specification (Type B) has been prepared,
specific reference to the document containing the performance require-
ments for the item shall be made in the product fabrication specifi-
cation. These specifications shall state: 1) a detailed description
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of the parts and assemblies of the product, usually by prescribing
compliance with a set of drawings, and 2) those performance require-
ments and corresponding tests and inspections necessary to assure
proper fabrication, adjustment, and assembly techniques. Tests
normally are limited to acceptance tests in the shop environment.
Selected performance requirements in the normal shop or test area
environment and verifying tests therefore may be included. Prepro-
duction or periodic tests to be performed on a sampling basis and
requiring service, or other, environment may be prepared as Part II
of a two-part specification when the procuring activity desires close
relationship between the performance and fabrication requirements.

2.2.3.1 Type C1 - Prime Item Product Specifications

Prime item product specifications are applicable to items meeting
the criteria for prime item development specifications (Type B1). They may
be prepared as function or fabrication specifications as determined by the
procurement conditions.

2.2.3.1.1 Type Cla - Prime Item Product Function Specification

A Type Cla specification is applicable to the procurement of prime items
when a "form, fit and function" description is acceptable. Normally, this
type of specification would be prepared only when a single procurement 1is
anticipated, and training and logistic considerations are unimportant.

2.2.3.1.2 Type Clb - Prime Item Product Fabrication Specification

Type Clb specifications are normally prepared for procurement of prime
items when: a detailed design disclosure package needs to be made available;
it is desired to control the interchangeability of lower level components and
parts; and service maintenance and training are significant factors.

2.2.3.2 Type C2 - Critical Item Product Specifications

Type C2 specifications are applicable to engineering or lTogistic critical
items and may be prepared as function or fabrication specifications.

2.2.3.2.1 Type C2a - Critical Item Product Function Specification

Type C2a specification is applicable to a critical item where the item
performance characteristics are of greater concern that part interchange-
ability or control over the details of design, and a "form, fit and function"
description is adequate.

2.2.3.2.2 Type C2b - Critical Item Product Fabrication Specification

A Type C2b specification is applicable to a critical item when a detailed
design disclosure needs to be made available or where it is considered that
adequate performance can be achieved by adherence to a set of detail drawings
and required processes.
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2.2.3.3 Type C5 - Computer Program Product Specification

A Type C5 specification is applicable to the production of computer
programs and specifies their implementing media, i.e., punch tape, magnetic
tape, disc, drum, etc. It does not cover the detailed requirements for
material or manufacture of the implementing medium. When two-part speci-
fications are used, Type B5 shall form Part I and Type C5 shall form Part
II. Specifications of this type shall provide a translation of the performance
requirements into programming terminology and quality assurance procedures
necessary to assure production of a satisfactory program.
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3.0 WHAT IS A REQUIREMENT?

The totality of interactions between any real deployed system and the
rest of the universe is unknown, in large part unmeasurable, and, thus,
unknowable. What we conceive as the "system" is, in all cases, an abstraction
from reality that retains a limited set of measurable parameters meaningful in
fulfilling the system objectives.

Within the range of these system parameters, and others with measurable
effects on the system or its environment, there are "desirable" and "undesir-
able" values. The purpose of stating requirements is to define the boundary
between desirable and undesirable, and especially that between acceptable and
unacceptable. A requirement is simply a statement of something needed to
ensure that the system meets an operational objective at the proper time.

This does not mean that real operational needs will always be within
current technological capabilities at acceptable cost. Practicality demands
that only those needs that are technically and economically feasible be
addressed at a given time. Thus, a requirements engineering discipline must

provide mechanisms to avoid infeasible combinations of requirements early,
before ill-fated developments are undertaken.

Beyond the concept of a requirement as "something needed", there are
different types of requirements, different notions of what separates require-
ments from design, and certain properties of good requirements that make things
gasier for the development team. The following sections explore some of these
issues.

3.1 A HIERARCHY OF SOFTWARE REQUIREMENTS

Figure 3-1 decomposes the totality of requirements affecting software into
a hierarchy of categories of requirement types. Each of the three major cate-
gories is discussed in the following paragraphs. :

3.1.1 Processing Requirements

Processing requirements are those that define the active role of the
software in the weapon system and those features of the software that affect
the proper operation of other subsystems. Processing requirements can be
further decomposed into three categories:

e Functional Requirements -- define the conditions for initiation and
termination of software elements and define "what the software is to
do" during its period of operation.

o Performance Requirements -- define "how well" the software is to
perform its functions, principally in terms of computational
accuracy and response times to given stimuli.

o Interface Requirements -- define the agreed-upon assumptions that the
developers of one subsystem can make about the operation of other sub-
systems, and the physical or information links between subsystems.
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At early stages in the development of a system it is preferable to state
the requirements in a computer-independent form (i.e., not presuming a partic-
ular processor or operating system). This provides a baseline to accommodate
later changes in host processors and encourages attention to portable software.
As system design proceeds, specific machine-dependent requirements may be levied,
but they should be identified as such for traceability purposes.

In this report, we are primarily concerned with the problems of processing
requirements. These are concerned predominantly with technical considerations.
The non-processing requirements and project requirements are driven primarily
by management considerations.

3.1.2 Non-Processing Requirements

Non-processing requirements are those that deal with the software as a
manufactured component rather than an action-producing entity. Inciuded in
this category are requirements on the form and content of supporting documen-
tation, constraints on programming languages, structural design restrictions
(e.g., structured programming), requirements on the physical medium for soft-
ware delivery (e.g., punched cards, tapes), and restrictions on routine length.

The non-processing requirements deal with things that can usually be
verified by inspection of physical items, including program listings and
support documentation. They generally affect the methods of production only
when the consequences of those methods are visible directly in the deliverable
software, or its representation. Most non-processing requirements evolve from
practices that are proven or believed to produce higher quality software.

3.1.3 Requirements on the Project

Requirements on the project are those that constrain cost and schedule,
and promote management visibility and orderly progress. Examples are require-
ments for design reviews, progress reporting, implementation plans, quality
assurance plans, and configuration management plans. These developmental
requirements affect the software indirectly by promoting an orderly and manage-
able development environment.

Generally, requirements on the project are established through contractual
provisions independent of the specifications on the product. Although this
study is not concerned with generating these types of requirements, it should
be pointed out that a disciplined requirements engineering methodology for
product requirements makes it easier to comply with project requirements and
can provide auxiliary information to demonstrate compliance.

3.2 REQUIREMENTS ISSUES

In this section, we will discuss the relationship between requirements and
design and explore some other characterizations of requirement types.
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3.2.1 Requirements and Design Freedom

At any Tevel of system development, the requirements at that level should
state the needs of the system without inappropriate assumptions or constraints
on the solution. In this way, the designer is left with the maximum latitude
te find an effective solution.

Design freedom is not an exercise in technical democracy; it must be
Justified from the overall systems development point-of-view. It cannot be
assumed to be obviously good just because it sounds good (i.e., who can be
against freedom?). Its real justification must stem from the concept that
some design decisions are more appropriately made at a lower level upon con-
sideration of:

Information available

Technical skills required to properly make the decisions
Cost associated with delaying decisions

Cost associated with making wrong decisions

Interdependence of decisions with other decisions at the same level

Lead time, resources, schedule impact of implementing the decisions.

In particular, a decision made as soon as possible has many benefits if
it is made correctly. Furthermore, in many cases there are many workable
("correct") approaches and the quest for an optimum is not cost-effective.
Therefore, feasibility must be considered and design decisions made at all
levels, else the process may proceed down costly, impractical paths. The
requirements development process should, therefore, provide data to support a
growing confidence that the system is feasible, and consider potential feasi-
bility problems when making design decisions.

For instance, the following are considered to be examples of process
design decisions:

e Algorithm approach (e.g., decoupled vs. fully coupled Kalman filter
for tracking)

o Software packaging (e.g., data base organization, algorithm
boundaries)

o Computer scheduling approach (e.g., specific interrupt priority
scheme).

The following are not process design decisions, and are to be specified
in the software requirements:

o Paths of processing steps to be applied to DP stimulus data
o Data to be saved and output (functional description)
® Accuracies and time responses.
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Certain requirements on lower levels of development will, of course,
automatically follow from design decisions at a higher level. However, con-
straints that are not implied by these decisions are to be avoided. For
instance, if the operation of the weapon system demands that certain informa-
tion be available within a given response time, it is appropriate for the
system engineer to specify the information items and the response time. It is
not appropriate for him to specify the structure of the data base. As long as
the information is available at the right time, he can be indifferent to the
organization of the data base.

3.2.2 Requirements by Choice and Inescapable Requirements

"Requirements by choice" are, in effect, design decisions already made.
Inescapable requirements are those that automatically follow from design
decisions or from uncontrollable threat and environment characteristics.

A1l system developments evolve from a single "requirement by choice" --
that choice being to build a system. Immediately, a large set of inescapable
requirements are imposed by that choice. For instance, it is known that an
opponent has just developed, and intends to deploy, a tactical fighter-bomber,
X, with maximum attack speed, V knots, and weaponry including air-to-ground
missiles with 50 NM range. Aircraft X can be used in attacks against a class
of point targets, Y, (and presumably can attack from any azimuth). The choice
here is whether or not to defend Y against X. If the answer is yes, the first
requirement on the system is "defend Y against X".

From this "requirement by choice", a set of inescapable requirements
immediately follows, defined by the properties of X. One of these is that no
X can be allowed to penetrate within 50 NM from a defended target (the range
of X's weaponry). A second requirement is, given a defense system reaction
time, tp, between first detection and intercept, the range of the attacker from

the target, RD’ at which detection is assumed must obey the relationship

Rn > Vt, + 50 (in nautical miles).

D R

We still have freedom to vary t_ and RD’ but the relationship that must be

R
maintained between them is an inescapable requirement.

The same interaction between design choices and requirements holds at each
Tevel of system development. Let the requirements for a Level N system compo-
nent be defined from functional analysis and design decisions at Level (N-1)
as shown in Figure 3-2. The designers at Level N receive these requirements
and evaluate them. Through decomposition of the functional and performance
requirements on the component, alternative designs are proposed to satisfy the
requirements. Each alternative design is described in terms of subcomponents
that perform subfunctions of the functions allocated to the component. After
evaluation of the alternatives, a "best" design is selected for development.
Inherent in this design are several design decisions, and a definition of sub-
components. For each subcomponent, a set of requirements dictated by the
design at Level N is prepared. These requirements are input to the subcompo-
nent designers at Level (N+1).
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The legitimate requirements to be passed to the Level (N+1) designers are
the necessary "requirements by choice" at Level N, the inescapable requirements
that follow, and the inescapable requirements from higher levels. If many
alternative design choices are possible at Level (N+1) and they are all satis-
factory in terms of the design at Level N, then the Level (N+1) designer
should make the choice, not the Level N designer, unless there are explicit,
defensible reasons for doing otherwise.

3.2.3 Problem-Oriented Versus Solution-Oriented Requirements

A requirement is problem-oriented (i.e., "top-down") if it states a need
in terms of a higher level context or mission, and levies that requirement
upon the entire unit that is tasked with satisfying that requirement. If we
are identifying requirements for a data processing subsystem (DPSS), the
requirement should be stated as, "The DPSS shall ...", and not, "Routine X of
Program Y shall ...".

A requirement is solution-oriented (i.e., "bottom-up") if the need is
stated indirectly, in terms of specific components of the unit that is tasked
with the requirement, or in terms of how the need is to be fulfilled. The
abstract statement of the linear filtering problem with all attendant assump-
tions explicitly stated is a problem-oriented requirement for a "tracking
filter". The description of a seven state-variable Kalman filter that "shall
be implemented" is a solution-oriented requirement for a tracking filter.

The danger of solution-oriented requirements is that they obscure the real
problem at a given level. The presumed solution may not be the best or most
practical one, and in some-cases may be completely inappropriate. At best, the
solution-oriented requirement complicates the traceability of the solution to
the real problem, and at worst delays the detection of erroneous assumptions.
It may also complicate the satisfaction of other requirements where a strong
relationship between the requirements is not obvious.

3.2.4 Soft and Firm Boundary Requirements

The designation of the hardness of constraints, restrictions, and boun-
daries of performance are of two classes:

(i) Statistical or probabilitic (soft), and
(ii) Absolute or deterministic (firm).
Example:
3.2 The estimate of range shall not differ from the actual value
(compuged from precision trajectory generation as discussed
in ...) by:

Type (i) - A normally distributed distance error with zero
mean and standard deviation of 1500 feet.

Type (ii) - 1000 feet in absolute value.
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Statistical or probabilistic requirements, when well-defined, are funda-
mentally complex. They are usually couched in terms of stochastic processes
with associated probability distributions seldom defined. However, the
performance boundaries erected by these requirements provide an excellent
environment for design freedom. Due to the boundary elasticity, so-called
off-nominal cases are easily covered. This type of requirement is easily
levied when ideas and details are fuzzy. Even when not well-defined, those of
type (i) still communicate important gross information.

Type (ii) requirements are fundamentally simple because they are in terms
of elementary inequalities. They are easily stated with high precision.
Mathematical analysis and proofs of type (ii) propositions are more easily
accomplished. It is clear that improper allocation of these requirements can
yield overly-restrictive design constraints. Type (ii) requirements are not
usually levied when ideas are fuzzy, but only when details and underlying
structures are readily seen. -

Type (i) requirements are more numerous in early stages of system
development, whereas type (ii) requirements occur more frequently in the later
stages of development (see Figure 3-3). It should be noted that some types of
requirements (e.g., reliability, availability) will always be type (i) because
of the probabilistic definition of the parameters.

3.2.5 Llong and Short Time-Span Requirements

Two categories of requirements applying to periods of system action are:

(a) End item or whole process, and
(b) Intermediate item or segmented process.

These are illustrated in Figure 3-4.
Example: Two type (a) requirements are:

3.2.a The system shall obtain at least a 40 percent defended
target survivability.

3.2.b The Teakage due to the DP shall be no more than 10 percent
of the system leakage.

The type (b) requirements are:
3.2.c After three valid track returns have been received, the

estimate of object state shall be known sufficiently well
so that ....

3.2.d Radar power usage shall satisfy the short term restrictions ....

The type (a) requirements are more strategic in nature. They are levied
in the early stages of the development process because they deal more directly
with the system goals and objectives. As a result, these requirements affect
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many parts of the system and apply to the time interval elapsed by the
complete system engagement. Generally, the terminology in the type (a)
requirements is simple and easy to understand. The impact of the type (a)
requirements on design freedom is at two extremes. On one hand, if the state-
of-the-art is not pushed, design choices are quite numerous. On the other
hand, if type (a) requirements are improperly levied or the circumstances
dictate very difficult goals and objectives, then most alternative designs are
eliminated from consideration. It is clear that requirements of type (a)
require entire system dynamics for testing.

The type (b) requirements have tactical implications. These are more
often levied in the later stages of system development and apply to fewer parts
of the system. The type (b) requirements apply to specified segments of the
system engagement period. The terminology usually is not simple and is filled
with minute system details. The segmenting of the system process interval
usually admits many design decisions so that freedom is diminished by intro-
ducing (b) requirements. Testing of type (b) requirements is much more like
"Unit Testing" and requires only a limited interval of system dynamics.

3.2.6 Open System Versus Closed System Requirements

An example of an open system requirement is that proposed to be levied
upon the guidance software for a strategic missile:

The software shall ensure that the warhead target miss distance in
operational use upon enemy targets shall be no more than X (3¢)
from the aim point in a horizontal plane.

This simple statement transfers to the guidance software all responsibility
for: faulty inertial measurement units, control misalignments, propellant
faults, geodetic measurement errors, reentry vehicle aerodynamic variations,
and weather variations in the target area. If taken literally, a full-scale
war (carefully instrumented and monitored) would be necessary to test the
software for compliance with the requirement, and the test results would be
inconclusive. In any case, no contractor can rationally be responsible for
unspecified environmental conditions beyond his knowledge or control. The fact
that "open-ended" requirements are accepted implies that no one takes them
seriously or literally. In many cases this eventually results in turbulent
misunderstandings between customer and contractor.

A more reasonable and objectively testable statement of the requirement
would read something 1ike this:

Using identical stimuli and responses provided by Missile and
Environment Model A, the software shall ensure that the computed
target miss distance in a horizontal plane (at simulated burnout)
varies by no more than X (30) from that computed by Model B.

The combination of Model A and Model B in this case forms a closed reference
system. The combination of Model A and the software under test forms another
closed system. The differences in results between Model B and the subject
software-are amenable to analysis. A word of warning is appropriate here.
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If one wishes to levy such requirements, he must ensure that Model B is the

most accurate model of the desired behavior obtainable, and be ready to prove
it.

In real-time system development, the high fidelity Model B generally
cannot meet the real-time performance requirements. Otherwise, it probably
would have been the basis for the actual software. Although not perfect, the
concept of testing in the context of a closed system model (and stating
requirements in those terms) is better than stating open-ended requirements
that are not subject to test, hence, meaningless.

3.3 ATTRIBUTES OF A GOOD REQUIREMENTS SPECIFICATION

Analysis of the aforementioned problems and issues leads to a better
understanding of the necessary attributes of a good requirements specification.
Although the requirements development process must be capable of producing
specifications which address a long list of "abilities", eight attributes seem
to be dominant, and are summarized below:

1) Correctness -- A specification is said to be correct if, when all
of the requirements in the specification are satisfied, the pro-
duct will satisfy the originating specification.

2) Modularity -- Requirements should be modular for the same reasons
that the software should: a) Change is to be expected as_a way
of 1ife -- if the requirements are modular, then changes are
easier to analyze, invoke, and control. b) As the details get
filled in and the total volume of material and work grows, division
of labor becomes a must. Modularity allows a rational division
of labor. Useful modularity means that each "module" of require-
ments be internally complete and that it fits into the entire system
through very well-defined (controlled and traceable) interfaces
with other "modules".

3) Completeness -- "What you see is what you get" is the rule. If a
capability, feature, or performance parameter is not specified as
a requirement, there is absolutely no reason to believe that it
will appear in the final product. Engineers and programmers are
typically honest and professional, but they are subject to schedule
and budget constraints. Implementing things that are not specified
is poor management on their part. Therefore, it is imperative that
the requirements specification must contain everything expected of
the system.

4) Explicitness -- This attribute is a corollary to completeness and
testability. The requirements must be stated explicitly. The
specification should not require the reader to "read between the
lines", correlate two statements to obtain an implied requirement,
or to otherwise apply analysis to discover what is required.
Additionally, all terms used must be unambiguous. The law of
perversity guarantees that if two meanings can be applied to a
statement in a specification, the wrong one will be followed.
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5)

8)

Testability -- It is obvious that the system should be tested for
conformance to the specification to which it was built. However,
it is surprisingly simple to write requirements which look very
good only to discover later that there is absolutely no way to
test the end product for compliance. Every requirement specified
must be examined for testability. If it is found to be untestable
or unverifiable, it should be changed.

Traceability -- In a large system where several levels of require-
ments and design specifications exist, modularity enhances trace-
ability. Both upward and downward traceability must exist. Downward
traceability allows one to verify that every requirement in a
specification has been considered in lower level documents and allows
identification of where a change in requirements affects design.

It allows verification of performance against the parent requirements
and allows an impact analysis to be made in the event that a detailed
performance requirement cannot be met. If the requirements speci-
fication is intended to serve more than one user, special constraints
are imposed in presenting the information content. If lateral
traceability is imposed on the specification, and a change occurs

in one part of the specification, its impact can be traced throughout
the specification to maintain consistency of requirements.

Feasibility -- A specification is said to be feasible if there is

at least one design for the product which will meet the specification.
We distinguish between analytical feasibility (given the input data,
there exists a sequence of algorithms which will achieve the speci-
fied performance), and real-time feasibility (there exists algorithms,
a data processor, and a software design which will satisfy both the
analytic and timing requirements). Obviously, real-time feasibility
cannot be insured without performing a real-time design for at least
one data processor.

Design Freedom -- The software designer must be told what degrees

of Treedom are available to meet the constraints. This includes:

e Design Independence -- A requirements specification should state
"what" is to be done, when, and how well, but not "how" it is
to be accomplished for real-time software. A good requirements
specification should allow a maximum of freedom in the subsequent
design and implementation phases. This does not imply that
design decisions are not made in the development of the require-
ments -- they are. But, no design decision should be arbitrarily
made which unnecessarily restricts the design freedom of the next
phase of the development cycle. This means that the techniques,
formats, and means of presenting the requirements must not
inadvertently introduce unintentional design choices.

e Sufficiency -- A requirements specification must not only state
everything which is required of the system, but must also supply
information needed by the designer to do his job. Information
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known to the requirements engineer should not be left for the
designer to reinvent or rediscover. Information which would be
useful to the designer, and does not logically fit into the
specification itself, can be included in a for-information-only
appendix or in separate documents.
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4.0 FRONT-END PROBLEMS

Several recent studies have examined the problems of the requirements
generation process. In nearly every software project which fails to meet
performance and cost goals, requirements inadequacies play a major and expen-
sive role in project failure. In too many projects, requirements have been
late, incomplete, inconsistent, ambiguous, overconstraining, or incorrect.
Analysis of problem reports from various projects indicates that incorrectness
is the dominant requirements problem. A consistent one-third of such reports
deals with incorrect or infeasible requirements. Incompleteness is the second
most serious problem, resulting in 21 to 29 percent of the problems reported.
Ambiguity causes 25 to 30 percent of early problem reports, but as a project
matures the percentage decreases to less than 10 percent. Inconsistency,
however, causes a stable 9 to 10 percent of reports at all stages of a
project [2].

It would be convenient, but superficial, to say that these errors origi-
nated with the persons who actually wrote the software requirements. While
many errors do emerge from this source, there are many earlier errors in
system analysis and system engineering not found until late in a project.
These errors are critical, sometimes resulting in cancellation of projects.

The fact that requirements errors occur is merely symptomatic of under-
lying factors and issues encountered in modern weapons system development. We
believe that the most significant factors are:

e Complexity

e Communication
e Validation

o Traceability
)

Change response.
4.1 COMPLEXITY

Modern military systems are complex technology products involving many
scientific disciplines and specialized engineering expertise. This will
always be so because military systems operate in an environment where the
enemy is constantly trying to complicate the problem and the mission of the
system.

The inherent complexity of any system arises from several sources:

Total number of components
Intricacy of interconnection
Number of different types of components

Strongly coupled interactions between components
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o Variety of system responses

o Number of operational mission objectives.
The complexity of a given type of system tends to increase faster than the
capacity of the system, indicating a general "diseconomy of scale" with respect
to the number of system components. For instance, in a telephone switching

network connecting N parties to N trunks without blocking, the number of
switches increases, at best, proportionally to N In N [3].

The inherent complexity of the system is a primary factor of the system
operational cost and its components, such as training and maintenance. It is
also reflected in increased development complexity. The development complexity
of a system. is indicated by several factors:

Number of contractors

Total number of people on the project
Number of product versions

Number of requirements

Number of interfaces with other systems
Number of alternative solutions

Number of distinct design decisions
Degree of abstraction of the product

Number of distinct technical disciplines.

To some extent the inherent complexity of the delivered system may be
reduced at the expense of increased development complexity. This can be done
by increased design effort to find a better solution and rigorous planning and
control of the design process. In military systems, the increased development
complexity is often needed to predict the performance of elements that cannot
be tested under operational loads in the true environment.

Approaches to reducing both the inherent and development complexity of
large systems are well advanced in the area of hardware engineering. Less
progress has been made in the area of software engineering because the product
is an abstract entity, not subject to physical measurement and inspection.

Several means for reducing complexity have been used in system develop-
ment. These include:
Abstraction
Decomposition/Allocation
Refinement/Partitioning
Analogy/Simulation
Hierarchical Organization

Specialization.
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The first three concepts are means for reducing multi-dimensional prob-
lems (and multi-dimensional solutions) to simpler, more easily comprehended
parts. While these methods describe wholes in terms of parts and relation-
ships between parts, they are static representations that give little insight
into the dynamic interactions of the system. By use of analogy and simulation,
we make decisions about the dynamic behavior of a system by evaluating the
dynamic behavior of system models.

Hierarchical organization is widely used, both to define management res-
ponsibility and to conceptually structure a system. This is because the human
brain is able to perceive and manipulate only about five to nine distinct
things at a given moment. Hierarchical structure is a device that allows the
human brain to span a larger set of distinct things in a systemmatic manner.
Similarly, specialization is a means to allow groups of human beings to per-
form more tasks or consider more distinct ideas than otherwise possible.

The complexity of a system has an immediate impact on the problems of
requirements definition, analysis, and maintenance. We can expect that, the
more complex the system, the greater the number of requirements. Further,
because relationships exist between requirements, the complexity of require-
ments analysis and subsequent system design grows faster than the number of
requirements.

Let n be the number of distinct requirements and let p be the proba-
bility that any two requirements are inconsistent or otherwise conflict with
each other. The expected number of inconsistencies is given by

The average number of inconsistencies per requirement is E/n. We can tabu-
late E and E/n as a function of p as follows:

n E E/n
10 45p 4.5p
100 4950p 49.5p
1000 499500p 499.5p
10000 49995000p 4999 .5p

This example is conservative because conflicts between sets of individually
consistent requirements are not considered, and because more requirements
implies more people generating requirements, which increases the probability
of inconsistency. However, the example indicates that the amount of work
necessary to remove requirements inconsistencies in large systems can be
substantial, even if the probability of inconsistency is very small.
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4.2 COMMUNICATION

The specialized division of knowledge and labor forced by system com-
plexity leads to the communication problem. The complete documentation of all
requirements for a system and its components requires a multi-level hierarchy
of specifications with many separate specifications and interface documents
at each level. Many people with different backgrounds and specialties contri-
bute to this effort. Hence, identical words in different parts of a specifi-
cation may have different intended meanings, and may be interpreted in yet
another way by the reader. The effects of interpretation and transformation,
propagated through a specification hierarchy, lead to erroneous mutation of
requirements which is later detected as ambiguity, inconsistency, and
incorrectness.

The communication problem can be separated into three subdivisions:

e Horizontal communication
e Vertical communication
e Self-communication.

Horizontal communication is between parties operating at the same level
of system development, either within a technical discipline or across technical
disciplines. Communications between process designers, or between data pro-
cessing subsystem engineers and radar subsystem engineers are examples.

Vertical communication is between parties operating at different levels
of system development. Communications between system engineers and process
designers or between software designers and programmers are examples. The
party at the higher level generally has a broader but more shallow view of
the system than the party at the lower level. The system engineer will know
what effect a particular tracking algorithm has on the outcome of an engage-
ment, but may be unaware of and unconcerned about how that algorithm is imple-
mented on a particular computer. The programmer, on the other hand, will know
the most efficient coding of the algorithm in assembly language for a particu-
lar machine, but may have no idea of the role of the algorithm on the total
system.

Self-communication is between a party and himself at a later time. This
is the process of memory and recall, perhaps augmented by external recording
of information.

In each of these types of communication, both parties must share a common
definition of terms, relationships, and concepts. This is very difficult in
advanced technology work where implied relationships are multi-dimensional and
abstract concepts are poorly understood, and is made even more difficult by the
need for specialization which emphasizes the difference in knowledge and view-
point between individuals.

40



A second difficulty in communication is the limitations inherent in the
communication medium. Natural language, in addition to its semantic ambi-
guity, is presented in a one-dimensional sequence (i.e., relationships between
n parts are described one at a time). Diagrams and pictures capture two-
dimensional relationships and three-dimensional relationships by projection.
Three-dimensional models and holographic projections capture three-dimensional
relationships (and four-dimensional projections), but are generally impracti-
cal to reproduce and distribute in large quantity. Fifth-dimensional and
higher relationships can be represented only abstractly in tables, mathematical
equations, and lately, in computer data bases.

Effective communication of data processing requirements is particularly
difficult because we are dealing with abstract entities: information and
actions on information. Our abilities to visualize the dynamic behavior of
software are severely limited. The limited success in specifying software
requirements to date is probably due more to the assumptions associated with
single sequential data processors (one program in execution at any instant)
than to advances in requirements technology. As multiprocessors and distri-
buted processing are exploited, we are becoming aware that we have great
difficulty in representing and describing concurrent behavior, and that even
basic dynamic concepts such as "process" are ill-defined and poorly understood.

Within small project groups, interpersonal communication can be reasonably
effective without impairing productivity. As a project grows in size, commu-
nication becomes indirect, the reliability of information exchange decreases,
and a significant fraction of the project staff is involved solely with docu-
mentation and liaison functions. This has a direct impact on the cost of a
project and the feasible minimum-time schedule.

Project productivity is the amount of useful work produced by a project,
divided by the elapsed time required to produce it (task output/time). Indi-
vidual productivity is the average rate of output per individual (project
productivity/manpower). The general trends of project productivity and
Eroject c?st as functions of the manpower applied to a project are shown in

igure 4-1.

As manpower is added to a project, productivity improves rapidly at first.
As the group becomes larger, pressure to produce grows and a synergism of
effort develops. At some point, however, the project becomes so large that
coordination of effort starts to become a problem. A peak in individual pro-
ductivity is reached. This corresponds to the minimum of project cost.

If more manpower is added, an increasing fraction of it will be devoted
to coordinating the activities of others. Individual productivity declines,
slowly at first. The additional work output of the added manpower stays ahead
of the loss in individual productivity. Finally, however, we reach a point
where individual productivity losses start to exceed the work produced by
additional manpower. This is at the peak project productivity, which corres-
ponds to the minimum time in which the project can be done.
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After this point, addition of manpower will lead to a breakdown of coor-
dination and saturation of supervision. Individual productivity drops off
rapidly and the project actually takes longer to complete. Since more men are
working for a Tonger period, cost rises rapidly. Fewer men could have done
the project in the same time, at less cost.

Two approaches can be pursued to reduce the communication problem and
increase project productivity: 1) reduce the need for communication, and 2)
improve the effectiveness of communication.

In the software development field the so-called “Parnas Principle" [4,5]
is a design rule that exemplifies the first approach. Parnas defines "modules"
as things that have to be designed and developed together -- in effect, a
natural work assignment. Parnas identifies the connections between modules
as the assumptions modules make about each other. The criterion for modularity
proposed by Parnas is that each module should implement a design decision and
isolate and hide that decision from other modules (i.e., every module hides
a secret). In this way, the inter-module interfaces must remain constant even
if the internal design decisions change. Under this principle, different work
groups need only agree on interface assumptions and do not need to exchange
information on details of internal design decisions. Effective use of the
principle demands that the “"problem structure" (i.e., the requirements) be
defined in a structured, analyzable form, and that work units be assigned
according to that structure.

The second approach to reducing communications problems is typified by
requirements statement languages (e.g., RSL, URL) and program design Tanguages
(e.g., PDL). Each of these languages provides an English-like, yet structurally
constrained, form of expression that is computer-analyzable to some degree.

The intent of these languages is to reduce ambiguity, ensure consistency, and
minimize the chances of incompleteness.

4.3 VALIDATION

Many requirements problems would be detected before they caused signifi-
cant harm if requirements were effectively validated at each stage of system
development. However, requirements expressed in free-form English text are
difficult to validate with any objective degree of confidence. Two approaches
have been widely tried in the past: independent review and simulation. Inde-
pendent review has been partially effective because the reviewers are con-
sciously questioning and critical. But, there is no objective evidence that
a review has been thorough and many discrepancies slip by unnoticed because
of incorrect assumptions and communication problems.

Simulation is useful in uncovering faulty assumptions about dynamic.
phenomena resulting from static visualizations, but is plagued with all of
the difficulties of requirements interpretation in main-line software develop-
ment. There is no assurance that the simulation faithfully models the charac-
teristics intended in the specification because it is not even subjected to
the degree of testing and scrutiny demanded for deliverable software.
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The question to be asked in requirements validation is "do the stated
requirements conform to the problem?". The question to be asked in product
validation is "does the software product conform to the requirements?". Ob-
viously, objective product validation is not possible if the stated require-
ments are not testable. Yet, requirements are often stated without thought
to their specific testability. Much later it is realized that a particular
requirement is not testable, hence, meaningless, or has several possible
meanings, each subject to a different test.

In developing the Software Requirements Engineering Methodology (SREM),
TRW found a means to guarantee that stated performance requirements are test-
able. The techniques also provide the means to remove ambiguity about the intent
of the test through identification of precise "validation points" on stimulus-
response paths through the software.

In current software development practice, about 10 to 15 percent of the
budget is allocated to requirements definition, while 40 to 50 percent of the
budget is spent on testing. Anyone with extensive experience in software
integration and test is familiar with the inordinate amount of time and
effort needed to interpret requirements and the relationships between them
in order to generate efficient and effective test plans. It is our hypothesis
that a significant percentage of testing costs are the result of inadequate
requirements definition practices, and that the investment of time and money
in the requirements definition effort will be more than recovered by avoidance
of the "hidden costs" of bad requirements in the testing phase. Unfortunately,
proof of this hypothesis on a conclusive and scientific basis would require
costly and impractical experiments on large-scale projects, with provision for
independent and parallel "control experiments".

4.4 TRACEABILITY

~ In any large system, the original requirements can be expected to change,
after operational deployment and, in today's environment, during system de-
velopment. These changes result from changing missions, changing threats and
technical difficulties, either at a lower level or in a different subsystem.
To completely incorporate the effects of changes at any level, detailed trace-
ability between all related elements of the system must be ensured. In the
past, the effects of change were laboriously.traced from document to -document,
manually and subjectively. The process was expensive and inefficient. Effects
of changes were accounted for in one passage of a specification, but related
jtems in other sections were often overlooked. This resulted in inconsisten-
cies to be detected at a later date. Recent data management practices have
improved the situation from one level to the next. But, comprehensive trace-
ability, backward and forward, from initial problem assumptions to preliminary
design, has not yet become common practice, even though it is technically
feasible.

One of the advantages of using automated data base systems to retain and
maintain requirements is that traceability relationships can be established as
an integral and disciplined part of the requirements generation process, rather
than as an afterthought. Once established, the structured relationships
between requirements can be displayed at will (or suppressed if answers to
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different queries are being sought). Unlike manually generated documents, the
automated data base implicitly keeps track of all references to a given element
at a given development level. Between development levels (e.g., system engi-
neering to DP engineering, or system engineering to process design) human inter-
vention to establish traceability relationships is still required. This is
because the elements and representations are different. For instance, the
relationship that (Task X) implements (Requirement Y: The radar shall be com-
manded to track a given object at no more than 10 HZ) is a matter for humans

to decide. To those who object that this mapping process is unnecessary, we
reply that it must be done at some point to ensure design responsiveness,
management visibility, adequate testing, and adaptability to change. Enforced
traceability from the beginning reduces the risk of unresponsiveness and inflex-
ibility at a later date when time may be critical.

4.5 CHANGE RESPONSE

Manual change control procedures result in significant delay between the
initiation of a change proposal and the propagation of necessary changes to
other affected parts of the system. Designers must either continue work on
elements made obsolete by change, or must halt work until the change is
approved, resulting in non-productive work or lost schedule time. Often, the
customer wants to know the detailed impact of specific changes before he
decides to formally request them. With manual procedures, impact assessment
is costly and slow. Automated requirements systems, such as SREM, with
designed-in traceability features, have significantly reduced change delay
times and have made impact assessment into a fast, practical procedure. Ex-
tension of these techniques to the entire front-end development process will
improve productivity and reduce development cost.
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5.0 DEFINITION OF THE FRONT-END OF DP DEVELOPMENT

The "front-end" of a data processing development encompasses all of the
analysis and engineering activity from the time that the need for a system is
perceived until a preliminary design for the system is specified. Six broad
generic steps are necessary to systematically proceed through the preliminary
design stage. They are illustrated in Figure 5-1, and briefly outlined below.

System Analysis -- When first perceived, most operational problems
are ill-defined and not quantified. The job of the systems analyst
is to precisely formulate and structure the problem, and to analyze
alternative solution concepts so that decision makers can choose
necessary actions. The analyses at this level are intended to iden-
tify the threat, define the system mission, estimate the performance
and cost of alternative system constructs, examine the sensitivity
and risk inherent in the alternatives, and compare the alternatives
on a common metric.

System Engineering -- One or more of the most promising alternatives

are selected for intensive system engineering study. Threat models

are quantified and the system concept is refined to include functional
subsystem models, subsystem interactions and system operating logic.
Major tradeoff studies are conducted, cost and performance are quan-
tified, and a preferred system is selected. System performance is
allocated among the subsystems and subsystem interfaces are established.

Data Processing Subsystem (DPSS) Engineering -- The early DP subsystem

work is in concert with and supports the system engineering tradeoff
studies. When subsystems have been established for the preferred con-
struct, the DPSS definition is expanded by subsystem engineers. The
functional capabilities of the DPSS are defined and traced to system
level requirements. The performance allocated to the subsystem is
decomposed and allocated to the subsystem functions. These elaborated
requirements are expressed in terms of system level parameters, such

as "threat leakage". The subsystem interfaces are refined and the
system operating rules are interpreted from the standpoint of the DPSS
in relation to other subsystems. A major portion of the DPSS engineer-
ing work is concerned with hardware/software, tradeoffs, identifica-
tion of suitable DP architectures, evaluation of candidate processors,
and allocation of requirements to hardware, software, and firmware.

The DPSS engineer is concerned with DP availability, reliability,
maintainability, and cost, in addition to performance. Although he
may defer hardware selection until after process design in some cases,
he is responsible for the selection. In current practice, the hardware
is usually selected before detailed software requirements engineering
and process activities are done.

Software Requirements Engineering -- The software requirements engi-

neering step transforms the DPSS functional definition and performance
requirements, based on system parameters, into a more detailed qef1n1-
tion of requirements, expressed in data processing terms. SRE is data
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oriented. The contents of messages passing through input and output
interfaces are defined to the data item level. Data hierarchies

about entities which must be maintained by the DPSS are defined. The
logical structure of the problem and system operating rules are
analyzed to determine how the data are to be processed within the
system. The end of this phase is reached when a logical structure
defining the problem in DP terms has been validated, so that only DP
software and hardware knowledge is required for the design activity.
This structure includes definition of all data paths through the DPSS,
precise location of measurement points for response time requirements,
and models of tests which verify that the performance requirements

are testable.

Process Design -- The primary function of process design is to derive
and develop the properties of a software/firmware/hardware combination
which simultaneously satisfies all functional and performance require-
ments. The process designer must decompose the DPSS into a set of
software tasks which are the lowest unit scheduled by the operating
system. He is responsible for defining the application system, opera-
ting system, and hardware, and for ensuring that they work as a uni-
fied system. His responsibilities also encompass algorithm develop-
ment and evaluation, global data base definition and maintenance, and
timing/sizing budgets to the task level. Ultimately, he is responsible
for integrating tasks and construction of the real-time process.

If the project demands selection of commercially available computers,
the process designer may be responsible for benchmark testing and
evaluation of alternative condidates. The advent of problem-oriented
distributed data processing systems expands the process designer's job.
He will be called upon to devise system and component architectures
for specialized problems, and to define interconnection networks and
protocols. Distributed systems will require additional levels of
software specifications for multiple computers.

Preliminary Design (Software Design, Hardware Design, and Test
Engineering) -- The expanded design activities leading to the Prelimi-
nary Design Review (PDR) vary in scope and complexity, dependent on
the problem and process design. The purpose of a PDR is to verify
that the design developed to that point is feasible, and is consistent
with the stated requirements. Documents available for review at PDR
include the Preliminary Software Design Specification, Preliminary
Hardware Design Specification, Acceptance Test Plan, and Preliminary
User's Manual. The preliminary design effort expands the process
design to a greater level of detail, primarily, definition of task
structure and timing/sizing budgets for routines. The integrity,
testability and feasibility of the process design is confirmed by
analysis. Algorithm selection is validated, and design approaches

for critical issues are defined in detail.
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Figure 5-1 implies a strict sequential ordering of the phases (i.e.,
completion of one phase before commencing the next). This occurs rarely in
practice, and considerable overlap in time is the usual case. Another useful
view of the process, the organizational hierarchy shown in Figure 5-2, clarifies
the relationships between the phases.

The sponsor has responsibility for the entire system development, initiates
the system analysis work to justify engineering development, and uses those
results to decide whether or not to proceed with system engineering. The
system engineering organization is responsible for the definition, coordination,
and integration of the various subsystem engineering efforts. The DP subsystem
engineering organization is responsible for the definition, coordination, and
integration of the software requirements engineering, process design, and
hardware engineering activities. The process designer is responsible for the
overall software system architecture, and defines, coordinates, and integrates
the various software preliminary design efforts. The only strict sequence is
between system analysis and system engineering. The remaining phases are
initiated earlier than their successors, but because of their coordination and
control functions, proceed interactively with the phases at the next lower level.

In our definition of the phases we have strived to isolate the most sig-
nificant activities that characterize that phase. In truth, in any given
phase, many of the activities of other phases are pursued to some extent. We
are seeking here to identify the principal emphasis, and show the similarities
of problems between phases.

In very large projects the work of the various phases is performed by
separate organizations and may involve a community of government agencies,
civilian contractors, and subcontractors. For smaller projects, all of the
phases may be done within one organization and may be abbreviated or prolonged
according to the nature of the development (e.g., new system, upgrade, minor
modification). For instance, system analysis, system engineering, and sub-
system engineering are often Tumped together as system engineering. Process
design and preliminary design are often combined. We feel that it is important
to separate the phases as much as possible for this report because future
distributed systems will demand increased engineering specialization and,
possibly, additional phases in the development process.

The front-end development phases defined herein differ somewhat from
those typically described. Figure 5-3 correlates these phases with the usual
MIL-STD-490 specification cycle and DoD Life Cycle milestones as found in
most projects.

5.1 SYSTEM ANALYSIS PHASE

5.1.1 Scope

A simple, but elegant, definition of "system analysis" has been provided
by J. D. Couger [6]:

"System analysis consists of collecting, organizing and evaluating
facts about a system and the environment in which it operates. The
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objective of system analysis is to examine all aspects of the
system -- equipment, personnel, operating conditions, and its
internal and external demands -- to establish a basis for de-
signing and implementing a better system."

In the context of the modern incremental and measured approach to weapon system
procurement, system analysis can be characterized as the initial investigations
to determine whether or not further expenditures toward solution of a perceived
problem will be productive and with predictable results. System analysis is

an on-going activity at various levels within the defense establishment. The
scope and perspective of analysis varies widely, from consideration of the
entire U.S. defense posture and major force mix strategies to detailed con-
sideration of alternatives for limited-mission tactical systems. In all cases,
however, major activities are:

Verification that the problem-as-given exists
Mission identification and definition
Threat and environment definition

Formulation and evaluation of alternative approaches
Identification of feasible and superior approaches

Assessment of sensitivities, uncertainties, and risks.

Evaluation activities must consider all aspects of the system (e.g., performance,
life-cycle cost, growth, reliability, schedule, resource needs).

While system analysis activities occur all through the development pro-
cess, we will characterize the "system analysis phase" for our purposes as
those activities which aid a decision-maker in choosing a course of action
relative to a weapon system problem, and in defining a mission package to
implement that course of action. Accordingly, the objective of the system
analysis phase is to define a mission package in sufficient detail so that a
decision maker 1) can be satisfied that the program is feasible and cost
effective, and 2) can compare the package against other programs contending
for budgeted funds. For small programs the system analysis phase may be
brief. On major programs it may be a multi-level effort involving both
government analysts and contractors, with an extensive concept definition
period prior to DSARC I.

5.1.2 Content

Rudwick [7] describes three related problems that are useful in charac-
terizing the initial steps of the system analysis phase. These are: the
"problem as given" (PAG), the "problem as understood" (PAU), and the "problem
to be solved" (PTBS).

The PAG is an initial statement of the perceived problem that initiates
the system analysis effort. Typically, it may consist of a vague.notion that
no current system is adequate to deal with a certain class of enemy threat,
or that the remaining operating cost of a deployed system is too high with
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respect to system worth or technological alternatives. The PAG generally is
not quantified, and often is incomplete and/or inconsistent. It tends to be
symptomatic rather than diagnostic.

The PAU is a structured and quantified elaboration of the PAG, developed
by the system analyst. It consists of those factors and relationships iden-
tified by the analyst as relevant to the original PAG. Moreover, it may be
expanded beyond the PAG to include a broader class of related problems and/or
solutions of which the PAG is a subset.

In the course of evaluation of the PAU, the decision-maker or the analyst
may decide that the problem is too broad with respect to proposed solutions,
that certain factors have insignificant impact, or that certain postulated
threat scenarios are unlikely. The agreed-upon PTBS is a subset of the PAU
which forms the basis for the system requirements. While the PAU is essentially
an implementation-independent statement of the problem, and a set of candidate
system alternatives, the PTBS is constrained by state-of-the-art technology
projections for the system development period, and by solution cost and worth
considerations.

The analyst develops the PAU from the PAG in a series of steps typified
in Figure 5-4. The first step is to formulate mission objectives and the
surrounding context from the information in the problem as given. This step
surfaces many key questions and undefined aspects of the problem, and may lead
to larger issues not previously considered.

The mission definition identifies a threat or classes of threats to be
addressed by the system. Before candidate systems can be defined, we must
characterize the observables and performance envelope of the threat; the
weapons, sensors, and penetration aids used by the threat, and an attack
sequence of events. In addition, the properties of the environment, as they
affect the threat observables and performance, must be defined. Much of the
information may be tentative or unknown. Many of the threat and environment
characteristics can be estimated from known physical relationships and simi-
larities to other threat systems. Another facet of the environment to be
identified is composed of other systems with which the proposed system may
or must interface.

The definition of effectiveness measures that capture the essence of the
problem is critical to both the further elaboration of the problem and the
identification and evaluation of candidate solutions. Generally, several
pertinent effectiveness measures could be defined for a system, each one em-
phasizing certain aspects of the problem at the expense of others. The chosen
measures should reflect the capability, availability, and dependability com-
ponents of system effectiveness, and should also consider the utilization of
system resources in the engagement environment.

When the foregoing information has been assembled and organized, the
analyst has a basis from which possible system alternatives can be considered.
The actual synthesis of alternatives is a highly individualistic and creative
process that probably cannot be mechanized. However, the ability of the
analyst to visualize alternatives can be substantially augmented by automatable
methods of organizing and structuring the relevant data for his consideration.

58



PROBLEM
AS GIVEN

FORMULATE

MISSION OBJECTIVES

AND CONTEXT

;

;

DETERMINE

THREAT OBSERVABLES
AND

ENVIRONMENT FACTORS

DETERMINE

THREAT OPERATING
CHARACTERISTICS
AND CAPABILITIES

DEFINE
MEASURES

RADC?79-020

l

DEVELOP

~ SYSTEM CONFIGURATION

MODELS

et -

P

DEVELQP
SYSTEM ENGAGEMENT
MODELS

;

:

DEVELOP
COMPONENT COST
MODELS

SYSTEM EFFECTIVENESS

DEVELOP

SYSTEM EFFECTIVENESS

MODELS

PROBLEM AS
UNDERSTOOD

Figure 5-4 Problem Analysis Steps

54



The first alternative to be explored in any problem is the "null alterna-
tive" (i.e., what happens if no action is taken). Evaluation of this alterna-
tive often reveals that the perceived problem does not exist, or is not as bad
as perceived. Sometimes it will be shown that no alternative solution is
significantly better than the current system or no system at all. In any
case, the null alternative is the yardstick for comparison of other alternatives.

For each suggested alternative two models are developed, usually in an
iterative manner. The system configuration model is a static description of
the system in terms of its components and the relationships between components.
This model essentially describes "what the system is" and how it is deployed.
The system engagement model is a dynamic description of how the system operates
and interacts with the threat. This model describes "what the system does".
While the system configuration model is described in terms of physical compo-
nents and interconnections, the system engagement model is described in terms
of distinct system functions and events.

Ideally, one would Tike to have a single system engagement model, applica-
ble to all alternative systems. This can be done, but only at a high level of
abstraction. As the system functions are progressively decomposed into sub-
functions, the definition of the sub-functions becomes more dependent upon the
characteristics of physical devices. Since the system analysis phase is
oriented toward high level assessment of technological feasibility within
given cost and schedule constraints, the analyst can often use a single engage-
ment model for several alternatives. If he cannot, then the performance of the
system must at least be described by effectiveness measures common to all models.

The system effectiveness model establishes the relationship between the
system description parameters and the effectiveness measures. Typically, it
is a procedure for collecting engagement simulation outputs and computing
values for the effectiveness measures. This model may also determine effec-
tiveness as a function of system resources employed.

The component cost models are parametric cost estimating relationships
based upon current technology and projections into the future. Typical parame-
ters for radars would be power, frequency, waveform types and number of units
produced. For data processors, typical parameters are instruction execution
rate (MIPS), word size, and memory capacity. Life-cycle cost estimates for
each system alternative are generated by applying the models to the set of
parameter values for each alternative.

The combination of mission definition, threat and environment definition
effectiveness measures, and the set of models described above comprise the
description of the problem as understood. Evaluation of PAU will isolate the
"best" alternative and provide the information needed to determine the problem
to be solved.

The process of evaluating each candidate system is represented in Figure
5-5. Generally, the process is one of iterative optimization because the
initial estimates of system parameters and operating rules are usually sub-
optimal. Representative threat and environment characteristics are combined
into engagement scenarios. Fixed and variable system parameters from the
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system configuration model are combined with the system engagement model to
form a simulation of the candidate system. The system simulation is exercised
against each engagement scenario in an engagement simulation. Monte Carlo
replications are generally desirable because weapon system engagements are
highly stochastic. The system effectiveness model is then applied to evaluate
the results of the engagement.

The measured effectiveness values are then compared against the system
objectives. If the system fails to meet the objectives, the variable system
elements and the engagement model are modified to improve the performance.
Because the system is ill-defined, this "tuning" is usually a trial-and-error
process, supported by trade-off analysis to the extent possible. The output
of this exploratory evaluation is a set of response surfaces defining the
system effectiveness over a range of system, threat, and environment parameters.

The above analysis is conducted based on nominal assumptions about the
mission, system threat, and environment. The next step is to question the
nominal assumptions and examine the system performance under different condi-
tions. This step is called sensitivity and risk analysis. The effects of
system cost and system resource constraints should be examined as part of
this analysis.

There are two general approaches for selecting the preferred candidate
system:

e Fixed Effectiveness Approach -- the system that meets the required
effectiveness level at the lowest cost is selected.

e Fixed Cost Approach -- the system that has the highest effectiveness
for a given cost is selected.

Occasionally, but rarely, one candidate system dominates the others (i.e., has
the highest effectiveness at all levels of cost). In this case the selection
is obvious, provided the candidate is acceptable on the basis of sensitivity,
risk, and development schedule. As a rule, however, none of the candidates
dominate and selection calls for expert judgement considering all factors of
effectiveness, cost, uncertainty, and schedule. An excellent discussion of
the selection problem can be found in Quade and Boucher [8].

Eventually, one preferred candidate system or a pair of closely ranked
contenders must be selected for further development, provided that at least
one of the candidates is acceptable. At the same time, the scope of the mission
may be narrowed and certain threat scenarios might be discarded as unlikely.

The problem to be solved (PTBS) is formally documented in a preliminary
system specification (Type A). The system is described in terms of its opera-
tional functions (i.e., system engagement model) and operating rules. The
specification should explicitly contain the following:

e Mission definition
e Background assumptions
¢ Threat definition (present and extrapolated)
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Physical environment definition

System interfaces with other systems

Operating modes and concepts

Performance requirements

Availability, reliability requirements
Survivability, graceful degradation requirements
Other constraints (size, weight, power)

Growth requirements

Logistics requirements

Human factors.

Schedule constraints are defined in the RFP. Cost constraints may be contained
in the RFP (design-to-cost systems), or may be withheld from prospective
bidders.

At this point, the system analysis effort has established the technologi-
cal, performance, cost and schedule credibility of the system. Decision makers
have evaluated the analyses, the uncertainties and the risks, and have found
them acceptable. The next step is to proceed with the system engineering
phase.

5.1.3 Problems

Quade and Boucher [8] contains a detailed discussion of the pitfalls and
limitations of system analysis. Fisher [9] summarizes the more common pitfalls
as follows:

e Failing to allocate and spend enough of the total time available for
a study deciding what the problem really is.

e Examining an unduly restricted range of alternatives.
e Trying to do too big a job.

e Determining objectives and criteria carelessly.

e Using improper costing concepts.

e Becoming more interested in the details of the model than in the
real world.

e Forcing a complex problem into an analytically tractable framework
by over-emphasizing ease of computation.

e Failing to take proper account of uncertainty.

e Treating the enemy threat too narrowly.
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These pitfalls are symptomatic of a single underlying problem -- complexity.

The system analyst is faced with starting from an i11-defined and, per-
haps, wrongly perceived problem, and developing a comprehensive analysis of
that problem with Timited time and resources to do the job. His apparent pro-
ductivity is low because he must spend a large amount of his time gathering
information and gaining an understanding of the relevant factors involved in
the problem. To gain this understanding he must do experimental modeling and
simulation. Much of this work will be discarded. To handle the breadth of
his task, the analyst must usually sacrifice depth. Yet the decision maker,
who uses the analysts' work, expects to see an analysis supported by quanti-
tative information and mathematical relationships, even if approximate.

If the analyst considers a large number of alternative system concepts,
he runs the risk of addressing each one superficially without time for adequate
sensitivity analysis. If he restricts himself to a limited set of alternatives,
he runs the risk of omitting an unrecognized superior candidate.

While the analyst can generally represent the performance of system com-
ponents (such as radars and weapons) by relatively simple mathematical equations,
he has great difficulty representing data processing needs in a meaningful way.
Consequently, data processing issues tend to be deferred until late in the
system engineering phase. At that time, however, significant and irreversible
decisions about system structure have been made. These often place such bur-
dens on the data processing system that the entire system concept becomes
infeasible or far more expensive than originally estimated.

In addition to the problems of complexity, the system analyst is faced
with communication and validation problems. The communication problems fall
into four categories:

e Organization and retention of data for the analyst's own use.

¢ Representation of concepts and information for review by operational
users of the system.

e Representation of analysis results for decision-maker consideration.
¢ Representation of system requirements in system specifications.

The efficiency and effectiveness of the analyst is largely determined by
his ability to organize, retain, and structure a large body of data relevant
to the mission, threat, environment, and potential system components. In the
past, much of the needed information has been widely scattered in reports,
textbooks, notes, and undocumented experience. Modern data base technology
offers a powerful means of organizing and retaining often used data, particu-
larly within agencies dedicated to specific-mission system areas. ‘

The analyst rarely has the military combat experience to view the system
from the eyes of the operational user. The operational user often lacks the
specialized technical expertise needed to evaluate system details. Hence, a
communication gap exists between the user and designer, in addition to the
fact that direct consultation between them is rare. Unless this gap can be
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