
UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

1. REPORT NUMBER

RADC-TR-79-I68
2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE Cand Sub(i(/eJ

SOFTWARE REQUIREMENTS ENGINEERING METHODOLOGY
(DEVELOPMENT)

5. TYPE OF REPORT 4 PERIOD COVERED

Final Technical Report
Aug 78 - Mar 79

6. PERFORMING ORG. REPORT NUMBER

N/A
7. AUTHORfsJ

M. W. Alford
J. T. Lawson

8. CONTRACT OR GRANT NUMBERfs;

F30602-78-C-0026

9. PERFORMING ORGANIZATION NAME AND ADDRESS

TRW Defense and Space Systems Group
7702 Governors Drive West
Huntsville AL 35805

10. PROGRAM ELEMENT, PROJECT. TASK
AREA a WORK UNIT NUMBERS

62702F
55811805

11. CONTROLLING OFFICE NAME AND ADDRESS

Rome Air Development Center (ISIE)
Griffiss AFB NY 13441

12. REPORT DATE

June 1979
13. NUMBER OF PAGES
204

14. MONITORING AGENCY NAME & ADDRESSflf d///efen(from Controlling Office.)

Same

15. SECURITY CLASS, (ot this report)

UNCLASSIFIED

15a. DECLASSIFI CATION/DOWN GRADING
SCHEDULE

N/A
16. DISTRIBUTION STATEMENT (ot this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (ot the abstract entered in Block 20, it dliierent from Report)

Same

18. SUPPLEMENTARY NOTES

RADC Project Engineer: Roger W. Weber (ISIE)

19. KEY WORDS (Continue on reverse side it necessary and identity by block number)

Software Requirements Methodology Requirements Traceability
Integrated Tools Requirements Decomposition
Data Processing System Engineering Requirements Allocation
Requirements Definition Embedded Computer System Software Process
Requirements Validation Design

20. ABSTRACT ('Continue on reverse side if necessary and identify by block number)

This report documents the results of a one-year study of the front-end
problems involved in the development of complex weapon systems and their
embedded real-time software. Means to alleviate those problems through an
integrated requirements engineering system supported by automated tools are
proposed. The body of this report is organized into three parts. Part I is
an Executive Summary which briefly outlines the purposes and accomplishments
of the study. Part II explores the nature of weapon systems, requirements.

DD , ^N
RM73 1473 UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGEfWTien Data Enlerad)

front-end problems, characteristic activities and problems of front-end
development phases, as well as candidate tools for addressing those problems.
Part III presents formal mathematical foundations for front-end requirements
engineering and design, and outlines a methodology that can be supported by
a fully Integrated set of tools. More than fifteen existing automated
systems of tools and techniques were evaluated for application to the
front-end problems. Of these, nine were selected for further consideration,
because of unique properties, or global concepts that could be applied across
an integrated system.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGEfHTion Da(a Entarad)

CO

W. KoscW

rrom Current /Iwarencsj

RADC-TR-79-168
Final Technical Report

June 1979 CO

o
< SOFTWARE REQUIREMENTS ENGINEERING
g METHODOLOGY (DEVELOPMENT)

TRW Defense and Space Systems Group

M. W. Alford
J. T. Lawson

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command
Griffiss Air Force Base, New York 13441

79 08 24 035

This report has been reviewed by the RADC Information Office (01)
and is releasable to the National Technical Information Service (NTIS).
At NTIS it will be reljeasable to the general public, including foreign
nations.

RADC-TR-79-168 has been reviewed and is approved for publication.

APPROVED:

ROGER W. WEBER
Project Engineer

APPROVED:

WENDALL C. BAUMAN
Colonel, USAF
Chief, Information Sciences Division

FOR THE COMMANDER: /^S

JOHN P. HUSS
Acting Chief, Plans Office

If your address has changed or if you wish to be removed from the RADC
mailing list, or if the addressee is no longer employed by your organiza-
tion, please notify RADC (ISIE), Griffiss AFB NY 13441. This will assist
us in maintaining a current mailing list.

Do not return this copy. Retain or destroy.

PREFACE

The body of this report is organized into three parts. Part I is an
Executive Summary which briefly outlines the purposes and accomplishments of
the study. Part II explores the nature of weapon systems, requirements, front-
end problems, characteristic activities and problems of front-end development
phases, and candidate tools for addressing those problems. Part III presents
formal mathematical foundations for front-end requirements engineering and
design, and outlines a methodology that can be supported by a fully integrated
set of tools.

A structured evolutionary development plan that leads to a fully inte-
grated set of tools in six years, with usable interim increments, is reported
in a separate interim report, TRW Document No. 32697-6921-001, which is CDRL
Item A002 of this contract.

Hi

TABLE OF CONTENTS

Section Title Page

PART I

1.0 EXECUTIVE SUMMARY 1

1.1 INTRODUCTION AND BACKGROUND]

1.2 PROJECT PURPOSE AND SCOPE 1

1.3 PROJECT ACCOMPLISHMENTS AND CONCLUSIONS 2

1.4 RECOMMENDATIONS 3

PART II

1.0 INTRODUCTION 4

1.1 BACKGROUND 4

1.2 OVERVIEW OF PART II 6

2.0 PROBLEM CONTEXT 7

2.1 THE WEAPON SYSTEM CONTEXT 7

2.1.1 Characteristics of Weapon Systems 7
2.1.2 Weapon System Components 8
2.1.3 Weapon System Component Interactions 11
2.1.4 Weapon System Encounter Sequence 13
2.1.5 Weapon System Engagements . 15

2.2 SPECIFICATION STANDARDS 19

2.2.1 Type A - System Specification 20
2.2.2 Type B - Development Specifications 20
2.2.3 Type C - Product Specifications 21

3.0 WHAT IS A REQUIREMENT? 24

3.1 A HIERARCHY OF SOFTWARE REQUIREMENTS 24

3.1.1 Processing Requirements 24
3.1.2 Non-Processing Requirements 26
3.1.3 Requirements on the Project 26

3.2 REQUIREMENTS ISSUES 26

3.2.1 Requirements and Design Freedom 27
3.2.2 Requirements by Choice and Inescapable

Requirements 28

iv

TABLE OF CONTENTS (Continued)

Section Title Page

3.2.3 Problem-Oriented Versus Solution-Oriented
Requirements 30

3.2.4 Soft and Firm Boundary Requirements 30
3.2.5 Long and Short Time-Span Requirements 31
3.2.6 Open System Versus Closed System Requirements . . 33

3.3 ATTRIBUTES OF A GOOD REQUIREMENTS SPECIFICATION 34

4.0 FRONT-END PROBLEMS 37

4.1 COMPLEXITY 37

4.2 COMMUNICATION 40

4.3 VALIDATION 43

4.4 TRACEABILITY 44

4.5 CHANGE RESPONSE 45

5.0 DEFINITION OF THE FRONT-END OF DP DEVELOPMENT 46

5.1 SYSTEM ANALYSIS PHASE 49

5.1.1 Scope 49
5.1.2 Content 52
5.1.3 Problems 58

5.2 SYSTEM ENGINEERING PHASE 61

5.2.1 Scope 61
5.2.2 Content 62
5.2.3 Problems 62

5.3 DATA PROCESSING SUBSYSTEM (DPSS) ENGINEERING PHASE ... 66

5.3.1 Scope 66
5.3.2 Content 67
5.3.3 Problems 70

5.4 SOFTWARE REQUIREMENTS ENGINEERING PHASE 72

5.4.1 Scope 72
5.4.2 Content 72
5.4.3 Problems 76

5.5 PROCESS DESIGN PHASE 77

5.5.1 Scope 77
5.5.2 Content 79
5.5.3 Problems 82

5.6 PRELIMINARY DESIGN 84

5.6.1 Scope 84
5.6.2 Content 84
5.6.3 Problems 88

v

TABLE OF CONTENTS (Continued)

Section Title Page

5.7 CONCLUSIONS 89

6.0 CANDIDATE TOOLS, TECHNIQUES, AND INTEGRATION APPROACHES ... 91

6.1 TOOLS AND TECHNIQUES 91

6.1.1 Selected Tool/Technique Systems 92
6.1.2 Other Tool/Technique Systems 94
6.1.3 Research Programs 95

6.2 CORRELATION WITH DEVELOPMENT PHASES 96

6.3 ASSESSMENT OF TOOLS 96

6.4 INTEGRATION APPROACHES 100

6.4.1 Manual Translation 100
6.4.2 Ad-Hoc Translators 101
6.4.3 Common Tool Approach 101

6.5 ASSESSMENT 103

7.0 REFERENCES 107

PART III

1.0 INTRODUCTION 109

1.1 BACKGROUND 109

1.2 OUR APPROACH 112

2.0 FORMAL FOUNDATIONS 114

2.1 OVERVIEW 115

2.2 SYSTEM FUNCTIONS 116

2.3 COMPOSITION 119

2.4 DECOMPOSITION 122

2.5 SIMULATION ' 133

2.6 ALLOCATION OF SUBSYSTEMS 134

2.7 INTEGRATION AND TEST 141

2.8 ESTIMATING RULES 143

2.9 PREFERENCE RULES 145

2.10 CONCLUSIONS 145

vi

TABLE OF CONTENTS (Continued)

Section Ti tle Page

3.0 METHODOLOGY OVERVIEW 147

3.1 OVERALL APPROACH 147

3.2 SYSTEM ANALYSIS 151

3.2.1 Step 1 -- Define Mission 151
3.2.2 Step 2 -- Identify Component Types 152
3.2.3 Step 3 -- Decompose to System Logic 152
3.2.4 Step 4 -- Decompose to Allocatable Subfunctions . 158
3.2.5 Step 5 -- Allocation and Feasibility Estimation . 158
3.2.6 Step 6 -- Identify Critical Issues and

Resources 169
3.2.7 Step 7 -- Identify Resource Management Rules. . . 169
3.2.8 Step 8 -- Optimization 169
3.2.9 Step 9 -- Plan Integration and Test 170
3.2.10 Discussion 170

3.3 SYSTEM ENGINEERING 171
3.4 DP SUBSYSTEM ENGINEERING 171

3.4.1 Step 1 -- Define Mission 172
3.4.2 Step 2 -- Identify Component Types 172
3.4.3 Step 3 -- Decompose to System Logic 172
3.4.4 Step 4 -- Decompose to Allocatable

Subfunctions 173
3.4.5 Step 5 -- Allocation and Feasibility

Estimation 173
3.4.6 Step 6 -- Identify Critical Issues and

Resources 173
3.4.7 Step 7 -- Identify Resource Management Rules. . . 173
3.4.8 Step 8 -- Optimization 173
3.4.9 Step 9 -- Plan Integration and Test 173
3.4.10 Discussion 174

3.5 SOFTWARE REQUIREMENTS ENGINEERING 174

3.6 DISTRIBUTED PROCESS DESIGN 176

3.6.1 Step 4 -- Decompose to Allocatable
Subfunctions 176

3.6.2 Step 5 -- Allocation and Feasibility Estimation . 178
3.6.3 Step 6 -- Identify Critical Issues and

Resources 178
3.6.4 Step 7 -- Identify Resource Management Rules. . . 179
3.6.5 Step 8 -- Optimization 179
3.6.6 Step 9 -- Plan Integration and Test 179
3.6.7 Discussion 179

vii

TABLE OF CONTENTS (Continued)

Section Title Page

3.7 PROCESS DESIGN 179

3.7.1 Step 1 — Define Mission 181
3.7.2 Step 2 -- Identify Component Types 181
3.7.3 Step 3 -- Decompose to System Logic 181
3.7.4 Step 4 — Decompose to Allocatable

Subfunctions 181
3.7.5 Step 5 -- Allocation and Feasibility Estimation . 181
3.7.6 Step 6 -- Identify Critical Issues and

Resources 181
3.7.7 Step 7 -- Identify Resource Mangement Rules ... 182
3.7.8 Step 8 -- Optimization 182
3.7.9 Step 9 — Plan Integration and Test 182
3.7.10 Discussion 182

3.8 PRELIMINARY DESIGN 183

3.8.1 Discussion 184

3.9 CONCLUSIONS 184

4.0 CONCLUSIONS 186

5.0 REFERENCES 188

viii

2-4

3-1

LIST OF ILLUSTRATIONS

Imn Title Page

PART II

1-1 The Penalty of Requirements Errors 5

2-1 Basic Weapon System 5

2-2 Nominal Encounter Event Model T4

2-3 System Load During Example Engagement T7

Revised System Load 18

Types of Software Requirements 25

3-2 Interaction of Requirements and Design 29

3-3 Requirements Densities in Systems Development. 32

3-4 Relative Time-Spans of Type (a) and Type (b) Requirements. . . 32

Productivity and Cost Versus Manpower 42

Front-End Development Phases 47

5-2 Hierarchical Organization of Phases 50

5-3 Relationship of Front-End Phases to Other Cycles 51

Problem Analysis Steps 54

Candidate Evaluation Process 55

5-6 The Poor Fit of DP Parameters in the System Context 65

5-7 Data Flow Diagrams 59

5-8 How Does Hardware Selection Affect Software? 71

5-9 Software Requirements Engineering Activities 74

6-1 REVS Functional Overview .104

6-2 Conceptual Development System Structure 105

4-1

5-1

5-4

5-5

1-1

2-1

2-2

2-3

2-4

2-5

2-6

PART III

Overall Approach 1-|3

Three Views of a System ITS

An Example SDT iig

Example Graph Model of Functionality 121

Composition of Sequential Data 123

Composition of Selected Data 123

Composition of Parallel Data .123

1x

LIST OF ILLUSTRATIONS (Continued)

Figure Title Page

PART III (Continued)

2-7 Example of Refinement 124

2-8 Tree of System Functions 128

2-9 Special Cases of Decomposition 129

2-10 Effect of Top-Level Refinement on BMD System 131

2-11 Alternate Decompositions of BMD System 132

2-12 Allocation of Sequential Functions 139

2-13 Allocation of Parallel Functions 140

2-14 Example Decomposition 142

2-15 Example Integration and Test Sequence 144

3-1 Overall Methodology Approach 149

3-2 Surveillance System Functions and Components 153

3-3 Deployment Alternatives 154

3-4 Second Level Decomposition 156

3-5 Third Level Decomposition 157

3-6 Example Decomposition to Allocatable Subfunctions 159

3-7 Example Allocation to Subsystems 160

3-8 Example DP Allocation 162

3-9 DP Load Versus Time 164

3-10 Example Maximum DP Dimensionality 165

3-11 R-Net Fragment Derivation 175

3-12 Example Allocation to Nodes 177

3-13 Example Process Design 180

LIST OF TABLES

Table Title Page

PART II

5.1 Current Practical Problems in Specifying DP Requirements ... 64

6.1 Development Phase/Tool Correlation 97

6.2 Current Tool Capabilities 98

PART III

1.1 Representative Methodology Frameworks and Techniques 110

1.2 Representative System Engineering Methodologies Ill

3.1 Overall Methodology Steps 148

3.2 Expected DP Instruction Load 168

3.3 Expected Communication Loads 168

x1

EVALUATION

By the early 1970's, the high cost and poor quality of software develop-

ment was recognized as a critical issue on large high-technology DoD programs.

Techniques for software development were not keeping pace with the increase

in system complexity. Software Engineering, as an emerging discipline,

was focusing on the more visible activities of software construction and

test; however, the major cause of inadequate software, poor requirements

definition and design, had been relatively neglected by the R&D community.

The few efforts which did. address the more tangible pre-coding and pre-design

activities, yielded prototype developments for specific and limited

applications. These were products of isolated research teams. Lacking was

a documented and useful description of the system and software development

process. A broad and comprehensive view of the initial user-developer

interactions was needed; one which portrayed goals and alternative solutions,

in spite of complexity, being successively defined and refined within a

framework of effective common understanding.

This contractual effort, part of RADC TPO 5, Software Cost Reduction,

addresses three principal technical needs: (1) Definition of front-end

processes (concept definition, requirements validation, and preliminary

design); (2) Identification of capabilities and limitations of existing

automated support tools and methods; and (3) a comprehensive R&D plan to

evolve and demonstrate an integrated requirements engineering support system.

xi n

The comprehensive study draws heavily upon pioneering research of the

U.S. Army Ballistic Missile Advanced Technology Center (BMDATC) which

has been concentrating on disciplined system and software engineering

methods. A promising methodology approach, based upon formal mathematical

foundations, has been identified. A common tool approach has been

suggested wherein all development phases would be supported by a single

nucleus of software utilities employing a single meta-language, data base

analysis, and simulation generation concept.

The recommended approach takes into account the DOD emphasis on a high

level programming language (DOD-1/Ada) and on critical technical issues

involved in the design of distributed processing systems. The methodology

underlying the Proposed Development addresses known problems elsewhere

unaddressed; hence it represents a significant advance, possibly a

breakthrough, toward early identification and resolution of critical data

processing issues in the system design front-end.

ROGER W. WEBER
Project Engineer

XIV

PART I

1.0 EXECUTIVE SUMMARY

1.1 INTRODUCTION AND BACKGROUND

The development of large, high-performance weapon systems has always been
one of the most technology-stressing activities undertaken by man. In modern
times, these systems consume large amounts of technical and economic resources,
but all too often do not work as intended, or do not work at all. Because the
need for these systems is driven by the potential capabilities of hostile adver-
saries, development takes place in an atmosphere of constant schedule pressure.
To meet schedules, large groups of people, often involving many agencies and
organizations must work in close coordination at the breaking point of prac-
tical manageability. In this environment, solutions to problems cannot await
the natural evolution of powerful technical and management techniques to com-
fortably deal with the issues.

Computer software plays a vital role in the modern weapon system-- either
as a controller of weapon system operations and resources, or as a critical
link in the organization and presentation of information to human tactical com-
manders. Software, because of its abstract nature and relatively short history
as an engineering discipline, has been costly and difficult to develop for large,
complex weapon systems.

By the early '\970,s the high cost of software development (and the fact
that software often did not meet operational needs) was becoming a critical and
visible programmatic issue on ultra-high technology defense programs. The tech-
niques for software development were simply not keeping pace with the increasing
complexity of weapon systems. Several major studies identified poor software
requirements definition as a major cause of costly, inadequate software. In
the past few years the software problems, first perceived in the high-technology
defense community, have become increasingly visible in commercial and industrial
systems. The degree of concern is indicated by the number of conferences and
workshops devoted to the topic. In the month of April 1979, three such
events in the United States and Europe will focus on requirements and related
problems.

Pioneering research in requirements engineering by the U.S. Army Ballistic
Missile Advanced Technology Center (BMDATC), the ISDOS project at the University
of Michigan, and others, produced a number of tools and techniques (e.g., CARA,
SREM, PDS) to address requirements-related problems. However, these tools were
developed for specific applications and specific phases of front-end develop-
ment, and were developed by groups working in isolation from each other. A
broad, comprehensive view of the entire front-end system development process
and its impact on software requirements has been needed to provide a basis for
an integrated attack on the total requirements problem.

1.2 PROJECT PURPOSE AND SCOPE

In FY 1978, RADC sponsored the Software Requirements Engineering
Methodology (Development) study. The purpose of the study was to define a

1

unified methodology approach and recommend an evolutionary development plan
for construction of an integrated requirements engineering system supported by
automated tools to address Air Force requirements problems.

The statement of work consisted of five tasks:

Identify current state-of-the-art tools and techniques applicable to
software requirements and preliminary design.

Investigate the front-end problems of data processing system develop-
ment.

Investigate how the identified tools and techniques can be applied to
the front-end problems, identify gaps, and recommend improvements and
additional tools.

Identify approaches for a methodology to effectively use the tools.

Prepare an evolutionary development plan for constructing an inte-
grated requirements engineering system.

Because software problems often originate from earlier system level de-
cisions, the scope of the study was to include all development effort from
first perception of the need for a weapon system to preliminary software design.

1.3 PROJECT ACCOMPLISHMENTS AND CONCLUSIONS

The project has performed all of its tasks and met its objectives. Speci-
fically, the project made the following accomplishments.

• The characteristics of weapon systems, of the development of weapon
systems, and of requirements were identified and studied.

• The phases of weapon system and software front-end development, and
their problems, were analyzed. Although each phase has its own mani-
festation of problems, the various phases were found to have a common
set of problems associated with human thought processes, information
organization, decision-making and communication.

• More than fifteen existing automated systems of tools and techniques
were evaluated for application to the front-end problems. Of these,
nine were selected for further consideration, because of unique pro-
perties, or global concepts that could be applied across an integrated
system.

t Three approaches for integration of the tools were evaluated. Of
these, a common tool approach was selected, wherein all development
phases would be supported by a single nucleus of software utilities
employing a single meta-language, data base analysis, and simulation
generation concept. The single meta-language provides the foundation
for an extensible language capability to express the specialized
vocabulary and Concepts appropriate to each development phase.

• A promising methodology approach based upon formal mathematical foun-
dations was identified and evaluated. This approach is based upon
break-throughs made on two TRW programs for BMDATC (Axiomatic Require-
ments Engineering, and Advanced Data Processing Concepts) in 1978.

These basic research results have been evaluated as they emerged and
are found to be applicable to Air Force weapon system problems. In
particular, they provide formal foundations and insights for the proper
placement of tools within an integrated system.

• An evolutionary development plan for the construction of an integrated
requirements development system and its transfer to the Air Force was
prepared. Aggressive implementation of this plan could lead to a
complete capability in six years. Forty-nine R&D tasks in the areas
of technology consolidation, technology extension, and technology
transfer were identified and evaluated. These tasks were then grouped
into twenty-nine packages for time-phased procurement with considera-
tion for incremental capability delivery. (This plan is separately
reported in TRW Document 32697-6921-001, which is CDRL Item A002 of
this contract.)

This project has found a common body of requirements-related problems
existing across all phases of front-end development. An integrated approach
to solving these problems using a common nucleus of automated tools appears to
be feasible, practical, and beneficial.

1.4 RECOMMENDATIONS

Timely and aggressive research in this field is needed because the advent
of distributed processing systems and startling advances in hardware technology
foretell an explosive increase in the complexity of technically feasible systems.
We have barely mastered fairly good software engineering approaches for conven-
tional single-processor systems, yet we are about to be engulfed by a tidal
wave of hardware capabilities that offer the potential of spectacular software
successes or failures. We now have to run when we barely know how to walk.

It is recommended that the Air Force give critical consideration to early
sponsorship of critical-path research increments identified in the evolutionary
development plan. Initial introduction of the powerful DoD-I programming
language into operational use is expected in 1982-83. If substantial progress
is not made in reducing front-end development problems by the early 1980^, the
downstream software engineering problems will be compounded far beyond the
levels that arouse alarm today.

It is further recommended that on-going research in the ballistic missile
defense community be continuously monitored for application and adaptation to
Air Force use. Earlier research sponsored by BMDATC has been of great poten-
tial benefit for real-time systems outside the BMD focus of interest Continu-
ing research is expected to refine and clarify the gross methodology themes
presented in Part III of this report, and is expected to introduce new tools
of potential interest to the Air Force.

PART II

1.0 INTRODUCTION

This report documents the results of a one-year study of the front-end
problems Involved in the development of complex weapon systems and their em-
bedded real-time software, and means to alleviate those problems through an
integrated requirements engineering system supported by automated tools.

1.1 BACKGROUND

The development of large, high-performance weapon systems has always been
one of the most technology-stressing activities undertaken by man. In modern
times, these systems consume large amounts of technical and economic resources,
but all too often do not work as intended, or do not work at all. Because the
need for these systems is driven by the potential capabilities of hostile ad-
versaries, development takes place in an atmosphere of constant schedule pres-
sure, To meet schedules, large groups of people, often involving many agencies
and organizations, must work in close coordination at the breaking point of
practical manageability. In this environment, solutions to problems cannot
await the natural evolution of powerful technical and management techniques to
comfortably deal with the issues.

Nowhere are the problems of complexity more apparent than in the area of
software development. Software, by nature, is an abstraction. It is an
entity that produces actions and behavior completely unrelated to its physical
form. Correctly defining the requirements for software (i.e., the actions it
will cause based on specified information) is a major logical and conceptual
effort, even when schedule is not a consideration. Yet the correct definition
of software requirements is critical to the development of successful weapon
system software and vital to the success of the weapon system mission. This
is because software exercises partial or nearly total control over the opera-
tion of the modern weapon system and its resources. Even where its control
functions are minimal, software plays a vital role in processing and displaying
the information that is the basis for tactical judgements by humans.

By the early 1970^ the high cost of software development was becoming a
critical and visible programmatic issue on ultra-high technology programs such
as ballistic missile defense. Several studies at that time revealed the stag-
gering cost penalties of late detection of requirements and design errors.
Figure 1-1 illustrates the relationship.

Realizing the high cost leverage of error-free requirements, in 1973 the
U. S. Army Ballistic Missile Defense Advanced Technology Center (BMDATC) ini-
tiated pioneering research to address the issues of requirements engineering
and process design for real-time weapon system software. This effort culmi-
nated in 1977 with the delivery of the TRW Software Requirements Enaineering
Methodology (SREM) and the Texas Instruments Process Design System (PDS).
Current BMDATC research is focused on bringing the same rigor to system engi-
neering disciplines related to data processing, and to problems in distributed
processing.

100 r

Of

i
a:
oi o o

10 o

Ul

3

REQUIRE- DESIGN
MENTS

CODE UNIT TEST EVALUAT- 0PERAT-
DEBUG AND ION TEST ION

INTEGRATE

PHASE IN WHICH ERROR IS DETECTED

Figure 1-1 The Penalty of Requirements Errors

Sufficient research experience has been gained to postulate that an
integrated set of requirements engineering tools to address the requirements
definition problems from initial weapon system concept to preliminary soft-
ware design is feasible and practical. RADC has funded the present Software
Requirements Engineering Methodology (Development) study to confirm that
belief and to define an evolutionary development plan for a system adapted
to Air Force requirements engineering problems.

Timely and aggressive research in this field is needed because the advent
of distributed processing systems and startling advances in hardware technology
foretell an explosive increase in the complexity of technically feasible
systems. We have barely mastered fairly good software engineering approaches
for conventional single-processor systems, yet we are about to be ingulfed
by a tidal wave of hardware capabilities that offer the potential of spec-
tacular software successes or failures. We now have to run when we barely
know how to walk.

1.2 OVERVIEW OF PART II

Section 2.0 presents a context for investigation of the problems and
issues surrounding requirements engineering for weapon systems and their
embedded software. Section 2.1 describes some of the properties of weapon
systems, emphasizing fundamental concepts common to all weapon systems, re-
gardless of their detailed design or implementation technology. In Sections
2.1.1, 2.1.2, and 2.1.3 we discuss generic characteristics, components, and
component interactions. In Section 2.1.4 we discuss the one-on-one encounter
between a weapon system unit and a threat. The encounter level of considera-
tion is readily amenable to standard engineering analyses and is the usual
first step toward modeling the system's operation. In Section 2.1.5 we
discuss weapon system engagements -- concurrent encounters between a weapon
system and multiple threats. Engagements present complex control and resource
management problems. Operations research disciplines have found these problems
to be difficult, sometimes impossible, to analyze and model with any fidelity.
We conclude Section 2.0 by recapitulating the current primary specification
types applicable to weapon systems, subsystems, and software as defined in
MIL-STD-490.

Section 3.0 discusses requirements. In Section 3.1 we present a
hierarchy of requirements types (processing, non-processing, development)
affecting software. In Section 3.2 we discuss various other characteristics
of requirements, and the relationship between requirements and design. In
Section 3.3 desirable attributes of software requirements specifications are
summarized.

Sections 4.0 and 5.0 examine front-end development problems and their
manifestations in the various development phases. Section 4.0 discusses five
specific problems: complexity, communication, validation, traceability, and
change response. These problems appear to be at the root of many observable
symptoms of poor requirements. In Section 5.0 we characterize six phases of
the front-end system and software development cycle, and for each phase,
discuss the scope, content, and problems of the phase. In Section 5.7 we
conclude that, despite superficial differences, the phases have a common set
of problems.

In Section 6.0 we identify and summarize our evaluation of candidate
tools and integration approaches for producing an integrated requirements
engineering system. References cited in Part II are listed in Section 7.0.

2.0 PROBLEM CONTEXT

Our investigation deals with the front-end development problems for a
particular class of software: that developed to support the operation of
weapon systems. Before we examine the accompanying requirements definition
problems, let us examine the features of weapon systems to determine why
they present exceptional software development problems.

In Section 2.1, we begin by stating the salient characteristics of
weapon systems. Next we identify the fundamental generic components common
to all weapon systems and examine the types of interactions between these
components, and between the components and the threat and environment. Finally
we examine the characteristics of single weapon system/threat encounters and
then discuss aggregates of encounters called engagements. In Section 2 2
we summarize the current specification standards for weapon system software
and for systems and subsystems in which the software is embedded.

2.1 THE WEAPON SYSTEM CONTEXT

The problems of software development for weapon systems differ from those
of civilian applications in many respects. This is due to the unique nature
of weapon systems. In this section we will discuss the characteristics, com-
ponents, interactions and encounter sequences of weapon systems that form the
context of the requirements development problem.

2.1.1 Characteristics of Weapon Systems

In the modern world, six characteristics are implicit in the concept of
a "weapon system":

1) A weapon system is an organization of men and equipment designed for
use against specific classes of enemy targets under certain presumed
operating conditions and rules of engagement. The input to the system
is an enemy target or group of targets. The output of the system is
the destruction of the enemy targets, usually required to be accom-
plished before the targets can contribute to significant damage upon
friendly forces or facilities.

2) A weapon system is a real-time system. The effectiveness of the
system is dependent upon the ability to respond to an input within
a specified time. The required performance of a defensive weapon
system is defined by the characteristics of the input enemy offensive
threat and the desired reduction of that threat. The required per-
formance of an offensive weapon system is defined by the characteris-
tics of the target, the characteristics of enemy systems defending
the target, and the minimum acceptable damage to be inflicted on
the target.

3) Without modifications to the system, the effectiveness of any weapon
system is reduced with the passage of time. The enemy will upgrade his
offensive threat in numbers and sophistication to maximally stress

and hopefully break the defense. He will also upcjrade his defense
to minimize damage to his own targets. Because each side strives to
minimize its resource expenditures, the requirements for a weapon
system must change and evolve over time.

4) A weapon system is embedded in a chain-of-command hierarchy reaching
to the highest levels of government. Although local commanders may
be given discretionary authority to use ordinary tactical weapons in
response to given situations, authority to use a weapon system is
always conditional and granted from above. The weapon system designer
must meet requirements for interfaces with one or more command and
control systems, and must incorporate features to preclude unautho-
rized use of critical weapon systems.

5) A large weapon system is difficult or impossible to test under realis-
tic combat loads and conditions prior to operational deployment and
use. Simulation methods must be used to represent the threat, environ-
ment, and certain system components and actions. The question then
becomes "Do the simulators accurately model real physical phenomena,
event timing, threat characteristics, and enemy tactics?"

6) A weapon system is actually engaged in a mission for a miniscule
fraction of its deployed lifetime. For critical strategic systems,
there is no opportunity to resolve erroneous assumptions by trial-
and-error means. Such systems are designed to be used once, and
failure would be catastrophic.

These characteristics separate weapon systems from most systems used in the
commercial and industrial world. We should also expect that the methods of
system development would be different. We find this to be true. Because the
penalty for error is so high, all requirements that the system is to satisfy
must be more carefully developed and validated. Because the system is pitted
against an intelligent opponent, the requirements will be in a state of flux
and will tax the limits of state-of-the-art technology.

Before we consider better means of developing requirements for weapon
system software, we will examine the components, interactions and operating
behavior of a typical weapon system.

2.1.2 Weapon System Components

While weapon systems exhibit many different forms and levels of complexity,
all weapon systems are variants of a common underlying structure. A weapon
system can be categorized as a responsive system, also called a second-order
feedback system. A responsive system has a defined goal or mission, and has
the capability to choose, from alternative tactics, the tactic most effective
in the current operational situation. The basic weapon system model, presented
in Figure 2-1, can be used to grossly describe responsive weapon systeas ranging
from a man with a rock to a sophisticated air defense system.

8

VO

-►i THREAT Urn

UNCONTROLLED ENVIRONMENT

"I

L
SENSOR

NECESSARY PATH

OPTIONAL PATH

INTERNAL
COMMUNICATION

n
DATA
PROCESSING

n
COMMAND
AND
CONTROL

n
(OTHER\

SYSTEMS J

WEAPON
DELIVERY

^^i i^m^mMim,^t'i'^^ti -^^^^iK—0^>i,^

CONTROLLED ENVIRONMENT

Figure 2-1 Basic Weapon System

To effectively direct a weapon against a target, one must be able to:
1) detect the presence of a potential target, 2) establish that the detection
is a desired target, and 3) predict the probable location and motion of the
target at the time of intercept. A sensor of some type (eye, ear, radar,
optical device) is required to permit these actions. Sensors may be active
(e.g., radar) or passive (e.g., eye, electro-optical telescope). In either
case, controls are generally needed to shift the field-of-view and adapt to
environmental variations. A given system may employ a single sensor, a
number of sensors of the same type, or a mix of sensors. Multiple sensors
may operate independently (e.g., monostatic radars) or cooperatively (e.g.,
multistatic radars).

A weapon delivery mechanism is also needed to bring the weapon to the
target if the target is outside the weapon's lethal radius. The oldest weapon
delivery mechanism is the arm and hand used to throw the rock. Modern weapon
delivery systems are often multi-stage (e.g., manned aircraft + air-air missile)
All weapon delivery means have a limited action radius, velocity envelope, and
correction capability. Effective weapon delivery therefore requires careful
timing, aiming, preplanning and, where practical, real-time compensation and
control. These activities in turn require knowledge of weapon delivery capa-
bility and limitations, estimation of current weapon delivery system state,
prediction of future target state, a sense of time, and computational capa-
bility. Such a system must have memory.

Facilities for memory, computation, and timing coordination are provided
by the data processing subsystem (DPSS). Until recently, the human brain
served as the data processing subsystem for most weapon systems. As threat
performance has increased, sensors and weapon delivery systems have become
more complex. The unaided human operator can no longer keep pace with the
data throughput encountered in modern systems. Hence, the bulk of data pro-
cessing activities have been off-loaded onto computers or networks of computers.

Operation of a sophisticated weapon system requires situation assessment,
timely selection of strategies and tactics, allocation of resources to accom-
plish chosen goals, and positive control over the system. Thus, every weapon
system has a command and control (C&C) subsystem -- a decision making element.
Ultimately, all command and control components of the system are human. Ma-
chines are used to structure information displays for humans and to assist in
executing decisions made by humans, but they do not choose goals or make inde-
pendent decisions except as preprogrammed. Although great progress has been
made in computer systems, the human operator will not be totally replaced,
because only he can respond to novel and unanticipated situations which call
for original responses and value judgements.

The fifth necessary component of a weapon system is the internal commu-
nications subsystem. The other subsystems are ineffective unless they operate
as an orchestrated whole. Coordinated action requires the capability to move
information from one part of the system to another when needed. The internal
communications subsystem provides this capability.

10

The weapon system does not exist in isolation. It is surrounded by the
system environment, which is simply everything in the outside universe that
is affected by, or has appreciable effect on the system. It is useful to
separate the system environment into the controlled environment and the uncon-
trolled environment. The controlled environment is simply that which the
system designer or operator can modify, or influence in some degree. Local
air temperature, local electromagnetic radiation, interfacing system message
formats, and engagement rules for external friendly systems are examples of
controlled environment elements.

The uncontrolled environment is that which the designer or operator can-
not modify or must accept as fixed. Final decisions by higher authority,
tables of military organization and responsibility, the weather, the laws of
physics, and the initial threat scenario are not controlled by the designer or
operator. Even if these factors cannot be controlled, their range can be
anticipated within limits and the system design can compensate for them to
an acceptable degree. The hardest factor to anticipate is the threat, since
it is the only component purposefully trying to defeat the weapon system.

The definitions of system, subsystem, and system environment are relative.
Certainly what we define as a weapon system is merely a subsystem in the con-
text of the total U.S. defense posture. In the other direction, the subsystems
of a weapon system may be "systems" in their own right, with an environment
consisting of the original system environment plus all other subsystems in the
weapon system. For instance, we can focus on the sensors which search for and
detect threats and call these a surveillance system or early warning system.
Similarly, we can detach the sensors and weapon delivery subsystems and call
the remainder a command, control, and communication (C3) system. An important
task of the weapon system analyst is to develop an understanding of the rela-
tionships between a system and its superordinate, subordinate, and coordinate
systems.

2.1.3 Weapon System Component Interactions

The basic weapon system exhibits a characteristic pattern of interactions
between its components and with the environment. These are shown as paths in
Figure 2-1. Necessary paths are those found in all weapon systems. Optional
paths are those characteristic of the classes of components used in the speci-
fic weapon system. These interactions define the nature of the information
flow through the system.

The C&C subsystem interfaces with external systems and the chain of higher
command. At some time, the system is activated by external authorization, per-
haps accompanied by specific mission tasking orders, intelligence inputs and
forward acquisition data from other systems. Supplemental directives and a
termination order will enter the system at subsequent times during an engage-
ment. At appropriate intervals the C&C subsystem will release situation re-
ports, kill reports, and casualty reports to higher command levels, and will
transmit processed mission data to other systems if needed. The C&C subsystem
supervises transfer of bulk data between the data processing subsystem and
external systems.

11

The C&C subsystem interacts with the rest of the weapon system through
the data processing subsystem, and voice or teletype communication with
various subsystem operators (not shown in the diagram). The C&C subsystem
establishes the initial mission configuration of the DPSS which then imple-
ments lower level activities to bring the weapon system to readiness. During
the mission, the C&C subsystem may provide resource allocation directives,
tactical decisions, and requests for information to the DPSS. The DPSS pro-
vides data for summary information displays and responses for requested infor-
mation to the C&C subsystem. The allocation of decision-making responsibility
between the C&C subsystem and the DPSS is a function of the required system
response time, the load on the system, and the variability or novelty of
engagement situations. However, the C&C subsystem always controls termination
of the mission and deactivation of the system.

The DPSS communicates with sensor and weapon delivery subsystem elements
via the internal communication subsystem. The DPSS issues control commands to
the sensor and the sensor returns partially processed observation data to the
DPSS. The presence of a potential threat or target is indicated by sensor
detection of electromagnetic or acoustic energy reflected or radiated by the
object. Thus, there always exists a directed interaction path from the threat
to the sensor. With active sensors (e.g., radar, sonar) the sensor transmits
the energy reflected by the object. Hence, there is an interaction path from
sensor to threat, not used with passive sensors. The interactions between
threat and sensor occur in the uncontrolled environment, which attenuates the
sought-after signals and corrupts them with noise. Further noise is introduced
within the sensor itself (thermal noise). Complex analog or digital processing
is required to recover the desired signal.

Before weapon delivery elements are committed, the weapon delivery sub-
system provides health and status reports to the DPSS. When a target is iden-
tified and designated, a specific weapon delivery unit is selected by the DPSS
(or by the C&C subsystem via the DPSS) to engage the target. The DPSS then
transfers intercept planning information to the selected unit. This may con-
sist of a completed intercept plan, or only target state vector data if the
unit is to form its own plan. The DPSS may provide state vector updates to
the weapon delivery unit at intervals.

Once the unit is launched, interactions with the remainder of the weapon
system depend upon the type of weapon. Manned aircraft may be vectored to
the target via communications from ground elements. Missiles may be guided
through the sensor or separate guidance transmitters. Or, the weapon delivery
unit may function autonomously, using on-board sensors to acquire and home in
on the target.

Th
sensor

here is usually an interaction path from the weapon delivery unit to the
.., because the unit will appear in the sensor's field-of-view as another

object. The sensor capacity must allow for both threats and weapon units.
Observations of the unit as it closes on the target may be used for active
guidance or for passive kill assessment.

12

Finally, there is an interaction between the weapon delivery unit and
the threat (a hit or a miss) which decides the outcome of the encounter. A
detected miss would lead to commitment of another weapon delivery unit, if
feasible.

2.1.4 Weapon System Encounter Sequence

From the general description of a basic weapon system we can see potential
for major variations of the basic system interactions, determined by the par-
ticular choices of weapon delivery subsystem, guidance mode, sensor/DPSS pro-
cessing allocation, and command and control philosophy. However, there is an
underlying commonality expressed in the encounter sequence of events shown in
Figure 2-2. Within this sequence, there are dominant information flows and
types of data processing activity. In this section we will describe an encoun-
ter typical of a defensive weapon system. With minor changes, the sequence
could apply to an offensive weapon system.

An encounter can be divided into three basic phases -- observation, deci-
sion, action. The observation phase begins when the sensor commences search
and ends when enough information has been gathered to determine if a threat
exists. The decision phase begins with a decision that a threat exists and
ends with a decision that launches a specific interceptor. The action phase
begins with interceptor launch and ends with a positive kill assessment.

The observation phase can be further subdivided into search, detection,
track, and discrimination subphases. Throughout the observation phase, the
dominant information flow and data processing in the weapon system is between
the sensor and the DPSS. The flow from sensor to DPSS is characterized by
high throughput, repetitive signal processing, thresholding, peak detection,
correlation, association, and state estimation. The information arriving in
the DPSS is used to adjust sensor control parameters and, for active sensors,
define and schedule sensor transmission and reception. The tight coupling
between the sensor and DP, the large bandwidths of modern sensors, and the
precise synchronization to be maintained lead to stringent real-time performance
requirements on the DPSS. In the past, these requirements could only be met by
expensive special purpose hardware or high throughput "super-computers". The
advent of low cost LSI components and microprocessors offers the potential for
specialized high performance architectures at reasonable cost. However, this
potential cannot be realized until data processing considerations are given
more weight in system definition activities.

Is the object a threat?

Should it be engaged?

Can it be engaged?

What interceptor shall be assigned?

Is a back-up feasible and necessary?

When should the interceptor be launched?

What are the side effects?

13

Figure 2-2 Nominal Encounter Event Model

The measurements made during the observation phase are designed to reveal the
observable characteristics of the object and determine its possible or probable
destination. Comparison of the observations against a data base of friendly
and hostile force observables results in a probabilistic identification of the
object. Projected friendly and hostile force movement data may be used to
refine the identification. In the event of a high system load, objects not
likely to be threats may be dropped from the system in favor of more likely
threats.

The decision to engage a threat is a function of the reliability of iden-
tification, the defended target threatened, the available system resources,
and the overall battle situation. The identification and engagement decisions
may be performed entirely in the DPSS using prespecified decision algorithms.
Or, the decisions may be made by human operators in the C&C subsystem, on the
basis of supporting computations from the DPSS and other information.

The remaining decisions leading to interceptor launch are performed within
the DPSS based upon interceptor performance envelopes and current status data,
or are performed by some combination of DP and C&C subsystem resources. Pro-
cessing loads are not severe, unless a large number of alternatives must be
examined. However, the processing can be logically complex and potentially
requires access to data on any element in the system.

During the decision phase, the sensor and DP subsystems are holding the
target in maintenance track. When an interceptor has been selected, target
state information is routed to that interceptor and updated as necessary until
interceptor launch.

The two major problems of the action phase are: 1) vectoring the inter-
ceptor to the target, and 2) determining if the intercept was successful. The
data processing rate required for interceptor control is proportional to the
acceleration characteristics of the interceptor and the maneuverability of the
target. Ground-based guidance offers the potential to apply large-scale data
processing power and centralized battle management, but can place a high load
on the DPSS and sensors and can create serious resource scheduling conflicts
and response lags. On-board guidance eliminates many of the problems of a
tightly coupled system, but data processing capacity is severely constrained
by size, weight, and power restrictions.

Kill assessment requires that the intercept be observed and that a kill
can be distinguished from a non-kill. This activity is academic if there is
no opportunity for a second shot at the target.

2.1.5 Weapon System Engagements

A weapon system engagement can be defined as a discrete set of encounters
followed by a period of inactivity. Typically, an engagement must be fought
with the resources on hand at the start of the engagement because repair and
replenishment of resources is not feasible.

15

The visualization and design of a system to handle a single encounter is
relatively easy compared to the task of visualizing and designing a system
capable of successfully fighting the majority of possible engagements. The
difficulties at the system level are essentially the same as those faced by
the designer of a responsive data processing facility with uncertain demand,
but compounded by more stringent response times, a hostile "user", and the
fact that engagements vary in the space domain as well as the time domain.

Engagements are presumed to be fought under conditions of limited re-
sources. To ensure that an attack is successful, the attacker must bring suf-
ficient force to bear such that the defense is eventually overloaded or depleted.
The defender is anxious to avoid development and maintenance costs for defensive
capacity that is unlikely to be needed. Hence, he sizes his system according
to the maximum force attack believed within the practical capability of the
attacker, with some allowance for stronger attacks believed to be improbable.
While the key element in winning a single encounter is performance, the key
elements in winning an engagement are: adequate resources, effective manage-
ment of scarce resources, and a system design such that overall performance
degrades "gracefully" under overload (i.e., does not suddenly collapse under
a small increase in attack strength).

There are numerous tradeoffs to be made between system performance and
required resources in the design of an effective weapon system. To complicate
matters, the effect of a performance change in one part of a system may show
up as a significant change in resources needed in a completely separate part
of the system.

To illustrate this point, we will consider a simple system responding to
an attack scenario, as shown in Figure 2-3. For simplicity we will ignore the
spatial geometry of the attackers and consider only their time sequencing. We
shall first consider a system where the reaction time is just adequate to des-
troy a single attacker before he can inflict damage on the defended target.
As described in the previous section, we will consider an encounter to be
divided into observation, decision, and action phases, each phase demanding
different resources. We will also consider that n concurrent encounters in
a given phase demand n units of resource for that phase. We will further
assume that one-half unit of observation resources will be committed to each
attacker in the decision and action phases for purposes of maintenance track.
All encounters and each phase within encounters will consume the same time for
all attackers. Figure 2-3 shows the relative amounts of each resource needed
versus time (i.e., the system load profile) to successfully fight the engagement,

Now let us postulate a performance improvement in the observation phase
(e.g., improved track filter convergence, improved identification algorithm)
such that the time required from first detection to threat identification is
reduced by twenty percent. This reduces the system reaction time by 10 percent
for a single encounter and introduces a slack time interval between first
possible detection and latest permissable intercept. The revised engagement
timeline and system load are shown in Figure 2-4. The heavy dots at the left
of the engagement timeline represent the earliest detection point for an
attacker and the X's at the right indicate the latest permissible intercept.

16

ATTACKER

1 ♦-■
0

2»—

0 A
 I 1 X
 1 1 x

3»- 1 I X
4 •- | I........X

5C 1 |..«.....x

6»- l 1 X
7« I 1 X
8« 1 1 X

9»- 1 i X
10« 1 !•«

ENCOUNTER PHASES
0: OBSERVATION
D: DECISION
A: ACTION

i 1

TIME

INCLUDING
MAINTENANCE TRACK

OBSERVATION
RESOURCES
DEMANDED

-^
TIME

DECISION
RESOURCES
DEMANDED

J1
Ul

TIME

ACTION
RESOURCES
DEMANDED

Ul
TIME

Figure 2-3 System Load During Example Engagement

17

ATTACKER

1_JL_.,_JL_H#...A x
ENCOUNTER PHASES

OBSERVATION
DECISION
ACTION

 1 1 X

3m 1 1 X

4»- I 1 •••! X

5»- 1 1 i X

6» I I 1 •*

?• I l 1,.......^ X

8« i 1 1 *

9m i 1 1 "X

10» I I ■••••••••x

13% REDUCTION

TIME

INCLUDING
MAINTENANCE TRACK

TIME

40% REDUCTION

/

DECISION
RESOURCES
DEMANDED

TIME

5S
I

17% REDUCTION

ACTION RESOURCES
DEMANDED

TIME

Figure 2-4 Revised System Load

18

Because of the slack time in the encounter, handling of certain encounters
can be delayed somewhat until busy resources are freed. Hence, the maximum
needed amount of resources can be reduced. Strangely enough, the performance
improvement in the observation phase permits 40 percent reduction of decision
resources and 17 percent reduction of action resources, but only 13 percent
reduction in observation resources. Even stranger phenomena occur in sched-
uling theory where it can be shown that sometimes improved performance of
individual tasks (i.e., greater speed) can actually lengthen the minimum
schedule to perform a set of tasks [Ref. 1].

The principle problems of engagement planning and analysis can be charac-
terized as widely-studied resource allocation and scheduling problems addressed
by operations research. One type of problem is the 1 x n assignment problem
(i.e., given one interceptor and n targets, which target should be inter-
cepted?). Another is the m x 1 assignment problem (i.e., given m intercep-
tors and one target, which interceptor should be tasked to perform the inter-
cept?). The solutions to these problems are highly context-dependent. The
general problem is the m x n assignment problem which is practically solvable
under very restricted conditions and simplifying assumptions. The 1 x n sched-
uling problem can be stated as: given one resource and n tasks that utilize
the resource (with specified arrival times, execution times and possibly pre-
decessor-successor constraints) what is the sequence of task execution that
results in the minimum completion time for all tasks. The general m x n sched-
uling problem permits variable allocation of resources to minimize the schedule.

Despite all the research devoted to these problems by operations researchers
over three decades, practical techniques for finding optimal solutions without
extensive computation have not been found except for very limited cases. Some
heuristic techniques have been invented that yield near-optimal solutions with
certain assumptions. The absence of powerful analytical techniques has led to
reliance on simulation as the primary tool for verifying the adequacy of pro-
posed weapon system designs.

Engagement management has traditionally been performed by human tactical
commanders, and the role of automation has been to collect, consolidate, and
display relevant data for input to human decisions. This permits the commander,
trained in military science, to make a variety of situation assessments and
introduce novel tactics in response to the particular real-time situation.
When engagement management is automated, the designer must anticipate all
possible contingencies and develop algorithms to yield effective system
response. If the appropriate tactical responses are not delineated in the
system requirements, the military user is effectively surrendering command of
the system to technologists who may be completely ignorant about military
science.

2.2 SPECIFICATION STANDARDS

The current specification standards for requirements statements in the
weapon system development process are stated in MIL-STD-490 and amplified in
MIL-STD-483. These standards apply to all services. The pertinent Type A,
B, and C specifications for systems, subsystems, and software are described
below. The following text is excerpted directly from MIL-STD-490.

19

2.2.1 Type A - System Specification

This type of specification states the technical and mission requirements
for a system as an entity, allocates requirements to functional areas, and
defines the interfaces between or among the functional areas. Normally, the
initial version of a system specification is based on parameters developed
during the concept formulation period or an exploratory preliminary design
period of feasibility studies and analyses. This specification (initial
version) is used to establish the general nature of the system that is to be
further defined during a contract definition, development, or contract design
period. The system specification is maintained current during the contract
definition, development, or equivalent period, culminating in a revision that
forms the future performance base for the development and production of the
prime items and subsystems (configuration items), the performance of such
items being allocated from the system performance requirements,

2.2.2 Type B - Development Specifications

Development specifications state the requirements for the design or
engineering development of a product during the development period. Each
development specification shall be in sufficient detail to describe effectively
the performance characteristics that each configuration item is to achieve
when a developed item is to evolve into a detail design for production. The
development specification should be maintained during production when it is
desired to retain a complete statement of performance requirements. Since
the breakdown of a system into its elements involves items of various degrees
of complexity which are subject to different engineering disciplines or speci-
fication content, it is desirable to classify development specifications by
sub-types. The characteristics and some general statements regarding each
sub-type are given in the following paragraphs.

2.2.2.1 Type Bl - Prime Item Development Specification

A prime item development specification is applicable to a complex item
such as an aircraft, missile, launcher equipment, fire control equipment,
radar set, training equipment, etc. A prime item development specification
may be used as the functional baseline for a single item development program
or as part of the allocated baseline where the item covered is part of a
larger system development program. Normally items requiring a Type Bl speci-
fication meet the following criteria:

a) The item will be received or formally accepted by the procuring
activity on a DD Form 250, sometimes subject to limitations
prescribed thereon.

b) Provisioning action will be required.

c) Technical manuals or other instructional material covering operation
and maintenance of the item will be required.

d) Quality conformance inspection of each item, as opposed to sampling,
will be required.

20

2.2.2.2 Type B2 - Critical Item Development Specification

A Type B2 specification is applicable to an item which is below the level
of complexity of a prime item but which is engineering critical or logistics
critical.

a) An item is engineering critical where one or more of the following
applies:

1) The technical complexity warrants an individual specification.

2) Reliability of the item significantly affects the ability of the
system or prime item to perform its overall function, or safety
is a consideration.

3) The prime item cannot be adequately evaluated without separate
evaluation and application suitability testing of the critical
1 tem,

2-2.2.3 Type B5 - Computer Program Development Specification

This type of specification is applicable to the development of computer
programs, and shall describe In operational, functional, and mathematical
language all of the requirements necessary to design and verify the required
computer program in terms of performance criteria. The specification shall
provide the logical, detailed descriptions of performance requirements- of a
computer program and the tests required to assure development of a computer
program satisfactory for the intended use.

2.2.3 Type C - Product Specifications

Product specifications are applicable to any item below the system level,
and may be oriented toward procurement of a product through specification of
primarily function (performance) requirements or primarily fabrication (detailed
design) requirements.

a) A product function specification states: 1) the complete performance
requirements of the product for the intended use, and 2) necessary
interface and interchangeability characteristics. It covers form,
fit, and function. Complete performance requirements include all
essential functional requirements under service environmental condi-
tions or under conditions simulating the service environment. Quality
assurance provisions include one or more of the following inspections:
qualification evaluation, pre-production, periodic production, and
quality conformance.

b) A product fabrication specification will normally be prepared when
both development and production of the item are procured. In those
cases where a development specification (Type B) has been prepared,
specific reference to the document containing the performance require-
ments for the item shall be made in the product fabrication specifi-
cation. These specifications shall state: 1) a detailed description

21

of the parts and assemblies of the product, usually by prescribing
compliance with a set of drawings, and 2) those performance require-
ments and corresponding tests and inspections necessary to assure
proper fabrication, adjustment, and assembly techniques. Tests
normally are limited to acceptance tests in the shop environment.
Selected performance requirements in the normal shop or test area
environment and verifying tests therefore may be included. Prepro-
duction or periodic tests to be performed on a sampling basis and
requiring service, or other, environment may be prepared as Part II
of a two-part specification when the procuring activity desires close
relationship between the performance and fabrication requirements.

2.2.3.1 Type Cl - Prime Item Product Specifications

Prime item product specifications are applicable to items meeting
the criteria for prime item development specifications (Type Bl). They may
be prepared as function or fabrication specifications as determined by the
procurement conditions.

2.2.3.1.1 Type Cla - Prime Item Product Function Specification

A Type Cla specification is applicable to the procurement of prime items
when a "form, fit and function" description is acceptable. Normally, this
type of specification would be prepared only when a single procurement is
anticipated, and training and logistic considerations are unimportant.

2.2.3.1.2 Type Clb - Prime Item Product Fabrication Specification

Type Clb specifications are normally prepared for procurement of prime
items when: a detailed design disclosure package needs to be made available;
it is desired to control the interchangeability of lower level components and
parts; and service maintenance and training are significant factors.

2.2.3.2 Type C2 - Critical Item Product Specifications

Type C2 specifications are applicable to engineering or logistic critical
items and may be prepared as function or fabrication specifications.

2.2.3.2.1 Type C2a - Critical Item Product Function Specification

Type C2a specification is applicable to a critical item where the item
performance characteristics are of greater concern that part interchange-
ability or control over the details of design, and a "form, fit and function"
description is adequate.

2.2.3.2.2 Type C2b - Critical Item Product Fabrication Specification

A Type C2b specification is applicable to a critical item when a detailed
design disclosure needs to be made available or where it is considered that
adequate performance can be achieved by adherence to a set of detail drawings
and required processes.

22

2.2.3.3 Type C5 - Computer Program Product Specification

A Type C5 specification is applicable to the production of computer
programs and specifies their implementing media, i.e., punch tape, magnetic
tape, disc, drum, etc. It does not cover the detailed requirements for
material or manufacture of the implementing medium. When two-part speci-
fications are used, Type B5 shall form Part I and Type C5 shall form Part
II. Specifications of this type shall provide a translation of the performance
requirements into programming terminology and quality assurance procedures
necessary to assure production of a satisfactory program.

23

3.0 WHAT IS A REQUIREMENT?

The totality of interactions between any real deployed system and the
rest of the universe is unknown, in large part unmeasurable, and, thus,
unknowable. What we conceive as the "system" is, in all cases, an abstraction
from reality that retains a limited set of measurable parameters meaningful in
fulfilling the system objectives.

Within the range of these system parameters, and others with measurable
effects on the system or its environment, there are "desirable" and "undesir-
able" values. The purpose of stating requirements is to define the boundary
between desirable and undesirable, and especially that between acceptable and
unacceptable. A requirement is simply a statement of something needed to
ensure that the system meets an operational objective at the proper time.

This does not mean that real operational needs will always be within
current technological capabilities at acceptable cost. Practicality demands
that only those needs that are technically and economically feasible be
addressed at a given time. Thus, a requirements engineering discipline must
provide mechanisms to avoid infeasible combinations of requirements early,
before ill-fated developments are undertaken.

Beyond the concept of a requirement as "something needed", there are
different types of requirements, different notions of what separates require-
ments from design, and certain properties of good requirements that make things
easier for the development team. The following sections explore some of these
issues.

3.1 A HIERARCHY OF SOFTWARE REQUIREMENTS

Figure 3-1 decomposes the totality of requirements affecting software into
a hierarchy of categories of requirement types. Each of the three major cate-
gories is discussed in the following paragraphs.

3.1.1 Processing Requirements

Processing requirements are those that define the active role of the
software in the weapon system and those features of the software that affect
the proper operation of other subsystems. Processing requirements can be
further decomposed into three categories:

• Functional Requirements -- define the conditions for initiation and
termination of software elements and define "what the software is to
do" during its period of operation.

• Performance Requirements -- define "how well" the software is to
perform its functions, principally in terms of computational
accuracy and response times to given stimuli.

• Interface Requirements -- define the agreed-upon assumptions that the
developers of one subsystem can make about the operation of other sub-
systems, and the physical or information links between subsystems.

24

• SUBSYSTEM , FUNCTIONAL
CONTROL LIMITS DATA

• DATA RATES

• RESPOfiSE
• PORT-TC-PORT
• ASYNCHRONOUS
• AGE-OF-CAIA

• PERIODIC
• AUTOGENOUS
• DATA INITIALIZATION

Figure 3-1 Types of Software Requirements

At early stages in the development of a system it is preferable to state
the requirements in a computer-independent form (i.e., not presuming a partic-
ular processor or operating system). This provides a baseline to accommodate
later changes in host processors and encourages attention to portable software.
As system design proceeds, specific machine-dependent requirements may be levied,
but they should be identified as such for traceability purposes.

In this report, we are primarily concerned with the problems of processing
requirements. These are concerned predominantly with technical considerations.
The non-processing requirements and project requirements are driven primarily
by management considerations.

3.1.2 Non-Processing Requirements

Non-processing requirements are those that deal with the software as a
manufactured component rather than an action-producing entity. Included in
this category are requirements on the form and content of supporting documen-
tation, constraints on programming languages, structural design restrictions
(e.g., structured programming), requirements on the physical medium for soft-
ware delivery (e.g., punched cards, tapes), and restrictions on routine length.

The non-processing requirements deal with things that can usually be
verified by inspection of physical items, including program listings and
support documentation. They generally affect the methods of production only
when the consequences of those methods are visible directly in the deliverable
software, or its representation. Most non-processing requirements evolve from
practices that are proven or believed to produce higher quality software.

3.1.3 Requirements on the Project

Requirements on the project are those that constrain cost and schedule,
and promote management visibility and orderly progress. Examples are require-
ments for design reviews, progress reporting, implementation plans, quality
assurance plans, and configuration management plans. These developmental
requirements affect the software indirectly by promoting an orderly and manage-
able development environment.

Generally, requirements on the project are established through contractual
provisions independent of the specifications on the product. Although this
study is not concerned with generating these types of requirements, it should
be pointed out that a disciplined requirements engineering methodology for
product requirements makes it easier to comply with project requirements and
can provide auxiliary information to demonstrate compliance.

3.2 REQUIREMENTS ISSUES

In this section, we will discuss the relationship between requirements and
design and explore some other characterizations of requirement types.

26

3.2.1 Requirements and Design Freedom

At any level of system development, the requirements at that level should
state the needs of the system without inappropriate assumptions or constraints
on the solution. In this way, the designer is left with the maximum latitude
to find an effective solution.

Design freedom is not an exercise in technical democracy; it must be
justified from the overall systems development point-of-view. It cannot be
assumed to be obviously good just because it sounds good (i.e., who can be
against freedom?). Its real justification must stem from the concept that
some design decisions are more appropriately made at a lower level upon con-
sideration of:

t Information available

• Technical skills required to properly make the decisions

• Cost associated with delaying decisions

• Cost associated with making wrong decisions

• Interdependence of decisions with other decisions at the same level

• Lead time, resources, schedule impact of implementing the decisions.

In particular, a decision made as soon as possible has many benefits if
it is made correctly. Furthermore, in many cases there are many workable
("correct") approaches and the quest for an optimum is not cost-effective.
Therefore, feasibility must be considered and design decisions made at all
levels, else the process may proceed down costly, impractical paths. The
requirements development process should, therefore, provide data to support a
growing confidence that the system is feasible, and consider potential feasi-
bility problems when making design decisions.

For instance, the following are considered to be examples of process
design decisions:

• Algorithm approach (e.g., decoupled vs. fully coupled Kalman filter
for tracking)

• Software packaging (e.g., data base organization, algorithm
boundaries)

• Computer scheduling approach (e.g., specific interrupt priority
scheme). J

The following are not process design decisions, and are to be specified
in the software requirements:

t Paths of processing steps to be applied to DP stimulus data

• Data to be saved and output (functional description)

• Accuracies and time responses.

27

Certain requirements on lower levels of development will, of course,
automatically follow from design decisions at a higher level. However, con-
straints that are not implied by these decisions are to be avoided. For
instance, if the operation of the weapon system demands that certain informa-
tion be available within a given response time, it is appropriate for the
system engineer to specify the information items and the response time. It is
not appropriate for him to specify the structure of the data base. As long as
the information is available at the right time, he can be indifferent to the
organization of the data base.

3.2.2 Requirements by Choice and Inescapable Requirements

"Requirements by choice" are, in effect, design decisions already made.
Inescapable requirements are those that automatically follow from design
decisions or from uncontrollable threat and environment characteristics.

All system developments evolve from a single "requirement by choice" --
that choice being to build a system. Immediately, a large set of inescapable
requirements are imposed by that choice. For instance, it is known that an
opponent has just developed, and intends to deploy, a tactical fighter-bomber,
X, with maximum attack speed, V knots, and weaponry including air-to-ground
missiles with 50 NM range. Aircraft X can be used in attacks against a class
of point targets, Y, (and presumably can attack from any azimuth). The choice
here is whether or not to defend Y against X. If the answer is yes, the first
requirement on the system is "defend Y against X".

From this "requirement by choice", a set of inescapable requirements
immediately follows, defined by the properties of X. One of these is that no
X can be allowed to penetrate within 50 NM from a defended target (the range
of X's weaponry). A second requirement is, given a defense system reaction
time, tR, between first detection and intercept, the range of the attacker from

the target, Rp, at which detection is assumed must obey the relationship

Rn > vtD + 50 (in nautical miles).

We still have freedom to vary tD and R , but the relationship that must be
K U

maintained between them is an inescapable requirement.

The same interaction between design choices and requirements holds at each
level of system development. Let the requirements for a Level N system compo-
nent be defined from functional analysis and design decisions at Level (N-l)
as shown in Figure 3-2. The designers at Level N receive these requirements
and evaluate them. Through decomposition of the functional and performance
requirements on the component, alternative designs are proposed to satisfy the
requirements. Each alternative design is described in terms of subcomponents
that perform subfunctions of the functions allocated to the component. After
evaluation of the alternatives, a "best" design is selected for development.
Inherent in this design are several design decisions, and a definition of sub-
components. For each subcomponent, a set of requirements dictated by the
design at Level N is prepared. These requirements are input to the subcompo-
nent designers at Level (N+l).

28

LEVEL (N-l)

COMPONENT 1
REQUIREMENTS

LEVEL (N)

g LEVEL (N+l)

ANALYSIS
AND
EVALUATION

COMPONENT 1.3

COMPONENT 1.2

COMPONENT 1.1
REQUIREMENTS

Figure 3-2 Interaction of Requirements and Design

29

The legitimate requirements to be passed to the Level (N+l) designers are
the necessary "requirements by choice" at Level N, the inescapable requirements
that follow, and the inescapable requirements from higher levels. If many
alternative design choices are possible at Level (N+l) and they are all satis-
factory in terms of the design at Level N, then the Level (N+l) designer
should make the choice, not the Level N designer, unless there are explicit,
defensible reasons for doing otherwise.

3.2.3 Problem-Oriented Versus Solution-Oriented Requirements

A requirement is problem-oriented (i.e., "top-down") if it states a need
in terms of a higher level context or mission, and levies that requirement
upon the entire unit that is tasked with satisfying that requirement. If we
are identifying requirements for a data processing subsystem (DPSS), the
requirement should be stated as, "The DPSS shall .,.", and not, "Routine X of
Program Y shall ...".

A requirement is solution-oriented (i.e., "bottom-up") if the need is
stated indirectly, in terms of specific components of the unit that is tasked
with the requirement, or in terms of how the need is to be fulfilled. The
abstract statement of the linear filtering problem with all attendant assump-
tions explicitly stated is a problem-oriented requirement for a "tracking
filter". The description of a seven state-variable Kalman filter that "shall
be implemented" is a solution-oriented requirement for a tracking filter.

The danger of solution-oriented requirements is that they obscure the real
problem at a given level. The presumed solution may not be the best or most
practical one, and in some-cases may be completely inappropriatft. At best, the
solution-oriented requirement complicates the traceability of the solution to
the real problem, and at worst delays the detection of erroneous assumptions.
It may also complicate the satisfaction of other requirements where a strong
relationship between the requirements is not obvious.

3.2.4 Soft and Firm Boundary Requirements

The designation of the hardness of constraints, restrictions, and boun-
daries of performance are of two classes:

(i) Statistical or probabilitic (soft), and

(ii) Absolute or deterministic (firm).

Example:

3.2 The estimate of range shall not differ from the actual value
(computed from precision trajectory generation as discussed
in ...) by:

Type (i) - A normally distributed distance error with zero
mean and standard deviation of 1500 feet.

Type (ii) - 1000 feet in absolute value.

30

Statistical or probabilistic requirements, when well-defined, are funda-
mentally complex. They are usually couched in terms of stochastic processes
with associated probability distributions seldom defined. However, the
performance boundaries erected by these requirements provide an excellent
environment for design freedom. Due to the boundary elasticity, so-called
off-nominal cases are easily covered. This type of requirement is easily
levied when ideas and details are fuzzy. Even when not well-defined, those of
type (i) still communicate important gross information.

Type (11) requirements are fundamentally simple because they are in terms
of elementary inequalities. They are easily stated with high precision.
Mathematical analysis and proofs of type (11) propositions are more easily
accomplished. It is clear that improper allocation of these requirements can
yield overly-restrictive design constraints. Type (ii) requirements are not
usually levied when ideas are fuzzy, but only when details and underlying
structures are readily seen.

Type (i) requirements are more numerous in early stages of system
development, whereas type (ii) requirements occur more frequently in the later
stages of development (see Figure 3-3). It should be noted that some types of
requirements (e.g., reliability, availability) will always be type (i) because
of the probabilistic definition of the parameters.

3.2,5 Long and Short Time-Span Requirements

Two categories of requirements applying to periods of system action are:

(a) End item or whole process, and

(b) Intermediate item or segmented process.

These are illustrated in Figure 3-4.

Example: Two type (a) requirements are:

3.2.a The system shall obtain at least a 40 percent defended
target survivability.

3.2.b The leakage due to the DP shall be no more than 10 percent
of the system leakage.

The type (b) requirements are:

3.2.c After three valid track returns have been received, the
estimate of object state shall be known sufficiently well
so that

3.2.d Radar power usage shall satisfy the short term restrictions ..

The type (a) requirements are more strategic in nature. They are levied
in the early stages of the development process because they deal more directly
with the system goals and objectives. As a result, these requirements affect

31

SYSTEM
UNCERTAINTIES

SYSTEM
MORE CERTAIN

i
CO

I

-_ o ofo o o o

BEGINNING
CONCEPTS

— TYPE (1)

O TYPE (11)

o_- o
o O

o o0o00
IMPLEMENTATION

Figure 3-3 Requirements Densities in Systems Development

TYPE (a)

-SYSTEM ACTION

BEGIN

CO

I TYPE (b)

Figure 3-4 Relative Time-Spans of Type (a) and Type (b) Requirements

32

many parts of the system and apply to the time interval elapsed by the
complete system engagement. Generally, the terminology in the type (a)
requirements is simple and easy to understand. The impact of the type (a)
requirements on design freedom is at two extremes. On one hand, if the state-
of-the-art is not pushed, design choices are quite numerous. On the other
hand, if type (a) requirements are improperly levied or the circumstances
dictate very difficult goals and objectives, then most alternative designs are
eliminated from consideration. It is clear that requirements of type (a)
require entire system dynamics for testing.

The type (b) requirements have tactical implications. These are more
often levied in the later stages of system development and apply to fewer parts
of the system. The type (b) requirements apply to specified segments of the
system engagement period. The terminology usually is not simple and is filled
with minute system details. The segmenting of the system process interval
usually admits many design decisions so that freedom is diminished by intro-
ducing (b) requirements. Testing of type (b) requirements is much more like
"Unit Testing" and requires only a limited interval of system dynamics.

3.2.6 Open System Versus Closed System Requirements

An example of an open system requirement is that proposed to be levied
upon the guidance software for a strategic missile:

The software shall ensure that the warhead target miss distance in
operational use upon enemy targets shall be no more than X (3a)
from the aim point in a horizontal plane.

This simple statement transfers to the guidance software all responsibility
for: faulty inertial measurement units, control misalignments, propel 1 ant
faults, geodetic measurement errors, reentry vehicle aerodynamic variations,
and weather variations in the target area. If taken literally, a full-scale
war (carefully instrumented and monitored) would be necessary to test the
software for compliance with the requirement, and the test results would be
inconclusive. In any case, no contractor can rationally be responsible for
unspecified environmental conditions beyond his knowledge or control. The fact
that "open-ended" requirements are accepted implies that no one takes them
seriously or literally. In many cases this eventually results in turbulent
misunderstandings between customer and contractor.

A more reasonable and objectively testable statement of the requirement
would read something like this:

Using identical stimuli and responses provided by Missile and
Environment Model A, the software shall ensure that the computed
target miss distance in a horizontal plane (at simulated burnout)
varies by no more than X (3cr) from that computed by Model B,

The combination of Model A and Model B in this case forms a closed reference
system. The combination of Model A and the software under test forms another
closed system. The differences in results between Model B and the subject
software are amenable to analysis. A word of warning is appropriate here.

33

If one wishes to levy such requirements, he must ensure that Model B is the
most accurate model of the desired behavior obtainable, and be ready to prove
it.

In real-time system development, the high fidelity Model B generally
cannot meet the renl-time performance requirements. Otherwise, it probably
would have been the basis for the actual software. Although not perfect, the
concept of testing in the context of a closed system model (and stating
requirements in those terms) is better than stating open-ended requirements
that are not subject to test, hence, meaningless.

3.3 ATTRIBUTES OF A GOOD REQUIREMENTS SPECIFICATION

Analysis of the aforementioned problems and issues leads to a better
understanding of the necessary attributes of a good requirements specification,
Although the requirements development process must be capable of producing
specifications which address a long list of "abilities", eight attributes seem
to be dominant, and are summarized below:

1) Correctness -- A specification is said to be correct if, when all
of the requirements in the specification are satisfied, the pro-
duct will satisfy the originating specification.

2) Modularity -- Requirements should be modular for the same reasons
that the software should: a) Change is to be expected as.a way
of life -- if the requirements are modular, then changes are
easier to analyze, invoke, and control, b) As the details get
filled in and the total volume of material and work grows, division
of labor becomes a must. Modularity allows a rational division
of labor. Useful modularity means that each "module" of require-
ments be internally complete and that it fits into the entire system
through very well-defined (controlled and traceable) interfaces
with other "modules".

3) Completeness -- "What you see is what you get" is the rule. If a
capability, feature, or performance parameter is not specified as
a requirement, there is absolutely no reason to believe that it
will appear in the final product. Engineers and programmers are
typically honest and professional, but they are subject to schedule
and budget constraints. Implementing things that are not specified
1s poor management on their part. Therefore, it is imperative that
the requirements specification must contain everything expected of
the system.

4) Explicitness -- This attribute is a corollary to completeness and
testability. The requirements must be stated explicitly. The
specification should not require the reader to "read between the
lines", correlate two statements to obtain an implied requirement,
or to otherwise apply analysis to discover what is required.
Additionally, all terms used must be unambiguous. The law of
perversity guarantees that if two meanings can be applied to a
statement in a specification, the wrong one will be followed.

34

5) Testability -- It is obvious that the system should be tested for
conformance to the specification to which it was built. However,
it is surprisingly simple to write requirements which look very
good only to discover later that there is absolutely no way to
test the end product for compliance. Every requirement specified
must be examined for testability. If it is found to be untestable
or unverifiable, it should be changed.

6) Traceability -- In a large system where several levels of require-
ments and design specifications exist, modularity enhances trace-
ability. Both upward and downward traceability must exist. Downward
traceability allows one to verify that every requirement in a
specification has been considered in lower level documents and allows
identification of where a change in requirements affects design.
It allows verification of performance against the parent requirements
and allows an impact analysis to be made in the event that a detailed
performance requirement cannot be met. If the requirements speci-
fication is intended to serve more than one user, special constraints
are imposed in presenting the information content. If lateral
traceability is imposed on the specification, and a change occurs
in one part of the specification, its impact can be traced throughout
the specification to maintain consistency of requirements.

7) Feasibility -- A specification is said to be feasible if there is
at least one design for the product which will meet the specification.
We distinguish between analytical feasibility (given the input data,
there exists a sequence of algorithms which will achieve the speci-
fied performance), and real-time feasibility (there exists algorithms,
a data processor, and a software design which will satisfy both the
analytic and timing requirements). Obviously, real-time feasibility
cannot be insured without performing a real-time design for at least
one data processor.

8) Design Freedom -- The software designer must be told what degrees
ot freedom are available to meet the constraints. This includes:

• Design Independence -- A requirements specification should state
"what" is to be done, when, and how well, but not "how" it is
to be accomplished for real-time software. A good requirements
specification should allow a maximum of freedom in the subsequent
design and implementation phases. This does not imply that
design decisions are not made in the development of the require-
ments -- they are. But, no design decision should be arbitrarily
made which unnecessarily restricts the design freedom of the next
phase of the development cycle. This means that the techniques,
formats, and means of presenting the requirements must not
inadvertently introduce unintentional design choices.

• Sufficiency -- A requirements specification must not only state
everything which is required of the system, but must also supply
information needed by the designer to do his job. Information

35

known to the requirements engineer should not be left for the
designer to reinvent or rediscover. Information which would be
useful to the designer, and does not logically fit into the
specification itself, can be included in a for-information-only
appendix or in separate documents.

36

4.0 FRONT-END PROBLEMS

Several recent studies have examined the problems of the requirements
generation process. In nearly every software project which fails to meet
performance and cost goals, requirements inadequacies play a major and expen-
sive role in project failure. In too many projects, requirements have been
late, incomplete, inconsistent, ambiguous, overconstraining, or incorrect.
Analysis of problem reports from various projects indicates that incorrectness
is the dominant requirements problem. A consistent one-third of such reports
deals with incorrect or infeasible requirements. Incompleteness is the second
most serious problem, resulting in 21 to 29 percent of the problems reported.
Ambiguity causes 25 to 30 percent of early problem reports, but as a project
matures the percentage decreases to less than 10 percent. Inconsistency,
however, causes a stable 9 to 10 percent of reports at all stages of a
project [2}.

It would be convenient, but superficial, to say that these errors origi-
nated with the persons who actually wrote the software requirements. While
many errors do emerge from this source, there are many earlier errors in
system analysis and system engineering not found until late in a project.
These errors are critical, sometimes resulting in cancellation of projects.

The fact that requirements errors occur is merely symptomatic of under-
lying factors and issues encountered in modern weapons system development. We
believe that the most significant factors are:

Complexity

Communication

Validation

Traceability

Change response.

4.1 COMPLEXITY

Modern military systems are complex technology products involving many
scientific disciplines and specialized engineering expertise. This will
always be so because military systems operate in an environment where the
enemy is constantly trying to complicate the problem and the mission of the
system.

The inherent complexity of any system arises from several sources:

• Total number of components

t Intricacy of interconnection

• Number of different types of components

• Strongly coupled interactions between components

37

• Variety of system responses

t Number of operational mission objectives.

The complexity of a given type of system tends to increase faster than the
capacity of the system, indicating a general "diseconomy of scale" with respect
to the number of system components. For instance, in a telephone switching
network connecting N parties to N trunks without blocking, the number of
switches increases, at best, proportionally to N In N [3].

The inherent complexity of the system is a primary factor of the system
operational cost and its components, such as training and maintenance. It is
also reflected in increased development complexity. The development complexity
of a system is indicated by several factors:

• Number of contractors

t Total number of people on the project

• Number of product versions

• Number of requirements

t Number of interfaces with other systems
■

• Number of alternative solutions

• Number of distinct design decisions

0 Degree of abstraction of the product

• Number of distinct technical disciplines.

To some extent the inherent complexity of the delivered system may be
reduced at the expense of increased development complexity. This can be done
by increased design effort to find a better solution and rigorous planning and
control of the design process. In military systems, the increased development
complexity is often needed to predict the performance of elements that cannot
be tested under operational loads in the true environment.

Approaches to reducing both the inherent and development complexity of
large systems are well advanced in the area of hardware engineering. Less
progress has been made in the area of software engineering because the product
is an abstract entity, not subject to physical measurement and inspection.

Several means for reducing complexity have been used in system develop-
ment. These include:

Abstraction

Decompos i ti on/Al1ocati on

Refinement/Partitioning

Analogy/Simulation

Hierarchical Organization

Specialization.

38

The first three concepts are means for reducing multi-dimensional prob-
lems (and multi-dimensional solutions) to simpler, more easily comprehended
parts. While these methods describe wholes in terms of parts and relation-
ships between parts, they are static representations that give little insight
into the dynamic interactions of the system. By use of analogy and simulation,
we make decisions about the dynamic behavior of a system by evaluating the
dynamic behavior of system models.

Hierarchical organization is widely used, both to define management res-
ponsibility and to conceptually structure a system. This is because the human
brain is able to perceive and manipulate only about five to nine distinct
things at a given moment. Hierarchical structure is a device that allows the
human brain to span a larger set of distinct things in a systemmatic manner.
Similarly, specialization is a means to allow groups of human beings to per-
form more tasks or consider more distinct ideas than otherwise possible.

The complexity of a system has an immediate impact on the problems of
requirements definition, analysis, and maintenance. We can expect that, the
more complex the system, the greater the number of requirements. Further,
because relationships exist between requirements, the complexity of require-
ments analysis and subsequent system design grows faster than the number of
requirements.

Let n be the number of distinct requirements and let p be the proba-
bility that any two requirements are inconsistent or otherwise conflict with
each other. The expected number of inconsistencies is given by

E = n(n-l)
2

The average number of inconsistencies per requirement is E/n. We can tabu-
late E and E/n as a function of p as follows:

n E E/n
10 45p 4.5p

100 4950p 49.5p

1000 499500p 499.5p

10000 49995000p 4999.5p

This example is conservative because conflicts between sets of individually
consistent requirements are not considered, and because more requirements
implies more people generating requirements, which increases the probability
of inconsistency. However, the example indicates that the amount of work
necessary to remove requirements inconsistencies in large systems can be
substantial, even if the probability of inconsistency is very small.

39

4.2 COMMUNICATION

The specialized division of knowledge and labor forced by system com-
plexity leads to the communication problem. The complete documentation of all
requirements for a system and its components requires a multi-level hierarchy
of specifications with many separate specifications and interface documents
at each level. Many people with different backgrounds and specialties contri-
bute to this effort. Hence, identical words in different parts of a specifi-
cation may have different intended meanings, and may be interpreted in yet
another way by the reader. The effects of interpretation and transformation,
propagated through a specification hierarchy, lead to erroneous mutation of
requirements which is later detected as ambiguity, inconsistency, and
incorrectness.

The communication problem can be separated into three subdivisions:

• Horizontal communication

• Vertical communication

• Self-communication.

Horizontal communication is between parties operating at the same level
of system development, either within a technical discipline or across technical
disciplines. Communications between process designers, or between data pro-
cessing subsystem engineers and radar subsystem engineers are examples.

Vertical communication is between parties operating at different levels
of system development. Communications between system engineers and process
designers or between software designers and programmers are examples. The
party at the higher level generally has a broader but more shallow view of
the system than the party at the lower level. The system engineer will know
what effect a particular tracking algorithm has on the outcome of an engage-
ment, but may be unaware of and unconcerned about how that algorithm is imple-
mented on a particular computer. The programmer, on the other hand, will know
the most efficient coding of the algorithm in assembly language for a particu-
lar machine, but may have no idea of the role of the algorithm on the total
system.

Self-communication is between a party and himself at a later time. This
is the process of memory and recall, perhaps augmented by external recording
of information.

In each of these types of communication, both parties must share a common
definition of terms, relationships, and concepts. This is very difficult in
advanced technology work where implied relationships are multi-dimensional and
abstract concepts are poorly understood, and is made even more difficult by the
need for specialization which emphasizes the difference in knowledge and view-
point between individuals.

40

A second difficulty in communication is the limitations inherent in the
communication medium. Natural language, in addition to its semantic ambi-
guity, is presented in a one-dimensional sequence (i.e., relationships between
n parts are described one at a time). Diagrams and pictures capture two-
dimensional relationships and three-dimensional relationships by projection.
Three-dimensional models and holographic projections capture three-dimensional
relationships (and four-dimensional projections), but are generally impracti-
cal to reproduce and distribute in large quantity. Fifth-dimensional and
higher relationships can be represented only abstractly in tables, mathematical
equations, and lately, in computer data bases.

Effective communication of data processing requirements is particularly
difficult because we are dealing with abstract entities: information and
actions on information. Our abilities to visualize the dynamic behavior of
software are severely limited. The limited success in specifying software
requirements to date is probably due more to the assumptions associated with
single sequential data processors (one program in execution at any instant)
than to advances in requirements technology. As multiprocessors and distri-
buted processing are exploited, we are becoming aware that we have great
difficulty in representing and describing concurrent behavior, and that even
basic dynamic concepts such as "process" are ill-defined and poorly understood.

Within small project groups, interpersonal communication can be reasonably
effective without impairing productivity. As a project grows in size, commu-
nication becomes indirect, the reliability of information exchange decreases,
and a significant fraction of the project staff is involved solely with docu-
mentation and liaison functions. This has a direct impact on the cost of a
project and the feasible minimum-time schedule.

Project productivity is the amount of useful work produced by a project,
divided by the elapsed time required to produce it (task output/time). Indi-
vidual productivity is the average rate of output per individual (project
productivity/manpower). The general trends of project productivity and
project cost as functions of the manpower applied to a project are shown in
Figure 4-1.

As manpower is added to a project, productivity improves rapidly at first.
As the group becomes larger, pressure to produce grows and a synergism of
effort develops. At some point, however, the project becomes so large that
coordination of effort starts to become a problem. A peak in individual pro-
ductivity is reached. This corresponds to the minimum of project cost.

If more manpower is added, an increasing fraction of it will be devoted
to coordinating the activities of others. Individual productivity declines,
slowly at first. The additional work output of the added manpower stays ahead
of the loss in individual productivity. Finally, however, we reach a point
where individual productivity losses start to exceed the work produced by
additional manpower. This is at the peak project productivity, which corres-
ponds to the minimum time in which the project can be done.

41

PEAK INDIVIDUAL PRODUCTIVITY
MINIMUM COST .

ro

•PROJECT
PRODUCTIVITY

PEAK PROJECT PRODUCTIVITY
MINIMUM TIME

PROJECT
COST

MANPOWER

Figure 4-1 Productivity and Cost Versus Manpower

After this point, addition of manpower will lead to a breakdown of coor-
dination and saturation of supervision. Individual productivity drops off
rapidly and the project actually takes longer to complete. Since more men are
working for a longer period, cost rises rapidly. Fewer men could have done
the project in the same time, at less cost.

Two approaches can be pursued to reduce the communication problem and
increase project productivity: 1) reduce the need for communication, and 2)
improve the effectiveness of communication.

In the software development field the so-called "Parnas Principle" [4,5]
is a design rule that exemplifies the first approach. Parnas defines "modules"
as things that have to be designed and developed together — in effect, a
natural work assignment. Parnas identifies the connections between modules
as the assumptions modules make about each other. The criterion for modularity
proposed by Parnas is that each module should implement a design decision and
isolate and hide that decision from other modules (i.e., every module hides
a secret). In this way, the inter-module interfaces must remain constant even
if the internal design decisions change. Under this principle, different work
groups need only agree on interface assumptions and do not need to exchange
information on details of internal design decisions. Effective use of the
principle demands that the "problem structure" (i.e., the requirements) be
defined in a structured, analyzable form, and that work units be assigned
according to that structure.

The second approach to reducing communications problems is typified by
requirements statement languages (e.g., RSL, URL) and program design languages
(e.g., PDL). Each of these languages provides an English-like, yet structurally
constrained, form of expression that is computer-analyzable to some degree.
The intent of these languages is to reduce ambiguity, ensure consistency, and
minimize the chances of incompleteness.

4.3 VALIDATION

Many requirements problems would be detected before they caused signifi-
cant harm if requirements were effectively validated at each stage of system
development. However, requirements expressed in free-form English text are
difficult to validate with any objective degree of confidence. Two approaches
have been widely tried in the past: independent review and simulation. Inde-
pendent review has been partially effective because the reviewers are con-
sciously questioning and critical. But, there is no objective evidence that
a review has been thorough and many discrepancies slip by unnoticed because
of incorrect assumptions and communication problems.

Simulation is useful in uncovering faulty assumptions about dynamic,
phenomena resulting from static visualizations, but is plagued with all of
the difficulties of requirements interpretation in main-line software develop-
ment. There is no assurance that the simulation faithfully models the charac-
teristics intended in the specification because it is not even subjected to
the degree of testing and scrutiny demanded for deliverable software.

43

The question to be asked in requirements validation is "do the stated
requirements conform to the problem?". The question to be asked in product
validation is "does the software product conform to the requirements?". Ob-
viously, objective product validation is not possible if the stated require-
ments are not testable. Yet, requirements are often stated without thought
to their specific testability. Much later it is realized that a particular
requirement is not testable, hence, meaningless, or has several possible
meanings, each subject to a different test.

In developing the Software Requirements Engineering Methodology (SREM),
TRW found a means to guarantee that stated performance requirements are test-
able. The techniques also provide the means to remove ambiguity about the intent
of the test through identification of precise "validation points" on stimulus-
response paths through the software.

In current software development practice, about 10 to 15 percent of the
budget is allocated to requirements definition, while 40 to 50 percent of the
budget is spent on testing. Anyone with extensive experience in software
integration and test is familiar with the inordinate amount of time and
effort needed to interpret requirements and the relationships between them
in order to generate efficient and effective test plans. It is our hypothesis
that a significant percentage of testing costs are the result of inadequate
requirements definition practices, and that the investment of time and money
in the requirements definition effort will be more than recovered by avoidance
of the "hidden costs" of bad requirements in the testing phase. Unfortunately,
proof of this hypothesis on a conclusive and scientific basis would require
costly and impractical experiments on large-scale projects, with provision for
independent and parallel "control experiments".

4.4 TRACEABILITY

In any large system, the original requirements can be expected to change,
after operational deployment and, in today's environment, during system de-
velopment. These changes result from changing missions, changing threats and
technical difficulties, either at a lower level or in a different subsystem.
To completely incorporate the effects of changes at any level, detailed trace-
ability between all related elements of the system must be ensured. In the
past, the effects of change were laboriously traced from document to docaraent,
manually and subjectively. The process was expensive and inefficient. Effects
of changes were accounted for in one passage of a specification, but related
items in other sections were often overlooked. This resulted in inconsisten-
cies to be detected at a later date. Recent data management practices have
improved the situation from one level to the next. But, comprehensive trace-
ability, backward and forward, from initial problem assumptions to preliminary
design, has not yet become common practice, even though it is technically
feasible.

One of the advantages of using automated data base systems to retain and
maintain requirements is that traceability relationships can be established as
an integral and disciplined part of the requirements generation process, rather
than as an afterthought. Once established, the structured relationships
between requirements can be displayed at will (or suppressed if answers to

44

different queries are being sought). Unlike manually generated documents, the
automated data base implicitly keeps track of all references to a given element
at a given development level. Between development levels (e.g., system engi-
neering to DP engineering, or system engineering to process design) human inter-
vention to establish traceability relationships is still required. This is
because the elements and representations are different. For instance, the
relationship that (Task X) implements (Requirement Y: The radar shall be com-
manded to track a given object at no more than 10 HZ) is a matter for humans
to decide. To those who object that this mapping process is unnecessary, we
reply that it must be done at some point to ensure design responsiveness,
management visibility, adequate testing, and adaptability to change. Enforced
traceability from the beginning reduces the risk of unresponsiveness and inflex-
ibility at a later date when time may be critical.

4.5 CHANGE RESPONSE

_ Manual change control procedures result in significant delay between the
initiation of a change proposal and the propagation of necessary changes to
other affected parts of the system. Designers must either continue work on
elements made obsolete by change, or must halt work until the change is
approved, resulting in non-productive work or lost schedule time. Often, the
customer wants to know the detailed impact of specific changes before he
decides to formally request them. With manual procedures, impact assessment
is costly and slow. Automated requirements systems, such as SREM, with
designed-m traceability features, have significantly reduced change delay
times and have made impact assessment into a fast, practical procedure. Ex-
tension of these techniques to the entire front-end development process will
improve productivity and reduce development cost.

45

5.0 DEFINITION OF THE FRONT-END OF DP DEVELOPMENT

The "front-end" of a data processing development encompasses all of the
analysis and engineering activity from the time that the need for a system is
perceived until a preliminary design for the system is specified. Six broad
generic steps are necessary to systematically proceed through the preliminary
design stage. They are illustrated in Figure 5-1, and briefly outlined below.

t System Analysis -- When first perceived, most operational problems
are ill-defined and not quantified. The job of the systems analyst
is to precisely formulate and structure the problem, and to analyze
alternative solution concepts so that decision makers can choose
necessary actions. The analyses at this level are intended to iden-
tify the threat, define the system mission, estimate the performance
and cost of alternative system constructs, examine the sensitivity
and risk inherent in the alternatives, and compare the alternatives
on a common metric.

t System Engineering — One or more of the most promising alternatives
are selected for intensive system engineering study. Threat models
are quantified and the system concept is refined to include functional
subsystem models, subsystem interactions and system operating logic.
Major tradeoff studies are conducted, cost and performance are quan-
tified, and a preferred system is selected. System performance is
allocated among the subsystems and subsystem interfaces are established.

• Data Processing Subsystem (DPSS) Engineering — The early DP subsystem
work is in concert with and supports the system engineering tradeoff
studies. When subsystems have been established for the preferred con-
struct, the DPSS definition is expanded by subsystem engineers. The
functional capabilities of the DPSS are defined and traced to system
level requirements. The performance allocated to the subsystem is
decomposed and allocated to the subsystem functions. These elaborated
requirements are expressed in terms of system level parameters, such
as "threat leakage". The subsystem interfaces are refined and the
system operating rules are interpreted from the standpoint of the DPSS
in relation to other subsystems. A major portion of the DPSS engineer-
ing work is concerned with hardware/software, tradeoffs, identifica-
tion of suitable DP architectures, evaluation of candidate processors,
and allocation of requirements to hardware, software, and firmware.
The DPSS engineer is concerned with DP availability, reliability,
maintainability, and cost, in addition to performance. Although he
may defer hardware selection until after process design in some cases,
he is responsible for the selection. In current practice, the hardware
is usually selected before detailed software requirements engineering
and process activities are done.

t Software Requirements Engineering -- The software requirements engi-
neering step transforms the DPSS functional definition and performance
requirements, based on system parameters, into a more detailed defini-
tion of requirements, expressed in data processing terms. SRE is data

46

SYSTEMS
ANALYSIS

SYSTEMS
ENGINEERING

DP
SUBSYSTEM
ENGINEERING

SOFTWARE
REQUIREMENTS
ENGINEERING

.

PROCESS
DESIGN

01
8

PRELIMINARY
DESIGN

• SOFTWARE
• HARDWARE
• TEST ENGINEERING

Figure 5-1 Front-End Development Phases

oriented. The contents of messages passing through input and output
interfaces are defined to the data item level. Data hierarchies
about entities which must be maintained by the DPSS are defined. The
logical structure of the problem and system operating rules are
analyzed to determine how the data are to be processed within the
system. The end of this phase is reached when a logical structure
defining the problem in DP terms has been validated, so that only DP
software and hardware knowledge is required for the design activity.
This structure includes definition of all data paths through the DPSS,
precise location of measurement points for response time requirements,
and models of tests which verify that the performance requirements
are testable.

Process Design — The primary function of process design is to derive
and develop the properties of a software/firmware/hardware combination
which simultaneously satisfies all functional and performance require-
ments. The process designer must decompose the DPSS into a set of
software tasks which are the lowest unit scheduled by the operating
system. He is responsible for defining the application system, opera-
ting system, and hardware, and for ensuring that they work as a uni-
fied system. His responsibilities also encompass algorithm develop-
ment and evaluation, global data base definition and maintenance, and
timing/sizing budgets to the task level. Ultimately, he is responsible
for integrating tasks and construction of the real-time process.

If the project demands selection of commercially available computers,
the process designer may be responsible for benchmark testing and
evaluation of alternative condidates. The advent of problem-oriented
distributed data processing systems expands the process designer's job.
He will be called upon to devise system and component architectures
for specialized problems, and to define interconnection networks and
protocols. Distributed systems will require additional levels of
software specifications for multiple computers.

Preliminary Design (Software Design, Hardware Design, and Test
Engineering) — The expanded design activities leading to the Prelimi-
nary Design Review (PDR) vary in scope and complexity, dependent on
the problem and process design. The purpose of a PDR is to verify
that the design developed to that point is feasible, and is consistent
with the stated requirements. Documents available for review at PDR
include the Preliminary Software Design Specification, Preliminary
Hardware Design Specification, Acceptance Test Plan, and Preliminary
User's Manual. The preliminary design effort expands the process
design to a greater level of detail, primarily, definition of task
structure and timing/sizing budgets for routines. The integrity,
testability and feasibility of the process design is confirmed by
analysis. Algorithm selection is validated, and design approaches
for critical issues are defined in detail.

48

Figure 5-1 implies a strict sequential ordering of the phases (i.e.,
completion of one phase before commencing the next). This occurs rarely in
practice, and considerable overlap in time is the usual case. Another useful
view of the process, the organizational hierarchy shown in Figure 5-2, clarifies
the relationships between the phases.

The sponsor has responsibility for the entire system development, initiates
the system analysis work to justify engineering development, and uses those
results to decide whether or not to proceed with system engineering. The
system engineering organization is responsible for the definition, coordination,
and integration of the various subsystem engineering efforts. The DP subsystem
engineering organization is responsible for the definition, coordination, and
integration of the software requirements engineering, process design, and
hardware engineering activities. The process designer is responsible for the
overall software system architecture, and defines, coordinates, and integrates
the various software preliminary design efforts. The only strict sequence is
between system analysis and system engineering. The remaining phases are
initiated earlier than their successors, but because of their coordination and
control functions, proceed interactively with the phases at the next lower level,

In our definition of the phases we have strived to isolate the most sig-
nificant activities that characterize that phase. In truth, in any given
phase, many of the activities of other phases are pursued to some extent. We
are seeking here to identify the principal emphasis, and show the similarities
of problems between phases.

In very large projects the work of the various phases is performed by
separate organizations and may involve a community of government agencies,
civilian contractors, and subcontractors. For smaller projects, all of the
phases may be done within one organization and may be abbreviated or prolonged
according to the nature of the development (e.g., new system, upgrade, minor
modification). For instance, system analysis, system engineering, and sub-
system engineering are often lumped together as system engineering. Process
design and preliminary design are often combined. We feel that it is important
to separate the phases as much as possible for this report because future
distributed systems will demand increased engineering specialization and,
possibly, additional phases in the development process.

The front-end development phases defined herein differ somewhat from
those typically described. Figure 5-3 correlates these phases with the usual
MIL-STD-490 specification cycle and DoD Life Cycle milestones as found in
most projects.

5.1 SYSTEM ANALYSIS PHASE

5.1.1 Scope

A simple, but elegant, definition of "system analysis" has been provided
by J. D. Couger [6]:

"System analysis consists of collecting, organizing and evaluating
facts about a system, and the environment in which it operates. The

49

SPONSOR

 1

SYSTEM
ANALYSIS

SYSTEM
ENGINEERING

SUBSYSTEM A
ENGINEERING

DP
SUBSYSTEM
ENGINEERING

SUBSYSTEM B
ENGINEERING

•
•

< >
»

SOFTWARE
REQUIREMENTS
ENGINEERING

PROCESS
DESIGN

HARDWARE
ENGINEERING

<
<
<
t
i
•

OPERATING
SYSTEM
PRELIMINARY
DESIGN

APPLICATION
SYSTEM
PERELIMINARY
DESIGN

SUPPORT
SOFTWARE
PRELIMINARY
DESIGN

Figure 5-2 Hierarchical Organization of Phases

50

FRONT-END PHASE
MIL-STD-490

SPECIFICATION DEVELOPMENT

to

o
I

SYSTEM
ANALYSIS

SYSTEM
ENGINEERING

DP
'SUBSYSTEM
ENGINEERING^

SOFTWARE
REQUIREMENTS

ENGINEERING

PRELIMINARY
DESIGN

1

PRELIM.

1 1

FINAL

A SPEC.
B1/B2
SPEC

PRELIM
B5

SPEC

PRELIM.
FINAL C1/C2/
B5 C5
SPEC SPECS

DSARC I-

DoD LIFE CYCLE

ADVANCED ^-"
PLANNING^ ^

CONCEPT
DEFINITION

VALIDATION

11

DSARC II

B SPECS C SPECS

Figure 5-3 Relationship of Front-End Phases to Other Cycles

objective of system analysis is to examine all aspects of the
system — equipment, personnel, operating conditions, and its
internal and external demands -- to establish a basis for de-
signing and implementing a better system."

In the context of the modern incremental and measured approach to weapon system
procurement, system analysis can be characterized as the initial investigations
to determine whether or not further expenditures toward solution of a perceived
problem will be productive and with predictable results. System analysis is
an on-going activity at various levels within the defense establishment. The
scope and perspective of analysis varies widely, from consideration of the
entire U.S. defense posture and major force mix strategies to detailed con-
sideration of alternatives for limited-mission tactical systems. In all cases,
however, major activities are:

Verification that the problem-as-given exists

Mission identification and definition

Threat and environment definition

Formulation and evaluation of alternative approaches

Identification of feasible and superior approaches

Assessment of sensitivities, uncertainties, and risks.

Evaluation activities must consider all aspects of the system (e.g., performance,
life-cycle cost, growth, reliability, schedule, resource needs).

While system analysis activities occur all through the development pro-
cess, we will characterize the "system analysis phase" for our purposes as
those activities which aid a decision-maker in choosing a course of action
relative to a weapon system problem, and in defining a mission package to
implement that course of action. Accordingly, the objective of the system
analysis phase is to define a mission package in sufficient detail so that a
decision maker 1) can be satisfied that the program is feasible and cost
effective, and 2) can compare the package against other programs contending
for budgeted funds. For small programs the system analysis phase may be
brief. On major programs it may be a multi-level effort involving both
government analysts and contractors, with an extensive concept definition
period prior to DSARC I.

5.1.2 Content

Rudwick [7] describes three related problems that are useful in charac-
terizing the initial steps of the system analysis phase. These are: the
"problem as given" (PAG), the "problem as understood" (PAU), and the "problem
to be solved" (PTBS).

The PAG is an initial statement of the perceived problem that initiates
the system analysis effort. Typically, it may consist of a vague notion that
no current system is adequate to deal with a certain class of energy threat,
or that the remaining operating cost of a deployed system is too high with

52

respect to system worth or technological alternatives. The PAG generally is
not quantified, and often is incomplete and/or inconsistent. It tends to be
symptomatic rather than diagnostic.

The PAU is a structured and quantified elaboration of the PAG, developed
by the system analyst. It consists of those factors and relationships iden-
tified by the analyst as relevant to the original PAG. Moreover, it may be
expanded beyond the PAG to include a broader class of related problems and/or
solutions of which the PAG is a subset.

In the course of evaluation of the PAL), the decision-maker or the analyst
may decide that the problem is too broad with respect to proposed solutions,
that certain factors have insignificant impact, or that certain postulated
threat scenarios are unlikely. The agreed-upon PTBS is a subset of the PAD
which forms the basis for the system requirements. While the PAU is essentially
an implementation-independent statement of the problem, and a set of candidate
system alternatives, the PTBS is constrained by state-of-the-art technology
projections for the system development period, and by solution cost and worth
considerations.

The analyst develops the PAU from the PAG in a series of steps typified
in Figure 5-4. The first step is to formulate mission objectives and the
surrounding context from the information in the problem as given. This step
surfaces many key questions and undefined aspects of the problem, and may lead
to larger issues not previously considered.

The mission definition identifies a threat or classes of threats to be
addressed by the system. Before candidate systems can be defined, we must
characterize the observables and performance envelope of the threat; the
weapons, sensors, and penetration aids used by the threat, and an attack
sequence of events. In addition, the properties of the environment, as they
affect the threat observables and performance, must be defined. Much of the
information may be tentative or unknown. Many of the threat and environment
characteristics can be estimated from known physical relationships and simi-
larities to other threat systems. Another facet of the environment to be
identified is composed of other systems with which the proposed system may
or must interface.

The definition of effectiveness measures that capture the essence of the
problem is critical to both the further elaboration of the problem and the
identification and evaluation of candidate solutions. Generally, several
pertinent effectiveness measures could be defined for a system, each one em-
phasizing certain aspects of the problem at the expense of others. The chosen
measures should reflect the capability, availability, and dependability com-
ponents of system effectiveness, and should also consider the utilization of
system resources in the engagement environment.

When the foregoing information has been assembled and organized, the
analyst has a basis from which possible system alternatives can be considered.
The actual synthesis of alternatives is a highly individualistic and creative
process that probably cannot be mechanized. However, the ability of the
analyst to visualize alternatives can be substantially augmented by automatable
methods of organizing and structuring the relevant data for his consideration.

53

I
DETERMINE
THREAT OBSERVABLES
AND
ENVIRONMENT FACTORS

(PROBLEM A
AS GIVEN J

I
FORMULATE
MISSION OBJECTIVES
AND CONTEXT

DETERMINE
THREAT OPERATING
CHARACTERISTICS
AND CAPABILITIES

1
DEFINE
SYSTEM EFFECTIVENESS
MEASURES

»><

i

1
DEVELOP
SYSTEM CONFIGURATION
MODELS

I
DEVELOP
COMPONENT COST
MODELS

1
DEVELOP
SYSTEM ENGAGEMENT
MODELS

1
DEVELOP
SYSTEM EFFECTIVENESS
MODELS

>f< i
(PROBLEM AS\

UNDERSTOOD J

Figure 5-4 Problem Analysis Steps

54

The first alternative to be explored in any problem is the "null alterna-
tive" (i.e., what happens if no action is taken). Evaluation of this alterna-
tive often reveals that the perceived problem does not exist, or is not as bad
as perceived. Sometimes it will be shown that no alternative solution is
significantly better than the current system or no system at all. In any
case, the null alternative is the yardstick for comparison of other alternatives

For each suggested alternative two models are developed, usually in an
iterative manner. The system configuration model is a static description of
the system in terms of its components and the relationships between components.
This model essentially describes "what the system is" and how it is deployed.
The system engagement model is a dynamic description of how the system operates
and interacts with the threat. This model describes "what the system does".
While the system configuration model is described in terms of physical compo-
nents and interconnections, the system engagement model is described in terms
of distinct system functions and events.

Ideally, one would like to have a single system engagement model, applica-
ble to all alternative systems. This can be done, but only at a high level of
abstraction. As the system functions are progressively decomposed into sub-
functions, the definition of the sub-functions becomes more dependent upon the
characteristics of physical devices. Since the system analysis phase is
oriented toward high level assessment of technological feasibility within
given cost and schedule constraints, the analyst can often use a single engage-
ment model for several alternatives. If he cannot, then the performance of the
system must at least be described by effectiveness measures common to all models

The system effectiveness model establishes the relationship between the
system description parameters and the effectiveness measures. Typically, it
is a procedure for collecting engagement simulation outputs and computing
values for the effectiveness measures. This model may also determine effec-
tiveness as a function of system resources employed.

The component cost models are parametric cost estimating relationships
based upon current technology and projections into the future. Typical parame-
ters for radars would be power, frequency, waveform types and number of units
produced. For data processors, typical parameters are instruction execution
rate (MIPS), word size, and memory capacity. Life-cycle cost estimates for
each system alternative are generated by applying the models to the set of
parameter values for each alternative.

The combination of mission definition, threat and environment definition
effectiveness measures, and the set of models described above comprise the
description of the problem as understood. Evaluation of PAU will isolate the
"best" alternative and provide the information needed to determine the problem
to be solved.

The process of evaluating each candidate system is represented in Figure
5-5. Generally, the process is one of iterative optimization because the
initial estimates of system parameters and operating rules are usually sub-
optimal. Representative threat and environment characteristics are combined
into engagement scenarios. Fixed and variable system parameters from the

55

«1

I

THREAT AND
ENVIRONMENT
CHARACTERISTICS

1
ENGAGEMENT
SCENARIO

•

1 '

ENGAGEMENT
SIMULATION

SYSTEM
EFFECTIVENESS
MODEL

./0\. SYSTEM
OBJECTIVES ^X. r

I i

SYSTEM
ENGAGEMENT
LOGIC

—

i 1

SYSTEM
rrvrn

SYSTEM
VARTARI F

ELEM ENTS ELEM ENTS

Figure 5-5 Candidate Evaluation Process

56

system configuration model are combined with the system engagement model to
form a simulation of the candidate system. The system simulation is exercised
against each engagement scenario in an engagement simulation. Monte Carlo
replications are generally desirable because weapon system engagements are
highly stochastic. The system effectiveness model is then applied to evaluate
the results of the engagement.

The measured effectiveness values are then compared against the system
objectives. If the system fails to meet the objectives, the variable system
elements and the engagement model are modified to improve the performance.
Because the system is ill-defined, this "tuning" is usually a trial-and-error
process, supported by trade-off analysis to the extent possible. The output
of this exploratory evaluation is a set of response surfaces defining the
system effectiveness over a range of system, threat, and environment parameters.

The above analysis is conducted based on nominal assumptions about the
mission, system threat, and environment. The next step is to question the
nominal assumptions and examine the system performance under different condi-
tions. This step is called sensitivity and risk analysis. The effects of
system cost and system resource constraints should be examined as part of
this analysis.

There are two general approaches for selecting the preferred candidate
system:

• Fixed Effectiveness Approach -- the system that meets the required
effectiveness level at the lowest cost is selected.

• Fixed Cost Approach — the system that has the highest effectiveness
for a given cost is selected.

Occasionally, but rarely, one candidate system dominates the others (i.e., has
the highest effectiveness at all levels of cost). In this case the selection
is obvious, provided the candidate is acceptable on the basis of sensitivity,
risk, and development schedule. As a rule, however, none of the candidates
dominate and selection calls for expert judgement considering all factors of
effectiveness, cost, uncertainty, and schedule. An excellent discussion of
the selection problem can be found in Quade and Boucher [8].

Eventually, one preferred candidate system or a pair of closely ranked
contenders must be selected for further development, provided that at least
one of the candidates is acceptable. At the same time, the scope of the mission
may be narrowed and certain threat scenarios might be discarded as unlikely.

The problem to be solved (PTBS) is formally documented in a preliminary
system specification (Type A). The system is described in terms of its opera-
tional functions (i.e., system engagement model) and operating rules. The
specification should explicitly contain the following:

• Mission definition

t Background assumptions

• Threat definition (present and extrapolated)

57

Physical environment definition

System interfaces with other systems

Operating modes and concepts

Performance requirements

Availability, reliability requirements

Survivability, graceful degradation requirements

Other constraints (size, weight, power)

Growth requirements

Logistics requirements

Human factors.

Schedule constraints are defined in the RFP. Cost constraints may be contained
in the RFP (design-to-cost systems), or may be withheld from prospective
bidders.

At this point, the system analysis effort has established the technologi-
cal, performance, cost and schedule credibility of the system. Decision makers
have evaluated the analyses, the uncertainties and the risks, and have found
them acceptable. The next step is to proceed with the system engineering
phase.

5.1.3 Problems

Quade and Boucher [8] contains a detailed discussion of the pitfalls and
limitations of system analysis. Fisher [9] summarizes the more common pitfalls
as follows:

Failing to allocate and spend enough of the total time available for
a study deciding what the problem really is.

Examining an unduly restricted range of alternatives.

Trying to do too big a job.

Determining objectives and criteria carelessly.

Using improper costing concepts.

Becoming more interested in the details of the model than in the
real world.

Forcing a complex problem into an analytically tractable framework
by over-emphasizing ease of computation.

Failing to take proper account of uncertainty.

Treating the enemy threat too narrowly.

58

These pitfalls are symptomatic of a single underlying problem -- complexity.

The system analyst is faced with starting from an ill-defined and, per-
haps, wrongly perceived problem, and developing a comprehensive analysis of
that problem with limited time and resources to do the job. His apparent pro-
ductivity is low because he must spend a large amount of his time gathering
information and gaining an understanding of the relevant factors involved in
the problem. To gain this understanding he must do experimental modeling and
simulation. Much of this work will be discarded. To handle the breadth of
his task, the analyst must usually sacrifice depth. Yet the decision maker,
who uses the analysts' work, expects to see an analysis supported by quanti-
tative information and mathematical relationships, even if approximate.

If the analyst considers a large number of alternative system concepts,
he runs the risk of addressing each one superficially without time for adequate
sensitivity analysis. If he restricts himself to a limited set of alternatives,
he runs the risk of omitting an unrecognized superior candidate.

While the analyst can generally represent the performance of system com-
ponents (such as radars and weapons) by relatively simple mathematical equations;
he has great difficulty representing data processing needs in a meaningful way.
Consequently, data processing issues tend to be deferred until late in the
system engineering phase. At that time, however, significant and irreversible
decisions about system structure have been made. These often place such bur-
dens on the data processing system that the entire system concept becomes
infeasible or far more expensive than originally estimated.

In addition to the problems of complexity, the system analyst is faced
with communication and validation problems. The communication problems fall
into four categories:

• Organization and retention of data for the analyst's own use.

• Representation of concepts and information for review by operational
users of the system.

• Representation of analysis results for decision-maker consideration,

f Representation of system requirements in system specifications.

The efficiency and effectiveness of the analyst is largely determined by
his ability to organize, retain, and structure a large body of data relevant
to the mission, threat, environment, and potential system components. In the
past, much of the needed information has been widely scattered in reports,
textbooks, notes, and undocumented experience. Modern data base technology
offers a powerful means of organizing and retaining often used data, particu-
larly within agencies dedicated to specific-mission system areas.

The analyst rarely has the military combat experience to view the system
from the eyes of the operational user. The operational user often lacks the
specialized technical expertise needed to evaluate system details. Hence, a
communication gap exists between the user and designer, in addition to the
fact that direct consultation between them is rare. Unless this gap can be

59

filled by representations of concepts and information that are easily under-
stood by both parties, the designed system may be a complete mismatch to
operational needs.

The system analyst does not select the system option to be pursued. That
choice is in the hands of a decision maker who makes a judgement from a broader
perspective than that of the analyst. The objective of system analysis is to
assist decision makers by providing a better basis for judgement. The decision
maker is not served if the critical system issues are lost in obscure represen-
tations and mazes of details, or if the form of the presentation is not com-
parable to data for other systems competing for funding.

Finally, the system requirements formalized in the system specification
must reflect the true needs of the operational user, and must be presented in
such a way that the intent cannot be misunderstood. While it is important to
allow the system designer maximum design freedom, it is not wise to let him
decide how the system is to be operated. Yet, the weakest parts of most speci-
fications are those dealing with operating concepts and rules of engagement.

Despite the fact that the results of the system analysis are used to
make far-reaching program decisions, little effort is applied to validation
of the analysis. The tight cost and schedule constraints of the system analy-
sis phase, the communication gap between analyst and operational user, and the
faith that later system engineering work will uncover any faults, are the
factors responsible for this curious lack of validation. However, once a
project is headed in the wrong direction from the start, it is difficult and
expensive to undo the effects of a faulty system analysis.

Effective system analysis, particularly for very large systems, is in-
creasingly dependent on large-scale simulation models that require significant
software development. This software is usually defined for the problem of the
moment. Little effort is devoted to construction and maintenance of standardized
software libraries that can be used for a variety of projects. Because the
software is not a formal deliverable, rigorous testing and validation is not
pursued. Yet, because errors in these models have significant impact, some
means must be found to subject them to formal software engineering practices
without stressing the limited resources available.

To address these problems and permit increase in the system analyst's
productivity, the following capabilities are needed:

• Better tools for structuring and retaining information about the
problem.

• Representation techniques that present information understandable to
analysts, operational users, and decision makers.

• Better tools for constructing and validating simulation models which
can be exercised at low cost and built with limited resources.

• Better tools for post-processing, summarization, and presentation
of simulation-generated data.

60

• Techniques for defining data processing needs and issues earlier
in the system definition effort.

• A methodology for defining and describing system operating concepts
and engagement rules.

5.2 SYSTEM ENGINEERING PHASE

5.2.1 Scope

The system engineering phase confirms the results of the system analysis
phase and extends them into a detailed plan for system composition, operation,
development, and support. The focus of the system analysis phase is on defi-
nition and selection of feasible goals and objectives. The focus of the sys-
tem engineering phase is on implementing those goals and objectives within the
technological state-of-the-art. The principle task is the direction and coor-
dination of subsystem design activities which produce a set of sub-optimal
subsystems that function together as a well-balanced system.

Although system engineering activities continue throughout system develop-
ment, the primary requirement definition activities are completed with the fi-
nal ization of the system specification and the generation of subsystem speci-
fications and interface control documents (ICDs). Thus, what we call the
system engineering phase generally corresponds with the "validation phase" of
the system life-cycle. The validation phase typically begins after DSARC I
and a System Requirements Review (SRR) and concludes with DSARC II and a System
Design Review (SDR). The lower level activities of Data Processing Subsystem
Engineering, Software Requirements Engineering, and Process Design also fall
within this timespan.

The system analysis phase is usually carried out within DoD agencies,
supported by study contracts to advisory groups or industry. The system engi-
neering phase is carried out by industry contractors, either System Engineering
and Technical Direction (SETD) contractors retained by the sponsoring agency
or the prime contractor for the specific system development.

The system analysis phase tries to examine the entire spectrum of practi-
cal solutions to the particular weapon system problem. During this phase one
or two of the most promising solutions are selected for possible development
and the rest are discarded. The system engineering phase then elaborates and
refines the definition of the chosen constructs, performs any remaining analy-
sis necessary to select a single system design, and guides the lower level
design of component subsystems.

System engineering is concerned with life-cycle cost, development cost,
schedule, risk, logistic support, training and maintenance, as well as all
aspects of nominal and off-nominal system performance. Hence, system engi-
neering requires multi-disciplinary expertise involving all engineering special-
ties, physics, mathematics, computer science, psychology, economics, and
management sciences.

61

5.2.2 Content

The preliminary system specification developed in the system analysis
phase provides the basic information about "what the system does". The final
system specification completed in the system engineering phase, additionally
completes the definition of "what the system is" and "how the system is made".
The definition of "what the system is" requires identification of lower level
parts or components of the system (e.g., system segments, subsystems, prime
configuration items) and definition of how these components are interconnected
and interact to form the system. The definition of how the system is made
involves planning for assembly, integration, and testing of system components;
and specification of standards constraining design and development practices.

The requirements on the system as a whole consist explicitly of "what the
system does" (functional requirements) and "how well the system does those
things" (performance requirements), and explicitly or implicitly of the system
operational need date and lifespan, and what it costs (i.e., the system's capa-
bilities are valuable only within a certain time interval and have only a
finite value). The "acceptable solution" defined by the system engineers
identifies "what the system is" (parts and interconnections), how it is made
(development and production plan) and "how it is used and maintained" (logis-
tics, operations, and maintenance plans). The solution is not necessarily
unique, but aims to be nearly optimal over the ranges of important parameters
considered.

The additional constraints on the system imposed by the system engineer's
design decisions then set the context for and become part of the requirements
on development of the identified subsystems. One of the system engineer's
objectives is to achieve a well-balanced system. This also means that the
degree of engineering difficulty and complexity should be fairly distributed
across the subsystems.

It would be impossible to capture in a short paragraph all of the diverse
disciplines, views, and techniques in the system engineering process. Indeed,
the textbooks written to date can only state high level rules, and highlights
of important disciplines. However, the essence of system engineering is the
decomposition of complex problems into simpler, more tractable sub-problems
that can be attacked by specialist groups in a manageable manner, followed by
balanced synthesis of sub-problem solutions into a system solution. In general
the approaches used by the system analyst are applicable. However, the system
engineer generally has more resources committed to his support and is consi-
dering a specific system concept, rather than a broader set of alternatives.

5.2.3 Problems

With respect to data processing requirements, one problem in the system
engineering phase has been perceived for some time, and has resulted in the
promulgation of DoD Directive 5000.29 requiring that DP be treated as a sub-
system on an equal basis with other subsystems. The symptoms of the problem
have surfaced as systems that would not work because the software requirements
could not be satisfied.

62

The system engineer is of necessity a generalist, working with a limited
set of descriptive subsystem parameters to define a balanced system. As dis-
cussed below, a lack of appropriate DP parameters that can be traded-off
against other subsystems has forced DP issues into the background at the system
level. This postponement of concern, coupled with a blind faith that software
can resolve any hardware interface problems has resulted in irrevocable system
decisions that preclude a satisfactory DP solution. Unfortunately, the problem
is getting worse.

The exploding technological capabilities emerging in computing hardware
today (semiconductor logic and memories, optical processing, holographic
devices, and distributed systems) may revolutionize the design and construc-
tion of large systems. Increased functional performance and decreased com-
ponent cost is leading to new tradeoff opportunities in system engineering
that must be considered in the early requirements phase to exploit their
benefits.

Previously, monolithic centralized data processing was tacit in weapon
systems development, and DP requirements were generally characterized by
specifying:

0 DP interfaces with other subsystems

• The computation required at a centralized location

• The limitations and performance indices.

Now, however, with distributed systems and newer supporting technology,
several practical problems arise which accentuate the widening gap between
system engineering and DP requirements needs (Table 5.1). All of these DP
issues have moved higher on the list of critical areas, due to the necessity
to distribute system elements in the advanced constructs being considered
and the cost/reliability economies of modern microcomputer technology.

Effective interaction between DP and system engineers has been hindered
by the lack of appropriate descriptive performance parameters. As indicated
in Figure 5-6, the other subsystems can be represented at the system level
by specifying the values of a small set of defining parameters which also
serve as top-level requirements for those subsystems (e.g., maximum range for
a radar, fly-out time for a missile). No such parameters exist for data
processing. The lack of such parameters for DP has been a major interest in
establishing an effective interface between DP and system engineers. If
appropriate quantitative parameters could be found which characterize DP
performance at the system level and represent system requirements levied on
the DP subsystem, then the DP subsystem could be considered directly in
system level trade-offs at a very early stage of system design.

The difficulties of specifying DP requirements in the absence of a well-
defined set of characteristic top-level parameters, and the complexities
associated with specifying the requirements on a set of distributed DP ele-
ments, have led to the practice of defining system constructs and their
resulting DP requirements in terms of a "preferred" construct design. This
practice not only limits the design freedom available at subsequent stages,

63

Table 5.1 Current Practical Problems in Specifying DP Requirements

i
CD

HOW MUCH DISTRIBUTION OF PROCESSING IS APPROPRIATE WITHIN OTHER SUBSYSTEMS?

WHAT IS THE EFFECT OF DP TECHNOLOGY LIMITATIONS ON SUBSYSTEM DEFINITION AND
OPERATING RULES?

HOW MUST RESOURCES BE MANAGED, INCLUDING THOSE OF DP?

HOW AND WHEN ARE THE MULTITUDE OF INTERFACES TO BE SPECIFIED?

TO WHAT EXTENT DOES COMMUNICATION' PLAY A ROLE IN THESE CONSIDERATIONS?

HOW DO YOU SHOW EVIDENCE OF DP FEASIBILITY?

HOW CAN DP REQUIREMENTS BE CONFIGURED SO AS TO BE ADAPTABLE TO CHANGE?

AT WHAT POINT IN THE SYSTEM LIFE-CYCLE SHOULD DP REQUIREMENTS DISTINGUISH
BETWEEN SOFTWARE, FIRMWARE, AND HARDWARE?

HOW ARE THE CRITICAL ISSUES IDENTIFIED?

HOW DO YOU OBTAIN EARLY RELIABLE ESTIMATES OF DP COST, SCHEDULES, SIZE,
WEIGHT, AND POWER?

HOW ARE DP/C, DP/SENSOR, DP/WEAPON TRADES IDENTIFIED?

64

CTl

S3

Figure 5-6 The Poor Fit of DP Parameters in the System Context

but it also firmly obscures the real requirements. If this practice is to
be eliminated, we must develop a true "requirements first" point of view
which concentrates on the definition of the real requirements without re-
sorting to describing them in the context of a specific design.

It is clear that the "distribution", "DP parameter" and "requirements
first" issues have a multitude of facets. Our objective is to limit our
attention to a practical methodology which:

Makes DP integral to the system definition process.

Identifies critical issues early.

Relates subsystem requirements to the tradeoffs among alternate
system configurations.

Develops complete and consistent system operating rules and
function descriptions through simulation.

Documents system models, performance requirements and design
variables.

Emphasizes early formation of system level performance requirements
and exhibits alternatives in subsystem structure to meet them.

Treats DP as a finite resource.

Another problem, one of complexity for the system engineer, but one of
communication for those involved downstream, concerns the allocation of data
processing functions to subsystems. Consider a weapon system with identified
subsystems including a radar subsystem and a DP subsystem. The DP subsystem
can be conceived as providing all DP support of other subsystems, and must act
in an integrated manner to support the system mission. Many of the DP func-
tions, however, are relatively autonomous in that they are bound to a specific
subsystem (e.g., radar) and are transparent to other subsystems. Moreover,
the testing of the radar subsystem as an entity depends on the presence of
these DP elements. Question: Should the system engineer allocate these DP
functions to the radar subsystem or the DP subsystem for development purposes?
A good practical case could be made for either choice. Yet, either choice
complicates the human interface and coordination problems downstream.

5.3 DATA PROCESSING SUBSYSTEM (DPSS) ENGINEERING PHASE

5.3.1 Scope

DP subsystem engineering activities are a subset of the on-going system
engineering effort. The DPSS engineer provides specialized knowledge during
the definition and tradeoff studies that identify the required characteristics
of the various subsystems. Working with other subsystem engineers (e.g.,
sensor, command and control, weapon delivery) the DPSS engineer helps to
identify workable system operating rules, DP limitations imposed by physical
laws and the technology state-of-the-art, and the characteristics of inter-
faces between subsystems.

66

During the system engineering phase, the system requirements are decom-
posed until subrequirements are sufficiently detailed that they can be uniquely
allocated to subsystems. In parallel, a functional system model is synthesized
and exercised against simulated threat scenarios. The system model includes
submodels defining the behavior of each subsystem, and the interactions be-
tween subsystems and between subsystems and the threat/environment model. By
systematic variation of model parameters and operating rules, satisfactory
conditions of system behavior are identified, and decisions are made about
preferred system parameters and values. The DPSS engineer is responsible for
DPSS functional modeling to support these activities.

When the system requirements have been decomposed and allocated to the
subsystems, the DPSS engineer is responsible for consolidating the require-
ments allocated to the DPSS and refining them to form a coherent subsystem
requirement package of functional, performance, interface, and development
requirements. The DPSS requirements may be documented in various ways (e.g.,
a Bl specification, a B2 specification, or an informal technical report).
There is much variation in the documentation of DPSS requirements because
MIL-STD-490 is ambiguous about the proper specification (e.g., 81, B2) for a
DP subsystem as an entity.

At this point, the functional and performance requirements on the DPSS
are stated in terms of weapon system parameters and in the context of the
system mission. The remaining DPSS engineering activities are concerned with
the selection and development of a hardware/software/firmware combination
that meets these requirements and has acceptable availability, reliability,
maintainability and cost properties. The DPSS engineer is ultimately respon-
sible for both the hardware and software architecture of the DPSS and the
selection and procurement of appropriate hardware. As part of this responsi-
bility, he monitors and coordinates the efforts of the software requirements
engineering, process design and hardware engineering phases, and reports
upward to the system engineering organization.

An important part of the DPSS engineer's job is maintaining upward trace-
ability between the DPSS requirements and the system requirements, and down-
ward traceability from the DPSS requirements to the separate packages of
software, hardware, and firmware requirements. It is generally more difficult
to maintain downward, traceability because the lower level requirements are
stated in DP-oriented terminology rather than system terminology.

5.3.2 Content

The discussion in 5.2.2 is applicable to DPSS engineering as well as
system engineering. The primary difference is that the DPSS engineer is
focused in a more limited area. His "system" is the DPSS. His "environment"
is all other components of the weapon system plus the environment of the weapon
system. The components that he must select to form a problem solution are
processors, memory, communications links, peripheral devices, and various
classes of software. While the primary emphasis in the past has been on
digital devices and discrete phenomena, new technological advances (e.g.,
optical processing, holographic processing) are demanding that DPSS engineers
become involved with essentially analog devices and continuous phenomena.

67

The DPSS engineer must move from a consideration of "what the DPSS does"
to "what the DPSS is" in a series of steps. What the DPSS does is stated in
terms of information and actions on information. The information is about
things in the outside world (e.g., aircraft; position, speed and heading of
aircraft) of interest to the system. The actions on information (e.g., provide
launch signal to interceptor missile when target is within ten mile range and
...) are related to the functions and operating rules of the total weapon sys-
tem. The functional requirements on the DPSS are, thus, concerned with "infor-
mation processing".

"What the DPSS is" is described in terms of "data processing" and the
physical components necessary to do the data processing. "Data processing" is
concerned with the representations of information and the logical or arithmetic
manipulation of those representations. Thus, topics such as word size, for-
mats, addressing mechanisms, paging, and queue management are data processing
concerns, not information processing concerns.

Thus, before the data processing needs and physical components can be
accurately assessed, a well-defined statement of the information processing
requirements must be available. This statement can be defined in terms of
in-coming and out-going discrete packets of information called "messages", the
individual information items contained in the messages, the logical information
structure (i.e., the logical data base model) to be maintained, the information
processing responses to given stimuli, and the relative priority or importance
between information processing actions. For each information item the appro-
priate range of values should be identified (e.g., slant range varies between
10,000 feet and 600,000 feet). The highlights of the major information groupings
and high level processing steps can be summarized in diagrams such as Figure 5-7.

The next step is to identify the information processing performance require-
ments and the load (both average and peak) on the DPSS. The response time
requirements are defined by identifying each stimulus-response path through
the DPSS and determining an acceptable response time for each path, based on
system simulation model behavior. Each path can be further broken down by
assigning time budgets to each action along the path. The peak and average
load estimates can then be developed by functional simulation techniques.

At this point the DPSS engineer can begin to identify'candidate processing
algorithms for each subsystem action and estimate instruction counts and memory
needs for each action. He can then examine various functional processing
architectures that seem appropriate to the problem and identify required
instruction execution speeds for candidate hardware. Certain critical paths
and algorithms will be identified and engineering effort can be applied to
find acceptable solutions.

The emphasis of the early efforts in DPSS engineering is not to develop
comprehensive designs for the DPSS, but to develop reasonable estimates of
feasible DP performance, identify critical issues, assess the ability to meet
system requirements, develop a satisfactory allocation of DPSS requirements
between hardware, software, and firmware, and chart the direction of further
engineering work in those areas.

68

SORT

>£ARCH
.RETURN 5

DETECT
PROCESSING

VERIFY
PROCESSING

TI
PROCESSING

SEARCH RASTER
GENERATION

SCHEDULE
VERIFY

SCHEDULE TI

Figure 5-7 Data Flow Dia gram

5.3.3 Problems

The lack of an effective set of DP performance parameters for system
engineering tradeoff studies has been discussed in 5.2.3. The impact on the
DPSS engineer has been that the resultant allocation of performance require-
ments to the DPSS has been unduly difficult or impossible to satisfy.

Hardware selection is usually one of the critical issues in DP Subsystem
Engineering. In the past, hardware has been selected early in a project based
on gross estimates of software memory and execution time needs. This approach
has been successful when the properties of the application are relatively well
known from past experience. In applications where prior experience is absent,
the software sizing and timing estimates tend to be much lower than true
values. Consequently, the selected hardware must operate at near-saturation
levels. Boehm [10] has illustrated the effect on software development cost
for real-time systems, as shown in Figure 5-8.

In the future there will be a wider choice of computer architectures, and
general purpose architectures will be "modifiable" by microprogramming. To
extract maximum performance from these configurations, the architecture and
the software algorithms must be carefully matched. At present, there is no
effective, widely available, set of tools to rapidly identify high performance
architecture/algorithm combinations and evaluate hardware/software/firmware
tradeoffs in a systematic manner. The problems of geographically distributed
systems add another dimension of complexity because communications factors
(bandwidth, delay) must be considered to determine where data processing
nodes should be located. In the face of these complications, how can anyone
be sure that preliminary DP estimates are credible?

Little has been done in the past to characterize the total information
processing needs of a system before the boundaries between subsystems have
been chosen. The traditional radar has included analog devices and custom-
made signal processors (analog or digital). The traditional DP subsystem has
usually consisted of one or more general purpose digital processors. Today,
digital techniques are becoming competitive with traditional analog solutions,
and networks of general purpose microprocessors provide a means to build cus-
tomized special purpose processors from standard components. As a result,
several tradeoffs may be needed to define the best sensor/DP boundary. Similar
problems exist in defining DP/communications boundaries. Many communications
functions are now supported by digital devices and the communication subsystem
itself is increasingly dedicated to data transfer in support of the DP subsystem,

It is clear that the growing complexity of DPSS engineering must even-
tually force a more structured approach to this phase -- grossly, a three-stage
approach: 1) information processing requirements, 2) data processing require-
ments, and 3) processing hardware requirements. For this to be possible (in
a visible and controllable way) the MIL-STD-490 specification hierarchy needs
to be reconsidered and altered to address the unique problems of DP subsystems.
The present abrupt transition from system level A spec to computer program
level B5 spec leaves most of the critical DP requirements and design decisions
invisible and undocumented.

70

o
ID

10
o
<_>
o

i
o

EXPERIENCE

FOLKLORE

±
0 25 50 75 100

PERCENT UTILIZATION OF SPEED AND MEMORY CAPACITY

Figure 5-8 How Does Hardware Selection Affect Software?

71

This "documentation gap" creates a problem in maintaining traceability
between system requirements and software requirements. As a result, the im-
pact of system requirements changes on software cannot readily be assessed and
serious problems may not be discovered until the system is deployed.

5.4 SOFTWARE REQUIREMENTS ENGINEERING PHASE

5.4.1 Scope

The purpose of the software requirements engineering phase is to transform
the DPSS functional and performance requirements, expressed in system termi-
nology and parameters, into a more detailed definition of requirements ex-
pressed in data processing terms. The high-level information processing
description of the DPSS, derived in the DPSS engineering phase for estimation
and assessment purposes, is extended and refined to a level of detail suffi-
cient to state precise software requirements. In a sense the term "software
requirements engineering" is a misnomer because the same techniques can be
used to specify information processing requirements for hardware and firmware.

Traditionally, software requirements engineering has been one of the
activities of the DPSS engineering phase. The concept of a separate software
requirements engineering phase was first introduced in the development of the
BMDATC Software Development System (SDS) [11]. The TRW Software Requirements
Engineering Methodology (SREM) was explicitly designed to meet the needs of
this phase as conceived by BMDATC.

The software requirements engineering phase provides a necessary bridge
between the system engineer's view of the DPSS and the software designer's view
of the DPSS. The software designer should not require expertise in weapon
systems in order to do his job. He should be able to understand the DP
problem in terms of messages arriving and departing through interfaces, infor-
mation flow and information maintenance within the DPSS, and processing actions
upon that information. The software requirements engineering phase is com-
pleted when: 1) the system functional and performance requirements allocated
to the DPSS have been stated in these terms, 2) the software requirements are
traced to the DPSS requirements, 3) the software requirements have been vali-
dated for completeness, consistency and other desirable properties, 4) the
requirements have been evaluated for feasibility, and 5) the requirements and
supporting information have been documented for input to the process design
phase.

5.4.2 Content

The traditional approach to software requirements generation has revolved
around writing a specification document, with little thought given to an
orderly methodology for determining actual requirements. Typically, a group
of people knowledgeable about the system problem would be convened to describe,
in English, what the software should do. The job was considered finished when
the allocated time and money ran out, and a decently readable document in some
approved format was published. Major difficulties were that management had no

72

reliable interim visibility into how the job was progressing, and at comple-
tion there were no objective criteria for determining the quality of the
requirements document.

• 5 Although many requirements generation aids and description tools (e.g
CARA) have evolved in recent years, specific methodologies for using them
have been avoided. The major exception was the TRW SREM, where an explicit
methodology for the SRE phase was a prime objective of BMDATC research. We
will describe the content of the software requirements engineering phase in
terms of the SREM viewpoint since that research was oriented specifically
toward real-time software requirements for weapon systems.

Figure 5-9 presents an overview of the software requirements engineering
activities for real-time weapon system software. It is presumed that work
during the DPSS engineering phase has identified the logical input and output
interfaces (i.e., the sources and sinks of information) to the DPSS, and the
information content of messages passing those interfaces. Further, it is
presumed that the types of appropriate responses to various stimuli and condi-
tions have been defined in terms of the system operating rules and the gross
nature of the processing to generate these responses has been identified. It
is also presumed that the various subsystems that interact with the DPSS have
been functionally defined to a level of detail sufficient to support dynamic
system modeling and that performance allocations to the subsystems have been
made in terms of system performance parameters.

Although desirable, it is not necessary to have all of this information
in final form before beginning the software requirements engineering activities,
SRE will usually proceed iteratively with the system and subsystem engineering
tradeoffs and will expose new issues for resolution as analysis proceeds. As
the level of technical awareness of software issues increases, decisions can
be made about combination of interfaces (i.e., communication multiplexing) and
higher level system control issues.

The first activity in the computer-aided SREM methodology deals with the
development and analysis of a functional requirements data base. This begins
with a structured definition of input and output interfaces, messages that
are passed through each interface, data elements and files that make up each
message, and data available at system initialization. Next, attention is
turned to the paths of processing steps that are involved in reacting to the
various input message stimuli to cause state changes in the DPSS and/or output
messages to other subsystems. In SREM the sequences of functional processing
steps are described as requirements networks (R-Nets) that must conform to
certain structure rules. Next, attention is focused on the logical structure
of data maintained internal to the DPSS and the input-output and creation-
destruction operations of each processing step. During this process, data
base analysis procedures are employed to ensure the completeness and consis-
tency of the defined data base. As information becomes available or necessary,
detailed attributes and descriptions of each element in the data base are
defined, and traceability relations are established between elements of the
requirements data base and the original documentation provided by DPSS
engineering.

73

FROM DPSS ENGINEERING

ii
ALLOCATED
DPSS
REQUIREMENTS

FUNCTIONAL
REQUIREMENTS
DEVELOPMENT

I
FUNCTIONAL
REQUIREMENTS
STATIC
VALIDATION

I
FUNCTIONAL
REQUIREMENTS
DYNAMIC
VALIDATION

PERFORMANCE
REQUIREMENTS
DEVELOPMENT

I

i

• INTERFACES
• LOGICAL INFORMATION STRUCTURE & FLOW
• PROCESSING STEPS
• PRECEDENCE, CONCURRENCY, CONDITIONS, EVENTS

• TIMING
• ACCURACY
• LIMITS

PERFORMANCE
REQUIREMENTS
VALIDATION

ANALYTIC
FEASIBILITY
DEMONSTRATION

VALIDATED S/W
FUNCTIONAL
REQUIREMENTS

\

\
\
\
\
\

\

VALIDATED S/W
PERFORMANCE
REQUIREMENTS

\
\
\

\

\

SOFTWARE
REQUIREMENTS
FOR DPSS

NT
TO PROCESS DESIGN

Figure 5-9 Software Requirements Engineering Activities

74

As the definition of the functional requirements passes specific mile-
stones, appropriate parts of the evolving data base are subjected to formal
(in the programmatic sense) static validation by automated procedures. When
all appropriate validation tests have been passed, documentation of those
requirements can be started.

While documentation proceeds, the completed data base is subjected to
dynamic validation through construction and execution of functional simula-
tions directly linked to the requirements data base elements, attributes,
relationships, and structures. This process uncovers deficiencies not detec-
table by static analysis alone, and provides increased confidence in the
validity of the requirements.

At this point, attention is turned to the precise definition of performance
requirements (e.g., timing, accuracy) that specify "how well" the DPSS is to
perform the functional processing. The performance requirements allocated to
the DPSS expressed in system terminology are decomposed, analyzed, and related
to specific points on the processing paths through the DPSS. As part of this
effort the SREM approach demands definition of the particular test data to be
recorded, and procedures (i.e., pass/fail tests) necessary to analyze that
data to ascertain that the requirements are met. Thus, "testability" of the
stated performance requirements is ensured.

The validation of the performance requirements employs the static analysis
aids and functional simulations previously used in validating the functional
requirements. Frequently the functional models are insufficient to express
the relationships needed for performance requirement validation and more de-
tailed analytic models are constructed, perhaps including prototype algorithms.

After the performance requirements have been validated and documented,
the DPSS software requirements are complete and detailed process design acti-
vities can be started. There is one major engineering issue that has not been
resolved, however. That is, can a software design be developed that will meet
the stated requirements? The last phase of SREM, analytic feasibility demon-
stration, addresses this issue concurrently with early process design activities.
This demonstration involves the development of a candidate design (analytic
models and algorithms) which meets all of the stated requirements except those
associated with timing. The objective is to demonstrate that, at least one
computational solution to the problem exists, whether or not this solution is
adequate for real-time performance. This step provides assurance that the
functional requirements are computationally feasible and provides "calibration"
models for assessment of the eventual real-time software. The real-time
feasibility of the requirements is a major process design issue.

It should be pointed out that modifications to and reappraisals of earlier
activities are often required by discoveries in later analysis activities. The
methodical approach of SREM ensures that these iterations are confined as much
as possible within SRE steps and that major requirements problems have surfaced
before substantial design effort is expended.

75

5.4.3 Problems

The problems of traditional software requirements definition approaches
have long been acknowledged and have been the topic of major DoD investigations
[12, 13, 14] as well as research by major software contractors (e.g., [2]).
These investigations have indicated the major problems identified in Section 4,
and various symptoms (e.g., incompleteness, inconsistency, ambiguity, over-
constraint, incorrectness, volatility). Indeed, the research leading to the
TRW SREM was motivated by these deficiencies and the fact that they had become
critical in the ballistic missile defense (BMD) technology area [11].

The SREM approach has received favorable comment during evaluation studies
and initial production usage [15, 16, 17]. However, current experience indi-
cates problems that hinder the full effectiveness of SREM, and many other
advanced development techniques. These can be considered "growing pains" in
the transfer of new technology.

The first problem concerns the time and effort allocated to software
requirements engineering. Traditionally, 3 to 6 months and 7 to 12 percent of
the^development budget have been allocated to the primary requirements defini-
tion effort with an additional 5 percent perhaps devoted to requirements main-
tenance activities throughout the project schedule. Despite the inadequacies
of the generated requirements, program managers, customer agencies, and pro-
curement agencies have come to expect and demand the traditional allotments to
requirements activities. Modern requirements engineering approaches and
research have indicated that the traditional allotments result in superficial
definition of requirements and that thorough requirements engineering, although
more productive, may demand more resources. The resulting benefits, in terms
of time and cost saved and risks avoided, cannot be substantiated without a
long "track-record" of successful projects. However, management inertia with
regard to resource allotments inhibits the use of new technologies and makes
the demonstration of the full capabilities of the technology difficult.

A second problem is that the full efficiency of a methodology for a
specific phase (e.g., SRE) is not realized as long as the products from pre-
vious phases are lacking in information or quality. Trial applications of
SREM to existing system or subsystem specifications often indicates that
critical information is either absent or superficially treated. The most
frequent deficiency is that concepts of operation and system operating rules
are either completely absent or obscured in lower level details. Further
development of software requirements in a systematic manner would require
protracted coordination and data-gathering sessions with system and subsystem
engineering personnel, thus stretching the SRE schedule.

The dependency of an effective software requirements engineering disci-
pline upon equally rigorous system and subsystem engineering disciplines that
recognize data processing needs has created growing awareness that system
engineering methodologies are non-existent, beyond general high-level approaches
to problems. The Axiomatic Requirements Engineering (ARE) program sponsored
by BMDATC is a current research thrust to fill this gap.

76

A third problem is that of profitably using the products of a new tech-
nology. Until a new tool or technique has been installed and in use for some
time, and until downstream users have been shown how to use the outputs, busi-
ness will go on as usual in the downstream areas and the output products will
be largely ignored. In the case of SREM, it is so recent that few process
designers have had the opportunity (or the slack time) to experiment with the
new possibilities for analysis that the SREM outputs provide. Other potential
uses of the SREM output, particularly in test planning, have been identified,
but needed research has not yet been funded.

These problems indicate that mere introduction of new technology into
isolated phases of the front-end development process is not sufficient to
solve even the problems of that phase, let alone global problems. What is
needed is an orchestrated and balanced attack on the problems of all phases
in an integrated manner, with consideration of the proper downstream use of
the products, and strenuous attention to the training and education of users,
project managers, customer agencies and procurement agencies.

5.5 PROCESS DESIGN PHASE

5.5.1 Scope

The dictionary definition of a "process" is "a continuing development
involving many changes". The term is commonly used in engineering to refer
to the complex evolution of a system from an initial state to a terminal
state (e.g., a chemical process, a manufacturing process). Complex phenomena
in the physical environment (e.g., rainstorms) are often described as pro-
cesses. In weapon system engineering the interacting offense-defense encoun-
ters and engagements can profitably be viewed as processes.

In the world of computer science the term "process" has a similar conno-
tation, and is a higher-level abstraction than the term "program". The concept
is necessary to describe the activities and status of real-time event-driven
systems, interactive time-sharing systems and distributed systems.

Consider an interactive time-sharing system where multiple users may have
concurrent access to the same set of software programs. To describe the state
of the system at any time, it is necessary to account for the allocation of
resources among the users and the nature and status of each user's activities.
A useful way to accomplish this is to view each user's interactive session as
a process which may be active or inactive, and when active may be ready, run-
ning, or blocked. The overall system activity is a process which includes all
of the user processes plus the actions of higher-level system control functions
such as resource allocation, scheduling, and data management.

A geographically distributed system such as ARPANET, can be described as
a single process, composed of the network control and processes representing
each site's activity. The process at each site is composed of the site control
and the user processes which have access to that site. Note that user pro-
cesses may "migrate" from site to site (i.e., may be active at one site and
inactive at all others) or may span several sites (i.e., be concurrently
active at more than one site). These concepts are also useful in dedicated

77

real-time weapon systems where the "users" of the system are the encounters
and engagements needing service.

The concept of "process design" in weapon system data processing engi-
neering has arisen from the notion that to properly service the encounter and
engagement processes (i.e., the system requirements), the DP subsystem must
perform as a set of computational processes (usually asynchronous and inter-
acting) which contribute to the system mission in a harmonious and non-inter-
fering manner. The role of the process designer, therefore, is to devise a
top-level software architecture and control scheme that satisfies the DP sub-
system requirements and provides coordinating constraints on further software
design.

Marker [18] separates the software in embedded computer systems (such as
in weapon systems) into three distinct classes:

• System Support - the operating system

• Computational Modules - the application routines

• System and Process Logic - the process design.

The process design consists of three inter-related components that implement
the strategy and tactics of the system:

a) The system decisions made based on the outputs of the computational
modules. The decisions which comprise a weapon system firing doctrine
or an electrical power routing policy are examples.

b) The software execution policy or scheduling criteria. In the absence
of infinite computing resources, a choice must be made to determine
which computational module gets executed next. This scheduling
policy has a significant impact on the performance of the system,
particularly during periods when the computer is saturated or nearly
saturated.

c) The organization of the system data base and control of the data flow
between computational modules. In most real-time systems, the data
base organization and the control of data flow have an overwhelming
influence on the responsiveness and load-degradation characteristics
of the data processor and, hence, of the system. The design of the
data base and data flow is, therefore, of top-level importance to
the overall software design and is very sensitive to the load and to
the strategy of the system.

This particular view has been useful in development of software for a
single data processor (or for a multi-processor with stringent constraints on
allowable concurrent activities). An implicit assumption is that there is a
single process resident in the configuration. Distributed data processing
necessitates a generalization of the concept to allow a hierarchy of processes,
with concurrently active concurrent processes under control of a higher-level
process (either conceptual or real).

78

The primary inputs to the process design phase are the refined functional
and performance requirements on the DP subsystem as a whole (produced in the
software requirements engineering phase), and the DP load profile or "path load
timelines" (produced in the DP subsystem engineering phase), plus the hardware
and software constraints imposed by earlier subsystem design decisions.

The output products of the process design phase are designs for the top-
level software architecture and control scheme; and derived requirements for
individual software processes and tasks. These include requirements for direct
and indirect support software, as well as primary mission software. In order
to state the requirements within the restrictions of the MIL-STD-490 specifi-
cation hierarchy, processes are often designated as CPCI's while tasks are
designated as CPC's. Thus, the process design phase will produce B5 and pre-
liminary C5 specifications, to be finalized in the preliminary design phase.
(The restrictions of the MIL-STD-490 format cause severe confusion between
processes and programs, which will be discussed in 5.5.3.) If the specific
development program has adopted a "software first" strategy, the process
design phase will also produce software-imposed requirements constraining the
selection or design of computers and communication hardware.

5.5.2 Content

The traditional activities of process design have been the following:

Allocation and tracing of software requirements to application
processes and the operating system.

Decomposition and partitioning of application process software
requirements into sets of requirements for independently scheduled
tasks.

Definition of scheduling/dispatching criteria, priority structure,
inter-task communications, error handling and recovery, overload
control mechanisms, and process control structure.

Definition and control of global data base and refinement of
external interface specifications.

Definition of data management constraints and data access protocols
necessary to maintain data base sanity.

Estimation and allocation of timing and storage budgets for each
task, and analysis of port-to-port thread timing, system respon-
siveness, and overhead.

Identification and analysis of critical algorithms.

Maintenance of requirements traceability from the subsystem
requirements to the software design and impact analysis of
requirements changes.

Verification that the subsystem requirements will be met if the
task timing, sizing, and accuracy requirements are met.

79

In the future, process design will be increasingly involved with multi-
processor architectures, distributed processing networks, hardware/software/
firmware tradeoffs and concurrency issues not found in sequential processors.
Advances in LSI and VLSI technology, lower hardware costs, and evolving DP
architecture synthesis techniques will offer a wide range of problem-oriented
DP system alternatives. The high performance requirements for weapon system
applications will demand hierarchical sets of concurrent processes operating
in distributed configurations under the supervision of multi-level operating
systems. The process designer will be faced with an exponential explosion in
the dimensionality of possible design decisions.

A real-time application process includes multiple stimulus-response paths
that are activated by events outside the DPS. Thus, the order of demands for
processing cannot be controlled by the DP designer. In sequential single pro-
cessor systems, a major issue is how to partition the application into tasks
in a way such that response time delays are distributed fairly across all
stimulus-response paths. Partitioning of the application into numerous,
rapidly executed tasks permits effective multiplexing of many processing paths
on a single processor. However, dispatching overhead becomes significant as
a task becomes smaller and response time delay eventually increases due to
inefficiency. Thus, there is an optimum size task determined by the particular
stimulus-response paths and the load profile on the DPS. Another factor in
defining the tasks is that processing on different'paths may not be independent
(i.e., the paths must be synchronized at some point). Thus, some tasks may be
designed to lie across two or more paths for the purpose of synchronization.

In distributed systems the problem becomes more complex, because the
number of processors and their interactions must be considered. For a given
set of processing paths and load profiles there is a maximum number of pro-
cessors that can be effectively used (i.e., all stimuli are serviced instantly).
As the number of processors are reduced, the load increases and saturation
may be reached, indicating the minimum number of processors. There is a trade-
off between cost (number of processors, software difficulty) and other con-
siderations (reliability, availability, threat expansion, system growth,
vulnerability). For various numbers of processors and configurations, alter-
native allocations of stimulus-response paths to processors must be examined
and optimum task sizes determined. The processor memory size and optimum
task size should be compatible to avoid further complications.

In order to do a meaningful analysis, the process designer must know the
structural relationships among the stimulus-response paths and must know the
sequences of required processing steps to a level of detail such that reliable
estimates of instruction counts and memory needs can be made. In addition,
the arrival statistics of the stimuli for each path and the performance
requirements on each path must be known. The maximum path execution speed
(path instruction count x feasible processor rate) can be compared to the
response time requirement to determine the slack time available for dispatching
overhead and waiting for resources. At this point, the feasible degree of
processing path partitioning can be determined and minimum-competition groups
of paths can be identified. If slack time is low or non-existent, the affected
path is designated a critical path and algorithm studies are initiated to
improve performance.

80

Another important consideration in the partitioning of processing is the
flow of data between processing steps and the access patterns within the
system. Generally, processes and tasks should be structured so that inter-
process and inter-task transfers are minimized and interfaces are simplified.
The necessity for inter-process and inter-task communication leads to require-
ments for access protocols, process synchronization, and complex control logic
in order to preserve data base coherence and sanity, and can severely limit
the scheduling flexibility of the system. The added overhead limits available
memory and degrades response time.

Arbitrary interfacing of tasks and processes by scattered groups of de-
signers usually results in disaster. Thus, the process design group is respon-
sible for centralized definition of the global data bases and configuration
control of the data bases as development proceeds. As part of this effort,
the process designers establish the allowable data structures (queues, data
sets, etc.) and provide design rules for data access. These considerations
lead to requirements for operating system services.

If adequate DP resources are available to support any set of system
demands without delay, the scheduling of tasks is automatically accomplished
by the external stimuli and by the predecessor-successor relationships among
the tasks. Generally, however, DP resources are scarce for practical cost
reasons and resource contention must be arbitrated by a scheduling algorithm.
For any engagement scenario within the weapon system design load limits there
exists a set of schedules of system actions that result in a "successful"
engagement outcome. Embedded in each of these schedules is a schedule for
necessary DP actions that support the system schedule. These schedules of DP
actions are requirements upon the DP scheduling algorithm (i.e., every schedule
produced by the algorithm must be a member of the set of "successful" schedules)
One job of the process designer is to find an algorithm that meets these
requirements.

A major difficulty is that computationally inexpensive techniques for
determining the class of "successful" schedules for even a single engagement
scenario are non-existent. Operations research investigations have shown that
the search for an optimum solution to complex scheduling problems is usually
impractical, although some heuristic methods provide near-optimal schedules.
Thus, both the requirements for a scheduling algorithm and the formal identi-
fication of a satisfactory solution are difficult. Moreover, most optimal or
near-optimal algorithms would be expensive to implement in terms of data
processing overhead.

The usual approach taken by the process designer is to adopt a simple
scheduling discipline (e.g., FIFO with or without preemption) and augment it
with a task priority structure. The priority structure is tuned by trial-and-
error simulation against representative engagement scenarios until a solution
believed to be satisfactory is obtained. This procedure has usually been
adequate for most systems, but its success is uncertain for future distributed
systems.

81

When a viable software architecture and supporting design constraints
have been identified, the process designer must develop requirement specifi-
cations for each of the independently-schedulable tasks. These requirements
are either derived from the DPSS requirements or are induced by process design
decisions. Since several tasks may participate in the satisfaction of a single
DPSS functional or performance requirement, the DPSS requirements must be
decomposed and restated so that they are meaningful in the specific process
design context and reflect the data processing terms of the task designer.
Response time requirements on the DPSS and memory constraints are decomposed
in the sense that each task is given a specific execution time and memory
budget. Failure to adequately decompose and restate the DPSS requirements
results in ambiguity of design responsibility and traceability problems
discussed in 5.6.3.

5.5.3 Problems

Process design, as a distinct technical discipline, originated within the
Ballistic Missile Defense (BMD) community, and with few exceptions (e.g., OTH-B)
has not yet been widely applied outside that problem area. Nonetheless, the
principles and techniques of process design are generally applicable and are
of significant benefit in the development of complex real-time systems. Unfor-
tunately, the current literature on process design is fragmentary and based
upon specific application assumptions. Most of the generalized knowledge is
carried in the heads of practitioners and is undocumented. What is needed is
a definitive text on the subject, collecting and generalizing existing know-
ledge to a wider range of application. Such a consolidation is necessary to
provide a framework for extensions to distributed processing, and to define
the use of recent software requirements engineering products in the process
design phase.

Effective process design techniques for single computers have been empi-
rically developed, but basic theory has been somewhat neglected. As we begin
to consider distributed systems, however, we realize that even such basic
terms as "process" are intuitive notions rather than precisely defined con-
cepts. Until we develop a better understanding of non-trivial processes and
concurrent interacting phenomena, the powerful new capabilities of concurrent
programming languages (e.g., DoD-1) will not be used to full potential, or may
lead to disastrous failures. Basic research is needed to clarify the concepts
of real-world and abstract processes in a broader sense than is currently
treated, to develop, and analyze systems of interacting concurrent phenomena,
and to address problems of multi-process/multiprocessor real-time scheduling,
process control, data management, dynamic reconfiguration, deadlock avoidance,
and resource management. Without this research the process designer will soon
be overwhelmed by the complexities of distributed systems.

Effective methods for describing and specifying processes and concurrent
phenomena are sorely needed. The current MIL-STD-490 format for B5 specifica-
tions was defined over a decade ago in the world of second-generation computers,
and views software as a static collection of programs. A process, however, is
a dynamic entity, not simply a collection of application and operating system
programs. It is a concept of action and behavior, not just components.
Efforts to describe a process within the B5 format have not been entirely

82

successful, because the dynamic qualities are not captured and confusion be-
tween processes and programs results.

In a distributed system, the DPSS may be spread across geographically
distributed physical sites or nodes. Each node may contain one or more clusters
of processors, depending on how a node is defined. Some conceptual processes
may involve the activities of only one processor. Others may involve notions
of competition for variable numbers of processors. Some processes may span
multiple nodes. Others may "migrate" from node to node. Hierarchical struc-
tures of processes must be considered. The same locus of action may even
belong to different processes simultaneously, according to the viewpoint of
the particular analysis. To accommodate various perspectives and additional
levels of design, new types of specifications must be considered for complete
communication and traceability.

A process supporting a complex weapon system is a finely-tuned simulta-
neous solution to a large number of software requirements. If the system
operating rules and process logic are implemented throughout tasks and low
level routines, evolutionary changes in weapon system requirements, even
small ones, can lead to extensive redesign of the software. If traceability
from requirements to design is weak, staggering costs may be involved just
to determine the software affected, as well as to modify it. One approach to
avoiding these problems, a technique called "process construction", is explained
by Marker [18]. The essence of the concept is centralized control of data and
process logic by specific routines or macros. Interestingly enough, the
necessary conditions defined by Marker for "process-constructible" software
are reflected in at least two Higher Order Software (HOS) axioms.

Even with process construction and modern software requirements engineering,
careful attention must be given to traceability during the process design phase.
In previous phases, the software is viewed in terms of a problem-oriented descrip-
tion (i.e., "what the software does"). In subsequent phases, after process design
has defined the software architecture, the software is viewed in terms of solution-
oriented description (i.e., what the software is; how modules, data files interactV
The process designer must follow disciplined rules for requirements decomposition
to ensure that traceability between requirements, software components, and test
procedures can be clearly maintained.

The quality of the process design is heavily dependent on the quality of
the DPSS loading profiles, engagement scenarios, and system operating rules
input to the process designer. If these are deficient, as they often have
been, it is very difficult to validate the process design and ensure that the
software architecture conforms to operational needs. More dangerous, the
process designer may make assumptions about operating rules to fill in gaps
in their definition. These assumptions may seem perfectly reasonable to make
the process design more efficient, but may not be consistent with the needs of
the weapon system as a whole.

83

5.6 PRELIMINARY DESIGN

5.6.1 Scope

Preliminary design can be factored into software preliminary design and
hardware preliminary design activities. Generally, we are not concerned with
the hardware design activity except in the cases where software considerations
drive the hardware design or selection, or where significant hardware/software
trade-offs are possible.

Software preliminary design can be divided into three components activi-
ties: application system preliminary design, operating system preliminary
design, and support software preliminary design. Associated with these
activities is test engineering, which determines a need for much of the
support software.

The output of the process design phase consists of requirements for
mission software and support software down to the CPC level. For each soft-
ware process, the process design defines a set of independently-schedulable
software "tasks", a scheduling algorithm that provides proper task synchroni-
zation and sequencing, a set of operating system services available to
application programs, a global data base structure, and control algorithms
that enforce the weapon system operating rules. The preliminary design phase
addresses the internal design of tasks within the framework established by
the process design.

The primary outputs of the preliminary design phase are designs for tasks,
including sets of internal (informal) specifications for routines, evidence
that each task can meet its requirements within the context of the process
design, and preliminary test plans to demonstrate that the process design
structure is testable. These outputs are formally presented and discussed at
the Preliminary Design Review (PDR). During this phase, the B5 development
specifications are finalized and updates to the preliminary C5 product
specifications are generated. The preliminary design phase is ended when all
action items from the PDR have been satisfactorily resolved, and the B5
specifications have been baselined.

5.6.2 Content

We will discuss the content of the preliminary design phase separately
for each of the major software areas: application, operating system, and
support. We will also discuss impacts on test engineering and hardware pre-
liminary design.

5.6.2.1 Application System

Working from response time, accuracy and storage budgets, and a set of
requirements to be satisfied by the task, the application task designer must
devise a structure of lower-level modules (e.g., routines) that collectively
meet the requirements, and a task data base structure that supports task

84

private data and inter-routine transfers. The results of this design activity
will also refine the definition of the global data base and will increase con-
fidence that the task budgets can be met.

During preliminary design, problem areas and critical algorithms at the
task level will be identified. Prototype code for certain key algorithms may
be developed to benchmark alternative designs. The behavior of alternative
module structures may be examined by functional simulation or emulation.

The work of the process designer should insulate the task designer from
real-time interference problems (e.g., process deadlock, scheduling conflicts,
memory access conflicts) and relieve application task designers from needing
detailed knowledge of the operating system. Except for response time require-
ments, a task can be viewed as a stand-alone batch program.

Commonly, a task executes under control of a main program or task control
routine. This routine handles all global data input transfers at the start of
execution and provides all global data outputs at the end of execution. The
structure of a task is usually hierarchical and in concert with structured
software design principles.

A task typically performs a specific function (e.g., assimilation of radar
returns, correlation of observations with tracks, scheduling of radar pulses).
Usually the job to be done can be very well-defined, and the major design
problem is to find a near-optimal way of doing the job within the timing,
accuracy, and storage budgets.

While task design is still a creative process, many software engineering
principles and tools are available to aid the designer. The earliest of these
are the traditional flowchart and decision tables. Structured textual des-
criptions (e.g.. Program Design Language) are augmenting graphical techniques.
Principles of structure and organization are typified by Parnas' concepts of
information hiding [4, 5] and program families [5]; the structured design
strategies of Yourdon and Constantine [19]; Higher Order Software [20]; and the
Michael Jackson Design Methodology [21]. Although structured programming
constructs have proven to be more useful than previous unstructured constructs,
new concepts of Functional Programming [22] show promise because they elimi-
nate undesirable consequences of structured programming.

The requirements output of the application preliminary design activity
is a set of requirements for each module within each task. These specifica-
tions are not deliverable in any MIL-STD-490 document. Hence, they are
informal, and their quality is determined by the software engineering standards
of the particular contractor. The module requirements may be indirectly
reflected in the C5 specification which describes the design of each CPC.
However, it is often difficult to separate design details from actual
requirements under the current format.

85

5.6.2.2 Operating System

The most difficult problems in implementing the process design are often
the responsibility of the operating system designer. While the application
task designer is insulated from the problems posed by hardware and concurrent
asynchronous software, the operating system designer is fully exposed to them.

The usual problem of the operating system designer in weapon system
applications is to meet the needs of the weapon system application by aug-
mentation of a general purpose commercial operating system, usually provided
by the computer hardware vendor. The operating system designer must inter-
face, on one hand, with the existing operating system and, on the other hand,
with the application needs as specified by the process designer's requirements
for scheduling and control algorithms, and operating system services. Other
interfaces are defined by the characteristics of peripheral devices, and much
of the operating system designer's job may be concerned with the development
of special purpose I/O handlers and device controllers. The operating system
designer must also be concerned with problems of interrupt structure,
scheduling, task enablement and disablement, resource allocation, timing,
deadlock prevention and resolution, data management, error detection, and
error recovery. In most weapon systems, these functions are performed by
executive or supervisor software operating in conjunction with the vendor-
supplied general purpose operating system.

In rare cases, the operating system designer may be faced with the
problem of designing an operating system from scratch, to interface an appli-
cation with a specific set of data processing hardware. Even more rarely,
the designer may be asked to design an operating system for an application and
develop specifications for the hardware to execute the software. The rapidly
dropping cost of hardware, the expanding capabilities of micro-electronics,
and better understanding of distributed architectures may make the "software
first" approaches more frequent in the future.

The operating system designer has fewer tools to help him than does the
application system designer because concurrent concepts are hard to represent.
The major issues faced in distributed processing have confronted operating
system designers for some time, even in serial machines. Hence, operating
system design has been a creative, highly experimental "black art".

The requirements outputs of the operating system preliminary design
activity are much the same as those of application design, and are incorporated
in B5 and C5 specifications. Sometimes the operating system will be designated
as a separate CPCI. Often the system-specific operating system additions will
be treated as an executive CPC within a CPCI covering the entire application.
Requirements for operating systems have been difficult to write and are often
fragmented due to representational difficulties. This does not mean that we
should avoid stating requirements for operating systems. Rather, we should
intensify efforts to find better representations.

86

5.6.2.3 Support Software

In addition to the mission software, other deliverable software packages
must be provided to support development, operation, and maintenance of a
weapon system. These may include software to construct software (e.g., com-
pilers, assemblers, process construction programs, PA tools), software to
exercise and test software (e.g., simulators, test drivers, diagnostic
packages, data reduction programs) and software to exercise and test the
system equipments (e.g., calibration software, system readiness verification
tools, performance monitors). These needs must be considered in the DPSS and
process designs because they are usually executed in the same hardware under
the same operating system as the mission software.

The B5 and preliminary C5 specifications for deliverable support software
are developed in the same manner as those for application software. However,
the requirements for the support software are usually dependent upon both the
requirements and design of the mission software and/or other system elements.
Because much of the support software is needed to test the mission software
as it becomes available, the support software development is often on the
critical path of the schedule. Hence, the needs for support software
requirements traceability and change response may be even more critical than
those for mission software.

5.6.2.4 Preliminary Hardware Design

Hardware design is not an issue of interest to us unless the software
design drives the hardware requirements or the software and hardware designs
are being done concurrently with software/hardware trade-offs involved.

In the first case, the hardware designer needs to know characteristics of
the software and its operations that form the basis of the hardware require-
ments. These include the instruction set used by the software, a definition
of the operations commanded by these instructions, word sizes, data types,
addressing modes, data manipulations, data stream, and instruction stream
dimensionality, I/O interfaces, instruction speed, memory access speed, and
memory size requirements. While some of these items are easy to describe
(e.g., the functional requirements for a one-bit adder are described by a
truth table) the operation of a complex system is better described through
use of high order hardware description languages (e.g., SMITE).

Concurrent hardware/software design is a risky process justified only in
cases of extreme need. Because it is highly interactive, coordination must
be frequent, communication must be effective, and requirements traceability
and change response needs are extreme. The Flexible Analysis Simulation and
Test (FAST) facility concept [23] has been advanced as an exploratory solution
to this class of problems.

5.6.2.5 Test Engineering

Among the items to be evaluated at the PDR is the initial version of the
software acceptance test plan. This document contains test requirements and
acceptance criteria, and information on classes of tests as follows:

87

Test purpose

Software requirements to be demonstrated

Special software, hardware, and facility configurations to be used

Generic test input environment and output conditions

Critical analysis techniques relating test outputs to acceptance
criteria.

By the time of Critical Design Review (CDR) the document must be refined to
describe the test case structure and identify the following for each test
case:

Requirement to be demonstrated

Test inputs

Software and hardware configuration to be used

Support software to be used

Major software entities to be exercised by the test

Test outputs

Test output analysis method

Uniquely identified test acceptance criteria.

Preliminary test engineering has been one of the most undisciplined
activities in the software development cycle, primarily because of the free
text, unstructured presentation of requirements in current specification
formats. There has been no rigorous test engineering methodology, and probably
there cannot be one without a rigorous requirements engineering methodology.
The reason is clear: the ability to define an efficient, workable structure
of test cases depends on the ability to identify structural relationships
between the requirements being demonstrated.

5.6.3 Problems

Complexity should not be a major problem in preliminary design (except
for software with stringent time/accuracy/storage budgets) given that the
process design has been carefully done. The major problems are communication
of precise requirements, traceability of requirements from higher levels,
change response, and validation of the design.

A common practice in conventional software engineering procedure is to
allocate software requirements to tasks. The statement of a requirement is
generally excerpted verbatum from a B5 specification or some higher-level
specification. It is not uncommon for a requirement to be allocated to
several tasks, such that each task is to contribute to the total satisfaction
of the requirement. Unless the requirement is carefully decomposed and
restated as several sub-requirements, the responsibility of each task is
ambiguous. Unfortunately, lack of time or manpower is a common excuse for
omitting the extra effort of decomposition. Prevention of errors then rests

88

on the degree of communication between the designers of the various tasks.
However, one of the reasons for partitioning an application in the first place
is to permit independent development without excessive coordination.

When a requirement is changed, the problem is amplified. What is the
impact of the change on each task? What is the impact on routines within the
task? Without a mechanism to decompose each requirement as necessary, and
record the relationships between the requirement, the sub-requirements, and
the tasks, the evaluation of change impact is an error-prone and time-consuming
process.

A task will often participate in the satisfaction of several higher-level
requirements. The means of satisfying these requirements will be further
constrained by process design decisions, and assumptions about the behavior of
other tasks. A precise and understandable statement of the task requirements
must consider the relationships between the higher-level sub-requirements,
design decisions, and assumptions. The failure to adequately decompose, trace,
and relate requirements leads to inconclusive testing and validation at the
routine and task levels. All that can be ascertained is that "the tester
thinks that the coder did what the designer thought the process designer
intended". Actual testing for satisfaction of requirements must then be
deferred to system integration and acceptance tests, where subtle errors are
difficult to find.

The major problems of preliminary design are inter-related, and stem from
a single cause -- failure to state requirements in a decomposable, unambiguous,
traceable, testable, structured representation. Without automated aids, a
satisfactory requirements statement consumes substantial time and effort.
Even with automated aids, sound requirements development will consume more
resources than alloted in the past. However, a new benefit will accrue over
the life of a project because testing, modification, and maintenance costs
will be reduced.

5.7 CONCLUSIONS

Although many phase-specific issues appear during the course of front-end
development, the underlying problems of complexity, communication, validation,
traceability, and change response appear in different guises throughout the
entire process. This is hardly surprising because the real nature of engi-
neering, whether labeled requirements definition or design, is problem-solving
and decision-making according to human thought processes. All human decision
making, no matter how abrupt or hasty, seems to involve the following ten
steps to some degree:

Formulate the problem

Search for key parameters and relationships

Identify alternative solution candidates

Predict consequences and side effects of alternatives

Compare alternatives

Evaluate sensitivities, uncertainties, risks

89

• Accept the risk of being wrong

• Make the decision (i.e., select one alternative)

• Accept the negative consequences

t Communicate the decision.

Effective aids to support this process would seem to involve the following for
complex problems:

• Reliable methodologies for conceptual decomposition of problems
into simpler, tractable sub-problems.

• Computer-maintained data bases for organization and retention of
multi-dimensional information beyond the span of simultaneous human
contemplation.

• Machine-readable languages for expression of ideas in terms of
fundamental concept types: entities, attributes, relationships,
and structures.

90

6.0 CANDIDATE TOOLS, TECHNIQUES, AND INTEGRATION APPROACHES

Given that the problems of the various front-end phases are fundamentally
similar (with superficial differences), is there a set of tools and techniques
existing today that can be integrated together to attack the major front-end
problems of requirements definition and validation? To explore this question,
we examined the characteristics of over fifteen systems, developed and/or used
by TRW, or reported in the software engineering literature. Of these, nine
were selected for further consideration as components of an integrated system.
In addition, three current research programs advancing the state-of-the-art,
and expected to yield future tools, are identified. Brief descriptions of the'
tool/technique systems evaluated, and the rationale for selection of the chosen
nine are reported in Section 6.1.

In Section 6.2, we correlate the chosen systems with the front-end
development phases and examine the applicability of the tools to each phase.
In Section 6.3, we summarize the assessment of the tools against capabilities
useful in the statement and validation of requirements.

In Section 6.4, we discuss the three approaches considered for integration
of the tools. In Section 6.5, we summarize the rationale for the recommended
approach.

6.1 TOOLS AND TECHNIQUES

To date, no single set of tools has been developed to support the entire
front-end development process. However, many tools and techniques have been
independently developed by university researchers to attack portions of the
front-end problem (e.g., ISDOS), software organizations using Independent
Research and Development (IR&D) funds (e.g., SADT, I0RL), software organiza-
tions using contract funds to develop tools to solve specific problems (e.g.,
ALF, PERCAM). Lately, considerable funding has been provided by research-
oriented DoD agencies to advance the state-of-the-art in software development --
RADC and BMDATC being the most significant ones.

Three categories of tool/technique systems are discussed in this section:
selected systems, other systems, and expected systems. First, a set of
selected tools are discussed which satisfy five criteria:

• Non-proprietary -- The systems are available for use by U.S.
Government agencies.

• Maturity -- The techniques have reached sufficient maturity to
be considered for use in a weapon system development.

• Demonstration -- The techniques have been used on real projects
of sufficient size to be realistic.

• Tool availability — The technique is supported by a computer-
based tool.

• Capability -- The systems are unique, or incorporate most of the
capabilities of similar systems.

91

For comparative purposes, a set of systems which have appeared in the
software engineering literature, called "other systems", are then discussed
and related to those selected. A set of applicable research programs which
are expected to lead to additional tools and techniques are also discussed.

6.1.1 Selected Tool/Technique Systems

A review of the non-proprietary tools reported in software engineering
literature led to the identification of nine systems which satisfy the five
criteria identified above. These are discussed below.

• PERCAM -- For four years, TRW has used a system performance simulator
called PERCAM (Performance and Cost Analysis Methodology) to support
analysis and planning for U.S. Army tactical missile systems at the
Missile Research and Development Command, Huntsville, Alabama.
PERCAM was designed for modeling and analysis of combat engagement
situations. A system is modeled with an Event Logic Tree (ELT)
which describes the engagement functions and decisions within the
defense system, A standard library of engagement components is
used to define the status of the system, the logic for changing the
attacker state as the engagement progresses, and, ultimately, system
performance and resource consumption measurements. Using this
approach, a system can be modeled initially at a high level and
adapted to lower levels of detail as needed. The modular structure
and standard library components permit a quick turn-around capability
ideal for systems analysis support. PERCAM has been transferred to
several organizations. The ELTs can be traced to the system operating
rules.

• DP PERCAM -- When PERCAM is augmented to output the number of objects
in each state as a function of time, a post-processor is used to
calculate critical resource utilization (e.g., radar pulses per
second, data processing instructions per second, etc.). This has
been used to estimate DP resources of the systems engineering level
to perform sensitivity and trade-off analyses.

• SREM -- The Software Requirements Engineering Methodology (SREM) was
developed by TRW for the U.S. Army Ballistic Missile Defense Advanced
Technology Center (BMDATC). SREM was designed to significantly
improve the specification and validation of real-time software
requirements for ballistic missile defense systems. Subsequent
experience shows that SREM can be applied to broad categories of
military sensor, and command and control systems. SREM includes a
practical methodology; the Requirements Statement Language (RSL), an
extensible, machine-processable language for stating requirements;
and the Requirements Engineering and Validation System (REVS), an
integrated set of tools for analysis, validation, and simulation of
requirements. SREM has been transferred to several organizations.

• CARA -- The pioneer system for machine-analyzable software require-
ments is the ISDOS system developed by Professor Daniel Teichrow and
his group at the University of Michigan. AF/ESD sponsored extensions
to ISDOS under the Computer-Aided Requirements Analysis (CARA) program.

92

Basic CARA facilities include a User Requirements Language (URL) and
a User Requirements Analyzer (URA). URA operates on URL statements
to produce a number of fixed reports and summaries, including printer
graphics in a convenient 8-1/2 x 11 format. Extensions of this
approach are being addressed by the CADSAT Program. ISDOS was
originally designed to support development of business information
systems. Hence, many of the features designed into SREM, such as
configuration management and simulation generation, are absent.
Current work on CADSAT is aimed at extending the software for the
military development environment. TRW has participated in this
effort. Under contract to RADC, TRW designed a Consistency Checker to
logically validate the CARA data base.

Comparison of SREM and CADSAT reveals that they are complementary,
rather than competing systems. The more recent SREM drew heavily from
the ISDOS experience, but was designed primarily for generation of
real-time software requirements rather than analysis of requirements.
SREM design decisions consciously limited the user's ability to
express internal DP design concepts, so that the requirements engineer
could not over-constrain DP design choices. CARA is far higher in
design concepts, and is more suited to support of process design.

PPL -- Program Design Language (PDL), developed by Caine, Farber, and
Gordon, Inc., is supported by extensive documentation and a tool
called the PDL Processor. Although labelled a program design
language, PDL is really more of a design description language, used to
express procedure flows in simple structured English. It supports
top-down design in that single-line statements can be expanded to
complex procedures in an orderly, cataloged manner. The PDL Processor
is basically a text editor with cross-reference capability.

Output reports are easy to understand and review, and are directed at
non-programmers, managers, auditors, and customer personnel. Thus,
PDL functions as a design documentation tool and communication medium
rather than as a design aid. TRW has been using PDL for two years on
a limited basis, and project experience has been favorable.

PDS -- Texas Instruments has developed a Process Design System (PDS)
uncfer contract to U.S. Army BMDATC. PDS is designed to start where
SREM finishes, and provides a set of tools for support of process
design and software development. PDS incorporates tools for configu-
ration management, library management, simulation control, data
collection, and documentation. Models and techniques for monitoring
of project costs and schedules are included. Facilities for
compilation and process construction are provided. PDS is supported
by the PDL2 language (not to be confused with Program Design Language
discussed previously). PDL2 is a version of PASCAL extended to
support operating system development and vector processing on the TI
ASC computer. The PDS objective was complete support of software
development from design trade-offs to final code. Early design issues,
involving methods for decomposition of requirements and allocation to
modules, have been particularly stubborn. Further research is needed
to fill gaps between SREM and PDS. While PDS was designed for support
of a specific language and computer, it serves as a prototype for more
generalized tools.

93

• ALF -- The Analytic Load Formulator (ALF) was developed by TRW and
used extensively on the Systems Technology Project (nee Site Defense
Program) and subsequent projects to aid in the process design. It
accepts the definition of a set of tasks, including such attributes
as loading time, data to be accessed, data access times, execution
time distributions, proposed scheduler parameters, and estimates
(via analytical queuing analysis) the response time characteristics
of the proposed process over a specified domain of arrival rates.
This analytical technique has been found to be a cost-effective tool
for process design in comparison to the cost and schedule to perform
simulation analysis of the response times.

• H0S_ -- Higher Order Software (HOS) is a formal methodology developed
by Charles Stark Draper Labs, and now actively advanced by HOS, Inc.
Although it is promoted as a requirements methodology, HOS is actually
an approach to decomposing systems and designing modular software
structures. The methodology is based upon six axioms which explicitly
define hierarchical control, where control implies responsibility,
data access rights, and control authority.

A system described as a tree structure in HOS can be analyzed for
consistency on both a static and dynamic basis. A specification
language and checker program are currently being developed to auto-
mate HOS. Although HOS has no current tools at present, it is
sufficiently unique to be included in the list.

• SMITE -- The Software Machine Implementation Tool using Emulation
(SMITE) is a higher order computer description language for program-
ming the microprogram components of a diagnostic emulator. Its
principle benefit is the ability to define (or modify) a DP
architecture, and use this to emulate the execution of applications
code to assess the ability of the DP to support the required load.
This provides a .high visibility approach to performing H/W trade-offs.
It can emulate only serial uniprocessors, and has not been used on a
real application (although it has been demonstrated for microprocessors,
e.g., Z8080).

These nine systems span the front-end system development cycle from system
analysis to DP Software/Hardware preliminary design, except for distributed
processing design. Each has been in use for system design except HOS and SMITE,
and the collection spans the capabilities of other systems in use. These other
systems are discussed next.

6.1.2 Other Tool/Technique Systems

Other well-known tools and techniques addressed during the study include
the following:

• SADT -- This manual technique for describing systems and software was
developed by SofTech, and has been used for a number of years on a
variety of projects. It has been discussed in several Software Engi-
neering Conferences, but is not supported by any automated tools. It
is similar in nature to CARA (describes a functional hierarchy), but
has a rather extensive methodology.

94

• SAMM -- This computer-based technique will extend and automate the
SADT approach with an automated data base and consistency checkers.
It is still under development by Boeing for the Air Force as part of
the ICAM project. Its capabilities are similar to those of CARA.

• IQRL -- The Input-Output Requirements Language was developed by
Teledyne Brown Engineering and is used in Huntsville on in-house
projects. It is automated on a PDP-11 and is maintained as a pro-
prietary product. It is similar in nature to SAMM.

t SVD -- System Verification Diagrams (SVD) were developed by Computer
Sciences Corporation (CSC) as an aid to specification of top level
system requirements and design. It is also similar to SAMM and I0RL.
The extent to which it is automated is not known, and it is proprie-
tary.

• HDS, -- The Hierarchical Design System was developed by Stanford
Research Inc. (SRI) for the specification and design of software. It
was sponsored in part by BMDATC, and is similar to SAMM and I0RL, and
is proprietary.

• Simulation Languages -- Simulation is known to be an important
technique for validating system and software performance. Simulations
are generally developed using Procedure Oriented Languages (e.g.,
SIMULA, SIMSCRIPT, SIMSCRIPT II), using general simulation support
packages (e.g., GASP II, GASP IV, SALSIM), or specific problem
oriented simulation packages (e.g., COMO is the standard simulation
framework for U.S. Army air defense analysis). These simulation
facilities were not selected due to their general lack of traceability
to the design elements represented.

These techniques are used for the statement of requirements and software
design at various places. A large number of similar capabilities exist at
other places supported by proprietary software packages which will not be
reviewed here. Similarly, the manual techniques for software design (e.g.,
HIPO Diagrams, Nassi-Schneidermann charts, Top-Down Design, the Michael
Jackson Design Methodology, Yourdon's Structured Design) are not addressed.

6.1.3 Research Programs

There are a number of research programs underway which promise the
development of new tools and techniques to deal with the front-end system
problems. Although not exhaustive, the following projects are significant in
terms of scope of effort and unique approaches.

• ARE -- The Axiomatic Requirements Engineering project is being
sponsored by Ballistic Missile Defense Advanced Technology Center
(BMDATC) to address the front-end problems of specifying the data
processing requirements at the systems engineering level. Parallel
programs are being funded to TRW, Systems Control Incorporated (SCI),
and General Research Corporation (GRC). This research is still in
the conceptual stage, and has not yet resulted in the development of
computerized tools.

95

• DDP — The Distributed Data Processing program is also sponsored by
BMDATC to address the problems of selecting distributed processing
hardware and specifying and developing distributed software. No
tools have yet been developed and demonstrated by the two contractors,
GRC and TRW.

• ADPC — The Advanced Data Processing Concepts program is being funded
by BMDATC to address the top level estimation of cost and performance
of data processing solutions to BMD problems. It is synergistic with
TRW's ARE program in providing a data base to support the more
theoretical ARE research approach and using early ARE research results.

6.2 CORRELATION WITH DEVELOPMENT PHASES

The correlation of the front-end development phases against the initially
selected set of tools are presented in Table 6.1. As indicated by the legend,
a "U" in an intersection of a tool and a development phase signifies the
current use of the tool on one or more projects for that development phase.

A "U" was assigned to PERCAM, DP PERCAM, SREM, PDL, and ALF because they
are currently in use on several projects by TRW. PDS is in use at the Naval
Research Laboratories and by Texas Instruments, although it is not supported
by TI as a product, and HOS has no current support tool. CARA and ISDOS are
used for design purposes by a large number of companies.

A "P" signifies that a tool is currently potentially useful for a phase,
but has not been used on a real project. DP PERCAM is assessed as potentially
useful for establishing DP and communications loads during the Requirements
Engineering and Distributed Process Design phases. CARA was assessed as
potentially useful because of its ability to express hierarchies of functions
with inputs and outputs for systems, software requirements, and preliminary
design. SMITE was developed to address the impact on overall DP performance of
changes to the DP hardware architectures, but has not been used on an actual
project to date.

A "C" concepts potentially useful was awarded to HOS for preliminary design
due to its six axioms for module definition. Although claims have been made
for its application at the system level, its utility has yet to be accepted.
Similarly, PDL, PDS, and ALF were awarded "C's" for Distributed Design because
their concepts appear to be useful in describing distributed designs.

An "E" was awarded to SREM, PDL, PDS, ALF, and SMITE because their
capabilities appear to be extendable to other phases.

6.3 ASSESSMENT OF TOOLS

The existing tools have currently known deficiencies even for claimed
applicabilities. Table 6.2 presents an overview of the features which existing
tools are claimed to address. The capabilities addressed here are the
following:

96

Table 6.1 Development Phase/Tool Correlation

•^1

Mi

I

^""^^^ TOOLS

FRONT END^^^-^^
DEVELOPMENT PHASES"^^^ /i/i/s /$ /

/i/$
/ ■ / /

/

SYSTEMS ANALYSIS U u E p

SYSTEMS ENGINEERING u u E p C

DP SUBSYSTEMS ENGINEERING u u E

SOFTWARE REQUIREMENTS
ENGINEERING

p U p

DISTRIBUTED PROCESS
DESIGN

p E p c c E c E

PROCESS DESIGN E E PE U P

PRELIMINARY DESIGN E u u U c

LEGEND

U - CURRENT TOOL USED
P - CURRENT TOOL POTENTIALLY USEFUL
C - CONCEPTS POTENTIALLY USEFUL
E - EXTENSIONS OF CURRENT TOOL POTENTIALLY USEFUL

Table 6.2 Current Tool Capabilities

00

I

A /i
/i /i /

/ 3$ / £ / ^ /

/ ^? /
SYSTEMS ANALYSIS CARA CARA PERCAM

SYSTEMS ENGINEERING CARA CARA PERCAM

DP SUBSYSTEMS
ENGINEERING

CARA CARA DP PERCAM

SOFTWARE REQUIREMENTS
ENGINEERING

SREM
CARA

SREM SREM SREM SREM

DISTRIBUTED PROCESS
DESIGN

CARA

PROCESS DESIGN PDS
CARA

ALF
PDS

ALF
SMITE

PRELIMINARY DESIGN CARA
PDL
PDS
HOS

PDS PDS PDS

• Functions -- CARA is claimed to be able to state function hierarchies
at the system and software levels, although techniques are not
described for linking the separate data bases. SREM addresses the
statement of DP functional requirements, while PDS and PDL address
the statement of functions of a software design. No current tool is
currently used specifically to state the distributed processing
functions, although CARA is claimed to be applicable here also.

• Performance -- SREM is the only tool which is claimed to be able to
state testable performance requirements for any phase of requirements
development. PDS allows for the statement of software budgets for
procedures, while CARA and PDL allow such statements in a textual
format.

t Consistency/Completeness Checking -- SREM contains a fairly complete
set of tools for static checking for various types of completeness
and consistency. PDS allows the user to request a set of cross-
reference tables to be used to perform such analyses. CARA has
added that static checking to CARA, but because SREM allows the
definition of precedence, its consistency checking is much more com-
plete than that of CARA; however, even SREM does not include
consistency checking of processing of legal sequences of messages.

• Simulation facilities are provided by PERCAM, DP PERCAM, SREM, PDS,
and ALF. Traditionally, stand-alone problem-oriented simulators
have been used; only SREM, PDS, and ALF tie the simulation to
specific design or requirements statements. SMITE provides a simu-
lation of a given DP architecture.

• Representation of the allocation of requirements to design elements
and its traceability is represented only in SREM (originating
requirements to functions and performance), and ALF (task budgets).
Traceability capabilities exist between levels only in terms of
stand-alone capabilities.

This table is the source for several observations. First, there are a
number of current deficiencies: the statement of performance requirements for
systems and distributed systems, the traceability between requirements and
design, and consistency checking of designs are not well addressed. Second,
except for SREM and PDS, simulations are not well tied to the requirements or
design; hence, the statement of requirements and design generally proceed
independently of their validation via simulation. Finally, no tool can be
used through the various phases of the system development. CARA comes the
closest, but it does not provide a traceable link from one phase to another.
These conclusions hold true for the other tools examined as well.

Another significant feature of these techniques is the availability of a
specific methodology to obtain maximum effect from the usage of the tools. At
the current time, ALF, CARA, PDL, and SMITE do not have documented methodologies
for their use. CARA particularly has been subject to severe criticism due to
this fact. On the other hand, SREM, PDS, PERCAM, and DP PERCAM have methodolo-
gies documented to some degree. The availability of a methodology has a
profound impact on the ability to transfer technology effectively.

99

6.4 INTEGRATION APPROACHES

There are various approaches for combining the capabilities of a set of
tools and techniques to address the front-end problems. Even after an under-
lying methodology is developed for addressing all phases of the front-end
development, and the role of each tool is identified, there remains the
problem of how these tools are to be tied together operationally. The critical
problem to be addressed is how the information resident in one tool is to be
translated to be available for use in the next tool to be used (e.g., if CARA
is used to state requirements for a system, and PERCAM is used to simulate
the system performance, information should be translated between the two).
Three approaches are considered for accomplishing this translation: user
translation, automated aids, and full integration. Each approach is discussed
below.

6.4.1 Manual Translation

The cheapest and least desirable approach is for an analyst to use the
tools in a stand-alone fashion, with the analyst providing the translation
capabilities. This approach is undersirable for a number of reasons.

• Efficiency -- A great deal of effort and time may be required to
accomplish the translation, and the translation effort may become a
bottleneck. This is particularly true of the development of large
scale systems, where the software specifications may involve the
statement of 1,000 to 10,000 separate requirements.

• Training -- Training analysts to use a number of different tools
and to become proficient in their separate idiosyncracies and usage
can present a large initial start-up training effort.

§ Reliabi1ity/Traceabi1jty -- When translation is handled manually,
the reliability of the translation is subject to question; moreover,
the additional effort to provide traceability (particularly for
system modifications) can become prohibitive.

• Completeness -- As previously described, the current set of tools
and techniques do not contain all of the required capabilities. Thus,
use of current stand-alone capabilities would still require the
development of additional tools and techniques.

• Methodology -- A significant existing problem is that there is no
underlying methodology for tying current capabilities together, and
some capabilities have no documented methodology. Thus, even if
existing tools were used in a stand-alone fashion, a significant
effort would be required to develop and validate an integrated
methodology to use them effectively.

For these and other reasons, some automated mechanism is desirable for
tying the tools together in an integrated framework. The use of ad-hoc
automated translators is discussed next.

100

6.4.2 Ad-Hoc Translators

When a substantial effort has already been invested in a set of existing
tools, a cost-effective solution to integrate these tools sometimes lies in
the area of the development of a set of ad-hoc translators which leave the
tools invariant. In some cases, this approach is simply not possible. For
example:

• Augmentation of CARA to provide a simulation capability has been
found to require an extensive modification of its basic concepts
of stating requirements in terms of elements, attributes, and
relationships (these cannot easily express the notions of
parallelism and precedence necessary for simulation).

t Translators alone cannot provide the required traceability linkages
between the different levels of requirements and design. For example,
CARA states a design in terms of a design hierarchy; traceability
between the hierarchy of system functions (e.g., tracking, discrimi-
nation) and the hierarchy of processing functions (e.g., radar
returns processing is used for both tracking and discrimination)
requires that both be expressed in the same data base.

This approach does address the problems of efficiency and reliability/trace-
ability, but leaves the more fundamental problems of training, completeness,
and methodology unaddressed. Thus, the automated translator route is
unsatisfactory, and cost advantages of using current tools must be compared to
its deficiencies. The integrated tool approach is addressed next.

6.4.3 Common Tool Approach

The advantages of a common tool in terms of efficiency of training and
operational usage, traceability, and reliability are obvious. The largest
problems for devising a common tool for the front-end system development lie
in the problems of feasibility, extensibility, cost, and methodology develop-
ment. Such questions as the following need answers.

Is enough known about the problem to devise a comprehensive tool?

Can additional facets of the problem be easily incorporated into the
tool at a later date?

Are the development costs for such a tool prohibitive?

Would the cost of using a comprehensive tool in an operational
environment be excessive over those of separate stand-alone tools?

Would the additional capability of the comprehensive tool be worth
the additional cost over current capabilities?

Will the knowledge gained on current tools be lost in the transition?

What is the risk of developing such a comprehensive tool in terms
of cost, schedule, and even risk of completing it at all?

• How can such a tool be transitioned into an operational environment?

101

The questions of feasibility and extensibility can best be addressed by
the identification of a common underlying structure of the front-end system
development discussed in the Final Report in some detail: that the front-end
development process can be described in terms of concepts of:

Functions (or transformations)

Inputs/outputs of functions

Sequences/parallelism of functions and inputs/outputs

Decomposition of functions

Decomposition of inputs/outputs

Performance of functions

Allocations of functions to subsystems

Projection of inputs/outputs to a common interface

Traceable simulations obtained by mapping functions onto simulation
procedures (e.g., as accomplished by REVS and PDS).

Recording of decisions and alternatives evaluated.

Because of this underlying structure, it is possible to express all of these
concepts in terms of language with a simple meta-language consisting of only:

• Elements (the "nouns" of the language, e.g., DATA, FUNCTION).

• Attributes (the "adjectives" of the language, e.g., DATA has UNITS
and TYPE).

• Relationships (the "verbs" of the language, e.g., FUNCTION INPUTS
DATA).

• Structures to express parallelism, sequentiality, and precedence
relationships in a compact form (e.g., first A, then B and C or D).

It is noted that all of the Requirements Statement Language of REVS is
stated in terms of these concepts, while CARA concepts are stated in terms of
the elements, attributes, and relationships alone. Moreover, the current
utility of SREM and CARA, and the research results of the ARE and DDP programs
suggest that such a meta-language is sufficient for the statement of all levels
of functional and performance requirements, design allocations, and traceability.
Experience with SREM, ALF, and PDS, and research results of ARE suggest that
simulations can be generally developed from a statement of requirements and
design which include the structural components expressing parallelism, prece-
dence, and inputs/outputs.

Current experience with SREM and CARA-CC, and the research results of ARE,
suggest that much consistency checking can be accomplished using only the
element/attribute/relationship features, while others require structures of
precedence relationship.

102

This covers the entire range of capabilities presented previously in
Table 6,2. Thus, all currently envisioned capabilities of such an integrated
tool appear to be possible if based on a common meta-language.

The structure of such a common tool, and its feasibility, can be discussed
in relations to the current organization of REVS presented in Figure 6-1.
Currently, all user input (except for direct graphics input) is routed through
the REVS Executive. REVS supports an extensible RSL language by allowing
additional elements, attributes, and/or relationships to be added via the RSL
Extension Translation function. These extensions are added to the REVS data
base (ASSM), and are used by the RSL Translation function and the generalized
query capabilities of the Requirements Analysis and Data Extraction (RADX)
function. The Simulation Generation facilities access this data base to
create simulators coded in PASCAL.

To implement a generalized front-end tool, this same structure would be
possible with the following augmentations:

• The current structure segments are fixed; some mechanism is needed
for adding new types (e.g., add new structures to the translator,
or add the capability of structures of user-defined structures to
the Extension Translator).

• Extend the structure checking capabilities of RADX to check the new
structures for completeness and consistency.

• Modify the interactive R-Net Generation function to generate the
new structures and check them for the new structural rules.

• Modify the simulation generation function to utilize the new
structures.

0 Modify the REVS Executive to recognize new components (e.g., a
systems level simulation generator for PERCAM).

• Add additional tools to accomplish specific analyses (e.g., ALF).

• Add additional tools to compare data bases for configuration
management.

To avoid the creation of an unwieldy data base, the output capabilities
of RADX could be used to extract the relevant portions of a systems level
data base to allow the definition of the software requirements; and a subse-
quent extraction of the end requirements to allow definition of traceability
and the software design. This process is illustrated in Figure 6-2. A
compare capability is shown to enable the comparison of two data bases to
identify differences -- necessary for configuration control.

6.5 ASSESSMENT

Assessment of the previous discussion leads to the following con-
clusions:

103

RSL
EXTENSION

TRANSLATION

RSL
TRANSLATION

REVS
EXECUTIVE

i

REQUIREMENTS
ANALYSIS AND

DATA EXTRACTION

ASSM
ACCESS

INTERACTIVE
R_NET

GENERATION

SIMULATION
GENERATION

POST-PROCESSOR
SOURCE

Figure 6-1 REVS Functional Overview

SYSTEM/
SUBSYSTEM
DATA BASE

i

Figure 6-2 Conceptual Development System Structure

105

• Development'of a common tool based on REVS is

- Based on an underlying methodological structure

- Feasible

- Extensible and flexible

- Low risk (based on current REVS design)

- Comprehensive.

• All but the structure and simulation facilities are immediately
available via the extension capabilities of RSL today.

• Development of such a tool could take advantage of current experience
using

- SREM (because it is based on REVS)

- CARA (because of an overlap of meta-languages)

- PERCAM (simulation obtained by translations of the system logic)

- DP PERCAM (simulation post-processor based on translation of
the system subfunctions)

- PDL (RADX can provide a more extensive data extraction capability)

- PDS (RADX could extend the completeness/consistency checking)

- ALF (RADX could provide the ability to tie the design to the PDS
implementation)

- HOS (concepts useful for software design)

- SMITE (used as an off-line analysis tool to estimate resource
requirements for the preliminary design).

Because of the existing structure of REVS, the approach of using REVS as
the baseline for augmentations appears to be cost-effective for adding new
tools or for using automated translators: RSL/REVS appears to provide an
existing structure for low cost augmentations, while RADX may well be suffi-
cient as a base for the automated translators. The advantages in efficiency,
training, and reliability are obvious. A recommended approach for development
of the integrated set of tools is presented in a separate evolutionary develop-
ment plan, CDRL Sequence No. A002 of this contract [24].

106

at 4ku.

7.0 REFERENCES

1. Graham, Ronald L., "The Combinatorial Mathematics of Scheduling",
Scientific American, Volume 238, No. 3, March 1978, pp. 124-132.

2. Bell, T.E. and T.A. Thayer, "Software Requirements: Are They Really a
Problem?", Proceedings of the Second International Conference on Software
Engineering, October 1976, San Francisco, Ca. (IEEE Catalog No.
76CH1125-4C).

3. Pippenger, Nicholas, "Complexity Theory", Scientific American, Volume 238,
No. 6, June 1978, pp. 114-124.

4. Parnas, L.D., "On The Criteria Used for Decomposing Systems into Modules
Communications of the ACM, Volume 15, pp. 1053-1059, December 1972.

5. Parnas, L.D., "On the Design and Development of Program Families", IEEE
Transactions on Software Engineering, Volume SE-2, No. 1, March 1976.

6. Couger, J.D., "Evolution of Business System Analysis Techniques", ACM
Computing Surveys, Sept. 1973, pp. 167-198.

7. Rudwick, B.H., "System Analysis for Effective Planning: Principles and
Cases", John Wiley & Sons, New York, 1969.

8. Quade, E.S. and W.I. Boucher, eds., "Systems Analysis and Policy Plan-
ning -- Applications in Defense", American Elsevier, New York, 1968.

9. Fisher, G.H., "Cost Considerations in Systems Analysis", American
Elsevier, New York, 1971.

10. Boehm, B.W., "Software and Its Impact: A Quantitative Assessment",
Datamation, May 1973, pp. 48-59.

11. Davis, C.G. and C.R. Vick, "The Software Development System", IEEE
Transactions on Software Engineering, Volume SE-3, No. 1, January 1977,
pp. 69-84.

12. "DoD Weapon Systems Software Management Study", The Johns Hopkins Univ.
Applied Physics Lab, May 1975.

13. "DoD Weapons Systems Software Acquisition and Management Study", Volume
1, MITRE Findings and Recommendations, the MITRE Corp., May 1975.

14. BMDATC Specification Technology Evaluation Program (STEP) Panel, 1976.

15. Salwin, A.E., "A Test Case Comparison of URL/URA and RSL/REVS", Fleet
Systems Dept., The Johns Hopkins Univ. Applied Physics Lab., July 1977.

107

7.0 REFERENCES (Continued)

16. "Technical Report - SREM Evaluation Results Summary", Report MDC-G7750,
McDonnell Douglas Astronautics Co. - West, October 1978.

17. Alford, M.W., "Software Requirements Engineering Methodology (SREM) at
the Age of Two", Proceedings - IEEE C0MPSAC78, Chicago, 111., November
I 9/o.

18,

19,

20.

Marker, L.R., "Process Construction - An Overview", Proceedings - IEEE
C0MPSAC78, Chicago, 111., November 1978.

Yourdon, E., and L.L. Constantine, "Structured Design", Yourdon Inc.,
New York, 1976.

Hamilton, M., and S. Zeldin, "Higher Order Software - A Methodology for
Defining Software:, IEEE Transactions on Software Engineering, Volume
SE-2, No. 1, March 1976, pp. 9-32.

21. Jackson, M.A., "Principles of Program Design", Academic Press, New York,
1975.

22. Brown, J.R., "Functional Programming - Final Technical Report", TRW
Defense and Space Systems Group, Redondo Beach, Ca., July 1977.

23. McClean, R.K., and B. Press, "The Flexible Analysis, Simulation and Test
Facility: Diagnostic Emulation", TRW Software Series, TRW-SS-75-03,
October 1975.

24. "Evolutionary Development Plan for an Integrated Requirements Engineering
System", TRW Report No. 32697-6921-001, TRW DSSG, Huntsville, Alabama,
February 1979.

108

5

PART III

1.0 INTRODUCTION

This portion of the report addresses the description of an overall unified
methodology to address the system development front-end problems described in
the previous section. The approach Is based upon formal foundations developed
under the Axiomatic Requirements Engineering (ARE) program supported by the
Ballistic Missile Defense Advanced Technology Center (BMDATC) in Huntsville.
Alabama. The key to this approach is a formal definition of decomposition
and allocation, and definition of a framework in which systems analysis and
design decision can be described and compared for different decompositions.
This leads to the definition of a unified methodology to be applied from the
front-end needs analysis down to the definition of the software design for
each of the data processors. This in turn leads to the identification that
a common metalanguage is possible which can be used to define languages for
the precise statement of requirements at each level of the hierarchy, thereby
providing the basis for a common set of methods and procedures.

The purpose of this report is not to define the completed methodology
(that is beyond the scope of the effort); the purpose is to identify the formal
foundations and to outline the features of the methodology which should be
developed in detail.

The purpose of a methodology is not to provide a mechanical set of steps
which, if followed, will result automatically in an optimal end product; no
matter how good, a methodology cannot make up for deficiencies in engineering.
It is commonly agreed that any design effort is comprised of one percent
inspiration and 99 percent perspiration; it is the purpose of the methodology
to assure that the inspiration is not drowned by the perspiration. In other
words, the purpose of the methodology is to identify the steps which should
be passed on the way to the end product, and the properties of the intermediate
and final milestones which should be reached in order to have an acceptable
end product. This provides the foundations from which requirements for auto-
mated tools are developed to aid in the requirements and design process.

1.1 BACKGROUND

Before defining a new methodology for systems engineering and design for
the front-end of system development, it is useful to review the systems engi-
neering literature to determine current deficiencies. Table 1.1 presents a
set of the systems engineering and software engineering methodologies and their
authors. Table 1.2 presents a comparative overview of the major steps of
these methodologies, showing rough equivalence of overall contents and se-
quences of steps, although different in the Individual step definitions. A
more detailed review leads to the conclusion that all of these methodologies
lack a formal definition of a consistent set of system properties, and tools
to address those properties. All of the methodologies offer only generalized
procedures for accomplishing the methodology steps (e.g., none offer specific
procedures for checking the consistency of a decomposition). None offered
the identification of specific steps of the development process. This result

109

Table 1.1 Representative Methodology Frameworks and Techniques

o

• SOME SYSTEM ENGINEERING METHODOLOGIES

- SYSTEM DESIGN PROCESS LIFSON, KLINE

- PROBLEM SOLVING HALL

- DESIGN PROCESS ASIMOW

- ANATOMY OF DESIGN ROSENSTEIN, ENGLISH

- DESIGN PROCESS GOSLING

- ENGINEERING DESIGN PROCESS ALGER, HAYS

- SYSTEM ENGINEERING PROCESS AFFEL

- PHASES OF OPERATIONS RESEARCH CHURCHMAN, ACKOFF, ARNOFF

• SOME SOFTWARE ENGINEERING METHODOLOGIES

- SUCCESSIVE REFINEMENT DIJKSTRA

- PROGRAM DESIGN JACKSON

1 - STRUCTURED PROGRAMMING DAHL. DIJKSTRA, HOARE

- S/W DEVELOPMENT SYSTEM DAVIS/VICK

Table 1.2 Representative System Engineering Methodologies

MIL STD

FUNCTION
ANALYSIS

I
CO

SYNTHESIS

EVALUATION
& DECISION

DESCRIPTION

Lifson, Kline Hall Asimow
Roscnstcin.
Knplish Gosling Alger, Hays AITcl

Churchman,
AcliofT,

ArnofT

Syslem design
process

Problem
solving

Design
process

Anatomy of
design

Design
process

Engineering
design
process

Syslem Phases of
engineering operations
process research

Informalion
gathering and
organizing
(need)

Formulation of
value model

Synthesis of
alternative
solutions

Analysis
and/or test

Evaluation

Decision
>

Optimization
Xiteration) y

Communication

Problem
definition,
selecting
objectives

Systems
synthesis

Systems
analysis

Selecting
the best
system

Communicating
results

Analysis of
problem
situation

Synthesis of
solution

Information
collection and
organization;
identification
of need

Identilication
of system
variables;
criteria
development

Synthesis

Evaluation
and decision

Optimization
(revision)

Implementation

Test and
evaluation

Decision

Optimizing
(iteration) ^

Communication
and
implemen-
tation

Description of
input and
environment

Measure of
value
(system worth)

Formation of
system models

> Realization >

> Optimization

Description of
outputs

Recognizing

Specifying

Proposing of
solutions

Evaluating
alternatives

Deciding on
solution

Implementing

Problem
definition;
selecting
system
criteria

System
synthesis

System

analysis

Implemen-
Ution

Formulating
the problem

Constructing
rnaihemalical
model

Densing
solution from
model

Tesimj' model
and solution
derived from
it

Establishing
controls over
solution

Putting
solution lo
work;
implemen-
tation

is typical of the "heuristic" methodologies, including the MIL-STD Systems
Analysis techniques.

At the other end of the spectrum are the mathematical descriptions of
General Systems Theory. Mesarovic et al. [1, 2] is typical of attempts to
describe general systems properties based on mathematical formalism; unfor-
tunately, these attempts are too limited to be successful. For example,
Mesarovic [1] addresses the formal description of one system decomposition
at one level ~ this is insufficient to address multiple possible designs to
meet a set of requirements for a complex system ultimately composed of a
large (e.g., 100,000) number of parts containing complex data processing
functions.

These conclusions (lack of a consistent set of formally defined properties,
lack of unified tools) hold true at all levels of the front-end of system
design, from Systems Analysis to Data Processing Engineering to process design.

1.2 OUR APPROACH

Our approach to defining a unified methodology and supporting tools is
illustrated in Figure 1-1. First, the underlying formal foundations are
identified, a methodology based on those foundations is described, the meth-
odology Is demonstrated on example problems, and then tools to support the
methodology are developed and demonstrated„

Section 2.0 provides the formal foundations in terms of definitions of
decomposition and allocation to subsystems. Section 3.0 provides an overview
of a methodology based on these foundations. First, a generic methodology is
provided, and then it is particularized to the design of data processing
subsystems to the software preliminary design level. These concepts are
solidified using examples from a preliminary analysis of a strategic sur-
veillance system. Section 4.0 presents conclusions. Section 5.0 presents
the references for Part III of this report.

112

FORMAL FOUNDATIONS

CO

Figure 1-1 Overall Approach

2.0 FORMAL FOUNDATIONS

2.1 OVERVIEW

A system is viewed in many different ways during the system development
process. Figure 2-1 presents three specific views and their relationships:

• The system requirements (i.e., what the system does). This is
described at various levels of detail, from a system mission level
(e.g., save the world for democracy), and at more detailed levels
(e.g., input message A). These levels of detail are usually ex-
pressed hierarchically in terms of "decompositions" of one level
into another.

• The system design, i.e., the physical pieces of the system, variously
called subsystems, critical items, assemblies, or parts. The system
can thus be viewed as a hierarchy of these elements terminating at
the bottom of a set of "parts". At any level of this hierarchy,
there is an allocation of the requirements of what the overall element
(or system) is to do in terms of what the sub-elements (or subsystems)
are to do. The data base of such requirements can get very large
(e.g., 100,000 to 1,000,000 parts for an aerospace system).

• The system integration and test plans, i.e., the system is not a
collection of subsystems, it is an integrated collection of sub-
systems. Resources (e.g., time, cost) are required to integrate the
sub-elements into the overall element (e.g., bolt them together) and
to verify that the overall element requirements are satisfied (i.e.,
test). An integral part of the system's design process is the iden-
tification of how the parts are assembled and tested. Note that the
overall element is tested against the element specification, not the
sub-element specification. Note also that, in order to test the
element, test tools and test procedures must be developed. The cost
and schedule of the development is thus calculated from the cost and
schedule of developing the sub-elements, plus the cost and schedule
of developing the test tools and procedures, plus the cost and sched-
ule of actually integrating and testing the element from sub-elements.

These three views of a system should have the properties:

• The detailed requirements at one level should be "decompositions" of
the initial requirements at that level.

t The allocation of requirements at a level onto sub-elements should
be unique.

• The test plan should identify the sequence and manner of verifying
that each of the system actions are accomplished by the cooperating
sub-elements.

• The integration and test plan at one level should be a "decomposition"
of that of the previous level.

114

SYSTEM

REQUIREMENTS

DECOMPOSITION^ "

DECOMPOSITION INTEGRATION AND TEST

PROJECTION

REQUIREMENTS

-o

TOOLS

PROCEDURES

DESIGN

£TT^

TOOLS

PROCEDURES

Figure 2-1 Three Views of a System

Note that four concepts are central to this discussion:

t The concept of a function (of a system, of a subsystem, or of the
integration and test process).

• The concept of sequences of functions (of system actions, of
tests).

t The concept of decomposition, i.e., of describing a function in
terms of a collection of more "detailed" functions.

• The concept of allocation (of functions to pieces and tests).

To achieve the definition of system properties and relationships, these con-
cepts must be formally defined.

Note further that these views of a system are not static, i.e., that
decomposition and allocation are non-unique mappings. Thus, changes in the
system requirements ripple into changes in the design, and into changes in
the integration and test plan. Similarly, if a part cannot be fabricated
for a specific cost and schedule, an alternate design may be necessary.
During the life of the system, the whole information structure of the system
is in a continuous state of controlled change — continuous change in response
to changes in requirements, design, or testing capabilities, but controlled
and managed to achieve specific ends (i.e., delivery of systems with agreed-to
performance, cost and schedule).

Formalizing the abovg, we have the following definition: A system set S
is a five-tupal, S ■ (R, D, T, W, Z) where

R = A set of requirements for system actions.

8 = A set of design elements (SS-i SSn) each of which is a system,
and a description of the environment E.

T = An integration test and plan.

W = A set of estimating relationships.

Z = A set of preference rules for comparing systems.

Each of these will now be examined in turn.

2.2 SYSTEM FUNCTIONS

We start with the definition of structures of data identifiers, systems,
and then formally define the notion of decomposition.

Definition 1: (SDT). A Structured Data Tree (SDT) is a triple (S, d, T)
where T is a tree with nodes which are identifiers from the set, S, and d is
a function on the nodes of the tree such that d maps nonleaf nodes into
(+.&.*,§), where:

116

+ indicates that exactly one of the subtrees are included,

& indicates that all subtrees are included in parallel.

* indicates that the subtrees are replicated some number of times.

@ indicates that the subtrees are included in a left-to-right sequence.

Remark. This notation is a variation of Jackson's [3] terminology which
will prove useful later. Figure 2-2 gives a graphical representation of an
SDT with the following interpretation. The identifier A is composed of the
identifiers B, C, and D in that sequence. B consists of either B-, or Bg. D

consists of two parallel streams, E and F, where E consists of a sequence

E,, E„, and F consists of the sequence F,, Fp From

this, the tree, T, the identifier set, S, and the mapping, D, can be
constructed for the SDT, with root identifier, A. In general, the
name of the SDT will be the same as the name for the identifier of the
root node.

The structure of identifiers is used to represent inputs/outputs, system
parameters, and system performance indices of a system. These identifiers may
themselves have values, or may represent a subtree of other identifiers. This
concept will prove useful in providing structure to the inputs and outputs of
a system.

Definition 2 (Function). A system function, F, is a six-tupal, F = (I, 0,
U, P, D, C), where

I = an SDT of inputs.

0 = an SDT of outputs.

U = an SDT of system parameters.

P = an SDT of performance parameters.

D = the definition of a transformation, D: (I, U) ■* (0,P)

C = a completion condition.

Remark. A system function, F, is viewed here as a "black box" which has
inputs I and outputs 0. The input is assumed to contain any relevant environ-
ment parameters, e.g., rain. The system function is viewed as incompletely
defined until the system parameter set, U, is specified: thus F can be viewed
as a family of functions, where the selection of U will result in the selection
of exactly one transformation of inputs and environment into the function
system outputs and performance, P. The transformation will continue until
a completion criterion, C, is satisfied.

117

ROOT

oo

LEAVES

Figure 2-2 An Example SDT

For example, we may describe a system function for detection of an
object. The input, I, might consist of the real object position and radar
cross-section. The environment, e, might represent the rain rate in inches-
per-hour which will tend to attenuate the radar detection capability. The
performance, P, might be the probability of detection, while the system param-
eters might be the radar power-aperture product and receiver noise level» From
these system parameters, object location, and rain rate, the probability of
detection can be estimated analytically.

2.3 COMPOSITION

The concept of decomposition involves the notion of one function being
described in terms of a number of other functions; in other words, a number of
functions are "composed" into another function, and it is this function which
may have a decomposition relationship with the original function. The manner
of this composition is defined precisely below.

Definition 3 (GMF). Let FQ, F, F be functions, where FQ is an

external node, and F. = (I., 0., U., P.., D., Cj) i = 1 n. Let G be a

directed graph with nodes F. and edges E.. such that;

1) Edge E.. connects two nodes, i.e., E- ■ (F., F^) for some j, k.

2) There exists mappings Bj and BQ with

'+ indicating the function F.. is initiated by activating

any of the input edges connected to it.
B, : Fr<

indicating the function F. is initiated when all of

the input edges connected to it are activated.

3) (+ indicating F. causes activation of exactly one edge

B0 : Fr<
when C. is satisfied.

& indicating F. causes activation of all output edges

when C. is satisfied.

4) If Bn : F. -> +, then C maps (I, U) onto j, indicating that edge E..
u 1 1 is to be activated. ,J

Remark. This definition is an adaptation of the definition of a Graph
Model of Computation in Computer Science (e.g., see [4]). The graph consists
of edges which define precedence relationships among functions. The concept
of precedence or sequence is defined in the following ways. Assume

119

Then when C. is satisfied, one of the following is the case:

• If BQ : F1. + * and Bj : F. -> +, F. will be immediately initiated.

t If BQ : Fi -> + and Bj : F. -> +, then F. may be initiated if that
edge is selected by C.

• If BQ : Fi -> *, Bj : p. ->- *, then F. will be activated if, and only
if, F. selects edge E.. and all other edges to F. are activated.

• If B0 : Fi ^ +, BI : Fj ^ *' then Fi W111 be activatecl "if. and only
if, F.j selects edge E.. and all other edges to F- are activated.

This allows the synchronization of functions to be specified. Because of the
close similarity of the GMF and GMC, many results of the GMC (e.g., liveness)
can be used without modification; these will not be discussed here.

Example. Figure 2-3 illustrates a GMF. Note that G has two input edges
and three output edges. It can be initiated by edges E, or E2, leading to Fr

After F3, all of F^, Fg, Fg, and edge Eg are activated. When all of F^, Fg,
and Fg are completed, Fj is initiated, leading to activation of F3, or edges
Ell or E12.

Definition 4 (Composition). Let G be a GMF over nodes F, , F ,

with a single entry. Define Fo = (I . 0o, Uo, P , D , C) where

O^G^.).

uo=Uiur

Pn =U.P.. o i i

D0 = (G, F1 Fn).

Co = G(Cl V'
The F is called a composition of F, ,F .

Remarks. Composition is the technique used to compose a "Super Function"
F0, from a set of functions, F1 Fn. The inputs I to F are the inputs

to an F. which are not outputs of other F.. The outputs 0 of F are some
' J r o o

subset of all outputs of all F... The system parameters U and performance

indices, Po, are simply the union of those of the Fi. The description, D ,

120

Figure 2-3 Example Graph Model of Functionality

121

of the transformation of F is the Graph over the F.. And the stopping condi
tions,
the F.
tions, C of F , are determined from the graph over the stopping conditions of

The inputs, I, and outputs, 0, of F are more than just a simple union of
the inputs, I., and the outputs 0., of the F.. The notions of sequence and

parallelism must be preserved also. Figures 2-4, 2-5, and 2-6 present typical
data compositions derived from the GMF with sequential, selection, parallel
functions. Note that the input data, I., to a function, F., may be composed
of subtrees output by previous functions and subtrees with an external source.
Thus the definition of the input data, I., for each function F,, and the data
available from preceding or concurrent functions. The output, 0 , is a sub-
tree of a maximal output SDT; the selection of the specific subtree is a
design decision.

2.4 DECOMPOSITION

The approach of defining inputs and outputs in terms of SDTs (rather than
sets of data identifiers) allows the definition of decomposition of data, or
refinement.

Definition 5 (Data Refinement). Let d, and d2 be SDTs. Then dp is said
to be a refinement of d-, if d? can be constructed from d, by adding subtrees
to a subset of the leaves of d-,, denoted by d, 4- d^.

Example. In Figure 2-7, d^ is a refinement of d,.

Remark. This definition of refinement of data satisfies our intuitive
notion that the refinement of a refinement should be a refinement. The fol-
lowing theorem is a confirmation.

Theorem 1 (Transitivity of Refinement). If d-, + d^i and $2 + ^ then

d1 + d3.

Proof. The subtrees to add to d, to yield d3 are obtained by combining

the constructions for d, + dp and dp. + do.

Remark. The concept of refinement of data provides the critical concept
for the definition of decomposition.

Definition 5 (Decomposition). Let F and F be system functions

F = (I, 0, U, P, D, C)

Fo = (V V Uo' Po' Do' Co)

122

Il-

I,—

F1 -.

-.-►o.

lf +

h h h

Figure 2-4 Composition of Sequential Data

5

II-
 > F ^0

r
Fo -^o

A
 -JF

F3--

I. I' 1

Figure 2-5 Composition of Selected Data

.o, I, I U 0, 0,, 0 4 M LZ kS ul u4 u5

Figure 2-6 Composition of Parallel Data

123

s

I

Figure 2-7 Example of Refinement

Then F is said to be a decomposition of F, denoted by F 4- F , if and only
o o

if:

a) I + I0

b) 0 + 0o

c) U = ^(U0)

d) P = ^U^ PO)

e) C=Co

f) D is a projection of D , i.e.

i f i e I, i E I . 1 + 1
oo o

0 e 0, Oo e Oo5 0 + O0,

then

Remark. This definition of decomposition requires several criteria to
be satisfied:

a) The input and output data of F must have the same structure and

sequence as that of F (i.e., I + Io, 0 + Oo). Thus, I may be defined

as a sequence of "messages", and Io may define the contents of those

messages, with the requirements that I have the same top-level struc-

ture as I. Similarly, 0 can only be elaborated by 0 .

b) The system parameters U must be calculatable from the U . This pro-

vides the link between the system parameters selected at one level
of analysis and the system parameters selected at the next, more
detailed level. Similarly, the performance indicates P must be
calculatable from the performance indices P and the system
parameters. U . 0

o

c) The completion criteria C and C0 must match. This requires that

i) both F and FQ complete at the same time; and

ii) a branch selected by C be also selected by C .

125

d) If D maps an element of I onto 0, then D must preserve this mapping;
and the associated performance indices. This assures that the nature
of the mapping not change from level to level of analysis.

On the other hand, it is also clear that a large number of decisions are
made with each decomposition step:

a) The subtrees of I and 0 .

b) The functions F., F .

d) The sequence of these functions defined by G.

e) The completion criteria C..

f) The nature of the transformation D..

Note that none of these are unique, and that each requires a specific decision.
Thus, with each decomposition F + F , we can identify a rationale for its
selection.

Theorem 2 (Decomposition Transitivity). If F, + F? and F? 4- F^, then
F, * F3.

Proof.

a) From Theorem 1, I, + !« and !« + I3 imply I, + I,

b) Similarly, 0, 4- (L and (^ + 03 imply 0, + 0,

c) Since U, = $2 (^o) anc:, U2 = ^3 ^3)'

Then U, = fa U3 (U3)).

d) Similarly

P = ^2 (U2, P2)

- ^ (*3 (U3)' ^3 ^3' P3)) = ^2 (Uj' P3)

e) If i, + i' 4- i" , 0, 4- Op + o3, then

D(i,) = o, implies D^ (i^) = O*. and

^2^2^ = ^2 ^mPHes D3 (''3) = ^3' hence

Do is a projection of D,.

126

Remark. This concept of decomposition as a transitive relationship on
system functions induces a partial ordering on any set of system functions
which represents a hierarchy of decisions. Figure 2-8 illustrates such a
tree with a root node F , with F + F,, F + F0-, F + F0 representing alter- o olo2o3 r 3

nate decompositions. Such a tree graphically portrays the relationships of
the F-, in terms of the alternatives which were examined at each level of decom-

position. The tree also allows the identification of the specific decisions
which led to the form of the function (i.e., F,0 is the result of the decisions

Fo + F3' F3 + F7 + F10)-

The concept of decomposition is common-place in systems theory literature.
A treatment of this subject is given by Mesarovic, Macko, and Takahara
for hierarchical systems [2] and general systems [1],

It is treated by Softech [5], Peters [6], Hamilton and Zeldin [7],
Dijkstra in his description of successive refinement [8], Fitzwater [9],
Wymore [10], and in military specification standards [11]. None of the
treatments simultaneously address the concepts of I/O sequence, functional
sequence, system parameters, and performance.

Several special cases of decomposition are of interest. These are
summarized in Figure 2-9 and discussed briefly below.

1) Functional Refinement. In this special case, I0 + I-, and 0n -i- 0,,

but F1 has the same graph as FQ and U] = uo' Pi = Po- Tlle refinement

of IQ and 0g induces the need for a refinement on F-, which has an

elaborated range and domain of its transformation D0 and completion

criteria C . This sometimes is used to provide a motivation for

further decompositions.

2) Concurrent Decomposition. In this case, F is represented as the
0 1 2 3

interaction of three concurrent functions, F2, F2, and F^, which

interact via exchange of inputs and outputs, and set together to
accomplish the transformation. This is similar to traditional
definitions of decomposition in [5], [6], [10], and [11].

3) Hierarchical Decomposition. In their book on Hierarchical Systems
Theory [2], Mesarovich, Macko, and Takahara elaborated the point that
any system which has inputs I which can be decomposed into streams
111 1

I-jf U 1.:. can be represented as the interaction of functions Fl

which deal with inputs I. and measurements system control parameters

U., and have outputs 0. and measurements M.; this can be done as long 1 1 i i
as a function Fo is defined (called a control or coordination function)

which has as inputs (M], MJ) and as outputs (u] U^). Note that

this can be viewed as a special case of the concurrent decomposition.

127

I
si
3

F4 F5 ^ F7 F8

rn
F9 Fio Fn

Figure 2-8 Tree of System Functions

128

a) INITIAL FUNCTION e) SEQUENTIAL DECOMPOSITION

0. I «•■ D F":

b) REFINEMENT

F1: L-H

T-

I3-

Or

* ^ -

h^

c) CONCURRENT DECOMPOSITION
f) SELECTION

1 As DA

LXy
i.

-*- F 5 _
>

'V 1

 *-0.
--*-o1

J2,l
'2.2

d) HIERARCHICAL DECOMPOSITION

g) ITERATIOr*

in 0n

*
.-^'

n r
— »- ^-r Fl *

v- /+ 0l

\ i

Figure 2-9 Special Cases of Decomposition

129

4) Sequential Decomposition. If I consists of the sequence I,, Ig. ^
then we can construct the sequence F,, F2, F3 which has these as
inputs. This type of decomposition is used most often in simulation
modeling of a system.

5) Selection. If I consists of inputs I, followed by I2, where I2 is

either ^ i or ^ 2' then ^ can be rePresentec:l as |ri followecl by
either F2 or F,.

6) Iteration. If I consists of a sequence I,, I2S..., In, then a
function F can be defined in terms of a sequence of functions F-j
whi ch map I-, onto 0,

We call these special cases the "structured decompositions", and conjec-
ture that any system function can be derived by a sequence of structured
decompositions. Note that structured programming is based on the concepts
of sequential, selection, and interaction decompositions, and have no analogs
of hierarchical, concurrent, and refinement decompositions.

Example. The relationship between system classes, data refinement, and
function decomposition can now be made clear. Figure 2-10 illustrates how a
pair of top-level functions (one for the system, one for the environment) are
refined, based on the assumptions on the system classes.

If we postulate a passive sensor (e.g., passive optics) and a directed
energy weapon, then the system inputs, I, consist of passive energy and the
outputs are directed energy (e.g., laser, neutrons. X-rays). If we postulate
an active sensor, then the inputs consist of the energy reflected by the
threat objects, and the outputs consist not only of the directed energy but
also the transmitted energy (e.g., laser radar, radar). If we assume a
passive sensor and physical weapons, then the inputs might be the passive
energy, and the outputs of the system might be the physical effects of the
weapon at impact or detonation time.

Note that whenever we refine the inputs and outputs, we have in mind a
class of device which accepts the inputs and produces the outputs. It is
an open question of which comes first; our concept of the physical device
which might correspond to such transfer functions, or the identification of
the class of input.

In the same fashion. Figure 2-11 illustrates how a decomposition into
system actions depends on the nature of the components taking those actions.
If a weapon system consists of a sort of "mine" or unguided round with a
proximity fuze, then its function is to detect a target and explode. If the
weapon system has a passive sensor which is used to guide a missile, the
system actions include the functions of tracking, discriminating, launching
and guiding a missile to detonation. If the sensor is active and the weapon
uses directed energy, the target is detected, track, and the weapon is

130

PASSIVE
SEiiSOR

SYSTEM

DIRECTED
ENERGY
ur/.pn'i

SYSTEM

DIRECTED
ENERGY
WEAPON

THREAT >

THREAT

RESUITS*4

THREAT

RESULTS-«»

OR

RESULTS

PASSIVE SENSOR/DIRECTED ENERGY WEAPON

I - PASSIVE ENERGY
0 • DIRECTED ENERGY

^ I ^
E F

-<*— ^*-s—i 0

ACTIVE SENSOR/DIRECTED ENERGY

I - REFLECTED ENERGY
0 - TRANSMITTED ENERGY PLUS

DIRECTED ENERGY

OR

00

SYSTEM

_L R

PASSIVE
SENSOR

PHYSICAL
WEAPON

C2

THREAT

RESULTS

I „
E F

^-0
PASSIVE SENSOR/PHYSICAL WEAPON

I - PASSIVE ENERGY
0 - PHYSICAL EFFECTS

Figure 2-10 Effect of Top-level Refinement on BMD System

SYSTEM

THREAT

RESULTS ■<

I ,
E F

^0

t
> i / /"

ALTERNATE DECOMPOSITIONS

SPACE MINE

7

TURN
ON

< ■
DETECT *

I r
DETO.'WTE

—J
U)
ro

TURN ON

^^ ACTIVE SENSOR/DIRECTED ENERGY

TURN
UN "i

TURfi ON

*

r OBJ XT i

r
/

r

1
'r T " ' '

~4
—*• j DETECT CONTROL

RESOURCES 1 ^—-~.
~ —*- TRACK ""V<> /

\
^- ̂ ^ DISCRIM

^>^ /
~ ""•^ SLEW /' IGNORE |

"

T FIRE

Figure 2-11 Alternate Decompositions of BMD System

physically aimed and fired. Thus the system actions (nature, sequence, inputs,
and outputs). All depend on the nature of the components to take them.

2.5 SIMULATION

It is well known that simulation is an important tool for performing the
estimating of the performance indices P given approximations of the inputs
system parameters, and environment. It is also well known that the simulation
should somehow be "traceable" to the system description. These concepts can
be formalized as follows:

Definition (Typed SDT). Let I be an SDT. A typing of I, denoted by I ,
is the refinement of I obtained by assigning a type (e.g., boolean, real) and
range of values to the leaves of I.

Definition (Simulator). Let F be a system function. F is called a
simulator of F if

F+ = (I+, 0+, D+, U+, P+, C+) where

I , 0 , u , P are typed SDTs

and D is a procedure which maps

(I+, U+) to (0+, P+), and

C is a procedure which maps I onto the set of output edges of F.

Definition (Simulator traceability): A simulator F is said to be
traceable to function F if m

D+ = (G, FJ, F+)

i.e., if both have the same precedence graph.

Remark. This definition of traceability is quite strong: it requires
that procedures exist for each system function F. , and traceability between

system inputs, outputs, system parameters, and performance indices. This
definition attempts to formalize the approach used to build simulations of
software requirements written in the Requirements Statement Language (see
Bell [12]).

Note that various levels of simulation exist as a consequence of having
different levels of decomposition of the system requirements. This provides
a key link for concepts of validating one level of simulation by lower levels
of simulation.i.e., one should be a decomposition of the other).

133

2.6 ALLOCATION TO SUBSYSTEMS

We start by defining the Systems Requirements, R, in terms of the root
function, F .

o

Definition (Functional Requirements). A system, S, is said to have
functional requirements, R, If

R = (X, Y, F, P)

where F is the root function of the system, F = (I, 0, D, U, P, C).

X = domain of input space I

Y = required range of the output space 0

_
P = range of performance indices P.

A second view of a system is "what it is", i.e., as a set of interacting
parts with a common goal. These parts are here called "subsystems", denoted
by SS-|, SS2, ♦ssn' anc' 1:he description of the environment, E.

The description, E, of the environment plays a special role in the
development of a system. The root function, F, maps a threat scenario onto
the engagement results; the nature of the interaction between the environment
and the system components depends on the nature of the components. Thus, E
will describe radar reflection properties of the threat if a radar is a
component of the system, while E will describe optical emissions if the
system includes an optical sensor. The subfunctions to describe the environ-
ment must, therefore, be developed as part of the decomposition process,
and then "allocated" to the environment description. Noje that F describes
the closed system, while F-E describes the open system, F, which maps all
environment inputs (e.g., radar returns) onto all system outputs (e.g., radar
pulses, blast effects).

The relationship between the subsystems and the system requirements
should include the following:

• The subsystems SS-i, SS2 ,SSn and the environment model E

should collectively perform all of the system actions defined by
some decomposition F . m

f The subsystems have interconnections between them to transmit
precedence relationships and information.

• Each subsystem SS^ can be considered as a system.

The implications of these properties are profound: if SS. can be con-

sidered as a system, then the decomposition and allocation process can be
repeated successively to yield a hierarchical structure for defining a

134

system in terms its lowest level parts, subassemblies, assemblies, critical
items, prime items, and top-level subsystems. If the collection of subsystems
must perform all of the actions of F . then each subfunction of F should be

m m
uniquely allocated to exactly one subsystem. This provides the stopping
criterion for the decomposition process; in effect, decomposition stops when
each subfunction of a functional decomposition can be mapped uniquely to one
subsystem SS.. Finally, the interfaces between the subsystems must pass all

information and enablement information between the subfunctions allocated to
the subsystems; this provides the requirements for the interface design.
These concepts are formalized below.

Definition (Subsystem Allocation Relationship). Let M be a relationship
between the subfunctions of F and the subsystem elements SS-,, SS2, , SS

and the environment model E. Then M is said to be a subsystem allocation
relationship.

Definition (Subsystem Allocation). If M maps each lowest level sub-
;ion F onto i

m
be an allocation.

function Fm onto one subsystem or the environment model E, then M is said to
m J

Remark. A subsystem allocation relationship can exist between any level
of decomposition of the system function F^ and the subsystem (including the

environment model E). Note that, as Fn is further decomposed, eventually M

becomes single valued, and hence, an allocation. Further decomposition of Fn

after M is an allocation, explicitly imposes "design constraints" on the
subsystem to which the subfunctions are allocated. This provides the
key to the definition of "design freedom" as a quality. Note further that
the qualities of design freedom and allocatability (i.e., several different
allocations to subsystems can be explored without further decomposition)
appear to be incompatible -- the further F is decomposed, the finer granu-
larity can be considered for allocation to subsystems, but then "neighboring
subfunctions" will be allocated to one subsystem, thereby giving a finer
description than "necessary". It appears that one may "recompose" the
subfunctions into higher level functions after the allocation has been made to
reduce the design constraints of the subsystem requirements; the "validation
points" on the R-Nets of the Software Requirements Engineering Methodology
have this property.

Note that an allocation, M, not only allocates the subfunctions to the
subsystems, but induces an allocation of system parameters and performance
functions to the subsystems SS. and the environment E, and induces the

mapping on inputs and outputs of the subfunctions onto the inputs and outputs
of the subsystems.

135

This is formalized below.

Definition (Subsystem Graph). Let M map F onto subsystems m
SS, , »SSm- The subsystem graph G. is the graph

Gi = (ers)'

where ers = (Fr, Fs) where Fr or Fs (or both) are in SS..

Thus G^ contains all edges connected to any F. mapped by M into the

subsystem SS-.

Definition (Subsystem Composition). Let M map F onto subsystem

SS-j, SSnJ E having subsystem graphs G1 Gn, Gp. Define

SS. = (1^ 6^ U^ P^ 6^ C^

where

Di = (G^ {F. where F. is in SS.})

I, = G.(I.) - G.(0.)
1 i J 1 J

0, =^(0^

for all j such that F. is in SS.
J

Remarks. Given the mapping M, the actions of SS. can be specified in

terms of the graph of its subfunctions (the subsystem graph), and then the
inputs, outputs, system parameters and performance indices, and completion
criteria follow. The interfaces between the subsystems now consists of the
common edges of G and the common input/output information between functions of
the subsystems. This information transfer can be accomplished with one or
several different "links" between subsystems. These concepts are explored
below.

136

Definition (Link): A Link L... between subsystems SS. and SS.
is a pair

1 = (r* r**) Lijk ^ijk' ijkj

where C* and Ct* are communication functions assigned to SS. and SS.;

respectively. The interface between SS. and SS. can consist of a number
of links.

Definition (Interface Design). Let M be an allocation of F onto
m

SS-j ,SSm and E. Let Q.. be a collection of messages,

= iqrs is an outPut of an F
r belonging to SS. and q is input

^to an Fo belonging to SS. s 3 3 j

Let E.. be a collection of edges between SS. and SS.,

Eij = | ers = edge ^'"V where Fr e SSi and Fs e SS'' 1

Let N be a relationship between (Q.j9 Q..., E.., E..) and {I } L1jk)

If N is a mapping, then N is called an interface design.

Remarks: N is a design because it specifies that all interfaces between
subsystems will occur across well-defined links. It is the function of the
communication functions C* and C** to accomplish the transfer of precedence

and information between functions. Note that Cif.. and C^. must have consistent
decompositions, i.e., both must be decomposed in a consistent fashion. Some
links between subsystems are highly serial (e.g., using a single wire), while
others can be highly parallel (e.g., buffer storage). In any case there are
general requirements to merge data, send the data to the other function,
where it is sorted and communicated to the appropriate functions. Note
therefore, that two kinds of decisions are necessary to define the SS.: the

boundaries of the SS., and the nature of the interfaces between the subsystems
(e.g., the number of input/output links determines whether inputs to a
subsystem are parallel or interleaved). Thus, we arrive at the following:

Definition (Design). A design D of a system is the 4-tupal

D = (F[Ti, M, N, SS)

where F is a decomposition of F,

137

SS is the set (SS., ,SS , E)
i n

M is a mapping of F onto SS

N is an interface design.

Example. In Figure 2-12, we see the allocation process in action. In
Figure 2-T27 we have a function defined in terms of a decomposition of two
parallel sequences; in b), SS,, and SS?, and the interface A are defined in a
straight-forward way.

In Figure 2-13, the inputs are parallel and the functions F,, F?, and F^

are also seen as parallel. When M allocates the outputs A,, A-, and A- to a

single interface link, then we create the need for a SORT function to
examine the input stream into its constituents A,, A?, and A_, which are then

input to F., F , and F . This SORT function is not part of the original

requirement, but is made necessary by the mapping of the inputs to SS, onto a
single input link; thus, SORT is a derived requirement.

Note that the definition of SS. can be described in terms of hierarchy of

functions which are different than those of the requirements. And note that
the SS.. becomes the initial requirement for any further decompositions.

The design of a system can thus be viewed as a series of decompositions
leading to an allocation to subsystems; the subsystem functions are in turn
decomposed and then allocated to critical items; the critical item functions
are decomposed and allocated to smaller items, assemblies, and so forth,
until the lowest level part is identified.

As previously discussed, the allocations are not unique. What then leads
to the selection of one allocation over another? It appears that properties
of reliability, modularity, testability, use of existing pieces, interface
complexity, and producibility are dominant considerations.

It is further noted that some system indices are properties of the
pieces of the system alone — reliability is such an index. The reliability
of the system is calculated from the reliability of the subsystems -- the
reliability of the system is not normally calculated in terms of the
reliability of its functions.

Finally, some of the most important indices (cost and schedule) are
functions of the subsystems and the resources necessary to construct the system
from the subsystems. These are addressed next.

138

b) SUBSYSTEMS

SS1

In An

SS2
0

9 -h—

-h — - —►

Fl

+
F2
i
F3

•. A

0
— > F4

1
F5
i
F6

 JO

^ A
— -3

■

- 3 -^u^

\' 11

Figure 2-12 Allocation of Sequential Functions

139

a) SYSTEM j

i

Figure 2-13 Allocation of Parallel Functions

140

2.7 INTEGRATION AND TEST

A system is not merely a collection of its constituent subsystems: time
and resources are required to integrate the pieces together and to verify that
they work together to accomplish the system functions. Several things are
required to accomplish the construction of the system:

• The constituent subsystems.

• A set of test tools.

• A set of test procedures.

• A sequence of integration and test steps.

The integration and test of a system can be considered as a system decomposed
into a sequence of steps which have inputs, outputs, and performance (in
particular, cost and schedule). Several points are significant:

• After integrating two or more subsystems, these subsystems can be
tested according to a test procedure. The test procedure has as
its objective the verification that one or more specific system
functions are satisfied. Consider a system function, F, decomposed
into the interacting functions, F, to F7, which are allocated to

SS,, SS2, and E, as indicated on Figure 2-14. Then some specific

tests should verify that function, F, is in fact accomplished
by the cooperative action of the subsystems if the environment
performs the functions assigned to E, and its performance in-
dex, P, is satisfactory.

• To verify that F is performed satisfactorily, it may be necessary to
have a test tool to provide the initial data, I,, to the function,

F,, and to emulate the environment, E, by accepting an I. and an I34

to produce the 1.- to SS2. The test procedure then defines the

inputs, the expected outputs, and the criteria for accepting the
performance of the function, F. The definition of the characteris-
tics of the functions assigned to the environment (in our case, F.)
then become the requirements on the test tool.

• Resources (e.g., time, manpower, computer time, costs) are required
to develop both the test tools and the test procedures. Thus, the
development of the test tools and the test procedures are the
distinct steps in the integration and test plan.

These concepts are formalized in the following.

Definition (Integration and Test Plan). An Integration and Test Plan, T,
is a six-tupal, 1 = (I, 0, U, P, D, C) where

I = inputs necessary for construction of the system, e.g., raw
materials, labor, machine resources, and specifications.

141

ro

!

Figure 2-14 Example Decomposition

0 = outputs, i.e., the system.

U = the parameters affecting the system development, including
the parameters U .

P = system development performance indices including cost, schedule,
and utilization of critical resources.

C = completion criteria, including the test acceptance criteria.

D = the sequence of steps necessary to develop and test the system.

Remarks. Figure 2-15 presents an example of the first level of decompo-
sition. The steps to develop SS-,, SS?, and SS- have the definitions of SS,,

SSo. and SS3 as input. The Test Procedures are developed using the definition

of the system function decomposition, F , as input; the test tools are

developed from the definition of E and the test procedures. In this case, an
SS-,, SS2, and SS-, must be available to integrate, and the system must be

available with test tools and procedures to test it. The Completion criteria,
C, is the satisfaction of the tests.

The first steps are always the development of the subsystems; the next
level of decomposition the system development will decompose this into the
development of the constituents of SS. plus their integration and test. Also,

the definition of the test procedures can be initiated, given only the F and
the anocatlon, M.

How far is the testing decomposed? This question is similar to that of
how much software testing is necessary. Several criteria are possible:

§ All system functions are exercised at least once.

• All paths through the system logic are exercised at least once.

t The boundaries between the input regions resulting in different
system paths are verified.

2.8 ESTIMATING RULES

Given a decomposition F of the system requirements which has system

parameters U , given values of U , we can map the U onto the performance

indices P using either analysis or simulation. However, to perform cost/
performance tradeoffs, we need some technique of estimating the cost of a
system which has those values of U . This results in the need for estimating

rules, designated as the set W. The estimating rules have to be a function of
the following:

143

R
§

SYSTEM

Figure 2-15 Example Integration and Test Sequence

•

•

As the design D changes, subsystem costs and schedules should change
(i.e., due to differences in interfaces and subfunction allocation).

Given a design D, there are still cost/performance relationships
which exist for the subsystem (i.e., you can buy a cheap unreliable
low-performance component or an expensive high-performance ultra-
reliable component for any value of U).

Given subsystem component estimates given U , the cost of the system

must still include the cost of integration and test; hence, estimat-
ing rules must exist for constructing integration and test tools,
developing the testing.

The estimating rules, W, must map the system parameters U onto the set of
performance indices of the integration and test functions; the decomposition
then can be used to map these back onto the resource constraints for the
development system, T, This is the way to change the development,
integration and test cost, and thus yield cost/performance trades.

2.9 PREFERENCE RULES

The term "preference rules" is used to denote the set of rules by which
one system is compared to another; ultimately, one system is preferred to
another. And thus the rules for determining preference are an important
factor in the system design.

The content of the rules includes as a minimum the performance indices of
F and the resource indices of T. The rules should identify the desired
relationships of these indices (e.g., maximize performance for specified cost,
minimize cost for a specified performance and development risk and schedule,
or get the best performance for the least resources). These rules can merely
state preference, or can rule out catagories of solution (e.g., if the cost
is over a specified amount, don't consider it). The rules can also include
design constraints such as "use component type XYZ" or more nebulous factors
such as "use component type XYZ unless performance penalties are 'too severe
or include factors such as growth potential, modularity, etc.

■ ii

The set of preference rules for system selection are usually never
written down fully; it is mandatory that some of them be written down in order
to reduce the size of the design and test space to be examined (e.g., maximize
performance for fixed cost and deployment schedules), but factors such as
modularity are usually handled subjectively and informally.

2.10 CONCLUSIONS

In the overview, a system set was defined as the five-tupal

S = (R, 6, T, W, Z)

where R identified the requirements set, 6 the design set, T, the test and
integration plan set, W the set of estimating rules, and Z the preference rules

145

We see from the analysis that these factors are not independent: the

decompositions of R are mapped onto the subsystems defined by D; the T
describes how these specific subsystems are integrated and tested, and decom-
poses the resource requirements into those of the integration and test steps;
W must contain estimating relationships for the resource requirements for
subsystem development and the integration and test; and Z must identify
preference rules for all of the performance indices and resource requirements.

The above discussion concentrates on the features of performance,
development cost and schedule, and deployment cost and schedule; the factors
of life-cycle cost (including logistics and maintenance costs) require the
addition of additional factors; preliminary indications are, however, that
these factors can be handled in a manner analogous to those of the development
resources.

Note the dimensionality of the system design problem even at this one
level. There are a large number of decompositions of F;given a decomposition
F, there are a large number of ways of packaging these functions into sub-
systems and their inter-connections; there are a large number of possible
values for the system parameters; there are a large number of possible ways
of integrating and testing the system; and even if the cost-estimating
relationships are fixed, different system designers might have different rules
for selecting one design over another which he unconsciously applies during
the design process. Because of this large dimensionality, it is necessary
to have a methodology to assure that all factors have been taken into account
without enumerating all possible designs. This is the subject of the next
section.

146

3.0 METHODOLOGY OVERVIEW

The foregoing formal foundations laid the groundwork for a methodology
for allocating system requirements to subsystems by precisely defining basic
concepts of precedence relationships of actions, decomposition, allocation,
simulation, and interface design. In this section, the implication of these
foundations on a methodology for the front-end system design is discussed.

A methodology for the front-end system design must address two types of
issues: the selection of the sequence of design elements (e.g., system, sub-
system, prime item, critical item), and the tools and techniques used to define
requirements for a component and allocate requirements to the next level of
components. The classes of components are established by the state-of-the-art
of the application (e.g., radars, radar transmitters, data processors divided
into hardware and software). The specific nomenclature for the system
functions is application-specific. However, the general outline of the steps
for performing the requirements definition and allocation to components is
essentially application independent. Although a detailed methodology has not
been fully worked out for the front-end system design activity, a top-level
description appears below.

3.1 OVERALL APPROACH

Table 3.1 and Figure 3-1 present a top-level view of the methodology inv
plied by the preceding formal foundations. At any level of component design,
the functions and performance of the component as a whole are first identified:
for the top-level system, this includes the systems analysis step of performing
the needs analysis, defining the mission and threat, and defining the top-level
performance indices and preference criteria (e.g., minimum cost, fixed deploy-
ment date), for systems which are components of other systems, the relevant
allocated requirements are identified.

The second step is the identification of the appropriate component types.
There are generally classes of components which could be considered as candi-
dates for inclusion into the system design. Depending upon the preference
criteria, whole classes may be excluded (e.g., due to weight restrictions,
deployment dates, reliability factors), or the class of components may be sub-
ject to design restrictions (e.g., consider only specific approved data pro-
cessing hardware).

Based on a specific set of component types, there are actions appropriate
for a system which has that set of components to address the objects of the
system's environment. This is first done in terms of describing how the system
addresses each object that it deals with (commonly referred to as stimulus/
response relationships), and then in terms of subfunctions which are allocatable
to the components. In both cases, decomposition is used to express the higher
level actions in terms of lower level ones. In both cases, analysis and/or
simulation is used to predict the performance of the system, and the utilization
of system resources.

147

Table 3.1 Overall Methodology Steps

STEP 1 DEFINE MISSION

STEP 2 IDENTIFY COMPONENT TYPES

STEP 3 DECOMPOSE TO SYSTEM LOGIC

STEP 4 DECOMPOSE TO ALLOCATABLE SEQUENCES

STEP 5 ALLOCATE AND ESTIMATE FEASIBILITY

STEP 6 IDENTIFY CRITICAL ISSUES AND RESOURCES

STEP 7 IDENTIFY RESOURCE MANAGEMENT RULES, ALTERNATE
LOGIC PATHS. AND ALTERNATE DECOMPOSITIONS

»-4
STEP 8 OPTIMIZE OVER COMPONENT CLASSES

S STEP 9 PLAN INTEGRATION AND TEST

148

10

I

Figure 3-1 Overall Methodology Approach

The next step of the methodology is the allocation of subfunctions to
subsystems, and application of the estimating relationships to predict system
cost, schedule, etc. These are then evaluated using the preference rules to
identify a feasible system (if any) which best satisfies the subsystem and
system objectives.

The cornerstone of system engineering is the identification of critical
issues, and working of the critical Issues first — without their resolution,
there may be no solution. This rule, and the knowledge of the state-of-the-
art, guides the analysis in terms of restricting the classes of system com-
ponents considered, the range of the system design parameters, and the inclu-
sion in the first model of control rules for the critical resources of the
system with given configurations. It is not necessary to identify all system
action models, followed by all possible subfunctions for their implementation,
followed by all possible allocations, followed by the selection of the "best"
of all possibilities. In fact, considerable iteration usually takes place
between the selection of component types, the definition of the system logic,
the selection of candidate system parameters, and the prediction of performance
using simulation. Whole classes of systems are eliminated from consideration
using quite crude estimation rules and performance predictions. Because of
the state-of-the-art in components, only a subset of the possible allocations
are considered at first, in order to assure feasibility and to identify the
possible range of the cost-performance relationships, and to identify the
critical issues -- these critical issues then become the drivers of the
analysis process.

There is a feedback between the preliminary identification of the critical
issues, critical resources, and cost-performance relationships of the subsys-
tems, and the definition of the system logic. When critical resources are
identified, the rules for the allocation,of these resources must be identified.
Alternate paths may be needed in the system logic to implement the resource
management rules. In the case of a surveillance system, an object may not
be placed into track if insufficient radar and data processing resources are
available to maintain the track— this results in resource allocation rules
(e.g., allow only 10 objects in track) and additional system logic (e.g., if
10 objects are in track, and an additional object is detected, drop track on
the object and modify the search volume to assure redetection). This will, in
turn, modify the prediction of the system performance in high load situations,
thereby changing the cost-performance relationships. If the performance
degradations are severe enough, new classes of components may have to be
considered to find a feasible solution.

A second general guideline is to parameterize as much as possible. Thus,
the classes of components will be expressed hierarchically with parametric
performance and the class of active sensor systems (e.g., radars) may be
compared to the class of passive sensor systems (e.g., optics) before considera-
tion of specific waveforms of the radar. In either case, the frequency of the
sensor would be a system parameter whose value would determine the approximate
cost estimating rules.

150

Several types of computerized tools would be useful in support of the
above type of methodology:

• A formal language for stating the original requirements.

• A language for expressing the decompositions, and tools for checking
these decompositions for consistency.

• Tools for defining simulations based on a system function decomposition,
The simulation would then be guaranteed to be traceable to the system
performance degradation due to resource, constraints and to validate
the system resource management rules.

t Tools for defining the allocations, the specific interface design,
and aiding in the presentation of the resulting subsystem specification.

These types of tools are appropriate for all levels of the system design, and
prototypes of these tools exist for many levels of analysis.

To illustrate these concepts, an overview of their application to a
specific problem is presented below. The problem chosen is that of performing
surveillance of aircraft in a large area, with missions of identification, pro-
viding navigational assistance, and providing tactical control of aircraft
interception of unknown objects--this problem was chosen because it typifies
many of the features of Air Force systems. The following analyses are illus-
trative, and are not meant to reflect actual performances or costs.

3.2 SYSTEM ANALYSIS

The purpose of the system analysis step is to identify the system mission
in quantified terms (e.g., deployment date, performance bounds, expected
environment for operation), and to assess feasibility. This phase is charac-
terized by the identification and analysis of a large number of potentially
feasible system classes, and their evaluation to yield a smaller number of
preferred constructs. The overall methodology described in the last section
can be followed as described to perform the systems analysis using fairly crude
rules of approximation to narrow the class of solutions.

3.2.1 Step 1 -- Define Mission

Assume that the purpose of the system is to perform surveillance of
aircraft in a large area,to identify aircraft (i.e., friently or hostile),
provide navigational assistance as requested, and provide tactical control of
interceptor aircraft to intercept unknown objects. A reasonable set of per-
formance and life-cycle indices include the following:

Cumulative probability of detection versus time.

Probability of identification versus time from first detection.

Track accuracy versus time from first detection.

Development schedule and cost.

Maintenance cost versus time.

151

The first three items are related to the ability to perform the mission of
identifying the aircraft (whether friendly or hostile) and the accuracy of the
navigational and interceptor guidance data; the last two might have constraints
or minimum cost goals. The system inputs would be the aircraft entering the
monitored air space, the interceptors entering the observed air space, and the
range of environmental factors (e.g., rain, blizzard, hail). The end product
system outputs would be the aircraft track data and the guidance data to the
interceptors—these are summarized in Figure 3-2a.

3.2.2 Step 2 -- Identify Component Types

Figure 3-2b presents the class of components which might make up the
system. The candidate classes include a set of individual sites, a communica-
tion net linking these sites to a central control, and a central control point
with consoles and operators. The individual sites must have sensors to detect
the aircraft and beacons to interrogate the aircraft transponders; constraints
on the state-of-the-art and the nature of the environment (e.g., rain, blizzards)
quickly reduces the total class of sensors to the class of radars of specified
frequency bands. Fault detection equipment is included to quickly detect
faults in the radar and other equipment; data processing (hardware and soft-
ware) is contained to process all of the radar data, command the fault detection
equipment and analyze the results, monitor the facilities equipment, and commu-
nicate with the central control. Facilities include the building power
generation, air conditioning, etc.

Although classes of components need to be identified in order to perform
the decomposition of the system functions, we need not yet specify design
details of that equipment (e.g., radar frequency, waveforms); in this way,
classes of designs are considered before specifics —these classes are charac-
terized by parameters (e.g., radar effectiveness for large classes of radars
can be described by frequency, power-aperture product, noise level, and resolu-
tion). Analysis occurs at this level before specific designs are addressed.

This level of description is sufficient to perform the first few levels
of decomposition, discussed next.

3.2.3 Step 3 -- Decompose to System Logic

Figure 3-2c presents a first possible decomposition of a system having
such components. The overall surveillance function of the system can be
described in terms of the surveillance performed by each radar site plus the
interactions of coordination and control. Note that coordination is necessary
to cope with the possibility of overlapping radar coverage, aircraft passing
from one radar region to the next, and coordination and control of interceptors.
Even at this level, there are a large number of tradeoffs which can be made.
Figure 3-3 presents two different deployment concepts for the same region using

152

a) ROOT FUNCTION.

PERFORMANCE
AND
LIFE-CYCLE
PARAMETERS

b) COMPONENTS.

AIRCRAFT TRACK DATA

INTERCEPTOR GUIDANCE DATA

PROBABILITY OF
DETECTION VS TIME
TRACK ACCURACY VS TIME

DEVELOPMENT SCHEDULE
DEVELOPMENT COST
MAINTENANCE COST

SYSTEM

UNIT

COMMUNICATIONS
NETWORK

CONSOLE OPERATOR

FACILITIES RADAR BEACON DATA
PROCESSOR

FAULT
DETECTION
EQUIPMENT

c) FIRST DECOMPOSITION

AIRCRAFT
ENVIRONMENT
INTERCEPTORS >f

A\
"* \

—I y **

COORDINATION
& CONTROL ^AIRCRAFT

TRACK DATA

^| UNIT 2 ^*

UNIT 3

Figure 3-2 Surveillance System Functions and Components

153

a) 5 UNIT DEPLOYMENT b) 9 UNIT DEPLOYMENT

en

Figure 3-3 Deployment Alternatives

five and nine radar sites, respectively. Note that a given site should be
dependent upon the effective range of its operation, and hence different
numbers of sites which cover the area should give rise to different costs for
individual sites, and hence different total development costs and maintenance
costs. Note that, if siting costs are high (for facilities or maintenance),
this will drive the design towards a single radar. On the other hand, since
radar power is a function of the fourth power of required detection range, if
power costs are dominant, this will drive the design towards a large number
of smaller radars. The optimal design will balance these two factors to yield
a design region (e.g., nine to 15 radar sites) for further analysis. Note
that this type of analysis is not in terms of component design factors, out
in terms of their costs. This type of analysis is not new, but its need is
immediately obvious when the decomposition requires expression of total per-
formance and cost in terms of the unit's cost/performance and the number of
units deployed.

The next level of decomposition is presented in Figure 3-4. In this
decomposition, the actions of a unit of the system are described in terms of
the actions with respect to each aircraft in its surveillance volume, plus the
coordination function (necessary for the allocation of critical resources).
Note that the performance of the system against an aircraft depends on re-
sources available which depends on the total system load, and the resource
management rules. The nature of the critical resources has yet to be deter-
mined. Figure 3-5 presents a decomposition of the unit engagement of an air-
craft in terms of the actions of the system. The system actions depend on the
type of aircraft being engaged:

• Friendly aircraft with beacons are to be identified via beacon
response, and provided navigation assistance as required.

• Friendly aircraft without beacons are to be identified by radio
or by interceptor visual identification, and provided navigational
assistance as required.

• Hostile aircraft with jammers are to be immediately identified and
tracked by triangulation of radar units and interceptor visual
identification.

The left side of Figure 3-5 describes the actions of the aircraft. Friendly
aircraft with beacons reflect radar, respond to beacon pulses, and may request
navigational assistance. Friendly aircraft without beacons, which respond to
radio, reflect radar and may request navigational assistance. Friendly air-
craft without radio response merely reflect radar (and require visual inspec-
tion). Hostile aircraft may turn on a jammer.

The right side represents the actions of the system. Detection can occur
by radar or by jammer. A radar contact will result in an initiation of track
and a beacon pulse. If a beacon response occurs, identification is complete
and the aircraft is tracked. Navigational assistance is provided as required.
If no beacon response occurs, radio contract is attempted. If contact occurs,
the aircraft is tracked as before. If no contact occurs, aircraft are
scrambled and information is provided. If the detection is by jammer

155

I

AIRCRAFT

^1
r *i ENGAGE 3 |

X| ENGAGE 2 I
ENGAGE

1 -*- — — •-"

-*^ ^

AIRCRAFT
TRACK DATA

UNIT
COORDINATION

"1 TRACK Uf

JpcooRDir [NATION
COMMANDS

Figure 3-4 Second Level Decomposition

156

REQUEST
NAVIGATIONAL
ASSISTANCE

2

REQUEST
NABIGATIONAL
ASSISTANCE

PROVIDE
NAVIGATIONAL
ASSISTANCE

JAMMER

INTERCEPTOR

ATTEMPT
JAMMER
BURNTHRU

Figure 3-5 Third Level Decomposition

157

detection (yielding angle but no range information), interceptors are scrambled
(if not already scrambled), and the jamming signal is tracked and jammer burn-
through is attempted by the radar. Coordination is required at the multi-unit
level to triangulate jammer tracks between units.

Note that this logic assumes that hostile aircraft do not have transpon-
ders, and can be identified from radio contact. If a hostile aircraft has a
normal-appearing transponder, it will be classified as friendly and not con-
tacted, or, if it does not have a transponder and it responds correctly to
radio contact, it will be classified as friendly. Thus, if the definition of
the threat is to include hostile aircraft with bogus transponders and/or cor-
rect radio responses, additional system logic is necessary. A solution to
this problem might lie in the area of comparing aircraft locations and trans-
ponder identifications with pre-filed flight plans available at the central
control location -- this would result in an additional step in the logic to
compare locations and transponder locations with planned flights, with addi-
tional paths to handle unauthorized deviations from flight plans. This would
have the effect of changing the mission to control of air-space rather than
simple surveillance.

This level of decomposition is sufficient to enable the prediction of
system performance as a function of the system parameters of the system actions,
e.g., probability of detection as a function of range and radar cross-section,
track accuracy as a function of time and track rate, time to accomplish beacon
interrogation and analysis, etc. The creation of such a simulation is a useful
technique for assuring that relevant threat, environment, and system parameters
and their relationship to the function and system performance, have been
identified. The use of such a simulator requires definition of threat scenarios,
threat parameters (e.g., radar cross-section values), site locations, and
values of system parameters (e.g., scan rate, time delay to interrogate a
beacon and analyze the results), thus identifying feasible ranges of such
parameters. The results of the simulations are used to identify feasible
classes of solutions, identify typical loading parameters (e.g., a worst case
unit must track 100 aircraft simultaneously), and provides information of the
sensitivity of system performance to the parameters, thus allowing the
identification of the critical system issues.

3.2.4 Step 4 -- Decompose to Allocatable Subfunctions

Figure 3-6 presents a possible decomposition of the system actions into
the subfunctions appropriate to data processors, radars, beacons, and operators.
Note that this particular decomposition explicitly assumes a "schedulable"
radar; a "track-while-scan mode" radar would be decomposed into a different
set of subfunctions.

3.2.5 Step 5 -- Allocation and Feasibility Estimation

Figure 3-7 presents an allocation, designated in the upper right hand
corner of each subfunction. Note that alternate decompositions are possible:
for example, the radar pulse scheduling functions could be allocated to the
radar.

158

DETECT

XMIT t.
RECEIVE
RETURNS

I
SCHEDULE
SEARCH
PULSES

I

INITIATE TRACK

XMIT i
RECEIVE
TRACK RETURNS

T
SCHEDULE
TRACK
PULSES

TRACK INITIATE
PROCESSING
S NOTIFY
OPERATOR

I

PULSE BEACON

CCTfACT
AP.CR.ArT VIA
PAl10 FOR
SC-AMELE

INITIATE
BEACON H

i
XMIT i
RECEIVE
BEACON

ANALYZE
BEACON
RESULTS

r y-^.

t

\

Figure 3-6 Example Decomposition to All ocatable Subfunctions

159

DETECT

RADAR

XMIT i
RECEIVE
RETURNS

INITIATE TRACK

RADAR

XMIT &
RECEIVE
TRACK RETURN:

I TRACK niTIATE
PROCESSING
i NOTIFY
OPERATOR

OPERATOR

CONTACT
AIRCRAFT VIA
RADIO FOR
SCRAMBLE

PULSE BEACON

Figure 3-7 Example Allocation to Subsystems

160

Until now, the methodology being described is common for all subsystems.
At this point, the feasibility and resource requirements for the subsystems
are to be determined. Estimation techniques are the proper study of the
various technology areas (e.g., radar, weapons). For the data processing
subsystems, the estimation of feasibility and resource requirements has been
based on simplistic measures of MIPS (Millions of Instructions Per Second)
and estimates of memory size. In today's technology of PROMS, ROMs, federated
microprocessors, bubble memories, etc., this technique has been found to be
too simplistic. For example, a problem requiring 100 MIPS might require a
100 MIPS serial processor, or may be decomposable into the independent execu-
tion of around 100 1 MIPS microprocessors -- the latter is clearly feasible,
while the former is beyond the state-of-the-art. To close this gap, we offer
the following methodology for the data processing and communications (DP/C)
estimation.

3.2.5.1 Step 5a — Allocate Subfunctions to DP/C

In this step, the subfunctions to be allocated to the DP/C network are
identified. The data processing and communications subsystems are combined
at this point to be able to later perform local tradeoffs between the data
processing facilities and the communications capabilities (e.g., increasing
data processing load to pack information and decode it at the other end of the
link will decrease required communications transfer rate).

3.2.5.2 Step 5b -- Summarize DP/C Requirements

In this step, the required data processing and communications are sum-
marized in the form of data flow diagrams which abstract out all of the pre-
cedence information by combining like functions for each of the objects being
engaged. Figure 3-8 presents such a data flow diagram. Note that the functions
of SORT and MERGE have been added as a consequence of assuming that a single
radar will be used to transmit the radar pulses and process the returns (an
alternate interface assumption might be to separate the search returns, track
returns, and jammer returns into separate channels).

Note that the data flow diagrams are derived from the previous allocation
of system subfunctions (which decompose the system logic); they are not simply
asserted as today's technology does. This provides an important link of
traceability between the system design and the initial requirements for the
data processor and communications subsystems.

3.2.5.3 Step 5c -- Identify Maximum Dimensionality Architecture

In this step, analysis or simulation is used to identify the maximum
number of processors which could be used to perform the data processing, and
the maximum number of communications links which could be used to transfer the
data among the geographical locations. The purpose at this step is to preserve
the dimensionality of the problem to assess the feasibility of using some type
of parallel data processing architecture to solve the problem. In this way,
the potential parallelism of the data processing architecture is derived from
the parallelism of the problem to be solved, rather than trying to analyze it

161

en

RADAR
JtECEIVEIL

OPERATOR

5E/,C0^
RESPONSE.

SCHEDULE
SEARCH

SORT

ANALYZE
SEARCH
RETURNS

_-—--"V

ANALYZE
TRACK
RETURNS

\
SCHEDULE
TRACK
PULSES

MERGE

\
ANGLE
TRACK
PROCESSING 1-

s y

SCHEDULE
JAMMER
TRACK

X
/

/
/

'7-
/

INITIATE
BEACON

ANALYZE
BEACON
RESULTS

v

UNIT
COORDINATION

 ^OPERATOR

Figure 3-8 Example DP Allocation

after the problem has been stated in serial terms. This allows the identifi-
cation of applications of vector processing, Single Instruction Multiple Data
architectures, etc.

The approach to discovering the maximum dimensionality is to combine the
estimates of the parallelism of the processing with the parallelism of the
subfunctions, and the estimates of the load, and the allocated response times.
These factors combine in the following way:

• If a processing subfunction has an inherently parallel transformation
(e.g., compare an aircraft position against those of all aircraft in
track), the processing subfunction has a "natural dimensionality".

• Depending on the scenario, there is a maximum number of objects in
each phase of the engagement.

• The total dimensionality of each phase depends on the total number of
objects and the required response times, e.g., if 100 objects are in
track, but the response time is 1 millisecond for tracking, then the
track dimensionality is one, (i.e., only one processor could be used
to do track processing).

Figure 3-9 presents the results of such an estimation using a simulation.
For a specified scenario. Figure 3-9 presents the time history of the search
rate, number of aircraft in the search volume, number of search returns (both
total and false), and the number of objects to be tracked. This information
is used to estimate the maximum dimensionality of the data processing and
communications by establishing the maximum number of objects in each phase
of the engagement versus time.

Figure 3-10 presents the results of such an analysis. Assume the
following:

All subfunctions have inherent dimensionality one.

Threat scenarios are not allowed to contain aircraft flying in
formation.

A maximum of 100 aircraft are visible at any time.

Ten second search scan time.

Track rate of one per second per aircraft in track.

Search and track response times allocated to the data processor
are 20 milliseconds.

Under these assumption
which could be used to
of 29 processors and i
in track at one track
a maximum of five trac
meet response time obj
one beacon analysis,
cessors might be used

s. Figure 3-10 presents the maximum number of processors
accomplish each subfunction. This results in a total

s derived in the following way: assuming 100 aircraft
return per second, with a 20 millisecond response time,
k returns could be processed simultaneously and still
ectives, and 3 search returns, one jammer track, and
Because radar returns are coded, as many as nine pro-
to perform the sort (i.e., one for each simultaneous

163

ASSUMPTIONS: CLOSED LOOP SYSTEM.
A SEARCH RETURN MUST BE PROCESSED BEFORE ANOTHER RETURN IS RECEIVED FROM THE
SAME TARGET (I.e.. A PROCESSED SEARCH RETURN PROVIDES THE RADAR COORDINATES
FOR ANOTHER RETURN (TRACKING).

— NUMBER OF ATTACKERS

 PROCESSING LOAD ~ SEC (I.e.. BACKLOG) ASSUMING 1 SEC PER RETURN

P
SEARCH RETURNS (ACCUMULATION)

 FALSE RETURNS (ACCUMULATION)
SEARCH

C5

I

I 90 TOO

Figure 3-9 DP Load Versus Time

en
01

RADAR
^RECEIVER.

OPERATOR

TEAC0^
RESPONSE

CM

SCHEDULE
SEARCH 1-

SORT

y

ANALYZE
SEARCH
RETURNS \

\

^

^---T

ANALYZE
\ *, TRACK

RETURNS

X-^
SCHEDULE
TRACK
PULSES

MERGE

\ 1
ANGLE
TRACK
PROCESSING

L ><«
SCHEDULE
JAMMER

,y TRACK
/
/

/

1 /
/
> INITIATE

BEACON

ANALYZE
BEACON
RESULTS

1
UNIT
COORDINATION

Figure 3-10 Example Maximum DP Dimensionality

return). Only one processor can be used to schedule the search pulses and
merge the track commands together, and perform unit coordination.

Further analysis along each path (e.g., analyze track returns and schedule
track must be performed within 20 (milliseconds) reduces this number to 14 pro-
cessors: one for scheduling, one for merging, three for searching, five for
analyzing track returns and scheduling track pulses, one for angle track, one
for sorting, one for beacon scheduling and analysis, and one for coordination.
This strongly suggests that vector processors and parallel processors with a
single instruction stream (which generally require 20 or more parallel streams
of data to process in parallel to be efficient) are not applicable to this prob-
lem, thus ruling out whole classes of data processing architectures. However,
multi-processors or federated processing architectures are still feasible.

This information is important for identifying the classes of architectures
for which estimates of processing time for each subfunction is necessary --
estimates of processing time for vector processing is estimated differently
than for serial processors, and these estimates are needed to perform the data
processing sizing.

3.2.5.4 Step 5d — Estimate DP/C Loads

In this step, the processing requirements for each unit are projected
using estimates of required processing for each subfunction, and communication
requirements are estimated using estimates of the size of each information
transfer between subfunctions and the allocated response times. To include
all of the engagement interaction effects, this is best done in a simulation
in which resource utilization for each system function is identified.

The average data processing load is not sufficient for processor sizing.
If a processing step requiring 20,000 instructions is executed once per second,
its average rate is 20,000 instructions per second (0.2 MIPS). However, if
this subfunction has a response time of 1 millisecond, then the required rate
is 20 MIPS -- this shows the effect of response time requirements on required
data processing capacity. Similarly, if one message having 1000 bits is
required to be sent once per second, this requires an average communication
capacity of 1 kilobit per second; but if this must be sent in one millisecond,
this results in a required capability of one megabit per second.

Table 3.2 presents an example analysis of the required average and peak
data processing load. The columns indicate the average execution rate of the
processing functions (e.g., number of search pulses, number of track returns
obtained from simulations), the number of serial instructions per execution
(obtained from Data Processing engineers knowledgeable in the state-of-the-
art), and the resulting average MIPS. The right-hand side of the table includes
the peak number of executions required in the indicated response time, which
results in the calculation of the peak MIPS. Totals are included for conve-
nient reference. Note that for this case three kinds of critical issues are
identifiable:

166

• The peak instruction rate is due to track returns processing, thus
the number of objects in the surveillance volume and track rate are
critical drivers of DP capacity.

• The effect of the 20 millisecond response times is to more than
double the required data processing capacity -- from 0.4 MIPS to
over 1.0 MIPS. Reducing the response time (either by reducing the
overall requirement or by reducing the DP allocation) would reduce
the required DP capacity.

• If the estimate on track processing rate were off by 25 percent, the
required DP size would have to be increased almost as much. On the
other hand, estimates on jammer track could be off by a factor of two
without changing the DP size significantly.

From this level of information, it is possible to identify critical issues.
If the estimate of tracking instructions is firm, if the estimate of number of
aircraft to be tracked is firm, and if the response times are not reduced, then
the processing can be performed by a serial processor of approximately 1 MIPS
capacity -- this is on the ragged edge of technology, but appears to be feasi-
ble. Candidate architectures to accomplish this are identified next.

Table 3.3 presents an analogous analysis for the communications sizing.
If the number of bits per track message is 200 bits, this results in an average
communications rate of 20 Kilobits per second (KBS). However, if there is a
requirement to pass this information to the central control point in 10 milli-
seconds, this results in a peak rate of 100 KBS. Other subfunctions communi-
cating with central control include the jammer track and others with communi-
cations at a much lower rate which are included in the miscellaneous estimate.
Thus the average communication rate is 21.5 KBS and the peak is 111 KBS. Since
the human perception time is close to 100 milliseconds, and the track rate is
one per second, if the response time were relaxed to 50 milliseconds, the peak
communications rate would reduce to the average of 21 KBS. This communication
rate is feasible with today's technology.

3.2.5.5 Step 5e -- Postulate DP/C Functional Architecture

In this step we identify feasible architectures for the data processor
and communications subsystems which are consistent with the above loads and
parallelism. From this, rough approximations of costs, deployment schedules,
power requirements, etc., can be derived. This is done by consulting a data
base of existing and proposed subsystems.

For data processing, a MIL-STD processor with serial processing capacity
of over 1 MIPS is available from RCA (ATMAC has an advertized capability of
1.4 MIPS at a cost of $35K). At this price, one could afford to have two
spares for a cost of about $100 K. If this option were not available, a next
choice might be a 4PI/MLI processor having about 0.38 MIPS for a cost of about
$30 K each. Since the peak processing requirement has dimensionality of about
nine, a federated architecture containing three or four of these processors
appears to be feasible, with reconfiguration logic to enhance the reliability
of the combined set. Thus the hardware would cost between $100 K and $150 K
per unit.

167

Table 3.2 Expected DP Instruction Load

AVERAGE
NO. INSTRUCTIONS MIPS (AV)

PEAK
NO AT PEAK MIPS

SEARCH 300 x TOO 30,000 — — 30,000

SEARCH PROCESSING 12 x 1200 14,400 3 .02 180,000

TRACK 100 x 3000 300,000 5 .02 750,000

JAMMER TRACK 5 x 1000 5,000 1 .02 50,000

Mi
COORDINATION 1 x 50,000 50,000 50,000

i 399,400 1,060,000

00

Table 3.3 Expected Communication Loads

I

TRACK

AVERAGE
NO BITS

AVERAGE
KBPS

PEAK
NO Al

PEAK
KBPS

100 200 20 5 .01 100

JAMMER TRACK 5 100 .5 1 .01 10

MISCELLANEOUS 1 1000 1 1 .01 1

21.5 in

The communications system to carry a load of 100 KBS could be built using
RF links with repeater stations (on the ground or via satellite) at a cost in
excess of $400 K per unit. If the load were more like 20 KBS, then standard
telephone links might be possible for appreciably less. This is to be com-
pared to radar and facilities costs of perhaps $1 Million per copy.

3.2.6 Step 6 -- Identify Critical Issues and Resources

In this step, the critical issues are identified. The critical data
processing issues have been discussed -- the processing appears to be feasible
under the worst conditions, but increases in estimates of the instructions
required for tracking or decreases in the required response time allocation
would be critical issues. Under these conditions, the data processor hardware
does not drive feasibility, cost, schedule, power, or any other resource
constraints. Various serial and distributed processing architectures are
applicable.

Communications appear to be feasible but critical; response time alloca-
tions are definitely critical, and would require more analysis of alternate
configurations.

Note that additional data processing and communication requirements will
stem from the design of the fault diagnosis, fault isolation, and reconfigu-
ration requirements for the facilities, radar, communications equipment, and
data processing design. If high reliabilility were a preference factor (e.g..
Mean Time To Failure of 1000 hours for any component. Mean Time To Failure for
the system of three years. Mean Time To Repair of 1 hour), then the detailed
radar design and test equipment would have to be developed and the test pro-
cedures would have to be developed to complete the data processing require-
ments. This would probably not be a large DP load, but would require a large
amount of instructions. In this case, the development of the software would
then become a critical item in both development cost and, particularly,
development schedule.

3.2.7 Step 7 -- Identify Resource Management Rules

In this step, rules to allocate the critical resources are identified --
this includes how the resources are to be allocated (e.g., when radar resources
approach maximum, reduce load by reducing track rates on objects in track), and
any additional system logic paths (e.g., if load is at maximum and track rate
per object is at a minimum, drop track on objects near to exiting the track
volume). These rules become incorporated in the system logic by decomposition
of the "coordinate unit" function, and the effect of limitations of critical
resources on system performance can be estimated by additional simulations.
This provides sensitivity information for later optimization.

3.2.8 Step 8 -- Optimization

In this step, the sensitivity of cost versus capability and capability
versus system performance are used to perform cost/performance trades for
subsystems. For our surveillance system, such trades include the following:

169

• Radar pulse rate versus system performance

0 Data processor instruction rate versus-system performance

• Allocation of response time between

- Data processor

- Communication system

- Console display

- Operator.

The costs of different types of decompositions are compared (e.g., track-while-
scan versus directed-track radars).

The result of these analyses should be an identification of classes of
system configurations which are feasible, and are worthy of further analysis.

3.2.9 Step 9 -- Plan Integration and Test

In this step, the foundations for the development plans are laid, includ-
ing the identification of the required resources to develop, integrate, and
test the subsystem. The necessity for such a step was discussed in the formal
foundations -- to account for all of the resources required to develop a
system, the resources necessary for integrating the subsystems, developing the
test tools, and developing and applying the test procedures must be included
in the total resource estimates. These factors will in part be configuration
dependent (e.g., the costs of building test tools), but may in part be configu-
ration independent (e.g., a prototype of the system may be built and tested
before production is authorized for any configuration).

There may be considerable feedback between the decomposition and allo-
cation of the system requirements and the definition of the integration and
test plans. For the case of complex systems, as much as 40 percent of the
development effort may be spent in this phase of the system development; thus
selection of the system configuration should be influenced by these considerations,

It is noted that in the standard methodologies for systems development,
there is little recognition that integration and test requirements should
influence the final configuration. Although this step comes last in this dis-
cussion, it is clear that such considerations should enter the system develop-
ment process no later than the allocation and feasibility estimation step,
and that the system design is not complete until the feasibility and costs of
the integration and test of the system have been considered.

3.2.10 Discussion

Note that this approach surfaces critical data processing issues early in
the system analysis phase* The traditional approach to data processing
sizing is to focus on the average processing time. The above analysis clearly
identifies that the effects of response time are critical, and can be addressed
during the system analysis phase. The failure to address the response time
issues is partly responsible for the "data processing growth" which occurs

170

during the development of the system. The data processing estimates are
usually small to begin with, and when the response time effects are finally
incorporated into the data processing design, the data processing size
"suddenly grows" by factors of two or more, and the system and subsystem
designs are so far along that changes in the response time allocations be-
come painful to implement.

Secondly, note that the data processing requirements and the feasibility
estimates are strictly traceable to the system logic by a string of decompo-
sitions and allocations. Changes in the system components result in changes
to the system logic and lead to traceable changes in the data processor sizing
estimates. This strict traceability is a new feature of front-end system
design, and is a fallout of the formal definition of decomposition and
allocation.

Finally, the inclusion of integration and test requirements into the
preference relationships should highlight the relationship between allocation
of data processing to subsystem components and its impact on integration and
test. For example, if one allocates all radar scheduling to the data pro-
cessor, special purpose scheduling software must be developed to be able to
test the radar or the testing might be delayed until the data processor was
completed in order to test the maximum tracking rate of the operational system.
This might heavily influence where the scheduling software was allocated.

3.3 SYSTEM ENGINEERING

The system engineering phase has the same methodology steps as the system
analysis phase -- starting with the mission requirements and the candidate
subsystem classes from the system analysis phase, identify requirements for
the subsystems. The critical differences are in intent and depth: the intent
of the system analysis phase was to identify feasible classes of solutions,
while the system engineering phase has the goal of finding the best configu-
ration (where "best" is with respect to all of the preference rules), freeze
the allocation of the requirements to the subsystems, and definitize the inte-
gration and test plans. This means that fewer gross classes of configurations
will be addressed, but the system logic will be scrubbed to identify all
possible paths (including the failure mode paths), alternate decomposition
and allocation decisions will be examined to assure the most preferred boun-
daries between the subsystems, and alternate subsystem configurations will be
analyzed to re-estimate the performance and resource requirements for the data
processing and communication subsystems.

Thus the same basic nine steps will be followed, but more alternative
decompositions, allocations, test plans, and subsystem configurations will
be analyzed to assure the most preferred system has been identified. The
results will then be incorporated in the equivalent of a Type A Systems
Specification with supporting documentation.

3.4 DP SUBSYSTEM ENGINEERING

In this phase, the requirements allocated to the Data Processor/Communi-
cations subsystems are analyzed and allocated to hardware (e.g., analog

171

processors, special purpose processors like Fast Fourier Transform boxes
Surface Acoustic Wave Devices (SAWD), special purpose communications hardware
including crypto processors, and the general purpose processing nodes). The
end result will be the identification of the processing and communication
hardware components and software processes which utilize the programmable
components. In some cases, classes of components will be identified whose
parameters (e.g., number of federated processors) will be later established
in the process design. Included in this phase is the tradeoff between analog
and digital processing, general purpose versus special purpose processing,
digital versus communications capabilities, and the selection of the approach
to meet reliability constraints (e.g., fault tolerance versus high reliability
components). The same basic nine steps apply.

3.4.1 Step 1 -- Define Mission

The mission requirements for the DP/C subsystems are the system require-
ments allocated to the subsystems, including functions, loads, and response
times. The particular version of these requirements is baselined for
analysis.

3.4.2 Step 2 — Identify Component Types

A larger class of component types are identified for this phase of the
analysis than were considered in the systems analysis phase. Thus the whole
range of analog devices (including SAWD), special purpose digital devices,
special purpose microprocessors, and classes of general purpose processors
and components (vector processors, parallel processors, multiprocessors,
federated architectures, ROM memories, bubble memories, etc.) are open for
analysis. These will be subjected to the preference criteria to limit the
range of components considered (e.g., optical processors are not yet feasible,
but bubble memories are now available).

3.4.3 Step 3 -- Decompose to System Logic

In this step, the actions of the DP/C subsystems are decomposed to iden-
tify their actions with respect to the objects they deal with. Two critical
types of objects are the interfaces with other subsystems and the messages
crossing those interfaces. Two examples are used to illustrate this type of
analysis.

First, consider a requirement to transfer information from point A to
point B. Because response time and reliability of transfer are relevant
factors, one approach is to simply send the message -- another is to send
the message periodically until an acknowledgement is received. Yet another
is to send the message along different routes of a communications network and
wait for an acknowledgement. There are a large number of possible actions of
the system to send the message and assure that it is in fact correctly
received — these are commonly referred to as communications protocols, and
each has its own data processing load and reliability characteristics across
communication links of specified reliability.

172

Next, consider the processing of measurements. Depending upon the
measurement device characteristics, one might be able to use an analog
filter followed by an A/D converter to sample the data, or digitize the data
and use the general purpose processor to filter the data using a digital band
pass filter. Each of these combinations of components can be used to sample
and filter the data, and the system actions differ depending upon the compo-
nents utilized.

3.4.4 Step 4 -- Decompose to Allocatable Subfunctions

Further decompositions are performed to analyze at a fine level of
detail where to draw the boundaries. Thus, message formatting might include
encryption, or encryption might follow the message formatting. Both decompo-
sitions are feasible, and both could be performed by the data processor or a
specialized communications processor (e.g., the IMP of ARPANET).

3.4.5 Step 5 -- Allocation and Feasibility Estimation

This step is where the different allocations are identified, and the
resource requirements are estimated. This requires the same type of DP archi-
tecture estimation schemes as discussed in the system analysis phase, but with
an expanded scope (e.g., costs of SAWD along with reliability, development
schedules, etc., must be available if such devices are to be considered).

3.4.6 Step 6 -- Identify Critical Issues and Resources

As before, critical issues and resources are to be identified. For the
case of our example, communications resources to accomplish communication of
information within the required response time might be a critical issue.

3.4.7 Step 7 -- Identify Resource Management Rules

As new classes of devices and their functions are introduced, new critical
resources are identified, and new resource management rules are needed. In
our example, if communications resources are identified as a critical issue,
then a priority scheme might be introduced to assure that high priority
messages meet their response times by slightly delaying the other non-critical
traffic.

3.4.8 Step 8 -- Optimization

In this step, the different configurations are compared using the system
preference rules to select the best subsystem configurations. This in turn
is used to update the feasibility estimates and sensitivities back to the
system engineering level to assure that the proper choices have been made --
if not, this will call for a further iteration at the system engineering level.

3.4.9 Step 9 — Plan Integration and Test

In this step, the impacts of testing the combined subsystem are analyzed
in terms of the integration and test resource requirements. These elements
are factored into the optimization process to assure that the preferred

173

solution is testable' and has test resources included in the total development
resource requirements.

3.4.10 Discussion

The consideration of alternate designs incorporating special purpose ana-
log and digital devices in addition to more exotic data processing architectures
is a necessary one to assure the subsystem designs have considered the classes
of alternatives available with the current state-of-the-art. The identifica-
tion of the alternatives considered is the proper subject of a design review
to assure that a wide enough set of subsystem components have been considered
to yield a preferred design.

The completion of this phase may require significant interaction with the
software requirements, distributed processing design, and process design
phases to assure the feasibility estimates. When completed, however, those
efforts must take their requirements from the baseline requirements output by
this phase.

3.5 SOFTWARE REQUIREMENTS ENGINEERING

In this phase, the requirements allocated to the Data Processing/Communi-
cations subsystems are refined into testable stimulus-response relationships.
Figure 3-11 illustrates this type of analysis.

Figure 3-lla presents the subfunctions allocated to the data processor for
each object engaged related to tracking. The track processing function is
decomposed in Figure 3-llb into an iterated function which processes a single
track return from the object. Since it is always possible to describe a
function with sequential inputs in terms of a repeated function with a single
input, this decomposition is always possible.

Figure 3-llc presents a partial path of an R-Net which processes a single
track return for a single object. When a track message arrives from the
radar, it is converted to R-A-E coordinates, its quality is assessed, and if
good, the track state estimate is updated. Note that the last track estimate
must be stored between pulses for each object in that phase. The usage and
quality of the track are used to determine whether another track pulse is to
be sent (the time of which depends on the track rate assigned by the unit
coordination function), or the object is set to an "exit" status to exit this
function.

Figure 3-1 Id presents an R-Net fragment which integrates these paths
into other paths. When a message arrives from the radar, other radar messages
are sorted out and only track returns are routed down this path. The specific
track command information is accessed to obtain the information to translate
the return information (e.g., time of return, amplitude, off-axis azimuth and
elevation) into range, azimuth, elevation, and radar cross-section. Objects
in other states are routed to other paths (e.g., in track initiation), and
the track information for this specific object is accessed, denoted by the

174

t) INITIAL RECl'JIRCMENTS

DP TRACK FUNCTION

RADAR-'

^

i=r^

<!>

TRACK ■*.
PROCESSING

£K

SCHEDULE
TRACK

UNIT
COOROINATION

 »• RADAR

b) TRACK PROCESSING

1

I
r

PROCESS A
TRACK RETURN

1

C) PARTIAL PATHS

TRACK RETURN

TRANSLATE TO
RA.'iGE-AZiXUTH-
ELEVATICN-RCS

ASSESS DATA
QUALITY

UPDATE TRACK
ESTIMATE

M

SCHEDULE
NEXT TRACK
ORDER

RATE
SET OBJECT
TO EXIT

d) R-NET FRAGMENTS

FROM
RADAR

I VI

OTHER RADAR RETURNS

TRACK RETURN:

S) SELECT RADAR COMMAND

TRANSLATE TO
RANGE-AZIHUTH-
ELEVATION

OTHER
STATES s^ SELECT

1 OBJECT

ASSESS DATA
QUALITY

r^
/

/
/
I \

K COMPOSE NEXT FRAME

, .FOR EACH
F JORDER

UPDATE TRACK
ESTIMATE

/ S CREATE RADAR
COMMAND

C) V4

SCHEDULE
NEXT TRACK V''
ORDER

RADAR

SET OBJECT
TO EXIT

♦) V3

Figure 3-11 R-Net Fragment Derivation

175

select node, (S). The R-Net for composing a frame of radar information is iden-
tified, and the radar commands are created and transmitted to the radar and
saved for later retrieval. Validation points are appended and performance
requirements are written in terms of data accessible at the validation points.

Note that these requirements are fully traceable to Figure 3-lla via
two levels of decomposition and three levels of integration (integrate over
all objects, all phases, and all return message types). This results in the
R-Nets which form the key to the Software Requirements Engineering Methodology
(SREM) technique of specifying processing requirements.

The requirements engineering phase thus starts with the output of the
Data Processing Subsystem Engineering phase which identifies the digital
processing to be performed in terms of functions, inputs, outputs, interfaces,
performance requirements and loads, and decomposes the processing to the
stimulus-response requirements for the DP/C subsystems as a whole. This is
equivalent to Step 3 of the overall methodology for decomposing the initial
requirements into the system logic: these requirements must be met no matter
how the processing is distributed between the processing nodes and the commu-
nications subsystem. The actual allocation is addressed in the next phase.

3.6 DISTRIBUTED PROCESS DESIGN

This step was not explicitly identified in Part II as a necessary phase
of the front-end system development, but was included as part of the overall
process design. The distributed process design is called out here as a special
step in order to emphasize the importance of the decisions — this phase
addresses the issues of balancing the data processing between geographically
separated nodes, tradeoffs between the data processor and communications
capabilities, issues of system vulnerability and reliability as affected by
distribution of processing and data base among the data processing nodes to
result in the identification of testable requirements for the processing nodes
and requirements on the individual communication links.

Step 1 of this analysis identifies the baseline requirements from the
data processing subsystem engineering phase. Step 2 corresponds to the iden-
tification of the classes of data processing and communications subsystems
left open in the data processing subsystem engineering phase. Step 3 corres-
ponds to the definition of the R-Nets in the software requirements engineering
phase. We now go into the methodology proper.

3.6.1 Step 4 -- Decompose to Allocatable Subfunctions

The R-Nets specify all processing to be performed by a combination of the
Data Processor/Communications network and forms the basis for testing such
networks. These R-Nets are partitioned to form packages of processing alloca-
table to subsystem classes. The subsystem classes in this case are the DP
nodes and the communication links. Figure 3-12 illustrates this process.

Figure 3-12a presents a fragment of an R-Net which processes search
returns, sorts out the images of objects already in track, and prepares to
put the new objects into track. The comparison of the new detections to

176

«) R-NET FRAGMENT
UNIT

b) ALLOCATED FRAGMENT

OTHER MESSAGES

Figure 3-12 Example Allocation to Nodes

177

objects in track by other units could be performed at the unit or at the
central coordination point: in this case the comparison is allocated to
the central node, while the others are allocated to the unit node.

3.6.2 Step 5 -- Allocation and Feasibility Estimation

In this stage, candidate allocations of processing steps and data are made
to the data processing nodes — this results in an allocation of communication
rates to communication links. Several different allocations are possible,
resulting in different R-Nets for each of the nodes. In addition, the response
times for the process of a whole are allocated to the nodes and links.

Figure 3-12b presents a resulting allocation of stimulus response
relationships to:

The Unit Processor -- process the data and form a message to the
central node.

The Comm Link -- transfer the message to the central node.

The Central Node -- accomplish the comparison and form messages to
each affected unit.

The Comm Links -- transfer the messages to the units.

The Units -- update the information base at the units with the
correct designation.

Note that this level of information is necessary to completely size the
data processors at the nodes and the communication links between them. The
trade-off analyses can utilize the DP PERCAM type of simulations to great
advantage.

The end result of the analysis is a set of R-Nets for each node which are
traceable to the R-Nets for the network, and a set of definitized communica-
tions link requirements.

For each allocation, a feasibility estimate is performed to yield estimates
of cost, schedule, vulnerability, and other preference factors. This may
require considerable interaction with the process design activity to establish
feasibility of meeting response times for all nodes by performing a process
design for the node.

3.6.3 Step 6 -- Identify Critical Issues and Resources

In this step, the critical issues of the distributed design are identified.
Critical issues include the effect of distribution of response times to the
nodes and links, and their effects or overall data processing and communication
costs. Critical resources particularly include the communication rates, and
the distribution of the data base elements among the processing nodes and the
impact of this distribution on system vulnerability, and the design of the
communication network and its relationship to cost and vulnerability.

178

3.6.4 step 7 -- Identify Resource Management Rules

In this step, the rules for managing the critical resources are identified.
Communication protocols and priority rules for message transmissions are defined
to control communications. Schedulers for the processors are defined using the
tools and techniques of process design to message processor resources. This
may result in the identification of additional logic (e.g., additional R-Net
paths to define the protocols), reallocation to the nodes and links, and re-
estimation of feasibility.

3.6.5 Step 8 -- Optimization

In this step, the different designs are compared using the preference
rules. This is the place where the performances and resource requirements of
the different allocations and the best designs of each class are compared to
yield the "best" configuration, determine the sensitivity to the assumptions,
and validate the previous level of feasibility estimation.

3.6.6 Step 9 -- Plan Integration and Test

Again, the effects of integration and test are factored into the optimi-
zation. In particular, the relationship between the tools to test the sub-
systems and the tools to test the integrated data processing/communications
network need clarification.

3.6.7 Discussion

The techniques to perform distributed process design are new, and the
proper subject of further research. The above methodology outlines the appro-
priate steps, but the definition of the performance indices for survivability
and reliability, and the toolis and techniques to identify allocations and
evaluate alternatives require further development.

3.7 PROCESS DESIGN

The process design for a processing node addresses the definition of the
schedulable units of software, the allocation of these units to processors,
and the definition of the scheduling techniques to assure satisfaction of the
functional and performance requirements, especially the response times. The
requirements are the R-Nets for the node: "subsystem classes" are the peri-
pheral processors (to handle the input/output), the executive, the applications
code modules and the scheduler. Figure 3-13 presents a partial set of modules
for our example problem:

• A radar input handler to input all radar returns and store them in
memory.

• A radar output handler to output all radar commands from a queue in
memory.

• A scheduler to schedule the next applications task.

179

00 o RADAR
INPUT
HANDLER

I

RA.DAR
OUTPUT
HANDLER

^^^^
SOFTWARE

•

1
^^

■^^^^ EXECUTIVE

APPLICATIONS
CODE SCHEDULER

RADAR
ASSIMILATION/
SCHEDULING

TRACK
PROCESSING

SEARCH
PROCESSING

^
V X

GLOBAL
DATA
ACCESS

GLOBAL
DATA
UPDATE

Figure 3-13 Example Process Design

• Application task modules are defined to:

- sort all radar returns and schedule new commands -- these functions
are merged into one module due to the close data interactions.

- perform track processing.

- perform search processing.

• Operating system utilities to control access and update of data
communicated between modules.

The same general methodology is followed.

3.7.1 Step 1 -- Define Mission

The applicable R-Nets are identified, along with the stressing design
scenarios.

3.7.2 Step 2 — Identify Component Types

The classes of "subsystems" include the software modules on peripheral
processors, operating system modules for the executive. I/O handlers, data
access/update, and the applications code modules.

3.7.3 Step 3 -- Decompose to System Logic

In this step, the R-Net processing steps are expanded to identify addi-
tional requirements, protocols, access and storage and data queues applicable
to specific machine architectures.

3.7.4 Step 4 -- Decompose to Allocatable Subfunctions

In this step, the R-Net processing steps are decomposed to show the access
update of data, and algorithms are decomposed to "chunks" with processing
times small enough to be allocated to modules.

3.7.5 Step 5 -- Allocation and Feasibility Estimation

In this step, candidate allocations are made to classes of modules, exe-
cution times are estimated (including data access/update times for specific data
storage structures), and total DP laods and response times are predicted for
the design scenarios. Because of the complexities involved, some sort of
analytical load analyzer (e.g., ALF) and/or simulator is useful to aid in such
predictions. A variety of scheduling techniques (e.g., priority schemes,
polling schedulers, and use of pre-emption) may be necessary to achieve all
response times for a given allocation. Multiple allocations to different
machine sizes are also explored.

3.7.6 Step 6 -- Identify Critical Issues and Resources

In_this step, the large contributors to DP load and the driving factors
for satisfaction of response times are identified. Processing time on modern
processors can be divided into three categories: idle time (processor is

181

doing nothing), load time (processor is loading a task to be executed into
executable memory) and execution time (processor is actually transforming the
data). The load time is generally a function of the task and scheduler design,
while the execution time is load dependent. The whole trick to process design
is to meet all response times while making the load time as small as possible:
efficiency is obtained by processing many instances of a task at a time in order
to spread out the load time over many instances; this results in a long queue
time waiting for enough instances to arrive, and results in a longer average
respo-nse time for each instance. Short response times require more frequent
execution, thus increasing total load time; in time-sharing systems design
this is known as thrashing.

The critical issues step identifies the response time and load charac-
teristics which make the scheduling difficult. Other critical resources may
include I/O channel times, memory, etc.

3.7.7 Step 7 -- Identify Resource Management Rules

In this step, the data access rules to prevent deadlock, lockout,
and the rules for allocation of data to memory modules are formulated. De-
tailed simulations may be necessary to validate their operation. The precise
scheduling algorithm constants for various design scenarios may be necessary to
demonstrate feasibility. Special failure mode identification and reconfigura-
tion rules are formulated to meet reliability requirements.

3.7.8 Step 8 - Optimization

In this step, different allocation approaches are considered and a "best"
allocation is selected. This allocation will then be the initial one for the
preliminary design step. This includes optimization over allocations to several
candidate hardware configurations, and includes preference factors of growth,
graceful degradation, etc.

3.7.9 Step 9 -- Plan Integration and Test

Part of the design job is the identification of the design verification
techniques. A persistent problem for load testing is that of recording data
required to measure data processing resource utilization -- thus the tactical
process is difficult to observe without disturbing its operation. The specific
scenarios for load testing are identified, and the techniques for inputing the
scenario, recording the results, and analyzing the results for satisfaction are
identified. This results in a set of requirements for the test tools including
general utilities for data logging (generally allocated to the operating system)
and post-process analysis.

These tools are generally ignored until they are needed for test -- and
then they are needed badly.

3.7.10 Discussion

The techniques of process design for real-time processes are just emerging
into the general state-of-the-art. Tools like ALF have been found to be indis-
pensible for performing design studies, and then the designs are later vali-

182

dated with design simulations. This allows the design analyses to be per-
formed with quick-reaction tools, and validated with the high fidelity, longer
running simulations.

The techniques for process design of non-real-time software concentrate
on efficiency and wall-clock-time to complete a normal run. These techniques
are discussed in the literature (e.g., Don Knuth's Empirical Study of FORTRAN
Programs discusses how such programs can be optimized).

3.8 PRELIMINARY DESIGN

In this phase, the allocated processing requirements for each task (or
schedulable software module) are identified and allocated to a hierarchy of
software routines, subroutines, and procedures to a level where each can be
described and sized. The overall approach for development, integration and
test are identified for applications code and operating system modules. The
requirements for test tools are expanded, and the test processes are defined.
For the DP hardware, the details of the hardware design are solidified (e.g.,
bus structure), and the performance estimates used in the process design are
validated by the more detailed designs. If significant differences occur, the
process design is reiterated.

The activity of preliminary design for a task is fairly well understood
by today's software practitioners. Dijkstra, Jackson, and Yourdon and
Constantine all have methodologies for this level of design, to name but a
few. The nine-step approach for the design does, however, suggest a shift in
emphasis:

t Step 1, to identify requirements, is recognized by all.

• Step 2, to identify alternate types of modules for allocation, is not
generally discussed. For example, software can be divided into
modules for different types of action (refinement), or in different
levels of action (e.g., all software is isolated from memory by a
data manager). Both types of modules should be addressed.

• Step 3, different mathematical approaches should be examined for
accomplishing a function.

• Step 4, the approaches are decomposed into steps to be allocated to
modules.

t Step 5, different allocations are proposed, especially from the view-
point of testability.

• Step 6, feasibility is estimated, particularly from the accuracy,
execution time, and memory budget points-of-view.

• Step 7, the resource requirements are estimated (e.g., total instruc-
tions, total memory, development time).

• Step 8, a best design is selected. This is the place where execution
time, development time, and memory size are traded-off.

• Step 9, integration and test plans, test tools, and their impact on
design are identified, including the approach for testing the completed

183

code. This can include program correctness proof techniques, use
of code analyzers, etc., during the design stage.

3.8.1 Discussion

Note that the nine-step approach is consistent with many of the design
methodologies, but does explicitly include features which are ignored by many
other methodologies. If the problem is stated as one of allocating require-
ments to classes of design elements, this tends to give the software design
process a new dimension which has not been fully explored in the literature
(e.g., the HOS design rules address the allocation of responsibilities for
input data checking between modules are in the right direction). Existing
tools to support these phases include PDL and PDS to describe the design, and
PDS to aid in simulating the total effect of the design and maintain configura-
tion management.

3.9 CONCLUSIONS

The overall methodology discussed in Section 3.1 appears to be sufficiently
general to describe the system design front-end activities by its repeated
application to four levels of allocation:

t System to DP/C

t DP/C to DP nodes and communication links

• DP node to process design

• Process to preliminary design.

The concerns of the steps are changed as the nature of the "subsystems"
to be allocated change, but the sequence and types of activities remain the
same.

The methodology has been found to work rapidly and quickly during the
system analysis phase, and to highlight the data processing issues at the
earliest possible time. This represents a significant advance towards early
identification and resolution of DP issues in the system design front-end.
Explicit phases and steps are included to address known problems (e.g.,
distributed process design, influence of test planning) unaddressed elsewhere.

Prototype tools exist for aiding many of these steps. The role of PERCAM
and DP PERCAM in the system analysis and engineering phases, the role of SREM
in the requirements engineering phase, the role of ALF and PDS in the process
design phase, and PDL and PDS in the preliminary design phase has been dis-
cussed.

The generality of this methodology suggests that a series of languages
based on a common meta-language could be developed to exploit the similarities
to yield a common tool framework. This meta-language would have the following
concepts:

• Elements -- containing the functions, subfunctions, structured data
trees, performance indices, and system parameters at each level.

184

• Attributes -- providing the descriptions of the elements, type for
data (including units and range), etc.

• Relationships -- providing linkages between elements such as func-
tions INPUT data, traceability, decomposition between functions,
allocation to subsystems, etc.

• Structures -- providing the graphs of the functions and sequences of
the structured data trees.

If such a series of languages were developed on a common base, a common
set of tools which utilized this deep structure could be developed to manipu-
late the data bases regardless of level of analysis. This would simplify the
development and use of automated tools to perform consistency/completeness
checking, traceability analyses, and simulation generation.

The above comments form the justification for the approach taken in the
Evolutionary Development Plan published earlier.

185

4.0 CONCLUSIONS

In this part of the report, we have presented formal foundations for a
methodology, and the overview of a methodology based on those foundations. The
concepts of decomposition and allocation were found to be key concepts of the
methodology for elaboration of the requirements, relating the requirements to
the design, and for the definition of integration and test tools and the test
plans and procedures.

This approach addresses the five issues previously identified in the
following way:

• Complexity -- the complexity inherent in the many possible subsys-
tem classes, system logics, and allocations is addressed by first
identifying feasible solutions for subsystem classes, identifying
the critical issues, and then optimizing to alleviate or eliminate
these critical issues. The natural level hierarchy of system, sub-
systems, critical items, etc., are used, with strict decomposition
and allocation used to link these levels together.

• Communication -- emphasis on testability and performance decomposi-
tion leads to the description of the system actions in terms of
sequences of functions with specified inputs, outputs, and perfor-
mances. This is a "natural" way to describe the actions of the
system in terms of the integrated effect of subsystem actions; the
precise definition of the decomposition also tends to eliminate
ambiguity. The definition of a extensible machine-processible lan-
guage for the expression of these concepts (e.g., the Requirements
Statement Language of SREM) will further aid communication by re-
stricting the vocabulary to a precisely defined set.

• Validation -- emphasis on formal decomposition and allocation leads
not only to naturally testable requirements, but to the identification
of verifiable properties of the specifications (e.g., consistency of
inputs/outputs defined for requirements written in RSL). In addition,
the emphasis on simulations to verify performance predictions which
are traceable to the statement of requirements provides validation
of the dynamic behavior of the system. Finally, the emphasis that
the allocation is not complete without the integration and test plan
leads to early emphasis on validation.

t Traceability -- the rigorous definition of decomposition and allo-
cation provides an unbroken chain of decisions from any requirement
or design feature back to the mission requirements. In addition,
incorporation of these concepts in an automated data base (e.g., the
REVS data base) provides the tools to perform the traceability analy-
sis upward or downward.

• Change Response -- the definition of the requirements in an automated
data base and the availability of tools to aid in the traceability
analysis provides the capability to extract traceability information
rapidly, perform an analysis of the impact of a change in top-level
requirements or the infeasibility of meeting lower-level subsystem
constraints on the total set of requirements. The ability to copy

186

the data base, modify it, perform automated analysis for consistency,
completeness, traceability, and to generate simulations to predict
system performance provides to the system analysts the capability to
quickly identify impacts, make changes, and verify their impacts.

A comparison of the types of tools (e.g., automated data base of require-
ments, automated consistency/completeness checking, automated simulation genera-
tion from the requirements statements at various levels of the system design)
needed to support such an overall methodology with the tools which currently
exist suggest that prototype of many of these tools already exist:

• RSL is a prototype of the user-extensible requirements definition
language for the definition of the system fucntions which incorporates
most relevant URL features.

• REVS is a prototype of the types of tools to verify the static proper-
ties of the requirements, and to generate simulations of the specified
system actions, which also incorporate most of the features of CARA.

• PERCAM is a prototype of the simulator to develop system-level simu-
lations traceable to the system logic.

t DP PERCAM is a prototype of the simulator to develop system-level
simulations of critical resource utilization.

t ALF is a prototype of the types of tools needed to predict the suffi-
ciency of a process design.

• PDL and PSL are prototypes of tools to define the software preliminary
design, and to simulate its performance.

The availability of these tools suggests that the consolidation of these
tools into a unified set, and the detailed definition of a methodology which
uses them is feasible. The details of tool consolidation, tool extension,
methodology development, and technology transfer are discussed in the Evolu-
tionary Development Plan previously published.

187

5.0 REFERENCES

1. Mesarovic, M.D. and Y. Takahara, "General Systems Theory Mathematical
Foundations", Academic Press (1975).

2. Mesarovic, M. D., M. Macko, and Y. Takahara,"Theory of Hierarchical Multi-
level Systems", Academic Press (1970).

3. Jackson, M. W., "Principles of Program Design", Academic Press (1975).

4. Cerf, V. C, "Multi-Processors, Semaphores, and a Graph Model of Computation",
Department of Computer Science, University of California Los Angeles,
Report UCLA-ENG-7223, April 1972.

5. Ross, D., "Structured Analysis (SA): A Language for Communicating Ideas",
IEEE Transactions on Software Engineering. Volume SE-3, Number 1, January

6. Lamb, S. S., et al., "SAMM: A Modeling Tool for Requirements and Design
Specification", COMSAC 78 Proceedings. IEEE Catalog 78 CHI 338-3 C.
November 1978.

7. Hamilton, M. and S. Zeldin, "Higher Order Software - A Methodology for
Defining Software", IEEE Transactions on Software Engineering. Volume SE-2.
Number 1, pp 9 - 32, March 1976. 2-

8. Dahl, R., E. Dijkstra, C. Hoare, "Structured Programming", Academic Press
(1972).

9. Fitzwater, D. R., "A Decomposition of the Complexity of System Development
Processes", COMSAC 78 Proceedings. IEEE Catalog No. 78 CHI 338 - 3 C,
November 1978.

10. Wymore, A. W., "Systems Engineering Methodology for Interdisciplinary
Teams", John Wiley (1976).

11. MIL-STD-490, "Military Standard Specification Practices", 30 October 1968.

12. Bell, T. E., D. C. Bixler, M. E. Dyer, "An Extendable Approach to Computer-
Aided Software Requirements Engineering", IEEE Transactions on Software
Engineering. Volume SE-3, Number 1, pp 99 - 60, January 1977.

£11.8. GOVERNMENT PRINTING OFFICE: 1979-614-023/208

188

t0^&rZt0rXj#fXUSfZt&^j0^ e

MISSION
of

Rome Air Development Center

RAOC plam and zxccuteA fizAzanch, dzvzlopmunt, tut and
toltctzd acqiLUltion pKogfiOM, In AappoKt oi Command, Control
CommuyvicatlonA and IntztUgmcz (C3I) actlvlUu. Tzdhwidal
and mglnzznlnq bappoit within aA&cu, ofi tzchnlcal competence
^s ptovldad to ESV Vnogfum OUICM [P0t>] and othafi ESV
eZmznt*. Thz principal tzchnlcal miMZon aAza* OAQ,
commLLnlcatloni, eluctftomagmtic galdancz and donJjiol, AUA-
veManca oi ground and anAoipaaa objzcti, IntztUgznce. data
aottcLCtion and handling, Inionmation Ayttm tzchnology,
-Lonotphafilc propagation, t>otid ztatz Aclznczi, mlcAowavz
phyilu and elactAoyvic fisZiabltity, mtUntalnabltUy and
compatibility.

ti&'<tt4n*4fXj!!f&&^&^^

