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ABSTRACT

Since 1976 the Artificial Intelligence Center of SRI International
has been conducting a program of research on ways of providing
nontechnicians with easy access to complex, distributed data bases of
information. This program has emphasized mutually supporting lines of
both short-term and long-term research. The short-term research has
resulted in an operational computer system for natural-language access
to a distributed data base. The LADDER system (Language Access to
Distributed Data with Error Recovery) is designed to provide answers to
questions posed at the terminal in a subset of natural language
regarding a distributed data base of naval command-control information.
The system accepts a rather wide range of natural-language questions
about the data, and for each question plans a sequence of appropriate
queries to the data base management system; determines on which machines
the queries are to be processed; establishes links to those machines
over the ARPANET; monitors the processing of the queries and recovers
from certain errors in execution; and prepares a relevant answer to the
original question.

The first-generation LADDER system was completed by September,
1977. 1In October, 1977, work was begun on a second-generation LADDER
system that dramatically extends the capabilities of the first-
generation system along several dimensions. This report describes the
evolution of the new system.

—> Section I of this report gives some background information on the
LADDER system, outlines the changes made to the architecture of the
system, and briefly explains the enhanced capabilities produced by those
changes. Section II discusses user experiences with the first-
generation LADDER system and the response of SRI to the reports of those
experiences. Section III describes new user features that have been
added to LADDER. Section IV discusses SODA, an improved data access
system for LADDER, explaining its new capabilities and the problems of
supporting those capabilities in accessing distributed data. Section V
describes how the system has been extended to access a heterogeneous
data base consisting of both Datacomputer and DBMS-20 data base
management systems. Section VI reports on progress to date in bringing
the results of our longer-term research into the LADDER system, in the
form of a new natural-language processor that will permit a greater
range of natural-language questions and lay the groundwork for
transporting the system to new data bases and new domains. Section VII
lists the publications and presentations by the project staff during the
period covered by this report. Finally, Appendix A gives more detail on
the new formal query language for data access, and Appendix B describes
an experimental French-language version of LADDER.
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I INTRODUCTION

A. EVOLUTION OF A NATURAL-LANGUAGE INTERFACE TO COMPLEX DATA

Since 1976 the Artificial Intelligence Center of SRI International
has been conducting a program of research on ways of providing
nontechnicians with easy access to complex, distributed data bases of
information. This program has emphasized mutually supporting lines of
both short-term and long-term research. The short-term research has
resulted in an operational computer system for natural-language access
to a distributed data base. The LADDER system (Language Access to
Distributed Data with Error Recovery) is designed to provide answers to
questions posed at the terminal in a subset of natural language
regarding a distributed data base of naval command-control information.
The system accepts a rather wide range of natural-language questions
about the data, and for each question:

(1) Plans a sequence of appropriate queries to the data base

management system.

(2) Determines on which machines the queries are to be
processed.

(3) Establishes links to those machines over the ARPANET.

(4) Monitors the processing of the queries and recovers from
certain errors in execution.

(5) Prepares a relevant answer to the original question.

Work on LADDER is being carried out in support of the Advanced
Command Control Architectural Testbed (ACCAT) program under the
sponsorship of the Defense Advanced Research Projects Agency (DARPA).
The ACCAT program is intended to provide a facility for transferring
emerging information processing technology to Navy command-control
applications. While the direct application of SRI’s effort has been to
develop prototype systems to aid in naval command and control, the
software tools that have been created and the concepts underlying them

e o
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offer potential aid to decision makers in the other services,
government, and industry as well.

The first-generation LADDER system was completed by September,
1977, and has been extensively described in the literature [l] [2]
[3) (4] (5) (6] (7] 1In October, 1977, work was begun on a second-
generation LADDER system that dramatically extends the capabilities of
the fiilt-gensration system along several dimensions. This report
describes the evolution of the new system.

The remainder of Section I gives some background information on the
LADDER system, outlines the changes made to the architecture of the
system, and briefly explains the enhanced capabilities produced by those
changes. Section II discusses user experiences with the first-
generation LADDER system and the response of SRI to the reports of those
experiences. Section III describes new user features that have been
added to LADDER. Section IV discusses SODA, an improved data access
system for LADDER, explaining its new capabilities and the problems of
supporting those capabilities in accessing distributed data. Section V
describes how the system has been extended to access a heterogeneous
data base consisting of both Datacomputer [8] and DBMS-20 [9] data
base management systems (DBMSs). Section VI reports on progress to date
in bringing the results of our longer-term research into the LADDER
system, in the form of a new natural-language processor that will permit
a greater range of natural-language questions and lay the groundwork for
transporting the system to new data bases and new domains. Section VII
lists the publications and presentations by the project staff during the
period covered by this report. Finally, Appendix A gives more detail on
the new formal query language for data access, and Appendix B describes
an experimental French-language version of LADDER.

The work decribed in this report reflects efforts by an integrated
group at SRI performing research in natural-language access to data
bases along a broad spectrum from the creation of demonstration systems
to advanced research in computer understanding of natural language.
Members of the group during the period covered by this report include
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Barbara J. Grosz, Norman Haas, Gary G. Hendrix, Jerry R. Hobbs, Kurt
Konolige, Robert C. Moore, Staffan Lof (now at the KVAL Institute for
Information Science, Stockholm), Nils J. Nilsson, Gordon S. Novak, Jr.
(now at the University of Texas), Ann E. Robinson, Jane J. Robinson,
Earl D. Sacerdoti, Daniel Sagalowicz, Jonathan Slocum (now at the

University of Texas), and B. Michael Wilber. Staffan Lof participated

in the research program as an International Fellow at SRI under
sponsorship of the National Defense Research Institute in Sundbyberg,

Sweden.

B. BACKGROUND INFORMATION ON LADDER

1. Implementaticn

The LADDER system 1is written in INTERLISP [10], and the
current version uses SRI‘s proprietary LIFER package [4] [5] for
building natural-language interfaces. LADDER has been operational since
June, 1976, and has been installed on a PDP-10 in the ACCAT facility at
the Naval Ocean Systems Center (NOSC) since January, 1977. As of
October, 1978, LADDER was also installed on three hosts on the ARPANET:
SRI-KL and SRI-KA at SRI International, and ISIB at the Information
Sciences Institute of the University of Southern California (ISI). At
SRI-KL, LADDER runs under the TOPS-20 operating system; at the other
sites it runs under TENEX. LADDER is used to access the Blue File and
FC data bases, which are described in detail elsewhere [11] (12]. They
are currently stored on the Datacomputer DBMS [8] developed by Computer
Corporation of America and the DBMS-~20 system [9] of Digital Equipment
Corporation.

2. Basic Capabilities of LADDER

To provide an understanding of the context in which we did the
work described in this report, we give the following examples
illustrating the basic question-answering capabilities of LADDER. Some
of the more advanced features of the system will be reviewed later in
Section III.
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An attempt has been made to accept a wide range of English-
language inputs that are relevant to the data base and to the task of
naval command-control decision making. One simple, but very common,
type of question is to ask what ships satisfy a given set of
restrictions. The user can ask for ships of any particular class (e.g.,
Kitty Hawk), type (e.g., cargo freighter), or naval classification
(e.ge, SSBN). Examples of simple restriction-type questions are:

NAME THE LOS ANGELES CLASS SUBMARINES.
WHAT SHIPS ARE HEAVY CRUISERS?
LIST THE SHIPS OF TYPE DDG.

Additional restrictions can be specified by appending a
country, kind of operation, or distinguishing feature. For example:

IS THE FOX AN AMERICAN CRUISER?
PRINT THE NUCLEAR POWERED NAVAL VESSELS.
WHAT IS THE FASTEST DUTCH MERCHANT SHIP?

Questions can ask for more complex restrictions, such as
comparisons of characteristics, comparisons with other ships,
specifications of position, indications of route, cargo, or casualty
status. For example:

ARE ANY SUBMARINES MORE THAN 300 FEET LONG?

WHAT AMERICAN NAVAL SHIPS ARE FASTER THAN THE FASTEST DUTCH
MERCHANT SHIP

ARE THERE ANY FOREIGN CARGO FREIGHTERS WITHIN 300 MILES OF
CAPETOWN?

NAME THE U S TANKERS WHOSE CURRENT SPEED OF ADVANCE IS LESS
THAN 10 KNOTS.

REPORT ALL SHIPS CARRYING COALS TO LONDON.

DESCRIBE THE CRUISERS THAT ARE NOT AT READINESS RATING Cl.

Additional types of modifications can be produced by
specifying attributes of the ships. For example:

SHOW ME THE DESTROYERS WHOSE RADAR IS INOPERATIVE!

DO ANY SHIPS WITHIN 400 MILES OF LUANDA HAVE A DOCTOR ABOARD

WHAT ARE THE OILERS WHOSE LAST REPORTED POSITION IS WITHIN 250
MILES?

NAME THE NEAREST SHIP TO THE KENNEDY WITH AN OPERATIONAL AIR
SEARCH RADAR.

Most of the questions typically askad of a data base are
concerned with the current values of attribuces that are explicitly
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stored. LADDER provides many formats for specifying such questions.
The simplest forms ask explicitly for the attributes. For example:

WHAT IS THE RADIO CALL SIGN OF THE FOX?
WHAT IS THE STANDARD DISPLACEMENT OF EACH OILER WITHIN 400
NAUTICAL MILES OF GIBRALTAR
PRINT THE CURRENT POSITION AND FUEL STATUS OF THE DESTROYERS
IN THE MED!
Many more formats permit asking about attributes of ships in
subtler ways. For example:

HOW IS THE SOUTH CAROLINA POWERED?

WHERE WERE THE OILERS LAST REPORTED

WHERE WILL EACH DUTCH CARGO FREIGHTER GO

HOW FAST IS EACH SOVIET MERCHANT VESSEL IN THE NORTH ATLANTIC?
WHEN IS THE CALIFORNIA SCHEDULED TO ARRIVE ON STATION

TO WHAT TASK GROUP DOES EACH DDG BELONG?

WHAT CLASS DOES THE HOEL BELONG TO

WHY IS THE AMERICA AT READINESS RATING C5?

WHO COMMANDS THE STERETT?

C. OVERVIEW OF THE SECOND-GENERATION SYSTEM
l. Architecture of the First-Generation System

The first-generation LADDER system consists of three principal
components. The first component, INLAND (Informal Natural Language
Access to Navy Data), accepts questions in a restricted subset of
English and produces a query or queries addressed to the data base as a
whole. The queries to the data base refer to specific fields, but make
no mention of how the information in the data base is broken down into
files.

The next component, IDA (Intelligent Data Access) breaks down
a query against the entire data base into a sequence of queries against
various files. IDA translates each query into Datalanguage, the query
language supported by the Datacomputer DBMS, and composes the answers of
the subqueries into the final answer returned to the user.

The task of dispatching the Datalanguage queries to the
appropriate Datacomputer is handled by FAM (File Access Manager). This
component searches a locally stored model for the primary location of




the file (or files) to which a query refers, establishes connections
over the ARPANET to the appropriate computers, logs in, opens the files,
and transmits the Datalanguage query. If at any time, the remote
computer crashes, the file becomes inaccessible, or the network
connection fails, FAM can recover and, if a backup file is mentioned in
its model of file locations, it can establish a connection to a backup

site and retransmit the query.

2. Natural-Language Interface

The second-generation system includes major modifications to
all the components described above. 1In the INLAND natural-language
interface, evoluticnary improvements have been made in the form of the
new user-oriented features described in Section III. These improvements
include a route finding package that avoids land masses, an interface to
the Situation Display Graphics Subsystem (SDGS) [13] for graphical
display of data base information, enhanced capabilities to let the user
define his own question forms and use elliptical inputs, and additional
feedback in the form of natural-language paraphrases of the data bsase

queries that are issued in response to the user’s question.

In addition, substantial progress has been made toward
bringing up a new natural-language front end that is the product of our
earlier long-range research. As described in Section VI, this new
system will have two major advantages over the present LIFER-based
system when it becomes operational. First, because it contains a much
more comprehensive, general grammar of English, it will enable LADDER to
handle a much wider range of language forms. The difficulty with the
current system is that it depends on a grammar that is based on
semantically meaningful categories in the domain of application, such as
ships or ports. In natural language, however, grammatical patterns cut
across these categories. The result is that the system might be made to
accept

WHO IS THE KENNEDY COMMANDED BY?
but not
WHO IS THE KENNEDY OWNED BY?
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even though the active forms of both these questions are acceptable.
The reason is that, since the semantic categories associated with OWNED
and COMMANDED differ, it is difficult to state a "passive rule" that is
applicable in all cases.

The other major advantage of the new front end is that it will
make the system more easily portable to other domains and data bases.
The griﬁnar used in the first-generation system is tailored specifically
to the domain of naval command and control. This produces some gains in
efficiency, but it means that switching to a different domain of
application requires completely rewriting the grammar. Since the new
system uses a general grammar of English, we expect the grammar to be
substantially the same over a wide range of applications. In switching
from one domain to another, new vocabulary will have to be introduced,

but new grammatical rules should not.

Another factor enhancing the portability of the system is that
the new front end uses a model of the domain of application, called a
"conceptual schema,"” that is independent of the data base. In the
current system, data base queries are produced directly by the natural-
language front end. Thus, if the data base is significantly changed,
the front end must also be modified, even if the domain of application
and the concepts used remain the same. With a conceptual schema, the
issue of what information the user is seeking is kept distinct from the
question of how that information can be retrieved from the data base.
If the organization of the data base is changed, but no new concepts are
added, the only changes required to the front end will be in the mapping
from the conceptual schema to the data base.

3. Data Base Access

IDA, the data access component of the first-generation LADDER
system, is very limited in the sorts of queries that it accepts.
Basically, IDA queries can only select a single set of tuples from the
data base applying simple boolean restrictions, perform some simple
computation on the set, and return the result of the computation or a




projection of the set. This rules out many useful queries that involve
more complex combinations of several sets of tuples. For example, if
the data base contained multiple position reports for each ship taken
over a period of time, it would be impossible to obtain the most recent
postion report for each ship with a single IDA query. Retrieving this
information would require searching the set of postion reports for each
ship to find the most recent one and forming the set of the most recent

reporte for all the ships. The IDA query language cannot represent such

a request.

To overcome the limitations of IDA, the second-generation
system incorporates SODA (SOphisticated Data Access), a completely
redesigned data access component described in Section IV. SODA accepts

requests for information expressed in a much more powerful query
language than IDA. Examples of queries that can be expressed in SODA,

but not in IDA, include:

GIVE THE MOST RECENT POSITION FOR EACH AMERICAN SHIP.

WHICH AMERICAN SHIPS ARE LESS THAN 100 MILES FROM WHICH
SUBMARINES?

HOW MANY SHIPS ARE IN EACR SHIP CLASS?

WHAT SHIP CLASSES HAVE THE MOST SHIPS IN THEM?

WHICH AMERICAN SHIPS ARE MORE THAN 500 MILES FROM EVERY
AMERICAN PORT?

To process a query, SODA plans what relations at what data
base sites must be accessed to retrieve the answer, constructs the 4
necessary programs in the languages of the DBMSs invclved, and requests T
movement of data among the data base sites. The problems of distributed 1
query processing are much more difficult for SODA than for IDA because {4
of the increased complexity of the queries haundled. These issues are §
discussed in detail in Section IV.E, and the solutions chosen for
implementation in SODA are explained in Section IV.F. ]

4. Accessing Multiple DBMSs
Although the first-generation LADDER system is able to
retrieve information from a distributed data base, each data base site 11
must use the same DBMS--the Datacomputer. The second-generation system :




has been extended to access data base sites running Digital Equipment
Corporation’s DBMS-20 system as well. This extension is discussed in
Section V. Omne of the reasons for choosing DBMS~20 was that it uses not
only a different query language from the Datacomputer, but also a
'E different data model. While we use the Datacomputer as a relational
data base, DBMS-20 is based on the CODASYL [l14) network-structured data
model," giving us maximum heterogeneity among the sites im our
distributed data base. The resulting system is, to our knowledge, the

only existing operational system to provide uniform access to a truly
heterogeneous data base. An example of query execution using both types
of DBMS is given in Section V.B, and a discussion of the relative merits

of relational and CODASYL DBMSs for interactive query processing is
included in Section V.C.
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II  EXPERIMENTS WITH LADDER

A. THE DATA AND OUR RESPONSE

During the period covered by this report we acquired the first data
from sizable groups of LADDER users who were not computer-oriented.

This data came from two sources: an experiment run at NOSC evaluating

LADDER in a simulated command-control environment ([15]), and transcripts

from 19 students taking a course in the command-control curriculum at
the Naval Postgraduate School (NPS). The questions that LADDER was
unable to handle have been analyzed and found to fit into three major
categories.

The first category is requests for information not in the data
base. This was particularly detrimental to the performance of the NPS
students. One of their major training aids was a workbook produced by
NOSC that was oriented toward the FC (Pacific Ocean) data base; however,
they were accessing the Blue File (Atlantic and Mediterranean) data
base. While we cannot do anything about inaccessible data, we have
improved the error messages to print out "<unknown-word> is not in
LADDER’s vocabulary" when a word--<unknown-word>--is not in the lexicon.
This should prevent users from wasting time trying alternative syntactic
constructions involving the word. The second category concerns

questions involving distance or direction. The coverage of this kind of

question has been broadened considerably, as suggested by the list
presented in Section II.D.

The third category of questions not handled by the system is what
the NOSC report calls "define word" and "define phrase." These were
surprisingly difficult for the users to understand and use. A major
source of their difficulty seems to have been that the NOSC workbook did
not correctly specify their use. At the time the evaluations took 1

place, the "define word" command required both the new word and the

10
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model to be single words (e.g., '"DEFINE CAN LIKE DESTROYER" worked,
whereas '"DEFINE LA LIKE LOS ANGELES" did not). However, the workbook
used for training both the NOSC and NPS users contained examples of the
form that did not work. It is understandable that users had trouble
with the feature and felt unhappy about LADDER, since it did not do what

they were told it would. Less significantly, two of the "define phrase"
examples in the workbook also would not work as shown. (At least 7 of
the NOSC users’ errors--over 6 percent--appear to have stemmed from
these mistakes in the workbook.) Nevertheless, the form of the command
used in the NOSC workbook appears to be more natural and easier to use
than our original form. We have therefore extended LADDER to accept the
definition of new phrases on a phrase-by-phrase basis rather than by
embedding them within a complete sentence (for example, by typing DEFINE
"% PECOS" LIKE "WITHIN 700 MILES OF PECOS"). In addition, the error
messages printed when a DEFINE command does not work have been expanded,
so that users may learn how to use the DEFINE capability more easily.
Also, apelling correction now is performed on the model sentence or

sentences.

A major criticism in the NOSC report was that, when a question
could not be handled by LADDER, it took far too long for LADDER to fail
and print the error message. By the time the NPS students took their
turn, and prior to our having seen the NOSC report, we had installed a
new feature that doubles the speed of parsing acceptable queries and
much more than doubles the speed of rejecting unacceptable ones. We had
no complaints from the NPS students about the amount of time LADDER took
to fail.

B. THE VALUE OF EXPERIMENTATION

We at SRI and our colleagues at ACCAT, NAVELEX, and ARPA had been
saying to one another for two years that incremental feedback from
people who are much closer than us to the operational community is
essential for the development of LADDER-like systems. Although we had
all been saying this, we got little such feedback until May, 1978. It

11
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was surprising how many easily-closed holes in the system were uncovered
by these evaluations. It is also surprising that, to a large extent,
the same holes were fallen into by user after user. This suggests that
it might have been worthwhile to have had more feedback earlier on.

This will become even more important as the issue of installing a
system like LADDER in an operational environment is faced. The
experiences of the NOSC and NPS users show very strongly that that
installation must be an evolutionary process. It cannot be done, for
example, by spending a few days at CINCPACFLT, coming home to work for a
year, and then showing up on their doorstep with the "completed" system.
It should not take much time from the operators, but some short
interaction every few months seems essential to the development process.
This may sound like a truism regarding bringing new systems into
operation, but it will be truer than ever in trying to develop a system
based on LADDER whose claim is that it works on the user’s own terms.

In summarizing the results of our response to the NOSC and NPS
users’ experiences, it appears that the new LADDER would now handle
about 90 percent of the NOSC questions. Most of the rest (e.g. 'What
nation Pecos what owner," "What is distance of Pecos," "Who is own,"
"When arrival Knox at Pecos?") are questions that either do not have a
well-defined meaning or are simply beyond our current real-time
processing capabilities. Examples of inputs to LADDER that failed in
the NOSC experiments and now appear to work are given in Section II.D.
Thanks are due to Curt Blais and Hal Miller at NOSC and Gary Poock at
NPS for their help in providing us with the wealth of data. A second
class of command-control students are scheduled to try using LADDER in
the summer of 1979. The experience of this group will provide an
important indication of how rapidly a natural-language access system
such as LADDER can be made to converge on an acceptably high coverage of
the relevant questions that users wish to ask.

12
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C. CONCLUSIONS

We have drawn several conclusions from examining the body of data
gathered during these experiments. These are subjective evaluations
that come from an admittedly technology-oriented perspective, but we

nonetheless believe they are valid.

) o Importance of User Feedback

The most critical need we saw reflected in the data was for
informative and timely feedback to the user. At every stage of the
query process our users would have doubts about the system’s
performance. In response to their expressions of insecurity with

respect to the computer system, we installed the following features:

(1) A paraphrase in English of each query to the data base.

(2) A character printed on the screen every three seconds
while LADDER is waiting for response from the
Datacomputer, to assure the user that the host machine
and the LADDER software are still operational.

(3) Features enabling each user to check what extensions he
has made to the basic language accepted by the system.

(4) Improved error messages to provide more information about
why a query failed. In particular, a special message was
provided to be prirnted when a user uses a word that is
not in LADDER’s vocabulary, since this often implies that
he is asking about information not in the data base.

2. Importance of Flexibility

The experience of our users shows clearly that a good
interface must not only accept grammatically correct natural-language
inputs, but must attempt to determine the meaning of as wide a range as
possible of incorrect inputs. This supports several distinguishing
aspects of our approach to natural-language interfaces:

(1) Spelling Correction -- The unsatisfactory nature of the
standard keyboard as a means of input for military
decision makers is clear. The NOSC experiment was
carried out with a Tektronix 4051 as a front end to

LADDER. After the user typed in his query, he had an
opportunity to check and edit it before it was sent to

13
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LADDER. Neverthelass, 23 per cent of the queries
contained a typing error. The spelling correction
capability of LADDER appears to be its most attractive
feature to new users.

(2) Ellipsis -~ For maximum efficiency, users’ queries should
be as short as possible. The results of our initial
experiments indicate that users are very creative in
shortening their inputs. LADDER’s ability to process
elliptical inputs has been extended to accept more kinds
of shortened queries, but further research in this area
appears to be needed.

3.  Apparent Adaptability of LADDER

Although a natural-language interface may function according
to specifications, it cannot be viewed as a tool of potentially wide
utility unless it can be easily changed as the specifications change.
1f we view the NOSC and NPS users’ experiences as providing a modified
set of specifications, LADDER appears to be sufficiently adaptable, at
least with respect to a given data base. An important thrust of our
next year’s work will be to extend this adaptability to new data bases
as well.

4. A Testbed System or a Demo System?

Many of the gaps in coverage of users’ queries resulted from a
difference between the LADDER system’s normal use as a demostration
vehicle and its experimental use in a testbed environment. Although
LADDER can be extended to serve both functioms, it is difficult to
evaluate it as a purely testbed system when it has been "detuned" to
function primarily as a demonstration vehicle.

D. QUESTIONS HANDLED BY THE NEW LADDER

MAP SELECTION AND DISPLAY COMMANDS

Select map 200 miles from Pacos

Select a map 200 miles from Pecos

Show all ships 200 miles from Pecos

Select a map of area within 700 miles of Pecos
Select a map of 1000 miles around 37.66mn,174.5w
Select a map of 1000 miles from 37.66n,174.5w

14
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List (show) all ships in area
Select map from 37-40n,174-30w

GENERAL/SPECIFIC INFORMATION QUERIES

Who is the owmer

Who is OPCON of SAR-1

List port of departure and destination port of Pecos
Where is Pecos coming from

What is port of departure and port of destination of Pecos
Name of OPCON of SAR-1

What is Pecos port of registery

What is the home port of Pecos

What is ... of the listed ships

What is ... of the ships on the list

TIME COMPUTATION QUERIES

What is the time for Rathburne to reach Pecos
How long for Rathburne to reach Pecos

DISTANCE QUERIES

Display the distance of Pecos from here

What is distance of Pecos (presumed "from here")

What is distance from Pecos to here

What is distance between Pecos and all ships within 700 miles

What is distance from Pecos to all ships within 700 miles

What is the distance from Pecos to Connie, Biddle, R K Turner,
Halsey, Adelaide Star

What is distance between Pecos and San Francisco

What is distance from Pecos to San Francisco

What is the distance of ships within 700 miles of the Pecos to Pecos

What is distance to Pecos

What is distance of these ships from Pecos

What is distance from Pecos to all ships within 700 miles of Pecos

What is distance from Pecos to constellation

List distances of all ships within 700 miles of Pecos

What is the distance of Pecos from Honolulu

What is the distance to Pecos of each ship
within 700 miles of Pecos

How far is Biddle from Pecos

How far is Pecos from all ships within 700 miles

DEFINITION OF WORDS AND PHRASES

Define (Daships) to be like (ships within 700 miles of Pecos)
Define (Prthst of Pecos) to be like (ports of departure of Pecos)
Define (name SAR-1) to be like (name Rathburne and Knox)
Define (? and Rathburne) like (what is distance from Pecos

and Rathburne)

15
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Define distance like what is the distance from

Define (what is the port of Departure $)
like (what is the port of departure of the Pecos)

Define ( leéngth of the Pecos) like (what is the length of
the pecos)

Define last to be like 37-40n,174-30w

Define (vhat is the distance to last) like (what is the distance
to 37-40n, 174-30w)

Define (what is distance from here to last) like (what is distance
from here to 37-40n, 174-30w)

Define (wvhat is distance from Honolulu to last) like (what is
distance from Honmolulu to 37-40n, 174-30w)

Define (range of Kennedy from Honolulu) like (what is the distance
of Kennedy from Honolulu)

Define (* Pecos) like (within 700 miles of the Pecos)

Define SAR-1 to be like Rathburne and Knox

Define (w) like (what is the)

Define (range) like (what is the distance of)




III  NEW USER FEATURES OF THE LADDER SYSTEM

A. QUESTIONS INVOLVING CALCULATIONS

In this section we review some of the advanced features of LADDER
and explain how they have been extended during the period covered by
this report. Some of these features enable the system to combine
computation with data base retrieval. This is a major advantage of
having a computer serve as the interface between a decision maker and a
data base, since the computer can perform complex calculations on the
data retrieved much faster and more reliably than a person. During the
past year, we have implemented some examples of this kind of capability
in LADDER, but have not attempted to provide for all the calculations a
naval decision maker might need.

LADDER attempts to handle questions concerning distances between
ships, which involve calculations dependent upon position information
retrieved from the data base, and questions concerning steaming times,
which require position information as well as current and maximum speed
values from the data base.

This past year, we have also implemented in LADDER a route
calculation routine for avoiding land masses. This routine uses a model
of the sea areas of the world and the junction points that must be
traversed between them. The particular model used by the curreat
version of LADDER is very simple and hence may give inexact answers; the
performance of the routines would improve with a more detailed model.
Some questions the user can ask include:

HOW MANY MILES IS THE CONSTELLATION FROM HER NEXT PORT OF CALL

HOW FAR IS EACH AMERICAN DESTROYER FROM THE SOVIET CARRIERS

WHAT SHIPS CARRYING DOCTORS ARE WITHIN EIGHT HOURS’ STEAMING
TIME OF THE PECOS?

WHAT IS THE NORMAL TRANSIT TIME FOR THE KENNEDY FROM NORFOLK
TO GIBRALTAR

DOES THE SARATOGA HAVE ENOUGH FUEL TO REACH BUENOS AIRES
WITHOUT REFUELING?

17

g et
H RS (- P

—E S~




HOW LONG WOULD IT TAKE FOR THE WAINWRIGHT TO GET TO NAPLES
WHAT IS THE BEST ROUTE FOR THE SUNFISH TO THE SKORY?

B. DISPLAYING DATA GRAPHICALLY

During the past year, we have implemented a very simple interface
with the Situation Display Graphics Subsystem [13]), developed by the
Information Science Institute (ISI) of the University of Southern
California. Four special commands are provided to cause information to
be displayed in map format.

Before displaying any data base information the user must direct
LADDER to display a map. This is done with the SELECT command, which
consists of the word "select" followed by a region specification. For
example:

SELECT A MAP OF THE NORTH ATLANTIC

SELECT THE AREA WITHIN 500 NAUTICAL MILES OF THE WORDEN.

After a map is displayed, ships or sets of ships may be added to it
or removed from it using the SHOW and ERASE commands. The context of
these commands is presumed to be the area on the display. For example,
after typing "Select a map of the Mediterranean,” the command, "Display
all the carriers" will cause only carriers in the Mediterranean to be
retrieved from the data base and displayed.

An additional command is provided to permit a graphic image to be
saved on disk. This command takes the form
SAVE <name> ,

where <name> is any valid file name.

C. EXTENDING THE RANGE OF QUESTIONS

It is impossible to provide a natural-language interface system
such as LADDER with an ability to accept all the questions that could
conceivably be asked about a given data base. Furthermore, frequent
users will want to develop their own shorthand questions for accessing
the data they often use. To meet these needs, LADDER allows each user

to extend the grammar dynamically, by example, to handle new types of
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questions. The DEFINE command is used to extend the grammar by adding a
synonym, a new phrase, a paraphrase of a single question, or a

paraphrase of a sequence of questions, which we call a macroparaphrase.

To add a synonym of a word that is known to the system, the user
may just type
DEFINE <new-synonym> LIKE <known-word>.
For example,
DEFINE CONNIE LIKE CONSTELLATION
will permit a question such as
WHO COMMANDS CONNIE?
to be handled.

To add a new phrase, the user may type

DEFINE "<new-phrase>" LIKE "<known-phrase>"
where <known-phrase> is any sequence of words that the system could
accept in some sentence. Either <new-phrase> or <known-phrase> can be a
single word. Examples of this feature include:

DEFINE "MEDSHIPS" LIKE "SHIPS WITH A DOCTOR ABOARD"

DEFINE "TIN CAN" LIKE "DESTROYER"

DEFINE "SHIPS OF INTEREST" LIKE "SHIPS WITH A DOCTOR ABOARD
WITHIN 400 MILES OF PECOS."

These new phrases are handled by LADDER by substituting the known phrase

for the new phrase whenever it occurs in a question, before the parsing
of the sentence begins. LADDER will retype the user’s question with the
substitution when it is performed.

LADDER permits the user to add an entirely new question format by
example. To do so, the user must provide LADDER with an example of how
the extension is to be used in the context of a complete sentence. This
is done by typing,

DEFINE "<new-sentence>" LIKE "<known-sentence>",
where <known-sentence> can already be handled. For example,

DEFINE "CARRIERSTAT MEDITERRANEAN" LIKE "WHAT IS THE CURRENT
POSITION, FUEL STATE, AND READINESS STATUS OF ALL
CARRIERS IN THE MEDITERRANEAN"

will cause the new pattern
CARRIERSTAT <MACRO.LOC> :
to be added to the grammar. Subsequently, questions like
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CARRIERSTAT NORTH ATLANTIC
will be accepted by LADDER.

During the past year, we have provided a novel facility for

allowing a new question to substitute for a sequence of old questions,
each of which is already understood by LADDER. The define command is
still used, but the model (the part following "like") can be a sequence
of questions. For example,

DEFINE "GIVE AN OVERVIEW OF JFK" LIKE "WHAT IS THE TYPE,
LENGTH, BEAM, AND DISPLACEMENT OF JFK? WHAT WEAPONS DOES

SHE CARRY? WHO COMMANDS HER? WHAT IS HIS LINEAL
NUMBER?"

will add to the grammar the pattern:
GIVE AN OVERVIEW <OF> <SHIP>.
this will permit questions such as,
GIVE AN OVERVIEW ABOUT ALL THE US SUBMARINES

to be answered.

When the define command is processed by LADDER, each sentence in
the model is parsed (spelling correction will be performed if necessary)
but the data base is not queried to answer the questions. When a
macroparaphrase is processed by LADDER, each question in the model is
typed out ‘before LADDER proceeds to answer it.

D. ELLIPTICAL QUESTIONS AND COMMANDS

LADDER accepts not only complete sentences, but also sentence f

fragments that can be interpreted in the context of the previous
sentence. The syntactic term for this condition, in which words of the :
second sentence are left out but implied, is ellipsis.

When an input cannot be interpreted as a complete sentence, LADDER !
types out the message, "trying ellipsis:", and then checks to see if it
is analogous to any contiguous string of words in the previous sentence.
If it is, the input is substituted for that string and the resulting new
sentence is printed out. LADDER then proceeds to carry out the
resulting request. Examples of valid elliptical inputs in the context

? of the previous question, "WHAT IS THE LENGTH OF THE SANTA INEZ"

include:
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THE BEAM AND DRAFT

HOME PORT OF THE AMERICAN CARRIERS
PRINT THE NATIONALITY

KITTY HAWK

During the past year, we have extended the ellipsis capability to
handle phrases such as:

WHAT ABOUT X
where x 1is a sentence fragment. Thus LADDER will now accept the
sequence:

WHAT IS THE LENGTH OF FOX?

WHAT ABOUT DRAFT?

Elliptical fragments can also be added to the end of the previous
sentence, as in the sequence:

WHAT ARE THE US CARRIERS?
IN THE MED?

E. MONITORING SYSTEM BEHAVIOR

1. Paraphrasing Data Base Queries

When the user types a question to LADDER, it is printed on the
terminal. In addition LADDER now produces a paraphrase of the queries
to the data base required to reply to the question. This paraphrase
provides a means for the user to check that LADDER has interpreted his
question properly. There may be more than one paraphrase produced if
more than one data base query is required to answer a given question.
For example, if the user asks,

WHAT SHIPS WITH A DOCTOR ABOARD ARE WITHIN 900 NAUTICAL MILES
OF THE BRITISH BOMBARDIER?

LADDER will print out

For SHIP equal to BRITISH BOMBARDIER, give the POSITION and
DATE.

and, subsequently,

For DOCTR equal to D and great circle distance to 46-33N, 21~
29W less than or equal to 900, give the SHIP.

(46-33N, 21-29W is the position of the British Bombardier determined
from the previous query.) These two paraphrases together comstitute
LADDER’s interpretation of the user’s question.
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2. Iiming

In the past, users of LADDER have pointed out that there may
be long periods when nothing seems to be happening. To alleviate this
sense of frustration, LADDER now types & dot whenever a command is sent
to the Datacomputer, and counts the number of three-second intervals
that elapse as it waits for the answer. This will inform users that
LADDER is functioning properly and awaiting action from the data base.
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IV  HANDLING COMPLEX QUERIES IN A DISTRIBUTED DATA BASE

A. INTRODUCTION

As part of the continuing development of the LADDER system, we have
substantially expanded the capabilities of the data base access
component that serves as the interface between the natural-language
front end of LADDER and the data base management systems on which the
data is actually stored. SODA, the new data base access component, goes
beyond its predecessor IDA [6], in that it accepts a wider range of
queries and accesses multiple DBMSs. This section is concerned with the
first of these areas, and discusses how the expressive power of the
query language was increased, how these changes affected query
processing in a distributed data base, as well as what are some

limitations of and planned extensions to the current system.

To explain the new features of SODA, it will be useful to review
briefly the capabilities of IDA. 1IDA is designed to access a relational
data base. That is, it expects the data base to be organized as a set

of relations (files), each of which contains a set of tuples (records)

that are in turn composed of various fields. The IDA query language
permits the user to view the entire data base as if it were a single
relation, with IDA being responsible for planning which actual data base
relations have to be accessed to answer the query. An IDA query is
interpreted as a request to:

(1) Generate the set of all tuples satisfying a given

description expressed as a Boolean combination of simple
comparisons on the fields of the tuple.

(2) (Possibly) select the member of the set for which some
attribute is largest or smallest, or count the members of
the set.

(3) Return the values of certain attributes for each member
(or for the selected member) of the set.
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For instance, in the Blue File command and countrol data base (l1]
which we have been using, the English query, "What is the longest
American ship?" could be expressed using IDA as:

((* MAX LGHN) (NAT EQ ‘US’)(? NAM))

The term (NAT EQ °‘US’) tells IDA that the tuples we are interested
in are those for which the NAT field has the value ‘US’, i.e the tuples
pertaining to American ships. The term (* MAX LGHN) tells IDA that we
want to select from this set of tuples the tuple for which the field
LGHN has the highest value, i.e. the tuple for the longest American
ship. Finally, the (? NAM) field tells IDA that we want to return the
value of the field NAM from this tuple, i.e. the name of the longest
American ship.

IDA would interpret this query by finding the smallest set of
relations in the data base that contains all the fields mentioned in the
query and specifying to the DBMS what it believes to be the semantically
meaningful links among those relations. IDA then generates a program in
the DBMS access language that interprets the query with respect to these
selected relations.

This approach limits the expressive power of the query language in
a number of ways. First, only one set of objects can be talked about in
each query. The only way in which two sets of objects can be referenced
is if the set that the query is "about" is their intersection or union.
Thus we can express the query ‘'Which ships are American submarines?"
(intersection), or "Which ships are American or are submarines?"
(union), but there is no way to express '"Which American ships are less
than 100 miles from which submarines?"

Another restriction is that only one maximization, minimization, or
count operator is allowed in each query, and it must be applied after
all other operations. For example, we cannot express as a single query
"How many ships are in each ship class?" since this requires forming a
set of counts, rather than simply counting a set. Also, we cannot
express '"Which ship class has the most ships in 1t?" since this
requires a count operator and a maximization operator in the same query.
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Finally, only Boolean restrictions are allowed in specifying a set
of objects. That is, all restrictions must be simple comparisons
between fields or predefined functions of fields (such as distance
functions computed on position fields), or combinations of simple
comparisons using AND and OR. Thus IDA gives us no way to express a
restriction involving a quantifier as in "Which American ships are more
than 500 miles from every American port?"

B. EXPRESSING COMPLEX QUERIES IN SODA

The features of the SODA query language enable it to overcome all
of the limitations of IDA discussed in the previous subsection. It
allows queries that refer to more than one set og objects, it permits
queries to specify the logical scoping of operationa, and it allows
quantifiers to be used in specifying restrictions on sets of objects.
This subsection informally discusses a number of examples which
illustrate these points. The details of the syntax of the SODA query
language may be found in Appendix A.

In the examples, we will assume that we have the following subset
of a simplified Navy command and control data base:

SHIP: (NAM, CLASS, TYPE, NAT, LGHN, POS)
SHIPCLASS: (CLASS, TYPE, LGHN, DRAFT, BEAM)
PORT: (PNAM, PNAT, PPOS)

In the SHIP relation, NAM is the name of the ship, CLASS is her
class, TYPE is her type (e.g. ‘SS’ for submarine), NAT is her
nationality, LGHN is her length, and POS is her current position. The
SHIPCLASS relation gives information that is common to all ships of the
same class. CLASS, TYPE, and LGHN are as in the SHIP relation, and
DRAFT and BEAM are the corresponding dimensions of the ships in the
class. In the port relation, PNAM is the name of the port, PNAT is the
country in which the port is located, and PPOS is the geographical
position of the port. We will also assume that the DBMS has the ability
to compute the function GCDIST, which gives the great circle distance
between two geographical locations.
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SODA avoids the first limitation of IDA, the inability to refer to
more than one set of objects per query, by using an IN expression to
associate a variable with each of the sets we want to mention in tha
query. The query '"Which American ships are less than 100 miles from
which submarines?" (which could not be expressed in IDA) can be

expressed in SODA as:

((IN S1 SHIP ((S1 NAT) EQ °‘US’))

(IN S2 SHIP ((S2 TYPE) EQ °SS’))

( (GCDIST ((S1 POS) (S2 POS))) LT 100)
(? (S1 NAM))

(? (S2 NAM)))

In this SODA query the expression (IN S1 SHIP ((S1 NAT) EQ °‘US’))
sets the variable S1 to range over tuples in the SHIP relation for which
the NAT field has the value °‘US°, i.e tuples for American ships.
Similarly, the expression (IN S2 SHIP ((S2 TYPE) EQ ‘SS°)) causes S2 to
range over tuples for submarines. Then for each pair of ships in the
Cartesian product of these two sets, the additional restriction
((GCDIST ((S1 PTP) (S2 PTP))) LT 100) is applied. That is, we check
whether the great circle distance between the two ships is less than 100
miles. For each pair of ships that satisfies all these restrictions, we
return the names of the ships. This is indicated by the selectors

(? (S1 NAM)) and (? (S2 NAM)).

We can illustrate SODA’s ability to express the relative scoping of
operations with the query, "How many ships are in each ship class?"
This could be expressed in SODA as:

((IN C SHIPCLASS)
(COUNT CNT1
(IN S SHIP ((S CLASS) EQ (C CLASS))))
(? (C CLASS))
(? CNT1))
The form of a counting operation is a list where first element is
the symbol COUNT, the second element is a count variable, and the rest
of the list is a subquery which defines the set of tuples to be counted.

The effect of a count operation is to set the value of the count
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variable to the number of tuples in the indicated set. In this example,
since the set to be counted is defined in terms of the field (C CLASS),
and since this occurrence of C is bound outside of the COUNT expression
and ranges over all tuples in the SHIPCLASS relation, the query is
interpreted to mean that the count operation is to be performed once for
every tuple in the SHIPCLASS relation. Thus, the interpretation of the
entire query: for each tuple in the SHIPCLASS relation, count the number
of tuples in the SHIP relation which have the corresponding value for
the CLASS field and return the name of the class and the count.

o NS AR e A SR AR e ® s 9

An example of of a COUNT and a MAX in the same query is provided by
the SODA representation of the query, "What ship classes have the most
ships in them?":

( (MAX CNTI
(IN C SHIPCLASS)
(COUNT CNT1
(IN S SHIP ((S CLASS) EQ (C CLASS)))))
(? (C CLASS))
(? CNT1))
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This query simply embeds the body of the preceding query inside a
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maximizing operation over the count variable. The basic form of a
maximizing operation is a list where the first element is the symbol
MAX, the second element is the term to be maximized, and the rest of the
list is a subquery that defines the set of tuples to be maximized over.
In this case the term to be maximized is CNT1 in the set consisting of
the tuples in the SHIPCLASS relation augmented by the corresponding
values of CNTl, the number of ships in each ship class. The effect of
the MAX operation is to set the occurrences of the variables bound by
the MAX (in this case C and CNT1l)) to range over the values for which
the maximized quantity has the greatest value. So in this example, the
MAX operation sets the variable C to range over the tuples in the
SHIPCLASS relation for the ship classes with the most ships in them and
sets CNTl to the corresponding number of ships. The rest of the query
simply returns the name of those ship classes and the number of ships
they contain.




Finally, SODA includes several types of quantifiers that can be

used to express complex restrictions on the sets of objects referenced

by queries. As an illustration of the use of a quantified restriction,
recall that there was no way in IDA to express the query "Which American L
ships are more than 500 miles from every American port?" In SODA this ;
could be expressed by:

((IN S SHIP ((S NAT) EQ ‘US’))

(ALL (IN P PORT ((P PNAT) EQ ‘US’))
((GCDIST ((S POS) (P PPOS))) GT 500))

(? (S NAM)))

gt >y
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The first line of this query restricts the system’s atteantion to
American ships via a simple restriction on the SHIP relation. The
second expression in the query further restricts this set but involves a
universal quantifier. The simplest form of a universally quantified
restriction is a list consisting of the symbol ALL, an IN expression,
and any number of restrictions. An ALL restriction is satisfied if all
the tuples in the set specified by the IN expression satisfy all the
restrictions in the list. If there is more than one binder expression
in the list, then the join of the sets they specify must satisfy all the
restrictions in the list.

In the current example, all the values of P that satisfy
(IN P PORT ((P PNAT) EQ “US’)) §
must also satisfy
((GCDIST ((S POS) (P PPOS))) GT 500) |

for the ALL restriction to be satisfied. Informally, this means that
all American ports must be more than 500 miles from the ship in 5
question, for that ship to meet this restriction. Finally, the NAM
field from every tuple that meets these restrictions is returned to the i

user.

A SOME restriction has the same syntactic form as an ALL 5
restriction, the difference in interpretation being that the restriction
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is satisfied if some tuple in the set specified by the binder
expressions satisfies the other restrictions within the SOME expression.
Thus, to change the previous query to "Which American ships are more
than 500 miles from some American port?" we only have to replace the
ALL by a SOME:

((IN S SHIP ((S NAT) EQ ‘US°’))

(SOME (IN P PORT ((P PNAT) EQ ‘US’))
((GCDIST ((s POS) (P PPOS))) GT 500))
(? (S NAM)))

Notice that in these examples, there are some restrictions placed
inside the IN expression itself and some restrictions placed after the
IN expression. In a SOME restriction this distinction is of little
consequence, since placing a restriction one place or the other does not
change the interpretation of the query. If we place a restriction
inside an IN expression, we are using it to define the set that is being
quantified over. This is equivalent, however, to quantifying over a
less restricted set, but being more restrictive as to the additional
conditions that one of the members of the set has to satisfy, which is
the interpretation of placing a restriction outside the IN expression.
Thus, we could have expressed the previous query by either of the
following expressions:

((IN S SHIP ((S NAT) EQ ‘US’))
(SOME (IN P PORT)

((P PNAT) EQ ‘US’)

((GCDIST ((S POS) (P PPOS))) GT 500))
(? (S NAM)))

or

((IN S SHIP ((S NAT) EQ ‘US’))
(SCME (IN P PORT ((P PNAT) EQ ‘US”)
((GCDIST ((S POS) (P PPOS))) GT 500)))
(7 (S NAM)))
In an ALL restriction, however, this distinction is crucial. If we
move a restriction from inside an IN expression to outside, the
interpretation is changed completely, since instead of the restriction

partially defining what set is being quantified over, it partially
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defines the condition that all the members of the set must meet. In
this respect the syntax of the SODA query language is designed to mirror
the syntax of iknglish, so that the process of translating from English
to SODA will be simplified. The idea is that the restrictions derived
from noun phrase wodifiers like "American" in "all American ships" would
be placed inside an IN expression, but restrictions that come from
~ predicate modifiers would be placed outside the IN expression. If this
rule is followed, then the resulting SODA queries will exactly capture
the difference between "Are all American ships submarines?" and "Are
all ships American submarines?" Conversely, the SODA queries for "Are
some American ships submarines?™ and "Are some ships American
submarines?”" will be logically equivalent, as are the English

questions.

As a final point on this topic, it should be noted that, although
the tvo questions with “some" must have the same answer, they do differ
slightly in what they suggest about the assumptions of the person asking
the question. "Are some American ships submarines?" suggests that he
believes that there are American ships, whereas "Are some ships American
submarines?" suggests only that he believes that there are ships. As
Kaplan [16]) has pointed out, it can be very important to inform the user
of a data base system when the assumptions behind his queries are wrong,
so that he can properly interpret the answers he gets from the system.
The distinction in SODA between restrictions inside an IN expression and
those outside could be used to differentiate the restrictions whose
satisfiability the user is assuming, from those whose satisfiablity he

is questioning.

C. EXPANDING VIRTUAL RELATIONS AND ORDERING ACESSES TO RELATIONS

In the previous subsection, we assumed that SODA always used the
relations specified by IN-expressions to retrieve the requested fields.
For instance, if the variable § is introduced in the expression
(IN S SHIP), then any subsequent reference such as (S NAM) would be
interpreted as indicating the NAM field in the SHIP relation.
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In fact SODA is more flexible than this. The relations specified
in the initial SODA query are interpreted as virtual relations that may
refer to fields stored on several actual data base relations. In SODA,
there is one virtual relation for each type of object that we want to
talk about (i.e. allow as the value of a variable), and for each type
of object there is a schema that indicates the semantically meaningful
ways of  linking fields in different relations. (In the current
implementation, the same schema is used for all virtual relations. This
is an artifact of the particular data base being used, and would not be
possible in general.) For instance, the schema for the virtual SHIP
relation would specify that when talking about a ship, if we mention a
field in the data base SHIP relation (e.g. NAM) and another field in
the SHIPCLASS relation (e.g. DRAFT), then the way to link them is to
jJoin the two relations via the CLASS field.

SODA uses this information to transform the references to virtual
relations in the initial query into references to actual data base
relations. It does this by scanning the query for all the fields
mentioned in connection with each variable introduced by amn IN
expression. It then uses the schema for the virtual relation that the
variable ranges over to find the smallest set of data base relations
that include all the fields and to specify the links between these
relations. SODA then replaces the original IN expression that mentions
the virtual relation with a series of IN expressions that mention the
selected data base relations and specify the joins between them. The
references to the fields in the virtual relation are replaced by the
corresponding references to fields in the data base relations. For
example, if we wanted to retrieve the name and draft of all the ships in
the data base, the initial query would be:

((IN S SHIP)
(? (S NAM))
(? (S DRAFT)))
Since the NAM field occurs only in the data base SHIP relation and
since the DRAFT field occurs only in the SHIPCLASS relation, both
relations must be accessed. SODA therefore transforms this query into:

3l




((IN S SHIP)

(IN C SHIPCLASS ((C CLASS) EQ (S CLASS)))
(? (S NAM))

(? (C DRAFT)))

In this expanded query, SHIP and SHIPCLASS are interpreted as being
actual data base relations, whereas in the initial query SHIP was
interpreted as a virtual relation.

In expanding references to virtual relations, SODA must choose
which relation to use to retrieve a particular field if that field is
available from more than one relation. In our sample data base the type
and length of a ship can be retrieved either from the SHIP relation or
the SHIPCLASS relation. To solve thia problem, SODA uses heuristic
techniques developed for IDA to attempt to minimize the number of

relations accessed. For more information on how this is done, see [6].

Another problem for SODA is to choose the order in which to access
the relations mentioned in a query. We could interpret a SODA query as
specifying a particular procedure by making a fixed processing strategy
(such as strictly sequential processing) part of the definition of the
language. The user would then be responsible for determining the order
in which relations are accessed by choosing the order in which they are
mentioned. Since SODA’s main purpose is to be the target language for a
natural-language processor that makes no attempt to order the queries it
generates for efficiency, we use a few simple heuristics to reorder the
initial query. First, restrictions are applied as soon as all the
relations that they mention have been accessed, since this cuts down the
amount of data that must be processed in the rest of the query. Next,
any maximization, minimization, or counting expressions that can be
processed are taken, since these expand the amount of data only
slightly. After these expressions, IN expressions which can immediately
be restricted are preferred over IN expressions which cannot. These
heuristics are all intended to help choose the most restricted parts of
the query first in hopes of minimizing the size of intermediate results.
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D. PROBLEMS IN DISTRIBUTED PROCESSING OF COMPLEX QUERIES

If all the relations mentioned in an expanded reordered SODA query
are stored at one data base site, then all that remains to be done is to
translate the query into the query language of the DBMS at (hat site and
execute the query. If, however, the data is distributed over two or
more sites, some strategy must be devised for combining information from

several locations.

What type of strategy is used will depend on assumptions about the
relative efficiency of various operations. Since our data base 1is
distributed over several sites on the ARPANET, a relatively low-speed
communications channel, we have assumed that query processing will be
most efficient if as much work as possible is done at a single site, and
the amount of data transmitted between sites is kept to a minimum. (If
transferring data between sites were fast compared to query processing
at one site, the best strategy might be to spread the data over as many

sites as possible to take advantage of concurrent processing.)

Given these assumptions, there seem to be two simple approaches
that might be followed. One approach is to move all the relevant data
to a single data base site and execute the query in one access to that
site. We will call this the centralized approach. An efficient
implementation of this approach would involve doing any local processing
that would reduce the amount of data transmitted, such as taking
projections, restrictions, or joins of relations, before sending the

data to the primary site.

The other approach, which we will call the incremental approach, is
to decompose the query into a series of simpler queries, each of which
can be executed at a single data base site. Then each query is executed
in turn at the corresponding site, and the results are transferred to
the site where the next query is to be processed and combined with the
information there. An efficient implementation of this approach would
attempt to order the execution of the queries so as to minimize the

total amount of data transmitted.




These two approaches do not exhaust the range of possibilities, of
course. In fact, from a slightly more general point of view, they can
be seen to be the two extremes of a spectrum. Since the final answer to
a query will be generated at only one of the data base sites, we can
view the problem of distributed query processing as how to organize the
data base sites as a "data-flow tree," with information being
transmitted up the branches towards the root, where the final answer is
generated. From this point of view, the centralized approach limits its
attention to the maximally branching, minimally deep trees, and the
incremental approach limits its attention to the minimally branching,
maximally deep trees. The most efficient organization may well be found
in one of the intermediate possibilities, but we only consider these two

approaches, as they are the easiest to implement.

If used intelligently, the incremental approach is often much more
efficient than the centralized approach. The reason for this is not
hard to see. Using the incremental approach, if we begin processing
with a partial query that is highly restricted, that restriction will be
"inherited" by all the subsequent partial queries that are processed,
since at every stage we combine everything we have done so far before
transferring the data to the next site. In the centralized approach,
however, any processing that is done before transferring data is done
independently of processing at other sites, so there is no way to take

advantage of restrictions that may have been computed elsewhere.

For instance, in our sample data base, suppose that the PORT
relation and the SHIPCLASS relation are stored at site 1 and the SHIP
relation is stored at site 2. If we wanted to know the name and draft
of all the ships currently in American ports, we would have to access
all three relations and, therefore, both data base sites. The expanded
SODA query for this request would be:

((IN P PORT ((P PNAT) EQ ‘US’))

(IN S SHIP ((S POS) EQ (P PPOS)))

(IN C SHIPCLASS ((C CLASS) EQ (S CLASS)))
(? (S NAM))

(? (C DRAFT)))
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The most natural way of processing this query using the incremental
approach would be to retrieve the locations of American ports from
site 1, transfer this information to site 2 to find the names and
classes of the ships at these locations, and then transfer that
information back to site 1 to find the drafts of the ships and return
the answers. Presumably, the amount of data transferred during this
process .would be significantly smaller than the amount that would be
transferred either by moving the required fields of the SHIP relatiomn to
site 1 or by moving the required fields of the SHIPCLASS and PORT
relations to site 2, as would be required by the centralized approach.

Examples such as this suggest that the incremental approach is to
be generally preferred to the centralized approach. However, in
complex, quantified queries, which are the major concern of our work on
SODA, the incremental approach may be impossible to apply. This fact
seens not to have been generally recognized in the literature on
distributed query processing (e.g., [17)), where joining is typically
the only method considered for combining data from two or more

relations.

The problem of distributed query processing is considerably
simplified by considering only joins for two reasons: First, joins
specified over more than two relations can always be decomposed into a
series of binary joins. Thus, if some of the relations to be¢ joined are
at one site and some are at another site, the relations at the same site
can be processed first, and the intermediate results can be combined
later. In the previous example, the query specified a join over the
PORT, SHIP, and SHIPCLASS relations. In processing, this was decomposed
into a join over the PORT and SHIP relations, and a join between the
result of this operation and the SHIPCLASS relation.

The second simplification that joining permits is that, since the
join operation is associative, it doesn’t matter logically how the
decomposition is done. Therefore, the decomposition can be chosen to
suit the way the data is distributed. In our example we first joined
the PORT relation to the SHIP relation and then joined the result of
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that operation to the SHIPCLASS relation. If the distribution of the
data or the expected sizes of intermediate results had been different,
however, it might have been more efficient to join the SHIP and
SHIPCLASS relations first, and then add in the PORT relation.

In complex, quantified queries, on the other hand, the possible
ways of decomposing queries are much more restricted. It is often
inpon.iﬁlc to break up queries to match the distribution of the
relations, and in some cases, queries over several relations cannot be
decomposed at all.

This point can be illustrated by changing our previous example
slightly. Consider the same query, finding the name and draft of all
ships in American ports, but with the PORT and SHIP relations at site 1
and the SHIPCLASS relation at site 2. In this case, it is probably most
efficient to find the ships that are in American ports by joining the
PORT relation and SHIP relation at site 1 and transfer the result to
site 2 to join it with the SHIPCLASS relation to form the final anawer.

Now let us alter the query so that it includes a universal
quantifier, but still refers to the same relations in the same order,
e.g., "Which American ports contain only ships thch have draft greater
than 50 feet?":

((IN P PORT ((P PNAT) EQ ‘US°’))

(ALL (IN S SHIP ((S POS) EQ (P PPOS)))
(IN C SHIPCLASS ((C CLASS) EQ (S CLASS)))
((C DRAFT) GT 30))

(? (P PDEP)))

The logical structure of this SODA query can be indicated by
paraphrasing it back into English as follows:

For each tuple P in the PORT relation
with (P PNAT) equal to ‘US’
such that, for all tuples S in the SHIP relation
with (S POS) equal to (P PPOS)
and all tuples C in the SHIPCLASS relation
with (C CLASS) equal to (S CLASS),
(C DRAFT) is greater than 50,
return (P PDEP).
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Since the PORT and SHIP relations are both stored at site 1, and
since there is a link specified between them, ((S POS) EQ (P PPOS)), we
would like to decompose the query by first operating on these two
relations and transferring the intermediate result to site 2 for
processing with the SHIPCLASS relation. Unfortunately, the universal
quantifier ALL does not permit any such decomposition. There is no way
to combine the data referred to outside of the ALL expression with only
part of the data referred to inside. We would need a distribution
principle analogous tQ.A*(l+C) = (A*B)+(A*C) to distribute the universal
quantifier over the relations mentioned inside of the ALL expression,
but no such principle exists.

Any query decomposition that is performed must respect the scope of
quantifiers. We can independently process a portion of a query that
lies entirely within the scope of a quantifier or entirely outside the
scope of a quantifier, but we cannot independently process a portion of
a query that splits the scope of a quantifier.

By nesting quantifiers more deeply, it is possible to comnstruct
queries over several relations that cannot be decomposed at all.
Suppose we wanted to know the ship classes for which every American port
contains some ship in that ship class. This could be represented in
SODA as:

((IN C SHIPCLASS)
(ALL (IN P PORT ((P PNAT) EQ ‘US’))
(SOME (IN S SHIP ((S POS) EQ (P PPOS))
((S CLASS) EQ (C CLASS)))))
(? (C CLASS)))

The English paraphrase of this SODA query would be:

For each tuple C in the SHIPCLASS relation
such that, for all tuples P in the PORT relation
with (P PNAT) equal to ‘US’,
there is some tuple S in the SHIP relation
with (S POS) equal to (P PPOS)
and (S CLASS) equal to (C CLASS),
return (C CLASS).
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This query cannot be decomposed. We cannot combine the data from
the SHIPCLASS relation with the data from either the SHIP relation alone
or the PORT relation alone, because this would cut across the scope of a
quantifier. For the same reason, the SHIP relation and PORT relation
cannot be combined without processing the whole SOME restriction. But
this cannot be done independently of the SHIPCLASS relation, because the
SOME restriction refers to the data from the SHIPCLASS relation via the
term (C CLASS). Answering this query, therefore, requires simultaneous
access to three relations.

Even though in queries such as these we cannot always combine
relations locally before transferring data, we still can use projections
and restrictions to cut down the amount of data that must be
transferred. It turns out that in some cases we can add logically
redundant restrictions that have this effect, although this is not done
in the current implementation. Recall the previous query, "Which
American ports contain only ships which have draft greater than 50
feet?" We could add a redundant restriction without changing the answer
to the query and get "Which American ports contain only ships which are
in some American port and have draft greater than 50 feet?" The SODA
representation of the modified query would be:

((IN P PORT ((P PNAT) EQ ‘US’))
(ALL (IN S SHIP ((S POS) EQ (P PPOS))
(SOME (IN P1 PORT)
((P1 PNAT) EQ °US‘)
((P1 PPOS) EQ (S P0S))))
(IN C SHIPCLASS ((C CLASS) EQ (S CLASS)))
((C DRAFT) GT 50))
(? (P PDEP)))

We still cannot independently combine the data generated by the
expression (IN P PORT...) with the data generated by (IN § SHIP...),
but if the PORT and SHIP relations are at the same site, we can compute
the restrictions on (IN S SHIP...), including the restriction to ships
in American ports using (IN Pl PORT...). So, although this restriction
is logically unnecessary, it permits us to transfer much less data than

would be required without it.
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E. DISTRIBUTED QUERY PROCESSING IN SODA

As the previous subsection indicated, complex queries do not always
permit decomposition into sequences of simpler queries that match the
distribution pattern of the data base. As a result, we have chosen to
base the initial implementation of SODA on the centralized approach to
distributed query processing. In doing so, we have traded the
efficieﬁcy of the incremental approach in handling simpler queries for
the generality of an approach that handles the more complicated queries
which are our primary interest. A more sophisticated implementation
could employ a mixed strategy, using the incremental approach when it is
applicable and falling back on the centralized approach when it is not.
Also, we have not implemented the type of query transformation discussed
in the preceding subsection, since further research is needed to

determine what the scope and limits of such techniques are.

In processing a query, SODA must first decide which data base site
to use as the primary site for executing the query. A set of reasonable
candidates 1is selected by starting with a list of all the sites that
contain at least one of the relations mentioned in the query. Then
redundant sites are eliminated until no site remaining in the 1list has
the property that some other site in the list contains all the relations
mentioned in the query that are contained by that site. Processing of
the query is then simulated, trying each of the remaining sites as the
primary site. The choice of primary site that appears to result in the
least amount of data being transferred is selected to be the primary
site for actually processing the query. This measure is currently
crudely estimated by choosing the site that results in the fewest
unrestricted queries requesting data from a secondary site. If this
leaves more than one possibility, then one of those that results in the
fewest restricted queries is chosen. A query is considered to be
restricted if there is a restriction on any of the relations mentioned
in the query.

Once the primary data base site has been chosen, SODA reformulates

the query for execution at that site. The query is examined, one
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expression at a time. Expressions which refer only to data that 1is

already at the primary site are left unchanged. If an expression refers
to data that is not stored at the primary site, then this data is
transferred to a temporary relation at the primary site, and the query
is reformulated to refer to this relation. To take an example from
Section IV.D, recall that the SODA query for retrieving the name and
draft of all ships in American ports is:

((IN P PORT ((P PNAT) EQ °‘US‘))

(IN S SHIP ((S POS) EQ (P PPOS)))

(IN C SHIPCLASS ((C CLASS) EQ (S CLASS)))
(? (S NAM))

(? (C DRAFT)))

If the PORT relation is stored at site 1 and the SHIP and SHIPCLASS
relations are stored at site 2, site 2 will be chosen as the primary
site for execution of the query, as this results in only a single
restricted query being executed at a secondary site. Since the PORT
relation is not stored at site 2, SODA first obtains the information

needed from the PORT relation by dispatching the query:

((IN P PORT ((P PNAT) EQ ‘US’))
(? (P PPOS)))

to site 1 and stores the result in a temporary relation at site 2, say
in field FIELD]l of relation TEMPl. The transferred data is constrained
as much as possible by applying the restriction ((P PNAT) EQ °‘US’))
before the transfer, and only the fields required by the rest of the
query are moved, in this case, just the PPOS field. The main query is

now reformulated as:

((IN T TEMP1)

(IN S SHIP ((S POS) EQ (T FIELD1)))

(IN C SHIPCLASS ((C CLASS) EQ (S CLASS)))
(? (S NAM))

(? (C DRAFT)))

Since the query now refers only to relations stored at site 2, it can be

executed in a single access to that site.




The process just described is complicated somewhat by a set of
issues involving redundantly stored data and error recovery. One of the
principal advantages of a distributed data base is that the system can
be made more reliable by storing data redundantly at several data base
sites. If this is done, then the system can tolerate failure of one or
more data base sites and still be able to answer all the queries covered
by the data base (although not always with the most recent information).

In SODA, therefore, we take into account the possibility that a
given relation may be stored at more than one data base site, and we use
this fact to try to recover from data base failures. Because of our
centralized approach to query processing, we distinguish between failure
of the primary site and failure of one of the secondary sites. Since
all intermediate results are stored at the primary site, a failure there
requires complete replanning and re-execution of the query. If a
secondary site fails, however, SODA backs up only as far as the
beginning of the portion of the query involved in the current access to
that site and begins replanning from that point. This preserves any
intermediate results that have actually been extracted from secondary

sites and thus avoids unnecessary recomputation.

A more difficult question for SODA is at what site to access a
particular relation, when more than one possibility is available.
Solutions to this problem are also constrained by our use of a
centralized approach for query processing, since, in general, we want to
access relations at the primary site if possible. There are exceptions
to this rule, however. In particular, if we must transfer information
from a secondary site, it may be more efficient to go ahead and combine
that information with data from another relation at the secondary site,
even though the other relation may also be stored at the primary site.

SODA uses a number of simple heuristics to decide whether to access
a relation at the primary site or a secondary site. Roughly, SODA will
prefer a secondary site if the relation is joined to another relation
which must be accessed at the secondary site, and if performing the join
appears likely to cut down the amount of data retrieved from that
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relation. A join is assumed to cut down the amount of data retrieved if

it puts more restrictions on the data.

For instance, if we wanted to know about American ships with a
draft of more than 50 feet, we would have to access the NAT field in the
SHIP relation and the DRAFT field in the SHIPCLASS relation. Suppose
! the SHIP relation is stored only at a secondary site and the SHIPCLASS
relation is stored both at that site and the primary site. In this

case, we would access the SHIPCLASS relation at the secondary site

because it would further restrict the set of ships for which data must
be transferred to the primary site. If, on the other hand, we simply
wanted to retrieve the drafts of American ships, we would access the
SHIPCLASS relation at the primary site, since this would not further
restrict the data being transferred.

These heuristics are rather crude, since they do not take into

account the relative sizes of relations, how constraining a particular
restriction is, or the functionality of joins betwcen relations (e.g.,
many-to-one, one-to-many). There is clearly a trade-off, however,
between time spent in access planning and time spent in query execution,
and it is not clear how much more effort could be put 1into access

planning that would justify itself in more efficient query execution.

Compared to the SDD1 distributed DBMS [17] (18] [19]), the
techniques used in SODA have both advantages and disadvantages. SDD1
takes what is essentially a centralized approach to query processing,
but not as completely as SODA. The main difference is that for purposes
of assembling all the relevant data at a single site, SDD1 treats the
query as if it contained only joins and restrictions. If a query
specifies a more complex way of combining relations than joining, SDDI1
will find a join that "covers" that portion of the query, in the sense
that the data it retreives includes as a subset all data required to
answer the query. However, it does not perform a precise logical
analysis, as SODA does, to retrieve exactly the required data. Because

SDD1 takes this simpler view, it is able tc use more sophisticated
heuristics for combining partlal results from several secondary sites
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before transferring them to the primary site. However, since the
partial results are only approximate, the entire query must be re-
executed at the primary site.

One clear advantage that SDD1 has over SODA is that SDD1 maintains
statistical information about the size of relations and the distribution
of values of fields. This enables SDD1 to predict more accurately than
SODA the size of intermediate results, and hence do a better job of
query optimization. It should be noted, however, that SODA is designed
to permit use of such information without any changes to the basic

structure of the system.

One final difference between SDD1 and SODA is that, although SDDl1
permits arbitrarily redundant data bases, a particular query is answered
only with respect to a single nonredundant mapping of the data base.
Because SODA can decide at processing time where to access a redundantly
stored relation, it is possible to answer some queries more efficiently
and to recover from the failure of a secondary data base site without

completely reprocessing a query.

F. LIMITATIONS AND POSSIBLE EXTENSIONS OF SODA

Like any real system which addresses a complex problem, SODA offers
only partial solutions to the issues it raises. There are several areas
vhere significant improvements or extensions could be made. One of
these areas is the expressive power of the query language. Although
SODA is a richer language than IDA and many other data base query
languages, there are still useful queries that it cannot express.

One of the constructs that SODA lacks is some kind of conditional
expression. For example, it might be desirable not to store the current
position of ships that belong to task forces individually in the SHIP
relation, but rather to have this information derived by looking up the
location of the task force to which a ship belongs in a TASKFORCE
relation. This would make it possible to update the location of the
entire task force at once, rather than ship by ship. If we do this,
however, retrieving the position of a ship becomes a conditional
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procedure, depending on whether the ship belongs to a task force. To
retrieve the position of a particular ship, such as the Fox, we would
have to be able to express in SODA the following query, which we
currently cannot handle:

For the tuple S in the SHIP relation
with (S NAM) equal to °FOX’,
if (S TFNAM) has the undefined value
then return (S POS),
otherwise, for the tuple T in the TASKFORCE relation
with (T TFNAM) equal to (S TFNAM),
return (T TFPOS).

Another class of queries that cannot be expressed in SODA is
queries that involve following chains of indefinite length through the
data base. For instance, in the personnel data bases that are commonly
used to illustrate concepts of data base access, a classic problem is to
answer the query, "Which employees earn more than their managers?" Many
of the siwmpler query languages that have been proposed, including IDA,
cannot represent such a question, although for SODA this would be no

problem.

However, if we want to define the relationship "superior of" to be
the transitive closure of "manager of" (i.e., the manager of the
manager, etc.), we are in trouble. There does not seem to be any non-
procedural query language, including SODA, that could express queries
such as, "Which employees earn more than all/some of their superiors?"
The problem is that expressing this type of query asks a question about
all chains through the data base of a certain kind, whereas existing
query languages only allow asking about all tuples of a certain kind.

Another general area where SODA could be improved is query
optimization and access planning. The heuristics used to pick the order
in which relations are accessed are quite crude, taking into account
only which references to relations are restricted. As we pointed out in
discussing the heuristics for distributed query processing, it would
also be useful to consider the relative sizes of relations, how
constraining a restriction is, and the functionality of joins between
relations.
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It will never be poasible to guarantee that a query will be
processed in the optimum way, however. First of all, to do so would
require knowing the size of all of the possible intermediate results
that might be generated in processing the query, and in general the only
way to get this information is to execute the query. Second, even if we
had good enough estimates for all of the relevant factors, choosing the
most efficient way to process a query would still be a combinatorial
search, which might take longer to perform than executing the query with
the few simple heuristics we currently have. So any technique for query
optimization must be empirically tested to see whether the savings it
produces are worth the cost of applying it.

Finally, some of the improvements planned for SODA concern
pragmatic problems in dealing with interactive users. One of these
problems is that if there is no information in the data base satisfying
a complex query, the system simply returns a null result with no further
explanation. Often it would be much more helpful to the user if the
system would provide some indication of why it failed to find an answer.
For instance, if we ask the system to compute the distance between the
Fox and the Kennedy and get no answer, it might indicate that the Fox is
not listed in the data base, or the position of the Fox is not given in
the data base, or the Kennedy is not listed in the data base, or the
position of the Kennedy is not given in the data base, or any
combination of the above. We are currently investigating how this
information might be obtained from the data base and supplied to the
user in a form he can understand. For more discussion of problems of
this kind, see Kaplan [16].

The other ﬁrag-ntic problem we are looking at is how to save and
make use of previously retrieved information to avoid recomputing it.
For example, if we ask the LADDER system in English, "Which American
ships are in the Atlantic?" followed by the question "What are their
fuel states?" the pronoun "their" will be correctly resolved to the
phrase "American ships in the Atlantic" by the natural-language front
end, but this set of ships will be recomputed by the data base access
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component. Although the natural-language processor realizes that the
two queries are related, SODA does not. We are examining various issues
that arise in dealing with this problem, including what information to
save, how long to save it, and where it should be stored.
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V  ACCESSING A CODASYL DATA BASE SYSTEM: DBMS-20

A.  INTRODUCTION

One of the significant improvements made to the LADDER system
during the period covered by this report was to extend its capabilities
to include querying more than one DBMS. The system can now access DBMS-
20, a DBGT data base system (9] provided by Digital Equipment
Corporation (DEC) for the DecSystem-20 operating system, which supports
a subset of the CODASYL data model ([l14]. This section of the report
discusses the problems encountered in developing a translator to produce
queries for DBMS-20 and in interfacing the DBMS-~20 system to LADDER.

The data access conponént of LADDER, called SODA, comnsists of two
principal parts. These are (1) a planning module, which decides how an
input query is to be evaluated given the distribution of required data
among various relations stored on multiple data base management systems
(DBMSs) at multiple sites on the ARPANET, and (2) a set of translation
modules, each of which translates SODA queries into the query language
supported by a particular DBMS. Initially, the only SODA translator
produced queries in Datalanguage, the query language supported by the
Datacomputer DBMS, which, like SODA, is fundamentally a relational

system.*

DBMS-20, on the other hand, is a "network" DBMS. Simply stated, a
network data base allows the value of a field to be an explicit pointer
to another record. (This is done by use of the SET feature in DBMSs
based on the CODASYL specification.) For example, to link a SHIP record

* In using the Datacomputer, SODA assumes that it is a relational DBMS.
In general, however, the Datacomputer can be viewed as a hierarchical
DBMS: it allows the use of "repeating groups" (i.e., groups of fields
which may be repeated an indefinite number of times inside a record), a
feature is explicitely forbidden in the relational model of data. 1In
the Blue File, this feature of the Datacomputer is not in use, so the
Blue File is for all practical purposes a relational data base.
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to the corresponding SHIPCLASS record in the Blue File on the
Datacomputer, one must read the CLASS field in the SHIP record, and find
the record in the SHIPCLASS file whose CLASS field has the same value.
On the other hand, in a CODASYL version of the Blue File, a SET could be
implemented in such a way that a pointer would directly link each SHIP
record to the corresponding SHIPCLASS record. Obviously, the query
program which is generated for the CODASYL version of a Blue File would
be very different from one generatéd for the relational Blue File. The
ability of SODA to access a DBTG network data base opens up new
possibilities for speeding up processing of some queries, through use of
the SET feature.

B. COHPILI“E_SDDA QUERIES

DBMS~20 accepts query programs written in Interactive Query
Language (IQL), a COBOL-based language, which it compiles and executes.
Our development effort coﬁsisted of making incremental changes to the
IQL language to support needed features not originally supplied,
modifying the compiler to support the language changes, providing an
interface with the rest of the LADDER systéQ: and implementing a
translator to compile SODA expressions into IQL programs. In the latter
effort, we closely mimicked the structure of the translator which
generates Datalanguage for the Datacomputer DBMS.

A SODA query is a list that may contain a number of different
constructs. For each comnstruct thexe is a prototypical code structure
in IQL generated, and one or two modules of code which produce that

structure. The following subsections review these modules.

1. Relation-Searching Constructs

A fundamental operation in answering queries is stepping
through some or all of the tuples of a relation to perform some other
operation on them: In the SODA expressions seen by the SODA
translators, there are six constructs which involve this operation: IN,
MAX1, MINl, COUNT, SOME and NONE (MAX, MIN, and ALL expressions are
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reformulated in terms of the others). The last two of these return a
value of True or False, and will be discussed in a later section on

restrictions.

IN is the most straightforward of the constructs. An IN
expression specifies a relation whose tuples are to be examined and a
tuple variable to associate with this relation. Restrictions may also
be specified in the IN expression to indicate that processing is only to
be performed on certain tuples in the relation. All SODA constructs
following the IN construct are considered to be within the scope of the
loop it implicitly defines. A COUNT expression defines a variable whose
value is to be the number of tuples that satisfy the subquery in the
COUNT expression. This variable can be referenced later by other parts
of the program, or returned as an answer to LADDER. A MAXl expression
contains a specification of a quantity to be maximized and a subquery
defining the tuples over which the maximization is to be performed. The
effect of the MAX]1 expression is to find a set of values for the
variables in the scope of the expression that produces the highest value
for the quantity being maximized. As with COUNT, these variables are
available for reference by subsequent parts of the program. MINl does

the same thing for minimization.

We currently support two ways of searching the tuples of a
relation on DBMS~20 data bases: sequential search and calc-key (hashed)
search. We also plan to implement a search which makes use of DBTG
SETs. In all cases, the query as expressed in SODA looks the same--the
determination of the access method to be used is performed by the
SODA/IQL translator.

Example 1 shows the SODA formulation of the query "Who
commands the Grayling, Baton Rouge, Pogy, Sturgeon, and Los Angeles?",

and the IQL code generated from it. The program’s structure 18

essentially a loop which steps sequentially through each tuple of the
UNITS relation, and in the cases in which a unit name is matched, prints
out the unit-commander’s rank and name. (Note the use of the generated
variable XOR13; restrictions will be discussed in more detail below).
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Example 1:

"Who commands Grayling, Baton Rouge, Pogy, Sturgeon,
and Los Angeles?"

((IN S SHIP (OR ((S NAM) EQ °GRAYLING®)
((S NAM) EQ ‘BATONX ROUGE’)
((S NAM) EQ °POGY’)
((S NAM) EQ ‘STURGEON’)
((S NAM) EQ ‘LOSX ANGELES’)))
(? (S RANK))
(? (S CONAM)))

OPEN ACCAT §
FIND FIRST UNITS RECORD OF BLUEAREA AREA §
10 IF ERROR-STATUS = 307 GO TO 11 §
COMPUTE XOR13 = 1 §
IF UNITS-ANAME EQ ‘GRAYLING® GO TO 14 §
IF UNITS-ANAME EQ ‘BATON ROUGE’ GO TO 14 §
IF UNITS-ANAME EQ ‘POGY’ GO TO 14 §
IF UNITS-ANAME EQ ‘STURGEON® GO TO 14 §
IF UNITS-ANAME EQ °‘LOS ANGELES® GO TO 14 §
COMPUTE XOR13 = 0 §
14 IF XOR13 = 0 GO TO 12 §
PRINT UNITS-RANK UNITS-CONAM §
12 FIND NEXT UNITS RECORD OF BLUEAREA AREA §
GO TO 10 §
11 » 3§
GO TO XT §
RREND® ®

Example 2 is a slightly more elaborate query, '"Where is the
Constellation?", which requires searching two relations: SHIP (a
relation which contains ship names), and then TRACKHIST (which contains
the most recent position of each ship). The structure of the program is
two nested loops, the outer one performs a sequential search through
SHIP; the inner one (beginning with the PUSHLP just after statement 14
and ending with the POPLP just before statement 12) performs a hash-
logkup in TRACKHIST. The SODA/IQL translator will generate a hashed
search {f the corresponding SODA IN-construct contains a single

restriction specifying a particular value of the attribute on which the
relation is hashed (the CALC-KEY field); otherwise it generates a
sequential search. Since there may be more than one tuple having a | |

given value for the CALC-KEY field, it is necessary to generate a loop, x
using the FIND NEXT DUPLICATE statement.
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In this query, the two relations being searched are distinct;
but in general, they could be the same relation, which would lead to the
following problem with the DBMS-20 implementation of CODASYL: only omne
"current position" pointer and one data buffer is maintained for each
relation, so that the position and current values of the fields
associated with the outer loop would be destroyed by performing the
inner one. We have therefore implemented the PUSHLP statement, which
saves the current value of the position pointer for a relation, and the

POPLP statement, which restores the position pointer and rereads the
! : current tuple of the relation into the corresponding data buffer.
Example 2:
"Where is the Constellation?"
: ((IN S SHIP ((S NAM) EQ ‘CONSTELLATION’))
¢ (IN T TRACKHIST ((T UICVCN) EQ (S UICVCN)))
i (? (T PTP))
! ] (? (T PTD)))
:
% OPEN ACCAT $

FIND FIRST SHIP RECORD OF BLUEAREA AREA $
10 IF ERROR-STATUS = 307 GO TO 11 $
COMPUTE XAND13 = 0 §
IF SHIP-NAM NE ‘CONSTELLATION’ GO TO 14 §$
COMPUTE XAND13 = 1 §
; 14 IF XAND13 = 0 GO TO 12 $
i PUSHLP §
SET TRACKHIST-UICVCN TO SHIP-UICVCN $ :
FIND TRACKHIST RECORD $ ;
15 IF ERROR-STATUS = 326 GO TO 16 $
PRINT TRACKHIST-PTP TRACKHIST-PTD $
17 FIND DUPLICATE TRACKHIST RECORD §$ !
GO TO 15 § :
16 * § -
POPLP §$ ~
12 FIND NEXT SHIP RECORD OF BLUEAREA AREA $
GO TO 10 $
11 * §
GO TO XT §
RARENDR*

e T
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2. Restrictions

Restrictions may be simple comparsions using "equal,”" "not
equal," "greater than," "less than," etc., or they may be complex
logical combinations of these built out of AND, OR, SOME, and NONE. AND
and OR are straightforward; SOME and NONE are looping constructs like
IN, COUNT, MAX1l, and MINl, that uperate on a set of tuples defined by
the body of the SOME or NONE expression. Simply stated, a SOME
expression returns True if the corresponding set of tuples is nonempty
and False, otherwise; a NONE expression does the reverse.

In all cases, the value of a restriction is placed in a
temporary variable whose value is then interrogated by the code
corresponding to the SODA context in which the restriction occurred.
This is slightly awkward but necessary, because the restriction-code
generator doesn’t know why the test is being made--it could be simply to
determine whether a tuple is eligible for further processing, or it
could be to decide if the answer to the entire query is "YES" or "NO."

Examples 3 and 4 illustrate these cases, respectively.

Example 3:
"What ship classes contain some American ships?"

((IN C SHIPCLASCHAR)
(SOME (IN D SHIPCLASDIR ((D SHIPCLAS) EQ (C SHIPCLAS)))
(IN S SHIP ((S UICVCN) EQ (D UICVCN))
((S NAT) EQ ‘US’))
(? (C SHIPCLAS)))

OPEN ACCAT $§

FIND FIRST SHIPCLASCHAR RECORD OF BLUEAREA AREA $
10 IF ERROR-STATUS = 307 GO T0 11 §

COMPUTE XSOMEl4 = 0 §

PUSHLP §

FIND FIRST SHIPCLASDIR RECORD OF BLUEAREA AREA §$
15 IF ERROR-STATUS = 307 GO TO 13 §

COMPUTE XAND17 = 0 §

IF SHIPCLASDIR-SHIPCLAS NE SHIPCLASCHAR-SHIPCLAS GO TO 18 §$

COMPUTE XAND17 = | §
18 IF XAND17 = 0 GO TO 16 §

PUSHLP $§

SET SHIP-UICVCN TO SHIPCLASDIR-UICVCN $

FIND SHIP RECORD $
19 IF ERROR-STATUS = 326 GO TO 20 §
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COMPUTE XAND22 = 0 $
IF SHIP-NAT NE ‘US’ GO TO 23 §
COMPUTE XAND22 = 1 §
23 IF XAND22 = 0 GO TO 21 §
COMPUTE XSOMEl4 = 1 §
21 FIND DUPLICATE SHIP RECORD §$ &
GO TO 19 § 1
20 * §
POPLP §$ g
16 FIND NEXT SHIPCLASDIR RECORD OF BLUEAREA AREA $ : £
GO TO 15 §
13 * §
POPLP $
IF XSOMEl4 = 0 GO TO 12 $
PRINT SHIPCLASCHAR-SHIPCLAS $
12 FIND NEXT SHIPCLASCHAR RECORD OF BLUEAREA AREA $
GO TO 10 §
11 * §
GO TO XT §
**END* *

™

e

Example 4:
"Is there a ship named Sturgeon?"
((SOME (IN S SHIP ((S NAM) EQ °“STURGEON’))))

OPEN ACCAT $
COMPUTE XSOMEl1l = 0 $
FIND FIRST SHIP RECORD OF BLUEAREA AREA $
12 IF ERROR-STATUS = 307 GO TO 10 $
COMPUTE XAND14 = 0 $
IF SHIP-NAM NE ‘STURGEON’ GO TO 15 §
COMPUTE XAND14 = 1 §
15 IF XAND14 = 0 GO TO 13 §
COMPUTE XSOMEll = 1 §
13 FIND NEXT SHIP RECORD OF BLUEAREA AREA $
GO TO 12 §
10 * §
PRINT XSOME1l $
GO TO XT §$
RRXEND®*

3. Terms

Terms are the SODA expressions that actually refer to data and
may be computed, compared, and tested. Their values may be either
integer numbers or character strings. The processing of a constant or a
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count variables is straightforward; the handling of a reference to a
field of & tuple requires a little explanation. The simplest case is a
tuple-variable/field pair that refers to the current value of the field
in the current tuple of the relation associated with the variable; that
value can be indicated in IQL simply by joining the relation name to the
field name with a hyphen, e.g., SHIP-NAM. If there are nested loops,
however, and a tuple-variable/field pair of one loop occurs inside an
inferior loop, the "current" tuple of the associated relation may have
been reset by the inner loop. Because of this possibility, whenever a
new loop is started, the values of all the fields of the current tuple
of the containing loop that are referred to inside the new loop are
stored in specially created temporary variables; references are then
made to those variables rather than to the fields themselves.

A similar use of temporary variables occurs in the evaluation
of a MAX]1 or MINl expression. As described in Appendix A, a MAX1/MIN1
expression picks out one value for each of the tuple variables in the
scope of the MAX1/MINl. This set of values will be one that produces
the maximum or minimum value for the expression being maximized or
minimized over. The simplest way to find the appropriate set of values
for these variables is to loop through the relations that contain the
candidate tuples, comparing each one to a temporary variable which
represents the maximum or minimum value seen so far, and updating that
variable and other temporary variables for fields of the associated
tuples needed later in the query. This is illustrated by example 5,
which finds the ships with the maximum length. The IQL program for this
query scans once through the ship relation to find the maximum length
for any ship, letting XX10 be any indicator of whether any ships were
found (this would be more meaningful if we were looking for, say, Dutch
aircraft carriers, rather than just ships) and letting XXll1 be the
current maximum length. The ship relation is then scanned a second time
to list all the ships having that length.

Example 5:
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"What are the longest ships?"

((MAX1 (S1 LGHN)

(IN S1 SHIP))
(IN S2 SHIP ((S2 LGHN) EQ (Sl LGHN)))
(1 (S2 NAM)))

OPEN ACCAT $
COMPUTE XX11 = 0 §
COMPUTE XY10 = 0 §
FIND FIRST SHIPCLASCHAR RECORD OF BLUEAREA AREA $
13 IF ERROR-STATUS = 307 GO TO 14 $
COMPUTE X212 = SHIPCLASCHAR-LGHN §$
IF X212 GT 9999 OR XX11 GE X212 GO T0 15 §
COMPUTE XX11 = X212 $
COMPUTE XY10 = 1 §
COMPUTE XNUM21 = SHIPCLASCHAR-LGHN §$
15 FIND NEXT SHIPCLASCHAR RECORD OF BLUEAREA AREA §
GO TO 13 §
14 * §
IF XY10 = 0 GO TO XT §$
FIND FIRST SHIP RECORD OF BLUEAREA AREA $
16 IF ERROR-STATUS = 307 GO TO 17 $
COMPUTE XAND19 = 0 §
IF SHIP-LGHN NE XNUM21 GO TO 20 $
COMPUTE XAND19 = 1 §
20 IF XAND19 = 0 GO TO 18 §
PRINT SHIP-NAM $
18 FIND NEXT SHIP RECORD OF BLUEAREA AREA $
GO TO 16 §
17§
GO TO XT $
RREND*®®»

4. Special Functions

GCDIST, RLDIST, COURSE and BEARING are four special functions
for computing distances and relative positions on spherical surfaces,
which we have added to DBMS-20 to illustrate the integration of complex
calculation with data base retrieval. These functions could have been
implemented more easily at the LISP level, but this would have made it {
much less efficient to answer questions in which the calculation is not ;
the top level operation, such as '"What is the closest ship to Luanda?"
To handle these functions, we have extended the IQL system to recognize
special commands which cause the appropriate assembly code to bde




executed. The input arguments to these functioms, (two positions, each

expressed as a quadruple, e.g. (75 ‘N’ 23 ‘E’)), and their answer
values are communicated via nine temporary variables, in a call-by-
reference manner. Example 6 shows the use of GCDIST to answer the query
"How far is the Fox from the Kennedy?"

Example 6:
"How far is the Fox from the Kennedy?"

((IN S1 SHIP ((S1 NAM) EQ ‘FOX’))
(IN T1 TRACKHIST ((T1 UICVCN) EQ (S1 UICVCN)))
(IN S2 SHIP ((S2 NAM) EQ “KENNEDYX JF’))
(IN T2 TRACKHIST ((T2 UICVCN) EQ (S2 UICVCN)))
(? (GCDIST ((S1 PTPX) ,
(S1 PTPNS) ,
(S1 PTPY) ,
(S1 PTPEW) ,
(S2 PTPX) ,
(S2 PTPNS) ,
(S2 PTPY) ,
(S2 PTPEW)))))

OPEN ACCAT $
FIND FIRST SHIP RECORD OF BLUEAREA AREA §$
10 IF ERROR~STATUS = 307 GO TO 11 §
COMPUTE XAND13 = 0 §
IF SHIP-NAM NE ‘FOX’ GO TO 14 §
COMPUTE XAND13 = 1 §
14 IF XAND13 = 0 GO TO 12 §
PUSHLP $
SET TRACKHIST-UICVCN TO SHIP-UICVCN $
FIND TRACKHIST RECORD §$
15 IF ERROR-STATUS = 326 GO TO 16 $
PUSHLP $
COMPUTE XSTR41 = TRACKHIST-PTPEW $
COMPUTE XNUM39 = TRACKHIST-PTPY §$
COMPUTE XSTR37 = TRACKHIST-PTPNS §$
COMPUTE XNUM35 = TRACKHIST-PTPX $
COMPUTE XSTR18 = TRACKHIST-UICVCN §
SET TRACKHIST-UICVCN TO XSTR18 §$
FIND TRACKHIST RECORD $
19 IF ERROR-STATUS = 326 GO TO 20 §
PUSHLP $
FIND FIRST SHIP RECORD OF BLUEAREA AREA §$
22 IF ERROR-STATUS = 307 GO TO 23 §
COMPUTE XAND25 = 0 $
IF SHIP-NAM NE ‘KENNEDY JF’ GO TO 26 $
COMPUTE XAND25 = 1 §
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26 IF XAND25 = 0 GO TO 24 §
PUSHLP $
SET TRACKHIST-UICVCN TO SHIP-UICVCN §$
FIND TRACKHIST RECORD §$

27 IF ERROR-STATUS = 326 GO TO 28 §
PUSHLP $
COMPUTE XSTR49 = TRACKHIST-PTPEW $
COMPUTE XNUM47 = TRACKHIST-PTPY $
COMPUTE XSTR45 = TRACKHIST-PTPNS §
COMPUTE XNUM43 = TRACKHIST-PTPX §
COMPUTE XSTR30 = TRACKHIST-UICVCN §
SET TRACKHIST-UICVCN TO XSTR30 $
FIND TRACKHIST RECORD $

31 IF ERROR-STATUS = 326 GO TO 32 §
COMPUTE XNUM36 = XNUM3S $
COMPUTE XSTR38 = XSTR37 $
COMPUTE XNUM4O = XNUM39 $
COMPUTE XSTR42 = XSTR4L $
COMPUTE XNUM44 = XNUM43 $
COMPUTE XSTR46 = XSTR4S $
COMPUTE XNUM48 = XNUM47 $
COMPUTE XSTRS50 = XSTR49 $
GCDIST XNUM36 XSTR38 XNUM4O XSTR42

XNUM44 XSTR46 XNUM48 XSTRSO XARG34 §

PRINT XARG34 $

33 FIND DUPLICATE TRACKHIST RECORD $
GO TO 31 §

32 % §
POPLP §$

29 FIND DUPLICATE TRACKHIST RECORD $
GO TO 27 $

28 % §
POPLP §$

24 FIND NEXT SHIP RECORD OF BLUEAREA AREA §
GO TO 22 §

23 * §
POPLP §

21 FIND DUPLICATE TRACKHIST RECORD $
GO TO 19 $

20 * §
POPLP §

17 FIND DUPLICATE TRACKHIST RECORD §$
GO TO 15 §

16 » §
POPLP §

12 FIND NEXT SHIP RECORD OF BLUEAREA AREA §
GO TO 10 §

11 » §
GO TO XT $

RAEND® *
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5. Distributed Query Processing using DBMS-20

When it is necessary to access multiple data base systems to

answer a single query, intermediate results must be transferred between
systems. For uniformity, these answvers are always expressed as

relations, which we have implemented as temporary files on both the

Datacomputer and on DBMS-20. We have provided a uniform interface for

the cru‘tion. access, and transfer of these temporary files, so that we )
have completely general capabilities to answer queries that require ‘
simultaneous access to data distributed over multiple data bases of

BRI s i

either type.

In the case of DBMS-20, the SODA/IQL translator has to keep
track of whether a relation to be searched is in the permanent data base
(in which case it is susceptibie to calc-key searching) or whether it is
a temporary file (in which case only sequential searching may be
performedj. If the latter, it will generate sequential search using
FIND NEXT commands, where the relation-name is one of six predefined

names of the form SEQ-FILEl, SEQ-FILE2, etc. It also generates a
L command which tells IQL to bind the name SEQ-FILEn to the actual
temporary file, and to open and close it when appropriate.

F Example 7 shows the SODA, Datalanguage, and IQL queries that
' are generated to answer the query "Where are the American ships?",
: assuming the SHIP relation (which maps the ship name field into the
: joining field UICVCN) is stored on a Datacomputer and the TRACKHIST
1 relation (which maps UICVCN into last recorded position and date of
: recording) is stored on DBMS-20.

Example 7:
"Where are the American ships?"

First, the names and UICVCNs of all American ships are put
into a temporary file on the Datacomputer by iasuing the
following SODA query with a special flag set to indicate that
the information is to be put into a temporary file:

((IN S SHIP ((S NAT) EQ ‘US’))
( (S NAM))
(? (S UICVCN)))

o
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The SODA query is compiled into the following Datalanguage
program which stores the requested information in the
temporary file THAASFILEl. The nrame of the file is then
returned to SODA. Temporary files are always generated with
50 fields per tuple, the fields being strings of up to 100
characters. (They are named STRING1, STRING2, etc., and
typically most of their values are null.)

OPEN XTOP.ACCAT.SAGALOWICZ.TEMPFILE READ;

CREATE THAASFILEl FILE LIKE TEMPFILE ;

MODE THAASFILE1l WRITE ;

FOR THAASFILEl , XX1 IN SHIP WITH (XX1.NAT EQ ‘US‘)
BEGIN STRING1 = XX1.NAM STRING2 = XX1.UICVCN END ;

SODA requests that the temporary file be transfered to DBMS-
20, and obtains the final answer by executing the following
SODA query on DBMS-20:

((IN S THAASFILEl)

(IN T TRACKHIST ((T UICVCN) EQ (S STRING2)))
(? (S STRINGI))

(? (T PTP))

(? (T PTD)))

In the IQL translation of this query the **BINDFILE*%*
statement declares to IQL that the temporary file THAASFILEL
is to be the referent of the dummy relation-name SEQ-FILE2 in
subsequent statements.

OPEN ACCAT SEQ-FILE2 §
##B INDFILE** 2 THAASFILEl
FIND SEQ-FILE2-STRING1 = ‘NEXT’ FROM BEGINNING $
10 IF ERROR-STATUS = 307 GO TO 11 §$
PUSHLP $
SET TRACKHIST-UICVCN TO SEQ-FILE2-STRING2 $
FIND TRACKHIST RECORD $
13 IF ERROR-STATUS = 326 GO TO 14 $
PRINT SEQ-FILE2-STRING! TRACKHIST-PTP TRACKHIST-PTD $
15 FIND DUPLICATE TRACKHIST RECORD $
GO TO 13 §
14 *§
POPLP §
12 FIND SEQ-FILE2-STRINGl = NEXT §
GO TO 10 §
11 *§
GO TO XT §
RAEND® *




C. COMPARING RELATIONAL TO CODASYL DBMS’S FOR INTERACTIVE QUERYING

LADDER is now able to generate queries to both the Datacomputer and
DBMS-20. Although we have had limited experience with DBMS-20, a number
of remarks can already be made concerning the respective advantages of
these two types of DBMS. In our system, the Datacomputer is treated as
a relational DBMS (although, it can in general be used as a hierarchical
DBMS). DBMS-20 is a CODASYL, or network, DBMS. Simplifying a great
deal, one may say that the main difference between those two types of
DBMS is the way files--or relations--are linked: in a relational DBMS,
the link is simply by field values, while in a CODASYL DBMS, the 1link
may also be by explicit pointers. Comparing the relative advantages and
disadvantages of these two data models is very subjective, and any
general statement will have exceptions in specific situations, but a
number of observations stand out in the context of interactive data
retrieval using an INLAND-SODA type of front end.

The first remark is that accessing a network-type DBMS is generally
much more complex from a programming point of view. The user must be
aware of the pointers and must indicate to the system when to traverse
them. Our experiments with Datalanguage and IQL indicate that the same
user query requires a DBMS query program about two times bigger for
DBMS-20 than for the Datacomputer. However, this difference is totally
invisible to a user of LADDER or SODA, because these systems provide a
uniform interface to either DBMS.

A second remark is that for short interactive queries, there seems
to be little advantage in using pointers rather than links by field
values. In the particular case of the Blue File, it is our feeling that
for short queries, the Datacomputer is generally faster than DBMS-20.
On the other hand, for complex queries, and large amounts of data, the
links by pointers might be more efficient than links by field values.
In the typical use of a natural-language system, we do not expect
complex queries to occur very often. They are difficult to expreass and
comprehend in natural language, and the user will generally not want to

wait too long to see an answer; he would probably rephrase the query so
that it could be handled faster.




Finally, a relational data base provides more uniform access to the
information it contains, because it is as easy to follow an
interrelation link in one direction as the other. On the other hand,
CODASYL pointers are unidirectional, and generally a pointer 1is kept for
only one direction. This difference is very important for query
efficiency: queries which are apparently very similar when expressed in
natural- language (or in a relational language) will behave very
differently on a network-type data base. This can also be true on a
relational data base, if special indexes or other strong bindings are
maintained on some fields but not on others, but it can easily be
avoided. In our experiments with the Blue File, we have established the
data structure in such a way that the symmetry is guaranteed: if a field
is indexed in a relation, and this field is used for an interrelation
join, then the corresponding field is also indexed in the other
relation. This type of symmetry appears very difficult to obtain in a
network data base. In the CODASYL model the asymmetry may be diminished
but it appears difficult to eliminate totally.

In summary, a great many discussions have occurred in the past ten
years about the respective advantages and disadvantages of the various
data models. Although we do not in any sense have the final answer, it
appears that when a natural-language front end protects the user from
the idiosyncracies of whatever DBMS is used, the differences between the
various DBMSs are not terribly significant. Of course in any large
system, the problem of choosing a DBMS will remain important, since many
data base transactions will bypass the natural-language or interactive

front end and access the DBMS directly.

D. CONCLUSION

We have demonstrated that LADDER can be interfaced to multiple data
base systems, using diverse query languages and access techniques.
Moreover, not only can LADDER use either of the two systems to answer

queries, but it can use these heterogeneous systems cooperatively to

answer individual queries in cases where neither system by itself has
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sufficient information to produce the answer. A beneficial side effect
of this work is that LADDER is now compatible with a widely used
commercial standard: the CODASYL model. Modifications to LADDER to
support this new capability were mostly limited to a specific module of
the system; the only modifications outside it were to provide an 1/0

interface to DBMS-20 to transfer the queries, responses, and temporary
files. -
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VI TOWARD A GENERAL NATURAL-LANGUAGE INTERFACE

A. OVERVIEW

This section of the report describes the progress to date on the
new natural-language interface for data base access. It includes an
overview of the interface, a more detailed account of several of its

major portions, and some results from initial test runs.

The natural-language interface is composed of four major
components:
(1) A bottom-up parser (DIAMOND) that uses a linguistically-
oriented, general grammar of English.

(2) A set of translators that generate calls to a set of
primitive semantic functions from the phrase structures
produced by the parser.

(3) A conceptual schema that encodes a model of the
application domain in a network structure, and a set of
functions that interpret the semantic primitives within
the schema.

(4) A query generator that produces a SODA data base query

corresponding to the conceptual schema interpretation.

A question is parsed by the DIAMOND parser using the linguistic
grammar; the result is one or more (if the question is syntactically
ambiguous) phrase structure trees that represent the possible syntactic
analyses of the question. Each phrase structure tree is translated into
a set of primitive semantic function calls, which construct an
interpretation of the phrase structure tree in the appropriate domain.
Phrase structure trees may be rejected because they have no
interpretation in the domain, or they may be split if they have an
ambiguous interpretation. Finally, the interpreted phrase structure
tree is converted into a query on the data base.
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D

The system described above was designed to provide flexibility and
portability in the natural-language interface. The following sections
describe the parsing system DIAMOND, the semantic primitive tramslators,
and the conceptual schema, as well as issues of portability pertaining
to them.

B. THE DIAMOND PARSER

l. Stages of Interpretation

The basic framework of the new interface is embodied in a
"language definition system" called DIAMOND. DIAMOND may be viewed in
broad outline as both a sophisticated programming language and an
associated execution system. As a programming language, DIAMOND allows
us to describe formally how sentences may be interpreted. The
interpretation process is performed in multiple stages under the control
of the DIAMOND executive and in accordance with the apecifications of
the language definition. DIAMOND’s flexibility allows us to experiment
with different numbers of stages and with alternative sequences for
applying various types of knowledge. Currently, we are working with

three basic interpretation stages:

The first stage interprets the input "bottom~up" (i.e., words
-> phrases -> larger phrases -> sentences). Phrases are constructed in
isolation, without reference to the context in which they might be
embedded. This stage is used for relatively simple tests that do not
depend on surrounding context. It produces a complex data structure (a
generalization of a syntax tree) that reflects the decomposition of the
input sentence into 1its component phrases and associates a number of
attributes with each phrase. This structure is expanded and refined
during subsequent stages of interpretation.

In the second stage of interpretation, each phrase is refined
in the context of the preliminary interpretation of the entire sentence.
Phrases processed during this stage are generally subsets of those
initially considered and thus are more likely (but not guaranteed) to
belong to a correct interpretation of the sentence. Consequently, for
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the sake of computational efficiency, many of the more extensive
processing tasks are delayed until this stage. For example, in this
stage we establish a relationship between phrases identified during
syntactic analysis and descriptions of (sets of propositions about)
objects in the domain model.

In the third stage, the interpretation is further refined
within the context of the entire sentence, building on the results of
the previous two stages. Major tasks of this stage include delimiting
the scopes of quantifiers and associating references to objects with
particular entities in the domain model, taking into account the overall
dialogue and task context.

The separation of processing into stages has allowed us to
examine more easily the question of when during interpretation certain
types of knowledge can or should be used. For example, the
identification of the referent of a pronoun requires knowledge of the
role that the pronoun plays in the sentence, as well as knowledge about
the discourse context [20]. Thus it cannot be performed until after the
sentence has been interpreted with respect to concepts in the domain.
By contrast, simple structural tests (e.g., number agreement) between
phrase constituents can be made during the first stage.

2. Grammar Rules

The language definition encoded in DIAMOND consists of (1) a
lexicon in which words are separated into categories with associated
features and (2) phrase structure rules augmented with procedures to be
evaluated during successive stages of processing. Figure 1 presents a
noun phrase rule in the language definition (simplified for illustrative
purposes). It is discussed in some detail below to show how its
different constituents identify linguistic structure, relate linguistic
form to domain concepts, and relate the sentence as a whole to its

context.

The example noun phrase rule has four constituents. The first
part, the phrase structure, indicates the phrase to be formed. Phrases
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NP = (DET/QUANT} (ADJ) NOUN (PP);

|
|
CONSTRUCTOR |
(PROGN (@FROM NOUN NUMBER) | Stage 1
(@FROM DET DEF) |
(COND ((@ ADJ) (OR (AGREE TYPE ADJ NOUN) |
(F.REJECT ‘NO-AGREEMENT)))))|

TRANSLATOR |
(@SET SEMANTICS (COMBINE (@ SEMANTICS ADJ) | Stage 2

(@ SEMANTICS NOUN))) |

INTEGRATOR |
(@SET D.IDENT (RESOLVE (@ SEMANTICS))) | Stage 3

Figure 1 Sample Noun Phrase Rule

are generally standard linguistic units, such as noun phrases and verb
phrases. The rule specification allows for optional and alternative
elements. Thus, as in this example, one rule for interpreting a noun
phrase may allow many alternatives. In this example, the DET
(determiner) and QUANT (quantifier) constituents are alternatives,
indicated by the braces, and the ADJ and PP constituents are optional,
indicated by the parentheses. The NOUN constituent is required.

The second part of the rule, the CONSTRUCTOR, is a procedure
to be evaluated when a phrase is formed using this rule. Generally, a
constructor assigns attributes to the phrase and tests for consistency
among the attributes of its constituents. For example,
(@FROM NOUN NUMBER) copies the value of the NUMBER attribute from the
NOUN constituent to the NP phrase being built. Procedures can rate an
interpretation of a phrase, based on an assessment of its likelihood,
and reject unlikely ones. The F.REJECT statement at the end of the
CONSTRUCTOR will reject a proposed phrase if the ADJ and NOUN are not of
the same type (i.e. the type of adjective in the phrase cannot modify
the type of noun present). Unlikely phrases need not be rejected but
can be marked as "less-than-good" (e.g., FAIR or POOR); they can be used
if no better interpretation is found.




Much of what is commonly called "syntactic" information

(information about words and phrases and how they combine independently
of their relationship to the domain) is encoded in the phrase structure
and constructor parte of the language definition. We have encoded and
tested a general, linguistically-motivated, set of rules for syntactic
analysis that covers a wide range of English constructions. Sample
sentences covered by this syntax include:

WHAT IS THE NORMAL STEAMING TIME FROM NORFOLK TO GIBRALTAR FOR

THE KENNEDY?

WHICH U.S. NAVY FF’S HAVE CASREPS INVOLVING SONAR SYSTEMS?
ASSUMING A MINIMUM ALLOWABLE FUEL STATE OF 30 PERCENT, HOW FAR
COULD THE GROZNY AND VARYAG STEAM AT MAXIMUM SPEED?

WHAT SHIPS IN THE SOUTH ATLANTIC HAVE A DOCTOR ONBOARD?
TO WHAT CLASS DOES THE BATON ROUGE BELONG?

The third part of the rule, applied during the second stage of
processing, is the TRANSLATOR procedure. A translator for a phrase is
evaluated after the phrase has been combined with others to form a
syntactic analysis for an entire sentence. Thus, unlike the
constructor, the translator has available information about how the
phrase fits into the sentence. In Figure 1, the operation is simply one

of combining the semantics for the ADJ with those for the NOUN.

The fourth rule component, the INTEGRATOR procedure, ies
applied during the third stage of processing. An integrator for a rule
specifies how to relate the concepts mentioned in a phrase to specific
domain entities. During this stage, for example, pronoun referents are
resolved against identified entities in the domain.

Within the translator and integrator procedures, we have
formalized our knowledge of the relationship between syntactic
structures and meanings by the use of a common set of semantic functions
called semantic primitives, described in the next section. Translator
and integrator functions which construct semantic primitive calls from
the syntax have been implemented for major portions of the current

linguistic grammar.




3. Summary

As we have seen, DIAMOND currently separates the three tasks
of construction, translation, and integration into well-defined
successive processing steps. While this partitioning provides a good
framework with which to understand the interpretation process, it gives
rise to problems of efficiency. Chief among these problems is the fact
that domain information docs mot enter the parsing process until all the
syntactic constructions for an sentence have been produced. For long
sentences, the number of syntactic structures produced can be large,
with a consequent increase in the processing time required at successive
stages. One of the problems for future research involves finding
reasonable strategies for combining the three processing stages, so that
domain information can reduce the ambiguity of the comstruction process.

C. SEMANTIC PRIMITIVES

The semantic primitives provide a flexible, uniform interface
between linguistic analysis of a sentence and domain semantics.
Sentences with similar meaning but differing phrase structures are
mapped into similar sets of primitive semantic-function calls. For
example, consider the simple passive transformation which relates the

two sentences:

(1) WHO COMMANDS THE KENNEDY?
(2) BY WHOM IS THE KENNEDY COMMANDED?

Even though the surface syntactic structure varies, the
propositional structure of (1) and (2) is the same: a predicate,
COMMANDS, with two arguments, THE KENNEDY and WHO. Both sentences would
invoke the same semantic primitive to construct a representation of the
propositional content. The translation from surface structure to
semantic primitives thus encodes linguistic knowledge about the way
surface structure relates to meaning.

It is important to note that the translation into semantic
primitives is domain-independent, that is, it was not designed with a




particular subject area in mind. Thus we hope that it will provide a
uniform way of analyzing the syntactic structure of sentences, relieving
the natural-language interface builder of a large part of his task.

Currently there are four categories of semantic primitives:

(1) Propositional primitives. These primitives are derived
from the propositional content of a sentence. They
include calls to create sets (corresponding mainly to
noun phrases) and propositions relating these sets (verb
phrases, adjectival modifiers, etc.).

(2) Request primitives. These add various types of request
information from the sentence. They include counting
("how much,” "how many"), yes/no, and set specification
('"what ships are ...").

(3) Modality primitives. These deal mainly with the tense
and mood aspects of verbs.

(4) Quantification primitives. These deal with the
quantificational structure of a sentence, including
explicit ("each," "every," "all," etc.) and implicit
quantification (e.g., superlatives).

To illustrate the way in which the various types of semantic

primitives are invoked, consider the query:

WHEN COULD ALL THE SUBS IN THE MED REACH GIBRALTAR?

The propositional structure of this sentence is straightforward: a
predicate, REACH, which connects three arguments, GIBRALTAR, SUBS IN THE
MED, and WHEN, a time argument. In addition, the argument SUBS IN THE
MED itself has a propositional structure, based on the implicit
containment predicate IN, which relates SUBS and MED. Thus two calls to
the propositional semantic primitives are invoked; first to build up the
phrase SUBS IN THE MED, and then to attach arguments to the predicate
REACH.

The request primitives are invoked for the argument WHEN to
indicate that the value of this argument is being requested by the
query. The quantifier primitives are invoked to attach the quantifier
ALL to the phrase SUBS IN THE MED. Finally, the modality primitives are
invoked to indicate that the modal auxiliary COULD is attached to he
predicate REACH.
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At this point, the translation process has extracted all the
information it can from the sentence, and converted it into a set of
calls on the semantic primitives. Obviously, there is more information
in the sentence which cannot be encoded by these four types of semantic
primitives. Here we rely on the inherent flexibility of the primitives;
they can be augmented as our linguistic analysis grows more demanding.
For example, if there is some theory of stative vs. active
interpretation of verb structure that we wish to incorporate, we simply
define a new class of primitive semantic functions, along with the
programs that produce calls to these functions from the phrase structure

of a sentence.

The semantic primitives also provide a flexible approach to the
problems facing an interface builder, since he need use only the
primitives required by the problem at hand. For example, in designing
the interface for a query system, the propositional and request
primitives would be most important. Primitives which dealt with more
subtle aspects of the sentence, such as quantification or the modality
of verbs, could be added later.

D. CONCEPTUAL SCHEMA

In contrast to the current LADDER system, in which a question is
converted directly into a data base query, the new system uses a
conceptual schema as the target representation for tramslation. A
conceptual schema is a representation of the domain as it appears to the
user; in its simplest form, a conceptual schema must encode the user’s
knowledge of the objects in the domain and the relationships which hold
between them. This is different from the data base schema, which
represents the system’s view of the way data is stored in the data base.
As discussed in the next section, the relation between the conceptual
schema and the data base schema can be quite complex. In our system,
the conceptual schema encodes knowledge about ships, officers, ports,
cargoes, and other domain objects, and the relationships between them.
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There are several reasons why a conceptual schema makes the task of
interpreting the question easier and provides some capabilities that
could not be accommodated by direct data base translation alone. One
reason is that it allows for conceptual completeness. A data base
typically will have information only about some portion of a given
domain. The user may not be aware that some information is missing.
Consider the queries:

WHAT SOVIET SHIPS HAVE ASW CAPABILITY?

WHAT U.S. SHIPS HAVE ASW CAPABILITY?

WHAT SHIPS HAVE ASW CAPABILITY?

The user would expect a competent interface to understand all three
queries, if it understood any ome of them. Yet an interpreter which
depends on a data base schema for its model of the domain may very well
interpret one of the queries correctly, while either failing to
interpret the others, or giving wrong answers to them. For example,
suppose one of the data base files contained information on the weapons
capabilities of U.S. ships only. Then the second query could be
interpreted correctly, but none of the others. An interpretation
process which depended on the data base schema wouldn’t know whether
only U.S. ships could have weapons capability, or whether the
particular data base just didn’t have the information for other natioms’
ships. In order to distinguish the case of a particular data base not
having a certain attribute for an object from the case where the domain
does not permit the object to have the attribute, a better model of the
domain than the data base schema is required. The conceptual schema is
such a model; it provides a measure of semantic completeness in the
interpretation process, independent of a particular data base.

A second advantage of having a conceptual schema comes from the
ability to have inference processes use the schema. We are currently
using inferences about the domain in a rudimentary way to help in such
tasks as disambiguation; a short example occurs at the end of this
section. More advanced research tasks which we would like to pursue

include sophisticated semantic processing of the parse tree (e.g., noun-
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noun phralca‘), query interpretation, and dialogue issues, such as using
knowledge of the user’s goals to choose an apropriate response. All of
these tasks require the ability to reason about the domain of discourse.
In order to do such reasoning in a general way, a data-independent
representation of objects in the domain and their interrelationships is
essential.

Fiﬁally. a conceptual schema enhances portability to different data
bases within the same domain. A conceptual schema provides a measure of
independence of the domain from a particular data base. Thus, in
switching the interface between data bases which deal with the same
domain, we can expect the conceptual schema to remain mostly unchanged.
The interface builder must indicate how conceptual schema predicates and
sets are mapped into a particular data base schema. In our system a
code generator uses this mapping to derive a SODA query on the data base
from a conceptual schema representation.

Our implementation of a conceptual schema is based on a network
representation of objects in the domain and their relationships. This
approach is based on techuniques for knowledge representation developed
at SRI over several years [21], although it may also be viewed as being
"frame-like" in the sense of a number of recent AI languages [22] [23].
There are two basic parts to the representation: an object set taxonomy
which gives subset and superset relations among various sets in the
domain; and delineations, which specify the types of arguments which
relations can have. In addition, there are some metastructures that
control inferencing processes that operate during the interpretation of
a query, and which are thus not strictly a part of the domain
representation.

Although exact details of the representation are too complicated to
go into here, we will attempt to give an idea of how it is used to
actually construct an interpretation of a query. Consider the question:

WHO COMMANDS THE LAFAYETTES?

For example "oil tankers" are tankers that carry oil, but "U.S.
destroyers" are destroyers owned by the U.S.
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The lexical entries ior WHO and LAFAYETTE have pointers to sets in the
domain representation. Pigure 2 shows the relevant portion of the
taxonomy. WHO refers to the class of LEGAL-PERSONS; subsets of LEGAL~-
PERSONS, labeled by s-arcs, are COUNTRIES and OFFICERS (note that onme
could ask, WHO OWNS THE KENNEDY, vhere WHO refers to a country).
LAFAYETTE refers to the individual node LAFAYETTE, which can be an
element - (e~arc) of either NAVAL-SHIP-CLASSES or NAVAL-SHIPS, i.e., the
Lafayette class as opposed to the ship Lafayette. At this point, then,
there is ambiguity in the references for both nouns. An important part
of the representation is that these ambiguities can be easily
accommodated by the taxonomy structure.

The representation also shows what relations can exist between
objects in the domain. The delineations for the COMMANDINGS and NAVAL-
CLASS-MEMBER relations are shown in Figure 3. The arcs emanating from
these nodes are labeled with the argument type, and point to the set
from which the argument must be drawn, e.g., the "commander" argument of
COMMANDINGS must come from the set OFFICERS.

The verb COMMANDS in the query refers to the COMMANDINGS relation.
Syntactic information from the sentence tells us that WHO, as subject,
must be the "commander" argument. Thus we have identified WHO as
belonging to the OFFICERS subset of LEGAL-PERSONS, rather than
COUNTRIES.

Similarly, we find that THE LAFAYETTES must be the "commanded"
argument of COMMANDINGS, i.e., it belongs to NAVAL-SHIPS. However,
there are additional clues from syntax which force a different
interpretation. THE LAFAYETTES is plural, and hence demands a reference
in the domain which is not necessarily a single object. Since the
LAFAYETTE node interpreted as a NAVAL-SHIPS is a single element, this
can’t be the correct interpretation. In an alternate interpretation,
the node LAFAYETTE is an element of NAVAL-SHIP-CLASSES; by the NAVAL-
CLASS-MEMBER relation, a single class can stand for a set of ships, and
so is an acceptable interpretation of the plural syntax. Thus the
syntactic clue of plurality is used to disambiguate the semantic




WHO: LEGAL-PERSONS

LAFAYETTE:

FIGURE 2 CONCEPTUAL SCHEMA TAXONOMY
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interpretation of the reference to the node LAFAYETTE. Note that this
type of inference is impossible in the current LADDER system, where many
syntactic clues, among them plurality of noun phrases, are simply
disregarded by the grammar. To LADDER, WHO COMMANDS LAFAYETTE and WHO
COMMANDS THE LAFAYETTES look exactly alike.

The OM symbol on the NAVAL-CLASS-MEMBER relation is part of the

metastructure of the representation. It signals that this relation is a

special type called an owner-member: each class “"owns" a set of ships,
and the class can be used to stand for this set. Metastructures are
used to control what would otherwise be a large search space of
inferences, by classifying relations as special types that can only be

used at specific points in the inference process.

E. GENERATING SODA QUERIES

1. Conceptual Schema vs. Data Base Schema

Once a question has been interpreted with respect to the
conceptual schema, a SODA query must be generated from its conceptual
schema representation. Because the way in which the data is stored by
the data base may not correspond directly to the way the conceptual
schema encodes the model of the domain, this task can in general be
arbitrarily hard; that is, it may involve an arbitrary amount of

inferencing to produce a correct query.

In the absence of a general-purpose inference engine to
produce SODA queries, we have concentrated on several techniques which
promise to cover the most common types of attachments between a data
base schema and a conceptual schema. The rest of this section describes
these techniques, and gives examples of how they can be used to attach

our conceptual schema to the schema of the Blue File [l11] data base.

2. Simple Predicates

In the best case, a nredicate in the conceptual schema will

correspond to a relation in the data base schema. This is true for the
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predicates given in the previous section, namely, COMMANDINGS and NAVAL-
CLASS-MEMBER. The commander of a unit is found in the UNIT relation,
and the class of a ship is found in the SHIP relation. The actual
generation from the conceptual schema involves setting up SODA tuple
variables for each predicate in the query, and SODA terms for each set.
Where two prcdicitea share a common argument, an equijoin is produced in
the query code. Thus in Figure 4 we have the conceptual schema
representation of WHO COMMANDS THE LAFAYETTES, and the SODA query
generated, with the origin of the various subexpressions of the SODA
query indicated.

This example was rather straightforward; various subtleties of
the data base design can cause complications. For example, an object in
the conceptual domain, like SHIPS, is not always referred to in a
consistent manner by the data base. Some files may use the name of the
ship, while others use the UIC or VCN of the ship instead. The
generation process must take these quirks into account.

3. Functions

In the conceptual schema, functions are treated as a special
type of relation that must be handled separately by the translation
process, since they have a different SODA syntax from ordinary
relations. Also, care must be used to ensure that their arguments are
defined before they are invoked. For example, consider the question:

WHAT POSITIONS ARE 300 MILES FROM THE LAFAYETTE?

Such a query could not be answered by the data base because
the distance function needs to have both of its position arguments
defined. For the above question, the result of the distance function is

specified (300 miles), as well as one of its position arguments (the
Lafayette); but the function cannot be: inverted to generate a list of
positions that are 300 miles from the Lafayette. The generation process
sust recognize this condition and give an appropriate error message.

A second peculiarity of functions is that they may not be
enscutable by the DBMS that contains the data base. In this case, the
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NAVAL-CLASS-MEMBER

COMMANDINGS

(IN U UNIT) (IN S SHIP)

NAVAL-SHIPS NAVAL-SHIPCLASSES

((U VIC) EQ (S VIC))

? OFFICERS

(? (U CONAM))

((S CLASS) EQ ‘LAFAYETTE"))

SODA QUERY: ((IN U UNIT)
(? (U CONAM))
(IN S SHIP)
((u UIC) EQ (S VIC))
((S CLASS) EQ 'LAFAYETTE'))

FIGURE 4 GENERATION OF A SODA QUERY FROM THE CONCEPTUAL SCHEMA
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generation process must send off SODA queries to retrieve the arguments

of the function, evaluate the function, and then put the result into

another SODA query.

4. Implicit Sets

Not all sets that the conceptual schema knows about correspond
to reliiions in the data base. For instance, there is a SHIP relation
where each tuple gives information about a ship, but there is no TANKER
relation. Such conceptual schema sets as TANKERS usually have an
implicit definition in the data base, in the sense that we could form a
more or less complicated SODA restriction over some relation to extract
the set. If we are lucky, there will be a single field whose value will
tell us whether a tuple is a member of a restricted set or not, e.g.,
the TYPE field gives us TANKERS. It is easy to see, however, that there
may be cases where the data base does not have the necessary
information, or the query language is not powerful enough, given the
form of the data base, to extract it. A set of this sort which can’t be
extracted from the Blue File, although the information is there, is:
SHIPS THAT LEFT PORT AT NIGHT.

5. Existence

At times a data base field will indicate the existence of an
object or property, rather than its exact value. A typical example of
this is the MED field in the SHIP relation. If the value of this field
is D, then there is a doctor on board the ship; but it doesn’t give the
identity of the doctor. The presence of these existence fields causes
problems for generation of data base queries, because it means some
questions that ask for the existence of an object will be answerable,
while others that ask for the name of the object will not. Consider the
questions:

18 THERE A DOCTOR ON THE BIDDLE?
WHAT DOCTOR IS ON THE BIDDLE?
HOW MANY DOCTORS ARE ON THE BIDDLE?

Only the first of these questions can be answered, given the above
definition of the MED field.

79

e Yoo e e R S ——

%

L

T 1, Y A
! 4

s

glans

FEeT - X AT g

S

&

e e e e e e e e e e e




It should be obvious from the above examples that the process
of generating a correct SODA query from the conceptual representation
can be a complicated one. To take this even one step further, we could
imagine trying to come up with a reasonable query when there was no
correct way to answer the question directly, e.g., to respond "At least
one" if asked "How many doctors are on the Biddle?". It would then seem
impossible to generate SODA queries without considering general dialogue

issues such as the goals and presuppositions of the user.

F. PORTABILITY

As we stated at the beginning of this section, one of the major
goals of our work on the new natural-language interface has been to
enhance the portability of the LADDER system. By incorporating both a
level of domain-independent semantic primitives and the domain-dependent
conceptual schema, we have attempted to facilitate portability both to
new domains and, within a domain, to new data bases.

In transporting the natural-language interface to a new domain,
there are two tasks facing the interface builder: to write the semantic
primitive functions in the new domain, and to add an appropriate domain-
dependent lexicon. The semantic primitive formalism provides reasonable
guidelines for both tasks. While these tasks are by no means trivial,
most of the work involved in syntactic analysis, as well as some domain-
independent semantic analysis, has been incorporated into the phrase
structure translators. Thus the interface builder is relieved of a
large part of the linguistic analysis work necessary to build the
interface.

Once the semantics of a particular domain has been specified in a

conceptual schema, transportability between data bases dealing with that

domain is straightforward. The conceptual schema need only be designed
once for a given domain.

Both types of portability remain to be tested in the future, to see
how transportable the interface is for new real-world domains and data
bases. It is expected that defining a new domain will s%ill be a
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significant problem, while transferring between data bases within a
domain will be fairly easy.

G. STATE OF IMPLEMENTATION AND PRELIMINARY RESULTS

A subset of the translators from phrase structures to primitive
semantic function calls has been implemented. These are mostly the
propositional and request primitive calls. This subset is sufficiently
complete to cover the linguistic construction in approximately 90
percent of our test query set of 249 sentences. Significant gaps yet
remaining include translators for infinitive phrases, imperatives, and
quantifiers.

The conceptual schema for the navy command-control domain currently
has about 110 sets and subsets pertaining to objects (ships, planes,
etc.), and about 100 relations between them (speed, employment, etc.).

The lexicon currently contains 12 adjectives, 12 verbs, 34
prepositions, and 141 nouns with their complete semantic (domain
dependent) attributes. This is sufficient to cover about half the test
queries. As we attempt to interpret more test queries, both vocabulary
and the conceptual schema will be incrementally increased.

The translators, conceptual schema, and lexicon are currently
adequate to interpret 112 of the 210 test queries (54 percent) that can
be answered from the Blue File data base. ("Interpret" means that the
interface is capable of deriving a conceptual schema representation for
these queries.) For those 112 interpretable sentences, the grammar
produced 311 phrase structure trees, an average of 2.8 per sentence.
From these phrase structure trees, 142 interpretations were produced, an
average of 1.3 interpretations per sentence. Work on the program to
generate SODA queries from conceptual schema interpretations has not yet
been completed.
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Appendix A

FORMAL DEFINITION OF THE SODA QUERY LANGUAGE

Theé syntax of the SODA query language is most easily described by a
context-free grammar, plus some constraints on the occurrence of
variables. The grammar for SODA is extremely simple, having only the
following five rules:

query => ([binder | restriction | (? term)]+)
subquery -> [binder | restriction]* binder [binder | restriction]*

binder -> (IN tuplevar relation ([restrictiom]* ) |
(MAX term subquery) |
(MIN term subquery) |
(MAX1 term subquery) |
(MIN1 term subquery) |
(COUNT countvar subquery)

restriction -> (ALL subquery) |
(SOME subquery) |
(NONE subquery) |
(AND [restriction]+) |
(OR [restriction]+) |
(NOT restriction) |
(term comparison term)

term -> (function ([term]+)) |
(tuplevar field) |
countvar |
constant
In this grammar, nonterminal symbols are written in lower case, and
terminal symbols are written in upper case. To make the grammar more
concise, we have allowed the right side of a rule to be written as a
regular expression. The notation "...|..." indicates an alternative,
the notation "[...]*" indicates a sequence of any length greater than or
equal to zero, and the notation "[...]+" indicates a sequence of any

length greater than zero. Note that the parentheses appearing in the
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grammar are part of the SODA language which is being defined, while the
square brackets are part of the notation in which the grammar is
written.

SODA queries are composed of three principal types of expressions:
binders, which bind variables to refer to data extracted from the data
base, restrictions, which restrict the data, and question-mark
e;pteaiiona (selectors), which request retrieval of parts of the data.
A SODA query is any nonempty, parenthesized sequence of these
expressions that satisfies the constraints on the occurrence of
variables which will be discussed shortly. If the sequence of
expressions includes one or more binders, then the query implicitly
defines a set of tuples, and the selectors in the sequence specify a
projection of that set which is to be returned as the answer to the
query. If there are no selectors in the query, then it is interpreted
as a yes/no question, asking whether the set defined by the query is
nonempty. If the query is simply a sequence of restrictions, then it is
interpreted as a yes/no question asking whether all of the expressions

in the sequence are true.

The structure of the language is recursive, with MAX, MIN, MAXI,
MIN1, COUNT, ALL, SOME, and NONE being operations on certain sequences
of expressions which would themselves be well-formed queries. We will
call such sequences subqueries, and they must meet the following
conditions: first, since it only makes sense to return information from
the top level, no selectors are allowed in the sequence. Furthermore,
we insist that there be at least one binder in the sequence, since there
must be some data from the data base to maximize, minimize, count, or

quantify over.

The binders include IN expressions, COUNT expressions, and MAX,
MAX1, MIN, and MINl expressions. An IN expression sets a variable to
range over the set of tuples in a relation (or a restricted subset, if
any restrictions are specified). A COUNT expression sets a variable to

" the number of tuples in the set defined by a subquery. MAX and MIN

expressions pick out all the tuples in a set for which some term has the
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largest or smallest value. MAXl and MINl expressions do the same,
except thet they pick out a single tuple from this set. MAXl and MINI
can be executed more efficiently tham MAX and MIN, so they are to be
preferred when applicable, such as when it is known on semantic grounds
that there can be only one tuple in the set of interest that has the
maximum or minimum value (e.g., there can be only one most recent

position report for a ship).

Restrictions include simple Boolean restrictions with AND, OR, and
NOT, plus universally quantified restrictions using ALL and
existentially quantified restrictions using SOME. [(NONE...) 1is an
abbreviation for (NOT (SOME...))]. The details of how these constructs
are interpreted are explained in the discussion of the examples in
Section IV.B.

The grammar does not specify what the relations, fields, functioms,
comparisons, constants or variables are. Constants include numbers and
any character strings enclosed in single quotes, such as ‘US°. Any
other alphanumeric character string can be used as a variable. There
are two types of variables: tuplevars, which range over the tuples of a
given relation, and countvars, which are used to refer to the result of
a counting operation. There need not be any difference in form between
tuplevars and countvars, but no symbol can be used as both within the

same query.

The other categories not specified by the grammar are all
implementation-dependent. Fields and relations obviously depend on the
particular data base being accessed. The functions and comparisons
depend on the capabilities of the underlying DBMSs in which the queries
are actually executed. In the current implementation of SODA, there are
four navigation functions (e.g., GCDIST, for computing the great circle
distance between two geographical locations), and the comparison
operators are EQ, NE, LE, GE, LT, and GT, representing "equal," "not
equal," "less than or equal," "greater than or equal," "less than," and

"greater than or equal," respectively.
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To explain the constraints on the occurrence of variables, we need
to define several notions. A variable which is the second element of an
IN or a COUNT expression is said to be introduced by that expression.
The smallest COUNT, SOME, NONE, or ALL expression that includes the
expression that introduces the variable is said to be the scope of the
variable. If the expression that introduces the variable is not inside
any COUNT, SOME, NONE, or ALL expression then the scope of the variable
is the entire query. An occurrence of a variable is bound by the
expression which introduces it if the occurrence is contained by every
MAX or MIN expression that contains the expression which introduces the
variable; otherwise, the occurence is bound by the largest MAX or MIN
expression which does not contain the occurrenc2 but does contain the
expression which introduces the variable. We can now state the
contraints on the occurrence of variables as follows:

(1) No variable may occur in the query unless it is

introduced by some expression in the query.

(2) No variable may be introduced by more than one
expression.

(3) No variable may occur outside its scope.

(4) The relation "X contains an occurrence of a variable
bound by Y" must not form any circular chains of MAX and
MIN expressions.

The first rule ensures that the range and scope of every variable
is defined. The second rule simply means that the same variable can’t
be used in two different ways in the same query. This is actually
slightly stronger than it needs to be, since two variables which have
nonintersecting scopes could be the same without creating logical
confusion, but queries are simpler to process and easier to understand

if this is not done.

The third rule prevents using a variable in a context where the
reference doesn’t make sense semantically. It is easiest to think of a
variable as referring to a particular tuple in a set of tuples. Inside
a COUNT, SOME, NONE, or ALL expression, the variable refers to each
tuple in the set in turn, as in "for all tuples in the SHIP relation
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such that the tuple..." Outside the expression, however, there is no
way to determine which tuple is being referred to. This contrasts with
MAX (and MIN) expressions, where, although the variable refers to each
tuple in turn inside the expression, there is a definite referent for
the variable outside the expression, namely, the tuples for which the
term being maximized has the greatest value.

The final rule forces the definitions of sets that are being
mﬁxinized or minimized over to be noncircular. One MAX or MIN operation
can refer to the result of another, but only if the second is well
defined without referring to the first.

To put the SODA query language in perspective, we can compare it to
Codd’s original language based on the relational calculus, DSL ALPHA
[24]) [25]). One major difference between the two languages is that SODA
is only a data retrieval language, whereas ALPHA also permits updataing
the data base. In their power to express queries, the two languages are
fairly close. ALPHA has the ability to request retrieval in a specified
order or to set a limit on the number of tuples to be used in cémputing
the answer. These features were left out of SODA because they do not
have a natural interpretation in purely set-theoretic terms. On the
other hand, SODA has more powerful counting, maximizing, and minimizing
operators. In SODA, these can operate on sets of tuples defined by
arbitrary subqueries; in ALPHA, they are much more restricted.

There are important differences in the syntax of the languages as
well. SODA is, in fact, a data sublanguage of LISP, and thus it shares
LISP‘s highly parenthesized syntax. While in some ways this makes SODA
queries more difficult for people to read, it greatly facilitates the
generation of SODA queries by other programs, a primary requirement for
use in the LADDER system.

Finally, the syntax of SODA has been designed to facilitate
trtnllaﬁion of natural-language questions into formal queries. This has
resulted in departures from éypical relational-calculus syntax,
particularly in quantifier expressions. In most "English-like" formal
languages, English words are simply tacked onto a semantic structure
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that bears little relation to English. In SODA, the correspondence of
the symbole of the language to English words is of minor importance and
is basically just a mnemonic device. What is important is that the
semantics of several of the constructs of the language have been
designed to correspond to the semantics of certain types of English
phrases. For an illustration of this point see the discussion of
quantifier expressions at the end of Section IV.B.
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Appendix B
AN EXPERIMENTAL FRENCH-LANGUAGE LADDER

To' help assess the transportability of the LADDER system, and to
emphasize the potential use of LADDER for allowing different groups to
access a common data base in their own terms, we have created a French-
language version of LADDER. This task was performed by a native French
speaker who had a rudimentary knowledge of INTERLISP and no knowledge of
LADDER. In one man-month he was able to convert the full range of data
base queries accepted by the English LADDER to French. The resulting
system, called FLADDER, is available at SRI for use via the ARPANET.
The full range of LADDER’s user-oriented features, including spelling
correction, synonym and paraphrase definition, and feedback to the user
of its interpretation of his questions (in French) are included in this

system.

Examples of inputs that FLADDER can deal with are:

Quand le Fox doit-il appareiller?

Quand le sonar du Kennedy sera-t-il repare

Combien de temps faut-il a 1°Aspro pour rejoindre le Knox?

Quel est le destroyer le plus proche de Naples

A quelle classe le bateau Sovietique le Minsk appartient-il

A quel convoi le batiment Americain Biddle est-il affecte?

Quelles sont les marchandises transportees par le Taru?

Quel est le temps de croisiere normal du Dale de Gibraltar a Norfolk

Quel est le prochain port d’escale du Adams

Pourquoi 1‘America n’est pas a 1°etat de preparation Cl

Quel est le batiment le plus rapide

Quels sont les navires au nord de 1l’equateur

Qui naviguent a moins de 12 noeuds

Quels sont les bateaux naviguant sous pavillon Britannique

Existe-t-il des bateaux qui font partie de ce convoi

Dis moi quels sont la longueur et le tirant d’eau du Knox!

Quel est la portee maximum de 1l°engin Polaris

Est ce qu’il existe des navires dont la vitesse est superieure
a celle de 1l°Aspro?

Quel est le nom de 1l°officier commandant le Sunfish

Quelles sont les unites embarquees sur le Kitty Hawk

Quels navires sont a moins de 1 jour de route suivant une orthodromie
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de ma position actuelle?
Calcule moi le chemin le plus court entre Le Havre et Naples
Quelle est la route suivant la loxodromie de Oslo a Luanda
A quelle distance de New York se trouve le Saratoga
A combien de milles de Capetown est le Kennedy
Quel est le temps de traversee entre New York et Le Havre pour 1°Arctic?
Quelle est la duree de croisiere du Pecos depuis Rotterdam

jusqu’a Baltimore?
Quand le Rathburne arrive-t-il a Newport?
Ou va le Gridley?
Vers ou se dirige le Robison
Ou est actuellemsnt le Hoel?
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