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ABSTRACT

Since 1976 the Artificial Intelligence Center of SRI International
has been conducting a program of research on ways of providing
nontechnicians with easy access to complex, distributed data bases of
information. This progra. has emphasised mutually supporting lines of
both short—term and long—t erm research . Th. short—term research has
resulted in an operational computer system for natural—language access
to a distributed data base . The LADDER system (Language Access to
Distributed Data with Error Recovery ) is designed to provide answers to
questions posed at the terminal in a subset of natural language
regarding a distributed data base of naval command—control information.
The system accepts a rather wide range of natural—language questions
about the data, and for each question plans a sequence of appropriate
queries to the data base management system; determines on which machines
the queries are to be processed; establishes links to those machines
over the ARPANET; monitors the processing of the queries and recovers
from certain errors in execution; and prepares a relevant answer to the
original question.

The first—generation LADDER system was completed by September ,
1977. In October, 1977, work was begun on a second—generation LADDER
system that dramatically extends the capabilities of the first—
generation system along several dimensions . This report describes the
evolution of the new system.
—

~~~ Section 1 of this report gives some background information on the
LADDER system, outlines the changes made to the architecture of the
system, and briefly explains the enhanced capabilities produced by those
changes. Section II discusses user experiences with the first—
generation LADDER system and the response of SRI to the reports of those
experiences. Section III describes new user features that have been
added to LADDER . Section IV discusses SODA, an improved data access

• system for LADDER , explaining its new capabilities and the problems of
supporting those capabilities in accessing distributed data. Section V
describes how the system has been extended to access a heterogeneous
data base consisting of both Datacomputer and DBNS—20 data base
management systems . Section VI reports on progress to date in bringing
the results of our longer—term research into the LADDER system, in the
form of a new natural—language processor that will permit a greater
range of natural—languag . questions and lay the groundwork for
transporting the system to new data bases and new domains . Section VII
lists the publications and presentations by the project staf f during the
period covered by this report. Finally, App.ndiz A gives more detail on
the new forma l query language for data access , and Appendix B describes
an experimental French—language version of LADDER.
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I INTRODUfTION

A. EVOLUTION 9.! ~ NATURAL-LANGUAGE JflI~~7~~ ~9. DATA
Since 1976 the Artificial Intelligence Center of SRI Inter nationa l

has been conducting a p rogram of research on ways of providing

nont.chnicians with easy access to complex, distributed data bases of
information. This program has emphasised mutually supporting lines of
both short—term and long—term research. The short—term research has
resulted in an operational computer system for natural—languag. access

to a distributed data base. The LADDER system (Language Access to
Distributed Data with Error Recovery) is designed to provid, answers to I

questions posed at the terminal La a subset of natural language

regarding a distributed data base of naval command—control information.

The system accepts a rather wide range of natural—languag. questions

about th. data, and for each question:

(1) Plans a sequence of appropriate queries to th. data base
management system.

(2) Determines on which machines th . queries are to be
• processed.

(3) Establishes links to those machines over the ARPANET.
(4) Monitors the processing of the queries and recovers from

certain errors in execution.

(5) Prepares a relevant answer to the original question.

Work on LADDER is being carried out in support of the Advanced

Comma nd Control Architectural Teetbed (ACCAT) program under  the

sponsorship of the Defense Advanced Research Projects Agency (DARPA).

The ACCAT program is intended to provide a facility for transferring
• emerging information processing technology to Navy command—control

applications. While the direct application of SRI’s effort has been to
• develop prototype systems to aid in naval command and control , the

sof tware tools that have been created and the concepts underlying them

I
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offer potential aid to decision makers in the other services ,

government, and indust ry as well.

The first—generation LADDER system was completed by September ,
1977, and has been extensively described in the literature (1) (2)
(31 (4] (5] (61 (7). In October, 1977, work was begun on a second—
generation UDDER system that dramatically extends the capabilities of

the first—generation system along several dimensions . This report
describes the evolution of the new system.

The remainder of Section I gives some background information on the
• LADDER system, outlines the changes made to the architecture of the

system, and briefly explains the enhanced capabilities produced by those
changes . Section II discusses user experiences with the f i r s t— *

generation LADDER system and the response of SRI to the reports of those
experiences . Section III describes new user features that have been
added to UDDER. Section IV discusses SODA, an improved data access -•

system for LADDER, explaining its new capabilities and the problems of
supporting those capabilities in accessing distributed data. Section V
describes how the system has been extended to access a heterogeneous
data base consisting of both Datacomputer (8] and DBMS—2O (9] data
base management systems (DENSe). Section VI reports on progress to date
in bringing the results of our longer—term research into the LADDER
system, in the form of a new natural—language processor that will permit

• a greater range of natural—language questions and lay the groundwork for
transporting the system to new data bases and new domains. Section VII

lists the publications and presentations by the project staff dur ing the
period covered by this report. Finally, Appendix A gives more detail on

the new formal query language for data access, and Appendix B describes
an experimental French—language version of UDDER.

The work decribed in this report reflects efforts by an integrated

group at SRI performing research in natural—language access to data

bases along a broad spectrum from th. creation of demons t rati on systems
to advanced research in computer understandi ng of natural language.
Members of th. group during the period covered by this report include

2
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Barbara J. Gross , Norman Haas, Gary C. Hendrix, Jerry R. Hobbs, Kurt

Konolige , Robert C. Moore , Staff an Lof (now at the KVAL Institute for
Information Science , Stockholm) , Nile J. Nileson , Gordon S. Novak, Jr.
(now at the University of Texas), Ann E. Robinson , Jane J. Robinson,
Earl D. Sacerdoti , Daniel Sagalovicz , Jonathan Slocum (now at the
University of Texas), and B. Michael Wilber . Staffan Lof participated

ç in the research program as an International Fellow at SRI under
sponsorship of the National Defense Research Institute in Sundbyberg,
Sweden.

B • BACKGROUND INFOR }UTION ~ j  LADDER

1. Implementation

The LADDER system is written in INTERLISP (10), and the

current version uses SRI~s proprietary LIFER package [4] (5] for

building natural—language interfaces. UDDER has been operational since
June, 1976, and has been installed on a PDP— 1O in the ACCAT facility at
the Naval Ocean Systems Center (NOSC) since January , 1977. As of
October , 1978, LADDER was also installed on three hosts on the ARPANET :
SRI—KL and SRI—KA at SRI International, and ISlE at the Information

Sciences Institute of the University of Southern California (ISI). At

SRI—EL, UDDER runs under the TOPS—20 operating system; at the other
sites it runs under TENEX. UDDER is used to access the Blue File and

PC data bases, which are described in detail elsewhere (111 (121. They 
*

are currently stored on the Datacomputer DBMS [8] developed by Computer

Corporation of America and the DBMS—20 system (9] of Digital Equipment
Corporation.

L 

2. Basic Capabilities of LADDER

To provide an understanding of the context in which we did the
work described in this report , we give the fo l lowing examp les

illustrating the basic question—answering capabilities of UDDER. Some

of the more advanced features of the system will be reviewed later in

• Section III.



An attempt has been made to accept a wide range of English—

language inputs that are relevant to the data baa . and to the task of
naval command—control decision making. One simple , but very common ,

type of question is to ask what ships satisfy a given set of

restrictions . The user can ask for ships of any particular class (e.g.,

Kitty Hawk), type (e.g., cargo freighter), or nava l classification r
(e.g., SSBN). Examples of simple restriction—type questions are : *

N AME THE LOS ANGELES CLASS SUBMARINES.
WHAT SHIPS ARE HEAVY CRUISERS?
LIST THE SHIPS OF TYPE DDC .

Additiona l restr ict ions can be specified by appending a

country, kind of operation , or distinguishing feature . For example :
IS THE FOX AN AMERICAN CRUISER?
PRINT THE NUCLEAR POWERED NAVAL VESSELS .
WHAT IS THE FASTEST DUTCH MERCHANT SHIP?

Questions can ask for more complex restrictions such as

comparisons of charac ter is t ics, comparisons w i t h  o t h e r  ships ,
specifications of position, indications of route, cargo, or casualty
status. For example:

ARE ANT SUBMARINES MORE THAN 300 FEET LONG ? t
WHAT AMERICAN NAVAL SHIPS ARE FASTER THAN THE FASTEST DUTCH

MERCHANT SHIP
ARE THERE ANY FOREIGN CARGO FREIGHTERS WITHIN 300 MILES OF

CAPETOWN?
NAME THE U S TANKERS WHOSE CURR ENT SPEED OF ADVANCE IS LESS

THAN 10 ENOTS.
REPORT ALL SHIPS CARRYING COALS TO LONDON.
DESCRIBE THE CRUISERS THAT ARE NOT AT READINE SS RATING Cl .

Additional types of modifications can be produced by

specifying attributes of the ships. For example :

SHOW ME THE DESTROYERS WHOSE RADAR IS INOPERATIVE]
DO ANY SHIPS WITHIN 400 MILES OF LUANDA HAVE A DOCTOR ABOARD

• WHAT ARE THE OILERS WHOSE LAST REPORTED POSITION IS WITHIN 250
MILES?

NAME THE NEAREST SHIP TO TEE KENNEDY WITH AN OPERATIONAL AIR
SEARCH RADAR .

Most of the question. typically asked of a data base are

concerned with the current value, of attrib’~tes that are explicitly

4
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stored. LADDER provides many formats for specifying such questio ns.
The simplest forms ask explicitly for the attributes. For example:

WHAT IS THE RADIO CALL SIGN OF THE FOX?
WHAT IS THE STANDARD DISPLACEMENT OF EACH OILER WITHIN 400

NAUTICAL MILES OF GIBRALTAR
PRINT TEE CURRENT POSITION AND FUEL SThTUS OP THE DESTROYERS

IN TEE MEDI

Many more formats permit asking about attributes of ships in
subtler ways . For example :

HOW IS THE SOUTH CAROLINA POWERED?
WHERE WERE THE OILERS LAST REPORTED
WHERE WILL EACH DUTCH CARGO FREIGHTER GO * 

-

HOW FAST IS EACH SOVIET MERCHANT VESSEL IN THE NORTH ATLANTIC?
WHEN IS THE CALIFORNIA SCHEDULED TO ARRIVE ON STATION
TO WHAT TASK GROUP DOES EACH DDG BELONG? —

WHAT CLASS DOES THE HOEL BELONG TO
WHY IS THE AMERICA AT READINESS RATING C5 ?
WHO CO?O(ANDS THE STERETr? ri

C • OVERVIEW OF THE SECOND-GENERATION SYSTEM

1 • Architecture of the First—Generation System

The first—generation LADDER system consists of three principal -

components . The first component , INLAND (Informal Natura l  Language
Access to Navy Data) , accepts questions in a restricted subset of

English and produces a query or queries addressed to the data base as a

• whole. The queries to the data base refer to specific fields , but make

no mention of how the information in the data base is broken down into
files.

The next component, IDA (Intelligent Data Access) breaks down

a query against the entire data base into a sequence of queries against

various files . IDA translates each query into Datalanguage, the query
languag. supported by the Dataco mputer DBMS, and composes the answers of
the subqueriss into the final answer returned to the user.

The task of dispatching the Datalanguage queries to the

app rop r iate Detaco mputer is handled by PAM (File Access Manager). This
component searches a locally stored model for the prima ry location of 
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the file (or files) to which a query refers , establishes connections

over the ARPANET to the appropriate comp~ters, logs in, opens the files,

and transmits the Datalanguage query. If at any time, the remote

computer crashes , the f i l e  becomes inaccessible , or the network

connection fails , PAN can recove r and , if a backup file is mentioned in
its model of file locations, it can establish a connection to a backup
site and retrans mit the query .

2. Natural—Language Interface

The second—generation system includes major modifications to
all the components described above . In the INLAND natural—language
interf ace, evoluticnary improvements have been made in the form of the
new user—oriented features described in Section III.  These improvements
include a route finding package that avoids land masses, an interface to

the Situation Display Graphics Subsystem (SDGS) (13] for graphical

display of data base information, enhanced capabilities to let the user

def ins his own question forms and use elliptical inputs, and additional
feedback in the form of natural—language paraphrases of the data base

queries that are issued in response to the user’s question.

In addition, substantial progress has been made toward

bringing up a new natural—language front end that is the product of our 
-

•

earlier long—range research. As described in Section VI, this new

system will have two major advantages over the present LIFER—based

system when it becomes operational. First, because it contains a mach

more comprehensive, general grammar of English, it will enable LADDER to

handle a much wider range of language forms. The difficulty with the

current system is that it depends on a grammar that is based on

semantically meaningful categories in the domain of application, such as

ships or ports. In natural language, however, grammatical patterns cut

across these categories. The result is that the system might be made to

accep t
WHO IS TUE KENNEDY CONNANDED BY?

but not
WHO IS THE KENNEDY OWNED BY?

6
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even though the active forms of both these questions are acceptable.

The reason is that, since the semantic categories associated with OWNED
and COMMANDED differ, it is difficult to state a “passive rule” that is
applicable in all cases.

The other major advantage of the new front end is that it will
- •~ make the system more easily portable to other domains and data bases.

The grammar used in the first—generation system is tailored specifically
to the domain of naval command and control. This produces some gains in
efficiency , but it means th at switching to a d i f fe ren t  domain of

• application requires completely rewriting the grammar. Since the new

system uses a general grammar of English , we expect the grammar to be
substantially the same over a wide range of applications. In switching

from one domain to another, new vocabulary will have to be introduced,

but new grammatical rules should not.

Another factor enhancing the portability of the system is that

the new front end uses a model of the domain of application, called a

“conceptual schema,” that is independent of the data base. In the

current system, data base queries are produced directly by the natural— I

language front end. Thus, if the data base is significantly changed, 
-

the front end must also be modified, even if the domain of application

and the concepts used remain the same. With a conceptual schema, the

issue of what information the user is seeking is kept distinct from the

question of how that information can be retrieved from the data base.
If the organization of the data base is changed, but no new concepts are
added , the only changes required to the front end will be in the mapping

• f rom the conceptual schema to the data base.

3. Data Base Access

IDA, the data access component of the first—g eneration LADDER
system, is very limited in the sorts of queries that it accepts.
Basically, IDA queries can only select a single set of tuples from the
data base applying simple boolean restrictions, perform some simple
computation on the set, and return the result of the computation or a

1
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projection of the set. This rules out many useful queries that involve

wore complex combinations of several sets of tuples. For example, if

the data base contained multiple position reports f or each ship taken
over a period of time, it would be impossible to obtain the most recent

postion report for each ship with a single IDA query. Retrieving this
• information would require searching the set of postion reports for each

ship to find the moat recent one and forming the set of the most recent

• reports for all the ships. The IDA query language cannot represent such

a request .

To overcome the limitations of IDA , the second—generation
system incorporates SODA (SOphisticated Data Access), a completely

redesigned data access component described in Section IV. SODA accepts
• requests f or information expressed in a much more powerful query

language than IDA. Examples of queries that can be expressed in SODA,
but not in IDA, include :

GIVE THE MOST RECENT POSITION FOR EACH AMERICAN SHIP.
WHICH AMERICAN SHIPS ARE LESS THAN 100 MILES FROM WHICH

SUBMARINES?
HOW MANY SH IPS ARE IN EACH SHIP CLASS?

• WHAT SHIP CLASSES HAVE THE MOST SHI PS IN THEM?
W HICH AMERICAN SHIPS ARE MORE THAN 500 MILES FROM EVERY

AMERICAN PORT?

To process a query , SODA plans what relations at what data

base sites must be accessed to retrieve the answer , constructs  the
nscsssary programs in the languages of the DBMSs involved , and requests
movement of data among the data base sites. The problems of distributed

query processing are much more difficult for SODA than for IDA because
of the increased complexity of the queries handled. These issues are

discussed in detail in Section IV.E, and the solutions chosen for

implementation in SODA are explained in Section IV.!.

4. Accessing Multiple DBMSs 
‘

Although th. first—generat ion LADDER system is able to

retrieve inf ormation from a distributed data bass, each data base site
must use the same DBMS——the Datacomputer. The second—generation system 

-
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has been extended to access data base sites running Digital Equipment
Corporation’s DBMS—20 system as well. This extension is discussed in

Section V. One of the reasons for choosing DBMS—20 was that it uses not

only a different query language from the Datacomputer , but also a

different data model. While we use the Datacomputer as a relational

data base, DBMS—20 is based on the CODASYL (14] network—structured data
- 

model,’ giving us maximum heterogeneity among the sites in our

distributed data base. The resulting system is, to our knowledge, the

only existing operational system to provide uniform access to a truly
heterogeneous data base. An example of query execution using both types

of DBMS is given in Section V.B, and a discussion of the relative merits
I of relational and CODASYL DBMSs for interactive query processing is

included in Section V.C.

* 
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II EXPERIMENTS WITH LADDER

A. THE DATA AND OUR RESPONSE

During the period covered by this report we acquired the first data

from sizable groups of LADDER users who were not computer—oriented. 
*

This data came from two sources: an experiment run at NOSC evaluating
LADDER in a simulated command—control environment (15], and transcripts
from 19 students taking a course in the command—control curriculum at

the Naval Postgraduate School (NPS). The questions that LADDER was

unable to handle have been analyzed and found to fit into three major

categories.

The first category is requests for information not in the data

base. This was particularly detrimental to the performance of the NPS

students. One of their major training aids was a workbook produced by

NOSC that was oriented toward the PC (Pacif ic Ocean) data base; however,
they were accessing the Blue File (Atlantic and Mediterranean) data
base. While we cannot do anything about inaccessible data, we have

improved the error messages to print out “<unknown—word> is not in
LADDER’s vocabulary” when a word-—cunknovn—word>——is not in the lexicon.
This should prevent users from wasting time trying alternative syntactic

constructions involving the word. The second category concerns

questions involving distance or direction. The coverage of this kind of

question has been broadened considerably, as suggested by the list
presented in Section II .D.

The third category of questions not handled by the system is what
the NOSC report calls “define word” and “define phrase. ” These were
surprisingly difficult for the users to understand and use. A major

source of their difficulty seems to hav• been that the NOSC workbook did

not correctly specify their use. At the time the evaluations took

place , the “define word” command required both the new word and the

10
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model to be single words (e.g., “DEFINE CAN LIKE DESTROYER” worked,
whereas “DEFINE LA LIKE LOS ANGELES” did not). However, the workbook
used for training both the NOSC and NPS users contained examples of the

form that did not work. It is understandable that users had trouble

with the feature and felt unhappy about LADDER, since it did not do what

they were told it would. Less significantly, two of the “define phrase”
examplls in the workbook also would not work as shown. (At least 7 of
the NOSC users’ errors—-over 6 percent—-appear to have stemmed f rom
these mistakes in the workbook.) Nevertheless, the form of the command

used in the NOSC workbook appears to be more natural and easier to use
than our original form. We have therefore extended LADDER to accept the
definition of new phrases on a phrase—by—p hrase basis rather than by

embedding them within a complete sentence (for example, by typing DEFINE

“ * PECOS” LIKE “WIThIN 700 MILES OF PECOS!’). In addition, the error

messages printed when a DEFINE command does not work have been expanded,

so that users may learn how to use the DEFINE capability more easily.

Also, spelling correction now is performed on the model sentence or
sentences.

A major criticism in the NOSC report was that, when a question

could not be handled by LADDER, it took far too long for LADDER to fail
and print the error message. By the time the NPS students took their

turn, and prior to our having seen the NOSC report, we had installed a
new feature that doubles the speed of parsing acceptable queries and
much wore than doubles the speed of rejecting unacceptable ones. We had

no complaints from the NPS students about the amount of time LADDER took

to fail.

B. THE VALUE 2! EXPERIMENTATION

We at SRI and our colleagues at ACCAT, NAVELEX, and ARPA had been
saying to one another for two years that incremental feedback from
people who are much closer than us to the operational community is
essential for the development of LADDER—like systems. Although we had
all been saying this , we got little such feedback until May , 1978. It
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wac surprising how many easily—c losed holes in the system were uncovered
by these evaluations. It is also surprising that, to a large extent,

the same holes were fallen into by user after user. This suggests that

it might have been worthwhile to have had more feedback earlier on.

This will become even more important as the issue of installing a
• system like LADDER in an operational environment is faced. The
• experiences of the NOSC and NPS users show very strongly that that

installation must be an evolutionary process. It cannot be done, for

example, by spending a few days at CINCPACPLT, coming home to work for a

year, and then showing up on their doorstep with the “completed” system.
It should not take much time from the operators, but some short

interaction every few months seems essential to the development process.

This may sound like a truism regarding bringing new systems into

operation, but it will be truer than ever in trying to develop a system

based on LADDER whose claim is that it works on the user’s own terms.

In summarizing the results of our response to the NOSC and NPS

users’ experiences, it appears that the new LADDER would now handle
about 90 percent of the NOSC questions. Most of the rest (e.g. ~lWhat

nation Pecos what owner,” “What is distance of Pecos ,” “Who is own,”

“When arrival Knox at Pecos?”) are questions that either do not have a

well—defined meaning or are simply beyond our current real—time

processing capabilities. Examples of inputs to LADDER that failed in
the NOSC experiments and now appear to work are given in Section lI D.

Thanks are due to Curt Blais and Hal Miller at NOSC and Gary Poock at

NPS for their help in providing us with the wealth of data. A second

class of command—control students are scheduled to try using LADDER in
the su er of 1979. The experience of this group will provide an

important indication of how rapidly a natural—language access system

such as UDDER can be made to converge on an acceptably high coverage of
the relevant questions that users wish to ask.

12
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C. CONCLUSION S

We have drawn several conclusions from examining the body of data

gathered during these experiments. These are subjective evaluations

that come from an admittedly technology—oriented perspective, but we

nonetheless believe they are valid.

1. - Importance of User Feedback

The most critical need we saw reflected in the data was for

• inf ormative and timely feedback to the user. At every stage of the -

query process our users would have doubts about the system ’s

performance. In response to their expressions of insecurity with
respect to the computer system, we installed the following features:

( 1) A paraphrase in English of each query to the data base.
(2) A character printed on the screen every three seconds

whi le  LADDER is w a i t i n g  f o r  r e s p o n s e  f r o m  t h e
Datacoaputer , to assure the user that the host machine
and the LADDER software are still operational.

• (3) Features enabling each user to check what extensions he
has made to the basic language accepted by the system.

(4) Improved error messages to provide more information about
why a query failed. In particular, a special message was
provided to be printed when a user uses a word that is
not in LADDER’s vocabulary, since this often implies that
he is asking about information not in the data base.

2. Importance of Flexibility

The experience of our users shows clearly that a good

interf ace must not only accept grammatically correct natural—language

inputs, but must attempt to determine the meaning of as wide a range as

possible of incorrect inputs. This supports several distinguishing

aspects of our approach to natural—language interfaces:

• (1) Spelling Correction —— The unsatisfactory nature of the
standard keyboard as a means of input for military
decision makers is clear. The NOSC experiment was
carried out with a Tektronix 4051 as a front end to

• LADDER. After the user typed in his query, he had an
opportunity to check and edit it before it was sent to
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LADDER. Never theless , 23 per cent of the queri..
contained a typing error. The spelling correction
capability of LADDER appears to be its most attractive
feature to new users.

(2) Ellipsis — For maximum efficiency, users’ queries should
be as short as possible. The results of our initial
experiments indicate that users are very creative in
shortening their inputs. LADDER’s ability to process
elliptical inputs has been extended to accept more kinds
of shortened queries, but further research in this area
appears to be needed.

• 3. Apparent Ada ptabilit y LADDER

Although a natural—languag. interface may function accordi ng
to specifications, it cannot be viewed as a tool of potentially wide
utility unless it can be easily changed as the specifications change.

If we view the NOSC and NPS users’ experiences as providing a modified

set of specifications, LADDER appears to be sufficiently adaptable, at
• least with respect to a given data base. An importan t thrust of our

next year’s work will be to extend this adaptability to new data bases
as well.

4. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Many of the gaps in coverage of users’ queries resulted from a
difference between the LADDER system’s normal use as a demostration

• vehicle and its exper imental use in a testbs d environment . Although
LADDER can be extended to serve both functions, it is di f f icul t  to
evaluate it as a purely t.stbed system when it has been “detuned ” to
function primarily as a demonstration vehicle.

D. ~ JESTIONS HANDLED fl ~~
MAP SELECTION AND DISPLAY COtIIANDS

Select map 200 miles from Pecos
Select a map 200 miles from Pscos
Show all ships 200 miles from Pecos
Select a map of area within 700 miles of Pecos

• Select a map of 1000 miles around )7.~~s,174.Sw
Select a map of 1000 miles from 37.66n,174.3~ 
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List (show) all ships in area
Select map from 37—40n ,174—30w

GEN ERAL/SPECIFIC INFORMATION QUERIES

Who is the owner
Who is OPCON of SAR— 1

-• List port of departure and destination port of Pecos
Where is Pecos coming from
What is port of departure and port of destination of Pecos
Name of OPCON of SAR— 1
What is Pecos port of registery
What is the home port of Pecos
What is ... of the listed ships
What is ... of th. ships on the list

TIME COMPUTATION QUERIES

What is the time for Rathburne to reach Pecos
• How long fo r Rathbu rne to reach Pecos

DISTANCE QUERIES

Display the distance of Pecos from here
What is distance of Pecos (presumed “from here”)
What is distance from Pecos to here
What is distance between Pecos and all ships within 700 miles

L What is distance from Pecos to all ships within 700 miles
What is the distance from Pecos to Connie, Biddle, R K Turner,

Halsey , Adelaide Star
What is distance between Pecos and San Francisco
What is distance from Pecos to San Francisco
What is the dist ance of sh ips wi thin 700 miles of the Pecos to Pecos
What is distance to Pecos r
What is distance of these ships from Pecos

• What is distance from Pecos to all ships within 700 miles of Pecos
- • What is distance from Pecos to constellation

List distances of all ships within 700 miles of Pecos
What is the distance of Pecos from Honolulu
What is the distance to Pecos of each ship

within 700 miles of Pecos
How far is Biddle from Pecos
How far is Pecos from all ships within 700 miles

DEFINITION OF WORDS AND PHRASES

Define (Daships) to be like (ship s with in 700 miles of Pecos)
Define (Prthst of Pecos) to be like (ports of departure of Pecos )
Defi ne (name SAR—1) to be like (name Rathburne and Knox)

• Define (? and Rathburne ) like (what is distance from Pecos
• and Rathburne)

1 
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Define distance Lik. what is the distance from
Define (what is the port of Departure $)

like (what is the port of depa rt ure of the Pecos )
Define ( length of the Pecos) like (what i. the length of

the peco )
Define last to be like 37—40n , 174—30i,
Define (wha t is the distance to last) like (what is the distance

• to 37—4~~, 174—3m, )
Define (wha t is distance from here to last ) like (what is distance

from here to 37—4~ i, 174—30s’)
Define (what is distance from Honolulu to last ) like (what is

distance from Honolulu to 37—4~~, 174—30w)
Define (range of Kennedy from Honolulu) like (what is the distance

of Kennedy f rom Honolulu)
Define (* Pecos) like (within 700 miles of the Pecos)
Define SAR— 1 to be like Ra thburne and Knox
Define (w) like (what is the)
Define (range) like (what is the distance of)
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I
III NEW USER FEATURES OF THE LADDER SYSTEM

A. QUESTIONS INVOLVING CALCULATIONS

In this section we review some of the advanced features of LADDER
and explain how they have been extended during the period covered by
this report. Some of these features enable the system to combine

• computation with data base retr ieval. This is a major advantage of

having a computer serve as the interface between a decision maker and a
dat a base , since the computer can perform complex calculations on the
data retrieved much faster and more reliably than a person. During the

• past year, we have implemented some examples of this kind of capability
in LADDER, but have not attemptàd to provide for all, the calculations a
naval decision maker might need.

LADDER atte mpts to handle questions concerning distances between
ships, which involve calculations dependent upon position information
retrieved from the data base, and questions concerning steaming times,
which require positioa information as well as current and maximum speed
values from the data base.

This past year , we have also implemented in LADDER a route
calculation routine for avoiding land masses. This routine uses a model
of the sea areas of the world and the junction points that must be
traversed between them. The particular model used by the current
version of LADDER is very simple and hence may give inexact answers; the

- -

5

- performance of the routines would improve with a more detailed model.
Som. questions the user can ask include:

HOW MANY MILES IS THE CONSTELLATION FROM HER NEXT PORT OF CALL
HOW FAR IS EACH AMERICAN DESTROYER FROM THE SOVIET CARRIERS
WHAT SHIPS CARRYING DOCTORS ARE WITHIN EIGHT HOURS’ STEAMING

T IME OP THE PECOS?
WHAT IS THE NORMAL TRANSIT TIME FOR THE KENN~ )Y FROM NORFOLK

TO GIBRALTAR
DOES THE SARATOGA HAVE EMOUGH FUEL TO REACH BUENO S AIR ES

WITHOUT REFUELING?

_______ — 
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HOW LONG WOULD IT TAKE FOR THE WAINWRIGHT TO GET TO NAPLES I -

WHAT IS THE BEST ROUTE FOR THE SUNFISH TO THE SKORY?

B. DISPLAYING DATA GRAPHICALLY

During the past year, we have implemented a very simple interface
with the Situation Display Graphics Subsystem 1131 , developed by the

Information Science Ins t i tu te  (ISI) of the University of Southern

California. Four special commands are provided to cause inf ormation to
be displayed in map format.

Before displaying any data base information the user must direct

LADDER to display a map. This is done with the SELECT command, which

consists of the word “select” followed by a region specification. For

example :

S SELECT A MAP OF THE NORTH ATLANTIC
SELECT THE AREA WITHIN 500 NAUTICAL MILES OF THE WORDEN.

After a map is displayed, ships or sets of ships may be added to it
or removed from it using the SHOW and ERASE commands. The context of

these commands is presumed to be the area on the display. For example,
after typing “Select a map of the Mediterranean , ” the command, ‘Display
all the carriers” will cause only carriers in the Mediterranean to bf

retrieved from the data base and displa7ed.

An additional command is provided to permit a graphic image to be

saved on disk. This command takes the form

SAVE <name) ,

where <name> is any valid file name.

C. EXTENDING THE RANGE OF QUESTIONS

It is impossible to provide a natural—language interface system

such as UDDER with an ability to accept all the questions that could
conceivably be asked about a given data base. Furthermore, frequent

users will want to develop their own shorthand questions for accessing

the data they often use. To meet these needs, LADDER allows each user
• to extend the grammar dynamically, by example, to handle new types of

18
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questions . The DEFINE command is used to extend the grammar by adding a
synonym, a new phrase, a paraphrase of a single question , or a

paraphrase of a sequence of questions, which ye call a macroparapbrase.

To add a synonym of a word that is known to the system, the user
may just type

DEFINE <new—synonym> LIKE <known-word>.
For example ,

DEFINE CONNIE LIKE CONSTELLATION

will permi t a question such as
WHO COMMANDS CONNIE?

to be handled.

To add a new ph rase , the user may type
DEFINE “~nev—phrasE” LIKE “<known—phrase>”

where <known—phrase> is any sequence of words that the system could

accept in some sentence. Either <new-phrase> or <known—phrase> can be a
single word. Examples of this feature include:

-
• DEFINE “MEDSHIPS” LIKE “SHIPS WITH A DOCTOR ABOARD”

DEFIN E “TIN CAN” LIKE “DESTROYER”
•

: DEFINE “SHIPS OF INTEREST” LIKE “SHIPS WITH A DOCTOR ABOARD
WITHIN 400 MILES OF PECOS .”

• These new phrases are handled by LADDER by subatituting the known phrase

f or the new phrase whenever it occurs in a question , befo re the parsi ng
• 

~
•

of the sentence begins. LADDER will retype the user’s question with the -

substitution when it is performed.

LADDER permits the user to add an entirely new question format by

example. To do so, the user must provide LADDER with an example of how

• the extension is to be used in the context of a complete sentence. This

is done by typing,
• DEFINE “<new—sentence>” LIKE “<known—sentence>”,

where <known—sentence> can already be handled. For example,
• DEFINE ‘CARRIERSTAT MEDITERRANEAN” LIKE “WHAT IS THE CURRSNT

POSITION, FUEL STATE, AND READINESS STATUS OF ALL
• S CARRIERS IN TIlE MEDITERRANEAN”

will cause the new pattern

CARRIERSTAT <MACRO.LOC)

to be added to the gra r . Subsequently, questions like

Si  

1~ 
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CARR IERSTAT NORTH ATLANTIC

will be accepted by LADDER.

During the past yea r , we have provided a novel facility for

allowing a new question to substitute for a sequence of old questions ,
each of which is already understood by LADDER . The define command is
still used , but the model (the part following “like”) can be a sequence

of questions. For example,

DEFINE “GIVE AN OVERVIEW OF JFK” L IKE “WHAT IS THE TYPE,
LENGTH, BEAM , AND DISPLACEMENT OF JFK? WHAT WEAPONS DOES
SHE CARRY? WHO COMMANDS tIER? WHAT IS HIS LINEAL
NUMBER? ”

will add to the grammar the pattern :
GIVE AN OVERVIEW <OF> <SHIP>.

this will permit questions such as ,
GIVE AN OVERVIEW ABOUT ALL THE US SUBMARINES

to be answered.

When the define command is processed by LADDER , each sentence in

the model is parsed (spelling correction will be performed if necessary )
but the data base is not queried to answer the questions. When a

macroparaphrase is processed by LADDER, each question in the model is
typed out before LADDER proceeds to answer it.

D • ELLIPTIC.AL QUESTIONS AND COMMANP~

UDDER accepts not only comp lete sen tences , but also sentence
f ragments that can be interpreted in the context of the previous

sentence. The syntactic term for this condition, in which words of the

second sentence are left out but implied, is ellipsis.

When an input cannot be interpreted as a complete sentence, lADDER

types out the message, “trying ellipsis:”, and then checks to see if it

is analogous to any contiguous string of words in the previous sentence.

If it is, the input is substituted for that string and the resulting new

sentence is printed out. LADDER then proceeds to carry out the

resulting request. Examples of valid elliptical inputs in the context

of the previous question, “WHAT IS TUE LENGTH OF THE SANTA INEZ” 1

include:

20
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THE BEAN AND DRAFT
HOME PORT OF THE AMERICAN CARRIERS
PRINT THE NATIONALITY
KITTY HAWK

During the past year , we have extended the ellipsis capability to
handle phrases such as:

WHAT ABOUT X
where x is a sentence fragment. Thus LADDER will now accept the
sequence:

WHAT IS THE LENGTH OF FOX?
WHAT ABOUT DRAFT?

Elliptical fragments can also be added to the end of the previous
sentence, as in the sequence:

WHAT ARE THE US CARRIERS?
IN THE MED?

E. MONITORING SYSTEM BEHAVIOR

1. Paraphrasing Data Base Queries

When the user types a question to LADDER , it is printed on the
terminal . In addition LADDER now produces a paraphrase of the queries
to the data base required to reply to the question . This paraphrase
provides a means fo r the user to check that UDDER has interpreted his
question properly. There may be more than one paraphrase produced if
more than one data base query is required to answer a given question .
For example , if the user asks, -

•

WHAT SHIPS WITH A DOCTOR ABOARD ARE WITHIN 900 NAUTICAL MILES
OF THE BRITISH BOMBARDIER?

LADDER will print out
For SHIP equal to BRITISH BOMBARDIER, give the POSITION and

DATE.
and, subsequently,

For DOCTR equa l to D and great circle distance to 46—33N , 21
1 29W less than or equal to 900, give the SHIP.

(46—33N , 21—29W is the position of the British Bombardier determined
f rom the previous query.) These two paraphrases together constitute
LADDER’s interpretation of the user’s question.

21
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2. Timina

In the past, users of LADDER have pointed out that there may
be long periods when nothing seeme to be happening. To alleviate this
sense of f rustration, LADDER now types a dot wheneve r a command is sent

to the D.tacomput.r, and counts the number of three—s econd intervals
tha t elapse as it waits f or the answer. This will inform users that

LADDER is functioning properly and awaiting action from the data base.

22
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IV HANDLING COMPLEX QUERIES IN A DISTRIBUTED DATA BASE

A. INTRODUCTION

As part of the continuing development of the UDDER system, we have
substantially expanded the capabilities of the data base access

component that serves as the interface between the natural—language
f ront end of LADDER and the data base management systems on which the

• data is actually stored. SODA, the new data base access component, goes

beyond its predecessor IDA [6], in that it accepts a wider range of

queries and accesses multiple DBMSs. This section is concerned with the

first of these areas, and discusses how the expressive power of the

query language was increased , how these changes affected query

processing in a distributed data base, as well as what are some

limitations of and planned extensions to the current system.

To explain the new features of SODA, it will be useful to review
briefly the capabilities of IDA. IDA is designed to access a relational k
data base. That is, it expects the data base to be organized as a set

of relations (files), each of which contains a set of tuples (records)

that are in turn composed of various fields . The IDA query language
permits the user to view the entire data base as if it were a single
relation, with IDA being responsible f or planning which actual data base

relations have to be accessed to answer the query. An IDA query is

S 
interpreted as a request to:

(1) Generate the set of all tuples satisfying a given
description expressed as a Boolean combination of simple
comparisons on the fields of the tuple.

(2) (Possibly) select the member of the set for which some
attribute is largest or smallest, or count the members of

• the set.

(3) Return the values of certain attributes for each member
(or for the selected member) of the set.

23
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For instance, in the Blue File command and control data base (111

which we have been using, the English query , “What is the longest

American ship?” could be expressed using IDA as :

((* MAX LGHN)(NAT EQ ‘US ’)( ?  NAIl) )

The term (NAT EQ ‘Us’) tells IDA that the tuples we are interested
in are those for which the NAT field has the value ‘US’, i.e the tuples

pertaining to American ships. The term (* MAX LGHN ) tells IDA that we

want to select f rom this set of tuples the tuple for which the field
LGRN has the highest value, i.e. the tuple for the longest American

S ship Finally , the (? NAN) field tells IDA that we want to return the
value of the field NAN from this tuple, i.e. the name of the longest

F American ship .

L 

IDA would interpret this query by finding the smallest set of

relations in the data base that contains all the fields mentioned in the

query and specifying to the DBMS what it believes to be the semantically

mean ingful links among those relations. IDA then generates a program in

S 
the DBMS access language that inte rprets the query with respect to these S

selected relations .

This approach limits the expressive power of the query language in
a number of ways. First, only one set of objects can be talked about in
each query . The only way in which two sets of objects can be referenced

is if the set that the query is “about” is their intersection or union.

Thus we can express the query “Which ships are American submarines?”

(intersection), or “Which ships are American or are submarines?”

(union), but there is no way to express “Which American ships are less

than 100 miles from which submarines?”

Another restriction is that only one maximization, minimization, or
count operator is allowed in each query , and it ~ *st be applied after
all other operations. For example, we cannot express as a single query
“How many ship s are in each ship class?” since this requires forming a
set of counts , rather than simply counting a set. Also , we canno t
express “Which ship class has the most ships in it?” since this

requires a count operator and a maximization operator in the same query.

24
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Finally, only Boolean restrictions are allowed in specifying a set

of objects. That is, all restrictions must be simp le comparisons
between fields or predefined functions of fields (such as distance

functions computed on position fields), or combinations of simple

comparisons using AND and OR. Thus IDA gives us no way to express a
restriction involving a quantifier as in “Which American ships are more
than 500 miles from every American port?”

B. EXPRESSING COMPLEX QUERIES IN ~9DA

The features of the SODA query language enable it to overcome all
of the limitations of IDA discussed in the previous subsection. It
allows queries that refer to more than one set of objects, it permits

queries to specify the logical scoping of operations, and it allows

quantifiers to be used in specifying restrictions on sets of objects.

This subsection informally discusses a number of examp les which
illustrate these points. The details of the syntax of the SODA query

language may be found in Appendix A.

In the examples, we will assume that we have the following subset

of a simplif ied Navy command and control data base:

SHIP: (NAN , CLASS, TYPE, NAT, LGHN, POS)

SHIPCLASS : (CLASS , TYPE , LGHN, DRAFT, BEAM)

PORT : (PRAM , PNAT, PPOS)

-

• 
In the SHIP relation, NAN is the name of the ship, CLASS ii her

class, TYPE is her type (e.g. ‘SS for submarine), NAT is her

nationality, LGHN is her length , and POS is her current position. The

SHIPCLASS relation gives information that is common to all ships of the

same class. CLASS, TYPE, and LGHN are as in the SHIP relation , and
DRAFT and BEAM are th. correspondi ng dimensions of the ship s in the
class. In the port relation , PNAN is the name of the port , PNAT is the

country in which the port is located , and PPOS is the geographical

position of the port . We will also assume that the DBMS has the ability
to compute the function GCDIST, which gives the great circle distance

between two geographical locations.

25
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SODA avoids the first limitation of IDA , the inability to refer to
more than one set of objects per query , by using an IN expression to

associate a variabl. with each of the sets we want to mention in the

query . The query “Which American ships are less than 100 miles from
which submarines?” (which could not be exp resse d in IDA ) can be

-
. expressed in SODA as:

((IN Si SHIP ((Si NAT) EQ •US’))
(IN S2 SHIP ((S2 TYPE) EQ ‘SS’))
( (GCDIST ((Si POS) (52 POS))) LT 100)
(? (Si NAN) )
(? (S2 NAN)))

In this SODA query the expression (IN Si SHIP ((S i NAT) EQ ‘US’))
sets the variable Si to range over tuples in the SHIP relation for which

the NAT field has the value US ’, i.e tuples fo r  American ships.

Similarly , the expression (IN S2 SHIP ((S2 TYPE) EQ ‘SS’)) causes S2 to

range over tuples for submarines. Then for each pair of ships in the

Cartesian product of these two sets , the additional restriction

((GODIST ((Si PTP) (S2 PTP))) LT 100) is applied. That is, we check

whether the great circle distance between the two ships is less than 100

miles. For each pair of ships that satisfies all these restrictions, we

return the names of the ships. This is indicated by the selectors

(? (Si NAN) ) and C? ($2 NAN)).

We can illustrate SODA’s ability to express the relative scoping of

operations with the query, “How many ships are in each ship class?”

• This could be expressed in SODA as:

((IN C SHIPCLASS)
(COUNT CNT 1

(IN S SHIP ((S CLASS) EQ (C CLASS))))
• C? (C CLASS))

(? CNT 1))

The form of a counting operation is a list where first element is

the symbol COUNT , the second element is a count variable, and the rest
of the list is a subquery which defines the set of tuples to be counted.

The effec t of a count operation is to set the value of the count

26 
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variable to the number of tuples in the indicated set . Is this example ,
since the set to be counted is defined in terme of the field (C CLASS),

and since this occurrence of C is bound outside of the COUNT expression
and ra nges over all tup les in the SHIPCLASS relation , the query is

interpreted to mean that the count operation is to be performed once for

every tuple in the SHIPCLASS relation. Thus, the interpretation of the

entire query : for .ach tuple in the SHIPCLASS relation, count the number
of tuples in the ShIP relation which have the corresponding value for

the CLASS field and return the name of the class and the count.

An example of of a COUNT and a MAX in the same query is provided by e
the SODA representation of the query , “What ship classes have the most
ships in them?” :

(O1AX CNT1
(IN C SHIPCLASS)
(COUNT CNTI

(IN S SHIP ((S CLASS) EQ (C CLASS)))))
C? (C CLASS))
C? CNTI))

This query simply embeds the body of the preceding query inside a

maximizing operation over the count variable . The basic fo rm of a
maximizing operation is a list where the first element is the symbol
MAX, the second element is the term to be maximized, and the rest of the 

-

list is a subquery that defines the set of tup les to be maximized over.
In this case the term to be maximized is CNT 1 in the set consisting of

the tuples in the SHIPCLASS relation augmented by the corresponding

values of CNTI, the number of ships tn each ship class. The effect of

the MAX operation is to set the occurrences of the variables bound by

the MAX (in this case C and CN TI)) to range over the values for which

the maximized quantity has the greates t value . So in this example , the 
S

MAX operation sets the variable C to range over the tuples in the

S 
SHIPCLASS relation for the ship classes with the most ships in them and

S 
sets CNT 1 to the corresponding number of ships. The rest of the query

simply returns the name of those ship classes and the number of ships

they contain.
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F ina lly , SODA includes several types of quantifiers that can be
used to express complex restrictions on the sets of objects referenced
by queries. As an illustration of the use of a quantified restriction ,

recall that there was no way in IDA to express the query “Which American
ships are more than 300 miles from every American port?” In SODA this

could be expressed by:

((IN S SHIP ((S NAT) EQ ‘US’))
(ALL (IN P PORT ((P PNAT) EQ ‘US’))

((GCD1ST ((S POS) (P FF08))) CT 500))
(? (S NAN )))

The first line of this query restricts the system’s attention to
American ships via a simple restriction on the SHIP relation. The

second expression in the query further restricts this set but involves a
universal quantifier. The simplest form of a universally quantified

restriction is a list consisting of the symbol ALL, an IN expression ,

and any number of restrictions. An ALL restriction is satisfied if all

the tuples in the set specified by the IN expression satisfy all the

restriction, in the list. If there is more than one binder expression
in the list, then the join of the sets they specify must satisfy all the

restrictions in the list.

In the current example, all the values of P that satisfy

(IN P PORT ((P PNAT) EQ ‘US’))

must also satisfy

((G~DIST ((S POS) (P FF08))) CT 500)

for the ALL restriction to be satisfied . Informally , this means that
all American ports must be more than 500 miles from the ship in

question, for that ship to meet this restriction. Finally, the NAN

field from every tuple that meets these restrictions is returned to the

user.

A SOME restriction has the same syntactic form as an ALL

restriction , the differenc e in inte rpretation being that the restriction

28
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is satisfied if some tuple in the set sp ec i f ie d by the binder

expressions satisfies the other restrictions within the SOME expression .
Thus, to change the previous query to “Which American ships are more

than 500 miles from some American port?” we only have to replace the
ALL by a SOME:

((IN S SHIP ((S NAT) EQ ‘US ’))
(SOME (IN P PORT ((P PHAT) EQ ‘US ’))

( (GCDIST ((S POS) (P PP OS))) CT 500))
(? (S NAN )))

Notice that in these examples, there are some restrictions placed -

inside the IN expression itself and some restrictions placed after the

IN expression. In a SOME restriction this distinction is of little

consequence, since placing a restriction one place or the other does not

change the interpretation of the query. If we place a restriction

inside an IN expression, we are using it to define the set that is being
quantified over. This is equivalent, however, to quantifying over a -

less restricted set, but being more restrictive as to the additional

conditions that one of the members of the set has to satisfy, which is

the interpretation of placing a restriction outside the IN expression.

Thus, we could have expressed the previous query by either of the

following expressions : S

((IN S SHIP ((S NAT) EQ ‘US’))
(SOME (IN P PORT)

((P PNAT) EQ ‘US’)
( (GCDIST ((S POS) (P PPOS))) CT 500))

(? (S NAN))) S

or

((IN S SHIP ((S NAT) EQ ‘US’))
(SOME (IN P PORT ((P P 1IAT) EQ ‘US’)

((GCDIST ((S POS) (P PPOS))) CT 500)))
(7 (S HAM)))

In an ALL restriction, however, this distinction is crucial. If we
move a restriction from inside an IN expression to outside , the

interpretation is changed completely , since instead of the restriction

partially defining what set is being quantified over, it partially
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defines the condition that all th. members of the set must meet. In

this respect the syntax of the SODA query language is designed to mirror 
S

the syntax of A~nglish, so that the process of translating from English

to SODA will be simplified . The idea is that the restrictions deri ved 
S

from noun phrase modifiers like “Amer ican” in “all American ships” would
be placed inside an IN expression, but restrictions that come from
predica te modifiers would be placed out side the IN expression. If this H
rule is followed, then the resulting SODA queries will exactly capture

the differenc . between “Are all Amer ican ships submarines?” and “Are

all ships American submarines?” Conversely, the SODA queries for “Are
some American ships submarines?” and “Are some ship s American

- I submarines? ” will be logically equivalent , as are the English

questions.

As a final point on this topic, it should be noted that, although

the two questions with “some” must have the same answer, they do differ S

slightly in what they suggest about the assumptions of the person asking

the question. “Are some American ships submarines?” suggests that ha

believes that there are American ships, whereas “Are some ships American

submarines?” suggests on ly that he believes that there are ships. As

Kaplan (161 has pointed out , it can be very important to inform the user
of a data base system when the assumptions behind his queries are wrong,

S 
so that he can pro perly interpret the answers be gets from the system .
The distinction in SODA between restrictions inside an IN expression and
those outside could be used to differentiate the restrictions whose

satisfiability the user is assuming, from those whose satisfiab lity he

is Questioning .

S I C • EXPANDING VIRTUAL RELATIONS ~~ ~~~~~~ ~~ RELkTIONS

In the previous subsection, we assumed that SODA always used the

relations specified by IN—expressions to retrieve the requested fields.

For instance , if the variable S is introduced in the expression

(IN S SHIP), then any subsequent reference such as (S NAN) would be

interpreted as indicating the NAN field in the SHIP relation.

30
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S In fact SODA is more flexible than this. The relations specified

in the initial SODA query are interpreted as virtual relations that may
refer to fields stored on several actual data base relations. In SODA,
there is one virtual relation for each type of object that we want to

talk about (i.e. allow as the value of a variable), and for each type

of object there is a schema that indicates the semantically meaningful

way s of — linking f ields in d i f f e r e n t  relations . (In the current
implementation, the same schema is used for all virtual relations. This
is an artifact of the particular data base being used, and would not be

possible in general.) For instance , the schema for the virtual SHIP

relation would specify that when talking about a ship, if we mention a

field in the data base SHIP relation (e.g. NAN) and another field in 
S

the SHIPCLASS relation (e.g. DRAFT), then the way to link them is to
join the two relations vi, the CLASS field.

SODA uses this information to transform the references to virtual

relations in the initial query into references to actual data base

relations. It does this by scanning the query for all the fields

mentioned in connection with each variable introduced by an IN

expression. It then uses the schema for the virtual relation that the

variable ranges over to find the smallest set of data base relations

S 
that include all the fields and to specify the links between these

relations. SODA then replaces the original IN expression that mentions

the virtual relation with a series of IN expressions that mention the
selected data base relations and specify the joins between them. The -

ref erences to the fields in the virtual relation are replaced by the

corresponding references to fields in the data base relations. For

example, if we wanted to retrieve the name and draft of all the ships in
the data base, the initial query would be:

((IN S SHIP)
(? (S NAN) )
(? (S DRAFT)))

Since the NAN field occurs only in the data base SHIP relation and
since the DRAFT field occurs only in the SHI PCLASS relation , both -

relations must be accessed. SODA therefore transforms this query intoz 
S
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((IN S SHIP)
(IN C SHIPCLASS ((C CLASS) EQ (S CLASS)))
(? (S NAN) )
(? (C DRAFT)))

In this expanded query, SHIP and SHXPC LASS are interpreted as being

actual data base relations , whereas in the initial query SHIP was

interpreted as a virtual relation.

In expanding references to virtual relations , SODA must  choose

which relation to use to retrieve a particular field if that field is

available from more than one relation. In our sample data base the type

and length of a ship can be retrieved either from the SHIP relation or

the SHIPCLASS relation. To solve this problem , SODA uses heuristic 
S

techniques developed for IDA to attemp t to minimise the number of

relations accessed. For more information on how this is done, see (6].

Another problem for SODA is to choose the order in which to access

the relations mentioned in a query . We could interpret a SODA query as
specifying a particular procedure by making a fixed processing strategy

(such as strictly sequential processing) part of the definition of the
5 

language. The user would then be responsible for determining the order
in which relation. are accessed by choosing the order in which they are
mentioned . Since SODA’s main purpose is to be the target language for a
natural—language processor that makes no attempt to order the queries it
generates for efficiency, we use a few simple heuristics to reorder the
initial query. First , restrictions are applied as soon as all the

relations that they mention have been accessed , since this cuts down the
amount of data that must be processed in the rest of the query. Next ,

any maximization, minimization, or counting expressions that can be

processed are taken , since these expand the amount of data only

slightly. After these expressions , IN expressions which can i ediately

be restricted are preferred over IN expressions which cannot. These

heuristics are all intended to help choose the most restricted parts of
the query first in hopes of minimizing the size of intermediate results.
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D. PROBLEMS IN DISTRIBUTED PROCESSING OF COMPLEX QUERIES

If all the relations mentioned in an expanded reordered SODA query
S are stored at one data base site, then all that remains to be done is to

translate the query into the query language of the DBMS at chat site and
execute the query. If, however, the data is distributed over two or
more sites, some strategy must be devised for combIning information from

several locations.

Wha t type of strategy is used will depend on assumptions about the
relative efficiency of various operations. Since our data base is

distributed over several sites on the ARPANET, a relatively low—speed 
S

communications channel , we have assumed that query processing will be
most efficient if as much work as possible is done at a single site, and
the amount of data transmitted between site3 is kept to a minimum. (If
transferring data between sites were fast compared to query processing
at one site, the best strategy might be to spread the data over as many

sites as possible to take advantage of concurrent processing.) F.

Given these assumptions, there seem to be two simple approaches 5

that might be followed. One approach is to move all the relevant data

to a single data base site and execute the query in one access to that

site. We will call this the centralized approach. An efficient

implementation of this approach would involve doing any local processing
that would reduce the amount of data transmitted , such as taking
projections , restrictions, or joins of relations , before sending the
data to the primary site.

The other approach , which we will call the incremental approach , is
to decompose the query into a series of simpler queries , each of which
can be executed at a single data base site. Then each query is executed

S in turn at the corresponding site, and the results are transferred to
the site where the next query is to be processed and combined with the
information there. An efficient implementation of this approach would

attempt to order the execution of the queries so as to minimize the 
S

total amount of data transmitted.
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These two approaches do not exhaust the range of possibilities, of

course. In fact, from a slightly more general point of view , they can

be seen to be the two extremes of a spectrum. Since the final answer to

a query will be generated at only one of the data base sites, we can

view the problem of distributed query processing as how to organize the
data base sites as a “data—flow t ree , ” w i t h  inf o r m a t i o n  be ing
transmitted up the branches towards the root, where the final answer is

generated. From this point of view, the centralized approach limits its

attention to the maximally branching, minimally deep trees , and the

incremental approach limits its attention to the minimally branching,
maximally deep trees . The most efficient organization may well be found
in one of the intermediate possibilities, but we only consider these two
approaches, as they are the easiest to implement.

$
If used intelligently, the incremental approach is often much more

efficient than the centralized approach. The reason for this is not

hard to see. Using the incremental approach, if we begin processing

with a partial query that is highly restricted, that restriction will be r
“inherited” by all the subsequent partial queries that are processed,

since at every stage we combine everything we have done so far before

transferring the data to the next site. In the centralized approach,

however, any processing that is done before transferring data is done

independently of processing at other sites, so there is no way to take
advantage of restrictions that may have been computed elsewhere.

For instance, in our sample data base, suppose that the PORT

reiation and the SHIPCLASS relation are stored at site 1 and the SHIP

relation is stored at site 2. If we wanted to know the name and draft
of all the ships currently in American ports, we would have to access

all three relations and, therefore, both data base sites. The expanded S

SODA query for this request would be:

((IN P PORT ((P PHAT) EQ ‘US’))
(IN S SHIP ((S POS) EQ (P PPOS)) )
(IN C SHIPCLASS ((C CLASS) EQ (5 CLASS)))
(? (S NAN))
(? (C DRAFT) ))

34

_ _-  
- - S  5-

S S 
- S -i—- -- - S 

SS~_S_~_S
_5~5_5~ 

- ~~~~~~~~~~~~~~~~~~~~~~~~~~
55 - , _ - L . . . 

--



I

The most natural way of processing thi3 query using the incremental
approach would be to retrieve the locations of American ports from
site 1, transfer this information to site 2 to find the names and

classes of the ships at these locations, and then transfer that

information back to site 1 to f ind the drafts of the ships and return
the answers. Presumably, the amount of data transferred during this

process would be significantly smaller than the amount that would be

L transferred either by moving the required fields of the SHIP relation to

site 1 or by moving the required fields of the SHIPCLASS and PORT

relations to site 2, as would be required by the centralized approach.

Examples such as this suggest that the incremental approach is to
be generally preferred to the centralized approach. However, in

complex, quantified queries , which are the major concern of our work on
SODA, the incremental approach may be impossible to apply . This fact
seeLls not to have been generally recognized in the l i terature  on
distributed query processing (e.g., (17]), where joining is typically

the only method considered for combining data from two or more

relations.
t

The problem of distributed query processing is considerably

simplified by considering only joins for two reasons: First, joins

specified over more than two relations can always be decomposed into a

series of binary joins. Thus, if some of t1~e relations to be joined are

at one site and some are at another site, the relations at the same site

can be processed first, and the intermediate results can be combined

later. In the previous example, the query specified a join over the

PORT, SHIP, and SHIPCLASS relations. In processing, this was decomposed
into a join over the PORT and SHIP relations, and a join between the

result of this operation and the SHIPCLASS relation.

The second simplification that joining permits is that , since the

join operation is associative, it doesn’t matter logically how the
5 decomposition is done. Therefore, the decomposition can be chosen to

suit the way the data is distributed. In our example we first joined

the PORT relation to the SHIP relation and then joined the result of

i
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that operation to the SHIPCLASS relition . If the distribution of the

data or the expected sizes of intermediate results had been different ,

however, it might have been more effi cient to join the SHIP and

SHIPCLASS relat ions first, and then add in the PORT relation.

In complex, quantified queries, on the other band, the possible

ways of decomposing queries are much more restricted. It is often -:
impossibl . to break up queries to match the distribution of the

relations, and in some cases, queries over several relations cannot be

decomposed at all.

This point can be illustrated by changing our previous example
slightly. Consider the same query, finding the name and draft of all

ships in American ports , but with the PORT and SHIP relations at site 1

and the SRIPCLASS relation at site 2. In this case, it is probably most
efficient to find the ships that are in American ports by joining the

PORT relation and SHIP relation at sit. 1 and transfer the result to

site 2 to join it with the SHIPCLASS relation to form the final answer.

Now let us alter the query so that it includes a universal
quantifier, but still refers to the same relations in the same order,
e.g., “Which American ports contain only ships which have draft greate~

S than 50 feet?” :

((IN P PORT ((P PRA T) EQ ‘US’))
(ALL (IN S SHIP ((S POS) EQ (P PPOS)))

(IN C SHIPCLASS ((C CLASS) EQ (S CLASS)))
((C DRAFT ) GT 30))

(? (P PDEP)))

S 
The logical s t ruc ture  of this SODA query can be indicate d by
paraphrasing it back into English as follows:

For each tup]. P in the PORT relation
with (P PNAT) equal to ‘US’

much that, for ~~~ tup les S in the SHIP relation
with (8 POS) equal to (P PPOS)

and ~~~ tup]es C in the SRIPCLASS relation
with (C CLASS) equal to (S CLASS),

S (C DRAFT) is greater than 30,
return (P PDEP).
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Since the PORT and SHIP relations ar. both stored at site 1, and

since there is a link specified between them, ((S POS) EQ (P ?POS)), we
would like to decompose the query by firs t operating on these two
relations and transferring the intermediate result to site 2 for -

processing with the SHIPCLASS relation. Unfortunately , the universal
quantifier ALL does not permit any such decomposition. There is no way

to combine the data referred to outside of the ALL expression with only

part of the data referred to inside. We would need a distribution

principle analogous to A*(B+C ) — (A*B)+(A*C ) to distribute the universal

quantifier over th. relations mentioned inside of the ALL expression,

but no such principle exists.

Any query decomposition that is performed must respect the scope of
quantifiers. We can independently process a portion of a query that

lies entirely within the scope of a quantifier or entirely outside the

scope of a quantifier , but we cannot independently process a portion of

a query tha t splits the scope of a quantifier .

By nesting quantifiers more deep ly, it is possible to construct

queries over several relations that cannot be decomposed at all .

Suppose we wanted to know the ship classes for which every American port
S contains some ship in that ship class. This could be represented in

SODA as:

((IN C SHIPCLASS)
(ALL (IN P PORT ((P PNAT) EQ ‘US’))

(SOME (IN S SHIP ((S POS) EQ (P PPOS))
((S CLASS) EQ (C CLASS)))))

(? (C CLASS)))

The English paraphrase of this SODA query would be:

For each tup le C in the SHIPCLASS relat ion
such that, I or all tuples P in the PORT relation

with (P PNAT) equal to U8 ,
there is some tuple S in the SHIP relation

with (S P08) equal to (P PPOS)
and (S CLASS) equal to (C CLASS),

S 
- return (C CLASS).
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This query cannot be decomposed. V. cannot combine the data from
the SHIPCLASS relation with the data from either the SHIP relation atone
or the PORT relation alone, because this would cut across the scope of a
quantifier. For the same reason, the SHIP relation and PORT relation

cannot be combined without processing the whole SOME restriction. But

this cannot be done independently of the SHIPCLASS relation, because the
S SOME restriction refers to the data from the SHIPCLASS relation via the

term (C CLASS). Answering this query, therefore, require. simultaneous

access to three relations.

Even though in queries such as these we cannot always combine

relations locally before transferring data, we still can use projections

and restrictions to cut down the amount of data that must be

transferred. It turns out that in some cases we can add logically
redundant restrictions that have this effect, although this is not done
in the current implementation . Recall the previous query , “Which
American ports contain only ships which have draft greater than 50

feet?” We could add a redundant restriction without changing the answer

to the query and get “Which American ports contain only ships which are

in some American port and have draft greater than 50 feet?” The SODA S

representation of the modified query would be:

((IN P PORT ((P PHAT) EQ ‘US’)) P
(ALL (IN S SHIP ((S POS) EQ (P PPOS) ) - S

(SOME (IN P1 PORT)
((P1 PNAT) EQ ‘US’)
((P 1 PPOS) EQ (S P08))))

(IN C SHIPCLASS ((C CLASS) EQ (S CLASS)))
((C DRAFT) GT 50))

(? (P PDEP)))

We still cannot independently combine the data generated by the
expression (IN P PORT...) with the data generated by (IN S SHIP...),
but if the PORT and SHIP relations are at the same site, we can compute
the restrictions on (IN S SHIP...), including the restriction to ships

in American ports using (IN P1 PORT...). So, although this restriction

is logically unnecessary, it permits us to transfer much less data than
would be required without it.
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r
B. DISTRIBUTED ~~JERY PROCESSING ~~ SODA

As the previous subsection indicated, complex queries do not always
permit decomposition into sequences of simpler queries that match the
distribution pattern of the data base. As a result , we have chosen to
base the initial implementation of SODA on the centralized approach to
di s t r ibuted query processing . In doing so , we have t r aded  the

efficiency of the incremental approach in handling simpler queries for
the generality of an approach that handles the more complicated queries
which are our primary interest. A more sophisticated imp lementat ion
could employ a mixed strategy , using the incremental approach when it is
applicable and falling back on the cent ralized approach when it is not.
Also , we have not implemented the type of query transformation discussed
in the preceding subsection , since further research is needed to

determine what the scope and limits of such techniques are.

In processing a query , SODA must f i rst decide which data base site
to use as the primary site for executing the query. A set of reasonable
candidates is selected by starting with a list of all the sites that

contain at least one of the relations mentioned in the query. Then

- 
redundant sites are eliminated until no site remaining in the list has
the property that some other site in the list contains all the relations

mentioned in the query that are contained by that site. Processing of

the query is then simulated, trying each of the remaining sites as the

primary site. The choice of primary site that appears to result in the

least amount of data being transferred is selected to be the primary

site for actually processing the query. This measure is currently S

S crudely estimated by choosing the site that results in the fewest

unrestricted queries requesting data from a secondary site. If this

leaves more than one possibility, then one of those that results in the
f ewest restricted queries is chosen . A query is considered to be
restricted if there is a restriction on any of the relations mentioned
in the query .

Once the primary data base site has been chosen, SODA reformulates

the query for execution at that site. The query is examined , one

- _
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expression at a time. Expressions which refer only to data that is

already at the primary site are left unchanged. If an expression refers

to data that is not stored at the primary site, then this data is
transferred to a temporary relation at the primary site, and the query

is reformulated to refer to this relation. To take an example from
Section IV.D, recall that the SODA query for retrieving the name and

draft of all ships in American ports is:

((IN P PORT ((P PNAT) EQ ‘US’))
(IN S SHIP ((S POS) EQ (P PPOS)))
(IN C SHIPCLASS ((C CLASS) EQ (S CLASS)))
(? (S NAN)) -
(? (C DRAFT)))

If the PORT relation is stored at site 1 and the SHIP and SHIPCLASS
relations are stored at site 2, site 2 will be chosen as the primary

site for execution of the query , as this results in only a single

restricted query being executed at a secondary site. Since the PORT

relation is not stored at site 2, SODA first obtains the information
needed from the PORT relation by dispatching the query: 

S

(( IN P PORT ((P PNAT) EQ ‘US ’))
(? (P PPOS)))

to site 1 and stores the result in a temporary relation at site 2, say
in field FIELDI of relation TEMP1. The t ransferred data is constrained
as much as possible by applying the restriction ((P PRAT) EQ ‘US ’ ) )
before the transfer , and only the fields required by the rest of the

query are moved, in this case, just the PPOS field. The main query is
now reformulated as:

((IN T TEMP1)
(IN S SHIP ((S POS) EQ (T FIELD1)))

S (IN C SHIPCLASS ((C CLASS) EQ (S CLASS)))
(? (S NAN))
(? (C DRAFT)))

S Since the query now refers only to relations stored at site 2, it can be
executed in a single access to that site.
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The process just described is complicated somewhat by a set of

issues involving redundantly stored data and error recovery . One of the
principal advantages of a distributed data base is that the system can
be made more reliable by storing data redundantly at several data base
sites. If this is done, then the system can tolerate failure of one or
more data base sites and still be able to answer all the queries covered
by the data base (although not always with the most recent information). S

In SODA, therefore , we take into account the possibility that a
given relation may be stored at more than one data base site, and we use
this fact to try to recover from data base failures. Because of our

centralized approach to query processing, we distinguish between failure

of the primary site and failure of one of the secondary sites. Since

all intermediate results are stored at the primary site, a failure there
requires complete replanning and re—execution of the query. If a

secondary site fails, however, SODA backs up only as far as the

beginning of the portion of the query involved in the current access to

that site and begins replanning from that point. This preserves any

intermediate results that have actually been extracted from secondary
sites and thus avoids unnecessary reconiputation.

A more difficult question for SODA is at what site to access a
particular relation, when more than one possibility is available.

Solutions to this problem are also constrained by our use of a
centralized approach for query processing, since , in general , we want to
access relations at the primary site if possible. There are exceptions

to this rule, however. In particular, if we must transfer information

from a secondary site, it may be more efficient to go ahead and combine 
I

S

that information with data from another relation at the secondary site,

even though the other relation may also be stored at the primary site.

SODA uses a number of simple heuristics to decide whether to access
a relation at the primary sit. or a secondary site. Roughly, SODA will

prefer a secondary site if the relation is joined to another relation
which must be accessed at the secondary site, and if performing the join

appears likely to cut down the amount of data retrieved from that
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relation. A join is assumed to cut down the amount of data retrieved if

it puts more restrictions on the data.

For instance, if we wanted to know about American ships with a
draft of more than 50 feet, we would have to access the NAT field in the

SHIP relation and the DRAFT field in the SHIPCLASS relation. Suppose
the SHIP relation i. stored only at a secondary site and the SHIPCLASS

relation is stored both at that site and the primary site. In this 
-

case, we would access the SHIPCLASS relation at the secondary site

because it would further restrict the set of ships for which data must S

be transferred to the primary site. If , on the other hand , we simp ly
wanted to retrieve the drafts of American ships , we would access the
SHIPCLASS relation at the primary site, since this would not further

restrict the data being transferred. S

These heuristics are rather crude, since they do not take into

account the relative sizes of relations, how constraining a particular
restriction is , or the functionality of joins between relations (e.g.,
many—to—one, one—to—many). There is clearly a trade—off , however ,
between time spent in access planning and time spent in query execution,

and it is not clear how much more effort could be put into access

planning that would justify itself in more efficient query execution. S

Compared to the SDD1 distributed DBMS (171 (18] (191, the S

techniques used in SODA have both advantages and disadvantages. SDD1

takes what is essentially a centralized approach to query processing,

but not as completely as SODA. The main difference is that for purposes

of assembling all the relevant data at a single site , SDD 1 treats the

query as if it contained only joins and restrictions. If a query

specifies a more complex way of combining relations than joining, SDDI

will find a join that “covers” that portion of the query , in the sense

that the data it retreives includes as a subset all data required to

answer the query. However, it does not perform a precise logical

analysis , as SODA does, to retrieve exactly the required data. Because

SDDI takes this simpler view, it is able to use more sophisticated

heuristics for combining partial results from several secondary sites
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before transferring them to the primary site. However, since the

partial results are only approximate, the entire query must be re—

executed at the primary site.

One clear advantage that SDDI has over SODA is that SDD1 maintains

statistical information about the size of relations and the distribution

of values of fields. This enables SDD1 to predict more accurately than S -

SODA the size of intermediate results, and hence do a better job of
query optimization. It should be noted , however, that SODA is designed
to permit use of such information without any changes to the basic
structure of the system. - 

S

One final difference between SDD 1 and SODA is that, although SDD1
permits arbitrarily redundant data bases, a particular query is answered

L 

only with respect to a single nonredundant mapping of the data base.

Because SODA can decide at processing time where to access a redundantly
stored relation, it is possible to answer some queries more efficiently
and to recover from the failure of a secondary data base site without
completely reprocessing a query.

f F. LIMITATIONS AND POSSIBLE EXTENSIONS ~~ SODA

t Like any real system which addresses a complex problem, SODA offers
S only partial solutions to the issues it raises. There are several areas

where significant improvements or extensions could be made. One of
these areas is the expressive power of the query language. Although
SODA is a richer language than IDA and many other data base query

languages , there are still useful queries that it cannot express.

One of the constructs that SODA lacks is some kind of conditional
expression. For example, it might be desirable not to store the current

position of ships that belong to task forces individually in the SHIP

relation , but rather to have this information derived by looking up the
location of the task force to which a ship belongs in a TASXFORCE

45 relation. This would make it possible to update the location of the

entire task force at once, rather than ship by ship. If we do this ,
however, retrieving the position of a ship becomes a conditional
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procedure , depending on whether the ship belongs to a task force. To

retrieve the position of a particular ship, such as the Fox, we would
have to be able to express in SODA the following query , which we
currently cannot handle :

For the tupte S in the SHIP relation
with (S HAM) equal to ‘FOX’,

if (S TFNAZ4) has the undefined value
then return (S POS),

otherwise, for the tuple T in the TASKYORCE relation S

with CT TFNA14) equal to (S TFNAN) ,
return CT TFPOS).

Another class of queries that cannot be expressed in SODA is
queries that involve following chain, of indefinite length through the

data base. For instance, in the personnel data bases that are co only
used to illustrate concepts of data base access, a classic problem is to
answer the query, “Which employees earn more than their managers?” Many

of the simpler query languages that have been proposed, including IDA,

cannot represent such a ~uestion, although for SODA this would be no

problem.

However , if we want to define the relationship “superior of” to be
the transitive closure of “manager of” (i.e., the manager of the
manager, etc.), we are in trouble. There does not seem to be any non—
procedural query language, including SODA, that could express queries

such as, “Which employees earn more than all/some of their superiors?”

The problem is that expressi ng this type of query asks a question about

all chains through the data base of a certain kind, whereas existing
query languages only allow asking about all tuples of a certain kind.

Another general area where SODA could be improved is query
optimization and access planning. The heuristics used to pick the order

in which relations are accessed are quite crude , taking into account

only which references to relations are restricted. As we pointed out in
discussing the heuristics for distributed query processing, it would

also be useful to consider the relative sizes of relations , how

constraining a restriction is, and the functionality of joins between

relations.
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It will never be possible to guarantee that a query will be

processed in the optimum way , however. First of alt , to do so would

require knowing the size of all of the possible intermediate results

that might be generated in processing the query , and in general the only
way to get this information is to execute the query . Second , even if we

had good enough estimates for all of the relevant factors, choosing the

most efficient way to process a query would still be a combinatorial

search, which might take longer to perform than executing the query with

the few simple heuristics we currently have. So any technique for query

optimization must be empirically tested to see whether th. savings it

produces are worth the cost of applying it.

Final ly,  some of the improvements planned for SODA concern

pragmatic problems in dealing with interactive users. One of these

problems is that if there is no information in the data base satisfying

a complex query, the system simply returna a null result with no further

explanation. Often it would be much more helpful to the user if the

system would provide some indication of why it failed to find an answer.
For instance, if we ask the system to compute the distance between the

Fox and the Kennedy and get no answer, it might indicate that the Fox is

not listed in the data base, or the position of the Fox is not given in

the data base, or the Kennedy is not listed in the data base, or the

position of the Kennedy is not given in the data base , or any -

combination of the above. We are currently investigating how this

information might be obtained from the data base and supplied to the -

user in a form he can understand. For more discussion of problems of

this kind, see Kaplan (161.

The other pragmatic problem we are looking at is how to save and
make use of previously retrieved information to avoid recomputing it.

For example, if we ask the LADDER system in English, “Which American

ships are in the Atlantic?” followed by the question “What are their

fuel states?” the pronoun “their” will be correctly resolved to the
phrase “American ships in the Atlantic” by the natural—language front

end, but this set of ships will be recomputed by the data base access

S 45
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component. Although the natural—language processor realises that the
two queries are related, SODA does not. We are examining various issues -
that arise in dealing with this problem, including what information to -

save, how long to save it, and where it should be stored.
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V ACCESSING A CODASYL DATA BASE SYSTBM: DRMS-20

A. INTRODUCTION

One of the significant improvements made to the LADDER system
during the period covered by this report was to extend its capabilities

to include querying more than one DBMS. The system can now access DBMS—
20 , a DICT data base system (9] provided by Digital Equipment

Corporation (DEC) for the DecSystem—20 operating system, which supports

a subset of the CODASYL data model (14]. This section of the report

discusses the problems encountered in developing a translator to produce
queries for DBMS—20 and in interfacing the DBMS—20 system to LADDER.

The data access component of LADDER, called SODA, consists of two

principal parts. These are (1) a planning module, which decides how an
input query is to be evaluated given the distribution of required data

among various relations stored on multiple data base management systems
(DBMSs) at multiple sites on the ARPANET, and (2) a set of translation

modules, each of which translates SODA queries into the query language

supported by a particular DBMS . Initially, the only SODA translator

produced queries in Datalanguage, the query language supported by the

Datacomputer DBMS, which, like SODA, is fundamentally a relational

systea.*

DINS—20, on the other hand , is a “network” DBMS. Simply stated, a

network data base allows the value of a field to be an explicit pointer

k to another record. (This is done by use of the SET feature in DBMSs

t based on the CODASYL specification.) For example, to link a SHIP record

* In using the Datacomputer, SODA assumes t ha t it is a relational DBMS.
In general, however, the Datacomputer can be viewed as a hierarchical
DIMS: it allows the use of “repeating groups” (i.e., groups of fields
which may be repeated an indefinite number of tImes inside a record), a
feature is explicitely forbidden in the relational model of data. In
the Blue File , this feature of the Datacomputer is not in use , so th e

- 
- Blue File is for all practical purposes a relational data base.
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to the co rresponding SHIPCLASS record in the  Blue  File on the
Datacomputer , one must read the CLASS field in the SHIP record , and find
the record in the SHIPCLASS file whose CLASS field has the same value.

On the other hand , in a CODASYL version of the Blue File, a SET could be

implemented in such a way that a pointer would directly link each SHIP
record to the corresponding SHIPCLASS record. Obviousl y,  the que ry
program which is generated for the CODASYL version of a Blue File would

— be very different from one generated for the relational Blue File . The
ability of SODA to access a DBTG network data base opens up new

possibilities for speeding up processing of some queries , th rough use of
the SET feature.

B • COMPILING ~$ODA QUERIES

DBMS—20 accepts query programs wr it ten  in In teract ive  Query
Language (IQL), a COBOL—based language , which it compiles and executes.
Our development effor t  consisted of making incremental changes to the
IQL language to support  needed fea tures  not originally supplied ,
modifying the compiler to support the language changes , providing an
interface with the rest of the LADDER syste~,

, and implementing a
translator to compile SODA expressions into IQL programs . In the latter
effor t , we closely mimicked the s tructure of the . t ranslator  which
generates Datalanguage for the Datacomputer DBMS .

A SODA query is a list that may contain a number of d i f f e r e n t
constructs. For each construct there is a prototypical code structure
in IQL generated , and one or two modules of code which produce that
structure. The following subsections review these modules.

1. Relation—Searching Constructs

A fundamental operation in answering queries is stepping
th rough some or all of the tuples of a relati~rn to perform some other - -

operation on them. In the SODA expressions seen by the SODA

translators, there are six constructs which involve this operation: IN,

MAIl, MINi, COUNT , SOME and NONE (MAX, MIN, and ALL expressions are
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reformulated in terms of the others). The last two of these return a
value of True or False, and will be discussed in a later section on
restrictions.

IN is the most straightforward of the constructs .  An IN
expression specifies a relation whose tuples are to be examined and a

tuple variable to associate with this relation. Restrictions may also
be specified in the IN expression to indicate that processing is only to

be performed on certain tuples in the relation. All SODA constructs

following the IN construct are considered to be within the scope of the

loop it impli citl y defines . A COUNT expression defines a variable whose
— value is to be the number of tuples that satisfy the subquery in the

COUNT expression. This variable can be referenced later by other pa rts
- 

S of the program , or returned as an answer to LADDER . A MAIl expression
contains a specification of a quantity to be maximized and a subquery
defining the tuples over which the maximization is to be performed . The
effect  of the MAI l expression is to f ind  a set of valuee fo r  the
variables in the scope of the expression that produces the highest value
fo r the quantity being maximized . As with COUNT , these variables are
available for reference by subsequent parts of the program . MINi does
the same thing for minimization.

We currently support two ways of searching the tup les of a
relation on DBMS—20 data bases : sequential search and caic—k ey (hashed )
search . We also plan to implement a search which makes use of DBTG
SETs . In all cases , the query as expressed in SODA looks the same——the
determination of the access method to be used is performe d by the
SODA/IQL translator .

Example 1 shows the SODA formulat ion of the query “Who

comsands the Grayling, Baton Rouge , Pogy, Sturgeon , and Los Angeles?”,
and the IQL code generated from i t .  The program ’s s t ruc tu re  is
essentially a loop which steps sequentially through each tuple of the

UNITS relation, and in the cases in which a unit name is matched, prints

out the unit—c o nder ’s rank and name. (Note the use of the generated

variable XOR13; restrictions will be discussed in more detail below).
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Example 1:

“Who comsands Grayling, Baton Rouge, Fogy, Sturgeon,
and Los Angeles?”

( (IN S SHIP (OR ((S NAN) EQ GRAYLING )
((S NAN ) EQ ‘BATONZ ROUGE ’)
((S NAN) EQ ‘FOGY’)
((S NAN) EQ ‘STURGEON’)
((S NAN) EQ LOSZ ANGELES ’) ) )

(? (S RANK))
(? (S CONAN )))

OPEN ACCAT $
FIND FIRST UNITS RECORD OF BLUE AREA AREA $

10 IF ERROR—STATUS 307 GO TO 11 $
COMPUTE XOR A 3 - l $
IF UNITS—ANA M E EQ ‘GRAYLING ’ GO TO 14 $
IF UNI TS—ANAME EQ ‘BATON ROUGE’ GO TO 14 $
IF UNITS —ANA ME EQ ‘POGY’ GO TO 14 $
IF UNITS—ANAME EQ STURGEON ’ GO TV 14 $
IF UNITS— ANANE EQ ‘LOS ANGELEs ’ GO TO 14 $ r
COMPUTE XORI3 — 0 $

I4 IF XOR I3— 000 TO 12$
PR INT UNITS—RAN K UNITS—CONAN $

12 FIND NEXT UNITS RECORD OF BLUBAREA AREA $
CO TO 10 $

11~~~$
GO TO Kr $

**END**

Example 2 is a slightly more elaborate query, “Where is the
Constellation?” , which requires searching two relations: SHIP (a

relation which contains ship names), and then TRACKHIST (which contains

the most recent position of each ship). The structure of the program is

two nested loops , the outer one performs a sequential search through

SHIP; the inner one (beginning with the PUSHLP just after statement 14
and ending with the POPLP just before statement 12) performs a hash—

loQkup in TRACKHIST. The SODA/IQL translator will generate a hashed ‘
~

search if the corresponding SODA IN—construct contains a single

restriction specifying a particular value of the attribute on which the
relation is hashed (the CALC -KEY field); otherwise it generates a

sequential search . Since there may be more than one tuple having a
given value for the CALC—KEY field, it is necessary to generat. a loop ,
using the FIND NEXT DUPLICAT E statement. 

.-
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In this query , the two relations being searched are distinct;

but in general , they could be the same relation, which would lead to the
following problem with the DBNS—20 implementation of CODASYL: only one
“current position” pointer and one data buffer is maintained for each 

S

rela tion , so that the position and current values of the fields

associated with the outer loop would be destroyed by performing the

inner one. We have therefore implemented the PUSHLP statement, which -

saves the current value of the position pointer for a relation, and the

POPLP statement, which restores the position pointer and rereads the

current tuple of the relation into the corresponding data buffer.

Example 2:

“Where is the Constellation?”

((IN S SHIP ((S NAN) EQ ‘CONSTELLATION’))
(IN T TRACKNIST (ft UICVCN) EQ (5 UICVCN)))
(? (T PTP))
(? (T PTD)))

O PEN ACCAT $ S

FIND FIRST SHIP RECORD OF BLUEAREA AREA $
10 IF ERROR—STATUS — 307 GO TO ii $

COMPUTE XAND 13 — 0 $
IF SHIP—NAN NE ‘CONSTELLATION’ GO TO 14 $
COMPUTE XANDI3 — 1 $

14 IF X A N D I 3 — O G O TO 1 2 $
PUSHLP $
SET TRACKHIST—UICVCN TO SUIP—UICVCN $
FIND TRACKHIST RECORD $

15 IF ERROR—STATU S — 326 GO TO 16 $
PRINT TRACKHIST—PTP TRACKHIST—PTD $

17 FIND DUPLICATE TRACKHIST RECORD $
CO TO 15 $

1 6* $
POPLP $

12 FIND NEXT SHIP RECORD OF BLUEAREA AREA $
GO TO 10 $

11 * $
GO TO IT $

~~~~~~_ _  

________________________________
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2. Restrictions S

Restrictions may be simple comparsions using “equal ,” “not
equal ,” “greater than,” “less than ,” etc., or they may be complex
logical combinations of these built out of AND, OR, SOME, and NONE. AND

and OR are straightforward; SOME and NONE are looping constructs like
IN , COUNT , MAI l, and MIN i, that c~perat e on a set of tuples defined by 3
the body of the SOME or NONE expression . Simply stated , a SOM E
expression returns True if the corresponding set of tuples is nonempty
and False, otherwise ; a NONE expression does the reverse.

In all cases, the value of a restric tion is placed in a
temporary variable whose value is then interrogated by the code
corresponding to the SODA context in which the restriction occurred. —

This is slightly awkward but necessary , because the restriction—code
generator doesn’t know why the test is being made——it could be simply to
determine whether a tuple is eligible f or further processing, or it
could be to decide if the answer to the entire query is “YES” or “NO.”

Examples 3 and 4 illustrate these cases, respectively.

Example 3:

“What ship classes contain some American ships?”

((IN C SHIPCLASCHAR)
(SOME (IN D SHIPCLASDIR (CD SHIPCLAS) EQ (C SHZPCLAS)))

(IN S SHIP ((S UICVCN) EQ (D UICVCN) )
((S NAT) EQ ‘US’))

C? (C SHIPCLAS)))

OPEN ACCAT $
F IND FIRST SHIPCLASCHAR RECORD OF BLUEAREA AR EA $

10 IF ERROR—STATUS — 307 GO TO 11 $
COMPUTE XSOME14 — 0 $
PUSHLP $
FIND FIRST SHIPCLASD IR RECORD OF BLUEAREA AREA $

15 IF ERROR—STATUS — 307 GO TO 13 $
COMPUTE XANDI7 — 0 $
IF SHIPCLASDIR—SHIPCLAS NE SHIPCLA SCHAR -SHIPCLAS GO TO 18 $
COMPUTE XANDI 7 • 1 $

18 IF XAND 17 — 0 CO TO 16 $
PUSHLP $
SET SHIP—U ICVCN TO SHIPCLASDIR-UICVCN $
FIND SHIP RECORD $

I9 IF ERROR—STATUS — 326 c0 T0 20 $
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COMPUTE XAND2 2 — 0 $
IF SHIP—NAT NE ‘US’ GO TO 23 $
COMPUTE XAND22 — 1 $ - -

23 IP XAND 22— OGO TO 2 1 $
COMPUTE XSOME 14 — 1 $

21 FIND DUPLICATE SHIP RECORD $
GO TO 19 $

20 * $
POPLP $

16 FIND NEXT SHIPCLA SDIR RECORD OP BLUEAREA AREA $
GO TO 15 $

13 * $
POPLP $
IF XSOME1 4—OGO TO 12$
PRINT SHIPCLASCHAR—SHIPCLAS $

12 FIND NEXT SHIPCLASCHAR RECORD OF BLUEAREA AREA $
GO TO 1O $

l l * $
GO TO IT $

S 

- Example 4: - 1

“Is there a ship named Sturgeon?”

( (SOME (IN S SHIP ((S NAN) EQ ‘STURGEON ’ ) ) ) )

OPEN ACCAT $
• COMPUTE XSOME L 1 — 0 $

FIND FIRST SHIP RECORD OF BLUEAREA AREA $
12 IF ERROR—STATUS — 307 GO TO 10 $

COMPUTE XAND 14 • 0 $
IF SHIP—HAM NE ‘STURGEON’ GO TO 15 $
COMPUTE XAND 14 — 1 $

15 IF .XAND 14  — 0 GO TO 13 $ - S

COMPUTE XSOME11 — 1 $
13 FIND NEXT SHIP RECORD OF BLUEAREA AREA $

GO TO 12 $
i O * $

PRINT XSOME1i $
GO TO IT $

3. Terms

Terms are the SODA expressions that actually refer to data and
may be computed, compared, and tested. Their values may be either

integer numbers or character strings. The processing of a constant or a
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count variables is straightforward; the handling of a reference to a
field of a tuple requires a little explanation. The simplest case is a

tuple—variable/field pair that refers to the current value of the field

in the current tuple of the relation associated with the variable; that

value can be indicated in IQL simply by joining the relation name to the
field name with a hyphen, e.g., SHIP—NAN. If there are nested loops,

however, and a tuple—variable/field pair of one loop occurs inside an

inferior loop, the “current” tuple of the associated relation may have

been reset by the inner loop. Because of this possibility, whenever a

new loop is started, the values of all the fields of th. current tuple

of the containing loop that are referred to inside the new loop are

stored in specially created temporary variables; references are then

made to those variables rather than to the fields themselves.

A similar use of temporary variables occurs in the evaluation

of a MAX 1 or MIN 1 expression. As described in Appendix A, a MAX 1/MIN 1
expression picks out one value for each of the tuple variables in the

scope of the MAI l/M INi. This set of values will be one that produces

the maximum or minimum value for the expression being maximized or

minimized over. The simp lest way to find the appropriate set of values
f  or these variables is to loop through the relations that contain the

candidate tuples , comparing each one to a temporary variable which

represents the maximum or minimum value seen so far, and updating that
variable and other temporary variables for fields of the associated

tuples needed later in the query . This is illustrated by example 5,
which finds the ships with the maximum length . The IQL program for this
query scans once through the ship relation to find the maximum length
for any ship, letting KIlO be any indicator of whether any ships were

f ound (this would be more meaningful if we were looking for , say , Dutch

aircraft carriers, rather than just ships) and letting KIll be the

current maximum length. The ship relation is then scanned a second time
to list all the ships having that length.

Example 5:
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“What are the longest ships?”

( (MAIl (Si LGHN )
(IN Si SHIP))

(IN S2 SHIP (($2 LGHN) EQ (SI LGHN)))
(? ($2 NAN)))

OPEN ACCAT $
— 

COMPUTE XXL 1 — 0 $
COMPUTE XY1O — 0 $
FIND FIRST SHIPCLASCRAR RECORD OP BLUEAREA AREA $

13 IF ERROR—STATUS — 307 CO TO 14 $
COMPUTE XZI2 • SHIPCLASCHAR—LGHN $
IF XZI2 CT 9999 OR Xli i CE Z1i2 GO TO 15 $
COMPUTE Xlii — XZ12 $
COMPUTE XY 1O — 1 $
COMPUTE XNUM2 1 • SNIPCLASCHAR-LGNN $

15 FIND NEXT SHIPCLASCHAR RECORD OF BT.UEAREA AREA $
GO TO 13 $

H l 4 * $
IF XTL O — 0 GO 10 IT $
FIND FIRST SHIP RECORD OF BLUEAREA AREA $

16 IF ERROR— STATUS — 307 GO TO 17 $
COMPUTE XAND 19 • 0 $

S IF SHIP—LGHN NE XNUM 2L GO TO 20 $
COMPUTE XAND19 • 1 $

S 2O IF X A N D 1 9 — O G O TO I8 $
PRINT SHIP—NAN $

18 FIND NEXT SHIP RECORD OF BLUEAREA AREA $ S

GO TO L6 $
1 7 * $

— GO T O I T $

4. Special Functions

— -

~ GCDIST , RLDIST , COURSE and BEARING are four special functions
S for computing distances and relative positions on spherical surfaces ,

which we have added to DBMS—20 to illustrate the integration of complex

calculation with data base retrieval. These functions could have been

implemented more easily at the LISP level, but this would have made it
much less efficient to answer questions in which the calculation is not

- the top level operation , such as “What is the closes t ship to Luanda?”
- To handle these functions , we have extended the IQL system to recognise 1

special coemands which cause the appropriate assembly code to be
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executed. The input arguments to these functions , (two positions, each

expressed as a quadruple , e.g. (75 ‘N ’ 23 ‘E’)), and their answer

values are comunicated via nine temporary variables, in a call—by—

ref erence manner. Example 6 shows the use of CCDIST to answer the query

“How far is the Fox from the Kennedy?”

Example 6:

“Row far is the Fox from the Kennedy?”

(( IN Si SHIP ((S i NAN) EQ ‘FOX’))
( IN Ti TRACKRIST ((T i UICVCN) EQ (Si UICVCN)))
(IN S2 SHIP ((S2 NAN) EQ ‘KENN EDYZ iF’)) —

( IN T2 TRACKHIST ((T 2 UICVCN) EQ (S2 U ICVCN )) ) S

( ? (GcDIST ((S i PTPX) ,
(S I PTPNS)
(Si PTPY) ,
(Si PTPEW) ,
(S 2 PTPX) ,
(S2 PTPNS) , r
(S 2 PTPY)
(S2 P TPEW )))))

OPEN ACCAT $
FIND FIRST SHIP RECORD OF BLUE AR EA AR EA $

10 IF ERROR—STATUS — 307 GO TO 11 $
COMPUTE lAND 13 — 0 $
IF SH IP—NAN NE ‘FOX’ GO TO 14 $
COMPUTE lAND 13 — 1 $

I4 IF XANDL 3—0 00 TO 12$
PUSHLP $
SET TRACKHI ST—UICVC N TO SHIP—UICVCN $
FIND TRACKHIST RECORD $

15 IF ERROR—STATUS — 326 GO TO 16 $
PUSHLP $
COMPUTE XSTR4I • TRACKEIST—PTPEW $
COMPUTE XNUM39 - TRACKHIST—PTPY $
COMPUTE XSTR37 • TRACXRIST—PTPNS $
COMPUTE XNUM35 — TRACKHIST-PTPX $
COMPUTE XSTRI8 — TRACKHIST—UICVCN $
SET TRACKHIST—UICVCN TO XSTR18 $
FIND TRACERIST RECORD $ S

19 IF ERROR—STATUS — 326 GO TO 20 $
PUSHLP $
FIND FIRST SHIP RECORD OF BLUEARZA AREA $

22 IF ERROR—STATUS — 307 GO TO 23 $
COMPUTE XAND2S — 0 $
IF SHIP—NAN NE ‘KENNEDY iF’ CO TO 26 $
COMPUTE XAND25 — 1 $

3 56 
S

__ -- _____



- 5 - — ——

26 1F X & N D 2 5 — O G O TO 24$
PUSHL P $
SET TRACKHIST—UICVCN TO SHIP—U ICVCN $
FIND TRACKHIST RECORD $

27 IF ERROR—STATUS — 326 GO TO 28 $
PUSHLP $
COMPUTE XSTR49 • TRAC1CHIST—PTPEW $
COMPUT E XNUM67 • TRACKRIST—PTPY $
COMPUTE XSTR4S - TRACKRIST—PTPNS $
COMPUTE XNUM4 3 — TRACKHIST—PTPX $

* COMPUTE XSTR3O — TRACKHIST—UICVCN $
SET TRACKEIST—UICVCN TO XSTR3O $
FIND TRACKHIST RECORD $

31 IF ERROR—STATUS • 326 GO TO 32 $
COMPUTE XNUM36 — XN1t135 $
COMPUTE XSTR38 — XSTR37 $
COMPUTE XNUM4O • XNUM39 $
COMPUTE XSTR42 — XS 1R41 $
COMPUTE XNUM44 — XNUM4 3 $

- ~~~ - COMPUTE XSTR46 • XSTR45 $
COMPUTE XNUM48 — XNUM47 $

S J COMPUTE XSTR5O — XSTR49 $
GCDIST XNUM36 XSIR38 XNUM4 O XSTR42

XNIJM44 XSTR46 XNUM48 XSTR5O XARG34 $
S PRINT XARG34 $

33 FIND DUPLICATE TRACIRIST RECORD $
CO TO 31 $

3 2 * $
POPLP $

29 FIND DUPLICAT E TRACKEIST RECORD $
GO TO 27 $

28*$
POPLP $

24 FIND NEXT SHIP RECORD OF BLUXAREA AR EA $
CO TO 22 $

2 3 * $
POPLP $

21 FIND DUPL ICATE TRACIHIST RECORD $
CO TO i9 $

2 0 * $
POPLP $

17 FIND DUPLICAT E TRACIHIST RECORD $
GO TO 15 $

1 6 * $
POPLP $

12 FIND NEXT SHIP RECORD OP BLURAREA AREA $
CO TO 10 S

GO TO XT $
**END**
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5. Distributed Ouery~ Processing using DBMS—20

Whe n it is necessary to access multiple data base systems to
answe r a single query, intermediate results must be transferred between

systems . For uniform ity, these answers are always expressed as

relations, which we have imp lemented as temporary files on both the

Datacomputer and on DBMS—20. We have provided a uniform interface for
the creation , access , and transfer of these temporary files, so that we
have completely general capabilities to answer queries that require —

simultaneous access to data distributed over multiple data bases of

either type.

In the case of DBMS—20, the SODA/IQL translator has to keep
track of whether a relation to be searched is in the permanent data base
(in which case it is susceptib2e to cale—key searching) or whether it is

a temporary file (in which case only sequential searching may be

performed). If the latter , it will generate sequential search using

FIND NEXT commands, where the relation—na.. is one of six predefined

names of the form SEQ—PILE1, SEQ-FILI2, etc. It also generates a

co and which tells IQL to bind the name SEQ—FILEn to the actual

temporary f ile, and to open and close it when appropriate.

Example 7 shows the SODA, Datalanguage, and IQL queries that
are generated to answer the query “Where are the American ships?” ,

assuming the SHIP relation (which maps the ship name field into the L
joining field UICVCN) is stored on a Datacomputer and the TRACKNIST

relation (which maps UICVCN into last recorded position and date of 
S

recording ) is stored on DBMS—20 .

Example 7:

“Where are the American ships?”

First, the names and UICVCN5 of all American ships are put
into a temporary file on the Datacoapute r by issuing the
following SODA query with a special flag set to indicate that
the information is to be put into a temporary file:

( (IN S SHIP ((S NAT) EQ ‘US’))
C? (S NAN))
(? (S UICVCN)))
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The SODA query is compiled into the following Datalanguage
program which stores the requested information in the
temporary file TRAASFILE1. The name of the file is then
returned to SODA. Temporary files are always generated with
50 fields per tuple, the fields being strings of up to 100
characters. (They are named STRINC 1, STRING2, etc., and
typically most of their values are null.)

- 

S~ 

OPEN ZTOP.ACCAT.SAGALOWICZ.TEMPFILE READ;
CREATE THAASFILE1 FILE LIKE TENPFILE
MODE THAASFILE1 WRITE ;
FOR THAASFILE1 , Xli IN SHIP WITH (U1.NAT EQ ‘US’)
BEGIN STRINGI — XX1.NAN STRING2 - XX1.UICVCN END ;

SODA requests that the temporary file be transfered to DBMS—
20, and obtains the f inal answer by executing the following
SODA query on DBMS—20:

((IN S THAASFILEI)
( IN T TRACKHIST (CT UICVCN) EQ (S STRING2 )))
(9 (S STRING!))

- S (9 (T PTP) )
(? (T PTD) ))

In the IQL translation of this query the **BINDFILE**
statement declares to IQL that the temporary file THAASFILE1
is to be the referent of the dummy relation—name SEQ—P ILE2 in
subsequent statements.

OPEN ACCAT SEQ—FILE2 $
**BINDFILE** 2 TEAASFILE1

F IND SEQ—FILE2—STRINCI — ‘NEXT’ FROM BEGINNING $
10 IF ERROR—STATUS — 307 GO TO 11 $

PUSRLP $
SET TRACKHIST—UICVCN TO SEQ—FILE2—ST RING2 $
FIND TRACKNIST RECORD $

13 IF ERROR—STATUS — 326 CO TO 14 $
PRINT SEQ—FILE2—STRINC I TRACXHIST—PTP TRACKHIST—PTD $

15 FIND DUPLICATE TRACKRIST RECORD $
CO TO 13 $

14*5
POPLP $

12 FIND SEQ -FILE 2—STRING 1 • NEXT $
GO TO 1O $1- 1 1*5

GO TO IT $ S

59

— 5 -  
~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ ‘ ~~— 

-



rSSS S_S_
~~~

S
~~~

SrS - - _ :. 
“

~~~~
5-5-

~~~ 
5- 5 ~~~~5-_ — ---- ------ — —--—-— -•— —5--— --- - - -

~~~~~~~
.5 

~~~~~~~~~~~~~~~~~~~~5~~~~~~~5 5 ~~~5 
-5—5--- S 

- 
—~~

C • COMPARING RELATIONAL 
~Q CODASYL DIMS’S FOR INTERACTIVE ~JERYING S

LADDER is now able to generate queries to both the Datacomputer and

DBM S—20. Although we have had limited experience with DIMS—20, a number
of remarks can already be made concerning the respective advantages of
these two types of DBMS. In our system, the Datacomputer is treated as

a relational DBMS (although, it can in general be used as a hierarchical S

DBMS). DBMS—20 is a CODASYL, or network, DBMS. Simplifying a great

deal, one may say that the main difference between those two types of

DBMS is the way files—-or relations——are linked: in a relational DBMS,
the link is simply by field values, while in a CODASYL DBMS, the link

may also be by explicit pointers. Comparing the relative advantages and

disadvantages of these two data models is very subjective, and any

general statement will have exceptions in specific situations, but a

number of observations stand out in the context of interactive data

retrieval using an INLAND —S ODA type of front end.

The first remark is that accessing a network—type DBMS is generally S

much more complex from a programming point of view. The user must be
aware of the pointers and must indicate to the system when to traverse

them. Our experiments with Datalanguage and IQL indicate that the same
user query requires a DBMS query program about two times bigger for
DBMS—20 than for the Datacomputer. However, thi. difference is totally

invisible to a user of LADDER or SODA, because these systems provide a
uniform interface to either DBMS.

A second remark is that for short interactive queries, there seems

to be little advantage in using pointers rather than links by f ie ld
values. In the particular case of the Blue File, it is our feeling that

for short queries , the Datacomputer is generally faster than DBMS—20.

On the other hand, for complex queries, and large amounts of data, the

links by pointers might be more efficient than links by field values.

In the typical use of a natural—language system, we do not expect 
-

complex queries to occur very often. They are difficult to express and S

comprehend in natural language, and the user will generally not want to

wait too long to see an answer; he would probably rephrase the query so
that it could be hand led faster .
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Finally , a relational data base provides more uniform access to the
info rmation i t  con ta in. , b ecause it is as easy to f o l l o w  an
interrelation link in one direction as the other. On the other hand, 

S

CODASYL pointers are unidirectional, and generally a pointer is kept for
only one direction . This di f ference is very important for query
efficiency: queries which are apparently very similar when expressed in

natural’ language (or in a relational language) will behave very
differently on a network—type data base. This can also be true on a
relational data base, if special indexes or other strong bindings are
maintained on some fields but not on others , but it can easily be

avoided. In our experiments with the Blue File, we have established the
data structure in such a way that the symmetry is guaranteed: if a field
is indexed in a relation, and this field is used for an interrelation
join , then the corresponding field is also indexed in the other
relation. This type of symmetry appears very difficult to obtain in a
network data base. In the CODASYL model the asymmet ry may be diminished
but it appears difficult to eliminate totally .

S In summa ry , a great many discussions have occurred in the past ten -

years about the respective advantages and disadvantages of the various
data models. Although we do not in any sense have the final answer, it

appears that when a natural—language front end protects the user from

the idioayncraciea of whatever DBMS is used , the differences between the
various DBMSs are not terribly significant. Of course in any large
system, the problem of choosing a DBMS will remain important , since many
data base transactions will bypass the natural—language or interactive

front end and access the DBMS directly.

D. CONCLUSION

We have demonstrated that LADDER can be interfaced to multiple data
base systems, using diverse query languages and access techniques.

Moreover , not only can LADDER use either of the two systems to answer
queries, but it can use these heterogeneous systems cooperatively to

answer individual queries in cases where neither system by itself has 
- 

-
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sufficient information to produce the answer. A beneficial side effect

of this work is that UDDER is now compatible with a widely used

eo rcial standard: the CODASYL model. Modifications to LADDER to

support this new capabi lity wer e most ly limited to a specific module of

the system; the only modifications outside it were to provide an I/O

interface to DBMS—2O to transfer the queries, responses, and temporary
files.

I 
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VI TOWARD A GENERAL NATURAL-LANGUAGE INTERFACE

A. OVERVIE W

This section of the report describes the progress to date on the

new natural—language interface for data base access. It Includes an

overv iew of the interface , a more detailed account of several of its

major portions , and some results from initial test runs .

The natural—language interface is composed of four major

component.:

(1) A bottom—up parser (D IAMOND ) that uses a linguistically—
oriented, general grammar of English.

(2) A set of translators that generate calls to a set of
primitive semantic functions from the phrase structures
produced by the parser.

(3) A conceptual schema that encodes a model of the
application domain in a network structure , and a set of
functions that interpret the semantic primitives within
the schema.

(4) A query generator that produces a SODA data base query
corresponding to the conceptual schema interpretation .

A question is parsed by the DIAMOND parser using the linguistic
grammar; the result is one or more (if the question is syntactically

S 
ambiguous) phrase structure trees that represent the possible syntactic
analyses of the question. Each phrase structure tree is translated into
a set of primitive sem a n t i c func t i on  calls , which construct an

interpretation of the phrase structure tree in the appropriate domain.

Phrase structure trees may be rejected becaus . they have no

interpretation in the domain, or they may be split if they have an

ambiguous interpretation. Finally , the interpreted phrase structure H
tree is converted into a query on the data base .

63

—

5 - 
~ 

~~~ -~~ S - - S____~~ - — —. - S

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~ — - — —_ s- _s - - ‘ - s k~~~ s S -  ‘~~~~ ~~~~~~~~ - 5-’ ‘ ~~‘~~~ 5-5-’ ”



The system described above was designed to provide flexibility and
portability in the natural—language interface. The following section.

describe the parsing system DIAMOND, the semantic primitive translators ,
and the conceptual schema, as well as issues of portability pertaining

to them.

B. THE’ DIAMOND PARSER

1. Stages ~~~j i~erpretation

The basic framework of the new interface is embodied in a

“language definition system” called DIAMOND. DIAMOND may be viewed in

broad outline as both a sophisticated programming language and an
associated execution system. As a programming language, DIAMOND allows

us to desc r ibe formally how sentences may be interpreted. The

interpretation process is performed in multiple stages under the control
of the DIAMOND executive and in accordance with the specifications of
the language definition. DIAMOND’s flexibility allows us to experiment
with different numbers of stages and with alternative sequences for

applying various types of knowledge. Currently, we are working with

three basic interpretation stages :

The first  stage interprets the input “bottom—up ” (i.e. , words
—> phrases —> larger phrases —> set~tences). Phrases are constructed in

isolation, without reference to the context in which they might be

embedded. This stage is used for relatively simple tests that do not
depend on surrounding context . It produces a complex data structure (a

generalisation of a syntax tree) that reflects the decomposition of the
input sentence into its component phrases and associates a number of

attributes with each phrase . This structure is expanded and ref ined
during subsequent stages of interpretation.

In the second stage of interpretation, each phrase is refined
in the context of the preliminary interpretation of the entire sentence. 

-

-

-

- 

Phrases processed during this stage are generally subsets of those S -

S initially considered and thus are more likely (but not guaranteed) to

belong to a correct interpretation of the sentence . Consequently , for

— I
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the sake of computational eff iciency , many of the more extens ive

processing tasks are delayed until this stage. For example, in this

stage we establish a relationship between phrases identified during

syntactic analysis and descriptions of (sets of propositions about)

objects in the domain model.

In the third stage , the interpretation is further refined

within the context of the entire sentence, building on the results of
the previous two stages . Major tasks of this stage include delimiting S

the scopes of quantifiers and associating references to objects with

particular entities in the domain model, taking into account the overall

dialogue and task context.

The separation of processing into stages has allowed us to

examine more easily the question of when during interpretation certain
type s of knowledge can or should be used.  For example , the

identification of the referent of a pronoun requires knowledge of the
role that the pronoun plays in the sentence , as well as knowledge about
the discourse context (20] . Thus it cannot be performed until after the
sentence has been interpreted with respect to concepts in the domain.

By contrast, simple structural tests (e.g., number agreement) between
phrase constituents can be made during the first stage.

2. Grammar Rules

The language definition encoded in DIAMOND consists of (1) a
lexicon in which words are separated into categories with associated

features and (2) phrase structure rules augmented with procedures to be

evaluated during successive stages of processing. Figure 1 presents a 
S

noun phrase rule in the language definition (simplified for illustrative
purposes). It is discussed in some detail below to show how its

differsut constituents identify linguistic structure , relate linguistic
form to domain concepts, and relate the sentence as a whole to its

context. -

The example noun phrase rule has four constituents. The first

part , the phrase structure, indicates the phrase to be formed . Phrases
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NP — (DET /QUANT} (ADJ ) NOUN (PP) ;

CONSTRUCTOR S
S (PROGN (~FROM NOUN NUMBER ) Stage 1

(@FROM DET DEF)
(COND (( @ ADJ)( OR (AGREE TYPE ADJ NOUN )

(F.REJ ECT ‘NO—AGREEMENT )))))

TRANSLATOR I

(@S ET SEMANTICS (COMBINE (
~ SEMANTICS ADJ) I Stage 2

(@ SEMANTICS NOUN))) I
INTEGRATOR I

(€S ET D.IDENT (RESOL VE (
~ SEMANTICS ))) I Stage 3

Figure 1 Sample Noun Phrase Rule

are generally standard linguistic units, such as noun phrases and verb
phrases. The rule specification allows f or optional and alternative

elements. Thus, as in this example, one rule for interpreting a noun
phrase may allow many alternatives . In this example , the DET

(determiner) and QUANT (quantifier) constituent s are alternatives ,

indicated by the braces, and the ADJ and PP constituents are optional,
indicated by the parentheses. The NOUN constituent is required.

The second part of the rule, the CONSTRUCTOR, is a procedure
to be evaluated when a phrase is formed using this rule. Generally , a

constructor assigns attributes to the phrase and tests for consistency

a m o n g  the attribu tes of its constituents. For example ,

(~PROM NOUN NUMBER) copies the value of the NUMBER attribute from the

NOUN constituent to the NP phrase being built. Procedures can rate an

interpretation of a phrase, based - on an assessment of its likelihood ,
and reject unlikely ones. The F.REJECT statement at the end of the

CONSTRUCTOR will reject a proposed phrase if the ADJ and NOUN are not of
the same type (i.e. the type of adjective in the phrase cannot modify

the type of noun present). Unlikely phrases need not be rejected but

can be marked as “less—than—good” (e.g., FAIR or POOR); they can be used

S 

if no better interpretation is found.
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Much of what is commonly called “syntactic” information

(information about words and phrases and how they combine independently
of their relationship to the domain) is encoded in the phrase structure

and constructor parts of the language definition. We have encoded and

tested a general, linguistically—motivated, set of rules for syntactic

analysis that covers a wide range of English constructions. Sample

sentences covered by this syntax include:

WHAT IS THE NORMAL STEAMING TIME FR(~( NORFOLK TO GIBRALTAR FOR
S 

THE KENNEDY? 
S

WHICH U .S. NAVY U’S RAVE CASREPS INVOLVING SONAR SYSTEMS?
ASSUMING A MINIMUM ALLOWABLE FUEL STATE OF 30 PERCENT, HOW FAR

COULD THE GROZNY AND VARYAG STEAM AT MAXIMUM SPEFI)?
WHAT SHIPS IN THE SOUTH ATLANTIC HAVE A DOCTOR ONBOARD ?
TO WHAT CLASS DOES THE BATON ROUGE BELONG ?

The third part of the rule, applied during the second stage of
processing, is the TRANSLATOR procedure . A translator for a phrase is

evaluated after the phrase has been combined with others to form a

syntactic analysis for an entire sentence. Th u s , u n l ike  the

constructor , the translator ha. available information .~b o u t  h ow the

phrase fits into the sentence . In Figure 1, the operat [~ n is simply one
of combining the semantics for the ADJ with those for the NOUN .

The fourth rule component , the INTEGRATOR procedure , is

app lied during the third stage of p rocessing An integra tor for a rule
specifies how to relate the concepts mentioned in a phrase to specific

domain entities. During this stage , for example, pronoun referents are
resolved against identified entities in the domain.

Within the translator and integrator procedures , we have

formalized our knowledge of the relationship between syntactic

structures and meanings by the use of a common set of semantic functions

called semantic primitives, described in the next section. Translator

and integrator functions which construct semantic primitive calls from

the syntax have been implemented for major portions of the current

linguistic gra~~~r. -
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3. Summary

As we ~ave seen, DIAMOND currently separates the three tasks

of construction, translation, and integration into well—defined

successive processing steps. While this partitioning provides a good

framework with which to understand th. interpretation process , it gives
rise to problems of efficiency. Chief among these problems is the fact 

S

that domain information does not enter the parsing process until all the

syntactic constructions f or an sentence have been produced. For long
sentences, the number of syntactic structures produced can be large,
with a consequent incrsass in the processing time required at successive
stages . One of the problems for future research involves f inding
reasonable strategies for combining the three processi ng stages , so that
domain information can reduce the ambiguity of the construction process.

C • SEMANTIC PRIMITIVES

The semantic primitives provide a flex ible , un iform interface
between linguistic analysis of a sentence and domain semantics.
Sentences with similar meaning but differing phrase structures are

mapped into similar sets of primitive semantic—function calls . For

examp le, consider th. simple passive transformation which relates the 
S

two sentences:

(1) WHO COIQIAIIDS THE KENNEDY?

(2) BY WHOM IS THE KENNEDY COMMANDED?

Even though the surface syntactic structure varies , the
-
~ propositional structure of (1) and (2) is the same: a predicate ,

COMMANDS, with two arguments, THE KENNEDY and WHO. Both sentences would
invoke the same semantic primitive to construct a representation of the

propositional content. The translation from surface structure to

S semantic primitives thus encodes linguistic knowledge about the way

surface structure relates to meaning.

It is important to note that the translation into semantic

primitives is domain—independent, that is, it was not designed ‘with a
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particular subject area in mind. Thus we hope that it will provide a S

uniform way of analysing the syntactic structure of sentences, relieving

the natural—language interface builder of a large part of his task.

Currently there are four categories of semantic primitives:

(1) Pr opositional primitives. These primitives are derived
from the propositional content of a sentence. They
include calls to create sets (corresponding mainly to
noun phrases) and propositions relating these sets (verb
phrases, adjectival modifiers, etc.).

(2) Request primitives. These add various types of request
information from the sentence. They include counting
(“how much ,” “how many”), yes/no, and set specification
(“what ships are

(3) Modality primitives. These deal mainly with the tense
and mood aspects of verbs .

( 4) Quant i f icat ion p r i m i t i v e s .  These deal  w i th  the  r
quantificational s t ruc tu re  of a sentence , including
explicit (“each ,” “ every ,” “all ,” etc.) and imp licit r
quantification (e.g., superlatives).

To illustrate the way in which the various types of semantic
primitives are invoked , consider the query :

WHEN COULD ALL THE SUBS IN THE MED REACH GIBRALTAR ?
The propositional structure of this sentence is straight forward :  a
predicate, REACH , which connects three arguments, GIBRALTAR, SUBS IN THE
MED, and WH EN , a time argument . In addition , the argument SUBS IN THE
MED itself has a propositional s t ruc ture , based on the imp licit

containment predicate IN, which relates SUBS and MED. Thus two calls to

the propositional semantic primitives are invoked; first to build up the

phrase SUBS IN THE MID, and then to attach arguments to the predicate

REACH.

The request primitives are invoked for  the argument WHEN to
indicate that the value of this argument is being requested by the
query . The quantifier primitives are invoked to attach the quantifier
ALL to the phrase SUBS IN THE MED. Finally, the modality primitives are
invoked to indicate that the modal auxiliary COULD is attached to he

predicate R EACH.
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At this point, the translation process has extracted all the

information it can from the sentence , and converted it into a set of
calls on the semantic primitives. Obviously, there is more information
in the sentence which cannot be encoded by these four types of semantic

primitives. Here we rely on the inherent flexibility of the primitives;

they can be augmented as our linguistic analysis grows more demanding.

For example , if there is some theory of stative vs. active

interpretation of verb structure that we wish to incorporate, we simply

define a new class of primit ive semantic functions , along with the

programs that produce calls to these functions from the phrase structure

S 
of a sentence.

The semantic primitives also provide a f lexible approach to the

problems facing an interface builder , since he need use only the

primitives required by the problem at hand. For example, in designing

the interface for a query system , the propositional and request

primitives would be most important. Primitives which dealt with more

subtle aspects of the sentence, such as quantification or the modality

of verbs, could be added later.

D. CONCEPTUAL SCHEMA

In contrast to the current LADDER system, in which a question is
converted directly into a data base query , the new system uses a

conceptual schema as the target representation f or translation. A

conceptual schema is a representation of the domain as it appears to the

user; in its simplest form, a conceptual schema must encode the user’s
knowledge of the objects in the domain and the relationships which hold
between them. This is different from the data base schema, which

represents the system’s view of the way data is stored in the data base.

As discussed in the next section, the relation between the conceptual

schema and the data base schema can be quite complex. In our system,

the conceptual schema encodes knowledge about ships, off icers, ports ,
cargoes , and other domain objects, and the relationships between them .
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There are several reasons why a conceptual schema makes the task of
interpreting the question easier and provides some capabilities that

could not be accommodated by direct data base translation alone. One
reason is that it allows for conceptual completeness. A data base
typically will have information only abou t some portion of a given
domain. The user may not be aware that some information is missing.
Consider the queries:

WHAT SOVIET SHIPS RAVE ASW CAPABILITY?
WHAT U.S. SHIPS HAVE ASW CAPABILITY?
WHAT SHIPS HAVE ASW CAPABILITY?

The user would expect a competent interface to understand all three

queries, if it understood any one of them. Yet an interpreter which
depends on a data base schema for its model of the domain may very well

interpret one of the queries correctly , while either failing to

interpret the others, or giving wrong answers to them. For example,

suppose one of the data base files contained information on the weapons
— capabilities of U.S. ships only. Then the second query could be -

interpreted correctly, but none of the others. An interpretation

process which depended on the data base schema wouldn’t know whether

only U.S. ships could have weapons capability, or whether the

particular data base just didn’t have the information for other nations’

ships. In order to distinguish the case of a particular data base not
S 

having a certain attribute for an object from the case where the domain
does not permit the object to have the attribute, a better model of the
domain than the data base schema is required. The conceptual schema is

such a model; it provides a measure of semantic completeness in the

interpretation process, independent of a particular data base.

A second advantage of having a conceptual schema comes from the

ability to have inference processes use the schema. We are currently

using inferences about the domain in a rudimentary way to help in such
tasks as disambiguation; a short example occurs at the end of this

section. More advanced research tasks which we would like to pursue

include sophisticated semantic processing of the parse tree (e.g., noun—

t
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noun phrases*), query interpretation, and dialogue issues, such as using
knowledge of the user ’s goals to choose an apropriate response. All of
these tasks require the ability to reason about the domain of discourse.

In order to do such reasoning in a general way, a data—independent 
S

representation of objects in the domain and their interrelationships is

essential.

Finally, a conceptual schema enhances portability to different data
bases within the same domain. A conceptual schema provides a measure of
independence of the domain from a particular data base. Thus , in

switching the interface between data bases which deal with the same

domain, we can expect the conceptual schema to remain mostly unchanged. 5

The interface builder must indicate how conceptual schema predicates and

sets are mapped into a particular data base schema. In our system a

code generator uses this mapping to derive a SODA query on the data base
from a conceptual schema representation.

S Our imp lementation of a conceptual schema is based on a network
representation of objects in the domain and their relationships. This
approach is based on techniques for knowledg. representation developed

at SRI over several years [21), although it may also be viewed as being
“frame—like” in the sense of a number of recent Al languages (22] (23].

There are two basic parts to the representation : an object set taxonomy

which gives subset and superset relations among various sets in the

domain; and delineations, which specify the types of arguments which

relations can have. In addition, there are some metastructures that

control inferencing processes that operate during the interpretation of

a query , and which are thus not strictly a part of the domain
-
~~ representation.

Although exact details of the representation are too complicated to
go into here , we will attempt to give an idea of how it is used to

actually construct an interpretation of a query. Consider the question: 
S

WHO COMMANDS THE LAPATETTES?

For example “oil tankers ” are tankers that car~y oil, but “U.S.
destroyers” are destroyers owned by the U.S.
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The lexical estries tor WHO and LAFAYETTE have pointers to sets in the
domain represemtatio.. Figure 2 shows the relevant portion of the

taxono~~. WHO refers to the class of LEGAL—P ER SONS ; subsets of LEGAL—

PERSONS, labeled by s—arcs , are COUNTRIES and OFFICERS (note that one

could ask , WHO OMNS THE KENNEDY , where WHO refers to a country) .
LAFAYETT E refers to the individua l node LAFAYETTE , which can be an

- element Ce—arc) of eithe r NAVAL—SHIP-CLASSES or NAVAL—SHIPS, i.e., the

Lafayette class as opposed to the ship Lafayette. At this point , then,

there is ambiguity in the references for both nouns . An important part 
-
S

of the representation is that these ambiguities can be eas i ly
— t accommodated by the taxonomy structure.

) The representation also shows what relations can exist between
-

~ 

objects in the domain. The delineations for the COMMANDINGS and NAVAL—
- 1 CLASS-MEMBER relations are shown in Figure 3. The arcs emanating from

these nodes are labeled with the argument type, and point to the set 
S

from which the argument must be drawn, e.g. , the “commander ” argument of
CONMANDINGS must come from the set OFFICERS.

The verb COMMANDS in the query refers to the COtQIANDINGS relation.
Syntactic information from the sentence tells us that WHO, as subject,

must be the “commander” argument . Thus we have identified WHO as
- 

- belonging to the OFFICERS subset of LEGAL—PERSONS , r a t h e r  than
COUNTRIES . 

5

S 

Similarly, we find that THE LAFAYETTES must be the “commanded”
argument of COMMANDINGS , i.e. , it belongs to NAVAL—SHIPS. However ,

- there are additional clues from syntax which force a different S

interpretation. THE LAFAYETTES is plural , and hence demands a reference
- 

- 

in the domain which is not necessarily a single object. Since the
LAFAYETTE node inte rpreted as a NAVAL—SHIPS is a single element , this
can’t be the correct interpretation. In an alternate interpretation ,

- 

- 

the node LAFAYETTE is an element of NAVAL—SHIP-CLASSES; by the NAVAL—

CLASS-MEMBER relation, a single class can stand for a set of ships , and
so is an acceptable inte rpretation of the plural syntax. Thus the

S syntactic clue of plurality is used to disambiguate the semantic
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- NAVAL-SHIPCLASSES NAVAL-SHIPS

S S S

- LAFAYETTE : LAFAYETTE

FIGURE 2 CONCEPTUAL SCHEMA TAXONOMY
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interpretation of the reference to the node LAFAYETTE. Note that this

type of inference is impossible in the current LADDER system , where many

syntactic clues , among them plurality of noun phrases , are simply
disregarded by the grammar. To LADDER , WHO COMMANDS LAFAYETTE and WHO

COMMANDS THE LAFAYETTES look exactly alike.

The ON symbol on the NAVAL—CLASS-MEMBER relation is part of the
metastructure of the representation. It signals that this relation is a
special type called an owner—member : each d aBs “owns” a set of ships ,
and the class can be used to stand for this set . Metastructures are
used to control what would otherwise be a large search space of
inferences , by classif ying relations as special types that can only be
used at specific points in the inference process.

H. GENERATING SODA QUERIES

1. Conceptual Schema vs. Data Base Schema

Once a question has been interpreted with respect to the
conceptual schema, a SODA query must be generated from its conceptual
schema representation. Because the way in which the data is stored by
the data base may not correspond directly to the way the conceptual
schema encodes the model of the domain, this task can in general be
arbitrarily hard; that is , it may involve an arbi t rary amount of
inferencing to produce a correct query.

In the absence of a general—purpose inference engine to
produce SODA queries , we have concentrated on several techniques which
promise to cover the moat common types of attachments between a data
base schema and a conceptual schema. The rest of this section describes

these techniques, and gives examples of how they can be used to attach
our conceptual schema to the schema of the Blue File (11] data base.

2. Si~~le Predicates

In the best case, a predicate in the conceptual schema will
correspond to a relation in the data base schema. This is true for the
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predicates given in the previous section , namely , COMMANDINGS and NAVAL—
S CLASS—M EMBER . The commander of a unit is found in the UNIT relation ,

and the class of a ship is found in the SHIP relation . The actual
generation from the conceptual schema involves setting up SODA tuple

variables f or each predicate in the query, and SODA terms for each set.

Where two predicates share a common argument , an equij oin is produced in
the query code . Thus in Figure 4 we have the Lonceptual schema
representation of WHO COMMANDS THE LAFAYETTES , and the SODA query

generated, with the origin of the various subexpressione of the SODA S

query indicated.

This example was rather straightforward; various subtleties of
the data base design can cause complications. For example, an object in
the conceptual domain , like SHIPS , is not always referred to in a
consistent manne r by the data base. Some files may use the name of the
ship , while others use the UIC or VCN of the ship instead . The
generation process must take these quirks into account .

3. Functions

In the conceptual schema , functions are treated as a special
type of relation that must be handled separately by the translation

p r ocess , since they have a d i f f e r e n t  SODA syntax f r o m  o r d i n a ry
relations. Also, care must be used to ensure that their arguments are
defined before they are invoked. For example, consider the question:

WHAT POSITIONS ARE 300 MILES FROM THE LAFAYETTE?

Such a query could not be answered by the data base because

the distance function needs to have both of its position arguments

defined. For the above question, the tesult of the distance function is -

specified (300 miles), as well as one of its position arguments (the

Lafayette); but the function cannot be- inverted to generate a list of

position. that are 300 miles from the Lafayette. The generation process

mast recognise this condition and give an appropriate error message.

£ second peculiarity of functions is that they may not be
.umamtable by the DIMS that contains the data base. In this case, the
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COMMA ND NAVAL-CLASS-MEMSER 

S

(IN U UNIT) (IN S SHIP)

? OFFICERS NAVAL-SHIPS NAVAL-SHIPCLASSES

(? (U CONAN)) ((U UIC) EQ (S UICI)

S

LAFAYETT E

((S CLASS) EQ LAFAYET TE )) r
SODA QUERY: ((IN U UNIT)

(? (U CONAN))

(IN S SHIP)

((U UIC) EQ (S UIC))

((S CLASS) EQ LAFAYETTE’))

FIGURE 4 GENERATION OF A SODA QUERY FROM THE CONCEPTUAL SCHEMA
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generation process must send off SODA queries to retrieve the arguments

‘1 of the function, evaluate the function, and then put the result into

another SODA query.

4. Implicit Sets

Not all sets that the conceptual schema knows about correspond

to relations in the data base. For instance, there is a SHIP relation
S 

where each tuple gives information about a ship, but there is no TANKER
relation. Such conceptual schema sets as TANKERS usually have an

implicit definition in the data base, in the sense that we could form a

more or less complicated SODA restriction over some relation to extract

the set. If we are lucky, there will be a single field whose value will

tell us whether a tuple is a member of a restricted set or not, e.g.,

L 
the TYPE field gives us TANKERS. It is easy to see, however, that there
may be cases where the data base does not have the necessary

information, or the query language is not powerful enough, given the

form of the data base , to extract it. A set of this sort which can’t be

extracted from the Blue Pile, although the information is there, is:

* SHIPS THAT LEFT PORT AT NIGHT.

5. Existence

At times a data base field will indicate the existence of an

object or property, rather than its exact value. A typical example of

this is the MED field in the SHIP relation. If the value of this field

is D, then there is a doctor on board the ship; but it doesn’t give the
identity of the doctor. The presence of these existence fields causes

problems for generation of data base queries , because it means some

questions that ask for the existence of an object will be answerable,

while others that ask for the name of the object will not. Consider the

questions :
IS THERE A DOCTOR ON THE BIDDLE?
WHAT DOCTOR IS ON THE BIDDLE?
HOW MANY DOCTORS ARE ON THE BIDDLE?

Only the first of thes e questions can be answered , given the above

definition of the MED field.
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It should be obvious f rom the above examples that the process
of generating a correct SODA query from the conceptual representation

can be a complicated one. To take this even one step further , we could
imagine trying to come up with a reasonable query when there was no

correct way to answer the question directly , e.g., to respond “At least

one” if asked “How many doctors are on the Biddle?”. It would then seem

impossible to generate SODA queries without considering general dialogue
issues such as the goals and presuppositions of the user.

F. PORTABILITY

As we stated at the beginning of this section, one of the major

goals of our work on the new natural—language interface has been to

enhance the portability of the LADDER system . By incorporating both a

level of domain—independent semantic primitives and the domain-dependent
conceptual schema, we have attempted to facilitate portability both to

new domains and , within a domain , to new data bases .

In transporting the natural—lan guage interface to a new domain ,
there are two tasks facing the interface builder: to write the semantic

primitive functions in the new domain, and to add an appropriate domain— 
S

dependent lexicon . The semantic primitive formalis, provides reasonable
guidelines for both tasks. While these tasks are by no means trivial,

most of the work involved in syntactic analysis , as well as some domain— S -

S independent semantic analysis, has been incorporated into the p hrase

structure translators. Thus th. interface builder is relieved of a

large part of the linguistic analysis work necessary to build the

interf ace.

Once the semantics of a particular domain has been specified in a

conceptual schema, transportability between data bases dealing with that
domain is straightforward. The conceptual schema need only be designed

once for a given domain.

Both types of portability remain to be tested in the future , to see
how transportable the interface is for new real-world domains and data

bases. It is expected that defining a new domain will s ill be a
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significant prob lem, while transferring betwsen data bases with in  a
domain will be fairly easy.

C. STATE OF IMPLEMENTATION AND PRELIMINARY RESULTS

A subset of the translators from phrase structures to primitive S

semantic function calls has been implemented. These are mostly the

propositional and request primitive calls . This subset is sufficiently
complete to cover the linguistic construction in approximately 90

percent of our test query set of 249 sentences. Significant gaps yet S

t remaining include translators for infinitive phrases, imperatives, and
quantifiers.

The conceptual schema for the navy command—c ontrol domain currently
has about 110 sets and subsets pertaining to objects (ships, planes,

etc.), and about 100 relations between them (speed, employment, etc.).

The lexicon currently contains 12 adjectives, 12 verbs , 34

prepositions , and 141 nouns with their complete semantic (domain
dependent) attributes. This is sufficient to cover about half the test

— 
queries. As we attempt to interpret more test queries, both vocabulary

and the conceptual schema will be incrementally increased.

The translators, conceptual schema, and lexicon are currently
adequate to inte rpret 112 of the 210 test queries (54 percent) that can
be answered from the Blue File data base. ( “Interpret ” means that the
interface is cap sble of deriving a conceptual schema representation f or S

these queries.) For those 112 interpretable sentences, the gramma r
produced 311 phrase str ucture trees , an average of 2.8 per sentence.

From these phrase structure trees, 142 interpretations were produced, an
average of 1.3 interpretations per sentence. Work on the program to

generate SODA queries from conceptual schema interpretations has not yet
-k been completed.
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Appendix A

FORMAL DEFINITION OF THE SODA QUERY LANGUAGE

The syntax of the SODA query language is most easily described by a

- 
- context—free grammar, plus some constraints on the occurrence of I -~

variables. The grammar for SODA is extremely simple, having only the
following five rules :

S - 

query —> ( [binder I restriction (? tera)]+)

subquery —> (binder I restrictionl * binder (binder I restrictioni*
binder —> (IN tuplevar relation (restrictionl * ) I

(MAX term subquery) I
(MIN term subquery) I

¶ (MAX1 term subquery) I
(MIN i term subquery ) I
(COUNT countvar subquery )

C
t restriction —) (ALL subquery ) I

(SOME subquery)
(NONE subquery) I
(AND [restrictionj +) I S

( (OR (restriction]+) I
(NOT restriction) I

- - (term comparison term)

term —) (function ( (term] +) ) I
(tuplevar field) I
countvar I
constant

In this grammar, nonterainal symbols are written in lower case , and
- - terminal symbols are written in upper case. To make the grammar more

concise, we have allowed the right side of a rule to be written as a
regular expression. The notation “ . . .t . . .” indicates an alternative,

the notation “(.. .J*” indicates a sequence of any length greater than or
equal to zero , and the notation “(...J+” indi cates a sequence of any

length greater than zero. Note that the parentheses appearing in the
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grammar are part of the SODA language which is being defined, while the
square brackets are part of the notation in which the grammar is

written.

SODA queries are composed of three principal types of expressions:

binders, which bind variables to refer to data extracted from the data

base, restrictions, which restrict the data , and question—mark

expressions (selectors), which request retrieval of parts of the data.

A SODA query is any nonempty , parenthesized sequence of these

expressions that satisfies the constraints on the occurrence of

variables which will be discussed shortly. If the sequence of

S expressions includes one or more binders, then the query implicitly

defines a set of tuples, and the selectors in the sequence specify a

projection of that set which is to be returned as the answer to the

query. If there are no selectors in the query, then it is interpreted

as a yes/no question, asking whether the set defined by the query is

nonempty. If the query is simply a seqnence of restrictions, then it is

interpreted as a yes/no question asking whether all of the expressions

in the sequence are true.

The structure of the language is recursive, with MAX, MIN, MAX1,
MINi, COUNT, ALL, SOME, and NONE being operations on certain sequences
of expressions which would themselves be well—formed queries. We will (
call such sequences subqueries, and they must meet the following 

S

conditions: first, since it only makes sense to return information from

the top level, no selectors are allowed in the sequence. Furthermore,

we insist that there be at least one binder in the sequence, since there

must be some data from the data base to maximize, minimize, count, or

quantify over.

S 
The binders include IN expressions, COUNT expressions, and MAX,

MAXL , MIN, and MINi expressions. An IN expression sets a variable to

range over the set of tuples in a relation (or a restricted subset, if

any restrictions are specified). A COUNT expression sets a variable to
the number of tuples in the set defined by a subque ry . MAX and MIN
expressions pick out all the tuples in a set for which some term has the

S .
,
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largest or smallest value. MAX L and MINI expressions do the same ,
except that they pick out a single tuple from this set. MAIl and MINi
can be executed more efficiently than MAX and MIN, so they are to be

preferred when applicable, such as when it is known on semantic grounds

that there can be only one tuple in the set of interest that has the

maximum or mini~~im value (e.g., there can be only one most recent

position report for a ship).

Restrictions include simple Boolean restrictions with AND, OR, and

NOT , p lus universally quantified restrictions using ALL and

existentially quantified restrictions using SOME. [(NONE...) is an

abbreviation for (NOT (SOME ..))~. The details of how these constructs
are interpreted are explained in the discussion of the examples in

Section IV.B.

The grammar does not specify what the relations, fields, functions,
— comparisons constants or variables are. Constants include numbers and

any character strings enclosed in single quotes, such as ‘US’. Any

other alphanumeric character string can be used as a variable. There

are two types of variables: tuplevars, which range over the tuples of a

given relation and countvars, which ave used to refer to the result of

a counting operation. There need not be any difference in form between

tuplevars and countvars, but no symbol can be used as both within the
same que~y.

-
- The other categories not specified by the grammar are all

implementation—dependent. Fields and relations obviously depend on the

particular data base being accessed. The functions and comparisons

depend on the capabilities of the underlying DBMSs in which the queries

are actually executed. In the current implementation of SODA, there are

f our navigation functions (e.g., GCDIST, for computing the great circle

distance between two geographical locations), and the comparison

operators are EQ NE, LE, GE, LT, and CT, representing “equal , ” “not

equal,” “less than or equal,” “greater than or equal,” “less than,” and
“greater than or equal,” respectively.
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To explain the constraints on the occurrence of variables , we need

to define several notions. A variable which is the second element of an

IN or a COUNT expression is said to be introduced by that expression.
The smallest COUNT, SOME, NONE, or ALL expression that includes the

expression that introduces the variable is said to be the scope of the

variable. If the expression that introduces the variable is not inside

any COUNT, SOME, NONE, or ALL expression then the scope of the variable

is the entire query. An occurrence of a variable is bound by the

expression which introduces it if the occurrence is contained by every

MAX or MIN expression that contains the expression which introduces the

variable; otherwise, the occurence is bound by the largest MAX or MIN

expression which does not contain the occurren -e but does contain the

expression which introduces the variable. We can now state the

contraints on the occurrence of variables as follows:

(1) No variable may occur in the query unless it is
introduced by some expression in the query.

(2) No variable may be introduced by more than one
expression.

(3) No variable may oe.ur outside its scope.

(4) The relation “X contains an occurrence of a variable
bound by Y” must not form any circular chains of MAX and
MIN expressions .

The first rule ensures that the range and scope of every variable
is defined. The second rule simply means that the same variable can’t

be used in two different ways in the same query. This is actually

slightly stronger than it needs to be, since two variables which have

nonintersecting scopes could be the same without creating logical

confusion , but queries are simpler to process and easier to understand
if this is not done.

The third rule prevents using a variable in a context where the

reference doesn’t make sense semantically. It is easiest to think of a

variable as referring to a particular tuple in a set of tuples. Inside

a COUNT, SOME, NONE, or ALL expression, the variable refers to each

tuple in the set in turn, as in “for all tuples in the SHIP relation
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such that the tuple...” Outside the expression, however, there is no

way to determine which tuple is being referred to. This contrasts with

MAX (and MIN) expressions, where, although the variable refers to each
tuple in turn inside the expression, there is a definite referent for
the variable outside the expression, namely, the tuples for which the

term being maximized has the greatest value.

The final rule forces the definitions of sets that are being

maximized or minimized over to be noncircular. One MAX or MIN operation
can refer to the result of another, but only if the second is well

defined without referring to the first.

To put the SODA query language in perspective, we can compare it to
Codd’s original language based on the relational calculus, DSL ALPHA

[24J [25J . One major difference between the two languages is that SODA

is only a data retrieval language, whereas ALPHA also permits updataing
the data base. In their power to express queries, the two languages are
fairly close. ALPHA has the ability to request retrieval in a specified

order or to set a limit on the number of tuples to be used in cómputing

the answer. These features were left out of SODA because they do not

have a natural interpretation in purely set—theoretic terms. On the

other hand, SODA has more powerful counting, maximizing, and minimizing

operators. In SODA, these can operate on sets of tuples defined by
arbitrary eubqueries; in ALPHA, they are much more restrictede

There are important differences in the syntax of the languages as
well. SODA is, in fact, a data sublanguage of LISP, and thus it shares
LISP’s highly parenthesized syntax. While in some ways this makes SODA

queries more difficult for people to read, it greatly facilitates the

generation of SODA queries by other programs, a primary requirement for
use in the LADDER system.

Finally,, the syntax of SODA has been designed to facilitate

translation of natural—language questions into formal queries. This has

resulted in departures from typical relational—calculus syntax ,

particularly in quantifier expressions. In most “English—like” formal
languages, English words are si~~ly tacked onto a semantic structure

9’
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that bears little relation to English. In SODA, th. corresponde nce of
the sy~~ols of the isaguag. to English words is of minor i~~ortanc e and
is basically just a emsnic device. What a i~~ortant is tha t the
semantics of several of the constructs of the language have bean
designed to correspond to the semantics of certain typ.s of English

phrases. For an illustration of this point sse the discussion of

quantifier expressions at the end of Section IV.E.
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Appendix I

AN EXPERIMENTAL FPUCI—LANGUAGR LADDER

To help assess the transportability of the LADDER system, and to

e~~hasiae the potential use of LADDER f or allowing different groups to

access a co~~~n data base in their owe terme , we have crested a French—
language version of LADDER. This task was performed by a native French
speaker who had a rudimentary knowledge of INTULISP and no knowledge of

LADDER. In one man—month he was able to conver t the full ran ge of data
base queries accepted by the English LADDER to French. The resulting

system, called FLADDER, is available at SRI f or use via the ARPANET .

The full range of LADDIE’S ussr—oriented features, including spelling
correc tion, synonym and paraphrase defini tion, and feedback to the user

of its interpre tation of his questions (in French ) are included in this j
system. • 

*

Exaeples of inputs that FLADDER can deal with are:

Quand le Pox doLt—il appareiller?
Quand le sonar du Kennedy sera—t—il repar e
Co bian de teeps taut—il a l’Aspro pour rejothdre le Knox?
Quel set 1. destroyer le plus proche d. Naples
A queu e classe le bateau Sovietiqu. le Miesk appartient—il
A quel convoi 1. bati.snt A ericain Biddie est—il at fecte?
Queu es sont lee merchandises transportees par 1. Taru ?
Quel est is te~~s de croisiers normal du Dale de Gibraltar a Norfolk
Quel est le prochain port d’escaie du Ma (
Pourquo i l’America n’est pas a i’etat de prepara tion Cl
Quel eat is batimsnt le plus rapid.
Quels sont lee navires au nord de l’equateur
Qui naviguent a motes de 12 uoeude
Quels sont lee bateau x naviguant sous pavilion Iritannique
Existe—t—il des bateaux qui font part is de cc convoi
Die moi quels sont la langueur et le t ira nt d’eau du Knox i
Quel est is portee maxtaim de l’.ngin Polaris
let ce qu’il exists des navires dont la vitssse set superi eure

a cells de l’Aspr o?
Quel est is non de l’off icier co~~~ndant le Sunf ish
QueUes sent lee unites embarquess sur le Kitty Hawk
Quels navires sent a moths de 1 jour de route suivant Un. orthodr omie
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de ma position actuelle ?
Calcule not le chemin is plus court entre L. flaw s et Naples
Queu e eet la route suivant la loxodrosie de Os lo a Lua nde
A quell. distance de New York cc trouve is Saratoga
A conbien de mu les de Capetown est le Kennedy
Qusi eet le teepe de traverses entre New York et Le Hawe pour l’Arctic?
Quell. set la duree de croieiere du Pecos dspuis Lotterdam

jusqu’s laltimors?
Quand 1. lathburne arrive—t—il a Newport?
Ou vs li Gridley?
Ver e ou cc dirigs is Robieon
Ou set actuel lsmant is Hosl?
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