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ABSTRACT

The generation of tip vortices from finite-span
lifting surfaces degrades the overall effectiveness of
these surfaces. An extensive literature survey per-
taining to this viscous rollup phenomenon and the
numerous concepts advanced for its alleviation has
been made. Those concepts which appear applicable to
delaying the formation of marine propeller tip vortex
cavitation are highlighted, and further experimental
investigations are recommended.
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: INTRODUCTION
3 On a lifting surface of finite span, the pressure difference between ;

the pressure and the suction sides must disappear at the surface tip,

so that lateral pressure gradients of opposite signs exist on these two

sides. The spanwise velocity components are similarly of opposite sign,

and this gives rise to trailing vortices, particularly at the wiug tip,

3

as shown in Figure 1. This tip vortex phenomenon presents special problems

i ‘gg: e

in practically all applications of winglike bodies, e.g., the noise and
vibration caused by the interaction of the concentrated tip vortex trailed
from the tip of a helicopter rotor with a following blade, and the
potential hazard associated with the loss of cdntrol of light aircraft
which follow in the trailing tip vortex wake of heavier aircraft. Addi-
tionally, in the case of the marine propeller, this phenomenon can lead
to the situation where the local pressure in the tip vortex core reduces
to the vapor pressure of the liquid, resulting in cavitation and its
attendant problems.

The severity of the tip vortex problem is determined by the intensity

or strength and location of tip vortices. Although numerous concepts have

T ——————
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Figure 1 - Tip-Vortex Rollup Process




been advanced for the alleviation of this phenomenon, no fundamental solu-
tion to the problem is yet feasible because the details of the complex flow
B are not known, and the analytical tools have not yet been developed to pro-
vide design guidlines. As a result, a majority of the work in this area is ?
fragmented and empirical in nature, being guided primarily by intuition and

observation; the results cannot usually be generalized and are restricted g

to the specific application or investigatioa.

The present study attempts to identify, through an extensive literature
i survey, the work pertinent to the tip vortex rollup phenomenon and its
alleviation. Over 150 documents are identified and cataloged. In additionm,
those alleviation concepts which hold promise for the delay of tip vortex
cavitation on marine propellers are given closer consideration, and appro-

& priate experimental investigations are recommended.

BRIEF DESCRIPTION OF TIP VORTEX LITERATURE
The large volume of literature devoted to the tip vortex rollup phe-
nomenon attests to both the importance of the associated problems and the
lack of a fundamental understanding of the mechanism involved. Approxi-

mately 60 percent of the papers reviewed in the present survey represent

experimental work which attempts to define the nature of the rollup process.

Although the results of these investigations have begun to identify the
pertinent parameters governing the vortex rollup process, they have not
provided the generalized tools necessary for its prediction. As a result,
the remaining 40 percent of the papers reviewed comprise experimental

_ studies which are directed solely to the solution of the tip vortex problem.
# The literature dealing with the analytical representation of the viscous

rollup will be reviewed in the next section.

A bibliography of all the literature reviewed is given in the Appendix.
In addition, a capsuled highlight of each of the bibliography references is
given in Table Al of the Appendix. As seen in the Appendix, the large
volume of tip-vortex-related literature offers very little information with
regard to marine propellers, and particularly to tip vortex cavitation.
Of the 40 percent of the literature dealing with tip vortex alleviation
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concepts, only a few papers consider the marine propeller. In fact, a

majority (over 80 percent) of the work in this area is associated directly
with the aircraft industry. However, although the particular applications
are quite different, the results of the aircraft tip vortex alleviation
work can be applied, to varying degrees, to the marine propeller. The
limits of applicability and the disparities in the literature will be high-
lighted in later sections of this report.

REPRESENTATION OF TIP VORTEX ROLLUP

The earlier attempts--Lamb and Prandtl--to represent the complex vortex
rollup phenomenon generally consisted of a simplified, two-dimensional,
inviscid theory, where a vortex sheet emanates from the trailing edge of
a lifting wing and rolls up, in the form of a spiral, under the action of
its self-induced velocity field. The initial strength of the vortex sheet
is determined by the spanwise load distribution of the wing. This over-
simplified model failed to correctly predict the sizes and strengths of
the observed vortices. As more experimental data emerged, later models
became more realistic and elaborate; for example, these models began to
incorporate both the viscous effectsl* governed by the wing-tip boundary
layer and an observed axial velocity2 in the vortex core, which basically
introduced a three dimensionality to the models. A recent vortex core
representation,1 shown in Figure 2, includes four distinct regions: (1)
a viscous inner region, (2) a smoothed-out spiral where the velocity dis-
tribution is essentially inviscid, (3) a tightly wound spiral, and (4) an
external region containing the unrolled portion of the vortex sheet.

Some results from this theory1 are compared with experiment3 in Figure
3, which shows the variation of the vortex core axial velocity vy with
Reynolds number Rh' The observed disagreement is not totally unexpected
since the theory is confined to laminar flow, which renders comparison with
high-Reynolds-number, turbulent-flow, wind-tunnel experiments somewhat
uncertain. In addition, these models are limited to very simple wing
planform and loading distribution. Recently, numerical techniques4 have

*A complete listing of references is given on page 59.
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Figure 2 - Proposed Spatial Distribution of Vortex Structure:
1 - Viscous Inner Region; 2 - Smoothed-Out Spiral,
Velocity Distribution Essentially Inviscid;
3 - Tightly Wound Spiral; and 4 -
Unrolled Portion of Vortex Sheet
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been employed to predict the fully rolled up vortex sheet. However,
judgement must wait until some initial computational difficulties are
resolved.

In summary, the most widely held theories for tip vortex rollup in-
volve the role of the wing-tip boundary layer and assume a laminar vortex
structure for simplicity. As a result of theoretical deficiencies, the
models fall short of predicting the turbulent tip vortex rollup and the
resulting vortex characteristics. The three-dimensional aspects of the
crossflows and the turbulent vortex are issues which remain unsolved and
await further study.

Although the theoretical representations are still evolving, the
results of these analytical efforts, to date, in conjunction with the ex-
perimental observations, offer an insight to a general understanding of the
viscous rollup process. The two common parameters identified as governing
the formation of the tip vortex are:

* the spanwise distribution of the lifting surface circulation, and

* the detailed configuration of the lifting surface tip geometry.

Both the magnitude and distribution of the spanwise circulation
directly control the basic shape and strength of the resulting tip vortex.
In addition, the wing tip geometry can be as equally significant in chang-
ing both the rollup process and the nature of the flow forming the vortex.
Experimental observationsS have indicated that the strength and stability
of the tip vortex is sensitive to changes in velocity due to the wing-tip
boundary layer and also to the turbulence level of the flow entering the
vortex core.

The spanwise circulation distribution is fixed for a majority of the
lifting surface applications. Thus, a majority of the efforts to reduce th
tip vortex and the associated problems have involved modification of the
wing tip geometry. One exception is the marine propeller, where the cir-
culation or loading is decreased in the area of the tip for the purpose of
improving tip vortex cavitation performance. The intent of these various
modifications is to either delay or dissipate the tip vortex without an
unreasonable penalty in efficiency. The remainder of the present study
will involve a discussion of these various concepts and their potential

applicability to the marine propeller and tip vortex cavitation.
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TIP VORTEX ABATEMENT CONCEPTS
SCHEMES PROPOSED IN THE LITERATURE
The literature identifies approximately twenty concepts for allevi-

ating tip vortex. These concepts, some of which are shown in Figure 4,
generally involve wing tip modifications. Table 1 identifies the biblio-
graphy listing with the particular concept considered. Comparison of the
relative merits between concepts is difficult due to differences in the
experimental procedures, the recorded data, and the operational Reynolds
number Rn.

Figure 5 shows the range of investigative Reynolds number Rn and angle
of attack a for the various concepts shown in Figure 4. The majority of
these investigations were performed in low-speed wind tunnels and involved
far-field wake surveys of vorticity generated by planar wings. Approxi-
mately one-half of the investigations include some force data to determine
the efficiency of the concept. Only a small percentage of the studies were
performed in water and recorded cavitation data.

In light of the above findings, it is apparent that the results of the
literature offer very limited guidance when considering the problems of
delaying tip vortex cavitation on a marine propeller. The crucial cavita-
tion inception data and the wing near-field wake data are generally not
available. In addition, for application to marine propellers, any concept
must be evaluated with regard to certain practical aspects, e.g., structural
suitability, reliability, and operational environment. Also, the concept
should not be a source of any additional local cavitation and should not
introduce prohibitive performance penalties. These requirements should

be kept in mind as the details of the various concepts are discussed.

SPANWISE LOAD DISTRIBUTION

The strength of the tip vortex is strongly dependent on the magnitude
of the spanwise load distribution near the tip. As the loading shifts in-
board, away from the tip, the tip vortex strength decreases. This is
accomplished for aircraft through the use of wing flaps, which effectively
change the wing aspect ratio, and for propeller blades through appropriate
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TABLE 1 ~ LISTING OF CONCEPTS PROPOSED TO ALLEVIATE TIP VORTEX AND THE

NUMBERED BIBLIOGRAPHY ENTRY IN WHICH THE CONCEPT IS PROPOSED

Al:::;::ion gzée:f Bibiiography Eatry ¥o.
Concept Proposed (see Appendix A)
Spanwise Loading 2 29, 125
g::z‘f:':;c.”el“’ 9 |15, 27, 32, 33, 35, 41, 98, 125, 130
OGEE 3 1, 73, 109
Edge Detail 5 22, 57, 131, 132, 142
Honeycomb 1 125
Bulbous Tip 1 36
Serrated Edge 2 123, 124
Tip Duct 1 125
Porous Tip 5 119, 121, 125, 130
Endplate 2 57, 130
Drooped Wing 1 87
Fence 1 83
Contravanes 1 125
Tip Spoiler 4 30, 35, 130, 148
Splines 3 35, 83, 101
Mass Injection 12 i;zfgiag}’lzg' 84, 106, 120, 122, 125,
Winglet 1 92
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pitch and camber changes. The benefit of this concept is shown in Figure 6
which presents cavitation inception data6 for a pair of propellers, one
with and one without a 10 percent pitch reduction at the tip. As shown,
the variation of cavitation index o with advance coefficient J, is lower

A
for the reduced pitch propeller by approximately Ollo2 ~ 4/3 for J, = 0.80,

which corresponds to a ratio of free-stream speeds of 1.15, i.e., :n
B increase in tip vortex cavitation inception speed of approximately 15
;i percent. Although this concept has proven effective, the propeller
ﬂ efficiency suffers a decrease on the order of 5 percent.
1 PLANFORM: DELTA, SWEEP, AND OGEE TIP

A change in planform shape can alter the wing spanwise load distribu-
tion, and hence the strength of the tip vortex. This is the primary differ-
ence between the delta planform and the rectangular planform. Also, for the
delta planform, a strong spanwise flow exists along the sweptback leading
edge, which significantly alters the characteristics of the vortex rollup.
Apparently, the rollup occurs over a much larger area, resulting in a less

concentrated vortex. In the case of marine propellers, this same effect is

obtained with blade skew. However, model experiments7 failed to demonstrate
any improved tip vortex cavitation performance with increased propeller
blade skew. One difficulty reported in Reference 7 is distinguishing
between tip vortex cavitation and leading edge surface cavitation.

The OGEE tip planform (Figure 4) is a concept specifically designed

for helicopter rotors to increase rotor overall efficiency through re- .
duction in the induced drag associated with the tip vortex rollup. This i
improved performance is achieved by a rather complex flow process where :
secondary vortices interfere, destructively, with the primary tip vortex. é
The results from OGEE tip investigations are somewhat conflicting: opti- |
mistic report38 indicate a 75 percent reduction in vortex core peak tan- ?

gential velocities with a 5 percent increase in efficiency, but less opti-

mistic reports9 indicate decreases in vortex core velocities with decreases
in rotor efficiency. In addition, the effectiveness of the OGEE tip is
reduced significantly for rotor off-design operation. Based upon the
12
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Figure 6 - Variation of Propeller Tip Vortex Cavitation Index o
with Advance Coefficient JA’ with and without
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questionable performance limitation, the adaptation of an OGEE tip plan-
form to a marine propeller appears, at best, marginal.

An increase in the lifting surface area is another planform change

which can improve tip vortex cavitation performance. The thicker viscous

boundary layer associated with a larger planform area increases the viscous
mass flow entering the vortex core, thus accelerating the vortex core decay. |
The benefit of this concept is shown in Figure 7 which presents cavitation |

inception datalo for several propellers--all with identical loading distri-

UARAADY - Hond it o

i butions. As shown, the variation of cavitation index o as a function of
advance coefficient J is substantially lower for increasing blade area,
e.g., at design JA = 0.833, the 4132 and 4133 propellers, with area ratios
of 0.303 and 1.212 respectively, show a 01/02 ~ 8.8/4.2, which corresponds
to a ratio of free-stream speeds of 1.40. However, the increased blade

area also results in increased blade drag, and thus decreased propeller

S

efficiency.

WING TIP EDGE DETAIL
i The chordwise edge of a wing tip can be finished by being rounded,

squared, or tapered sharp. Investigations of wing tip edge details have

11,12 varied and contradictory observations. However, the discon-~

reported
tinuity of a sharp or squared edge appears to disturb the tip vortex rollup
process in a somewhat favorable manner. Although, intuitively, little gain

would be expected, this simple modification could prove beneficial.

SERRATED LEADING EDGE

A serrated wing-tip leading edge (Figure 4) produces a much higher
level of turbulent flow entering into the tip vortex core. This increased
turbulence destabilizes or accelerates the decay of the tip vortex. Exper-
imental atudiesl3 with serrated leading edges report a small increase in

wing efficiency for small angles of attack and identify the serration size

and density as important parameters. The adaptation of this concept to the
marine propeller would likely produce additional local cavitation.
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POROUS TIP

Wing tip porosity refers to perforations, of varying size, distribu-
tion, and density, which connect the pressure and suction sides of the
lifting surface tip. The porosity concept may produce several beneficial
effects with regard to delay of tip vortex cavitation, e.g., the perfora-
tions connecting the pressure and suction sides will tend to decrease the
local circulation and shift the spanwise load distribution inboard, away
from the tip, thereby reducing the tip vortex strength. In addition, the
perforations may produce a higher level of turbulent flow entering the
vortex core and also direct an additional opposing mass flow into the core,
both of which would tend to produce destabilizing effects.

As indicated in Table 1, this concept has received much attention for
aircraft application. Investigations, both model14 and full-scale,15 have
indicated a substantial reduction in the vortex core near-field tangential
velocity, with a minimal drag penalty.

Figure 8 presents wind tunnel data14

which shows the effect of wing
tip porosity on both the tip vortex characteristics and the wing perfor-
mance. As seen for a modest tip porosity of approximately 15 percent, a

substantial reduction of up to 70 percent in the vortex core tangential

velocity is achieved for a minimal decrease and increase of the wing
efficiency and drag, respectively.

Similar qualitative results are also reported for a porous tipped
propeller. However, careful attention must be given to the perforation
aligmment and finishing in order to avoid local surface cavitation

For the alleviation of tip vortex cavitation on marine propellers, the
porosity concept appears to be attractive. The results indicate that it is
efficient and it is extremely simple and practical. However, care must be

exercised to avoid local surface cavitation.

ENDPLATES, WINGLETS, FENCES, AND CONTRAVANES

The attachment of vertical endplates to the wing tip (Figure 4) signif-
icantly interferes with the tip vortex rollup. Numerous investigations re-
port that the endplate retards the rollup, thereby increasing the tip

loading. In addition, the increased endplate surface area tends to disperse
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and reduce the strength of the forming tip vortex. However, these gains
are accompanied by a large drag increase and a loss in overall efficiency.
The drooped wing is a similar concept which represents one-half of an end-

plate. Experimental studiesl6

with this concept indicate an optimum drooped
wing attachment angle, with respect to the parent wing, of 90 degrees.

The winglet (shown in Figure 4) is a recent sophisticated adaptation
of the endplate which employs highly efficient 1lifting surfac at the wing
tip. This concept has received attention in the aircraft industry as a
means of increasing the wing cruise efficiency through reductions in the tip
vortex-induced drag. Winglet model studies17 have reported reasonable in-
creases in performance and reduced strength of the near-field tip vortex.
These investigations have also shown that, to be effective, the winglets
must be designed with extreme care. The present winglet design for aircraft
is quite fragile and, thus, may not be structurally suited for application
to marine propellers.

The fence is a form of vertical endplate which is repositioned inboard,
of the wing tip. Its characteristics are similar to those of the endplate;
however, the effects on the tip vortex decrease as it is moved inboard or
away from the wing tip. Report318 show that the fence increases the level
of turbulent flow entering the tip vortex and, thus, reduces the far-field
vortex tangential velocities by as much as 70 percent. However, due to the
inboard location, the fence would have less effect on the tip vortex near-
field region~--the region of interest for propeller tip vortex cavitation.

Contravanes (shown in Figure 4) generally refer to a localized group
of small fences which are specifically oriented in such a way as to re-
direct the incoming flow and oppose the vortex rollup. Past studies14
indicate that contravanes are more effective than fences and maintain good
efficiency.

In addition to the reperted performance limitations, all of the
endplate-type concepts discussed above would be susceptible to local cavita-
tion. Also, secondary vortices would be likely to emanate from the various
surface intersections. Therefore, the use of these devices on marine

propellers appears questionable.
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BULBOUS TIP

A wing tip bulb is defined as any selective increase in the wing tip
thickness, e.g., aircraft wing tip tanks or pods. The thicker tip viscous
boundary layer associated with the bulb increases the viscous mass flow
entering the vortex core, thus destabilizing or dissipating the vortex core
energy. In addition, the bulb may act in a manner similar to an endplate
and retard the tip vortex rollup process.

The bulbous tip concept has been applied, with varying degrees of
success, to both model and full—scale19 marine propellers. The benefit of
this device is shown in Figure 9, which presents cavitation inception and
efficiency data19 for a pair of model propellers, one without and one with
a tip bulb of thickness approximately 2 percent of the propeller diameter.
As shown, the variation of cavitation inception index 0 as a function of

advance coefficient J, is substantially lower for the bulbous tip propeller;

A
e.g., for J, ~ 0.65, Ao ~ 7.5, which corresponds to a ratio of free-stream

speeds of 1?4. The bulbous tip propeller suffers a maximum decrease in
efficiency Ny ~ 4.5 percent.

The results from the bulbous tip work appear promising, and the bulb
may prove to be a viable concept for delaying tip vortex cavitation incep-
tion. However, the bulb must be carefully designed to minimize both local

cavitation and efficiency loss.

TIP DUCT
The tip duct consists of a faired tube attached to the transverse or

chordwise edge of the wing tip. The duct outer surface acts similar to the
bulbous tip, while the inner surface tends to destabilize the vortex core
by retarding the core entry flow. Also, reverse swirl vanes can be added
inside the duct in an attempt to induce rotational velocities to oppose the
vortex rollup. Tip duct investigationsl4 report only modest increase in

effectiveness with a large increase in drag. Thus, this device does not

appear to be suited for the marine propeller.
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TIP SPOILER

The tip spoiler is similar to a fence, except that it is oriented in a
spanwise manner, perpendicular to the incoming flow. Spoilers can be loc-
ated at various chordwise locations on the wing pressure or suction side,
but ideally the location should be such that the spoiler-increased turbulent
flow is absorbed directly into the vortex core, thereby dissipating the
vortex core energy.

The numerous tip spoiler investigations generally concur that this
device is highly effective; e.g., some reports20 claim an 80 percent re-
duction in the tip vortex circulation strength, while others21 indicate
that a small tip spoiler may be as effective as a much larger ome, with
substantially less parasitic drag. However, there also is a large discrep-
ancy in the reported spoiler drag--from negligible to prohibitive. Again,
based upon the possible performance penalty and the potential for local sur-

face cavitation, spoilers hold little promise for application to propellers.

TRAILING EDGE DEVICES: SPLINES AND HONEYCOMB

Splines and honeycomb (shown in Figure 4) represent trailing edge de-
vices which are located off the wing and just aft of the wing-tip trailing
edge. These devices are positioned in the path of the tip vortex, the in-
tent being to destroy the vortex structure and promote early decay. Recent
investigations involving the application of these concepts to weaken large

aircraft vortex wakes reportl4’18

a high degree of effectiveness, but also
an equally high increase in drag.

The trailing edge devices operate in the downstream tip vortex wake
region and, as such, do not affect either the rollup process on the wing or
the tip vortex structure in the wing near field. On this basis, it appears
that these devices would have little, if any, effect on the inception of
tip vortex cavitation. In addition, for marine propeller application, these

concepts would suffer obvious structural limitationms. .

TIP MASS INJECTION
As implied by the title, tip mass injection involves the ejection of a
fluid in the vicinity of the wing tip vortex. Of all the devices reviewed,

21




this one has received the greatest attention (see Table 1). Basically,
three mass ejection techniques are reported in the literature: linear or
axial mass ejection, directly into the vortex core, with either an (a) up-
stream or (b) downstream facing jet, and (c) spanwise mass ejection with an
outboard facing jet. These injection schemes are illustrated in Figure 4.
Linear mass ejection increases the core axial pressure and accelerates the
vortex decay through the viscous interaction of the two flows. Spanwise
mass ejection blocks or interrupts the vortex rollup as it forms along the
tip chord and results in improved wing performance.

Linear mass ejection studie522’23

have repeatedly demonstrated the
concept effectiveness with regard to dissipation of the vortex core energy
with little or no effect on performance. The results of some linear mass
ejection wind tunnel studies22 are given in Figure 10 which shows the vari-
ation of vortex core relative vorticity intensity Q/Qo as a function of jet
momentum coefficient Cj with both an upstream and downstream facing jet, for
various values of z/c. As indicated, for fixed values of Cj

facing jet appears to be more effective in reducing the vortex vorticity

the upstream

than the downstream one. However, the upstream configuration would require
higher delivery pressures in order to overcome the opposing free-stream
stagnation pressure.

Spanwise mass ejection has been shownz4 to be an effective means of
altering tip vortex rollup and increasing wing performance. As shown in
Figure 11, the spanwise ejection data24 indicate that, within one chord
length downstream of the wing trailing edge, the peak rotational velocity
is reduced by approximately a factor of 5, and the vortex sheet wrapup has
been delayed beyond one chord length downstream. This is accompanied by an
induced drag reduction of approximately 15 percent at operational lift co-
efficients. Although these results are impressive, the spanwise mass
ejection rates are an order of magnitude higher than the corresponding
linear rates.

There is little data on the correlation between the water mass
ejection rates required to delay tip vortex cavitation and the reported air

mass rates required to reduce vortex core vorticity. Nevertheless, tip
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mass ejection, especially linear, may prove to be an effective means of
delaying tip vortex cavitation on marine propellers. Practically, the
concept will be limited by the required delivery power, which will be aided
by the centrifugal action of the propeller.

OTHER CONCEPTS

There are other tip vortex dissipation concepts which are not reported
in the literature, e.g., elastic and flow separation tips and large tip
skew. All of these ideas address the propeller nonhomogenous wake environ-
ment and would tend to delay tip vortex cavitation by averaging the unsteady
blade loading--i.e., by avoiding the unsteady high 1ift conditions, the
unsteady tip vortex cavitation would be reduced. Both an elastomer tip sec-
tion designed to deform to reduce camber and a flow separation tip section
designed to have separation, at angles of attack larger than design, would
present a more constant loading for a given wake variation. However, flow-
separation-related cavitation may be a limitation here. Similarly, large
tip skew, applied to that area of the blade span which directly controls the
vortex rollup, would also tend to average the unsteady propeller loading
due to wake nonuniformity. This idea could suffer possible structural
limitations as a result of increased blade stresses.

One final thought, a very recent, but not yet reported, concept aimed
at delaying vortex cavitation involves the application of a localized arti-
ficial surface roughness in the area of the wing tip. Earlier qualitative
studies5 have shown that a roughened surface on the pressure side of the
wing tip can reduce the tip vortex cavitation inception index o by approx-
imately 20 percent. This lends support to the earlier hypothesis that the
thickness of the wing tip viscous boundary layer plays an important role in
the occurrence of tip vortex cavitation. Although no supporting performance

data are available, this idea may warrant pursuit.
SUMMARY AND CONCLUSIONS

As mentioned earlier and reinforced in the above discussions, the large

body of literature dealing with tip vortex delay offers limited guidance
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when considering the effectiveness of a particular device to delay tip
vortex cavitation on a marine propeller. The primary problem is that most
of the studies are performed in air and involve investigations of the wing
far-field wake. The crucial cavitation inception and performance data and
the wing near-field wake data are generally not available. However, even
with these limitations, the aircraft tip vortex alleviation work can provide
some insight. For example, the trailing edge devices (splines and honey-
comb) designed to mechanically destroy the tip vortex structure are subject
to high drag and reduced efficiency; similarly, planform changes designed

to thicken the tip boundary layer and increase tip vortex decay may, if not
carefully designed, alter the spanwise loading and result in decreased
efficiency; and, practically, all of these aircraft "add-on'" devices are
susceptible to local cavitation. One additional consideration which deserves
mention: the marine propeller usually operates in a nonhomogenous wake and
experiences a large angle of attack variation which results in rather
dramatic changes in blade loading. Thus, any potential concept should also
provide a reasonable degree of effectiveness for off-design operation.

This requirement would tend to render less attractive such devices as the
OGEE tip and endplates.

In view of the foregoing discussions of the various devices and the
additional requirements imposed for marine propeller application, three
concepts appear to warrant further consideration with regard to their po-
tential for delaying marine propeller tip vortex cavitation. They are

* the bulbous tip

¢ the porous tip

* the linear mass injection tip.

All of these candidates have been shown to be effective an. reasonably
efficient.

The bulbous tip which represents the only concept with supporting cavi-
tation inception data, has been shown to delay tip vortex cavitation on
marine propellers with a small-to-modest efficiency loss. Optimization of
the bulb design should result in additional improved performance.

Similarly, the porous and linear mass ejection tips, with supporting

data based only upon air studies, have been shown to significantly alter
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and enhance tip vortex decay, with little or no efficiency loss. For the
porous tip, care must be exercised in the perforation design to avoid local
cavitation, while for the mass ejection tip, the mass flows must be
minimized to be practical.

Until improved analytical representation of the tip rollup process is 1

realized, progress in this area must be made through empirical means. Thus,
it is recommended that an experimental investigation be initiated to assess
the potential of the above candidate tip vortex alleviation concepts. The

investigative Reynolds number Rn should be as high as possible, using large
models, in order to minimize uncertainties when extending the model results
to full-scale. In addition, the study should be conducted in a cavitation
tunnel with an appropriate force dynamometer in order to provide the neces-
sary tip vortex cavitation inception and performance data. Due to both a
lack of existing data and a physical understanding, it would be prudent to
keep the initial experimental effort fundamental and simple, employing, say,
a fixed planar lifting surface. The particular concept adaptation to a
propeller could come at a later stage. However, the parameters which tend
to control the tip vortex rollup on a propeller blade should also be in-
corporated into the fixed planar foil: e.g., the geometric planform, espe-
cially the tip area, and the spanwise circulation or loading distribution.
A representative planform would, obviously, be ellipitical, while the load-
ing distribution should be similar to that of the outer portion of a typical
marine propeller (e.g., see Figure 12). Finally, the investigative angle-
of-attack range should be sufficient to evaluate the candidate concept
performance for off-design operation.

In conclusion, an attempt has been made to survey the pertinent litera-
ture dealing with the tip vortex rollup phenomenon and, especially, its
alleviation. The major dissipation concepts have been briefly discussed.
Those few which appear adaptable for delaying tip vortex cavitation in i
marine propellers are identified, and appropriate experimental investiga-
tions are recommended. The candidate concepts would appear to offer better

tip vortex performance than is obtainable through the present technique of

propeller spanwise unloading alone.
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