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\ ABSTRACT
Ny
This experimental investigation demonstrated the cri-
ticality of performing accurate full-scale engine exhaust

simulations during model-measured VSTOL ground effects test-

ing. The effects of varying the nozzle exit turbulence, total
pressure distributions, and nozzle pressure ratio on the
net and component ground-induced forces for two-, three-, and
four-nozzle configurations with large blocking surfaces (as
well as a smaller, cruciform two-nozzle blocking surface more
characteristic of a real aircraft planform) were studied. <——
Nozzle exit turbulent intensities and pressure distri-
butions were determined by exit surveys with a Kulite sub-
minature pressure transducer and a total pressure probe.
Screens of varying grid size and plates with varying hole
patterns were used to achieve variations in turbulent inten-
sity and pressﬁre distributions (resractively) that are
characteristic of real aircraft turbojet and turbofan en-
gines at representative nozzle pressure ratios ranging
from 1.5 to 2.4,
It was determined that turbulence can be changed by
increasing the screen grid size, varying the pressure dis-

tribution, or decreasing the nozzle pressure ratio.




Total-pressure rake surveys in the fountains formed un-
der these blocking surfaces indicate that, in all cases, in-
creasing the nozzle turbulence decreases the strength of the
fountain by increasing the turbulence and, hence, the entrain-
ment of air away from the fountain by powerful radial ground
jets that are formed by the impacting free jets on the ground
plane.

Although the magnitude of change was highly configura-
tion dependent, increasing the turbulence intensity in all
cases resulted in significantly more-unfavorable ground ef-
fects.

For planforms characteristic of real aircraft, varying
the turbulence from turbojet to turbofan engine levels with
relatively high bypass ratios (or fans) results in an equiva-
lent 10% lift or thrust loss which is on the order of the pay-
load of the aircraft. Therefore, if the effects of nozzle
exit conditions of the engines expected for use on VSTOL air-

planes are not considered, costly errors in airplane sizing

will result.
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FOREWORD

This investigation into the criticality of engine
exhaust simulations in VSTOL model-measured ground effects
was sponsored by the Office of Naval Research under Contract
No. N00014-78-C-0384 and executed by the Fort Worth Division
of General Dynamics Corporation. The contracted activity
spans the period from July 15, 1978, to August 14, 1979.
This research activity was monitored and guided by Dr.
Robert E. Whitehead of ONR. The program was managed by
Mr. C. W. Smith. Mr. J. R. Lummus, who acted as principal
investigator, managed the testing, conducted the data

analysis, and wrote the final report.
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NOMENCLATURE
Area used in fountain integration in.
Nozzle-exit diameter in.
Angular mean diameter in.
(Ref. 20)
Distance from one of two jets to the in.
fountain on a line perpendicular to
the fountain
Ratio of Barometric pressure (psi) to -
standard day barometric pressure (14.7 psi)
Largest physical dimension for turbu- in.
lence generation; grid size for screens
in this experiment
Average size of turbulent energy-con- in.

taining eddies of consequence (Kolmo-

gorof, Ref. 15)

Force vector used in fountain integration 1bf
Total isolated thrust of all jet nozzles 1bf
for single- or multiple-jet configura-

tions

Frequency hz
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NOMENCLATURE (Continued)

Fountain flow angularity from vertical deg

in the XZ plane, positive to the rear

of the model

H,h Height of the blocking surface above the in.
ground surface

I Turbulent intensity (based on Kulite -

pressure measurements in this study)

K Wave number (Ref. 15)

AL Total induced lift on the blocking sur- 1bf
face, equal to the sum of the fountain
and suckdown components
ALF Total incremental effect of the fountain 1bf
| ; on the induced 1lift, equal to the sum of q
4 the fountain core and fountain interfer- H

ence components

ALFC Lift of the fountain core obtained from 1bf
’ : integrations of the rake pressure data
ALFI Fountain interference lift 1bf
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4
v m Mass flow per unit area obtained from lbm/in.zsec
3 ?A {:} the rake measurements
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ﬁF : Total mass flow through an X-Y plane cut 1bm/sec
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N; Nozzle designation where -
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‘ NOMENCLATURE (Continued)
S1 Turbulence screen with element size = -
0.125 in. (see Figure 14)
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T Temperature °p
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1. INTRODUCTION !

When a VSTOL aircraft operates near the ground, the high-
velocity jets exhausting below the aircraft react with the
ground and airframe (Figure 1) to produce propulsion-induced |
aerodynamic forces and moments which must be determined for
accurate propulsion and control system sizing and, hence,
accurate aircraft sizing. Accurate prediction.of these in-
duced aerodynamic forces is critical to VSTOL aircraft design

because they can represent significant changes in the thrust

W S *a

required for VTOL operations, resulting in large increases

: | in required takeoff gross weight and, ultimately, in large

cost increases to accomplish the mission requirements.
Research with free jets and recent flight test experience

with full-scale aircraft indicate that nozzle exit conditions

influence the magnitude of these induced forces. Therefore,
to improve the accuracy of current prediction methodologies
and to gain physical understanding of the flow mechanisms

involved, an experimental investigation was conducted to

S ——

determine the criticality of full-scale engine-nozzle exit

conditions (nozzle exit turbulence, total pressure dis-

aF tribution, and pressure ratio over the ranges expected for

full scale aircraft engines) on the propulsion-induced
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aerodynamic forces. This investigation was limited to the
case of hover in still air (no crosswind, no forward speed)

with zero pitch, yaw, and roll angle.

1.1 Background and Related Research

The net-induced normal force on the aircraft (primarily
produced by flow regions 1, 2, 3, and 5 in Figure 1) is the
summation of two oppositely directed forces, suckdown and
fountain. Suckdown, ALJ. is a negative force (lift loss)
produced by suction pressures on the underside of the air-
craft created by large quantities of air entrained by the
turbulent exhaust and ground jets below the aircraft. The
fountain occurs when two or more engine exhaust jets im-
pinge normally on the ground plane and the resulting radially
expanding ground jets meet to form a vertical upflow region
or fountain. This fountain induces a positive force, ALF,
(l1ift enhancing) to the airframe that sometimes cancels or
exceeds the negative suckdown force.

Previous analytical methods (References 1 and 2) pre-
dict net-induced lift losses that are too optimistic (Figure
2). The prediction error results partly from an assumption

that the effects of the various flow regions illustrated in

Figure 1 may be superimposed, that is, they do not react




g

e o

O

with each other and therefore the suckdown and fountain
forces can be independently predicted without regard to
any mutual interference effects. This assumption had a
large effect on the way the flowfield was modeled in Re-
ference 1 for example, where the suckdown forces were cal-
culated from flowfields induced by potential flow sink dis-
tributions to simulate the free and wall (ground jet) en-
trainment while fountain forces were isolated by replacing
the fountain with a jet striking the aircraft undersurface.
The importance of adding empirical corrections to the po-
tential theory to account for the prevalent viscous tlow
and real interference effects are apparent when the pre-
dicted fountain jet and net-induced forces are compared
with the experimental data as shown in Figure 2. It ap-
pears that an empirical prediction approach is required
because the flowfield is simply too complicated to be
adequately predicted by strictly theoretical means.
General Dynamics has been involved in developing an
empirically based prediction methodology for these induced
forces for several years (References 3, 4, 5). Karemaa
(Reference 4) determined that the net fountain force (net

induced force minus pure suckdown, both experimentally ob-

caies N s ame e
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tained as described in Section 2.2) is made up of a fountain

core force, ALF which produces a positive lift on the block-

c’
ing surface, and a fountain interference component, ALFI’
which produces either a positive or a negative lift caused

by the interaction of the fountain, the blocking surface, and
the entrainment process. For a two-nozzle configuration with
a large rectangular blocking surface, Karemaa postulated that
the fountain interacts with the blocking surface and the en-
trainment flow to produce a pressure field under the blocking
surface that is different from the one that would exist if
the fountain were not present. This interference term ac-
counted for the error of previous prediction methodologies.
Karemaa formulated a relationship to describe how these non-

dimensionalized component forces make up the net induced force

measured with the typical ground-effects research model:

A B e . +ALFI (1)
F 3 F 3

3 3 3 b

i i e S VP,

The superposition assumption was therefore considered invalid,

but more evidence and understanding of this fountain inter-

ference term was required.

This led to a series of experiments, conducted by General

-

#
A

Dynamics and supported by the Office of Naval Research, to




investigate the characteristics of the fountain flow formed
beneath large research-type blocking surfaces with two-,
three-, and four-nozzle configurations (Reference 5). This
research was also aimed at determining more about the inter-
action of the fountain with the entrained air and blocking
surface and at quantifying the subsequent fountain inter-
ference force. Dynamic pressures in the fountain were mea-
sured with a total-pressure rake and integrated to determine
the fountain core force and the mass flow entrainment charac-
teristics of the fountains studied.

The net induced force and the pure suckdown component,
measured in the manner described in Section 2, were obtained
for each nozzle configuration; the interference force was
then determined by Equation 1. The results conclusively
proved the existence of a fountain interference‘component
for large blocking surfaces. The interference component was
found to be as large or larger than the fountain core force
for the large blocking surfaces tested. Therefore, analyti-
cal prediction methods and experimental efforts that only
consider the fountain core will overlook a major fraction
of the fountain contribution. The fountain interference
was also found to be a function of nozzle configuration,

producing large lift losses with the two-nozzle cases and

DAY
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aerodynamic forces. This investigation was limited to the
case of hover in still air (no crosswind, no forward speed)

with zero pitch, yaw, and roll angle.

1.1 Background and Related Research

The net-induced normal force on the aircraft (primarily
produced by flow regions 1, 2, 3, and 5 in Figure 1) is the
summation of two oppositely directed forces, suckdown and

fountain. Suckdown, 4L,, is a negative force (lift loss)

5
produced by suction pressures on the underside of the air-
craft created by large quantities of air entrained by the
turbulent exhaust and ground jets below the aircraft. The
fountain;occurs when two or more engine exhaust jets im-
pinge normally on the ground plane and the resulting radially
expanding ground jets meet to form a vertical upflow region
or fountain. This fountain induces a positive force, ALF,
(1ift enhancing) to the airframe that sometimes cancels or
exceeds the negative suckdown force.

Previous analytical methods (References 1 and 2) pre-
dict net-induced 1lift losses that are too optimistic (Figure
2). The prediction error results partly from an assumption

that the effects of the various flow regions illustrated in

Figure 1 may be superimposed, that is, they do not react
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large lift gains with the stronger-fountain four-nozzle
configuration. In fact, the positive net incuced force
measured for the four-nozzle case was found to be due pri-
marily to the positive fountain interference component and
not to the fountain core force as had been thought before
this research. The integrated rake measurements showed
that a very weak fountain was formed with the two-nozzle
cases and that usually dissipated before reaching the block-
ing surface, thus contributing no net positive fountain core
lifting force to the blocking surface. The fountain dissi-
pation was found to be due to air being entrained away from
the weak fountains by the powerful radial ground jets - at
a diminishing rate with increasing height in the fountain,
as described in the following excerpt from Reference 5:

As the fountain rises from the ground plane, the

two-nozzle fountains lose large amounts of mass

and entrain some ambient air for a net loss in

mass. The three-nozzle fountain also loses mass,

while the four-nozzle fountain gains mass .

Karemaa and Smith (Reference 6) explain that fountain
interference is probably a result of the fountain itself
acting as a blocking surface that reduces the rate of en-

trainment of ambient air by the ground jets (Figure 3); the

fountain blocks one path available for a single jet to en-
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train gas into the ground jet (Sketch B) so that air is en-
trained away from the fountain and into the ground jet
(Sketch C). Air was found to be more easily entrained away
from the weak fountain of the two-nozzle case into the ground
jet. The three-nozzle fountain, which is somewhat stronger
than the two-nozzle fountain, had less air entrained away

and actually produced a positive fountain core force. The
four-nozzle fountain was found to be much stronger than ei-
ther the two- or three-nozzle fountains and actually entrained
air into the fountain. A strong positive fountain core force
and positive interference was produced. The authors noted
that the mechanism of the positive fountain interference was
and still is unknown and requires a more detailed definition
of the flowfield.

It is apparent that the entrainment mechanism is respon-
sible for much of the ground effects with VSTOL aircraft.
Comparisons of the measured free-jet centerline decay by se-
veral experimenters (Reference 7) show considerably different
spreading rates near the nozzle exit for axisymmetric free
jets (Figure 4), but to date no systematic work has been
done to explain the source of the difference. However,

Kuhlman and Warcup (Reference 8) have demonstrated that al-

A e el o b B
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tering the exit velocity profile of an axisymmetric jet can

alter its spreading rate (Figure 5) and produce a large

change in the induced loading on the blocking surface plate
through which the free jet exits. Varying the nozzle pres-
sure ratio is another means of obtaining different spreading
rates with a free jet, as shown by Gentry and Margason (Re-
ference 9) and reproduced as Figure 6; they also established
a correlation between jet spreading rate and ground effects
measured on a model. Since the turbulent structure of axisym-

metric jets does not become self preserving until some 80 jet

exhaust diameters downstream of the nozzle exit, as demon-

strated by Wygnanski and Fielder (Reference 10), nozzle exit

conditions are expected to have a significant effect on the

e

flowfield around a VSTOL airplane at altitudes where the
ground effects are important, these altitudes being usually
much less than 80 nozzle exhaust diameters.

A | In the course of the VAK 191B VSTOL aircraft development

and evaluation program (Reference 11) flight tests produced

é { quite different results than did model tests in VIOL mea-
sured ground effects (Figure 7). It is veported in Reference
11 that the difference is believed to lie in the failure to
% {3 simulate the full-scale engine-nozzle exit conditions in the

model tests.
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1.2 Objectives ;

It is apparent from the research described above that
nozzle exit conditions do affect the VSTOL-related flowfield
and that these engine exhaust conditions should be modeled
accurately so that model-measured ground-induced forces can
be extrapolated to those of full-scale vehicles. In order
to determine the criticality of these engine exhaust simula-
tions, an experimental investigation was conducted on the ef-
fects of varying the nozzle exit turbulence, total pressure
distribution, and nozzle pressure ratio on the ground-induced
forces for two-, three-, and four-nozzle configuration models
with large flat-plate blocking surfaces. The nozzle confi-
gurations and blocking surfaces were the same ones used in q
an earlier investigation of fountain characteristics and tem-
perature effects (Reference 5). Since the ultimate objectives H

of this research are the development of prediction techniques

and an understanding of the physical flow phenomena, the ef- q

fects of varying the nozzle exit conditions on the component

forces described in Equation (1) as well as on the net-induced

force had to be determined.
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2. EXPERIMENTAL INVESTIGATION

The experimental investigation was conducted at the
General Dynamics Fort Worth Division's Ground Effects Hover
Test Facility (Figure 8). Testing consisted of three phases -

a nozzle calibration phase, in which variations in nozzle

exit conditions were determined; an induced-loads phase, in

which the net and component induced forces produced by var-
iations in model configuration (number of nozzles and block-
ing surface planform shape), model altitude, and nozzle exit

conditions were measured; and, finally, a fountain survey

phase, in which the fountain flowfield characteristics were
investigated. As noted earlier, the experiments were limited
to a simulation of hover (no forward speed) with zero cross-
wind and at zero pitch, roll, and yaw angle. Unlike the
work reported in Reference 5, nozzle exit temperature was

not a variable in this study a:d was maintained at approx-

imately 80°F.

2.1 Experimental Equipment

2.1.1 Test Setup
The initial test setup is shown in Figure 9. High-

pressure air was supplied to two plenums by a large-volume

16
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dedicated compressor through four 3/4-inch-inside-diameter

flexible hoses connected to T-fittings on the top of the
plenums. The choking plates used with the model in previous
experiments (References 4 and 5) were again employed to
insure uniform plenum flow to the nozzles. Early in the
nozzle calibration phase, the air compressor failed, requir-
i ing a new air supply system.

Increasing the sizes of the air supply lines to the
plenums, changing the entry points for the air into the

plenums, and replacing the choking plates allowed use of

the plant compressed-air supply system. Details of these

e ———————

hardware modifications are noted below. The key elements

of the revised test setup are shown in Figures 8 and 10.

Gaa L e

This plenum/air supply arrangement was maintained through

PRI 2 TP TIW AR

; the remainder of testing. Checks were made to insure that
the nozzle flow characteristics observed before the com-

pressor failure could be repeated with the new plenum/air-

supply arrangement, thus eliminating the need to rerun
data obtained before the compressor failure,

A key feature of this type of ground effects testing
is the desire to isolate the thrust produced by the nozzles

i* m and the propulsion-induced loads on the blocking surface.
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This isolation was accomplished by making the blocking surface
metric with the lower induced-loads-measuring five-component
strain-gage balance (located between the blocking surface

and the plenum) and by keeping the thrust-producing system
(plenums and nozzles) nommetric to this balance. The thrust
forces were measured (with the blocking surface removed) by
the upper five-component strain-gage balance, which is con-

nected to the vertical support strut.

2.1.2 Model Description

The model is composed of the plenum assembly, associated
nozzle hardware, and flat-plate blocking-surfaces. A general
arrangement of the model is provided in Figure 11.

The plenum assembly is composed of a forward and aft
pPlenum with 15 possible nozzle locations (nine forward, six
aft). The plenums are machined from a single piece of steel
with the bottom surface welded into place. Three sides of
each plenum contain 2-inch-diameter holes to allow for the
installation of various nozzles. The selected nozzle lo-
cations for the two-, three-, and four-nozzle configuration
studied in this investigation are shown in Figure 12. Cover

plates are provided for the non-blowing positions.
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The high pressure air supply system used for the major

portion of this investigation (shop/plant compressed-air
supply system) necessitated modifications to the plenums
to achieve the desired nozzle pressure range (1.5 to 2.4)
with the multiple-nozzle configurations. The plenums were
modified to bring the high-pressure air into the sides of
the plenums at nozzle locations 6, 7, 14, and 15 via four
flexible 1.5-inch-diameter rubber hoses connected to fit-
tings welded to the cover plates; in previous experiments,
the air entered the aft end of the forward plenum and the
top of the aft plenum (Figure 11). A maximum plenum pres-
sure of 95 psig was required for some nozzle arrangements.
The maximum, normalized weight flow condition through one
plenum was 1.27 pounds per second as determined by indi-
vidual-plenum venturi flow meters located upstream of the
flexible hoses.

The nozzle assemblies, shown in Figure 11, are com-
posed of either a straight or a 90-degree elbow barrel
(depending on nozzle configuration), a choking plate, a
spacer (which was replaced with the devices for varying
the nozzle turbulence or pressure profile), and the nozzle
itself. The high-pressure plant air-supply utilized re-

quired a new choking plate with a rectangular grid and

24
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with more porosity than previously used so as to reduce
pressure losses and achieve the desired range of flow
parameters (see Section 2.2, Figure 15).

The new choking plate, used alone as the baseline nozzle
configuration, was located well upstream of the nozzle con-
vergence. It was always present with the other devices for
varying nozzle conditions to maintain uniform plenum flow.
These other devices were located just upstream of the con-
vergence nozzle section. The 30-degree conical, half angle,
convergent nozzles screwed into the barrel assembly to hold
the internal pieces in place. Two nozzle exit diameters were
tested, 1.42 inches for the two-nozzle cases and 1.32 inches
for the three- and four-nozzle cases.

The blocking-surface models are shown in Figure 13.

The large rectangular two- and four-nozzle as well as the
triangular three-nozzle blocking surfaces were the ones
employed in the Reference 4 and 5 tests. (Note that sections
of these plates may be removed or mounted off the balance to
allow testing with one nozzle to determine the pure suckdown
component, as described in Section 2.2.,2.) In addition, a

new cruciform plate with the same two-nozzle spacing was

studied briefly because it is more characteristic of the
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planform shapes of real aircraft than the other large research-
type blocking surfaces. All of these flat-plate blocking sur-
face models are made of aluminum and have sharp 90-degree
edges.

For consistency with previous investigations utilizing |
this hardware (References 4 and 5), the applicable nomen- ‘
clature rationale is noted as follows. The blocking surface
models are noted as P with subscript 13 for the two-nozzle
rectangular configuration, 31 for the three-nozzle triangular
configuration, and 41 for the four-nozzle rectangular con-
figuration. All nozzles are designated by subscripts for
location and by superscripts for size. The location sub-
script is keyed in Figure 12 and designates the nozzle
location on the plenum chambers. The superscript refers
to the nozzle diameter (1 = 1.32 in., 2 = 1.41 in.). A
complete test configuration N; N{b Ni& P31 would mean a
three-nozzle arrangement with 1.32-inch-diameter nozzles

located at points 3, 10, and 11. The triangular three-

nozzle blocking surface would be mounted on the induced-

loads balance.




r_ ,._i ‘ e — - g O S P ST Tore TR——— "

28

2.1.3 Support Hardware

The support hardware consists of the model support
stand to which the model is mounted, the hydraulically
driven ground board-table, and the traversing rig.

The support stand (Figure 8) is a massive, welded-
steel, rectangular beam structure that rigidly supports
the model over the ground board. The stand is bolted to
the concrete floor to assure rigidity. It also serves as

support for the scanivalve bays servicing the model instru-

mentation as discussed in Section 2.3.

The hydraulically driven ground-board table provided
the desired variation in model altitude. An 8-foot-square
reinforced aluminum plate assembly mounted on top of the
small table surface shown in Figure 8 served as the ground
board for this experiment. The table was either manually
or computer operated to vary ground height positioning over

a range of height-to-nozzle-diameter (h/D) ratios of from

e SR—

: 2.5 to 10.

The traversing rig, shown in Figure 9, was used to

i survey the nozzle exit flow with the Kulite/total pressure
probe and the fountain flow with the cone-probe total-

- (j pressure rake (both devices are described in Section 2.3).
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The rig provides longitudinal, lateral, and vertical dis-
placement probe positioning by use of a screw/drive motor
combination. A braking circuit was incorporated in the
drive motors to prevent ''coasting' after the positioning
power signal ended, thereby improving probe-positioning
accuracy. The rig was rigidly mounted to a sturdy support

table to further insure positioning accuracy.

2.2 Test Procedure

2.2.1 Nozzle Calibration Testing

Initially the model plenums were attached to the upper
five-component strain-gage balance, which was in turn mounted
to the vertical support strut and support stand. Flexible
air hoses, with loops to minimize tares, supplied the high-
pressure air to the plenums. With all exit passages from
the plenum blocked by cover plates, the air hoses were pres-
surized to obtain the hose tare forces on the thrust balance.

Check loads were also made to insure that thrust could be

measured through the whole data acquisition system to the #
desired accuracies with the hoses pressurized.
A schematic diagram of the nozzle calibration testing

is presented in Figure 14. With the N32 baseline nozzle




2.9

voneinbyuo) 10}

QM T3 udn smunsag e
UdN 20 Vdg lege

9NI1§31
AIAUNS NIVINNOJ ONV
$av07 03INONI

(NOILVHNOIINDD
3JT2Z0N 40
HIGNNN OGNV
-
Om
.9
17
‘YN =3, dg

NOILING3Y
viva
431NdN0I
o4
dN-%007
379Vl

T 3

*INILNOY

Sunsa) uogeique) ajzzoN jo welbng Jswayss i Ny i

"

POIISU| U3Q M [ 10 primbey Tdg wergQ «

¥oNs30 HZZON pue
ajzzoy awmpeseg {4 = {4 Jog A UaN 1005803 104 °
$331A30 3113044
34NSSIUd ONV IINIINSUNL HLIM

T

;

; uxa
VdgSA udn «— VdgsA 2ZoN e 2
Vdg ‘ydN SA .%m
| (ommt) (=)
g 'y SA m. umuep In....-.#
bl T .m. s
- SNOILVHNSIINGI 31ZZON ‘v ‘C ‘2 404 31ZZON INITISVE
T T ———F




. 5§

installed (on the forward plenum), plenum pressure, Poro

was varied to determine corresponding variations in venturi-

measured corrected airflow to the plenum.-E—#CE, and
corrected balance measured thrust, Fj/§ . The N32 baseline
nozzle exit was then surveyed at various plenum pressures
with a Kulite/total-pressure probe to determine the nozzle
exit turbulence and total-pressure distribution. Each
nozzle exit survey required two traverses of the nozzle

exit 90-degrees apart. During the survey, the Kulite/total-

probe instrumentation reached a maximum displacement of 0.1

inch from the nozzle exit plane at NPR = 2.4; obviously some

nominal displacement was required to prevent instrumentation
damage due to impact with the model as a result of model/
probe vibrations. However, the probe boom was more flexible
than desired, resulting in probe displacement from the nozzle
exit plane that varied slightly during exit surveys. This
displacement was a function of the amount of probe boom
extended into the nozzle flow, producing an aerodynamic
drag force and the subsequent displacement. The exact
{ displacement is unknown but is considered to have a
negligible effect on the overall results of this investi-

gation.
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The nozzle pressure ratio, NPR, is defined as the area-

weighted average total pressure measured across the nozzle

exit plane (with the total probe described above) divided

by the static ambient pressure. (The area-weighted average

total pressure was computed over the inner 80% of the nozzle
diameter (r/D +0.4, Appendix A Figures) due to lateral and
longitudinal deflections of the total-pressure probe caused

by the very high shear layers near the nozzle edge.) The

e O e —

plenum pressure and corrected airflow required to achieve

the desired nozzle pressure ratio and subsequent nozzle

thrust were thus determined.

R L Bhiee o L

In order that the desired variations in nozzle turbulence

and total-pressure distribution could be obtained over the

| ranges expected for full-scale aircraft engines (see Section 3),
the nozzle exit was surveyed with a variety of screen and
f § plate devices located just upstream of the convergent nozzle
section (Figure 15). The thrust was held constant (for a
given NPR) for the baseline nozzle and with the turbulence j
screens and pressure plates in place. The nozzle exit sur-
veys were performed at nominal NPRs of 1.5, 2.0, and 2.4.

The plenum pressure was adjusted until the desired

i~ baseline nozzle thrust was measured on the thrust balance
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at the desired NPR. This allowed the nozzle exit surveys to
be obtained at the same NPRs as were used in the induced-
loads and fountain-survey testing phases. Ultimately, then,
the objective of relating nozzle exit conditions to the in-
duced loads and to what was occurring in the flowfield could
be realized.

The nozzle exit surveys yielded a measure of turbulence
in terms of a turbulent intensity, I, defined as the area-
weighted average RMS value of the fluctuating total pressure
across the nozzle exit as determined by a high-response
subminiature Kulite transducer (see Section 2.3) divided
by the area-weighted average total pressure (gage) across the
nozzle exit as determined by the total pressure probe. (The
turbulent intensity was also defined over the inner 80% of
the nozzle diameter because of the difficulty in measuring
the total pressure near the nozzle edge as noted above.)
The accuracy of measuring the turbulent intensity with the
Kulite transducer will be discussed in Section 2.4.1.

The devices selected for varying the nozzle exit con-
ditions are shown in Figure 15. Screens of varying mesh
size were used to achieve variations in nozzle exit tur-
bulence while maintaining a virtually uniform total-pressure

distribution. The choking plate on the left is shown for
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comparison. Exit total-pressure distributions representative
of turbofan engines with varying bypass ratios were obtained

with pressure profile plates P1 and P2 (Figure 16); the base-

line nozzle's "top hat" pressure distribution is represen-
tative of a turbojet engine.

NPR is a somewhat arbitrary term when applied to non-
uniform exit pressure profiles like those produced by P1
and PZ' Therefore, the NPRs for the non-uniform profiles
were taken as those measured on the baseline ''top hat"
profiles when the thrust produced by the non-uniform pro-
files matched that of the baseline. The screens Sl and S2

produced virtually uniform profiles so that no analogous
difficulty was present.

After the compressor failure occurred, the hardware
modifications described above were accomplished to allow

use of the new air supply system. Repeat exit surveys and

thrust calibrations at an NPR of 2.0 for the baseline nozzle
N32 and with turbulence screen S2 installed showed good
nozzle-condition repeatability; therefore the nozzle
calibrations were continued. Table 2-1 summarizes the

nozzle exit survey cases.
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Figure 16 Nozzle Exit Total Pressure Distributions Characteristic of Turbojet snd Turbefan Engines Were
Obtained with the Bassline Nozzie end Plates Py and P
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Nozzle calibration testing was minimized through the

use of several rather involved but justifiable assumptions:

1. Since the nozzle exit surveys showed good agree-
ment between the forward and aft plenum cases for
the two-nozzle baseline case (i.e., N32 and N132)
at an NPR of 2.0, the forward and aft nozzle exit
conditions were assumed equal at other NPRs and
with Sl' 82, Pl' and P2 devices installed. There-
fore, nozzle exit surveys for the aft plenum, two-
nozzle case, N132, were required only at an NPR
of 2.0.

2. Nozzle diameter was also assumed to have no effect

on the nozzle exit surveys; therefore, for constant

NPR, the turbulent intensity and total-pressure
distributions (including variations with screens
and plate) obtained with the 1.42-inch-diameter
N32 nozzle (used for the two-nozzle configuration)
i were assumed equal to those of the 1.32-inch-
| diameter N31 nozzle (used for the three-nozzle

configuration). Justification for this assumption

is provided in the discussion of assumption 3.
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3. Finally, it was assumed that, when two nozzles are
symmetrically located on the same plenum (as in

the cases of the aft plenum for the three-nozzle

1 1
configuration with Nlo and Nll s

forward and aft plenums on the four-nozzle con-

1 1 1 1
figurations, with N8 . N9 , and Nlo - Nll :

and for both the

respectively), nozzle exit surveys are required
on only one side of each plenum. Therefore,
surveys were made of N91 and Nlll' representing
the forward and aft plenums, respectively (screen

82 was installed in both cases). These surveys §
| were made with both nozzles operating on the plenum i
of interest. (Air was supplied only to the plenum

f being investigated in all cases described.) At an

NPR of 2.0, the turbulent intensities agreed so |

well with those of the larger nozzle, N32 (with 82 J
installed), that the variations due to changing
screens and plates were assumed to be the same for
the larger nozzle positioned for the four-nozzle
configuration as obtained for the smaller nozzle,

N32, positioned for the two-nozzle configuration.

Since the induced loads were to be measured only

at an NPR of 2.0 for the three- and four-nozzle

e ——————
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configurations, exit surveys were limited to an

NPR of 2.0 for these cases.

Forward and aft plenum pressures were then varied
independently for each remaining nozzle-configuration/
exit-device combination to determine the corresponding
changes in Fj/s and Hjﬁigj These variations allowed the
thrust and corresponding plenum pressure required for a
desired NPR to be determined for each of the nozzle-
configuration/exit-device combinations. The results of
these variations, summarized in Table 2-2, formed the
basis for setting the nozzle flow conditions for a given
NPR, nozzle configuration, and nozzle device in the induced-

loads and fountain-survey testing phase.

2.2.2 Induced-Loads Testing

The net induced lift force, AL, on the blocking-surface
model planforms was measured directly with the five-component
strain-gage induced-loads balance while configuration,
nozzle exit flow parameters, and model altitude were varied.

The two-nozzle configuration was tested at NPRs of 1.5,
2.0, and 2.4; three- and four-nozzle configurations were

tested at an NPR of 2.0. The turbulence screens and pressure




Table 22 PLENUM PRESSURE, CORRECTED MASS FLOW, AND CORRECT THRUST REQUIRED
FOR A GIVEN NPRWITH EACH NOZZLE-CONFIGURATION/EXIT DEVICE COMBINATION

FORWARD PLENUM TABLE
N3Z NOZZLE N3' NOZZLE Ng'Ng! NOZZLES

NozzLE Fi [WfPr  WPR | PP TF [Wor] NPR | Pl [ FL [ Weffy] PR

CONFIG 5 |78 5 |3 |78 5 |3 |5

BASIC | 330 | 160 | 67 |15 |310|155 | 34 [15 | 311303120 [15
490 | 335 | 104 |20 |436 (200 | 922(20 | 445|570 172 |20
60.0 | 450 | 127 |24 | 533 400 | 1138 |24

BASIC+P1| 476 | 160 | 61 (15 |@688 (200 | 88 |20 | 583450 | 142 |18
609 | 225 | 76 |17 |737 (325 | 985|294 | 675|670 [186 |20
758 | 335 | 80 (20
913 | 450 | 1.18 |24

BASIC+P2| 348 | 160 | 60 [15 |500 |20.0 | 872|20 | 434450 100 |18
503 | 280 | .80 (183|638 |325 | 94 |21 | 505 57.0 169 |20
565 | 335 | 98 (20
676 | 450 | 120 |24

BASIC+S1| 340 | 160 | 88 |15 | 317,166 | 852 (15 | 449|850 175 |18
509 | 335 | 106 (20 |450 (200 [ 05|20 | 459|570 [ 1.80 | 20
613 | 450 126 |24

BASIC+S2( 375 | 160 | 66 (15 (502 (200 ( 48 |20 | 438450 | 154 |18

50.2 [ 67.0 | 178 | 20
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Table 22 PLENUM PRESSURE, CORRECTED MASS FLOW, AND CORRECT THRUST REQUIRED FOR
A GIVEN NPR WITH EACH NOZZLE-CONFIGURATION/EXIT DEVICE COMBINATION (Contd)

AFT PLENUM TABLE
Ny32 NOZZLE Nyg'Nyq! NOZZLES

NOZZLE Po | Fi |Wal0r | NPR| Pp | Fi | W6y | NPR

CONFIG S S 5 5

BASIC 345 1865 887 15 373 467 | 1.590 18
495 323 | 1015 20 4238 5§78 | 1.818 20
60.5 40 | 120 24

BASIC +P1 50.3 16.5 835 15 650 526 | 1.635 19
63.7 230 J70 1.7 675 578 | 1.750 20

86 323 955 20
95.0 4“0 | 114 24

BASIC + P2 36.5 165 .600 15 49.0 550 | 1595 20
56.6 23 840 20 50.0 578 | 1860 20
59.3 ns 985 21
69.5 40 | 1185 24
BASIC + 81 358 165 895 15 400 467 | 1595 18
30.0 193 150 18 46.1 §78 | 1815 20

518 323 | 1016 20
63.5 “Uuo | 1246 24
BASIC + 82 393 165 895 15 485 540 | 1836 19
20 502 5§78 | 1710 20
2A
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distribution plates were tested with the two- and four-
nozzle configurations; only screen variations were tested
with the three-nozzle configuration.

To determine the effects of varying nozzle-exit condi-
tions on the pure suckdown component of the net induced
force, one half of the two-nozzle plate was removed and
the nozzle with the metric half of the plate was operated;
induced loads were measured on the metric half plate with
the turbulence screens and pressure profile plates installed
and with variations in model altitude. 1In all cases model

altitude was varied over h/D values from 2.5 to 10.0 .

2.2.3 Fountain-Survey Testing

The cone-probe rake, described in Section 2.3, was
used to survey the fountains formed with the two- and four-
nozzle configurations at an NPR of 2.0 to ascertain the
effects on the fountain of the turbulence and pressure pro-
file devices. The cases studied are summarized in Table
2-3; the coordinate system employed is defined in Figure 17.
(The appropriate distance measurements are dimensionalized
by the nozzle diameter, D.) For a given model altitude,
h/D, the survey rake was placed at a desired height above

the ground plane, Z/D, and traversed along the Y axis




Table 23 " SUMMARY OF FOUNTAIN SURVEY CASES

CONFIGURATION h/D 2/D FIGURE
4 NOZZLE, BASELINE 0 1.0 ¢
55 c2
3$ c3
50 37 c4
LR C6
v 15 s
§2 80 8.7 c?
é 55 ce
35 co
50 35 c10
25 c-11
] 15 c12
P2 80 67 c13
55 c14
_: 35 C15
¢ 50 25 c16
|
£
: 2 NOZZLE, BASELINE 0 55 (2}
{ 35 c18
: 15 C-19
i 35 21 c-20
’ 13 c21
v 25 11 c22
82 80 55 ¢
35 c24
15 c25
35 21 c26
{ 13 c2
¥ C @ 1 c2 ;
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(centerline between fore and aft nozzles where the fountain
center is expected). The Y-traverses were begun slightly
past center (negative Ys) and extended until the fountain
flow became unmeasurable (approached zero). Seventy pressure
readings on the rake were recorded at each Y/D location in
the traverse. Traverses of up to three Z/D locations were

made for a given model altitude.

2.3 Instrumentation

The instrumentation used in this investigation may be
divided into five functional categories: (1) airflow
monitoring, (2) nozzle exit survey, (3) thrust measurement,
(4) induced loads measurement, and (5) fountain survey.

(1) Airflow monitoring instrumentation consisted

of two venturi flow meters used to independently monitor

the airflow to the forward and aft plenums and plenum static
pressure taps and thermocouples (one of each per plenum
located in the body of each plenum). The thermocouples

were used for monitoring airflow temperature to the plenums;
no total temperature drop was assumed through the nozzles for
calculating isentropic nozzle exit flow characteristics.

(2) Nozzle exit survey instrumentation consisted of

the turbulence and total-pressure measurement systems. The

turbulence intensity measurement system shown schematically
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in Figure 18 consisted of two subsystems, one for turbulence
and one for total pressure. The turbulence subsystem con-
sisted of a very sensitive Kulite subminiature pressure trans-
ducer that provided an analog signal of the fluctuating total
pressure (25 psi maximum) in the nozzle flow to an Analog De-
vice true RMS voltmeter, Model AD2033, which determined con-
tinuous RMS values of the signal. This continuous RMS signal
was in turn sampled by the high-speed data acquisition system
at an adequate rate and period determined experimentally as
the minimum rate and period at which no measurable change in
the averaged RMS value occurred for the highest screen-
produced turbulence case, 82. This rate and period turned
out to be 500 samples/second for 1 second. The Kulite trans-
ducer, Model No. XCQL-14-093, was mounted on the forward
support of the Kulite/total-pressure-probe boom, as shown

in Figures 9 and 19. Five of these Kulite transducers

were calibrated statically (DC levels only) before testing
by determining the variation of pressure on the transducer
face with output voltage over the maximum allowable range of
pressures (+25 psi); the variations were found to be very
linear. These calibration curves became part of the data

reduction procedure for determining the RMS value of the

fluctuating total pressure associated with the nozzle
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turbulence. Only one transducer was required throughout
the testing. The XCQL-14-093 Kulite model is essentially
a model CQ-080-25 with a longer barrel and an FOD protective
screen over the 0.08-inch-diameter, pressure-sensitive,
silicone transducer face, which increases the total trans-
ducer outside diameter to 0.093 inch. The operating re-
sponse characteristics are reported by the manufacturer to
be identical to that of the CQ-080-25 (see Table 2-4). The
frequency response characteristics of this Kulite transducer
are related to the accuracy of the turbulence measurements
obtained in this experiment, as described in Section 2.4.
The total pressure measurement subsystem consisted of
the total pressure probe on the Kulite/total probe, which
was connected to a Data Sensors Inc. Model PB415-B9 + 40
psid pressure transducer. This pressure transducer provided
a continuous electrical signal which, when integrated over
1/60 second by an integrating voltmeter, provided an
average total pressure (psig) value for a given probe loca-
tion. This value was divided into the Kulite-measured fluc-
tuating pressure to obtain the turbulent intensity, I.

(3) and (4) Thrust and induced-loads measurements were

made on identical 5-component-strain-gage, moment-type
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Table 24 OPERATING RESPONSE CHARACTERISTICS OF THE CQ-080-25 KULITE TRANSDUCER
Rated Pressure 25 psi
. Maximum Pressure 50 psi
i Output-Nominal at 65 mV
: Rated Pressure
? Bridge Excitation 5 V Nom (7.5V Max)
g (AC or DC)
g Bridge Impedance 750 @ (Nom.)
§
g Zero Dalance + 3% FS max.
i Combined Non-Linearity +0.75% FS
! and Hysteresis max.
? : Repeatability 0.15%
; Compensated
: Temperature Range 80°F To 180°F
.
* Operating
Temperature Range 65°F To 250°F
Change of Sensitivity
With Temperature t1.5%/100°F
Change of No-Load +0.5%
Output with Temperature FS/100°F (max.)
Natural Frequency 230kHz
(Approximate)
Acceleration Sensitivity
Perpendicular .0002%FS/g
Transverse .00004%FS/g
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balances designated as GD 1000Al and A2; these balances
are capable of measuring maximum moment loadings up to 650

i inch pounds at a 30,000-psi stress.

(5) Fountain survey measurements were made with the

same flow-field survey rake used in the Reference 5 tests.

3 This rake, shown in Figure 20, has 13 chromel/alumel thermo-
couples (not used in this investigation) and 14 cone pressure
probes. Each of the cone probes has four pressure orifices
on the conical surface and one total-pressure port in the

nose. Data obtained with the cone probes were used to deter-

mine local total pressure and local flow direction.
; ! The cone-probe pressures were sampled with five scani-

valves. All five of the pressure orifices on one of the 14

e A o e T

probes were read simultaneously (one per scanivalve); the

scanivalves then cycled to the next probe. The interval

between probe readings (five pressure orifices) was approxi-

N T N
¢ -

mately 1 second; thus, about 14 seconds were required to

take data from all of the rake's probes.

Since the cone probes are not accurate for determining 1

flow direction when the flow angles exceed about 40 degrees,

constraints were placed in the test data reduction to

(:} eliminate the data when the indicated flow angles, OF or
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Y g+ Were greater than 42 degrees (based on rake calibra-
tions) or when the total pressure probe on the nose of the
cone probe indicated a pressure less than static ambient.

The scanivalves, which sampled the cone-probe data,
were each equipped with a Druck Ltd. differential pressure
transducer, Model PDCR22, with a range of + 2.5 psia and with

a Recording Devices Model SCSG/075 signal conditioner.

2.4 Data Accuracy

Accuracies were estimated for the turbulence, thrust and

induced loads, model altitude, and fountain rake measurements.

These measurements are considered sufficiently accurate to

justify the conclusions presented in Section 4.0.

2.4.1 Turbulence Measurement

The error in turbulent intensity measurement due to the
non-linear frequency response characteristics of the Kulite
transducer is reported by the manufacturer to be less than
3% for the turbulence frequency range of this experiment
(< 50 kHz) provided the turbulence characteristic length
(eddy size) is greater than the diameter of the Kulite trans-
ducer face (0.08 in); as this characteristic length approaches
the size of the transducer face, the error increases. Since

the turbulence screen S1 and S2 and the pressure-profile

o




55
plates Pl and P2 used in this experiment all have charac-
teristic lengths larger than the transducer face, the error
in turbulent intensity measurement for these cases is con-
sidered negligible (< 10%). For the baseline nozzle case
(with choking plate), the eddy characteristic length is
probably soﬁewhat smaller than the transducer face diameter
and a significant error may be produced (with indicated
readings too low). However, since the turbulence intensities
are low for the baseline nozzle case (< 10%), large percentage
errors in their measvcement have little effect on the conclu-
sions of this experiment. (See Section 3 for a discussion
of turbulence eddy size and related frequencies.)

The error due to the frequency response character-
istics of the true RMS meter used in measuring the turbulence
is seen (Figure 21) to be less than 10.5% at the worst case
(50 kHz with baseline nozzle and corresponding low turbu-
lence level). Therefore, the RMS meter is sufficiently
accurate to cause no effect on the conclusions of this ex-
periment.

Also, as noted above, the sampling rate was fast
enough and for a long enough duration to ensure that, in the

turbulence frequency ranges of interest (< 50 kHz), the total
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turbulence-measurement-system error was insignificant in

terms of the objectives of this experiment. The total-
probe bending near the nozzle edge did not introduce er-
ror into the calculated turbulent intensities because the
outboard 10% radius was not used in calculating the area-
weighted average RMS or total-pressure values.

The measurement accuracy of the Data Sensors pressure

transducer used with the total pressure probe was + .4 psid.
The traversing rig positioning accuracy was + 0.04

inch.

; : 2.4.2 Thrust and Induced-Loads Measurement

Checkloadings indicated errors in the thrust and in-

duced loads balance measurements (as shown in Figure 22)

which result in net induced normal force readings (%L) with
| 3

up to a + 0.8% error (worst case).

2.4.3 Model Altitude Measurement

The error, Ah/D in the altitude position indicated by

the ground board potentiometer is shown in Figure 23. Since
h/Ds €2.5 were not tested in this experiment, the correc-
tions to the indicated readings were considered negligible

-~ and are not included in the data presented in this report;

L
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ALTITUDE POSITIONING ERROR
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Figure 23  Altitude Positioning Error of the Ground Board Potentiometer
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the maximum correction to the data presented in this report
is + .057 for the three- and four-nozzle configurations at

an h/D of 2.5.
®

2.4.4 Fountaint Rake Measurements .

The pressure traﬁsducers used for measuring the rake-
pressure had a +0.06% accuracy over the +2.5-psia pressure
range. These transducers are considered the most accurate
transducers comm§yrcially available.

The same tr3jversing-rig positioning accuracy of +0.04
inch was present in the fountain rake measurements as noted
for the nozzle calibration testing.

Some unknown’errot is introduced into the fountain
survey measurements as a result of making the readings over a
finite l4-second time interval. If the fountain flow is it-
self highly turbufent, as has been reported in Reference 12,
there is certainly some question about the validity of using
a steady-state flow-type device like a pressure rake to make
accurate measurements in a highly unsteady flowfield. How-
ever, it should be recalled that the objective of this in-
vestigation was to study trends and to quantify results
within the scope of the contracted effort. In future in-

vestigations, other means of quantifying the fountain flow-
5 -




=
O
b=
Y]
o
8
g
(o]
ord
o
ol
)
[«
(o]
Q
o
ord
b
Q
[\
L)
N
N
(o]
=]
L
T
ol
k3
-]
80
=] é
© y
<=
(4]
(] o
3 ()]
e -
()]
B -
. 8 M
) (]
— (4]
Q
owd Q
w LD
P
|
B S P S SN i

i .,«y:&%wff,@ﬁ%

e s T L ot

AT
ATl P REASTSNE

iy e R Bl N et o B e b i RPN .h‘.,f‘



T T ——

S —

o Rk S
" »

< & ",'A!"ﬂ.
. Y N

PN R

gty > S AN (S I

3. RESULTS

The experimental results and analysis of the nozzle
calibration, induced loads, and fountain survey testing
will demonstrate, for the nozzle/planform configurations
tested, the criticality of nozzle exhaust simulation on
the net induced forces as well as the component forces
and will provide an indication of the mechanism of the

associated flow phenomena.

3.1 Nozzle-Calibration Testing

Appendix A contains the nozzle-exit fluctuating and
corresponding total pressure survey results for each
nozzle/device combination described in Section 2.2.
Although the X and Y traverses show reasonable agreement
in most cases, they do not agree perfectly. Therefore, the
following averaging procedure was used to determine the
turbulent intensity. The area-weighted average RMS pres-
sure was determined from the X-traverse using the RMS
distribution obtained from the nozzle centerline to +.4r/D
and then repeated for the X-traverse RMS distribution ob-
tained from the nozzle centerline to -.4r/D. This process

was then repeated for the Y-traverse distribution (from

centerline to +.4r/D and then to -.4r/D). These four
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values were then arithmetically averaged to obtain the
area-weighted average RMS pressure. The same process was
performed for the total pressure surveys. Finally, the
turbulent intensity was calculated as the ratio of the
area-weighted average RMS pressure to the total pressure
determined in this manner. This process collapsed the
data scatter in the X and Y traverses to provide a more
meaningful turbulent intensity value.

The baseline nozzle configuration, N32, exhibits the
classic ''top hat'" turbojet-type uniform total-pressure
distribution, with a correspondingly low RMS fluctuating
pressure level also uniform across the nozzle exit except
near the nozzle edges where the large shears occur between
the jet and the still, ambient air (Figures A-1 through
A-6). The total and RMS pressures increase with increasing
N?R; but the total pressure increases at a faster rate,
producing a decreasing turbulent intensity with increasing
NPR.

Screens S and S; (Figures A-7 through A-18) produce
increased RMS fluctuating pressures and total pressures

with N32

at a given NPR while maintaining virtually uni-
form total pressure distributions. The screens also pro-

duce variations with NPR similar to those described above
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for the baseline nozzle.

Total-pressure distributions characteristic of turbo-
fan engines with varying bypass ratios were obtained with
pressure profile plates P; and P installed in nozzle N32
(Figures A-19 through A-22). Figure 15 above shows a com-
parison of the nozzle exit total-pressure distribution
obtained at an NPR of 1.5 with the baseline nozzle and
with pressure profile plates P; and P, installed. Cor-
;esponding increases in fluctuating RMS pressure were also
measured with P; and P, installed; similar trends to the
baseline-nozzle case were also noted for variations in
NPR (see Appendix A).

The variations in turbulent intensity with NPR cal-
culated from these surveys are summarized in Table 3-1 for
each of the nozzle/device combinations. These results are
shown in plotted form in Figure 24.

The turbulent intensity variations and the total pres-
sure surveys presented in Figure 24 and in Appendix A show
that the ranges of nozzle-exit turbulent intensity and
pressure profiles expected for real aircraft engines were
successfully covered. Rolls Royce has reported (Reference

13) turbulent intensity measurements, , of full-

Ivelocity
scale turbojet (Olympus 593) and turbofan (RB21l1l) engines
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Table 31 TURBULENT INTENSITY, VS NPR FOR SCREENS AND PLATES

NOZZLE
CONFIGURATION DEVICE I~% NPR FIG. NO.
Nq? BASELINE 124 1503 Al
5.87 1561 A2
5.08 1924 A3
238 1958 A4’
4.26 2,006 A5
' ass 2276 A
st 1248 1517 A7
1747 1531 A8
14.00 1831 A9
1143 2317 A10
v 1213 232 A1
82 18.26 1562 A2
12.75 1865 A3
16.14 1958 A48
1757 1986 A5
1691 2,041 A6’
14.66 2317 A7
v 16.06 23n A8
Pt 2.7 1561 A48
1 2540 1972 A20
21.83 2310 A21
P2 18.99 1520 A22
21.56 1510 A23
} 1588 1990 A-24
1496 2420 A-26
Nyq? BASELINE 3480 1497 A28’
Nyy! (with Nyg") 82 1624 2,082 21"
(Aft Plenum)
N! (with Ng!) 1 1643 2010 A28’
(Forward Plenum)

'Dats Taken After Herdwars Modification te Test with Plant-Air System
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Figure 28 The Variation of Turbulent Intensity with NPR for Screens and Plates
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measured with a laser velocimeter that yields equivalent

" "
pressure' turbulence intensities (Ipressure equivalent to
(1

1% to 2% for the turbojet and 1% in the core regions and

velocity)zy’ comparable to the Kulite measurements, of
up to 20% in the fan region for the turbofan engine. Lock-
heed has made similar laser velocimeter measurements of the
flowfield exiting from the nose lift-fan in a large-scale
model (70%) of the McDonnell-Douglas Model 260 Type A Navy
VSTOL aircraft (Reference 14); these measurements showed
equivalent Ipressure values of 25%. Therefore, the choice
of screens and pressure profile pates in this test was
guided by a desire to cover the range of nozzle exit tur-
Ipressure' up to 25% while varying the
total pressure distribution to simulate both turbojet and
turbofan engines.

In Figure 24 it is demonstrated that turbulent inten-
sity can be changed in three ways: (1), by changing the
base level with the screens while maintaining a uniform
total-pressure distribution, (2) by distorting the total-
pressure distribution with the plate devices, and (3) by

changing the nozzle pressure ratio. It is also shown in

Figure 24 that, within the accuracy of the data, the same

veriation in turbulent intensity with nozzle pressure

it
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ratio occurs at all screen grid sizes (including the chok-
ing plate of the baseline nozzle case, see Figure 14).

The P2 pressure profile plate also exhibits this same
decreasing variation in turbulent intensity with increasing
NPR demonstrated by the turbulence screens. The P1 pres-
sure plate, however, exhibits a slightly different varia-
tion of I with NPR but the trend is certainly the same as
with the screens and PZ'

Increasing the screen grid size increases the turbulent
intensity. The turbulence produced by the screen grid can
be characterized by the large-scale eddy size, s (after
Kolmogorof, Reference 15) associated with the turbulence at
the NPR. The large-scale eddy size is proportional to the
largest physical dimension causing the turbulence, which in
the case of the screens is taken as the width of the bars
making up the screen grid, € ;€ is 0.05 inch for the choking
plate of the baseline nozzle case, 0.125 inch for Sl, and
0.240 inch for SZ'

Kolomogorof's argument for a characteristic turbulent
large-scale eddy size leads to an estimate of the large-
scale eddy size and the associated frequencies produced by
the baseline nozzle and screens. He suggests that if the

Reynolds number (based on the characteristic length producing
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the turbulence, i.e., the screen grid size in this case is

sufficiently high (say >'1x103 which is true for all tested

grid sizes and NPR's),there are wave numbers, Ke, such that

the turbulence is statistically in equilibrium,

where the wave number Ke = 2 g £ (2)

and £ = frequency of the large-scale eddies characterizing
the turbulence,

and U = constant velocity that is large compared with the
turbulent pertubation velocity, u'; U = nozzle
exit velocity in this case).

If the turbulence is in statistical equilibrium, then the

average size of the energy-containing eddies of consequence is

B B R Lt s T b
’ a4

e 1/1(e (Reference 15) and therefore, the eddy size is

U

‘s Int 3)

Also if the Reynolds number is high enough (I>1X103),

the Strouhal number, S,

e Tr—

where S = %2. (4)

is constant. If D is taken as the grid size of the screens

producting the eddies, € , then Equations 3 and 4 yield

s 2 ; S (3

which allows an estimate of the turbulent large-scale eddy
size provided a suitable experimentally determined value of

. ) S is available. In Reference 16 and 17 it is indicated
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that at Reynolds numbersj>1X103,the Strouhal number becomes

B e

constant for flows past cylinders (0.21) and plates (0.18).
To be conservative, an S = (.21 was used, which yields

higher frequencies since it is not certain which experiment-

al case more closely approximates the present case with the
: screen grids.
Then the associated frequency, f, can be calculated

directly from Equation 3 as

U

: £ 27 e
e

(6)

Table 3-2 summarizes the estimated large-scale eddy

d sizes and associated frequencies for the choking plate and
:
‘ screens S1 and 82.
4 i The data in Figure 22 also demonstrate that varying the
nozzle total-pressure distribution from the baseline turbo-

H jet to the turbofan-type profiles with plates P1 and P2 in-

e

creases turbulent intensity. The highest turbulent inten-

sities were measured with the profile plate P1 (29% at an

NPR of 1.55).

3.2 1Induced-Loads Testing

Variations of nozzle turbulence, nozzle pressure ratio,

and nozzle total-pressure distributions do measurably affect

S i i o

(3‘ not only the net induced forces (%L) but also the individual
3
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components of %L as defined in Equation 1 by Karemaa et al

(repeated from Section 1).
PO s W
F F F
3T gL

where AL, equals the lift loss due to pure suckdown (i.e.,

b

no fountain jets present) and can be determined experiment-

(1)

ally as described in Section 2.2.2. AL.. is the bouyant

FC
force produced by the impact of the fountain jet upon the
planform, and ALFI is a correction factor to account for the
fact that the physical presence of the fountain interferes
with entrainment of ambient air by the exhaust flow and
ground jets and therefore alters the pure suckdown ALj. It
is important to examine the effects of the nozzle-exit con-
ditions not only on the net induced force but also on the
individual components for two reasons:

1. The changes in the individual components provide
insight and understanding into the mechanism of
the changes in the flow field produced by varying
the nozzle-exit conditionms.

2. A definition of the changes on the individual
components is required to develop predictive
methodology for an arbitrary aircraft configura-

tion or to correct configuration model results

for full-scale engine nozzle exhaust effects. The
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net induced force ,although often small for many

aircraft designs, can be the algebraic sum of very
large oppositely directed forces (suckdown and
fountain forces) and failure to correct for nozzle
exhaust effects on either or both of these compon-
ents could result in significant net-induced-force
errors.

3.2.1 Effects on Net Induced Forces

Appendix B contains plots of the net-induced-force vari-
ations with model altitude for all of the nozzle configura-
tions tested. Table 3-3 shows the matrix of nozzle con-
figurations, exit flow devices, and pressure ratios for which
net-induced-force variations with model altitude were deter-
mined.

Figure B-1 shows that, as NPR is increased for the base-
line two-nozzle configuration with the large blocking sur-
face, the net induced force becomes more positive as choked-
nozzle conditions are approached (NPR = 1.89), reaching a
constant level at all altitudes for NPR > 2.0. 1In all cases
(baseline, screens, and plates) the maximum effect on the
net induced forces due to NPR variation occurs before NPR =
2.0, indicating that the reduced variation in turbulent in-

tensity with NPR for NPR > NPR tracks with the

critical




<
~
|
X X X X X 0z S31ZZON Y
t - - X X X 0z $31ZZON€
v_ (umopong-sing)
:v X X X X X 0z 39ZZON L
!
(eomping
: - - X - X 0 BuPOlg ULOONID)
$312ZONZ
X X X X X ye {s0mpng Bupporg
X X X X X 0z smnBumoey)
X X X X X gl S31ZZON T
2d id zs 1S (aeyg Bujoy)) NOILVHNDIINOD
aNIN3sve
391A3a 3ON3INENNL
XIULVIN 1531 39404 G3INANILIN EEoNSL
i P
f
s O
B OOt 40w - ' . - bty R e e 2 { .
r BRSSP e S




L , " s . . S L o

75

reduced variation in the net-induced forces at the super-
critical NPRs.

The maximum effect of the nozzle-exit variables observed
from the data presented in Appendix B for the two-, three-,
and four-nozzle cases with the large blocking surfaces are
discussed below and summarized in Table 3-4. Also included
are the significant results obtained for a smaller cruciform
blocking surface more typical of a realistic aircraft planform.

The maximum effect (change in —%.l‘» or A[—A}:‘E]) of nozzle
turbulence with the screens on the ne{ induced %orce was found
to be an increased suckdown (A[—%.E] = -0.08) for the two-
nozzle configuration with the rectangular blocking surface over

the range of NPRs tested (Figures B-2 through B-4). The maximum

effect due to NPR variation was a reduced suckdown ( A[%L-}

h|
+0.04) (from an NPR of 1.5 to one of 2.4). Varying the pressure
distribution increased the suckdown ( A[—%—I-‘-]- -0.05) near the
A

ground (h/D = 2.5).

The variation due to the turbulence screens for the three-
nozzle configuration at an NPR of 2.0 is illustrated in Figure
B-8. Unlike the two nozzle case, the maximum effect of the
turbulence screen variation occurs.at higher altitudes, pro-

ducing a large negative effect (A[—%—.I-i]- -0.032).
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For the four nozzle configuration, changing the turbulence
with the screens produced a maximum change at low altitudes
(A[AL/Fj] = -.021 at h/D = 2.5, see Figure B-9) but similar
changes are also seen at higher altitudes (h/D = 7.0).
Varying the pressure distribution produces the same maximum
change ( A [AL/Fj] = -0.024 at h/D = 7.0, see Figure B-10).

In Figure 25 the variation of net induced force (—%L)
with turbulence (screens) and NPR for the two-nozzle con‘i
figuration is displayed; this curve is also typical of the
trends that are obtained with pressure distribution and
nozzle configuration variations.

Since the rectangular and triangular research blocking
surfaces of Figure 13 are large and seem to dominate the
flow field beneath them, it was of considerable interest to
test a smaller plate that is more typical of realistic
airplane configurations. To this end, a cruciform plate
with the same two-nozzle arrangement as for the rectangular
plate was tested with the baseline nozzles and with the S2
screens (Figure 26). The suckdown is considerably less
because of the smaller blocking surface size, but it is also

evident that, unlike the larger rectangular plate, strong

fountains are present. This is probably because the

|
|
|
|
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cruciform plate makes more surrounding air available for

. entrainment into tne ground jets, which then requires less

air to be entrained away from the fountain, resulting in a

§ stronger fountain (Reference Figure 2). Changing the
nozzle turbulence in the presence of the cruciform plate
results in a very significant change in the net induced
force (Figure 26). This is probably due to a combination
of effects. The increased turbulence increases the entrain-
ment of the free and ground jets, which in turn decreases
the fountain strength, both of which contribute to a more
negative net induced force.

The amount of lift or thrust loss is very configur.tion

dependent as seen in Table 3-4. 1In all cases, increasing

% turbulence increases the net lift loss, but the magnitude

of the loss is dependent on how turbulence is changed, whether

by screen, nozzle pressure ratio, or pressure distribution.
Knowing the turbulent intensity alone is not enough to

é ] predict an airplane's performance, the nozzle pressure ratio

and pressure distribution are also important because they

affect the manner in which the turbulence is developed.
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The most significant result observed from the net
induced force testing is that, when one goes to a smaller
planform more characteristic of a realistic airplane con-
figuration, one still sees a 10% thrust loss (which was
observed with the large blocking surface), which is on the
order of the airplane payload.

As an aid in determining the relative importance of
the nozzle exit variables, the variations of net induced
forze with turbulent intensity, NPR, and model altitude are
plotted for the two-, three- and four-nozzle configurations
with the large blocking surfaces in Figures 25 through

28. In Figures 25 and 27 the variations produced with the

two-nozzle configuration by the screens and pressure profile

plates are shown. For a given altitude, AL/FJ is affected
more by the changes in I than in NPR, but both parameters
are important. Altitude variations for h/Ds from 2.5 to
5.5 also have an effect on the variations in AL/Fj due to
I or NPR. For the same turbulent intensity, the screens
produce a greater suckdown than the pressure plates at a

given NPR.

The effects of turbulent intensity variation on the

three- and four-nozzle configurctions are compared in Figure

28 at an NPR of 2.0 only. For the four-nozzle configuration,
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Figure 27 Effects of Pressure Profile Plates on Net-Induced Force, AL/Fj, for Two-Nozzle Configuration —
Referenced to Turbulent Intensity
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at the same turbulent intensity the P2 pressure profile
plate and S2 screens produce the same AL/Fj. The screens
and pressure profile plates at the same NPR, probably
create different types of turbulent flows; this might be
expected considering the differences in their total-
pressure distributions and the types of shear flows they
represent. For this reason, turbulent intensity alone may
be an unsuitable correlating parameter for the pressure-
profile-plate cases. A more suitable parameter for char-
acterizing the pressure-profile-plate flows may be the
maximum total pressure (gage) required with each device to
achieve the thrust of the baseline nozzle at a given NPR;
the data in Figure 29 provides an illustrative example of

the variation of AL/F, with P for the pres-

3 Thnax (required)
sure profile plates P1 and P2 with the two-nozzle config-
uration.

Another parameter of interest for gaining some insight
into the flow mechanism associated with the screens is the
turbulence characteristic length, the large-scale eddy
size.ee. Foley (Reference 18), in an effort to correlate
some of the results of this study intu an overall VSTOL

prediction methodology, has shown that screen grid size, €,

which is directly related to S (see Section 3.2), may be
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the parameter to use for correlating purposes. In fact, he
has successfully shown that the effects of changing screens

oLy
and varying NPR on the pure suckdown component, Foo» may be

separated (see Section 3.2, Effects of Component %orces,
below).

Similar curves for the two-nozzle confipuration have
been developed to show the independent effects on the net
induced forces of varying turbulence by changing the base
level with the screen grid size or by changing the NPR
(Figures 30 and 31). The magnitudes of these effects,
averaged over h/Ds of from 2.5 to 10.0, are referenced to
the net induced force with the baseline nozzle choking
plate at an NPR of 2.0. Increasing the screen grid or eddy
size produces an increased suckdown (the ratio of'AL/Fj to

AL is positive because a negative force is being

/F

IReF
divided by another negative force); increasing NPR produces
a substantial reduction in suckdown. The maximum deviations
due to altitude-averaging are indicated.

Plots of the net induced force variations with altitude

for the two- and four-nozzle configurations are presented
in Figures 31 and 32 as a function of the ratio of the

nondimensionalized turbulence-producing characteristic length,

€/D, to the reference nondimensional length of the choking
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plate screen, ¢, /D. These curves could be used for deter-
mining the effects of changing the characteristic turbulence
producing length and/or nozzle diameter (i.e., a quasi-
"'scaling") provided the blocking surface and nozzle spacing
relationships remain constant.

The concept of the turbulent eddy size to explain the
increased suckdown obtained with the screens and NPR varia-
tions is useful. The Kolmogorof energy dissipation rate
(e) for turbulence scaled by eddy size is related to Ei
(Reference 15). Foley postulates (Reference 19) thatfe
for a given NPR, as eddy size is increased, turbulent in-
tensity increases and the energy dissipation rate decreases,
providing higher energy large eddies for entraining sur-
rounding air and therefore increasing suckdown. For a
'given eddy size, as NPR (which is proportional to U2 up
to NPRCRITICAL) is increased, the dissipation rate in-
creases, reducing the energy in the large eddies for entrain-
ment and thereby reducing suckdown. At choked and super-
choked conditions, NPR is not proportional to Uz, and the
effect of varying NPR on eddy size is much degraded, as
noted in Figure 24.

However, replacing turbulent intensity with eddy size

(or the characteristic length producing the eddy size) as
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the key variable presupposes that the effective eddy size

of the full scale engine can be estimated by knowing the
size of the turbulence-producing parts of the engine (say
turbine blade size). This remains to be determined. It
may be easier to continue to measure the model and full-
scale engine turbulent-intensity levels and apply appro-
priate corrections to the model-scale ground effects data
or simply correctly simulate the full-scale nozzle exit

conditions in the model ground effects test,

3.2.2 Effects on Component Forces

In order that the flow mechanisms producing the
changes described above on the net induced fcrce could be
understood, the effects of varying the nozzle-exit condi-
tions on the individual components of the net induced
force had to be determined.

Table 3-5 summarizes the maximum effects observed on
the component forces due to varying the nozzle exit condi-
tions. The effects on the pure suckdown components are
discussed below; the effects relating to the fountain core
force and fountain interference components are discussed
in the next section (Section 3.3).

As part of an ongoing methodology development program,

the data from this experiment have been correlated with the
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work of several previous experimenters (Reference 20, 21,
and 22) by Foley (Reference 18). This correlation shows
that there is '"a fine st;ucture" to suckdown that is a
function of the implied area ratio, D/d, where D is the
angular mean diameter as defined by Wyatt in Reference 20.
Foley, Reference 18, has refined Wyatt's results; empirical
relations have been developed allowing the prediction of
pure suckdown as a function of altitude, D/d, and planform
shape for a reference NPR of 2.0 and a turbulent intensity
level equal to that measured for the baseline nozzle case
in this experiment. This value was then corrected for
variations from baseline NPR and nozzle-exit conditions.
Corrections for turbulence level and NPR have been
derived from the test data of this experiment for a uni-
form total-pressure distribution (screens). The data in
Figure B-12 ghow the effect on the pure suckdown component
force of varying the nozzle exit conditions with the
screens and pressure profile plates. This variation was
determined with the single jet exiting through one half
of the two-nozzle blocking surface (the other half being
removed), as described in Section 2.2. The corrections
for NPR effects on pure suckdown are the same as those

noted for the two-nozzle-configuration net induced force
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averaged over h/Ds from 2.5 to 5.5 with only the screens

installed (since an NPR of 2.0 only was run with the pure-

suckdown-component measurements). This correction due to
NPR is considered reasonably accurate because, as will be
shown in Section 3.3, the two-nozzle case has a very weak
fountain that fails to reach the blocking surface at most
altitudes and is therefore primarily suckdown dominated.
With a uniform pressure distribution (baseline nozzle
and screens), changing the NPR causes different (independ-
ent) changes in turbulent intensity and suckdown than are
obtained by changing the turbulence screens; these changes
are each independent of altitude, Therefore, the pure
suckdown that results from turbulent entrainment rate is
proportional to turbulence, which can be characterized by
the large eddy size, L associated with the turbulence and
NPR. As noted above, the large-scale eddy size (ee) is
proportional to the largest physical dimension causing

the turbulence, e¢. Ife¢ is taken as the grid size of the

s m——

screens, the pure suckdown variation with eddy size ’

(normalized by the NPR = 2.0 baseline nozzle case) is not

a function of altitude or NPR; conversely, the change in

nondimensionalized suckdown with NPR is not a function of 7

altitude or eddy size (Figure 34). Therefore, corrections
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to pure suckdown for NPR and turbulence with uniform profile

distribution were formulated by Foley as

AL, C c AL )
e, o (8

NPR = 2.0

s ™ .05"

where C, and C, are empirically derived functions from

Figure 31 for the effects of eddy size and NPR, respectively;

they are presented in Figures 35 and 36.

3.3 Fountain Survey Testing

The net fountain force exerted on the blocking surfaces
is composed of a fountain core force and a fountain inter-
fereence force. Under certain conditions the fountain

A
core force, _;EQ. impacts the blocking surface, produces

3
1lift, and may counteract the induced life losses caused
by the entrainment action of the radial ground jet. Pres-
sure fields are often produced as a result of fountain block-

ing-surface interference, leading to additional lift losses
ALpp
Fo

T T A RO S I R0 A o In 5 I LV Ty e e . s

or gains,

3.3.1 Fountain Core Force

A
An estimate of the fountain core force Fo is deter-

mined by integrating the vertical component of the fountain

'.
L

dynamic pressure with the methods developed in Reference 5.
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A discussion of the integration process and the resulting
effects of varying the nozzle exit conditions on the foun-
tain-core-force-characteristics follows.

The fountain momentum flux passing through a plane
parallel to the ground at any height can be determined from
the rake pressure data. For steady flow and negligible body

forces, the momentum flux equation can be expressed as

r-/fﬁ(pﬁ- da). (8)

An estimate of the effective fountain core force at any
height can be found by assuming chat, if a solid surface
could be placed in the flow at that height without altering
the flow, all of the momentum would be converted to a force
on the plate with no losses. Integrating in the X-Y plane

for the vertical component of this force, this equation be-

comes
1 2 2 2
ALFC-m _[/pU cos OF cos” g dxdy (9)
where ALFC = vertical component of the fountain core force -
lbf "
P = density - slugs/ft
OF’ Yp = Euler angles of the flow inclination from

vertical - degs

U = Velocity, fps
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In terms of dynamic pressure in the fountain, QF' psi:

ALFC = J:[ZQF cos2 OF cos2 Yp dxdy (10)

In dealing with large amounts of pressure data that require
mechanized integration, it is necessary to review the data to
eliminate the few erroneous data points that are inevitably
present. To this end, an interactive computer procedure was
developed (during the effort reported in Reference 5) that plots
the rake dynamic pressures and allows the data to be edited.
It then fairs the edited data with an interactive capability
for the user to smooth the fairing; it then integrates the
results. Edited and faired data for all of the fountain rake
surveys are presented in Appendix C in the form of profiles of
the vertical component of the dynamic pressure at the tested

locations along the fountain.

Fountain rake surveys obtained with the two- and four-
nozzle cases have been integrated to determine the changes in
fountain core force acting on the blocking surface experienced
with varying nozzle-exit conditions (Figure 37). The two-
nozzle configuration produces a weak fountain that fails to
reach the blocking surface, even at very low model altitudes,
and therefore produces no net fountain force. The entrainment

of air away from the fountain by the free and radial ground jets

T
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reduces its momentum to zero by the time it reaches the blocking

surface. This agrees with the results of Reference 5. It is W
shown in Figure 37 that increasing the nozzle turbulence (and
thereby increasing free jet and ground jet entrainment) does §
reduce the fountain core force, implying that before it reaches
the blocking surfaces even more air has been entrained away

from the fountain. However, varying the nozzle turbulence has
no effect on the fountain core lift at the blocking surface,

A
3 C, since the weak fountain does not reach the blocking sur-

face. Although not run, varying the pressure distribution is
A
also expected to have no effect on 7 2 for this weak-fountain

3

case for the same reason.

The baseline four-nozzle case at a temperature of 80°F
and an h/D of 5.0 shows very good agreement with the data taken
in the previous experiments reported in Reference 5 at a tem-
perature of 400°F. The fountain is much stronger than for the
two-nozzle case and has not dissipated when it reaches the
blocking surface at an h/D of 5.0 or 8.0. Increasing the noz-

Alpc 1

zle turbulence causes a reduction in F at the blocking surface

A A
[

( A ] = -.01 at h/D = 5.0). It appears that varying the

total pressure distribution may have about the same magnitude

Alpc

effect on v (Figure 37). Increasing the blocking surface

height yields a stronger fountain for the same degree of nozzle
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L
¢ turbulence (or pressure distribution). For a given blocking

surface height, the fountain dissipates at increasing alti-

tudes and apparently at a rate that is virtually independent

§ of nozzle turbulence.

3.3.2 Fountain Interference

AL
The effect on fountain interference, _F_El’ of varying

the nozzle exit conditions has been determined for the two-
and four-nozzle configuration at an NPR of 2.0 (Figure 38) by
subtracting the pure suckdown and fountain core increments

from the net induced forces.

In the case of the two-nozzle configuration, the pure

suckdown force variations with the screens and plates were

measured directly, as shown in Figure B-1ll; the fountain core
§ force was zero for nozzle exit variations. This allowed the
direct determination of the fountain interference variation
with nozzle exit conditions and model al_itude, plotted in

Figure 38.

For the four-nozzle case, at an NPR of 2.0, the fountain

core force variation due to the 82 screen was estimated for

h/Ds of 5 and 8 from Figure 37. The net induced force varia-

tion was determined from Figure B-9. The variation in pure

suckdown force due to turbulence screen S2 (at h/D = 5.0 and
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8) was determined for the four-nozzle case by applying the

percentage variation in pure suckdown due to S2 observed with
the two-nozzle case (Figure 34 or 35) to the baseline four-
nozzle pure-suckdown case run in the Reference 5 test. Vary-
ing the nozzle exit conditions with the screens produces a

maximum change in ALFI

3

= -0.024 in the four-nozzle fountain inter-

= -0.015 in the two-nozzle case and a

ALFI

h|
ference component (Table 3-5). Using the pressure profile

change in

plates to vary the nozzle total pressure distributions re-

a
sults in a change in —;El = -0.03 in the fountain interference

: L 3
force for the two-nozzle case. At almost all altitudes (Fi-
: gure 38), varying the nozzle exit conditions at a constant

NPR causes a suckdown-increasing fountain-intexrference ef-

fect.
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4. CONCLUSIONS

This investigation has successfully demonstrated the

criticality of engine exhaust simulations on model-measured
ground effects. The results have formed the basis of pre-
diction techniques to account for these effects and have
provided some understanding of the associated flow phenomena.
(1) The results of this investigation support the con-
clusions of Reference 5. With the baseline nozzles and large
planforms tested, weak fountains that usually dissipate
; before reaching the blocking surfaces are formed between

two jets. Consequently, little or no positive lift is con-

tributed to the hovering system. Conversely multiple-
nozzle arrangements (three and four) contribute stronger

fountains that impact the blocking surface over a wide range

R L sae—

of heights. However, the positive ground effect experienced
derives as much or more of its lift from fountain interfer- ]
ence as from the core of the fountain itself.

(2) Variations in nozzle exit turbulence, total-

T,

pressure distribution, and nozzle pressure ratio have been

experimentally demonstrated over the ranges expected for

full-scale VSTOL aircraft turbojet and turbofan engines.
(3) Increasing nozzle turbulence increases net

1ift or thrust loss, but the magnitude of the loss is de-
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pendent on the configuration and how the turbulence is
changed, whether by screen, nozzle pressure ratio, or

pressure distribution.

Turbulence may be increased by increasing the large-
scale eddy size with screens while maintaining a virtually
uniform total-pressure distribution, by varying the total
pressure distribution from that of a turbojet to a turbo-
fan engine or by decreasing NPR.

(4) Variations in nozzle-exit turbulence, total-
pressure distribution, and pressure ratio over ranges ex-

] pected for full-scale engines cause significant changes
with the large planform blocking surfaces not only in the
total net-induced force measured by the usual ground ef-
fects model, but also in the pure suckdown, fountain core,
end fountain interference components. Changes of up to 10%

of the nozzle thrust for each component are observed.

(5) Because the net induced force is often the sum
of two relatively large-valued forces of opposite sign
f ! (suckdown and fountain 1ift), changes on the order of 107%
% in the suckdown and fountain force could potentially result
g | 5 in first-order changes in aircraft sizing and performance

‘ and must therefore be accounted for in any prediction method-

- oligies.
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(6) The effect of the nozzle exit variables on the
net induced force is highly configuration dependent. Wher

the large research-type blocking surface is changed to a

smaller, cruciform planform more characteristic of a realis-

tic airplane configuration, varying the nozzle exit condi-

tions still produces a 107 thrust loss, which is on the or-

der of the airplane payload. Therefore, if the effects of

the nozzle exit conditions of the engines expected for use

on VSTOL airplanes are not considered, costly errors in air-

plane sizing will result.

(7) All three full-scale engine nozzle-exit varia-
bles - turbulence (measured in terms of an intensity or, a
characteristic eddy-size-producing length), NPR, and nozzle
total-pressure distribution - should be modeled in small-
scale ground effects testing or more experimental research
should be conducted to develop a detailed empirical predic-
tion methodology to account for the interdependency of con-
figuration and nozzle-exit variable effects. It may be sim-
pler to correctly simulate the full-scale nozzle exit condi-

tions in model ground effects tests. This would still

necessitate knowing the full-scale nozzle exit conditioms.

A suitable means of measuring and relating the the model

nozzle exit conditions may be the technique of using a
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Kulite transducer and the total-pressure rakes developed in
this study (or other suitable turbulent intensity measure-
ment devices).

It is still not known if the effects of the nozzle
exit conditions on the net and component induced forces de-
termined in this study are subject to any ''scaling' modifi-
cations (i.e., Reynolds number) when going from model to
full scale. It is recommended that research be conducted
to determine whether any such ''scaling' effects exist.

(8) The induced loads and fountain survey measure-
ments have led to the follcwing explanation of the flow

phenomena observed with changing nozzle-exit conditions. A

free jet existing under a blocking surface (Figure 2) im- H
pacts the ground and forms a radial ground jet. The radial |
grouad jet has a strong appetite for entrained air, which
can be supplied from any direction (Sketch A in Figure 2).
When two or more jets are present, the intersecting ground ﬁ
jets often form an upflow or fountain region which blocks
one path for gas entrainment by the ground jets (Sketch B).

Gas is entrained away from the fountain (Sketch C) by the

radial ground jet, reducing fountain core strength and in-
ducing pressure fields on the bottom of the blocking sur-

face that would not be present if the fountain were not
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there - hence the fountain interference term. The net re-

sult is the development of a complex flow circulation and
exchange pattern (Sketch D). Therefore, the induced forces
for a configuration are largely a function of the entrain-
ment by the free and radial ground jets.

Entrainment may be increased by increasing the turbu-
lent eddy size or by decreasing the NPR, possibly resulting
in slower energy dissipation by the eddies and higher energy
eddies for entrainment.

When turbulence levels like those measured for real

engines are introduced, the entrainment rate of the free and

radial ground jets is increased, which results in more air
being entrained away from the fountain, in higher suckdown

pressures, and in reduced fountain core strength.
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APPENDIX A

NOZZLE CALIBRATION SURVEYS

This appendix contains the nozzle-exit RMS fluctuating-
pressure and total-pressure surveys conducted with the Kulite
transducer and total-pressure probes as described in Sections
2.2, 2.3 and 3.1. Tables 2-1 and 3-1 (in the main body) sum-
marize the nozzle-exit surveys and their results. Figures
A-1 through A-6 describe the baseline nozzle configuration
characteristics; Figures A-7 through A-18 show the effects of
turbulence screens S1 and Sz. and Figures A-19 through A-22
show the effects of pressure profile plates Pl and PZ' all

with the N - nozzle configuration. Figure A-23 shows the sur-

3
veys for the baseline nozzle N132 (aft plenum), and Figures

A-24 and A-25 show the surveys for the Nu1 and Ngl nozzles
with screen 82 installed. Both X and Y traverses are shown

where available.
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APPENDIX B
INDUCED-FORCE MEASUREMENTS

This appendix contains the variation of net-induced forces

with altitude for the configurations tested. Figure B-1

shows the effect of varying NPR on the baseline 2-nozzle con-

figuration, and Figures B-2 through B-7 show the effects of

varying NPR, screens S1 and 82' and pressure profile plates
21 and P2. Figure B-8 shows the effect of adding screens S1
and S2 to the three-nozzle configuration at a constant NPR of

2.0, and Figures B-9 and B-10 show the effects of adding these

screens and plates P, and P, to the four-nozzle configuration.

S g R B

Figure B-11 compares the cruciform and large rectangular two-

ey

nozzle plate results. Figure B-12 shows the pure suckdown

| forces measured with the half-plate model, as described in

Section 2.2.2
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APPENDIX C

FOUNTAIN DYNAMIC PRESSURE CHARACTERISTICS

The methods employed to integrate the fountain dynamic
pressure data to obtain the fountain core force characteris-
tics are discussed in Section 3.3. The data were edited and
faired before integration by use of an interactive graphics
procedure at the Fort Worth Division. The faired data are
included in this appendix for each configuration for which
rake surveys indicated the presence of a fountain. These
data are presented in the form of dynamic pressure profiles
dcross the fountain (X-direction) at various locations along
the fountain (Y-direction) for each model height, h/D, and
rake height, Z/D (see Figure 16 for axis system definition).

Table 2-3 summarizes the fountain survey cases. Figures
C-1 through C-16 contain the data for the four-nozzle base-

line and the S2 and P2 configurations. Figures C-17 through
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