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blocking surface more characteristic of a real aircraft planform)
were studied.

Nozzle exit turbulent intensities and pressure distributions
were determined by exit surveys with a Kulite qubminature pres-
sure transducer and a total pressure probe. Screens of varying
grid size and plates with varying hole patterns were used to
achieve variations in turbulent intensity and pressure distribu-
tions (respectively) that are characteristic of real aircraft
turbojet and turbofan engines at representative nozzle pressure
ratios ranging from 1.5 to 2.4.

It was determined that turbulence can be changed by increas-
ing the screen grid size, varying the pressure distribution , or
decreasing the nozzle pressure ratio.

Total-pressure rake surveys in the fountains formed under
these blocking surfaces indicate that , in all cases, increasing
the nozzle turbulence decreases the strength of the fountain by
increasing the turbulence and , hence , the entrainment of air away
from the fountain by powerful radial ground jets that are formed
by the impacting free jets on the ground plane.

Although the magnitude of change was highly configuration de J
pendent, increasing the turbulence intensity in all cases resulte
in significantly more-unfavorable ground effects.

For planfortns characteristic of real aircraft, varying the
turbulence from turbojet to turbofan engine levels with relativel:
high bypass ratios (or fans) results in an equivalent lO’/. lift or
thrust loss which is on the order of the payload of the aircraft.
Therefore, if the effects of nozzle exit conditions of the en-
gines expected for use on VSTOL airplanes are not considered ,
costly errors in airplane sizing will result.
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ABSTRACT

This experimental investigation demonstrated the cri-

ticality of performing accurate full-scale engine exhaust

simulations during model-measured VSTOL ground effects test-

ing. The effects of varying the nozzle exit turbulence, total

pressure distributions, and nozzle pressure ratio on the

net and component ground-induced forces for two-, three- , and

four-nozzle configurations with large blocking surfaces (as

well as a snaller , cruciform two-nozzle blocking surface more

characteristic of a real aircraft planform) were studied. ~~~~~~~
—- -

~

Nozzle exit turbulent intensities and pressure distri-

butions were determined by exit surveys with a Kulite sub-

minature pressure transducer and a total pressure probe.

Screens of varying grid size and plates with varying hole

patterns were used to achieve variations in turbulent inten-

sity and pressure distributions (res~3ctively) that are

characteristic of real aircraft turbojet and turbofan en-

• gines at representative nozzle pressur, ratios ranging

from 1.5 to 2.4.

It was determined that turbulence can be changed by

increasing the screen grid size, varying the pressure dis-
- -

tribution, or decreasing the nozzle pressure ratio.
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Total-pressure rake surveys in the fountains formed un-

der these blocking surfaces indicate that, in all cases , in-

creasing the nozzle turbulence decreases the strength of the

fountain by increasing the turbulence and, hence, the entrain-

ment of air away from the fountain by powerful radial ground

jets that are formed by the impacting free jets on the ground

plane .

Although the magnitude of change was highly con f igura-

tion dependent, increasing the turbulence intensity in all

cases resulted in significantly more-unfavorable ground ef-

fects.

For planforms characteristic of real aircraft, varying

the turbulence from turbojet to turbofan engine levels with

relatively high bypass ratios (or fans) results in an equiva-

lent 107. lift or thrust loss which is on the order of the pay-

load of the aircraft. Therefore, if the effects of nozzle

exit conditions of the engines expected for use on VSTOL air-

planes are not considered , costly errors in airplane sizing

will result.
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FORE WORD

This investigation into the criticality of engine

exhaust simulations in VSTOL model-measured ground effects

was sponsored by the Office of Naval Research under Contract

No. N00014-78-C-0384 and executed by the Fort Worth Division

of General Dynamics Corporation . The contracted activity

spans the period from July 15 , 1978 , to August 14, 1979.

This research activity was monitored and guided by Dr.

Robert E. Whitehead of ONR. The program was managed by

Mr. C. W. Smith. Mr. 3. R. Lununus , who acted as principal

investigator , managed the testing , conducted the data

analysis , and wrote the final report.
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1. INTRODUCTION

When a VSTOL aircraft operates near the ground , the high-

velocity jets exhausting below the aircraft react with the

ground and airframe (Figure 1) to produce propulsion-induced

aerodynamic forces and moments which must be determined for

accurate propulsion and control system sizing and, hence ,

accurate aircraft sizing . Accurate prediction of these in-

duced aerodynamic forces is critical to VSTOL aircraft design

because they can represent significant changes in the thrust

required for VTOL operations, resulting in large increases

in required takeoff gross weight and , ultimately, in large

Cost increases to accomplish the mission requirements.

Research with free jets and recent flight test experience

with full-scale aircraft indicate that nozzle exit conditions

• influence the magnitude of these induced forces . Therefore ,

to improve the accuracy of current prediction methodologies

and to gain physical understanding of the flow mechanisms

involved , an experimental investigation was conducted to

determine the criticality of full-scale engine-nozzle exit

conditions (nozzle exit turbulence , total pressure dis-

tribution , and pressure ratio over the ranges expected for

full scale aircraft engines) on the propulsion-induced

1
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aerodynamic forces. This investigation was limited to the

case of hover in still air (no crosswind, no forward speed)

with zero pitch, yaw, and roll angle.

1.1 Background and Related Research

The net-induced normal force on the aircraft (primarily

produced by flow regions 1, 2, 3, and 5 in Figure 1) is the

summation of two oppositely directed forces , suckdown and

fountain . Suckdown , ~L3, is a negative force (lift loss)

produced by suction pressures on the underside of the air-

craft created by large quantities of air entrained by the

~ Il • turbulent exhaust and ground jets below the aircraft. The

fountain occurs when two or more engine exhaust jets im-

pinge normally on the ground plane and the resulting radially

expanding ground jets meet to form a vertical upflow region

or fountain. This fountain induces a positive force , ~~~

(l ift  enhancing) to the airframe that sometimes cancels or

• exceeds the negative suckdown force .

Previous analytical methods (References 1 and 2) pre-

dict net-induced lift losses that are too optimistic (Figure

2). The prediction error results partly from an assumption

that the effects of the various flow regions illustrated in

• Figure 1 may be superimposed, that is, they do not react

I 
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with each other and therefore the suckdown and fountain

forces can be independently predicted without regard to

any mutual interference effects. This assumption had a

• large effect on the way the flowfield was modeled in Re-

ference 1 for example , where the suckdown forces were cal-

culated from flowfields induced by potential flow sink dis-

tributions to simulate the free and wall (ground jet) en-

trainment while fountain forces were isolated by replacing

the fountain with a jet striking the aircraft undersurface.

The importance of adding empirical corrections to the po-

tential theory to account for the prevalent viscous flow

and real interference effects are apparent when the pre-

dicted fountain jet and net-induced forces are compared

with the experimental data as shown in Figure 2. It ap-

pears that an empirical prediction approach is required

because the flowfield is simply too complicated to be

adequately predicted by strictly theoretical means .
• General Dynamics has been involved in developing an

empirically based predic tion methodology for these induced

- • forces for several years (References 3 , 4, 5). Karemaa

(Reference 4) determined that the net fountain force (net

induced force minus pure suckdown, both experimentally ob-

~~~~~~ I _________ 
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- tam ed as described in Section 2.2) is made up of a fountain

core force , 
~
LFC. which produces a positive lift on the block-

ing surface , and a fountain interference component, 4LFI,
which produces either a positive or a negative lif t caused

by the interaction of the fountain, the blocking surface , and

the entrainment process. For a two-nozzle configuration with

• a large rectangular blocking surface, Karemaa postulated that

• the fountain interacts with the blocking surface and the en-

trainment flow to produce a pressure field under the blocking

surface that is different from the one that would exist if

• the fountain were not present. This interference term ac-

counted for the error of previous prediction methodologies.

Karemaa formulated a relationship to describe how these non-

dimensionalized component forces make up the net induced force

measured with the typical ground-effects research model:

- + 
ALEc + 

ALFI (1)
F
3 

F
3 

F
3 

F
3

The superposition assumption was therefore considered invalid ,

but more evidence and understanding of this fountain inter-

ference term was required.

This led to a series of experiments , conducted by General

~~~~~
• ~~ Dynamics and supported by the Office of Naval Research, to
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investigate the characteristics of the fountain flow formed

beneath large research-type blocking surfaces with two-,

three-, and four-nozzle configurations (Reference 5). This

research was also aimed at determining more about the inter-

action of the fountain with the entrained air and blocking

surface and at quantifying the subsequent fountain inter-

ference force. Dynamic pressures in the fountain were mea-

sured with a total-pressure rake and integrated to determine

the fountain core force and the mass flow entrainment charac-

teristics of the fountains studied.

The net induced force and the pure suckdown component ,

measured in the manner described in Section 2, were obtained

for each nozzle configuration; the interference force was

then determined by Equation 1. The results conclusively

proved the existence of a fountain interference component

for large blocking surfaces. The interference component was

found to be as large or larger than the fountain core force

for the large blocking surfaces tested. Therefore, analyti-

cal prediction methods and experimental efforts that only

consider the fountain core will overlook a major fraction

of the fountain contribution. The fountain interference

was also found to be a function of nozzle conf iguration ,

producing large lift losses with the two-nozzle cases and
4

1
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aerodynamic forces. This investigation was limited to the

case of hover in still air (no crosswind, no forward speed)

with zero pitch, yaw, and roll angle.

1.1 Background and Related Research

The net-induced normal force on the aircraft (primarily

produced by flow regions 1, 2, 3, and 5 in Figure 1) is the

summation of two oppositely directed forces, suckdown and

fountain. Suckdown, âL3, is a negative force (lift loss)

produced by suction pressures on the underside of the air-

craft created by large quantities of air entrained by the

turbulent exhaust and ground jets below the aircraft. The

fountain~ occurs when two or more engine exhaust jets im-

pinge normally on the ground plane and the resulting radially

• expanding ground jets meet to form a vertical upflow region

- • or fountain. This fountain induces a positive force , ALFI

(lift enhancing) to the airframe that sometimes cancels or

exceeds the negative suckdown force .

Previous analytical methods (References 1 and 2) pre-

dict net-induced lift losses that are too optimistic (Figure

2). The prediction error results partly from an assumption

that the effec ts of the various flow regions illustrated in

Figure 1 may be superimposed, that is, they do not react

•~I! 
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large lift gains with the stronger-fountain four-nozzle

configuration. In fact, the positive net induced force

measured for the four-nozzle case was found to be due pri-

man ly to the positive fountain interference component and

not to the fountain core force as had been thought before

this research. The integrated rake measurements showed

that a very weak fountain was formed with the two-nozzle

cases and that usually dissipated before reaching the block-

ing surface , thus contributing no net positive fountain core

• lifting force to the blocking surface. The fountain dissi-

pation was found to be due to air being entrained away from

the weak fountains by the powerful radial ground jets - at

a diminishing rate with increasing height in the fountain,

as described in the following excerpt from Reference 5:

As the fountain rises from the ground plane, the
two-nozzle fountains lose large amounts of mass

• and entrain some ambient air for a net loss in
mass. The three-nozzle fountain also loses mass ,
while the four-nozzle fountain gains mass . . . .

Karemaa and Smith (Reference 6) explain that fountain

• interference is probably a result of the fountain itself

acting as a blocking surface that reduces the rate of en-

trainment of ambient air by the ground jets (Figure 3); the

fountain blocks one path available for a single jet to en-

I
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train gas into the ground jet (Sketch B) so that air is en-

• trained away from the fountain and into the ground jet

(Sketch C).  Air was found to be more easily entrained away

from the weak fountain of the two-nozzle case into the ground

jet. The three-nozzle fountain, which is somewhat stronger

than the two-nozzle fountain, had less air entrained away

and actually produced a positive fountain core force. The

four-nozzle fountain was found to be much stronger than ei-

then the two- or three-nozzle fountains and actually entrained

air into the fountain. A strong positive fountain core force

and positive interference was produced. The authors noted

• that the mechanism of the positive fountain interference was

and still is unknown and requires a more detailed def inition

of the flowfie]d.

• It is apparent that the entrainment mechanism is respon-

• sible for much of the ground effects with VSTOL aircraft .

Comparisons of the measured free-jet centerline decay by se-

veral experimenters (Reference 7) show considerably different

spreading rates near the nozzle exit for axisymmetnic free

jets (Figure 4) ,  but to date no systematic work has been

done to explain the source of the difference . However ,

Kuhlman and Warcup (Reference 8) have demonstrated that al-

-V ..-
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tering the exit velocity profile of an axisymmet7~ic jet can

alter its spreading rate (Figure 5) and produce a large

• change in the induced loading on the blocking surface plate

through which the free jet exits. Vary ing the nozzle pres-

sure ratio is another means of obtaining different spreading

rates with a free jet, as shown by Gentry and Margason (Re-

ference 9) and reproduced as Figure 6; they also established

a correlation between jet spreading rate and ground effects

measured on a model. Since the turbulent structure of axisym-

metric jets does not become self preserving until some 80 jet

( I exhaust diameters downstream of the nozzle exit , as demon-

strated by Wygnanski and Fielder (Reference 10), nozzle exit

conditions are expected to have a significant effect on the

flowfield around a VSTOL airplane at altitudes where the

ground effects are important , these altitudes being usually

much less than 80 nozzle exhaust diameters.

In the course of the yAK 1918 VSTOL aircraft development

and evaluation program (Reference 11) flight tests produced

quite different results than did model tests in VTOL mea-

sured ground effects (Figure 7). It is reported in Reference

- 
• 

11 that the difference is believed to lie in the failure to

simulate the full-scale engine-nozzle exit conditions in the

• model tests .
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1.2 Objectives

It is apparent from the research described above that

nozzle exit conditions do affect  the VSTOL-related flowfield

and that these engine exhaust conditions should be modeled

accurately so that model-measured ground-induced forces can

be extrapolated to those of full-scale vehicles. In order

to determine the criticality of these engine exhaust simula-

tions , an experimental investigation was conducted on the ef-

fects of varying the nozzle exit turbulence , total pressure

distribution , and nozzle pressure ratio on the ground-induced

forces for two- , three- , and four-nozzle configuration models

with large flat-plate blocking surfaces . The nozzle conf i-

gurations and blocking surfaces were the same ones used in

an earlier investigation of fountain characteristics and tem-

perature effects (Reference 5).  Since the ultimate objectives

of this research are the development of prediction techniques

and an understanding of the physical flow phenomena , the ef-
fec ts of varying the nozzle exit conditions on the component

forces described in Equation (1) as well as on the net-induceó

force had to be determined.
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2. EXPERIMENTAL INVESTIGATION

The experimental investigation was conducted at the

General Dynamics Fort Worth Division ’s Ground Effects Rover

Test Facility (Figure 8) .  Testing consisted of three phases -

a nozzle calibration phase, in which variations in nozzle

exit conditions were determined ; an induced-loads phase, in

which the net and component induced forces produced by var-

iations in model configuration (number of nozzles and block-

ing surface p lanform shape) , model altitude , and nozzle exit

conditions were measured ; and, finally , a fountain survey

phase, in which the fountain flowfield characteristics were

investigated . As noted earlier , the experiments were limited

to a simulation of hover (no forward speed) with zero cross-

wind and at zero pitch , roll , and yaw angle. Unlike the

work reported in Reference 5 , nozzle exit temperature was

not a variable in this study a-~d was maintained at approx-

imately 80°F.

2.1 Experimental Equipment

2.1. 1 Test Setup

~ 
j~
.. The ini tial test setup is shown in Figure 9. High-

r•~~
.

C 
pressur e air was supplied to two plenums by a large-volume

16
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dedicated compressor through four 3/4-inch-inside-diameter

flexible hoses connected to T-fittings on the top of the

plenums . The choking plates used with the model in previous

experiments (References 4 and 5) were again employed to

insure uniform plenum flow to the nozzles. Early in the

nozzle calibration phase, the air compressor failed , requir-

ing a new air supply system.

Increasing the sizes of the air supply lines to the

plenums , changing the entry points for the air into the

plenums , and replacing the choking plates allowed use of

the plant compressed-air supply system . Details of these

hardware modifications are noted below . The key elements

of the revised test setup are shown in Figures 8 and 10.

This plenum/air supply arrangement was maintained through

the remainder of testing . Checks were made to insure tha t

the nozzle flow characteristics observed before the corn-

pres~ior failure could be repeated with the new plenum/air-

supply arrangement , thus eliminating the need to rerun

data obtained before the compressor failure,

A key feature of this type of ground effects testing

:-~~ .. is the desire to isolate the thrust produced by the nozzles

gut and the propulsion-induced loads on the blocking surface .
w
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This isolation was accomplished by making the blocking surface

metric with the lower induced-loads-measuring five-component

strain-gage balance (located between the blocking surface

and the plenum) and by keeping the thrust-producing system

(plenums and nozzles) nonmetric to this balance. The thrust

forces were measured (with the blocking surface removed) by

the upper five-component strain-gage balance, which is con-

nected to the vertical support strut.

2.1 .2 Model Description

The model is composed of the plenum assembly, associated

nozzle hardware, and flat-plate blocking-surfaces. A general

arrangement of the model is provided in Figure 11.

The plenum assembly is composed of a forward and aft

plenum with is possible nozzle locations (nine forward, six

aft) . The plenums are machined from a single piece of steel

with the bottom surface welded into place. Three sides of

each plenum contain 2-inch-diameter holes to allow for the

installation of various nozzles. The selected nozzle lo-

catiorus for the two- , three- , and four-nozzle configuration

~~T. studied in this investigation are shown in Figure 12. Cover

plates are provided for the non-blowing positions.
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The high pressure air supply system used for the maj or

portion of this investigation (shop/plant compressed -air

supply system) necessitated modifications to the plenums

to achieve the desired nozzle pressure range (1.5 to 2.4)

with the multiple-nozzle configurations . The plenums were

modified to bring the high-pressure air into the sides of

the plenums at nozzle locations 6 , 7 , 14 , and 15 via four

flexible 1.5-inch-diameter rubber hoses connected to f it-

tings welded to the cover plates; in previous experiments,

the air entered the aft end of the forward plenum and the

• I top of the aft plenum (Figure 11). A maximum plenum pres-

sure of 95 psig was required for some nozzle arrangements.

The maximum , normalized weight flow condition through one

plenum was 1.27 pounds per second as determined by indi-

vidual-plenum venturi flow meters located upstream of the

flexible hoses.

The nozzle assemblies, shown in Figure 11, are com-

posed of either a straight or a 90-degree elbow barrel

(depending on nozzle configuration), a choking plate, a

spacer (which was replaced with the devices for varying

the nozzle turbulence or pressure profile), and the nozzle

0 itself. The high-pressure plant air-supply utilized re-

quired a new choking plate with a rectangular grid and

:~~~r:~~~~~
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with more porosity than previously used so as to reduce

pressure losses and achieve the desired range of flow

parameters (see Section 2.2, Figure 15).

The n~w choking plate, used alone as the baseline nozzle

configuration, was located well upstream of the nozzle con-

vergence. It was always present with the other devices for

varying nozzle conditions to maintain uniform plenum flow.

These other devices were located just upstream of the con-

j vergence nozzle section . The 30-degree conical , half angle,

convergent nozzles screwed into the barrel assembly to hold

the internal pieces in place . Two nozzle exit diameters were

r tested , 1.42 inches for the two-nozzle cases and 1.32 inches

for the three- and four-nozzle cases.

The blocking-surface models are shown in Figure 13.

The large rectangular two- and four-nozzle as well as the

triangular three-nozzle blocking surfaces were the ones

j employed in the Reference 4 and S tests. (Note that sections

of these plates may be removed or mounted off the balance to

allow testing with one nozzle to determine the pure suckdown

component, as described in Section 2.2.2.) In addition, a

new cruciform plate with the same two-nozzle spacing was

studied briefly because it is more characteristic of the

- - - -
• - 
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planform shapes of real aircraft than the other large research-

type blocking surfaces. All of these flat-plate blocking sur-

face models are made of aluminum and have sharp 90-degree

edges .

For consistency with previous investigations utilizing

this hardware (References 4 and 5), the applicable nomen-

clature rationale is noted as follows. The blocking surface

models are noted as P with subscript 13 for the two-nozzle

rectangular configuration , 31 for the three-nozzle triangular

conf iguration, and 41 for the four-nozzle rectangular con-

-j figuration. All nozzles are designated by subscripts for

location and by superscripts for size. The location sub-

script is keyed in Figure 12 and designates the nozzle

location on the plenum chambers. The superscript refers

to the nozzle diameter (1 — 1.32 in. ,  2 1.41 in . ) .  A
1 1 1complete test configuration N3 N10 N11 P31 would mean a

three-nozzle arrangement w~.th 1.32-inch-diameter nozzles

located at points 3 , 10 , and 11. The triangular three-

nozzle blocking surface would be mounted on the induced-

loads balance .
:4-
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2.1.3 Support Hardware

The support hardware consists of the model support

stand to which the model is mounted , the hydraulically

driven ground board-table , and the traversing rig.

— The support stand (Figure 8)  is a massive , welded-

steel , rectangular beam structure that rigidly supports

the model over the ground board . The stand is bolted to

the concrete floor to assure rigidity . It also serves as

support for the scanivalve bays servicing the model instru-

mentation as discussed in Section 2 .3 .

The hydraulically driven ground-board table prov ided

the desired variation in model altitude. An 8-foot-square

reinforced aluminum plate assembly mounted on top of the

small table surface shown in Figure 8 served as the ground

board for this experiment. The table was either manually

• or computer operated to vary ground height positioning over

a range of height-to-nozzle-diameter (h/D) ratios of from

2.5 to 10.

The traversing rig, shown in Figure 9, was used to

survey the nozzle exit flow with the Kulite/total pressure

probe and the fountain flow with the cone-probe total-

~~~~~ ~

--

~~~ 
pressure rake (both devices are described in Section 2.3) .
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The rig provides longitudinal , lateral , and vertical dis-

i placement probe positioning by use of a screw/drive motor

combination. A braking circuit was incorporated in the

drive motors to prevent “coasting” after the positioning

power signal ended , thereby improving probe-positioning

accuracy. The rig was rigidly mounted to a sturdy suppor t

table to further insure positioning accuracy.

2.2 Test Procedure

2.2.1 Nozzle Calibration Testing

Initially the model plenums were attached to the upper

- 
- 

five-component strain-gage balance , which was in turn mounted

• to the vertical support strut and support stand . Flexible

air hoses , with loops to minimize tares, supplied the high-

pressure air to the plenums. With all exi t passages from

the plenum blocked by cover plates, the air hoses were pres-

surized to obtain the hose tare forces on the thrust balance.

Check loads were also made to insure that thrust could be

measured through the whole data acquisition system to the

desired accuracies with the hoses pressurized .

- -: A schematic diagram of the nozzle calibration testing

is presented in Figure 14. With the N3
2 baseline nozzle

;~

_ _  
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I installed (on th~ forward plenum), plenum pressure,

was varied to determine corresponding variations in venturi-

measured corrected airflow to the plenum, W I and

corrected balance measured thrust, Fj/J . The N3
2 baseline

nozzle exit was then surveyed at various plenum pressures

with a Kulite/total-pressure probe to determine the nozzle

exit turbulence and total-pressure distribution. Each

nozzle exit survey required two traverses of the nozzle

exit 90-degrees apart. During the survey, the Kulite/total-

probe instrumentation reached a maximum displacement of 0.1

inch from the nozzle exit plane at NPR — 2.4; obviously some

nominal displacement was required to prevent instrumentation

damage due to impact with the model as a result of model/

probe vibrations. However, the probe boom was more flexible

- than desired , resulting in probe displacement from the nozzle

• exit plane that varied slightly during exit surveys. This

displacement was a function of the amount of probe boom

extended into the nozzle flow, producing an aerodynamic

drag force and the subsequent displacement. The exact

displacement is unknown but is considered to have a

negligible effect on the overall results of this investi-

() 
gation.
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The nozzle pressure ratio , NPR , is defined as the area-

weighted average total pressure measured across the nozzle

exit plane (with the total probe described above) divided

by the static ambient pressure. (The area-weighted average

total pressure was computed over the inner 807. of the nozzle

diameter (r/D ±0.4, Appendix A Figures) due to lateral and

longitudinal deflections of the total-pressure probe caused

by the very high shear layers near the nozzle edge.) The

plenum pres sure and corrected airflow required to achieve

the desired nozzle pressure ratio and subsequent nozzle

thrust were thus determined .

In order that the desired variations in nozzle turbulence

and total-pressure distribution could be obtained over the

ranges expected for full-scale aircraft engines (see Section 3),

the nozzle exit was surveyed with a variety of screen and

plate devices located just ups tream of the convergent nozzle

section (Figure 15). The thrust was held constant (for a

given NPR) for the baseline nozzle and with the turbulence

screens and pressure plates in place. The nozzle exit stir-

veys were performed at nominal NPRs of 1.5, 2.0 , and 2.4.

The plenum pressure was adjusted until the desired

baseline nozzle thrust was measured on the thrust balance

.1
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at the desired NPR. This allowed the nozzle exit surveys to

be obtained at the same NPRs as were used in the induced-

loads and fountain-survey testing phases. Ultimately, then ,

the objective of relating nozzle exit conditions to the in-

L duced loads and to what was occurring in the flowfield could

be realized .

The nozzle exit surveys yielded a measure of turbulence

in terms of a turbulent intensity, I, defined as the area-

• I weighted average RNS value of the fluctuating total pressure

1 across the nozzle exit as determined by a high-response

I 
subminiature Kulite transducer (see Section 2.3) divided

by the area-weighted average total pressure (gage) across the

nozzle exit as determined by the total pressure probe. (The

turbulent intensity was also defined over the inner 807. of

the nozzle diameter because of the difficulty in measuring

the total pressure near the nozzle edge as noted above.)

The accuracy of measuring the turbulent intensity with the

Kulite transducer will be discussed in Section 2.4.1.

-
~ 
-: The devices selected for varying the nozzle exit con-

ditions are shown in Figure 15. Screens of varying mesh

size were used to achieve variations in nozzle exit tur-

bulence while maintaining a virtually uniform total-pressure

The choking pla~~ on t h e ft is sho~~ for
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comparison . Exit total-pressure distributions representative

of turbofan engines with varying bypass ratios were obtained

with pressure profile plates P 1 and P2 (Figure 16) ; the base-

line nozzle ’s “top hat” pressure distribution is represen-

tative of a turbojet engine.

NPR is a somewhat arbitrary term when applied to non-

uniform exit pressure profiles like those produced by P1

and 
~
2• Therefore, the NPRs for the non-uniform profiles

were taken as those measured on the baseline “top hat”

profiles when the thrust produced by the non-uniform pro-

files matched that of the baseline . The screens S1 and S2
produced virtually uniform profiles so that no analogous

difficulty was present .

After the compressor failure occurred , the hardware

modifica tions described above were accomp lished to allow

use of the new air supply system. Repeat exit surveys and

thrust calibrations at an NPR of 2.0 for the baseline nozzle

N3
2 and with turbulence screen S2 installed showed good

nozzle-condition repeatability ; therefore the nozzle

• 
- 

calibrations were continued . Table 2-1 sumarizes the

nozzle exit survey cases.

I - ~~~~~~~~~~~~~~~~ , - (~~~ .9
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Nozzle calibration testing was minimized through the

use of several rather involved but justifiable assumptions :

1. Since the nozzle exit surveys showed good agree-

ment between the forward and aft  plenum cases for

the two-nozzle baseline case ( i . e . ,  N3 and N13 )

at an NPR of 2 .0 , the forward and af t  nozzle exit

conditions were assumed equal at other NPRs and

with S1, S~~, P1, and P2 devices installed . There-

fore , nozzle exit surveys for the aft plenum , two-

nozzle case , N
13

2 , were required only at an NPR

of 2 .0 .

2. Nozzle diameter was also assumed to have no effect

on the nozzle exit surveys; therefore, for constant

NPR , the turbulent intensity and total-pressure

distributions (including variations with screens

and plate) obtained with the 1.42-inch-diameter

N
3
2 nozzle (used for the two-nozzle configuration)

were assumed equal to those of the 1.32-inch-

diameter N

3

3 nozzle (used for the three-nozzle

configuratio~-t). Justification for this assumption

:~ is provided in the discussion of assumption 3.

1
* 41IW~~~~~~~
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3. Finally,  it was assumed that, when two nozzles are

symmetrically located on the same p lenum (as in

the cases of the aft  plenum for the three-nozzle

configuration with N10
1 and N11

1, and for both the

forward and aft plenums on the four-nozzle con-

figurations , with N8
1
, N9

1, and N10
1, N11

1,

respectively), nozzle exit surveys are required

on only one side of each plenum . Therefore ,

surveys were made of N 9
’ and N

11
1, represent ing

the forward and aft  plenums , respectively (screen

S2 was installed in both cases) . These surveys

were made with both nozzles operating on the plenum

of interest. (Air was supplied only to the plenum

being investigated in all cases described.) At an

NPR of 2.0 , the turbulent intensities agreed so

• well with those of the larger nozzle , N3
2 (with S2

installed), that the variations due to changing

screens and plates were assumed to be the same for

the larger nozzle positioned for the four-nozzle

configuration as obtained for the smaller nozzle ,

N

3

2

, positioned for the two-nozzle configuration .

Since the induced loads were to be measured only

at an NPR of 2.0 for the three- and four-nozzle

1-.
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configurations, exit surveys were limited to an

NPR of 2.0 for these cases .

Forwacd and af t plenum pressures were then varied

independently for each remaining nozzle-configuration/

exit-device combination to determine the corresponding

changes in Fj/~ and These variations allowed the

thrust and corresponding plenum pressure requ ired for a

desired NPR to be determined for each of the nozzle-

configuration/ exit-device combinations . The results of

these variations , summarized in Table 2-2 , formed the

-
• - basis for setting the nozzle flow conditions for a given

NPR , nozzle configuration, and nozzle device in the induced-

loads and f ountain-survey testing phase.

2 . 2 . 2  Induced-Loads Testing

• The net induced lift force , ~ L , on the blocking-surface

model planforms was measured directly with the five-component

strain-gage induced-loads balance while configuration ,

nozzle exit flow parameters , and model altitude were varied .

The two-nozzle configuration was tested at NPRs of 1.5,

2.0 , and 2.4; three- and four-nozzle configurations were

tested at an NPR of 2 . 0 .  The turbulence screens and pressure

—
I- I,
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Table 2.2 PLENUM PRESSURE, CORRECTED MASS FLOW, AND CORRECT THRUST REQUIRED
- FOR A GIVEN NPR WITH EACH NOZZLE•CONFIOURATION/EXIT DEVICE COMBINATION

FORWARD PLE NUM TABLE

________ _____ 

N3
2 NO ZZLE N31 NOZZLE 

_____ ____

N8
1N9

1 NOZZLES

NOZZLE 
~~ 

Fi W1~~~ NPR PPL Fj W1~~~ NPR Ppi~ 9 W5~~~ NPR

CONFIG 8 8 8 8 6 6 8 6 6

BASIC 33.0 16.0 .67 1.5 31.0 15.6 .64 1.5 31.1 30.3 120 1.5

1 49.0 33.5 1.04 2.0 43.6 29.0 .922 2.0 44.5 57.0 1.72 2.0

60.0 45.0 127 2.4 53.3 40.0 1.138 2.4

BASIC + P1 47.6 16.0 .61 1.5 68.8 29.0 .88 2.0 58.3 45.0 1.42 1.8

60.9 22.5 .78 1.7 73.7 32.5 .955 2.1 67.5 57.0 1.66 2.0

752 33.5 .99 2.0

91.3 45.0 1.18 2.4

BASIC+P2 34.8 16.0 .60 1.5 50.0 29.0 .872 2.0 43.4 45.0 1.09 1.8

— 50.3 28.0 .89 1.83 53.8 32.5 .94 2.1 50.5 57.0 1.09 2.0
- 

55.5 33.5 .98 2.0
• 67.8 45.0 120 2.4

BASIC -s- Si 34.0 16.0 .68 1.5 31.7~ 15.6 .652 1.5 44.9 55.0 1.75 1.8

50.9 33.5 1.05 2.0 45.0 29.0 .905 2.0 45.9 57.0 1.80 2.0

61.3 45.0 121 2.4

BASIC +S2 37.5 16.0 .66 1.5 502 29.0 .09 2.0 43.8 45.0 1.54 11

38.3 11.6 .88 1.51 51.3 30.0 .90 2.0 502 57.0 1.78 2.0

- - 

~:-: 
- 56.5 33.5 1.14 2.0

18.8 45.0 127 22
r~ ~~~~ — — —1%~~~

; - ,
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Table 2-2 PLENUM PRESSURE, CORRECTED MASS FLOW, AND CORRECT THRUST REQUIRED FOR
A GIVEN NPR WITH EACH NOZZLE-CONFIGURAT$ON/EXIT DEVICE COMBINATION (Cont :d)

AFT PLENUM TABLE

__________ ______ 

N13
2 NOZZLE N10

1N11
1 NO ZZLES

NOZZLE P~1 Fj W5~~ NPR 
~PL Fj W5~~~ NPR

CONFIG 1 T 6 
_____ 

& 8 6 
______

BASIC 34.5 18.5 .687 1.5 37.3 46.7 1.590 ii

49.5 32.3 1.015 2.0 42.8 57.8 1.118 2.0

60.5 44.0 1.241 24

BASIC+P1 50.3 18.5 .835 1.5 65.0 52.6 1.635 1.9

63.7 23.0 .770 1.7 67.5 57.8 1.750 2.0

78.6 32.3 .955 2.0

95.0 44.0 1.145 2.4

BASIC+P2 36.5 16.5 .600 1.5 49.0 550 1.595 2.0

56.6 32.3 .940 2.0 50.0 57.8 1.650 2.0

59.3 34.5 .985 2.1

69.5 44.0 1.185 22

BAS$C +Si 35.8 16.5 .895 1.5 400 46.7 1.595 1.8

39.0 19.3 .750 1.8 45.1 57.8 1.815 2.0

51.8 32.3 1.015 2.0

j 
_ _ _ _ _ _ _ _  

63.5 44.0 1246 2.4

BASIC+S2 39.3 16.5 .095 1.5 41.0 54.0 1.036 1.9

507 32.3 1.015 2.0 502 57.8 1.710 2.0

19.7 441 1250 22

__
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distribution plates were tested with the two- and four-

nozzle conf igurations ; only screen variations were tested

with the three-nozzle configuration .

To determine the effects of varying nozzle-exit condi-

tions on the pure suckdown component of the net induced

force , one half of the two-nozzle plate was removed and

the nozzle with the metric half of the plate was operated;

induced loads were measured on the metric half plate with

the turbulence screens and pressure profile plates installed

and with variations in model al titude . In all cases model

altitude was varied over hID values from 2.5 to 10.0

* j 2.2.3 Fountain-Survey Testing

The cone-probe rake, described in Section 2.3, was

used to survey the fountains formed with the two- and four-

nozzle configurations at an NPR of 2.0 to ascertain the

effects on the fountain of the turbulence and pressure pro-

file devices. The cases studied are summarized in Table

2-3; the coordinate system employed is defined in Figure 17.

(The appropriate distance measurements are dimensionalized

by the nozzle diameter , D.) For a given model altitude ,

h/D , the survey rake was placed at a desired height above

the ground p lane , Z/D, and traversed along the Y axis

~~~~~~~ ~~~~~~~ 
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TiM. 2.3 SUMMARY OF FOUNTAIN SURVEY CASES

I
CONFIGURATION h/D z/D FIGURE

4 NOZZLE, BASELINE 8.0 7.0 C-i

2.5 C•11
- 

— 1.5 C~12
t 

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  _ _ _ _ _ _ _ _ _ _  _ _ _ _ _ _ _ _ _  _ _ _ _ _ _ _ _ _ _ _

P2 0.0 6.7 C.13

I 5.5 C.14
I 3.5 C.iS

4 5.0 2.5 C.16

2 NOZZLE , BASELINE 8.0 65 C.17

f 3.6 C-i S

4 1.5 C~19
3.5 2.1 C.20

4 1.3 CV
21 1.1 C22

$2 8.0 51
I 31 CU

4 Ii C26
• - 31 2.1 C26

I 1.3 C-2 7

+ 1.1 C-fl

*5 
- _____________________________________ ______________________ ______________________ _________________________
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(centerline between fore and aft  nozzles where the fountain

center is expected). The Y-traverses were begun slightly

past center (negative Ys) and extended until the fountain

flow became unmeasurable (approached zero). Seventy pressure

readings on the rake were recorded at each Y/D location in

the traverse. Traverses of up to three Z/D locations were

made for a given model altitude.

2. 3 Instrumentation

The instrumentation used in this investigation may be

divided into five functional categories : (1) airflow

monitoring, (2) nozzle exit survey , (3) thrust measurement ,

(4) induced loads measurement , and (5) fountain survey .

(1) Airflow monitoring instrumentation consisted

of two venturi flow meters used to independently monitor

the airflow to th. forward and aft plenums and plenum static

pressure taps and thermocouples (one of each per plenum

located in the body of •ach plenum). The thermocouples

were used for monitoring airflow temperature to the plenums ;

no total temperature drop was assumed through the nozzles for

calculating is.ntroptc nozzl. exit flow characteristics .

(2) Nozzle exit survey instrumentation consisted of

~ the turbulence and total-pressure measurement systems. The

turbulence intensity measurement system shown schematically

•
~~

- 
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in Figure 18 consisted of two subsystems , one for turbulence

and one for total pressure. The turbulence subsystem con-

sisted of a very sensitive Kulite subminiature pressure trans-

ducer that provided an analog signal of the fluctuating total

pressure (25 psi maximum) in the nozzle flow to an Analog De-

vice true RMS voltmeter , Model AD2033 , which determined con-

tinuous RMS values of the signal. This continuous RMS signal

was in turn sampled by the high-speed data acquisition system

at an adequate rate and period determined experimentally as

the minimum rate and period at which no measurable change in

-
~~ the averaged RNS value occurred for the highest screen-

produced turbulence case, S2. This rate and period turned

out to be 500 samples/second for 1. second. The Kulite trans-

ducer , Model No. XCQL-14-093, was mounted on the forward

support of the Kulite/total-pressure-probe boom , as shown

in Figures 9 and 19. Five of these Kulite transducers

were calibrated statically (DC levels only) before testing

by determining the variation of pressure on the transducer

— -
. face with output voltage over the maximum allowable range of

pressures (±25 psi); the variations were found to be very

linear . Thes. calibration curves became part of the data

~~
- - - - (T

~~ 
reduction procedure for determining the Ri-IS value of the

fluctuating total pressure associated with the nozzle

— - - -1 
_________________
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turbulence. Only one transducer was required throughout

the testing. The XCQL-14-093 Kulite model is essentially

a model CQ-080-25 with a longer barrel and an FOD protective

screen over the 0.08-inch-diameter , pressure-sensitive,

silicone transducer face, which increases the total trans-

ducer outside diameter to 0.093 inch. The operating re-

sponse characteristics are reported by the manufacturer to

be identical to that of the CQ-080-25 (see Table 2-4). The

frequency response characteristics of this Kulite transducer

are related to the accuracy of the turbulence measurements

obtained in this experiment, as described in Section 2.4 .

The total pressure measurement subsystem consisted of

the total pressure probe on the Kulite/total probe, which

— 
was connected to a Data Sensors Inc. Model PB415-B9 ± 40

paid pressure transducer . This pressure transducer provided

a continuous electrical signal which, when integrated over

1/60 second by an integrating voltmeter, provided an

average total pressure (psig) value for a given probe loca-

tion. This value was divided into the Kulite-measured fluc-

tuating pressure to obtain the turbulent intensity , I.

(3) and (4) Thrust and induced-loads measurements were

made on identical 5-component-strain-gage, moment-type

5-f -

~•.
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-
‘
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TiM. 24 OPERATING RESPONSE CHAR ACTERIST ICS OF THE CQOSO 25 KULITE TR ANSDUCER

Rated Pressure 25 psi

Maximum Pressure 50 psi

Output-Nominal at 65 mV
Rated Pressure

Bridge Excitation 5 V Nom (7.5V Max)
(AC or DC)

Bridge Impedance 750 ft (Uom .)

Zero Balance ± 37. FS max.

Combined Non-Linearity +0.757. FS
and Hysteresis max.

Repeatability 0.15%

Compensated
Temperature Range 80 F To 180 F

Operating
Temperature Range 65°F To 250 F

Change of Sensitivity
With Temperature ±1.57./100 F

Change of No-Load +0.5%
Output with Temperature FS/100 F (max.)

Natural Frequency 230kHz
(Approximate)

Acceleration Sensitivity
Perpendicular .00027.FS/F
Transverse 000047.FS/g

I

‘
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balances designated as GD 1000A1 and A2; these balances

are capable of measuring maximum moment loadings up to 650

inch pounds at a 30 ,000-psi stress.

(5) Fountain survey measurements were made with the

same flow-field survey rake used in the Reference 5 tests.

This rake , shown in Figure 20 , has 13 chromel/alumel thermo-

couples (not used in this investigation) and 14 cone pressure

probes. Each of the cone probes has four pressure orifices

on the conical surface and one total-pressure port in the

nose. Data obtained with the cone probes were used to deter-

( mine local total pressure and local flow direction.

The cone-probe pressures were sampled with five scani-

valves. All five of the pressure orifices on one of the 14

probes were read simultaneously (one per scanivalve); the

scanivalves then cycled to the next probe. The interval

• between probe readings (five pressure orifices) was approxi-

mately 1 second ; thus , about 14 seconds were required to

take data from all of the rake ’s probes.

Since the cone probes are not accurate for determining

flow direction when the flow angles exceed about 40 degrees ,

constraints were placed in the test data reduction to

eliminate the data when the indicated flow angles, Q~ or

-43
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were greater than 42 degrees (based on rake calibra-

tions ) or when the total pressure probe on the nose of the

cone probe indicated a pressure less than static ambient.

The scanivalves, which sampled the cone-probe data,

were each equipped with a Druck Ltd . differential pressure

transducer , Model PDCR22 , with a range of ± 2.5 psia and with

a Recording Devices Model SCSG/075 signal conditioner.

2.4 Data Accuracy

Accuracies were estimated for the turbulence , thrust and

induced loads , model altitude, and fountain rake measurements .

These measurements are considered sufficiently accurate to

justify the conclusions presented in Section 4.0.

2.4.1 Turbulence Measurement

The error in turbulent intensity measurement due to the

non-linear frequency response characteristics of the Kulite

transducer is reported by the manufacturer to be less than

k 37. for the turbulence frequency range of this experiment

(< 50 kHz) provided the turbulence characteristic length

(eddy size) is greater than the diameter of the Kulite trans-

ducer face (0.08 in); as this characteristic length approaches

the size of the transducer face , the error increases . Since

the turbulence screen S1 and S2 and the pressure-profile

- 

~~~ /

I ~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~ ~~~~~~~~~~~~~~~~~~~ ~
-j



—~~
-
~ i f T  ~ l 1~ ftJ~~~~~~i . fl 

55

plates P1 and P2 used in this experiment all have charac-

teristic lengths larger than the transducer face , the error

in turbulent intensity measurement for these cases is con-

sidered negligible (<10%). For the baseline nozzle case

(with choking plate), the eddy characteristic length is

probably somewhat smaller than the transducer face diameter

and a significant error may be produced (with indica ted

readings too low). However, since the turbulence intensities

are low for the baseline nozzle case (<107.),large percentage

errors in their meast rement have little effect on the conclu-

sions of this exp er iment . (See Section 3 for a discussion

of turbulence eddy size and related frequencies.)

The error due to the frequency response character-

istics of the true RMS meter used in measuring the turbulence

is seen (Figure 21) to be less than 10.57. at the worst case

(50 kflz with baseline nozzle and corresponding low turbu-

lence level). Therefore, the RMS meter is suff iciently

accurate to cause no effect on the conclusions of this ex-

periment.

Also , as noted above , the sampling rate was fast
: -

enough and for a long enough duration to ensure that, in the

turbulence frequency ranges of interest (<50 kHz), the total

i ~~
_
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turbulence-measurement-system error was insignificant in

terms of the objectives of this experiment. The total-

probe bending near the nozzle edge did not introduce er-

ror into the calculated turbulent intensities because the

outboard 10% radius was not used in calculating the area-

weighted average RNS or total-pressure values.

The measurement accuracy of the Data Sensors pressure

transducer used with the total pressure probe was ± .4 psid.

The traversing rig positioning accuracy was ± 0.04

inch.

2.4.2 Thrust and Induced-Loads Measurement

Checkloedings indicated errors in the thrust and in-

duced loads balance measurements (as shown in Figure 22)

which result in net induced normal force readings (
~~) with
j

up to a + 0.8% error (worst case) .

2 . 4 . 3  Mode l Altitude Measurement

The error , Ah/D in the altitude position indicated by

the ground board potentiometer is shown in Figure 23. Since

h/Ds<2.5 were not tested in this experiment , the correc-

dons to the indicated readings were considered negligible

and are not included in the data presented in this report;

• 1



—-S— --- - - - — -5-—-- -- —5-—-- -

58

—— - ° - — ----— ! — -
~~~~

- --- — —— -— !

— g~~~~
0

0

— — — — — — ~~~- — — ~~
,‘ ‘~~~~~~~~~

‘.4 ~ ‘1 ~ ~ ‘~~~~‘1~~~~ ‘ 1 ’~ ~

.5.-— w -=~~~,
4 w

I

— 

- 

,.
~~~ , 

~~~~4’~~ ~~~~~~~~~~



—- ~~~~~~~~~ ____

59
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the maximum correction to the data presented in this repor t

is + .057 for the three- and four-nozzle configurations at

an h/D of 2.5.

2 .4 .4  Fountain~Rake Measurements

- The pressure transducers used f or measur ing the rake -

- pressure had a ±0.067. accuracy over the ±2.5-psia pressure

range . These transducers are considered the most accurate

transducers conmipz~cia11Y available.

The same tr~versing_rig positioning accuracy of ±0.04

- 

inch was present in the fountain rake measurements as noted

for the nozzle calibration testing .

Some unknown error is introduced into the fountain

survey measurements- as a result of making the readings over a

finite 14-second time interval. If the fountain flow is it-

self highly turbulent , as has been reported in Reference 12 ,

there is certainly some question about the validity of us ing

a steady-state flow-type device like a pressure rake to make

accurate measurements in a highly unsteady flowfield . How-

ever , it should be recalled that the objective of this in-

vestigation was to study trends and to quantify results

within the scope of the contracted effort. In future in-
V~ 

0 vestigations, other means of quantifying the fountain flow-
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field and its changes with nozzle exit condition s might

be considered.

. -‘.
•-
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3. RESULTS

The experimental results and analysis of the nozzle

calibration, induced loads, and fountain survey testing

will demonstrate , for the nozzle/planform configurations

tested, the criticality of nozzle exhaust simulation on

the net induced forces as well as the component forces

and will provide an indication of the mechanism of the

associated flow phenomena .

3.1 Nozzle-Calibration Testing

Appendix A contains the nozzle-exit fluctuating and

corresponding total pressure survey results for each

nozzle/device combination described in Section 2.2.

• Although the X and Y traverses show reasonable agreement

in most cases , they do not agree perfectly . Therefore, the

following averaging procedure was used to determine the

turbulent intensity. The area-weighted average RMS pres-

sure was determined from the X-traverse using the RMS

distribution obtained from the nozzle centerline to +.4r/D

and then repeated for the X-traverse RNS distribution ob-

tained from the nozzle centerline to - .4r/D. This process

was then repeated for the 1-traverse distribution (from

~~~

-
-~~~~

- 0
centerline to +.4r/D and then to -.4r/D). These four
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values were then arithmetically averaged to obtain the

area-weighted average ENS pressure. The same process was

performed for the total pressure surveys . Finally, the

turbulent intensity was calculated as the ratio of the

area-weighted average RMS pressure to the total pressure

determined in this manner. This process collapsed the

data scatter in the X and Y traverses to provide a more

meaningful turbulent intensity value .

The baseline nozzle configuration , N32 , exhibits the

classic “top hat ” turbojet-type uniform total-pressure

distribution, with a correspondingly low ENS fluctuat ing

pressure level also uniform across the nozzle exit except

near the nozzle edges where the large shears occur between

the jet and the still, ambient air (Figures A-i through

A-6). The total and EMS pressures increase with increasing

N~R; but the total pressure increases at a faster rate ,

producing a decreasing turbulent intensity with increasing

H NPR.

Screens S1 and S2 (Figures A-7 through A-18) produce

- ~~ • increased EMS fluctuating pressures and total pressures

with N32 at a given NPR whil, maintaining virtually uni-

form total pressure distributions. The screens also pro-

C due. variations with NPR similar to those described above

~.
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for the baseline nozzle.

Total-pressure distributions characteristic of turbo-

fan eng ines with varying bypass ratios were obtained with

pressure profile plates P1 and P2 installed in nozzle N32

(Figures A-19 through A-22). Figure 15 above shows a com-

parison of the nozzle exit total-pressure distribution

obtained at an NPR of 1.5 with the baseline nozzle and

with pressure prof ile plates P1 and P2 installed . Cor-

responding increases in fluctuating ENS pressure were also

measured with P1 and P2 installed ; similar trends to the

baseline-nozzle case were also noted for variations in

NPR (see Appendix A).

The variations in turbulent intensity with NPR cal-

culated from these surveys are suninarized in Table 3-1 for

each of the nozzle/device combinations . These results are

shown in plotted form in Figure 24.

The turbulent intensity variations and the total pres-

sure surveys presented in Figure 24 and in Appendix A show

that the ranges of nozzle-exit turbulent intensity and

pressure profiles expected for real aircraft engines were

successfully covered . Rolls Royce has reported (Reference

13) turbulent intensity measurements, ‘velocit of full-
- ~~~~~~~~~ 

~~~~~~ 
y

scale turbojet (Olympus 593) and turbofan (RB211) engines
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TaM. 3.1 TURBULENT INTENSITY, IV S NPR FOR SCREENS AND PLATES

NOZZLE T 1~CONFIGURATION DEVICE j I-% NPR FIG. NO.

N32 BASELINE 724 1.503 A.1
5.87 1.551 A.2
6.00 1124 A.3
2.39 1159 Al’
4.26 2.096 A—S
4.60 2276 Al

Si 17.48 1.517 A.7
17.47 1.531 Al
14.00 1.931 A—9
1113 2.317 A iD
12.73 2.321 A—li

52 1018 1.552 A.12
17.75 1.166 A~13
16.14 115$ A-14
17.07 1196 A-I S
15.91 2.041 A—IS’
14.88 2.317 A-17
18.06 2.372 Al l

P1 29.17 1151 A-19
25.40 1172 A.-20

4 2113 2.310 A~21
P2 1019 1120 A.-22
I 2115 1110 *23
I 1U$ 1190 A.24
4 1410 2.420 A.Z5

N13
2 BASELINE 3.80 1107

N11’ (with N10
t) 52 18.24 2.062 A.-27’

(Aft Phiem)
N,’ (with N81) I 18.13 2110 A.21’
(F.n~rd Phn.m)

‘Oat. Takas Aft., N..~~si. M.dlIIislI.m ts T.st with Phit-Ak $ystsm
-q
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0 CLEAN (Basic) NOZZLE
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measured with a laser velocimeter that yields equivalent

“pressure” turbulence intensities 
~~pressure equivalent to

2 -

~ 
veiocity > )

~ comparable to the Kulite measurements , of

17. to 27. for the turbojet and 17. in the core regions and

up to 207. in the fan region for the turbofan engine . Lock-

heed has made similar laser velocimeter measurements of the

flowfield exiting from the nose lift-fan in a large-scale

model (707.) of the McDonnell-Douglas Model 260 Type A Navy

VSTOL aircraft (Reference 14); these measurements showed

equivalent ‘pressure values of 257.. Therefore , the choice

( 
of screens and pressure profile pates in this test was

guided by a desire to cover the range of nozzle exit tur-

bulent intensity, ‘pressure ’ up to 257. while varying the

total pressure distribution to simulate both turbojet and

turbofan engines.

In Figure 24 it is demonstrated that turbulent inten-

sity can be changed in three ways: (1), by changing the

base level with the screens while maintaining a unifora

total-pressure distribution, (2) by distorting th. total-

pressure distribution with the plate devices, and (3) by

changing th. nozzle pressure ratio. It is also shown in

Figure 24 that, within the accuracy of the data , the same

0 v.rt&stion in turbulent intensity with nozzle pressure

‘ I  __ /—
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ratio occurs at all screen grid sizes (including the chok-

ing plate of the baseline nozzle case, see Figure 14) .

The P2 pressure profile plate also exhibits this same

decreas ing variation in turbulent intensity with increasing

t NPR demonstrated by the turbulence screens . The P1 pres-

sure plate, however , exhibits a slightly different varia-

tion of I with NPR but the trend is certainly the same as

with the screens and P2.

increasing the screen grid size increases the turbulent

intensity . The turbulence produced by the screen grid can

be characterized by the large-scale eddy size , E e (after
‘~• I Kolmogorof , Reference 15) associated with the turbulence at

the NPR. The large-scale eddy size is proportional to the

largest physical dimension causing the turbulence , which in

the case of the screens is taken as the width of the bars

making up the screen grid, € ; E is 0.05 inch for the choking

plate of the baseline nozzle case , 0.125 inch for S1, and

0.240 inch for S

Kolomogorof’ s argument for a characteristic turbulent

large-scale eddy size leads to an estimate of the large-

scale eddy size and the associated frequencies produced by

the baseline nozzle and screens. lie suggests that if the

Reynolds number (based on the characteristic length producing

~‘ -
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the turbulence , i.e., the screen grid size in this case is

sufficiently high (say > 1X103 which is true for all tested

grid sizes and NPR ’s),there are wave numbers , Ke~ such that

the turbulence is statistically in equilibrium,
2lT fwhere the wave number K U (2)

and f — frequency of the large-scale eddies characterizing

the turbulence ,

and U constant velocity that is large compared with the

turbulent pertubation velocity , u ’ ; U = nozzle

exit velocity in this case).

If the turbulence is in statistical equilibrium, then the

average size of the energy-containing eddies of consequence is

e 
— i

~
’Re 

(Reference 15) and therefore , the eddy size is
U

~e 2 i r f
— Also if the Reynolds number is high enough (>lXlO3),

the Strouha l number , S ,

r where S — ~~~ , (4)

is constant. If D is taken as the grid size of the screens

producting the eddies , € , then Equations 3 and 4 yield

(5)

which allows an estimate of the turbulent large-scale eddy

size provided a suitable experimentally determined value of

S is available. In Reference 16 and 17 it is indicated

~$ -
~~~~~~ 
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that at Reynolds numbers >1X103, the Strouhal number becomes

L constant for flows past cylinders (0.21) and plates (0.18).

t To be conservative, an S 0.21 was used , which yields

higher frequencies since it is not certain which experiment-

al case more closely approximates the present case with the

screen grids.

Then the associated frequency, f, can be calculated

directly from Equation 3 as

(6)

Table 3-2 siminarizes the estimated large-scale eddy

sizes and associated frequencies for the choking plate and

screens S1 and S2.

The data in Figure 22 also demonstrate that varying the

nozzle total-pressure distribution from the baseline turbo-

jet to the turbofan-type profiles with plates P1 and P2 in-

creases turbulent intensity. The highest turbulent inten-
I

sities were measured with the profile plate P1 (297. at ant
NPR of 1.55).

3.2 Induced-Loads Testing

Variations of nozzle turbulence , nozzle pressure ratio ,

and nozzle total-pressure distributions do measurably affect

C not only the net induced forces 4~) but also the individual
•/
w
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components of as defined in Equation I by Karemaa et al
3

(repeated from Section 1).

- + + 
“Fl (1)F

3 
F

3 
F

3 
F

3

where equals the lift loss due to pure suckdown (i.e.,

no fountain jets present) and can be determined experiment-

ally as described in Section 2.2.2. ALFC is the bouyant

force produced by the impact of the fountain jet upon the

planform , and is a correction factor to account for the

fact that the physical presence of the fountain interferes

with entrainment of ambient air by the exhaust flow and

I’ ground jets and therefore alters the pure suckdown ~~~ It

is important to examine the effects of the nozzle-exit con-

ditions not only on the net induced force but also on the

individual components for two reasons :

1. The changes in the individual components provide

insight and understanding into the mechanism of

the changes in the flow field produced by varying

the nozzle-exit conditions.

2. A definition of the changes on the individual

components is required to develop predictive

methodology for an arbitrary aircraft configura-

tion or to correct configuration model results

for full-scale engine nozzle exhaust effects . The

• ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~ :~ ~~~~~~~~~~~~~~
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net induced force ,although often small for many

aircraft designs, can be the algebraic sum of very

large oppositely directed forces (suckdown and

fountain forces) and failure to correct for nozzle

exhaust effects on either or both of these compon-

ents could result in significant net-induced-force

errors.

3.2.1 Effects on Net Induced Forces

Appendix B contains plots of the net-induced-force vari-

ations with model altitude for all of the nozzle configura-

- tions tested. Table 3-3 shows the matrix of nozzle con-

figurations, exit flow devices, and pressure ratios for which

net-induced-force variations with model altitude were deter-

mined.

Figure B-i shows that, as NPR is increased for the base-

line two-nozzle configuration with the large blocking sur-

face, the net induced force becomes more positive as choked-

nozzle conditions are approached (NPR — 1.89), reaching a

constant level at all altitudes for NPR > 2.0. In all cases

(baseline, screens, and plates) the maximum effect on the

net induced forces due to NPR variation occurs before NPR

• .~~ 2.0, indicating that the reduced variation in turbulent in-
r tens ity with NPR for NPR > NPRctitical tracks with the

~L ~l

I .I~
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C
reduced variation in the net-induced forces at the super-

critical NPRs.

The maximum effect of the nozzle-exit variables observed

from the data presented in Appendix B for the two- , three- ,

and four-nozzle cases with the large blocking surfaces are

discussed below and s~uitm~rized in Table 3-4. Also included

are the significant results obtained for a smaller cruciform

blocking surface more typical of a realistic aircraft planform.
r A T

The maximum effect (change in —
~~

- or 
~-~1) of nozzle3

turbulence with the screens on the net induced force was found

to be an increased suckdown (~[4!~] — -0.08) for the two-
.1

nozzle configuration with the rectangular blocking surface over

the range of NPRs tested (Figures B-2 through B-4). The maximum

effect due to NPR variation was a reduced suckdown (
3

+0.04) (from an NPR of 1.5 to one of 2.4). Varying the pressure

distribution increased the suckdown ( -0.05) near the
3

ground (hID — 2.5). -

The variation due to the turbulence screens for the three-

nozzle configuration at an NPR of 2.0 is illustrated in Figure

B-8. Unlike the two nozzle case, the maximum effect of the

turbulence screen variation occurs.at higher altitudes, pro-

ducing a large negative effect (~[4~].’ -0.032).

I
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For the four nozzle configuration, changing the turbulence

with the screens produced a maximum change at low altitudes

(~~[~LIF3] 
— -.021 at h/D — 2.5, see Figure B-9) but aintlar

changes are also seen at higher altitudes (h/D — 7.0).

Varying the pressure distribution produces the same maximum

change ( 
~. ftaL/F3J — -0.024 at h/D — 7.0, see Figure B-b ).

In Figure 25 the variation of net induced force (-4k)
3

with turbulence (screens) and NPR for the two-nozzle con-

figuration is displayed ; this curve is also typical of the

trends that are obtained with pressure distribution and

nozzle configuration variations.

Since the rectangular and triangular research blocking

surfaces of Figure 13 are large and seem to dominate the

flow field beneath them, it was of considerable interest to

test a smaller plate that is more typical of realistic

airplane configurations . To this end , a cruciform plate

with the same two-nozzle arrangement as for the rectangular

plate was tested with the baseline nozzles and with the S2

screens (Figure 26). The suckdown is considerably less

because of the smaller blocking surface size, but it is also

evident that, unlike the larger rectangular plate, strong

fountains are present. This is probably because the

0
r

‘ft - 
- 
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cruciform plate makes more surrounding air available for

entrainment into ~.cte ground jets, which then requires less

air to be entrained away from the fountain, resulting in a

stronger fountain (Reference Figure 2). Changing the

nozzle turbulence in the presence of the cruciform plate

results in a very significant change in the net induced

force (Figure 26). This is probably due to a combination

of effects. The increased turbulence increases the entrain-

ment of the free and ground jets, which in turn decreases

the fountain strength, both of which contribute to a more

negative net induced force.

• The amount of lift or thrust loss is very configur~.xion

dependent as seen in Table 3-4. In all cases, increasing

turbulence increases the net lift loss, but the magnitude

of the loss is dependent on how turbulence is changed, whether

by screen , nozzle pressure ratio, or pressure distribution.

Knowing the turbulent intensity alone is not enough to

predict an airplane ’s performance , the nozzle pressure ratio

and pressure distribution are also important because they

affect the manner in which the turbulence is developed .
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The most significant result observed from the net

induced force testing is that, when one goes to a smaller

planform more characteristic of a realistic airplane con-

figuration, one still sees a 107. thrust loss (which was

observed with the large blocking surface), which is on the

order of the airplane payload .

As an aid in determining the relative importance of

the nozzle exit variables , the variations of net induced

fot .e with turbulent intensity , NPR, and model altitude are

plotted for the two-, three- and four-nozzle configurations

with the large blocking surfaces in Figures 25 through

28. In Figures 25 and 27 the variations produced with the

t~~-nozz1e configuration by the screens and pressure profile

plates are shown. For a given altitude, ~L/F3 
is affec ted

• more by the changes in I than in NPR, but both rarameters

are important. Altitude variations for h/Ds from 2.5 to

5.5 also have an effect on the variations in ~L/FJ 
due to

I or NPR . For the same turbulent intensity , the screens

produce a greater suckdown than the pressure plates at a

given NPR.

The effects of turbulent intensity variation on the
*

three- and four-nozzle configurctions are compared in Figure

28 at an NPR of 2.0 only . For the four-nozzle configuration ,

:~~
•

6
H

_____  • ?~~~~~~~~~~~~~~~~~
-
~~-~~~~~-,

- -

1 ___________________ 1 ~~~~~~~~~~~ ~~



- - -~~•----:- ----—---~~- —--- -

82

NPR
1.5 0 BASEl INE

0P2—-— 24 APi
0

2 NOZZLES

•.1 
____ h1 —1 O.0
~~~~~~~~~~~ ~~~~~~~c~~ aa~ .—~~~~~

_____________ h/D • 70O4_m- ’&r~~~I. ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~ -

• —
~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ hID 5.5
_______________ °

a L 
_ _ _ _ _ _ _ _ _  _ _ _ _ _ _ _ _ _  _ _ _ _ _ _ _ _ _

~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . ___
-.1 

0~~ 
—

.x

á%~ -~r ~~~~~~~~ 
—

c,~ hID- 2.5

H

0 10 20 30
1.-s

Flpre 27 Effsc~ of Pressure Profile Pisies on Nst4ssducsd Force. aL/Fl, for TwoNozzle Confipration -
Rif aroused to Turbulent In*aslty

C

~~~~~~~~ ~~~~~~
. 

.~~~~~~ ~~~~~ 
1
~~~~~: 

~~~~



-- T :-~~~~~~
---- -

~~~
- -

~~~~~
- ---

~~~~~~~~~~~~ 

-
- ~~~~~~~~~~~~~~~

83

3 NOZZLES NPR • 2.0

MAX EFFECT • .j33

0 
h/D~~1OA~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~ _ _ _ _ _ _ _ _ _ _ _ _ _ _

4.SC .—cj.._..,.~ 0 BASELINE
— ..1 C1. Si9 ~~~~~~~ — — 

~~~~~~~~~~~~~~~~~~~~~ ~~~ $2

~,P1

.
~~ 2.5o— — SCREENS

PRESSURE PLATES

.3
0 10 20 30

~ 
(

4 NOZZLES NPR~~2.0

MAX EFFECT ~ .021

0 
_• ~~~~~~~~~ — ~r —o~~~ —A~. 

°
~~~

‘
~~~~~~~ 

—
~~~~~

—
~~

- — 
~~~~~

2.50..... __
I — —-—0

•2

• 0 10 20 301.-s

Figure 2$ Efhc~ of Tuibilenus Osseous sad Pressure Profile Pletos on Net huthiced Force, aL/Fl. for
0 Thrse Nu~e md F rNule Cast Ipradass - Reterauced to Turbulent Intonsuty

~~~~~~~~~~~~~~~~ 
~~~~~~~~



—-~~~~~~~~~~~~~~~~‘~~~~~~~-~~~~~ 
-: 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~ - -
~~ -- - - -~~~~

84

at the same turbulent intensity the P2 pressure profile

plate and S2 screens produce the same ~t/F3. The screens

and pressure profile plates at the same NPR , probably

create different types of turbulent flows; this might be

• expected considering the differences in their total-

pressure distributions and the types of shear flows they

represent. For this reason , turbulent intensity alone may

be an unsuitable correlating parameter for the pressure-

profile-plate cases . A more suitable parameter for char-

• f acterizing the pressure-profile-plate flows may be the

maximum total pressure (gage) required with each device to

achieve the thrust of the baseline nozzle at a given NPR;

the data in Figure 29 provides an illustrative example of

r the variation of at/F with for the pres-i max (required)
sure profile plates P1 and P2 with the two-nozzle config-

uration.

Another parameter of interest for gaining some insight

into the flow mechanism associated with the screens is the

turbulence characteristic length, the large-scale eddy

5iZCI E
e~ 

Foley (Reference 18), in an effort to correlate

some of the results of this study intu an overall VSTOL

prediction methodology , has shown that screen grid size, c

which is directly related to te (see Section 3.2), 
may be

1;’
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the parameter to use for correlating purposes. In fact, he

has successfully shown that the effects of changing screens
at 4and varying NPR on the pure suckdown component, j—’-, may be

L i
separated (see Section 3.2, Effec ts of Component Forces,

below).

Similar curves for the two-nozzle confipuration have

• been developed to show the independent effects on the net

induced forces of varying turbulence by changing the base

level with the screen grid size or by changing the NPR

(Figures 30 and 31). The magnitudes of these effects ,
-

• 
averaged over h/Ds of from 2.5 to 10.0, are referenced to

the net induced force with the baseline nozzle choking

plate at an NPR of 2.0. Increasing the screen grid or eddy

size produces an increased suckdown (the ratio of aLIF~ to

• 8L/F is positive because a negative force is being
~REp

divided by another negative force); increasing Nfl produces

a substantial reduction in suckdown . The maximum deviations

due to altitude-averaging are indicated.

Plots of the net induced force variations with altitude

for the two- and four-nozzle configurations are presented

in Figures 31 and 32 as a function of the ratio of the

nondimensionalized turbulence-producing characteristic length,

~fD, to the reference nondimensional length of the choking

___ 
* 

~~~,
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plate screen, /D. These curves could be used for deter-

mining the effects of changing the characteristic turbulence

producing length and/or nozzle diameter (i.e., a quasi-

“scaling”) provided the blocking surface and nozzle spacing

relationships remain constant.

The concept of the turbulent eddy size to explain the

increased suckdown obtained with the screens and NPR varia-

tions is useful. The Kolmogorof energy dissipation rate

(e) for turbulence scaled by eddy size is related to

(Reference 15). Foley postulates (Reference 19) that e

- • 
for a given NPR, as eddy size is increased , turbulent in-

tensity increases and the energy dissipation rate decreases ,

providing higher energy large eddies for entraining sur-

rounding air and therefore increasing suckdown. For a

given eddy size, as NPR (which is proportional to U2 up

to 
~~~CRITICAL~ 

is increased, the dissipation rate in-

creases , reducing the energy in the large eddies for entrain-

ment and thereby reducing suckdown. At choked and super-

choked conditions , NPR is not proportional to U2, and the

effect of varying NPR on eddy size is much degraded , as

noted in Figure 24.

However , replacing turbulent intensity with eddy size

(or the characteristic length producing the eddy size) as

h 
I
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the key variable presupposes that the effective eddy size

of the full scale engine can be estimated by knowing the

size of the turbulence-producing parts of the engine (say

turbine blade size). This remains to be determined. It

may be easier to continue to measure the model and full-

scale engine turbulent-intensity levels and apply appro-

priate corrections to the model-scale ground effects data

or simply correctly simulate the full-scale nozzle exit

conditions in the model ground effects test.

3.2.2 Effects on Component Forces

In order that the flow mechanisms producing the

changes described above on the net induced force could be

understood , the effects of varying the nozzle-exit condi-

tions on the individual components of the net induced

force had to be determined.

Table 3-5 summarizes the maximum effects observed on

the component forces due to varying the nozzle exit condi-

tions. The effects on the pure suckdown components are

P discussed below; the effects relating to the fountain core

force and fountain interference components are discussed

in the next section (Section 3.3).

As part of an ongoing methodology development program ,

the data from this experiment have been correlated with the

I .‘
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work of several previous experimenters (Reference 20 , 21 ,

and 22) by Foley (Reference 18). This correlation shows

that there is “a fine structure” to suckdown that is a

function of the implied area ratio , ~/d , where ~ is the

angular mean diameter as def ined by Wyatt in Reference 20.

Foley, Reference 18, has refined Wyatt’s results ; empirical

relations have been developed allowing the prediction of

pure suckdown as a function of altitude, D/d , and planform

shape for a reference NPR of 2.0 and a turbulent intensity

level equal to tha t measured for the baseline nozzle case

in this experiment. This value was then corrected for

variations from baseline NPR and nozzle-exit conditions .

Corrections for turbulence level and NPR have been

derived from the test data of this experiment for a uni-

form total-pressure distribution (screens). The data in

Figure 8-12 show the effect on the pure suckdowrt component

force of varying the nozzle exit conditions with the

screens and pressure profile plates. This variation was

determined with the single jet exiting through one hal f

of the two-nozzle blocking surface (the other half being

removed), as described in Section 2.2. The corrections
- 

..• for Nfl effects on pure suckdown are the same as those

C noted for the two-nozzle-configuration net induced force
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averaged over h/Ds from 2.5 to 5.5 with only the screens

installed (since an NPR of 2.0  only was run with the pure-

suckdown-component measurements). This correction due to

Nfl is considered reasonably accurate because, as will be

shown in Section 3.3, the two-nozzle case has a very weak

fountain that fails to reach the blocking surface at most

altitudes and is therefore primarily suckdown dominated.

With a uniform pressure distribution (baseline nozzle

and screens) , changing the NPR causes different (independ-

ent) changes in turbulent intensity and suckdo’wn than are

obtained by changing the turbulence screens ; these changes

are each independent of altitude. Therefore, the pure

suckdown that results from turbulent entrainment rate is

proportional to turbulence , which can be characterized by

the large eddy size , e ’ associated with the turbulence and

NPR. As noted above, the large-scale eddy size 
~~~ 

is

proportional to the largest physical dimension causing

the turbulence , . If € is taken as the grid size of the

screens , the pure suckdown variation with eddy size

(normalized by the NPR — 2.0 baseline nozzle case) is not

-
- -• 

a function of altitude or NPR; conversely, the change in

:~ ~~
.• 

- 

nondimensionalized suckdown with NPR is not a function of

S~•~ 0 altitude or eddy size (Figure 34~. Therefore, corrections

• il

— 

- 
_________________  

~~~~~~~~~~~~~~~~~~ 
:fr’~~ ~~~~‘
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to pure suckdown for NPR and turbulence with uniform profile
- 

• 

distribution were formulated by Foley as

~~
j — c~ . c~ (~~~j . (7)1 2 \F~

-

• NPR— 2.O

~O — .05”

where C 4 and C are empirically derived functions from

Figure 31 for the effects of eddy size and NPR, respectively;

they are presented in Figures 35 and 36.

3.3 Fountain Survey Testing

The net fountain force exerted on the blockir~g surfaces

is composed of a fountain core force and a fountain inter-

• fereence force. Under certain conditions the fountain

~
LFCcore force , F impacts the blocking surface , produces

• j

lift, and may counteract the induced life losses caused

by the entrainment action of the radial ground jet. Pres-

sure fields are often produced as a result of fountain block-

ing-surface interference, leading to additional lif t losses
~Lp1or gains , F3

3.3.1 Fountain Core Force

An estimate of the fountain core force F • ~~ deter-

p mined by integrating the vertical component of the fountain

dynamic pressure with the methods developed in Reference 5.

.

I I
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6 

7

_ 

7 

_
7/

1.00 1.04 1.00 1.12 1.16 1.20
C
”

Figure 36 Effect of Eddy ~z. en Pure Suckdswu

JI.

ti



— 1lL~. -_- •~~~~ ~~~~~~~~~~~~~

98

DATA BASELINE NPR = 2
2.6

2.4

2.2

NPR~~~ 
__  

_ _ _

_ _  

N 
_

1.2 — (REFERENCE 19)

1.0 ______ ______ ______ ______ ______ ______

.96 .98 1.00 1.02 1.04 1.06 1.08
Cl2

FIgure 31 Effect of Nude Pu.i’~.e.~ Red. on Pure Ssckdewu

5. -

~



4.. 99

A discussion of the integration process and the resulting

effects of varying the nozzle exit conditions on the foun-

tain-core-force-characteris tics follows.

The fountain momentum flux passing through a plane

parallel to the ground at any height can be determined from

the rake pressure data. For steady flow and negligible body

forces , the momentum flux equation can be expressed as

F_ f f u( PU.  dA) . (8)

An estimate of the effective fountain core force at any

height can be found by assuming chat, if a solid surface
~ 4. could be placed in the flow at that height without altering

the flow, all of the momentum would be converted to a force

on the plate with no losses. Integrating in the X-Y plane

for the vertical component of this force, this equation be-

• comes

— •
~j~~ JJP u

2 
COS 9F ~~~ ~

‘F dxdy (9)

where - vertical component of the fountain core force -

lbf
• P — density - slugs/ft

-: 
•~ 

0F’ ~F — Euler angles of the flow inclination from

vertical - degs

U — Velocity , fps
1 ,

I-

~~~~~~~ 
____ 

r
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In terms of dynamic pressure in the fountain, 

~F’ 
psi:

— ff2QF ~~~ 9F C05 
~F 

dxdy (10)

In dealing with large amounts of pressure data that require

mechanized integration, it is necessary to review the data to

eliminate the few erroneous data points that are inevitably

present. To this end , an interactive computer procedure was

developed (during the effort reported in Reference 5) that plots

I 
the rake dynamic pressures and allows the data to be edited.

It then fairs the edited data with an interactive capability

for the user to smooth the fairing ; it then integrates the

results. Edited and faired data for all of the fountain rake

• ;• 
- surveys are presented in Appendix C in the form of profiles of

• 
• 

the vertical component of the dynamic pressure at the tested

locations along the fountain.

j Fountain rake surveys obtained with the two- and four-

nozzle cases have been integrated to determine the changes in

— 
fountain core force acting on the blocking surface experienced

• with varying nozzle-exit conditions (Figure 37). The two-

nozzle configuration produces a weak fountain that fails to

reach the blocking surface , even at very low model altitudes ,

and therefore produces no net fountain force. The entrainment

of air away from the fountain by the free and radial ground jets

II~j •
~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - I •~~ ~~~~~~~~~~~~~~~~~~ 

•

— -. A — —V- — ~~~.. ~ ~~~. - . 1
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reduces its momentum to zero by the t ime it reaches the blocking

surface. This agrees with the results of Reference 5. It is

shown in Figure 37 that increasing the nozzle turbulence (and

( thereby increasing free jet and ground jet entrainment) does

reduce the fountain core force, implying that before it reaches

the blocking surfaces even more air has been entrained away

from the fountain. However, varying the nozzle turbulence has

• 1 no effect on the fountain core lift at the blocking surface ,

~tLFI..
F ~~~ since the weak fountain does not reach the blocking sur-

3
face. Although not run, varying the pressure distribution is

• L~LFcalso expected to have no effect on F for this weak-fountain
j

case for the same reason.

The baseline four-nozzle case at a temperature of 80°F

and an hID of 5.0 shows very good agreement with the data taken

in the previous experiments reported in Reference 5 at a tern-

perature of 400°F. The fountain is much stronger than for the

two-nozzle case and has not dissipated when it reaches the

blocking surface at an h/D of 5.0 or 8.0. Increasing the noz-
ALFCzie turbulence causes a reduction in F at the blocking surface

( 1~~ ~
, j — -.01 at h/D — 5.0). It appears that varying the

• 

~~
. - .

total pressure distribution may have about the same magnitude
ALFCr effec t on F (Figure 37). Increasing the blocking surface

j
height yields a stronger fountain for the same degree of nozzle

I
~~, ~

,

I iiiTi.~~ 
- 

~~~~~~~~ 

-

~~~~~ ~~~~
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turbulence (or pressure distribution). For a given blocking

surface height, the fountain dissipates at increasing alti-

tudes and apparently at a rate that is virtually independent

of nozzle turbulence.

3.3.2 Fountain Interference

The effect on fountain interference , F , of varying
j

the nozzle exit conditions has been determined for the two-

and four-nozzle configuration at an NPR of 2.0 (Figure 38) by

subtracting the pure suckdown and fountain core increments

from the net induced forces.

In the case of the two-nozzle configuration , the pure

suckdown force variations with the screens and plates were

measured directly, as shown in Figure B-li ; the fountain core

force was zero for nozzle exit variations. This allowed the

direct determination of the fountain interference variation

with nozzle exit conditions and model al..itude , plotted in

Figure 38.

For the four-nozzle case , at an NPR of 2.0, the fountain

core force variation due to the S2 screen was estimated for

h/Ds of 5 and 8 from Figure 37. The net induced force varia-

tion was determined from Figure B-9. The variation in pureG
suckdown force due to turbulence screen S. (at h/D 5.0 and

L

~~
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• 

,

~
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• 8) was determined for the Lour-nozzle case by applying the

( percentage variation in pure suckdown due to S2 observed with

the two-nozzle case (Figure 34 or 35) to the baseline four-

nozzle pure-suckdown case run in the Reference 5 test. Vary-

ing the nozzle exit conditions with the screens produces a
41.maximum change in F1

-0.015 in the two-nozzle case and a
j

• change in Fl — -0.024 in the four-nozzle fountain inter-F~

ference component (Table 3-5). Using the pressure profile

plates to vary the nozzle total pressure distributions re-

sults in a change in LFI — -0.03 in the fountain interference
3

force for the two-nozzle case. At almost all altitudes (Fi-

gure 38) , varying the nozzle exit conditions at a constant

NPR causes a suckdown-thcreasing fountain-interrerence ef-

fect.

n

.4

h
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4. CONCLUSIONS

This investigation has successfully demonstrated the

criticality of engine exhaust simulations on model-measured

ground effects . The results have formed the basis of pre-

diction techniques to account for these effects and have

provided some understanding of the associated flow phenomena.

(1) The results of this investigation support the con-

clusions of Reference 5. With the baseline nozzles and large

planforms tested , weak fountains that usually dissipate

before reaching the blocking surfaces are formed between

• I two jets. Consequently , little or no positive lift is con-

tributed to the hovering system. Conversely multiple-

nozzle arrangenents (three and four) contribute stronger

• fountains that impact the blocking surface over a wide range

of heights. However , the positive ground effect experienced

derives as much or more of its lift from fountain interfer-

ence as from the core of the fountain itself.

(2) Variations in nozzle exit turbulence, total-

-• pressure distribution, and nozzle pressure ratio have been
r

experimentally demonstrated over the ranges expected for

full-scale VSTOL aircraft turbojet and turbofan engines.

(3) Increasing nozzle turbulence increases net

: ~~. 
i’ lif t or thrust loss , but the magnitude of the loss is de-

I 

I ~, ~. 

- 

I 
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pendent on the configuration and how the turbulence is

changed, whether by screen, nozzle pressure ratio, or

pressure distribution.

Turbulence may be increased by increasing the large-

scale eddy size with screens while maintaining a virtually

uniform total-pressure distribution, by varying the total

pressure distribution from that of a turbojet to a turbo-

fan engine or by decreasing NPR.

(4) Variations in nozzle-exit turbulence, total-

pressure distribution, and pressure ratio over ranges ex-

pected for full-scale engines cause significant changes

with the large planform blocking surfaces not only in the

total net-induced force measured by the usual ground ef-

fects model, but also in the pure suckdown, fountain core,

and fountain interference components. Changes of up to lO’/.

of the nozzle thrust for each component are observed .

(5) Because the net induced force is of ten the sum

of two relatively large-valued forces of opposite sign

(suckdown and fountain lif t) , changes on the order of 107.

in the suckdown and fountain force could potentially result
p 

in first-order changes in aircraft sizing and performance

and must therefore be accounted for in any prediction method-

0 oligies.

I__I . 4-1~~~~~ “41
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(6) The effect of the nozzle exit variables on the

net induced force is highly configuration dependent. Wher~

the ..~~~! 
research-type 

~~~~~~~~ surface is changed to a

smaller, cruciform planform more characteristic of a realis-

tic airplane configuration, varying the nozzle exit condi-

tions still produces a l0~ thrust loss, which is on the or-

der of the airplane payload. Therefore, if the effects of

the nozzle exit conditions of the ! i~! expected for use

-
• 

on VSTOL airplanes are not considered, costly errors in air-

plane sizing will result.

(7) All three full-scale engine nozzle-exit varia-

bles - turbulence (measured in terms of an intensity or, a

characteristic eddy-size-producing length), NPR , and nozzle

total-pressure distribution - should be modeled in snail-

scale ground effects testing or more experimental research

should be conducted to develop a detailed empirical predic-

tion methodology to account for the interdependency of con—

figuration and nozzle-exit variable effects. It may be sim-

pler to correctly simulate the full-scale nozzle exit condi-

tions in model ground effects tests. This would still

necessitate knowing the full-scale nozzle exit conditions .

A suitable means of measuring and relating the the model

nozzle exit conditions may be the technique of using a

-
h~ 

_ _ _

_____ ~~
. 
~~ ~
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t 
Kulite transducer and the total-pressure rakes developed in

L this study (or other suitable turbulent intensity measure-

ment devices).

- It is still not known if the effects of the nozzle

exit conditions on the net and component induced forces de—

termined in this study are subject to any “scaling” modif i-

cations (i.e., Reynolds number) when going from model to

full scale. It is recoimnended that research be conducted

to determine whether any such “scaling” effects exist.
• , (8) The induced loads and fountain survey measure-

ments have led to the following explanation of the flow

phenomena observed with changing nozzle-exit conditions. A

free jet existing under a blocking surface (Figure 2) mi-

pacts the ground and forms a radial ground jet. The radial

groufld jet has a strong appetite for entrained air , which

can be supplied from any direction (Sketch A in Figure 2).

When two or more jets are present, the intersecting ground

jets often form an upflov or fountain region which blocks

one path for gas entrainment by the ground jets (Sketch B).

Gas is entrained away from the fountain (Sketch C) by the

radial ground jet, reducing fountain core strength and in-

ducing pressure fields on the bottom of the blocking sur-
�_

p
• 0

- -

~~
. 

~ 
face that would not be present if the fountain were not

‘
a,-

‘ :~
‘ .

~~~~~
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there - hence the fountain interference term. The net re-

suit is the development of a complex flow circulation and

exchange pattern (Sketch D). Therefore , the induced forces

for a configuration are largely a function of the entrain-

ment by the free and radial ground jets.
- 

Entrainment may be increased by increasing the turbu-

lent eddy size or by decreasing the I~PR, possibly resulting

in slower energy dissipation by the eddies and higher energy

eddies for entrainment .

When turbulence levels like those measured for real

engines are introduced , the entrainment rate of the free and
4

radial ground jets is increased, which results in more air

being entrained away from the fountain, in higher suckdown

pressures , and in reduced fountain core strength.
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APPENDIX A

NOZZLE CALIBRATION SURVEYS

This appendix contains the nozzle-exit RNS fluctuating-

pressure and total-pressure surveys conducted with the Kulite

transducer and total-pressure probes as described in Sections

2.2 , 2.3 and 3.1. Tables 2-1 and 3-1 (in the main body) sum-

marize the nozzle-exit surveys and their results. Figures

A-I through A-6 describe the baseline nozzle configuration

characteristics ; Figures A-7 through A-18 show the effects of

• turbulence screens S1 and S2, and Figures A-19 through A-22

( -  show the effects of pressure profile plates P1 and P~ , all

with the N3
2 nozzle configuration. Figure A-23 shows the sur-

veys for the baseline nozzle N13
2 (af t plenum), and Figures

A-24 and A-25 show the surveys for the N11
1 and N9

’ nozzles

with screen S2 installed. Both X and Y traverses are shown

where available.
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i- APPENDIX B

- 

INDUcED-FORCE ~~ASURE!€NTS

This appendix contains the variation of net-induced forces

with altitude for the configurations tested. Figure B-l

shows the effect of varying NPR on the baseline 2-nozzle con-

figuration, and Figures B-2 through B-7 show the effects of

varying NPR, screens S1 and 
~2’ 

and pressure profile plates

21 and P2. Figure B-8 shows the effect of adding screens

and S2 to the three-nozzle configuration at a constant NPR of

2.0 , and Figures 8-9 and 8-10 show the effects of adding these

screens and plates P~ and P2 to the four-nozzle configuration.

Figure 8-11 compares the cruciform and large rectangular two—

nozzle plate results. Figure B-12 shows the pure suckdown

forces measured with the half-plate model, as described in

Section 2.2.2
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• APPENDIX C

FOUNTAIN DYNANIC PRES SURE CHARACTERI ST ICS

The methods employed to integrate the fountain dynamic

pressure data to obtain the fountain core force characteris-

tics are discussed in Section 3.3. The data were edited and

faired before integration by use of an interactive graphics

procedure at the Fort Worth Division. The faired data are

included in this appendix for each configuration for which

rake surveys indicated the presence of a fountain. These

data are presented in the form of dynamic pressure profiles

across the fountain (X- direction) at various locations along

• the fountain (Y-direction) for each model height, h/D, and

rake height, Z/D (see Figure 16 for axis system definition). -

Table 2-3 summarizes the fountain survey cases. Figures

C-i through C-16 contain the data for the four-nozzle base-

line and the S2 and P2 configurations. Figures C-l7 through 

c:28 càntatt~~th~~two~nozz1e-base1ine and S2 data.
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