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ABSTRACT

Cramer-Rao lower bounds on the degradation of measurement

precision for closely apancd optical targets are found. Degra-

dation is more severe than previously thought, especially, for

small •'av.get' eparations. The bound obtained by a previous analysis,

ii, in fact, theoretically identical to the Cramer-Rao bound pre-

sented here. The disagreement in results is caused by numerical

problems in a computer program used in the previous analysis.
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I. INTRODUCTION

During the past several years considerable attention has been

focused upon the accuracy of parameter estimates for optically un-

resolved objects [11 - [4]. A review of the literature shows

that predictions for the variances of the parameter esti. mates are

obtainod via diffezent analytical approaches using different

assumptions on the noise environments. In [II, a particular

"resolution scale" is oroposed in order to relate the resolution

capability of a sensor with its measurement precision degradation

factor due to multi-target interference. Similar studies have

been made for radar system applications, see for example (5) and A

[6]. It is, mo_"Lver- ubinted 6ftM'1[51 thdita' dom6l1te analyi" .

of the resolution problem requires extensive simulation and that

the resulting error probabilities may depend heavily upon the choice

of the detection as well as the estimation scheme. The criterion

For resolving two closely spaced radar targets appears to be some-

what arbitrary. In t61, for example, it is defined as twice the

value of the annular accuracy of the weaker target. Similar measures

have also been used in the ootical community. It is outside the1 scope of Lhis renort to discuss the merits of various resolution

criteria in a more extensive manner. It is, however, important

to rnoint out that usinq Parameter estimation performance degradation

results from Ill - [41, or other similar works, to predict the

resolution capability of some other specific sensor system without

extensive simulation can be misleadinr. The casual use of numerical

L1
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results from these works could lead to false conclusiuns about

the sensor capability.

In Ill - [4], theoretical lower bounds on the variances of

various parameters associated with the target intensities and angular

positions have been derived. The bounds presented in [2J - [41

are Cramer-Rao lower bounds. Different pulse shapes and sensor

noise models are considered and compared. The results presented

in [I1 are obtained using a different error analysis technique

and, furthermore', the parameters to be estimated are different

from those considered in 121 - [4]. Attempts have buen made by

Miller [2] to compare results obtained from these two different

techniques and problem formulations. Unfortunately, Miller could.or :el*.w a *.e*,* nt " .. ... .. .. .
nt.. ach.ve agreement between the numerical reouht nor exo'l•anri .

the disagreements. Miller's predicted degradation of the parameter

estimation performance was much more severe than that presented

by Fried [1], particularly for targeL separations much less than

the optical diffraction limit. Surnrisingly good •stimation per-

formance was oredicted in [1] for small target suarations. These

results have been used on several occasions for oredicting re-

solution capability of certain optical system. For this reason

we fojt it important to establish the cause of the discrepancies

repotted in [2].

As discussed in [,!, although the problem formulations are

quite different in I1. and 121, they should Produce results which

are comparable. The two analysis differ in the choice of ontical

2



pulse shape but we do not believe that this alone could be the

cause of the drastic discrepancies observed in [2]. The purpose

of this report is to establish the cause of the above-mentioned dis-

agreement. Our analysis has shown that the two approaches although

superfically different are in fact identical analytically. We can

demonstrate that the differences in results are caused by numerical

problems which exist in one of the computer programs used in [1].

In the next section, the Cramer-Rao bounds are derived for the

problem formulated by Pried [1]. A detailed derivation which

established that the eqoations in [11 are in fact Cramer-Rao bounds

may be found in the Appendix. In Section III, the cause of the
r numericat problems in (1] is discussed and illustrated bya articuar

. *.0 .-•qparcu.r

example. Results of some typical cases considered in (1] are presented

and comoared. A summary and conclusions are given in Section IV.

3
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II. ANALYSIS

Let us assume that p(t) is the output of an optical sensor to

a unit strength point source such that

p 2(tldt-l. (1)

The problem treated here concerns the measurement of a pair of

point sources with relative strength (1+½A)'(1-½A), separation T

'Wnd the location of the midpoint between them at to. The output

of the sensor becomes

s(t) a(l+',A)p(t-to+½T) + aWl-½A)u(t-to-4T) (2)

where a is the average strength of the point sources which does

not appear in the problem formulation given in 1. Il We wish

to determine these paramoters from a noisy measurement taken at the

output of the sensor

y(t) s(t) + n(t) (3)

where n(t) Is white Gaussian noise with two-sided

+lFor easier coznparison--with results presented in [1], we adopt the
notation uned in [1i.

ttFor the analysis presented in ill, the value of a is not important.
The reason for" having It in Erl. (2) will become clear in later His-

cussiotus.
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power spectrum density No/2.
Let pIt) be the autocorrelation function of p(t), i.e.

iw

Sp(t) f lll•td (4)

and p(f)=l. The Cramer-Rao lower bound on the variance of any

unbiased estimator of the unknown .arameters: relative strength,

R(=(l-WA)/(I+½A)), separation, T, midpoint, to, can be obtained

by inverting the Fisher information matrix, F, whose (i,j)th element

isI'
7]

J 1 in A 9 ln A
Si ! D. ..

where E{ 4 denotes statistical expectation and a denotes the ith

unknown parameter, namely, (11-R, ci2=T, ca3Mt0 and ct4=a, and where

In A is the log likelihood ratio [7, .. 274)

ln A 2f y(t)s(t)dt f '"s2(t)dt (6)

Substituting (6) into (5), we have

I2
Fj =N f() B(t)) dti (7)

where

SmS



L at) = a(1+4A) Dtt-T ~.t+Tl(a

_LL )2 [ ½t:(t~t+T - (1.-½)t (tt0T)]Sb

T -a(1+4A,) (t-t 0 +T) +1h)(- 0 T~ (8bc)

0

a 6t) (1+½A)p(t-t 0+4T) + (1-hA)p(t-t ½'h') (

a.nd 6(t) is the I order dervative of p(t) with respect to t. Thora

týhe e1'etnentm of the risher information matrix (Eq. (7) area

F1  2 (1+4A) [ 1- (T) 1/N0  (94)

r 1  ½Aa 2 (1+Sý) 2 ~(T)/IN, (9b)

F 3  -2a 2 (I+NA) 2 )(T)/N (c

F =-A(1+½A) 2 r-(T / 0 (9d)F14 A 1pT/N

2 2. (2eF 22 -a [(1.dgA )rp(T)-(1+kA )W(0) 1/14 (e

F23 2Aa IO)N a (9f)

6



'24 = 2a(l-ýA 2)lT)/N0 (9g)

33 0SF3=-4a 2 [ (1-¼A2 )•'(T) + (l+¼A2 )WP(O) 1/N0  (9h) !.

F 3 4  0 (91) i

22F4 4  4[(I-¼A2) + (I-ýA2 )p(T) I/N (9j)

where P and ! are the 1it and 2nd order derivatives of p, res-I pectively.
In principle, one can invert this 4 x 4 symmetric matrix, F,

-- ii•;J rectly " t'o O•ind" týAc7 igw"r bounds bn' th'e**vriaince" 6f" th6 "bp'rhmke~er'

estimates for narticular values of R, T, t and a. If a is not a

parameter of interest, we can also invert an equivalent 3 x 3

matrix, F, associated with R, T and tO. T can be obtained

from F by aorlying the matrix inversion formula for a partitioned

matrix as below:

T 1
F1-F2 F44- P2 (10)

"where F1 is the upper left 3 x 3 matrix of F, F2 is the I three

elements of the 4 th row of F. Therefore the elements of • can be

written:

F = 4a 2(I+A) (1-'"(T))/F 0  (ila)

7



2I2

4Aa (l+ýA) 2(T)/F 0  (1b)

1 2 0•-2a C1+½ýA) P(T/N (lie)13

F22  a 2  - 2ri )'- 1+4A2)' ',o) /No -4(a~l-4a )-A2 T) 2/P (l1d)

F2 3  2Aa 2 P(O)/N (lie)

F 3 3  -4a2 1(-¼A 2 )pCT)+(I+4A 2 )p(l)l/N 0 (llf)

•2

and r0 =Pi1F4 (llq) r

The lower bound& on the variances of the estimates for R, T,

and to0 are:

CRB (R) (( 1 (12a)
CRB (T) )-i)22' c(2b)

CRB (to) (t ( (12c)

The relative measurement precision defined in [1] can be written A

as the followinq: 1

F A(T) AL )CT13 ) (13a)

;-The relative measurement precision is the reciprocal of the
degradation factor presented in [21-[4]. The estimation performance
degrades as the value of the relative measurement precision decreases.

8
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FT(T) M RB(T) TJ (13b)

CRB (t)

"CRB (to0)T.1

where CRlB(R)Tu=, CRB(T)T- and CRB(to)T= can be obtained by in-

vverting ? for T=-. It is obvious that ( then we have
CRB(R)T N 0 1N+¼•AI/2 [ + 4, (i4a)

= N2//a 2l+½A (14b)
CRB(T) T e -N 0 [l+[ NA2 2[I -¼A2 1 p(O),

and

CRB(to)T,, ¼CRB(T)T. b (14c)

S~From Eqs. (Ila)-(llfl and (14a)-(14c), it can be seen easily that

the degradation factors FAF FT and Ft are in fact independent of

the value of a. This independence has also been observed in 12]-

141 for the additive white Gaussian sensor noise model. It should

be noted that the actual estimation performances of the estimators

of R, T and to are not inde',endent of target intensity a, this can

be seen easily from the expression of the CRB's.

Tihe autocorrelation function (t) and its derivatives do not

I, appear specifically in the expressions for FA, FT and F in [1].

I I .�9



it I~not difficult to show that they are actually related to the

functions defined-initlI, namely:

pET) G (T)l (15)

f)( ) 2!TH T) (16) <

and p (T) -- (2ir) 2G (t).. 117)

With the help of Eqs. (15)-(17), one'should be ablo to show that

the degradation factors yjiven in Eqs. (13a)-(l13c') aire in fact

*identical to those presented in Ill. The proof will be given in

the Appendix.

111. UMAIUCAL RESULTS

We find that the numerical values of F A' E'T and , calculated

via Eq$. (13a)-(13c) using values of Got G2 and H 1 provided in

Table I of El] are identical to values of FA~F and Ftin Table

3 of (1]. This proves that the analytical results of [11 and the

Cramer-Rao bounds derived in the previous section are identical.

However, this does not explain the reason for discrepancies between

the rcosults presented in [1] and [2.1. After we employ the auto-

correlation function of the pulse shape used in, [21, that is.

3T
r.(T) -6(aT-sinaT) /a 3 T (18)

~ThT FI T'ii; a pulsoai6Uih soe suggested by Fried [1, Eq. (72)] as a good
* app~roximation t~o the Pulse shape considered in 1l]

10
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£ with a-l,&r, we are able to regqnerate results presented.in (21.

by using the comnziter program given in [21 - a nrogram which cal-

"culates FA, FT and F from a given set of values of Go# G2 .and Ili.

"It is quite obvious that the discrepancies discussed in 12] are

' guorely numerical problems which exist in the• rogram for th3 cal-

culation of Go, G2 and HI. It is found that in that program of

reference I] Ithe following formulas were usd:...

sin(T+AT) sinT cosAT + cosT sinAT (19a)

I.cos(T+AT) -cosT coLAT - s inM1 sinAT (19b)

for numerical integration (Simpson's rule) of G0 , 02 and Hl.

.Interpolation of sine and cosine functions via' Eqs. (19a), (19b)

may often have numerical inaccuracy, especially, when these

f.unctions are evaluated at. mu.tiples of iT. We believe this to

be the cause of numerical problem'observed in [l#, when the ta.get

separation is 2.44 X/D. In order to show the effects of such
interpolation errors on results in Ei], we selected a pulse shape

such that the analytical. expressions for CO, C2 and H1 can be obtained.

The pulse shape having autocorrelation function given in (18) is

used. The numerical errors for Go, G2 and H1 are shown in Figure

P I for this particular pulse shape. Although the percentage errors

on the values of G, G2 and H1 do not appear significant, they

are large enough to create severe discrepancies in the bound

The actual fault-in Lhe calculation is not these formulas, but
the programming error that updates the value of sinT by sin (T+AT)
before calculating; (l9Th).

• .... *
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10~

0 .2 .4 .6 18 1.

Fig.l1. Absolute value of numerical errors for %GOG,2 and

having autocorralation function given in Eq. (18).
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computations. It is easiest to see the difference in the value

of the determinant of the covariance matrix

V CoV[6to, ST, daj (20)

computed via interploation and exact values of Go, G2 and Hl.

The square roots of the ratios of these determinants are plotted

against target separation in Figure 2. It indicates that there

are severe discrepancies in the values of these determinanta,

especially when the target seoaration is small.

In the rest of this report only the pulse shape Presented in

[ll will be considered. Figure 3 is a comparison of results ob-

tained by the method of this report to results presented in II]

and (2]. As expected, results obtained from the current analycis,

or from the n4merical integration with exact values of sines and

cosines, are much closer to those obtained via the approximate

pulse shape presented in (2]. It is interesting to notice that

the difference between current results and results presented in

[1] is proportional to the ratio of the square root of the

determinants illustrated in Figure 2.

Results of FA' FT and Ft for a detector width equal to

2.0 X/D from the current analysis are shown in Pigs. 4, 5 and 6,

respectively. Values of Fd, FT and Ft presented in (1] are

plotted for comparison. We notice that a similar trend of dia-

agreement is repeated here. For separation much less than X/D,

13
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3. C32-151 ;s

Compute Trigonometric Functions
Directly by Computer Routine

.7

S•Computed Covarlence

.2 VT • Theoretical Coverlance

Pulse Shape (all Cases)

.07

. at -sineat a -1 .61r

I.0
.02 \ Compute Trigonometric Functions via

the Recursive Formula In Reference 1.

.01
0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.

Separation In Units of X,[I

Fig.2 Relative error in the bound computation for dif-
ferent ways of calculating trigonometric functions.
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2.0 L....S32-15242rnr

1.0 Current Analysis

.20
, / • Reference I

00/

FT OF

" ,02 I

.01 - R - 1:

,005 Detector Width • 2.0 X/D

.002

.. ..00 -* i tL I I I ,, , 1 1 1 1 1 ii i I 1 1 i t III

.01 .02 .05 .1 .2 .5 1. 2. 5, 10.

Target Separation In Units of XID

,•Fig.5 A comparison of values of PT' the relative separ-

ation measurement precision, obtained by current analysis
to those presented in (11.

17



1.0 I

Si .0. C ren.

IO I I ' 1 1 1" fll I I I I I I"' I Il ll I I I I I Iill• :

,b 4,

?: F • Analysis =:
Ft .05 o°

.02

.t00torWidth ' 2.0 )l"R -:

.02

Target Separation in Units of )JlD..rFig.6 A comparison of values of Fti the relative midpoint •

location measurement preci~ion obtained by current analysis ai

to those presented in [i] .

.018

.0 .0 0 1,. 21. . 10 1

• ~ ~ ~ ~ ~ ~ Tre Seaato ,n Unt of.• .... 1-4•••.-, • •;'.... .. . .. '

Fi.6A omarso f aleuofFt tereatvemipon



the value of FAP FT and Ft can differ by as much as 3 orders

of magnitude: This severe disucrepancy uan change the conslusions

regarding the capability of an optical sensor system drastically.

Tn 1igures 7 through 9, values of FA, FT and Pt are plotted

against target separation for detector widths equal to 0.3A/D,

2.440/D and 1O/D, resoeQtively. Although the valuas of PA, FT

and Ft are very different from Lhose in [i] for smaller target

separation, the target separation coreuponding to FA-0.5 (3dB de-

gradation) does not change a lot due to the numerical errors.

Figure 10 shows the value of target separation for F%-O.5 and the

"resolution scale" defined in [1) as a function of the detector

width. It indicates that'regardlesk of the numerical problem

presented in [i1 for small target separation, the central result

of [i concerning about the broposed resolution scale is still

valid.

IV. SUMMARY AND CONCLUSION

The% degradation of estimates of relative target strength,

target separation, and midpoint position for a pair of closely

spaced objects can bn assessed via the mothod presented here. We

also show that the results Presented in Ill and (2], which have

numerical di.sagreements, are in fact theoretically identical.

The cause of the discreoanicy reported in 121 i due to numerical

problems occurring in a crnmputer program used by Fried. The rms

precision with which we can measure the location of the midboint

19



1.0 - R .- 1:1 - - , -p..

R/ -MO O.50 ... R. :100 /

Detector Width // 14

.20 /01 . 3 X/D

.10

2.4 X/
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10 XID I

.002 II

!"I1 .... 001 I I I.I iiiil i
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Target Separation In Units of /ID

Fig.7 Degradation of measurement precision on the target
relative intensity as a function of target separation.
Results are shown for detector widths equal to 0.3X/D,
2.44X/D and 1lOW/D.

20



z 0

.50

.20

.10 24 /
05 -, Detector Width

/ • 0.3 X/D

.01 ii

,005 1

I/ --0 0-- = R • :

SO' 0 0 1 I -I Ill l I I I I l I, , I,, I I I I l l I

.01 ,02 .05 ,1 ,2 .5 1. 2. 5. 10.
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Fig.8 Degradation of meaburement precision on the target
separation as a function of target separation.
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Fiq.9 Deqi:adation of measuremecnt precision on the mid-
point location as a function of target separation.
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Fig.lO The resolution socale is a. function of the datoc-
tor width of a diffractiron-limited senunr.
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and the separation of the pair of objects., as well as their relative

intensity are in fact equal to the associated Cramer-Rao bounds

nresentnd here.

In examining the numerical results' presented here, it should

be emphasized that the ."ptimistic" conclusipn drawn by Fried is no

longer true for small target separations. in some caseu, whin

the separation 1is significantly less than A/0, we find the numerical

result presented in Ill can differ from ours as much as 3 orders

of magnitude! This large deviation, in the prediction of rma

precisiun can change the conclusion regarding the caoability of a

particular sensor system drastically!*

For separation greater than X/D, the above-mentioned numerical

problem seems have a very little effect on the numerical results

for the prediction of rms Precision. Since target separations
aorres~ondlng to A~=0.5 are in the region slightly leas than

to much greater than A/0, Vried's major conclusion of Ill about

the proposed resolution scale is still valid.

Althouch the results presented here are associated with a

particular pulse shape, namely, a one-dimensional approximation of

a two dimensional unobstructed-circular-anerture, diffraction-limitedn

optics with a sharply delineated rectangular detector, the analytical

results can be easily extended to any particular optical system,

providing that the pulse shape of the output to a unit strength

point source is available. The noise model considered here is an

additive white Gaisslan noise. For a more complicated sensor noise

24



model: involving mhot noise. nrocesses, a similar lower bound

Ican also be obtained via-the method -presented in Y.

4
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A PPNDIX: CRAMER-RAO BOUND AND IURROK ANALYISIS GIVEN-IN II]

In (1), the..followirq error covariance matrix is considered:

V -cov('5t 6T, 5A] (Al)
0

which is slightly different from the error covariance matrix we

considered in this report. The error covariance matrix associatesd

with the Fisher information matrix F, iu:

V a'cov[6R, 65T, 6t 0 > (A2)

where

It is easy to show that

V AV A T(AC)

where [ 00011

A- 0 1 0t (A5)

-_14.½A) 2 0 a]

26
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Therefore, the Fisher information matrix associated with the error

covariance matrix V becomes

J = AT A-. (AM)

Substituting Eqs. (lla)-(llf) and (15)-(17) into (A6), the elements

of J becomes.

J *2
2  2 2

ill "F33 2a2(B ){[G 2 (0)+G 2 (T)] + kA [t 2 (o)'G 2 (T)]}/Nof (A7a)

J12 " F2 3  * -2a2 (4 2 1{L'• (0)G (A7b)

J -(I+hA) 2 • 1 3  -2a 2 (2n){H (T)}/No, (AWO.

'22 " 22 * 2 222)I1[L2('2T) ÷ 12[2()GT) (A7d)
* 2 2

-2(AoA )1{[-kA2]HI(T))} /NO
0 0 1 o

-227

J23• "(+A)' F12 ' 2a (2'tr) (AAo)HI (T)/N We)

. . . . . . . . ..-.A*

J33 (1+ýA)'4 2a2(A Ao)[1-G0(TI [1+a0(T)I/No. (A.f)

S~where we have used the following identitys

FO- [(l+ýA2) +(l-ýA2)j-(T) ]'1/(4No (AoAo)/(2No (A8) •

27



and (A A ) is defined in Eq. (13) of (1]. Notioe that the J matrix

in differed from the S matrix given in the Appendix of [1] (Eqn.

(A.17)-(A.22)) by a constant, namely

2e!a2
i iJ N.oAO Sij for all i,j. (AM)

If we compare the (i,j)th element of M matrix of [1] (Eqs. (43a)-

(43f)) with Sij, we find that

Mij -NoA Si for all i,j. (Al)

Rewriting Eqs. (39a)-(39c) of (1] in terms of matrix notation, we

actually have the following expression

V DMDT (All)

where D is the inversion of S. Applying the relationship we find

in (AlO), (All) becomes

* -I

V -NoAo S1 . (A12)
0 0

Substituting (AM) into (A12), we finally have

2*
•a A

iV la AO J-, (A13)
A0

r0
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We have shown the covariance matrix V obtained in Ill for the

error analysis equals to the associated Cramer-RAo bound, J'. by
2a constant 2a A /A~0 It becomes obvious that the degradation

factor (a ratio of two CRB'u) 'FT and Ft derived from (1] and

current analysis should be identical.

I5
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