
AD—AO 73 068 BOEING AEROSPACE CO SEATTLE WA BOEING MILITARY AIRPL—ETC F/G 17/7
EVALUATION OF DAIS TECHNOLOGY APPLIED TO THE INTEGRATED NAVIGAT—ETC(lJ)
MAY 79 D DEWEY. R BOIJSLEY. S BEHNEN. J MASON F33615—77—C—1233I UNCLASSIFIED AFAL— TR 79—1061 Pt

. IU

H .

_
_

I L~ $2.8 ~~2.5
I .~J ~~

—
~~~

II ~ I~ 11112.0
II L I  ~ IIu~~~a 

~II~.8
.25 

~~
MICROCOPY RESOLUTION TEST CI-141

NATId+~~I. BUREAU OF STh~~ ARo6-1963-~ . -

-
~ F



~ 

~ Tth1V 
~~~

‘‘
~~~~ L~

~EVALUATION OF DAIS TECHNOLOGY.1 ~& APPLIED TO THE INTEGRATED NAVIGA ON
SYSTEM OF A TACTiCAL TRANSPORT

BOEING AJJ ?J~ PACE COMPANY
SL fl7J ~WA2IiINGTON 98124

MAY 1979

~ / FINAL REPORT FOR PERIOD SEFI’EMBER 1977 MAY 1979

I A dfcrpublic~~es~~~~~~~t~ob unliai~1 I
D D C• jj~r~~r~nn flf Er~ 1~-

~~~ SEP 5 ’~i~

IV~~isuu~~DA~~ FORCE AVIONICS LABORATORY
A~~ FORCE WRIGHT AERONAUTICAL LABORATORThS
Affi FORCE SYSTEMS CO~~IAND
WRIGHT .PATTERSON A~~ FORCE BASE, OHIO 45433

_ 79 O 9 4 O ~825 L
~~~~~~~ —~~ • -— —



_________ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~ •~~~~~ - - ‘••‘ —
~~

-
~
--.-- ,.

~~
,—,-

~
“—• —- .‘“ -.

~

When Gdv.rnment drawings, sp cif ications, or other data are u s d  for any put-
pose other than in connection with a definitely related Government procura.zzt
operation, the UTLi ted states Government thereby incurs no responsibility nor any
obligation whatsoever; and the fact tha t the government may have formulated,
‘furnished , or in any way supplied the said drawings, specifications, or Other
data , is not to be regarded by imp lica tion or othexwise as in any manner licen-
sing the holder or any other p.rson or corpora tion, or conveying any rights or
permission to’ manufacture, use, or sell any p atented invention that may in any
way be related thereto.

This report has been reviewed by the Information Office (01) and is releasabl e
to the National Technical Information Service (NTIS) . At NTIS, it viii be avail-
able to the general public, including forei gn nations.

This technical report has been reviewed and is approved for publication

f 1 2~~ - _ _ _ _ _ _ _

JAMES M. BAIN I TERRANCE A. BRIMProject Engineer ’- Actin g Chief
DAIS Program Branch

FOR THE CONMANDER

RAYMOND E. SIFERD , Col , USAF
Chief , System Av ionics Div ision

• Air Force Avionics Laboratory

1f VQUZ address has changed , if you wish to be removed f rom our mailing list,
or if th. addressee is no longer employed by your organization please notify
AFAL./AAS ,W-PAFB, OH 45433 to help us maintain a curren t ma.tling list” .

Copies of this report should not be returned unless return is required by se-
curi ty considerationç, contractual obligations, or notice on a specific document.

~~~~~~~~~~~~~~~~~~~~ ~~~~~aij— ~‘


- . • • - - - • • - •• ----- --- —- ~~~ ~~~~~~~~~~~

• LIHC1i\SSI~’itSECURITY CL IFICATION OF THIS PAGE (N~ øn Oat. EnI.r .d)

EPORT DOCUMENTATION PAGE BEF~~~
D
C~~~~~~~~~~ ??ORM

$EPOR •un 2. GOVT ACCESSION NO 3. RECIPIENT’S CATALOG NUMBER(i’J)A F~T- R-79-l~6l
~~~~~~_— 1 _______________________

4. TITLEj ’gJAUaIAL.— ~
—•.• • • - - - -.— - - • -——--- -—--—.--— - - — - - -— • •  ~~ ~~~~~~ s nir inT a. r •n.su

~~Eva1uation of DAIS Technol ogy Appl ied to the (
~ 

) Final ~~~~~
( Integrated Navigation System of a Tactical / ~~~ ~ 

Sep~~~~~ !-P77 *—Ma,v 079• 
J~~~~~SPOrt . _

~~~~~~
._• ,“ ~~ — I~~~SflUIIJ U I S. fl UrSflT IL I U m ~~~

7. A -——--— ~-——-• ~--——- • - . —
•. Cc~kTRACT OR GRANT NUMSER(a)

ci~
—
~~7~~~~~) 1 I ~~~336l 5-77-C-l233

(

1

9. PERFORMING ORGANIZATION NAME AND AODRESS . PROGRAM ELEMENT. PROJECT . TASK

1/Soeing Military Airpl ane Development /
••
\

ARC± WORK

4
“ Sea tt?e, Was~inqton~~8i~4 - (! ~~~~~~~~~~~~~~~~~~~~

II. CONTROLLING OFFICE NAME AND ADDRESS .- ~~~~~~~~~~~~~~~~~~ —

A ir Force Av ion ics Laborator y (AAS) (I))~~~MaY *’9 (
‘

Wright -Patterson Air Force Base \.._. ‘~~~~~~~~~~~~~~ ‘~~~~

Dayton. OH 45433 164
14. MONITORING AGENCY NAME & ADDRESS(II dilter.nl (torn Confioiltn4 OItic.) IS. SECURITY CLASS. (.i tAt. r.port)

!~
‘
~ ~ ~

Unclassified
-, J , _ IS.. DECLASSIFICAT ION/ DOWN ORAD ING

SCHEDULE

IS. DISTRIBUTION STATEMENT (ol ihia R.port)

Approved for publ ic release; distribution unl imited

I?. DISTRIBUTION STATEMENT (ot lb. ab.tract .nt .,.d in Block 20, ii diIf.,an i lroa, R.port)

IS SUPPLEMENTARY NOTES

tS. KEY WORDS (Continia. on tav~~a• aid. ii n.c.a..,y ~~id identi ty by block nsmib.r)

SOFTWARE DIGITAL AV IONICS INFORMATION SYSTEM
EXECU TIVE NAV I GATION

• AVIONICS JOVIAL J-73

2I~~~AS$T RACT (Continu, on r.v.ra. aid, If n.c...a,y and ld.nUty by block nurnb.r)

• This effort -has provided an Independent contractor assessment of the DAIS
executive sof tware , industry exposure to the J—73 level one compiler and DAIS
software development tools and a definition of the interface between DAIS and
Integrated navigation systems. A combi nation of INS, GPS and a ir data was
used to demonstrate the useful ness of the DAIS/integrated navigation system
for tactical a ir drop and terminal area operations w/transport aircraft. A— ,

DD ~~~~ 1473
EDITION OF I NOV 45 Ii OBSOLETE UNCLASSIFIED

S*C%J RITY CLMIIPICATION OF THIS PAGE (When bat. Ent.,.4)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~
-

~~~~~

— - ~—•.
~~~——— .—.-.—-— ~——~—

• ‘ ——— -- - - - .  
.1_..,_.~ ~~~~~~~~~~~~~~~~~~~~~~~ -



-~ ~~~It~ I AccTFTcn .
~~~~uRITV C%.ASSIF,CA1IbN OP THIS PAGE(*J,an Dat. BMI.1d)

~ Boe1ng Aerospace Lab Simulation jointly managed by AFAL and Boeing, was con-
ducted for the purposes of evaluating the DAIS/integrated navigation system-
software performance capabilities In a simulated tactical air drop and
terminal area navigation fl ight profile. A ‘Hot Bench’ simulation was con-
ducted using contracto r developed sensor software modules and navigation
filter, and the DAIS executive software and processing hardware. Outputs
of the program include: Verification of the overal l DAIS concept, -measure-
ments of executive software overhead and suggestions for improving the DAIS
executive software.

N

.4

I

S

- UNCLASS IFIED
SECURITY CLASSIFICATION OF ‘~~~‘ PAGE(lTh.n 0.t. Ent.r.d)

_ _

- --
~~~~~~~~~

- - - - -  -~
.
_ _ _ _ _

__________________________________ 
I 

_____________________________________



—~ --.—- -s. - - -
~~~~~~~ - .~~~~~ z--- _ -~~~~~~~~~ T~~~~~ : ~~~~~~~~~~~~~~~~~ ~~~~~~ 

- . - • t ~~~~ W - - — -_~ _ -- - - - —- ~ -. ~~~~ - ~~‘
-~

p

FOREWORD

This final report summarizes the results of contract F33615-77—C—1233,
“Evaluation of DAIS Technology Applied to the Integrated Navigation
System of a Tactical Transport”. This document was prepared for the Air
Force Avionics Laboratory by the Boeing Military Ai rplane Development
(BMAD) division of The Boeing Company in Seattle, Washington. Contract
managers for this program were Mr. Ken Normand, AFAL/AAA, followed b.y Mr.
James Ba in, AFAL/AAS. -

-

i The measurements and evalua tions ~herein are based on 1977 versions of
DAIS documentation and software, many of which have been subsequently
revised. Consequently, some ~f the measurements and coninents herein are
not applicable to the current DAIS system. Detailed information on the
current status of DAIS documentation/software can be obtained from the
DAIS program office.

Mcession For
i~-flS GE~A&I
DDC TAB
t’ncnmounced
Justification D D c

Plstribution/

—

~~~~~~~~~~Uiblity Cod05 - iii
Avail and/or

.~ rt specIal - D

i_& _ I
_ _ _ _ _ _  

______________ _ _ _  - ‘ -i
-- ~~~~~~~~~~~~~~~~~ _i 

______ ________

~~ ~JL~~ -~~~~~~~~~~~-‘~~~~~~~~~~~~~~~ -~ ~~~~~~~~~~~~~~~~~~~~~ 4



Table of Contents

Section

1.0 Introduction . . . . I

1.1 Scope .  . . .       1
1.2 Background . . . .  . . .  2
1.3 Program Objective 3

• 2.0 Program S~.sumary . . . 4

2.1 Program Methodology  4
• 2.2 Program Findings . . . . . . . . . . . . . . 11

2.2.1 DAIS Executive Concept . . 11
2.2.2 DAIS Executive Performance . . . . . . . . . . 11
2.2.3. DAIS Executive Support Software and Standards . 13

2,3 Change Reconmiendations  14

3.0 Data Collection Methodology  .   15

3.1 Phase I  .  15

3.1.1 Hardware Configuration . . .  .  15
3.1.2 Software Configuration .   15
3.1.3 Test Procedure and Data Flow 15
3.1.4 -P hase I Program Description .  .   20
3.1.5 Offline Analysis . . . . . .  .  24

3.2 Phase II . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.1 Hardware Configuration .   27
3.2.2 Software Configuration  .  .   27
3.2~3 Test Procedure and Data Flow .   31
3.2.4 Phase II Program Description .  .  .  .   31
3.2.5 Offline Analysis  33

4.0 Data Analysis Summary . .  . . .  . . . .  . .   38

4.1 Instrumentation Overhead . . . . . . . .  38

4.1.1 Method of Calculation . . . . . . . . . . . . . 38
4.1.2 Data and Results . . . . . . . . . . . . . . . 39
4.1.3 Correcting Test Results for Instrumentation

Overhead . . . . . . . . . . . . . . . . . . . 40

4.2 DAIS Executive Evaluation Test Descriptions . . . . . . 41

4.2.1 Test #1 - Trangnisslon Delay Time . . . . . . . 41
4.2.2 Test #2 - Interrupt Service Overhead . . . . . 46

- 4.2.3 Test #3 - System Response Time . 55
4.2.4 Test #4 - Event Service Overhead . . . . . . . 63
4.2.5 Test #5 - Master Executive Overhead . . . . . . 72
4.2.6 Test #6 - Local Executive Overhead . . . . . . 84

V

—-

~~~~~~~~ - -,,~~~~

-

~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~ii~~~~~~~~~~~

I

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~ 



F p—  —
~~~ _ - — - --.~~- -~—-.- - — ----- - -- — - ,--—.— ,—.-

~~~ —:. ---- -— - —-—-..-.-~.-~ ,--- ———- - .—.----.

Table of Contents Continued

Sect ion

4.3 Performance Data Prediction . . . . 99

4.3.1 Master Execut i ve . . . . . .  . 101
4.3.2 Local Executive . 102

4.4 Phase II Summary . . . . . . . . . . . . . . . 104

5.0 DAIS Executive Support Analysis . . . . . . . . . 109
- 5.1 DAIS Software ~evelopment Standards . . . . . . . . . . 109

5.1.1 Analysis of DAIS Software Development Standards 109
5.1.2 Problems Encountered with Standards . . . . . . 109

5.2 DAIS Support Software . 115

5.2.1 Analysis of DAIS Support Software . 115
5.2.2 Problems Encountered with DAIS Support Software 117
5.2.3 Problems Encountered with DAIS Support Software

Documentation..; • • • . . . 126

6.0 DAIS Executive Change Recommendations . . . . . . . . . . . . . 133

6.1 Change Recommendations for Existing Program . 133

6.1.1 DAIS Local Executive . . . . . . 134
6.1.2 DAIS Master Executive . . . . . 136

6.2 Change Recommendations for Future Programs . . . . . . . 138

6.2.1 Machine Independence . . . . . . . . . . . . . 139
6.2.2 System Architecture Independence . . . . . . . 139
6.2.3 Modularity . . . . . . . . . . . . . . . . . . 140

Appendix A Test Control lables . . . . . . . .  144
Append ix B Laboratory Configurat ion . . . . • . . . . . . . . . . . 158
Appendix C Phase I Data Samples - See Note
Appendix D Phase 1.1 Data Samples - See Note

NOTE: Due to the size limitations, Appendices C and D are not
included in this document. These appendices may be obtained
by writing the DAIS Library, AFAL/AAS. Wright-Patterson AFB,
Ohio 45433, and requesting DAIS document #79-05.

vi -

-~~ - - •~~~~~~
-—

~~~~~~~~~~~
-- •-

~~~~~ — -~~~~-
- - 

: ~~~~~~~~
— - -

~
-
~
-—-—— — - —



— - -  . — - -  .-
~~~~ .--- -- - - --- .- - - ~ --—------ . — - - .-------- -—- ---

~
-----—

List of Figures

Fi9ure

2.1—1 Program Plan 5
2.1—2 Test Parameter Matrix 7

3.1-1 Phase I Hardware Configuration 1.6
3.1—2 Phase I Software Location 17
3.1—3 Phase I Software Functions 18
3.1—4 Phase l Data Flow .- 19
3.1-5 PINS Base Load Processing by Minor Cycle 23
3.1-6 Sample Output from Off line Analysis Program 26
3.2—1 Phase II Hardware Configuration 28
3.2—2 Phase II Software Location 29
3.2—3 Phase II Software Functions 30
3.2—4 Phase II Data Flow 32
3.2-5 DIMS Executive Usage (In Normal GPS-Aided Mode)

for the First Second of a 6-Second Cycle 34

3.2-6 DIMS Executive Usage (In Normal ~WS-Aided Mode)for Each of the Last Five Seconds of a 6-Second Cycle . 36

4.2-1 Average Transmission Delay Time vs. System
Utilization Factor . 47

4.2-2 Average Transmission Delay Time vs. System
Utilization Factor with Additional Bus Loading 48

4.2-3 Master Processor Interrupt Overhead Times vs -

Number of lnterrupts 54

4.2-4 Remote Processor Interrupt 3 Overhead Times vs. -

Number of lnterrupts.. 56

4.2—5 System Response Times 62
4.2~-6 Task Activation Time Data 73
4.2—7 Event Service Overhead Times -. 74
4.2-8 Master Executive Overhead Time for Non—TRIGGER Events . . 80

• 4.2-9 Master Executive Overhead Times for TRIGGER 81
- 4.2-10 Local Executive. Service Times - Local to Processor 95
4.2-11 Local Executive Service Times - Transmitted to Other —• Processor • . . • • 96

- 4.2—12 Local Executive Service Times - Received from Other -

Processor • • 97

vii

- —.-,—- .--— -—~~~— - —- .- . -- .- - — ---—.-
~~~~~

-— - ---- —— - --
, -~~.~~~~~~ ‘~~~~



List of Figures Continued

Figure

A.2.1—1 Test Control Table SACIA . . . . . . . 143
-

: 

A.2.1-2 Processing Load Matrix for Test Control Table SACIA 144
A.2.2—1 Test Control Table PINS2 . . . . . . . . . . . . . . 145
A.2.2-2 Processing Load Matrix for Test Control Table PINS2 146 - 

.

A 2.3—1 Test Control Table PINS3 . . . . . . . 148
A.2.3-2a Processing Load Matrix for Test Control Table PINS3,

First 2Q Phases . . . . . . . . . . . . . . . . . . 149
A.2.3-2b Processing Load Matrix for Test Control Table PINS3,

Last2O Phases  150
A,2.4—1 Test Control Table PINS4  152
A.2.4-2a Processing Load Matrix for Test Control Table PINS4,

First 2O Phases . . . . . . .. . . .. . . . . . .  1.53
A.2.4-2b Processing Load Matrix for Test Control Table PINS4,

Last 2O Phases . • . . .  . . . . . . . . . . . 154

B.1—1 DARlS Facility H a r d ware .............. 156
B.2-1 University of Washington DEC-10 Facility . . .~ . . . 158

l.

viii

~
-_

‘ L  -- - . - -. - 
~~~~~~~~~~~~~~~~~~~~~~~~~~~

L _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

~

~~~~~~~~~~~~~~~~~~~ 
- - - - - • - - -  =pIpI~

List of Tables -

Table •

4.1-1 Calculation of Instrumentation Overhead - Sample Data 39

4.2—1 Transmission Delay Time Data 43
4.2—2 Master Processor Interrupt Times 53
4.2-3 Remote Processor Interrupt Times  53
4.2—4 System Response Time Data 60
4.2—5 Event Service Overhead Data 71
4.2—6 Task Activation Time Data 71
4.2—7 Event Service Overhead Times 72
4.2—8 - Master Executive Overhead Times 77

3 4.2—9 TRlGGER 0verhead Time 79
4.2—10 Master Executive Service Times 82
4.2-11 Local Executive Overhead Times 93
4.2—12 Local Executive Service Times  94
4.2—13 Event Generation Time Comparison  98
4.2-14 • Event Receipt Time Comparison . . . .  98

4.3-1 Compiled Master Executive Service Times . . . . . . . 102
4.3—2 Compiled Local Executive Service Times 104

4.4-1 Anticipated DIMS Executive Service Requests for -

One Second Per iod . . . . . 105
4.4-2 Observed DIMS Processing Load for One Second Period . 107

6.2—1 Suggested Executive Modularity 140A
6.2—2 Proposed Module Description .  140B

ix

L ~~~ ~ 1II ~~ L..~ ~~~~~~~~~~~~~



- ~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — 
- 

- -— - - -

List of References

Document Title

SA1001O1 Sy~~em Seguent Specification for DAIS, Appendix A ,DAIS System Control Procedures - Functional Flow
Diagrams , 7 Nov. 1975.

SA200201 System Control Procedures for the Digital Av ionics
Information System, 7 July 1977.

SA201302 PT I DAIS Mission Software Exectuive Specification , 10 June
1976.

SA201302 PT II DAIS Mission Software . Product Specification, Vol . 1:
Local Executive.

SA201302 PT II DAIS Mission Software Product Specification, Vol. 2:
Bus Control.

SA202200 PT II PALEFAC Detailed Design Specification - Final , 15 Feb.
1977.

SA202201 PALEFAC Pre-Processor Detailed Design Specification -

Final , 1 Feb. 1977.

— SA204200 PT I JOVIAL -(J73/I) Language Specification , 19 Dec. 1974.

SA401301 DAIS Processor Ins truc tion Set, 1 Oct. 1976.

SA802309C • PALEFAC Pre-Processor/PALEFAC to Mission Software
In terface Con trol Documen t, 31 May 1977.

MA201200 - DAIS System Control Procedures, 7 Mar. 1978. 
-

- MA202200 PALEFAC User’s Guide, 1 Feb. 1977.

MA202200B User ’s Manual for Partitioning, Analyzing, Linking,
Editing Facility (PALEFAC),, 1 May 1978.

MA204200-1 JOVIAL J73/I Computer Programming Manual , Oct. 1975.

MA206200-1 DAIS Processor/Cross Assembler User’-s Manual , 22 Dec.
1975.

MA206201 DAIS Assembler User’s Reference Manua l , 1.7 Feb. 1976.

MA207301 Performance Mon itor and Con trol Execu tive User ’s
Guide, 30 June 1.977.

x



- - - - - -  - . -  -- - -  -
~~~~~~~

---- --- - -~~~~~~—-- -.
~~~~~

-- - -— 
- -  

~~~~~~~~~

List of References Continued

Document Title

MA212200 User’s Manua l for Software Test Stand L inker, 15 Feb.
1977.

MA401200-1 DAIS Processor Loading From DEC-10 (ASVTRN Progr~n)
User ’s Mani~.1, 1 Nov. 1976.

PA2001O1 Software Development Standards, 15 Jan. 1976.

TA201302-2 DAIS Executive Software Efficiency Test, May 1979.

78-03 Test Plan for DAIS Executive Evaluation Program,
Jan 1978.

79-01 Executive Evaluation Software Manual , May 1979 .

79-02 ExecutIve Evaluation User ’s Manual , May 1979. -

79~O5 - Data Samples from DAIS Executive Evaluation, 1 Jul y
1979.

All referenced documents are available from the DAIS Library.

xi

I

_ _
_ _ _ _ _ _- , - ________- - ~~~~~~~~~~~~~~~

- —

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



~~~~~~

-

~~

— ,—,-——=

~

- --——-
~

-- -

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

—-—V------ - - --

~ 

- I-.’

List of Acronyms

ACTREG Activity Register
ADA New DOD l anguage replac ing J73
ADC Air Data Computer
AFAL Mr Force Av ionics Laboratory
ALAP Avionics Lab Assembler Program
BC IU Bus Contro l In terface Un it
BMAD Boeing Military Airplane Development
CARP Computed Air Release Point
CDC Control Dat a Corporation
CDRL Contract Data Requirements List
ClO Console I/O to peripherals
CIU Conso le In telli gence Unit

- CPU Central Processing Unit
DAIS Digital Avionics Information System
DARTS D igital Avionics Research Test System
DOS Detailed Design Specification
DEC D i gital Equipment Corporation
OECSS DARTS Environmental Control System Simulation
DINS DARTS Integrated Navigation System
DOD Department of Defense
EES Executive Evaluation Software
EHAR Error Handling And Recovery
ESO Event Service Overhead
EX Execute
GFE Governmen t Furn ished Equ ipment
GPS Global Positioning System
HBC Hot Bench Computer
HOL High Order Language
lCD Interf ace Control Document
IMU Inert ial Measurement Unit
INS - Inertial Navi gation System
i/O Input/Output
IPSR Inter-Processor Service Request
iSO Interrupt Ser vice Overhead
JC Jump on Condition
JS Jump to Subroutine
LEO Local Executive Overhead
LINKS Software Test Stand Linker
MC M inor Cycle
MCADLJ Modest Control And Displ ay Unit

— 

MEO Master Executive Overhead
MUX Multiplex
OFP Operational Flight Program
PAF PALEFAC Aux ili ary File
PALEFAC Partitioning, Analyzing, Linking, Editing Facility

xii

LT ~~~~~~~~~~~~~ 
_ _ _



--- —----- -- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

..— —.- —.,--.-—,-~—- .—— ,—,—
~

-~~
——-———- l-

~~~ — - ~__ - - —
~~~ —

List of Acronyms Continued

PGI PALEFAC Global Input
PINS Pseudo—Integrated Navigation System
PMC - Performance Monitor and Control
PMI PALEFAC Modu le In putpp Pre-Processor
PPT PALEFAC PP Text Out put
RI Remote Terminal
SCADU Super Control And Display Unit
SOS Software Development Standards
SIL - Synchronous Instruc tion L ist
SRT System Response Time
STOL Short Take Of f and Landing
SIS Software Test Stand
TCT Test Control Table
TOT Transm ission Delay Time
URT Un iversal Remote Terminal
WPAFB Wright-Patterson Air Force Base

xiii

_
_ _ _

-

_____ _____ ____ _____ __

-
~ ----~ - -
~ -- -- - - -

1.0 Introduct ion

1.1 Scope

This report summarizes the evaluation of the DAIS Executive Computer
Program by the Avionics Technology group of the Boeing Military Ai rplane
Development (BMAD) division of the Boeing Aerospace Company. This
evaluation was conducted under Air Force contract number F33615-77-C-1233
in conjunction with ongoing avionics technology research programs at
Boeing. The program was conducted between September 1977 and May 1979.
The DAIS Execu tive Computer Pro gram and support sof tware which were
evaluated were the current configurations made available by the Air Force
Avionics Laboratory (AFAL) during December 1977.

This program was l imited to an independent evaluation of the DAIS
executive in terms of its application to a tactical transport mission.
The overriding issues to be resolved in this program were (1) Can the
DAIS Executive Computer Program support a tactical transport mission;
and, (2) What is the cost of using the program in terms of computing
resources and manpower? In answering these questions, a comparative
analysis with other executives was not undertaken as part of the study.
Rather, the DAIS Executive Computer Program performance was examined on
its c~m mer its, both parametrically (across the spectrum of avionics
programs in general) and subjectively (in the context of a tactical
transport integrated navigation program).

The performance measurement of the DAIS Executive Computer Program was
accomplished In two phases. Phase I, the “Parametric Study,” and Phase
II , the “Ver ification Phase,” are briefly described here and more ful ly
described in paragraph 3 of this document. -

During the Phase I parametric study the DAIS Executive Computer Program
was instrumented with a number of software hooks which served as probes
into the executive for performance data measurement. These software
hooks are described in the “Test Plan For the DAIS Executive Evaluation
and DAIS Execu tive Eva lua tion Software Des ign,” sequence #1, CDRL
attachment #2. Once the Executive Computer Program was instrumented wi th
this test software, it was exercised with a controllable applications
model , Pseudo—Integrated Navigation System (PINS), which was designed to
simulate different avionic application programs, including a navigation
program for, a tactical aircraft . This prograimiable avionic software
-model was then operated in various modes, which were selected by varying
in realtime a set of control parameters. Performance data was recorded
for off line analysis. The offline analysis program isolated the effects —

of var ious executive control parameters and the overhead time for each
executive parameter was computed. Then, using the computed parametric
data, a composite predictive algorithm for executive performance was
developed.

• —1—

______ -

, . ,
~~~~~~~~~~ 

,~-- ~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 



H

To verify the accuracy of predictive algorithm , the DAIS Executive
Computer Program was instrumented in Phase II with the same executive
evaluation software as described above. The PINS program which was used
for the parametric study was replaced with the DARTS Integrated
Nav igation System (fINS), which had been developed by Boeing for tactical
aircraft applications . The DAIS Executive Computer Program was then
operated with the DIMS program and performance data was recorded. The
final step was to correlate the measured performance data with the
predicted performance made during Phase I using the predictive algorithms.

During the development of both the PINS and DIMS application programs,
the DAIS Software Development Standards were followed. These standards
were subjectively evaluated with regard to both their completeness and
correctness when applied to a general applications program. In addition,
the DAIS support software and its associated documentation were also
appraised insofar as they affected the orderly and efficient development
of a new avionics program. 

-

1.2 Background -

The Air Force is facing three basic problems in avionic program
development: cost, reliability, and lack of standardization. High costs
are being experienced in each phase of the development, procurement and
support of new weapon systems. These high costs are escalated by the
excessive development time required for an avionic system, a situation
leading to major budgetary and scheduling restraints on new systems. In
addition , poor field reliability has been a problem and the existing
nonstandard avionics have proven difficult to repair. Lack of
standardization has provided an environment where each new weapon system
requires all new hardware, software and support equipment. These
problems have been recognized by the Air Force, which is implementing an
avionic strategy designed to reverse the trends. The basic USAF strategy
is to establish goals for reducing avionic proliferation and cost, while
increasing avionic availabilit y.

One of the major programs in the Air Force is the Digital Avionic
Information System (DAIS). Standards which are evolving through the
development and use of the DAIS concept include the communication
standard (MIL-STD-1553), the standard language JOVIAL J73 (MIL—STD-1589),
the machine instruction set standard (MIL-STD—1750), and the executive
interface standard. These three standards, when used together, can
provide the environment for software transferability. The emerging
executive lnterf ace standard Is based on the executive applications
Interface developed by the DAIS program. This executive applications 

—
interf ace is an essential link in the chain of standards that will make
it possible to transfer software programs from one avionic program to
another.

-2-
• 

___________

‘S ~~~~~~~~~ ~~~~ ~~— ~~~~~~~~~~~~~~~ ~~~~~~~~ ~~~ , ,... ~~~~~ i_S~— ~~~~~~~~ ~~~~~~~~~~~~~~~ — .~~ .-  ‘
~~~~



~~~~~~-~~~-_ - -  --

~~~~~~~~~~

- -

Transferability and reusability of software Is one important means of
lowering both acquistlon and life cycle costs. Software tasks wi itten in
a HOL (High Order Language) must communicate with the external
environment and with other HOL tasks. This connunciation is performed
via realtime executive requests. The use of realtime statements in a
language is not new. Realtime statements have been included in previous
DoD languages (HAL/S, SPL/I) and will be included in the new DoD-I
language ADA. If the set of realtime executive requests is also
standardized with a HOL, the interf ace between applications software and
t~ie executive will provide the ability to transfer software from .one avionicsystem to another.

1.3 Program Objective

The DAIS Executive and Application Software Architecture Standards have
been designed with the goal of providing the environment and rules to
create modular and transportable avionic software. Before the DAIS
Executive and Architecture Standards are applied to a major program, more
information must be gathered about the utility of these proposed Air
Force Standards. This study was conducted to collect this needed
information. The specific questions which this study has addressed are:

(1) Is the DAIS executive concept applicable to general avionic
software programs?

(2) If so, what is the cost (i n terms of computer resources) of us ing
the DAIS execu tive?

(3) Are the DAIS executive support software programs and standards
adequately defined, and are there problems or inconsistencies
within them?

(4) What changes and modifications are required before the DAIS
executive and related support software and standards are used in
full scal e avionic development programs.

It was the objective of this program to answer the four questions above
In the context of an avionic Operational Flight Program (OFP) software
development program. Paragraph 2.0 of this report provides a summary of
the program, including the approach taken to answer the questions as well

V as a summary of the results of the study. Paragraph 3.0 describes the
methodology used to measure executive performance. Paragraph 4.0
presents the performance data collected and analyzed in summary form.
Paragraph 5.0 discusses the DAIS support software and development
standards used during the performance of this program, and
recommendations for changes to each. Finally, paragraph 6.0 offers
recommendations for changes to the DAIS executive.

—3—

_ _ _ _ _ _ _ ‘

_

~~~~~~~~~ 

‘

:

“

- :
_____________________________ ______________________



2.0 Program Summary

The methodology used to meet the program objectives stated in paragraph
1.3 above, Is described in paragraph 2.1. Additionally, the findings and

- conclusions of this study are briefly summarized in paragraph 2.2. The
recommendat i ons made for improv ing the DAIS executive, support software,
and standards are summarized in paragraph 2.3. -

2.1 Program Methodology

During this study, each component of the DAIS program that is used in the
development of operational flight program (OFP) software was examined.
These components are:

o DAIS Execu tive Computer Program
o DAIS Software Development Standards
o DAIS Support Software

To meet the objectives of this program, It was necessary to apply these
components to real avionic software programs, and not to simply study
documentation and formulate opinions. For example, question 1 (paragraph
1.3), “is the DAIS Executive Computer Program applicable to general
av ion ics programs,” can only be answered by using the executive software
in actual avionics applications. If applicable , then the costs of the
computer resources required by the DAIS Executive Computer Program need
to be determined by measuring these resources while the DAIS Executive
Computer Program is operating in Support of various OFP software
programs.- Similarly, real ist ic conc lus i ons about the DAIS Software
Development Standards and the DAIS Support Software can only be made by
actually using them. To this end, operational software was designed to
the interface guidelines defined in the DAIS Software Development
Standards, and the DAIS Support Software was used to build load modules
which operated under control of the DAIS Executive Computer Program. A
summary of this program plan is illustrated in figure 2.1—1. The
paragraph references inside the blocks refer to descriptions found in the
program summary paragraphs that follow. The paragraph references outside
the blocks refer to the detailed descript ions of the work performed.

2.1.1 Define Performance Parameters

Six executive performance parameters that are useful to a system designer-
were defined for measurement and evaluation . These parameters are
defined in detail in the “Test Plan for the DAIS Executive Evaluation
Program”. In brief, the six parameters are:

1) Transmission Delay Time (TDT)

This parameter Is defined as the amount of time between a request for
an asynchronous transmission and the actual time of the transmission.

2) Interrupt Service Overhead (ISO)

This parameter is defined as the amount of time spent by the
executive Interrupt service routines servicing an interrupt.

-4-
I 3

_________ -. _ _ _ _ _ _



1” 

p 
- —--- - -—-----------— ----

~
- —‘-—- - - --,-——-- --- --—‘----- ---.~ —-—-- ---- w—.--,-- - —~~

---‘-—-—- - - -- - -—------——‘,—--.-,—,“.———-.-—---—---‘,—-—--,—,—~~——“.———-,-.—------— - —.,II~~ 

-

_ _ _ _ _ _  _ _ _ _ _ _  CsJ
0~.

~~~~
‘- .

.~o

- >- 0 L) — .c
LI_ -J — .

~ a. a.
U,

~~ uJ ._ .~~ 0~~0~
Il W 0~~~ 0. I&I

I.

I
..

1 . _ _ _

_

—
“

‘-‘ I. ,-~~~~ —~~~w • LiJ V~ •
(_) ~sj~~~~ ~~~~~~

LUZ a. ,..,~~~ S..

, ;

I L~~~~~~~ I
~

_a. ~~ ! P r — —

~~
.

~~ ~- • w a. a. - Sc

~~ <-~~~~~~~ ~~~~~
‘-4

~~!~~~
,- I. ~~~0

~~~ 
_ , _4c~. ‘a” _.i c...~

_ _  

~~~~ U

• .

_ _ _ _ J~~.! __
4 —

0O~
I ~~~~~~o•,-.~ . - — • ~~. 4.’

U,
SO ~~~~~~~~~~~0 O~-I- I-

_ _ _ _ _ I ~~~~~~~f 0
L&II~ ,— ~~Z ,- — ~~~~~
414.’ 0

4) ,u II
.
~~ 0 i&a Iii ~~ ~. ~ 4.’

Z~~~~~- 41
).4~~~~~UJ I— 5’

U _ _ _ _ _ _ _ _ _ _ _ _
4.’U~~~~a,

‘C 0 0 0.4.’
I&l -

— —L&J I&I
U, U)

0. 0.

-5—

-
_
~I:: :I ~

_ 4 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

r ~~~~~ —.- --- —---- -- - - - - - - -— - - - - -~--------.~~~~---~- - .~-.-- - - ~~~.-----. - - - - --~ -------—- -
~~~~~~ 

- — -—---- ------ - ---—-
~
—-

~
—-----

3) System Response Time (SRI)

This parameter is defined as the time between a request for an
asynchronous transmission to another processor and the receipt of a
response from that processor.

I’ 

- 4) Event Service Overhead (ESO)

This parameter Is defined as the amount of time spent by the DAIS
Executive Computer Program in servicing an event request. This
includes the servicing of WAIT requests, SIGNAL requests, and the
time servicing the minor cycle events.

5) Master Executive Overhead (MEO)

This parameter is defined as the amount of time spent by the master
executive performing bus control and system synchronization.

6) Local Executive Overhead (LEO) -

This parameter is defined as the amount of time spent by the local
executive in -performing local executive functions. These functions
Inc lude execu tive ser vice request process ing, system synchronization
response and setup, asynchronous message serv ice, interprocessor
service request processing and general control.

The DAIS Executive Computer Program was analyzed to determine what
variables affected these performance parameters. A summary of this
analysis is presented in matrix form in figure 2.1—2. This matrix
differs somewhat from the one presented in the original “Test Plan for
the DAIS Execut ive Eva luation,” because the control variables were
redefined to allow a more meaningful examination of the DAIS executive.
The control variables used in the study are:

1) Synchronous Transmissions:

- 
These are the regularly scheduled, per iodic bus messages which occur
without a formal applications program request.

2) Asynchronous Transmissions:

These are the aperiodic bus messages which are transmitted at the
request of an applications program.

3) Interprocessor Service Requests (IPSR):

These are executive service requests which generate an asynchronous
bus message requesting executive service in another processor.

4) Events Queued:

This is the number of WAIT executive service requests that suspend a
task and place it in a WAIT queue.

-~~-

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - 
_ _ _  

~~~~~~~~~~~~ - ~~~~~

___________________________ _______ ___________ _____________________ — ~~~~~~~~~ ~~

-~~~~~~

In
a.

C
.C 0 41
In 4J &n
c 41
0 S~~4J 4J W

-
~- 41e4 I .~4) •I- C .0 4~41 4I
.—
41 UI 0. C
I. u)W•~— 4 1

______ __ ~~ .e .C

LI.’
- 4.) 4J 5.. C 4 1 4 1

-
.

- 4 1 4 1 4 1 0.- .—
U~~~ • ,- .0.0

‘— LI.I :.. .~~ ,- _ 41 ‘0
- •

~~~4 ) 41 41.,- .,-
— C I n~~~ .-I. S.

_ _ _  - - .~~~~~
- - 41 - 0 4) C

LU - - - ~
-
~ ,:. - - 4’

- - ~~~~~~~~~~ W I ng  C C
— 

- - : : - .~~.- ‘~.I- . :-- .~P
- - - 

-
~~~~

>- .
~~~

‘ 41 4 1 4 , 4 1 00
LU 

- - 
- 

4.) ~~ 4) 
p ‘I..

~~~~~~~~~~~~ • ‘ 0 uO a . 1 b~~~

~~ LU 0
- - -

!- , !-,_w~~~_ -
- - - — -~~

_ _ _ I ~~~ : 4 1 . 0
‘J~~~._,

LU -LU -
-

~: “:I~~~~~:Iii~-I—. — =
— -

,-‘ :.- - - -:~ , --.~~ :- ‘~~~
- C —- -

- ~~~~~~~~~~~~~~~~ 41
LU ~~ LU -

-
-

~~~~~~>. LU>. - __ - - ‘:~~~~~:i”-I~~ .’
LU U) 0 — -  

- - 
- - -

— u mi ,~ Th1~

•0

~~~
— = I - .

-•-
- - - -

- —

LLJ >.~~~~~~I C’.’
I-

~~~~~
w I

tA -
~~~~~~~

I - - - - -

— J I l 11111 II 1 1
-

- - - - -

, 0 - - -

~~~cfl <IU , —

‘ IIJ CI)
U) 0

-7-

- - - -- - _ _

- - - 
- -

, . - -- - -—---—•- - —

~ 

— . - -- - - ~~ ‘ , -• ~~~~~ “ ~~~~~~~~~~~~~ .- • . - ~~~~~~~~ - -



_ _  -

5) Executive Service Requests (Non-IPSRh
These are requests for executive service which are satisfied in the
local processor — no bus transmission is required.

6) Events Signalled

These are the requests which result in an event being set. These
include both signalled events and minor cycle events.

Each of these control variables can affect some or al l of the performance
parameters defined for this study. Figure 2.1-2 shows this
relationship. The affect a control variable has on a given performance
parameter is outlined briefly in the list below, where the number of the
item in the list refers to the numbers -In the shaded areas of figure
2.1—2.

(1) May have a minor effect. The master execut ive is una ble to
recognize a need for an asynchronous transmission until a status
word is received from the remote processor. If the SIL Is being
executed, a status word will not be requested until a message
sequence Is completed.

-

~~ (2) Has a major effect if an asynchronous transmission is in the
asynchronous transmission queue ahead of the transmission being
requested. If so, the request will not be recognized until
processing has been completed for the first transmission.

(3) Effect is the same as (2) above since an interprocessor service
request is an asynchronous transmission.

(4) Every asynchronous transm ission will cause one interrupt in the
local executive of the processor where the request originates.
Requests originating in a remote processor will also cause two
interrupts in the master processor.

(5) Effect is the same as- (4) above since an interprocessor service
request is an asynchronous transmission.

(6) A WAIT specifying an absolute time interval will cause a timer
interrupt when the wait period has expired. -

(7) The SIL affects SRT In the same as manner described for TDT (1).
For SRT, however, the effect can be magnified since access to the
bus may be delayed both-when obtaining the request from the remote —
processor and then when sending the response to the remote
processor.

(8) Asynchronous transm iss ions affect SRT In the same fashi on as
described for TOT in (2). The effect may be greater for SRT,
however, since previously queued asynchronous transmissions may
have to be completed both before the request surfaces in the
remote processor and before the response is sent from the master
processor.

-8- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _ _ _ _


-~~~ -~~~ - ~~~~~ ~~~~~~~~
— - -

- - - --- - 1!~~~

(9) The effect is the same as (8) above since an Interprocessor
service request is an asynchronous transmission.

(10) SRT measurements may extend over more than one minor cycle. In
such cases, the number of minor cycle events serviced in the new
minor cycle can affect SRT.

(11) Asynchronous transmissions may have an event associated with them.

(12) Every event wh ich is set must be checked against the entries in
the event wait queue.

(13) Every event requires servicing when It is signalled. This
includes minor cycle event service.

(14) Every asynchronous transmission must be serviced by the master
executive.

(15) Every IPSR must be serviced by the master executive.

(16) The master executive must send the minor cycle event (mode code
18) to each processor In the system.

(17) Every asynchronous transmission request requ ires service by the
local executive, both when it is queued for transmission and when
it is received. -

(18) Every IPSR requires servicing in both the processor that generates
it and in the processor that receives it.

(19) Executive service time is required to queue an event.

(20) Executive processing is required to service realtime statements
executed in an applications program.

(21) Minor cycle setup (not including ESO) is handled by each local
executive.

2.1.2 Build a Program to Control Processing Load

Once the control variables were isolated, a program was developed which
would allow realtime control of these variables. Realtime control
allowed measurement on DAIS executive performance while it was supporting
a known system load. This program, the Pseudo-Integrated Navigation
System (PINS) Is described in “Executive Eva luation Software Des ign,”

• - attachment #2 , CDRL #1.

2.1.3 Measure Performance in a Simulated Operational Environment

The DAIS executive was instrumented with software measurement subroutines
which allowed elapsed times to be recorded for selected executive
routines. The DAIS executive was then exercised with the PINS program
and performance measurements were taken.

-9- -

-

~~~~~

-

~~~~~

--

2.1.4 Analyze Performance Data

The performance data from paragraph 2.1.3 was analyzed to determine the -
-

effect of each of the control variables shown in figure 2.1-2 on
executive performance parameters. This analysis completed the Parametric
Study.

2.1.5 Develop Predictive Algorithm s

Working from the analytical results of the Parametric Study, a set of
predictive algorithms were developed that would provide performance
estimates for the executive under any known processing load.

2.1.6- Develop INS Software for Tactical Transport

An applications software program was developed by Boeing using the DAIS
Software Development Standards. This software, the DARTS Inertial
Navigation System, integrates information from a Global Positioning
System receiver, a strapdown Inertial Navigation System, and an Air Data
Computer and passes it through a Kalman filter to provide corrected
position and velocity data. The predictive algorithms were applied to
DINS to predict DAIS executive performance for that application s program.

2.1.7 Measure Performance in an Operational Environment

The DAIS executive was instrumented with the software measurement
routines used in Phase I (paragraph 2.1.3). The DAI S executi ve was
exercised with the DINS program and performance measurements were taken.

2.1.8 Val idate Algorithms --

-

The performance data from paragraph 2.1.7 was analyzed. Good agreement
between predicted performance and measured performance served to val idate
the predictive algorithms. The verification step of Phase II was
completed.

2.1.9 Identify Program Development Difficulties

Two avionics programs, PINS and DINS, were designed according to the DAIS
Software Development Standards and built using the DAIS Support
Software. Any difficulties encountered during this process were
documented with descriptions of both the problem that was encountered and
the impact of the problem on the program development.

2.1.10 Develop Change Recommendations

Exper ience with the program development process uncovered severa l areas
in the DAIS standards and documentation which could be changed to benefit
a system designer. In addition, the results of the data analysis
indicated that certain modifications to the design of the DAIS system
could provide an overall improvement in system performance. These
findings are presented as a series of change recommendatIons In
paragraphs 5.0 and 6.0.

—- --~~~~~~~ ~~~~~-~~ - - ~~~~~~~~~~ --~~ - - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
•
• - ~~

- -
~~ - - :-I-~~~ ~~~~~~~~~~~~~~~~~~~~~~~ — - -

~~~~~



— ~~~~~~~~~~ —--—-- - -~~~~~~~~ - -~-- - ~~~~~~~~~~ =-_ —

2.2 - Program Findings

2.2.1 DAIS Executive Concept

The question of whether the DAIS Executive Computer Program was
applicable to general avionics applications was answered early in the
program. Based upon the experience gained from designing, building, and
operating a general avionics application program (PINS), and an
integrated navigation system for a tactical transport application (DINS),
the DAIS execu tive, support software, and design standards were proven to
be highly effective for avionics applications. Not only did the
Integrated navigation software perform properly under the DAIS executive
control , but the development of the applications software was greatly
simplified by having an executive program which was already developed and
under configuration control, and by the rigid executive/applications
interface structure.

In summary, an existing executive program was taken “off-the-shelf” and
two separate avionics programs were made operational under control of

H this executive without making a single change to the executive. This
experience demonstrates the significant advantages of a standard, general
purpose executive for avionic applications .

2.2.2 DAIS Executive Performance (Computer Resource Cost)

2.2.2.1 General Performance

The cost in computer resources to operate the DAIS Executive Computer
Program was found to be very reasonable. In fact , considering the
general purpose nature of the program itself and the tasks being
performed by the executive, the executive appears to be fairly
efficient. For example, the steady-state overhead associated with the
executive computer program was consistantly measured at approximately 27%
for the master executive computer program and approximately 10% for the
local executive computer program.

The steady state overhead reflects only bus control processing and minor
cycle (system) synchronization. All other factors affecting the overhead
(in addition to the steady state overhead) were found to be strictly
dependent upon the level of requests generated by the applicat ions
program.

The performance parameters identified in figure 2.1-2 were measured for
various values of the control variables. It was found that a change in
each control variable resulted in a proportional change in the
performance parameter being measured. This was also true when various
cont inations of control var iables were chan ged simu ltaneously; the same
del ta effect was observed when each of the contro l var iables were
individuall y varied in three separate tests. These tests and the
measured results are detailed and summarized in paragraph 4.2 of this
report. -

—11— 
-

it ~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ 

~~I



_ _ _ _  - ---~~~~~~~~~~~ -~~ ~~~~~
-—---- —- -- --—

The data collected during Phase I of this study were used to develop a
set of predictive algorithms for estimating DAIS executive overhead for
any known application s load. Because the DAIS executive performance was
linear , the development of predictive algorithms was straightforward.
These algorithms, discussed in paragraph 4.3, were used to predict the
executive computer program resources required to support the DINS
application program for the second phase of the program. In PI’~se II ,
executive performance was measured while supporting the DINS P1 jram.
The results of these measuremen ts, presented in paragraph 4.4, show good
agreement with the predictive algorithms.

2.2.2.2 - Executive Service Request Overhead

In addition to predicting the total overhead that will be experienced by
a particular software system design, the predictive algorithms also can
be used to estimate the maximum number of -executive services that can be
used during a sing le DAIS minor cycle. These estimates are provided for
each individual executive service under the assumption that the
applications load in the processor is negligible. This data provides
upper bounds to the system designer when allocating executive services to
the application programs.

The DAIS architecture introduces two factors that determine the executive
processing required when an applications program requests an executive
service. The first factor is the location of the applications program
that generates the request. If the applications program is in the master
processor, less computer time is available to process executive service
requests since the bus control services provided by the master executive
must al so be supported. The second factor is whether the executive
service requires a bus transmission. A local executive service which
requires no bus transm iss ion can be completed in much less time than one
which does. Combinations of these two factors result in four different
levels of executive support that can be provided for the various
executive services requested in applications tasks. Each of these levels
will be discussed in turn.

The first level of support is for service requests handled by the local
H executive in a remote processor when no bus transmissions are required.

The maximum number of any one of these local requests that can be
serviced in one minor cyclrTs:

51. - READs
26 — WRITEs
77 - SCHEDULEs
20 - CANCE Ls - - -

23 — SIGNAL s
94 - Task Activations

The second level of support is for service requests handled by the local
executive in the master processor when no bus transmissions are
required. The maximum number of any one of these local requests that can
be serviced in one minor cycle is:

-12-



__________ -- - - - - --~~~~—~~ —- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

35 - READs
18 - WR ITE s
53 - SCHEDULEs
13 - CANCELs
16 - SIGNALs
65 - Task Activations

The third level of support is for service requests originating in a
remote processor which require master execu tive support for a bus
transmission. The maximum number of any one of these global requests
that can be processed in one minor cycle is:

3 WRITEs
3 — SCHEDULE s
3 — CANCELs
3 - SIGNAL s

The last level of support is for statements which originate in the master
processor and which require master executive support for a bus
transmission. The maximum number of any one of these global requests
that can be processed in one minor cycle is:

2 — WRITEs
2 - SCHEDULEs
2 - CANCELs

- 2 - SIGN ALs
As can be seen, the use of any global request is very costly. These
requests should be used with caution by a system designer to avoid “hot
spot s” or overload situations in system operation.

2.2.3 DAIS Executive Support Software and Standards

The DAIS Software Development Standards were found to be good in most
areas but deficient in others. The overal l standard, which Includes
several industry accepted standards of long-proven value, appears to be
reasonable. In particular, the “top—down” design methodology and
structured programming facets of the standards are quite good.

Areas where the standards might be improved are discussed in section 5.9
of this report. In sLnnary, these areas included: design coding and
methodology; program management and configuration control; sometimes
overly restrictive implementation standards; and, vague or Inconsistent
standards. 

—

The set of support programs necessary to build an operational
applications program seems to be complete. During the - study, operational
systems were generated without building any additional support programs.
The support programs were judged to be efficient and comprehensive.
Problems that were encountered with these programs are almost exclusively
related to weak documentation and immature diagnostic reporting
capabilities. These findings are described in section 5.0 of this report.

—13-

_ _ _ _  - 
-:-

~~~
--

~~~~~
-

— _ . _~~_.~
_ _ _~A__s____ _£ —-- .——. ~ -~~~~a~~~- - -  -



- 
- 

2.3 Change Recommendations

The change recommendations being made as a result of this study fal l into
two categories. The first category covers suggested modifications to the
DAIS Executive Computer Program and deals almost exclusively with error
handling and recovery since this area is only partially defined within
the executive. computer program. Modification recoc,~nendations primarily

- 
— 

address the rehosting and reusability of the program In other system
architectures utilizing different hardware. The recommendations are
described in paragraph 6.0 of this report.

- 
- The second category, which covers change recommendations for the DA IS

Software Development Standards and Support Software deals almost
exclusively with documentation corrections and clarification. These

- recommendations are described in paragraph 5.0 of this report.

_ 1#1I _ 

~~ - - - — - - - -~~~~~~ — . - -  
- —_ _  - .

~~~~~~~~~

-
_ _ _

- ~~~~~~~~~~~~~~~~~~~~~~ - - — .-~~- • — — -,. ~~~~~ -.

~~~~~~~~~~ ~~~~~~~~~~~~~~~ 
~~~~~~


~
-•-

~
--

~
-- --~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

3.0 Dat a Collection Methodology

3.1 Phase I

Phase I of the DAIS Executive Evaluation Study was designed to
quantitatively measure the performance of the DAIS executive under a• controlled load. The hardware and software configurations used for this
task , the test procedures followed, the operating environment experienced
by the executive, and the off line analysis software developed for the
study are all discussed in the paragraphs that follow.

3.1.1 Hardware Configuration

- • The hardware configuration is shown in figure 3.1-1. The hardware
necessary to support Phase I is listed in figure 3.1—2 along with the

- ~
- software that is resident in each processor unit. In Phase I, the

Harris /6 performs in a st and-alone mode; there is no BCIU to connect it
to the MIL-STD-1553A bus.

3.1.2 Sof tware Configuration -
-

The software that is resident in each processor is shown in figure
3.1-2. Note that processors which show more than one software element do
not necessarily host all elements at once. For example, the PlC software
and the Instrumentation Software cannot coexist in the POP 11/40. Brief
descriptions of the functions performed by each software element are
given in figure-3.1—3.

3.1.3 Test Procedure and Data Flow

A brief description of the test procedure used in Phase I follows. For a
more detailed discussion of the Phase I test procedure refer to “Test
Plan for the DAIS Executive Evaluation ”, or to the “User’s Manual for the
DAIS Executive Eval uation Study.”

a) Select the test to be run
1. Choose the executive to be Investigated: master executive, local

executive in the master processor, or local - executive in the
remote processor.

2. Select the test to be instrumented: interrupt service overhead,
transmission delay time, etc.

3. Select a test control table. -

b) Power up the system
C) Load the processors
d) Instrument the hooks with the Executive Evaluation Software
e) Ready the system for the test
f) Run the test and collect the dat’a
g) Process the test data
h) Power down the system

The data flow associated with the Phase I tests is shown in figure 3.1-4.

— 15—

IL
- ~~~~~

~

_J Lu
I-,—

— -

_ _ _ I I I I
I 1

H

F
‘

_ _ _

Lu

_ _

—~~~~~~~~

I

_ _ _ _ _ _ —~~—

LI!
i.

_ _ _ _ I
(1

I I
U ±.J~!-L’~~~~

_ _

-~~~~~~
_7 -__ -

_ -
~

- —~~~ - ~- — ~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _____

-=~ ==---~ -~ --- — ..,_ — - - —,-‘--_ .- ~—--- - —.— - - —_ — - - —.--- _— - -- -_ .-
,_

—

HOST HARDWARE RESIDENT SOFTWARE

AN/AYK-15 Master Processor DAIS Master Executive
DAIS Local Execu tive

• Pseudo-Integrated Navigation System
ExecutIve Evaluation Software

AN/AYK-15 Remote Processor DAIS Local Executive
Pseudo-Integrated Navigation System
Executive Evalua tion Software

DAIS Bus Contro l Interf ace Un it Hardwired Logic
(2 un its) BCIU Microcode

DAIS Console Intelligence Unit F irmware
- (2 units) -

Hazeltine 2000 CRT None
(2 unIts)

Boeing Bus Control Interf ace Unit BCIU Macro Code
Boeing Programmable Test Set (Programmed to be compatible with

MIL-STD-1553/DAIS operation)

Modest Control and Display Unit F irmware
(2 units)

POP 11/40 Computer Performance Monitor and Control
Teletype Instrumentation Software
Card Reader
Line Printer
RKO5 Disk Drive (2 units)
Magnetic Tape Unit
Intecolor 8001 CRT

Harris/6 Computer Off line Analysis Program
Silent 700 Terminal
Card Reader
Versatec Printer/Plotter
5260A Disk Drive
Magnetic_Tape_Unit

Figure 3.1-2 Phase I Software Location

—17—

—
~~~~~~~~~

— 
~~~- ~~- _ _ _ _  _ _

~~~~~~~~~~~~~~~ 

-_

~~~ - - 
T -

~~~
-’---

~~
--— - - - -

— —~~—---- .—-•.~~ —— — --. -. — —~~ -— —•-—--——.~~ -~~ ~~~~~~~~~~~~~~ ~~- •~.— ~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~



F— _____ - -  
-

~~

‘

~~1

SOFTWARE MAJOR FUNCTIONS

DAIS Master Executive Control bus communications
Process timer interrupts
Handle startup and reconfiguration

DAIS Loca l Execu tive Process realtime statements i n
applications tasks

Control task states

Performance Monitor and Control (PMC) Load the AN/AYK- 15 processors

Pseudo-Integrated Navigation System (PINS) Introduce a controlled load on
the DAIS executives

Executive Evaluation Software (EES) Generate MCADU records before and
after certai n executive
processing sequences

BCIU Macro Code Configure the Boeing BCIU to
simulate a DAIS RT

Instrumentation Software Transmit data blocks to and
- receive data blocks from the

DAIS processors
Record bus and MCADU data on tape

Off line Analysis Program Retrieve bus and MCADU data from
tape

Generate statistical summaries

Figure 3.1—3 Phase I Software Functions

‘ I  

~LI~~ ~~~~~~~~~~~~~~~I~~~~~~~~::L~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~ ~~~~~~~~~~~~~~~~~~~~



-•---- -~ --- _  —_ -_———_-- -----_.-_
~---•- 

-
~——-—-—-—----— - — _

~ 
-
~~

----
~~~~ -~~~~~~~ ----_ --- —,_-

~

~
-

~ -_ - , - --- --------- -_ -—---“_ ---_ -_-_ -

0— _
DEC—10 -

GENERATED
SOFTWARE i AN/AYK-15

RESIDENT SOFTWARE

CIU DEVICES START/STOP COMMANDS

AN/AYK- 15s
(2)

~
4

~~~T 

TEST CONTROL TABLES

I PERFORMANCE
+

DATA

PERFORMANCE DATA NCADUs (2)

DATA 
HARRIS /6 

H~~~
cOPY

* SYNCHRONOUS- BUS LOAD 
(NON REA L TINE)

• 

- 

Figure 3.1-4 PHASE I DATA FLOW

-19-

_ _

~~~~~~~~~~~~

IIIIII IIT Till ~~~~~~ ‘-‘~~ ~~~~~ ~~~~~~ ~~~~~~ 4

- -

— - 3.1.4 Phase I Program Description

The key to understanding the test method and data collection process In
Phase I, is to understand how the PINS program functioned and how It
controlled the environment in which the DAIS Executive Computer Program
operated. The paragraphs below provide a functional overview of the PINS
program and then describe, minor cycle by minor cycle, the - operational
envi ronment that was provided in Phase I by the PINS program.

3.1.4.1 PINS Overview

PINS simulates an inertial navigation system. In order to fulfill this
function, PINS provides synchronous bus traffic and processor loads
simi l ar to those generated by a real navigation system. PINS is capable
of duplicating most of the processing requirements that would be found in
a real navigation system (in this case, DINS).

PINS was also designed to provide a mechan ism to evaluate the performance
of the DAIS executive. In order to fulfill this function PINS had to be
a deterministic program; the load that it placed on the DAIS executive
had to be controlled by the user.

To satisfy both objectives, PINS was designed as a two—level program. On
the first level is the background load which is the overal l processing
load that simulates a real navigation system. Several different
background loads are provided tn PINS; each approximates a deqree of
activity that can be found in the DINS program. On the second level is
the user controlled set of tasks which can be selected in any combination
and which represent additional operations over and above those generated
In the background load.

3.1.4.1.1 Background Processing Load

PINS has three major background loads.* The first represents the normal
DINS processing load and is referred to as the “base load”. Nearly all
of the PINS testing was conducted with a “base Load” which is described
in some detail in paragraph 3.1.4.2. As for the other two background
loads, the second provides a continuous background l oad whose level of
activity is equivalent to the peak load generated dun q a burst of
processing activity experienced once each second in DINS. The third is a
continuous load equivalent to the peak load generated during an even -

larger burst of activity experienced every six seconds in DINS. Load
level s two and three also generate a higher level of prespecified
asynchronous bus traffic.

The base load is an ordered sequence of tasks that is spread over eight
minor cycles. This eight minor cycle sequence repeats itself during a
test, duplicating the characteristic processing cycle found in DINS. As
a result of the eight minor cycle period, any task operating in the t~aseload will be executed a multiple of 16 times a second. Since each test
phase 1asts exactly one second, a minimum of 16 data points will be
produced for any routine that is monitored.

‘The background loads are described in detail in the Executive Evalua tion
Software Manual , DAIS document #79—01 , ppl86-l9l .

-20-

r — - - - - ——-- — - -— _ - _ _ _

L - -~~~~~~~~~~~~~ — ~~

- -
_ -

__ —----- - - - - - - - - -_ _ ----_--

A special feature of the PINS program Is its wait tasks.* Each processor
contains a low priority task which is activated only when all other tasks
have been completed. Each of these wait tasks contains a software clock
which increments every 100 usec. By reading this clock at the beginning
and end of a test phase it is possible to determine how much time was
spent in executing the wait task. Since the wait task is executing only
when the processor would otherwise be idle, the wait clock provides data
on how much “unused” time was available during the test phase. In
effect, the wait clock monitors how long the executive is “waiting” for
something to do.

Each test run on the DAIS executive during Phase I began with a
calibration phase. This phase consisted of just the base load; no extra
tasks were performed. Execution of the cal ibration phase provided a
benchmark which al lowed the user to verify that the basic system
performance remained constant from one test to the next.

3.1.4.1.2 User Controlled Load -

The PINS program allows the user to select specific realtime statements
to be executed in addition to the selected background load. These
realtime statements include SCHEDULE, CANCEL , READ , WRITE , SIGNAL , and
TRI GGER , and their execution is under the complete control of the user,
both In numbers and in minor cycle of execution. The user can select a
different set of these statements to execute during each phase of the
test . Since the PINS background loads operate in an eight minor cycle
repeating sequence, the user controlled load is also designed to repeat
every eight minor cycles. The user has only to specify the first minor
cycle in which an “event” will occur and the event will automatically
occur every eight minor cycles thereafter. For any single “event” (for
example, a SIGNAL) the user can cause the event to occur in as many minor
cycles as desired. In addition, the user can control how many times the
event w ill occur in a single minor cycle. For example, in one test phase
the user may wish to observe the effect of adding one SIGNAL to minor
cycle 3 (and 11, 19, 27, . . • , 123). In the next phase the user can
look at the effects of adding two SIGNALs in both minor cycle 3 and minor
cycle 6. The following phase can instead add TRIGGERs to the minor
cycles since each test phase is completely independent of the others.
Every realtime statement may be selected by minor cycle, with the
restriction that a READ and WR ITE or a SCHEDULE and CANCEL must occur in
pairs. To demonstrate the flexibility of this system, the following
example Is provided. A user may design a test phase which adds a
SCHEDULE and CANCEL to m inor cycle 0, two READs and WRITEs to minor cycle
2, a SIGNAL to minor cycle 3, a TRIGGER to minor cycle 4,. and two READs
and WRITEs to minor cycle 6. This entire sequence of events will be

• repeated every eight minor cycles for the duration of the test.

3.1.4.2 Operational Environment

The PINS base load can be delineated by minor cycle to enable the user to
determine the exact processing tasks being performed at any time during a
test. Figure 3.1-5 provides this information. -

*The PINS “wait” task should not be confused with executive “WAIT” request
mentioned on page 6.

—21-

_____ J_ _ -:
~
i---

~~~~ --~~~~~~~ ~~~~~~~
-

~~~~~~~~~ —~~~~~~~~~~~~~- 1± 


Several observations can - be made about the PINS base load. In the master
processor the PINS master configurator is activated once each minor cycle
and In the remote processor the PINS remote configurator is activated -

once each minor cycle. This is in general agreement with the DIMS
execution sequence which has one or more tasks being activated nearly
every minor cycle.

-

PINS synchronous bus activity occurs in only two minor cycles; zero and
five. This agrees with the synchronous transmi ssion activity found in
DINS. All PINS synchronous bus transmissions repeat 16 times a second.

PINS models only the DINS synchronous bus transmissions which occur at
interval s of less than one second since a PINS test phase lasts for only
one second. None of the DINS one second transmissions are modeled in
PINS.

PI NS rece ives two synchronous inputs and transm its four synchronous
outputs every eight minor cycles. Six privileged mode tasks support this
synchronous activity. Two of the tasks execute in the remote processor
during minor cycle one to access the synchronous data blocks received by
the remote processor in minor cycle zero. Another pair of privileged
mode tasks execute in the remote processor dur ing m inor cycle one to

• BROADCAST two of the synchronous data blocks that will be transmitted in
minor cycle five. The final pair of privileged mode tasks execute in the
master processor during minor cycle four to BROADCAST the other two
synchronous data blocks that will be transmitted in minor cycle five.

The execution of individual events during the PINS processing sequence is
controlled by a user defined Test Control Table. This table must be read
each time the master and remote configurators are activated. Thus, as a
part of the base load, PINS executes a READ once each minor cycle in each
processor. Even though this READ is required only to support PINS, it
still follows the general DINS activi ty level since fINS executes one or

- : more READ statements in many minor cycles.

The final activity performed in the PINS base load sequence is an
asynchronous WRITE and two READs. The asynchronous WRITE an d one READ
execute in minor cycle six; the other READ executes in minor cycle two.
This asynchronous activity represents processing that could be expected
upon receipt of an operator action from a keyboard.

In summary the PINS base load consists of the~fol lowing tasks:

a. Master Processor
(1) Activate master configurator every minor cycle - -

(2) Read the Test Control Table (TCT) every minor cycle
(3) Read a C0t1’OOL block in minor cycle two
(4) Activate two privileged mode tasks in minor cycle four
(5) Broadcast two COPPOOL blocks in minor cycle four
(6) A l l ow the synchronous tran smission of two COMPOOL blocks in

minor cycle five -

(7) Perform a READ and an asynchronous WR ITE in minor cycle six

~~~~-~~~~~~~~~~~~~~~~~~~ - - - —-- -

— — •,-~~— — ---~—------— -----~~~~~ - —•--•-—••-• —-  - ----u - • 
~~~------ --~—--- -; ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - —  ---



~~~--~~~~~ - - -  - - ~~~~~~~~~ - - - - - - -

Minor Cycle Master Processor Remote Processor

0 Activate Master Configurator Activate Remote Configurator
Read Test Control Ta ble Read Test Control Table

Receive two synch- onous
COMPOOL blocks v ia BCIU

1 Activate Master Configurator Activate Remote Configurator
Read Test Control Ta ble Read Test Contro l Table

Activate four privileged tasks
Access two CONPOOL. blocks
Broadcast two COMPOOL blocks

2 Activate Master Configurator Activate Remote Configurator
Read Test Contro l Ta ble Read Test Contro l Table
Read a COMPOOL block Read a COMPOOL block

3 Activate Master Configurator Activate Remote Configurator
Read Test Control Table Rea d Test Control Table

4 Activate Master Configurator Activate Remote Configurator
Read Test Control Table Read Test Control Table
Activate two privileged tasks
Broadcast two COMPOOL blocks -

5 Activate Master Configurator Activate Remote Configurator
Rea d Test Contro l Ta ble Read Test Control Table
BC IU accesses two COPPOOL blocks BCIIJ accesses two COPPOOL

blocks

6 - Activate Master Configurator Activate Remote Configurator
Read Test Contro l Ta ble Read Test Control Table
Read a COMPOOL block Read a COMPOOL block
Wr ite COPPOOL b lock to Wr ite COt’VOOL block to

Remote processor Master processor
(Asynchronous) (Asynchronous)

7 Activate Master Configurator Activate Remote Configurator
Read Test Contro l Table Rea d Test Control Table

FIgure 3.1-5 PINS Base Load Processing by M inor Cycle

-23—

- 
•
~~~

.—- — -

~

- —-—-—-—-- — _______

~llll 1Til1 ll ~ ~~~~~~~

~ - -- - -- ~~~~~~~~~ ---- - - -~~~-~~~~~~~~~ -— -~~~~~
-

b. Remote Processor
(1) Activate remote configurator every minor cycle
(2) Read the Test Control Table (TCT) every minor cycle
(3) Receive two synchronous COMPOOL blocks in minor cycle zero
(4) Activate four privileged mode tasks in minor cycle one
(5) Access two COPPOOL blocks in minor cycle one
(6) Broadcast two COMPOOL blocks in minor cycle one
(7) Read a COMPOOL block in minor cycle two
(8) Allow the synchronous transmission of two COMPOOL blocks in

minor cycle five
(9) Perform a READ and asynchronous WRITE in minor cycle six.

Whenever the scheduled activity is completed for a minor cycle, the wait
tasks resume execution and the wait clock is incremented every 100 usec
until either the next minor cycle begins or executive action is requested.

3.1.5 Offline Analysis

The data collected during PINS test runs was analyzed offline on the
Uarris/6 computer. The offllne analysis software is a FORTRAN program
which reads the PINS test data recorded by the PDP 11/40, differentiates
bus records from M CADU records, translates the records into human
readable format, and performs data reduction on the MCADU records. The
user can select a number of operationa l modes which inc lude:

a. Dump the test data in octal format

b. Print the bus records recorded froii bus number one

c. Print the bus records recorded from bus number two

d. Print all bus records
-

e. Print MCADU records

f. Pair MCADU start records with MCADU stop records and print the
matched pairs

g. Pair the MCADU records, separate the pairs by -type of event recorded,
and perform data reduction on the separated sets. -

The program mode used most often during this study was the last one. An
example of the output obtained from mode g is shown in figure 3.1-6.
Some of the information that can be found on this output is: - *

a. The processor , master or remote, from which the data was collected.

b. The “event” for which the statistics were compiled (e.g. the label in
figure 3.1-6 identifies M$BCON activity following an interrupt 10).
The event types are defined in DAIS document #79—05 which also contains
Appendices C & 0 of this report.

c. The phases and minor cycles for which the statistics were compiled
(the example in figure 3.1—6 indicates that statistics were collected
for all test phases, but only data from minor cycle 3 of each test
phase was examined).

- —~.— ---— — - - - - - — ——

-
~~~~-•



1~

d. The data for each test phase, presented on ~‘parate lines.

e. The number of events which were recorded during a given test phase.

f. The minimum and maximum elapsed times recorded for the “event” In
each test phase. Each unit represents 100 microseconds.

g. The average time taken to complete the “event” In each test phase.
Each unit represents 100 mIcroseconds.

h. The percentage of time that each processor was being used to support
both the executive and applications tasks.

The elapsed times recorded for each event are the sum of the event
processing time plus the time spent In collecting the data (that is, the
instrumentation hook time). It takes two instrumentation hooks to trap
an event and record the elapsed time for analysis, one hook to record the
time at the start of the event and a second to record the time when the
event is completed. The processing time required for one of these hooks
shows up In the recorded data. The time necessary to complete the second
hook is not included in the recorded event time, but It does show up as
an increase in CPU use. As a result of the instrumentation hook
overhead, all of the event times shown in the reduced data will include
the processing time for one hook. The final results, which will be used
for computing executive overhead, are corrected for the instrumentation

- hook time and caii be used with no further modification. Both the
corrected and uncorrected data are listed in paragraph 4.0.

The data obtained in these tests were acquired by reading the DAIS
processor clock known as timer B. This clock has a resolution of 100
usec. The other processor clock, timer A, has a 10 usec resolution, but
its usefulness with respect to obtaining elapsed times is limited because
the executive software can reset timer A (timer B is never reset). In
all DAIS processors, timer A is reset by the executive software at the
beginning of each minor cycle. Since some of the events measured could

- 

- extend over more than one minor cyc le, timer B had to be used to time
them . In the master processor , timer A is also reset by the master
executive whenever a TRIGGER is queued in the system. Since many of the
tests in the master processor studied event processing while TRIGGERS
were queued, timer B had to be used. To determine if timer B could be
substituted for timer A in all cases, tests were run with both timer A
and timer B. It was found that if the sample size was Increased for the
timer B measurements, results from using the two different timers were
the same. Since thousands of samples were obtained for most of the
events studied, timer B was used for all event timing.

3.2 Phase II

Phase I determined the individual times required by the DAIS executive to
service the various requests generated by application software programs
designed following the DAIS software development standards.

-25—

— ~~~~~ — I ~~~~— ~~~~~~~~~



F— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - - - -  —- ~ ---- - —-~~-- — —
~
----- -

~~~~
— - -

~1

.I--~ —.
— (‘I N) ~~ Ifl

(.0 f’. 0 0~ 0 — N N) ‘
~~ In (0 F’. 0 0, 0 — N N) ~ If) (0— — CM CM N CM N CM CM

U)—
N)

La — I C

~r ~~~~~~~~~~in i n i n u r -~~~-~- t ~-l uw N NN N N N NN N NN N N N NC M N N N N N I U I I I

~: ~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ N0~~~~00 0 0~~~ 

-

c~

I ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ I I I I

N) -
N)

0-

• ~~~
-

- - U) — ~~ W 0 0 0 0 0  E
N

Iii
N 0

Z o~~~~u,~~~~— m i n  N ON  c~J r ~)m a) u, 0 0 0 0 0  1.
-. C — -‘0 -- — — —  — — 0 0 -  * 000 0 0  0.

w i n—  -
0) CM

‘u. — p.-

CM -
- C

N)—
(“I Z I n 0 ) — I n N ) 0 ) i n U ) 0 ) —M 0 ) N ) 0 U ) N )~~~ — 0 0 o 0 0

_ C
CM Ui
— - CM E N ) M N) N ) N ) N ) N ) N ) N ) N ) N ) N ) N ) N ) N ) N ) N ) N ) N ) N ) I~)0 0 0 0 0

N
0 o —  0
U) CM - • -

— I X  * WCMN)f’.N0N)—.N)I~~~~ N)N)00I~.ZX(000000 
I.

00 i— r i n i n u~~in i n i n i n i n i n i n i n i n i n I n i n i n i n I n i nu,ino o o o o  - a,
0.0 - C 4~~~~U

F’. —
Ui.. —
F- lu —

..J Z u~~0)N-0 0r.- N ) 0 — U ,— 0 — 0 d) 0 w U ~~00 0 0 0 0  a C.
UIn— I I— -

HUi I X  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~-

U. I

U — -  I~~~~ N ) F~) N ) N) F4 ) N ) N ) N ) N ) N ) F~)J~) N ) N ) N ) N ) N ) 0 0 0 0 0

F- 
I _•  U4 1

U) 0 —
— -

F-
0) .-. Z~~~ 0~~~~~~~~~~~~ N)U) N- .in~~~~~~~~~~~~~~~ CM C M W - f’ - 0 0 0 0 0  .p~I- C~~~ NN)N-’N NN) N~~~~~~~~~ -- U) N) II . U

— W  NNN (’JNNNNNNC’- J NN N N N N C MN C’JN 
_

f•• Q  
~~ — 0 — 0 N0) Wa~~~~NN a~~~~-00000U)X ( 0 W D W I n I n 0 W U~~~~~In I n I r) I n I n W W I n W*.D

(D- 0 I
U)

In—U)  
.
~~U)

(0 W (.0 W ( 0 W W W ( 0 W ( . D (O W (0 (0 (0 ( 0  0 0 0 0 0
0.) z -. — — — — — — — — — — — —

F- a
Z W N N W~~~~U ) — i n~~~~~~~~~~~~ 0-~~~~ 0 0 0 U) 0

0 —~~~~—~~~~F’..rn i n o — — C M ( 0 0 ) N i n Q ”~~F - 0 C M
0 0 U — — — — -• - -• CM CM N N N CM N

•

, 

~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ T~ 
_ _ _ _ _

k. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-
~~~~~~~ --- - --- -~ - - —-—----~ - - ~

- -
• 

- 

Z

~~~~~~~~~~~~ ~~~~~~~ — — ~~~ ~~~~ ~~~~ - 4~~~~. 
.

_tz__ — ~~ Ja.1.~ ~~~~~~~~~~ —

Phase II of the DAIS Executive Evaluation Study was designed to test the
validity of the results obtained from Phase I by using the parametric
results of Phase I to predict the executive overhead in an actual
application program. The predicted overhead would then be compared to
the measured overhead and if the measurements were the same, the Phase I
results would be validated. The hardware and software configurations
used for this task, the test procedures followed, the operating
environment experienced by the executive, and the off line analysis
software developed for the task are all discussed in the paragraphs that
follow.

- 3.2.1 Hardware Configuration -

The hardware configuration is depicted in figure 3.2-1. The hardware
necessary to support Phase II is listed in figure 3.2-2 along with the
software that is resident in each processor unit. In Phase II, the
Harris/6 performs both in a stand-alone mode and in a configuration that
links the Harrisf6 into the system through the MIL-ST04553A bus. When
the navigation system is executing in the AN/AYK-15 processors, the
Harris /6 is connected to the MIL-STD-1553A bus through a second Boeing
BCIU. During offline analysis, the Harris/6 operates in a stand—alone
mode to process the data collected on magnetic tape.

3.2.2 Software Configuration

The software that is resident in each processor is shown in figure
3.2—2. Note that the Harris/S and the POP 11/40 do not simultaneously
support the two programs that run in them; only one software element is
resident at a time. Brief descriptions of the functions performed by
each software element are given in figure 3.2—3.

—

—27-

LIi~~~~~~~
.

~ ~~~~ I ___

r ~~~~~~~~~~~~~~~~
- - -—

~~~~~~~~
- -

~~~~~~~~~
-
~~~~~~ ~~~~~~~~~~~~

---— - - - - - - - - - -- -
~~ -~~~~~~~

F- Lu ~ C ~1 I ~-

~~~ 0.

I - 1 2 1 I

r

CD
J z ~~~

I O U)

I - 0
I ‘-I
L. _ _ _ _ _ _ _ _ _ F-

~1 U, Lu CD
— ‘-p

_ _ _ _ _ _ _ • ‘-4 II.
I I F- 0 zI I >- — 0J v ,~~ I

_ _

—
_

—
_ _

‘-4
It ‘-I
If wp.

_ _ _ _ _

[11~1~1
4I:J.__ !

—

~~

—

-

~~~~~~~~~~~~~~~ lij
_______________________________ 1

_ _  
I 1 . 1

- - - 
~

_ _
Th _ _  

- _
~~~ -— —~ --- -~~~~~~~

~~~~~~~~ - -



- - -~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -_- —_ -,-

HOST HARDWARE RESIDENT SOFNARE

At1/AYK-15 Master Processor DAIS Master Execu tive
DAIS Local Executive
DARTS Nav igation System
Exec utive Evalua tion Software

AN/AYK-15 Remote Processor DAIS Local Executive
DARTS Navigat ion System
Executive Eva luation Software

DAIS Bus Control Interf ace Unit - - Ilardwired Logic
(2 un its) BCI U Microcode

DAIS Console Intelligence Unit Firmware 
-

(2 units)

Hazeltine 2000 CRT (2 units) None
Haze ltine Cassette Un it None

Boeing Bus Control Interface Unit BCIU Macro Code
Boeing Prograimiable Test Set (Progranined to be compatible with

MIL-STD-1553/DAIS operation)

Modest Control and D isplay Un it F irmware
(2 units)

POP 11/40 Computer Performance Monitor and Control
- Teletype Instrumentation Sof tware
,-RKO5 Disk Drive
Magnetic Tape Unit
Intecolor 8001 CRT

Harris/6 Computer DARTS Environmental Control
Silent 700 Terminal System Simulation
Card Reader Off line Analysis Program
Vers atec Printer/Plotter
5260A Disk Drive
Magnetic Tape Unit
4014 TektronIx Display
Tektronix Hard Copy Device

Figure 3.2-2 Phase II Softwar e Location

-29- 

- -~~~~ - -~~ -~~~ —-
- ~~~~~~~~~~~— - -~~~~ -~~~ -- — -- -- p - — - - -

-

L~. ~~~~~~~~~~ — ~~~~~~~~~~~~~
- — - -—---—- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ ~~- -~~~~~- -— 

- - -. -



U—, -

SOFTWARE MAJOR FUNCTIONS

DAIS Master Executive Control bus communications
- Process timer interrupts

Handle startup and reconfiguration

DAIS Local Execu tive Process realtime statements in
applications tasks

Control task states

Performance Monitor and Control (PMC) Load the AN/AYK-15 processors

DARTS Integrated Nav ig ation System (DINS) Accept sensor inputs, use a
H Kalman filter to update

position, velocity, etc.,
output corrections to the

- sensors 
-

Executive Evaluation Software (EES) Generate MCADIJ records before and
after certain executive
processing sequences

BCIU Macro Code Configure the Boeing BCIU to
simu late a DAIS RT

Instrumentation Software Record bus and MCADU data on tape

Offline Analysis Program Retrieve bus and MCADU data from
tape

Generate statistical summaries

DARTS Environmental Control System Advance an aircraft along a
Simulation (DECSS) preset trajectory, generate

corresponding sensor inputs to
DINS , mon itor DIMS outputs and
calculate errors

Figure 3.2-3 Phase II Software Functions

_ _
_ _ _ -h



-‘ — ——-
~~~~~ 

— -- ------— ------- - —-——--———
~~~

---- ------ ---- — — — - - —- - - - -

3.2.3 Test Procedure and Data Flow

A brief description of the test procedure used In Phase II follows. For
a more detailed discussion. refer to NTest Plan for the DAIS Executive
Evaluation.”
a) Select the test to be run

1. Choose the executive to be Investigated: master executive, local
executive in the master processor, or local executive in the
remote processor.

2. Select the test to be instrumented: interrupt service overhead,
master executive overhead, etc.

3. Determine which DIMS mode (i.e., execution sequence and processor
load) will be investigated.

b) Power up the system
c) Load the processors
d) Install the lnstrt entation hooks
e) Re~Iy the system for the test
f) Run the test and collect the data
g) Load the Harris/6
h) Process the test data
1. Power down the system

The data flow associated with the Phase II tests is shown in figure 3.2—4 .

3.2.4 Phase II Program Description

The DARTS Inertial Navigation System (DINS) is the navigation portion of
an avionics software system. The paragraphs below describe the task
execution sequence and processing load that was generated by DIMS and
measured- in Phase II.

3.2.4.1 DIMS Overview

The DIMS software employs a mixing of navigation information from a
Global Positioning System (GPS) receiver and a strapdown Inertial
Navig ation System d M5). Additional information is provided by an Air
Data Computer (ADC).

In the Phase II env ironment, the DECSS executing on the Harris/6 supplies
all of the above sensor information to DIMS through a Boeing BCIU. This
BCIU transmits data to the DINS and accepts sensor correction and display
data from the DIMS for transmission back to the Harris/6 computer. The —

BCIU operates as a remote terminal under control of the DAIS master
executive. This data flow comprises the DIMS synchronous bus traffic.
It operates on a one-second cycle and remains at a constant level
throughout the DIMS execution.

—31-

_ __ _ _ _  
—— -~~~~~~~   ~~~~~

-- - - -—---____

r - — — -
~~———~ 

—
~~~~~~~~~

— - — —-- -— — — - -
~~~

-
~~

---------------—--
~~ 

— - - -— - -- - - -

____________________________________________________ 
_________ —.~- ~~~~~~ ~~~~~~~~~~ 

_ — —



DEC-10
GENERATED 

-

______ 
I RESIDENT SOFTWARE—— — — —#•---- •1

Clii DEVICES START/STOP COP’~4ANDS‘I 

~~~~~~~~~~~~~~~
- AN/AYK— 15s

(2)

U .
_ _ _ _ _

_ _ _

J[~ MCADUs (2)}~~~~
Th - -

1~~

1-

-

~

-

BCIUs
(2)

U)II 0
I SIMULATED I ~I J~J S~~~ R]

HARRIS /6 I I
RECORDED r 1 ‘r DISPLAYS

- PERFORMA NCE DATA I F I

HAR D COPY

(NON REA L TIME)

Figure 3.2-4 PHASE II DATA FLOW

-32- -

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

4- -.
_ H-I-—-- — — —- - -

AI, - - -,-_~ __~ -,- ,_,~ - •, ~~
— ---- - ----•—-~-— -

. _ _ _._.__ __~._______________ ._~~__ _ _ _._&~~~ .__ -_ -,1_ — - ~~~~~~ -~- -— —~

—

3.2.4.2 DIMS Operational Environment

In the DARTS Inertial Navigation System, the GPS is used to calibrate the
error sources inherent to the INS and AX. This is accomplished by using
a Kalman filter. The calibration of INS error sources allows the INS to
navigate in a free inertial mode when the GPS no longer provides
information.

The GPS provides information to the DIMS once in each Kalman filter cycle
(6.0 seconds), so the full DINS execution sequence can best be described
over a six-second cycle. In figure 3.2-5 the first second of the DIMS
cycle is shown, including the tasks executed and the number of executive
service requests generated in each minor cycle. All tasks shown are
resident in the remote processor (during the normal 61’S-aided mode, no
applications tasks are executing in the master processor). The l ast five
seconds of the DIMS cycle is outlined in figure 3.2—6 . In both figures,
the following task naming convention applies:

QPxx Equ ipment handlers; move data between I/O COt’POOL blocks and
nav igation COIPOOL blocks

SP3x GPS modu les

SP4x INS modu les

SP5x Ka lman filter modules
DPxx Data gathering modules for formatting display output to Harris/6

SP14 Software clock module for signalling six-second cycles

The READ and WRITE synchronous executive service requests shown in the
figures were for an average block size of 13 words; each of these blocks
had only one copy (in the remote processor). The asynchronous
transmissions serviced compool blocks with an average length of 17 words;
two copies existed for each compool block transmitted asynchronously, one
in the master processor and one in the remote processor.

3.2.5 Offline Analysis

In order to measure the performance of the DIMS program, it was necessary
to instrument it with the same hooks that were used to col lect the PINS
data. In addition, the wait tasks were added to each processor to
measure the otherwise unused execution time. The only difference between
the data collection procedure for the two programs was that DIMS did not
use a Test Control Table to control the processing load and test
duration. Each DIMS test extended over a period of six seconds and the
test was divided Into one second ”phases” by a software “clock,”

Because of the similarity in the data gathering techniques, DIMS used the
same offline analysis program that was used for PINS.

-33-

iT~ TIT ~~~~~~~~ _ _ _ _ _ _ _

I ~~~~~~~~~
--- - - - --------- --

Minor Scheduled Priv
Cycle Tasks Reads Writes Writes Signals Waits Schedules

0

1 QP12 ,Q14,SP5O ,SP51, 3 8
QP1O

2 SP4O,SP41,SP42,SP43, 26 10(2*)
SP44,SP45,SP46,SP47,
SP4C

3 SP52 ,SP53 SP54,SP35 6

4 QP3O,QP4O,DP1O,DPI1 12 3 2

5 SP55 ,SP58,SP36 ,SP59 3 3

6 SP4B 7 3

7 SP14 2

8

9 QP12 , QP14 3 !
-

10 SP4O,SP41,SP42,SP43 , 40 16(3*) 4
SP44 ,SP45 ,SP46 SP47 ,
SP4C,SP3O,SP31,SP48,
SP32,SP49,SP33

11
-

-

— 12 QP3O,QP4O,DP1O,DP11 12 3 2

13

14 SP4B,QP31,QP41,DP12 19 12 1

15 SPI4

* Of the total number of WRITES , the figure in () IndIcates the number that
result in asynchronous transmissions between processors.

-Fi gure 3.2-5 DINS EXECUTIVE USAGE (IN NORMAL GPS-AIDED MODE)
FOR THE FIRST SECOND OF A 6-SECOND CYCLE

- (Page 3. of 2)

__
~~~t_ —--~ -—~~ -.-.-~

.
~~~-- —~- — k——— ________

~~~~~~~~

. ~ ~~~~~~~~~~~~~~ ~~~~~~ ~~~~~ 
____________



______________________ 
-

- 
- 

- - - ~~ ----- - — — --------—-- - -

Minor Scheduled Priv
cycle Tasks Reads Writes Writes Signals Waits Schedules

16

17 QP12,QP14 3

18 SP4O,SP41,SP42,SP43, 26 10(2*)
SP44,SP45 ,SP46 ,SP47,
SP4C

-t 19

20 QP3O,QP4O,DP1O,DP11 12 3 2 
-

21

22 SP4B 7 3

-
lj 

23 SP14 1

The 1/16 sec. cycle outlined above (Minor Cycles 16-23) is repeated for the
next twelve 1/16 sec. cycles (MInor Cycles 24—3 1, 32—39 , ... 112-119).

120

121 QP12 ,QP14 3

122 5P40,SP41,SP42,SP43, 26 10(2*)
SP44,SP45 ,SP46,SP47,
SP4C

123

124 QP3O,QP4O,DP1O,DP11 12 3 2

125 
-

126 SP4B CP5O 7 3 8

127 - SP14,CP1O 
—

Figure 3.2-5 (Page 2 of 2)

-35-

— -  __________________ 
- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ .~~

L. ~~~~~~~~~~~~~~ -~~. ~. -
-
-

____________________________ ~- -~~-—— —--.- —-— —~-- ~~~~~~~~~~~~~~~~~~ -.



r ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Minor Scheduled Priv
C.ycle 

— Tasks Reads Writes Writes Signals Waits Schedules
0

1 QP12,P14,SP5O,SP51 3 3

2 SP4O,SP42,SP42,SP43, 26 10(2*)
SP44 ,SP45,SP46 ,SP47 ,
SP4C

3

4 QP3O,QP4O,DP1O ,DP11 12 3 2

h
6 SP4B 7 3

7 SP14

8

9 QP12 ,QP14 3

10 SP4O,SP41,SP42,SP43, 26 10(2*)
SP44 ,SP45 ,SP46 ,SP47 ,
SP4C

11

12 QP3O,QP409,DP1O,DP1I. 12 3 2

13

14 SP4B 7 3

15 SP14

Of the total number of WRITES, the figure in ( ) indicates the number that
results in asynchronous transmissions between processors.

Figure 3.2-6 DINS EXECUTIVE USAGE (IN NORMAL GPS-AIDED MODE) FOR EACH OF THE
LAST 5 SECONDS OF A 6-SECOND CYCLE

(Page 1 of 2)

-36-



____________________ 
— -

~
-
~~~

- —
~

-
~~~~~~~ 

-- ~~ ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- -  - — —-- ~~~~~~

Minor Scheduled Priv
Cycle Tasks Reads Writes Writes Signals Waits Schedules

The 1/16 sec. cycle outlined above (Minor Cycles 8-15) is repeated for the
next thi rteen 1/16 sec. cycles (Minor Cycles 16—23, 24—31,... 112—119).

120

121 QP12 ,QP14 3

122 SP4O,SP41,SP42,SP43, 26 10(2*)
SP44,SP45 ,SP46 SP47,
SP4C

123

124 QP3O,QP4O,DP1O,DP11 12 3 2

125 
- -

126 SP4B,CP5O 7 3 8

127 SAPI4 ,CPIQ

F -

Figure 3.2-6 (Page 2 of 2)

-37-

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
- - 

—

.

- ~~~—---~~~—~~-- - —--~~---- ----- ------ — ________ ~~~— ~~~~~~ ~~~~~ 
- t ~~~~~~~~~~~~~~~~~~~~~~~~~~



I 

—

~~~~ 

- — - - ‘1

4.0 Data Anal),is S nnary -
—

The Phase I testing measured the DAIS executive performance in a
controlled load situation. The output of Phase I, reported in paragraph
4.2 , is a set of elapsed processing times which cover any individual
executive action. Working from this known executive performance, a set
of algorithms was developed for the master and local executives which
allows a user to predict executive overhead whenever the operating
environment is known. These algorithms are presented in paragraph 4.3.
Phase II testing measured the performance of the DAIS executive while
supporting a navigation system (DIMS). The executive overhead for DINS
was calculated using the predictive algorithms and these a priori numbers
were compared to the actual measL ements made on DINS. These results are
presented in paragraph 4.4.

All measurements made on the DAIS executives were col lected through the
use of software “hooks.” Although the software hooks in no way modified
the execution seQuence in the DAIS executives, they did require extra
processing time. The procedure used to determine instrumentation
overhead is presented in paragraph 4.1 below.

4.1 Instrumentation Overhead

Each measurement made on the DAIS executive requires two software hooks.
An event is trapped by instrumenting one hook at the very beginning of
the event sequence and a second hook at the end of the event sequence.
The first hook records the time when the event starts and the second hook
records the time when the event is completed. A measurable amount of CPU
time is required to execute these software hooks and record the data.
Since this CPU time will show up as increased overhead in the executives,
all measurements must be corrected for the hook (instrumentation)
overhead before being used in the predictive algorithms. All results
given in this report are identified as either corrected or uncorrected
for the instrumentation overhead.

4.1.1 Method of Calcul ation

Instrumentation overhead was predicted by applying the processor
instruction set timing estimates to each instruction In a hook and
summing the results. This method was applied to all hooks used in the
study. The timing estimates are listed for each test in paragraph 4.2.
These predicted numbers were validated in the laboratory by obtaining
measured data on the instrumentation overhead. This was done in the
following manner. First , one of the tests described in paragraph 4.2
(e.g., master interrupt service overhead) was chosen for the master
executive. The test was instrumented and data was col lected by using one
of the Test Control Tables described in appendix A (e.g., id PINS3).

-
—H

The off line analysis program generated output resembling that shown in
figure 3.1—6. From this output was extracted the number of hooks
executed in each test phase and the amount of available processor time
-that was used by the master executive. The instrumentation test was then
run a second time, only for this run all of the hooks were el iminated
from the master executive. Again , the offline analysis program was used
to find the amount of CPU time required by the master executive. By
dividing the difference in CPU time by the number of hooks, the average
processor time required by a software hook in the master executive can be

-38-

L -

! -j

—*--—— -- -- - . -
- ‘ - .

~~~~~~~~~~~~ —

— ,—~~~~~~ -—- -——-----~ — -..—-.— — — --— — -—-- — ‘I- ~ ~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ 
—



r - - --— — -~~~~~~~~~~~~~~ ~~~~~~~~~~ — - - - -  - -

determi ned. The entire procedure was repeated in an an alogous manner to
calculate the average time required for a software hook in the local
executive.

4.1.2 Data and Results

A sample of the data obtained from the instrumentation overhead runs is
shown in table 4.1-1. A series of such runs yielded the following
average hook times in the DAIS executives:

Average hook time in master execu tive - - 43 us
Average hook time in local executive - 50 us

Processing Time

Test With 
- 

Without - Hook Number of Processing
Phase Hooks - Hooks Overhead Hooks Time per Hook

1 446 ms 409 ms - 37 ms 844 43.8 us

2 509 ms 468 ms - 

41 ms 966 42.4 us

3 510 ms 468 ms 42 ms 972 43.2 us

4 502 ms 462 ms 40 ms 972 41.2 us

5 501 ms - 461 ms 40 ms - 974 41.1 us

6 507 ms 466 ms 41 ms 972 42.2 us

7 510 ms 468 ms 42 ms 966 43.5 us

8 508 ms 467 ms 41 ms 976 42.0 us

- - 
9 507 ms 467 ms 40 ins 970 41.2 us

10 508 ms 466 ms 42 ins 972 43.2 us

Execu tive Instrumented - Master

Test Performed - Interrupt Service Overhead
Test Control Table - PINS3
Special Conditions - Applications Tasks Disabled in Master Processor

Table 4.1-1 Calculation of Instrumentation Overhead - Sample Data

-39-

~ 

~~~~~~~~~~~~~~
~ —-~~~~~~~-————~~~~~~ -—~~~~ -- - -— ~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~

r r — -
~~~~~~ 

- - - --- —
~~~~~~~~~~~

It is instructive to compare these measured times to the predicted values
derived from the instruction timing, provided in paragraphs 4.2. As an
exampl e, the predicted average hook time for the master executive
Interrupt Service Overhead test is:

Tm (PHi5 + PHTe)/2
where:

Tm = Predicted average hook time, master executive
- -

PHi5 = Predicted start hook time
PHTe Predicted end hook time

The predicted average hook time for the local Interrupt Service Overhead
test (assuming the number of interrupts 3 matches the number of
rnterrupts 5) is:

= (P135 +
~‘3e

+ ~ 5s +

where:
= Predicted average hook time, remote

P135 = Predicted start hook time for Interrupt 3

~~
3e = Predicted end hook time for Interrupt 3

P155 = Predicted start hook time for Interrupt 5

~~
5e = Predicted end hook time for Interrupt 5

Inserting the predicted values derived from the instruction timing given
in paragraph 4.2.2.2.

= (47.4 us + 41.2 us)/2 = 44.3 us
I = (45.8 us + 48.8 us + 48.8 us + 48.8 us)/4 = 48.0 us

These predicted values are in excellent agreement with the measured
values of 43 us and 50 us, respectively.

4.1.3 Correcting Test Results for Instrumentation Overhead

Each of the measurements made on the DAIS executives include the time
required to process one software hook. This is illustrated on the
following time line: -

- HOOK TIME MEASURED EVENT HOO K TIME
DAIS EXECUTIVE _________

‘ . ‘ .‘
‘

HOOK PROCESSING I -

TIMER B REA D 4

-40-

- - - - — - --—--_
~~~~~~~~~~

.,
~~~~~

.
~~~~~~ 

TE-~~~. --

- - - - 

- - _

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~- —~~ ~~ - . ~~~~ ~~~ .at~ - ~~~~*


- - -

The time measured for the event is the difference in the two timer B
values recorded. The interval between the two timer B values includes
the second portion of the first hook and the first portion of the second
hook, or the equivalent of one hook time.

All of the measured times provided in paragraphs 4.2 and 4.4 are
specifically identified as being either corrected for or uncorrected for
the instrumentation overhead.

4.2 DAIS Executive Evalution Test Descriptions

Phas.e I of the DAIS Execu ti-ve Eva luation compr ised six separate tests:
Transm iss ion De lay Time (TDT) , In terru pt Serv ice Over head (ISO) , System
Response T ime (SRI) , Event Ser v ice Overhead (ESO) , Master Executive - -

Overhead (MEO) , and Local -Executive Overhead (LEO). Each test Is
described individually in the paragraphs that follow. The information
provided for each test includes:

(a) Test- Instrumentation - A description of the software hooks used
and the locations chosen for them. For each test, a time line is
developed which shows- the sequence of events and describes the
factors that could influence the service time at critical points.

• (b) Instrumentation Timing — Timing estimates for each oF the hooks
used in the test.

(c) Test Control Tables - A list of the test control tables used for
the test. -

-

Cd) Performance Data - A summary of the test data collected. For
each test, sufficient data samples were obtained to produce
average values accurate to 1% or better. For measurements in the
100 us range, thousands of test samples were collected to provide
this accuracy.

4.2.1 - Test #1 - Transmission Delay Time

- Transmission Delay Time (TDT) is defined as the delta time from a
ready—to—transmit state -In the DAIS executive to the time when the bus
transmission has been completed. See the “Test Plan for the DAIS
Executive Evaluation Program” for a more detai led discussion of the
transmission delay time test. -

A SCHED ULE statement requ ir ing an In terprocessor Serv ice Request was
selected as the “transmission” used to measure TDT. This choice was made

—because the SCHEDULE generates a hi gh—prior ity request which is easy to
identify during realtime.

4~2.1.1 TDT Test Description

The TDT test is only instrumented in the remote processor. Since a
SCHEDULE Is used as the message, the local executive routine that queues
the request (XSIPSR) is instrumented and the routine which dequeues the
request (X$ATRO) upon transmission Is instrumented.

-41-

V -

— ———-~~~~~ ---- ~-‘---—- - — — ~~—~~--

4.2.1.1.1 Instrumented Routines

XSIPSR Instrumentation

Routine X$IPSR is instrumented with a JS (jump to subroutine) instruction
at an offset of 1E16 (X’lE’) into the routine. This location was
chosen because the Asynchronous ID has been stored in a static location
in routine X$IPSR and is readily available. The Instruction at this
location, which is overstored with the jump to the instrumentation
subroutine, is saved in the Executive Evaluation Software (EES) module.

Location Contents Description of Contents

*M X$IPSR + X ’1E ’~~ 7220 JS 2,
M X$PISR + X ’lF ’ 5000 TDTR 1
M TDTSV1 8030 (Overstored instruction -
M TDTSV1+1 048C now stored in TDTSV1 of

the EES module)

X$ATRO Instrumentation

Routine X$ATRO is instrumented with a JS instruction at offset X’8’.
This location was chosen since a transmission has been completed and the
asynchronous ID is availabl e for comparison with the desired ID. The
instruction at this location which is overstored with the jump to
subroutine instruction is saved in the EES module.

-

Location Contents Descr iption of Contents

*M XSATRO + Xb08’** 7230 JS 3,
M XSATRO + X’09’ 5012 TDTR2
M TDTSV2 8021 Overstored instruction -
14 TDTSV2+1 028C now stored in TDTSV2 of

the EES modu le

4.2.1.1.2 Factors Affecting Transmission Delay Time

Sequence of Even ts:

1. Applications task requests an executive service (SCHEDULE) which
requires an interprocessor service request.

2. An interprocessor service request is queued in the asynchronous
transmission queue.

3. When the remote processor next transmi ts a status word on the bus, a
status exception is raised.

4. The master executive responds to the status exception and effects the
transmission.

* “M” signifies a modification of the referenced location.
** “X” refers to a hexidecimal offset.

—41a-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~ :~~~: i . : ~~~~~~~~~~~~

~~ 

-

, 
- ~

- 

i



V 
- -- -_- - - - — -----—----_-- — —,— _____________________________________________

APPL __________

~1xM 

ATDT 

b ____ 
-

Factors Affecting the Length of the Time Line :

Point (a) in the time line is dependent upon the number of asynchronous
transmissions already in the asynchronous transmission queue. Previously
queued asynchronous requests must be handled first.

Point (b) in the time line is dependent upon the master executive
responding to the status exception and effecting this transmission which
is determined by what the master must do prior to soliciting a status
response from the remote processor (i.e., synchronous bus list, polling
list , etc.)

4.2.1.2 TDT Instrumentation Timing

H These estimates are based upon the instruction times provided in “DAIS
Processor Ins truc ti on Set,” SA 401301.

X$IPSR (with untrue compare on ASYNCH ID) 20.6 usec
X~IPSR (with true compare on ASYNCH ID) 56.2 usec
X$ATRO (With untrue compare on ASYNCH ID) 21.2 usec
X$ATRO (with true compare on ASYNCH ID) 56.8 usec

4.2.1.3 TDT Test Control Tables

Test Contro l Tables SACIA and PINS2 were used to study TDT. A
description of these test control tables can be found in paragraphs A 2.1

H- and A.2.2 of appendix A.

4.2.1.4 TDT Performance Data

Transmission Delay Time (TDT) was measured by adding the SCHEDULE . 
- 

-

statement used to find TDT to the base load shown in figure 3.1-5. The
SCHEDULE statement was added to each minor cycle in turn to obtain
averaged data for TOT. This data is shown in table 4.2-1.

Minor cycles 1, 2, 3, 4, and 7 show very simi lar results for Transmission
Delay Time. The average TOT for these five minor cycles will be referred
to as the “nominal” TOT. Minor cycles 0, 5, and 6 show substantial
increases over the nominal TDT. The reason for these differences can be
found by studying figure 3.1-5. Minor cycles 0, 5, and 6 are the only
ones in the base load that have bus activity. BCIU transmissions of
synchronous COMPOOL blocks occur in minor cycles 0 and 5, while minor
cycle 6 has an asynchronous transmission of a COMPOOL block .

-42-

— - ~~~ — ______________

~~~~~~~ _.1~~~~II ~~ J ~~~~~ _ _ _ _ _


Minor Cycle Number Measured - Corrected
Minor Cycle 0 1919 us 1869 us
Minor Cycle 1 1375 us 1325 us
Minor Cycle 2 1350 us 1300 us
Minor Cycle 3 1388 us 1338 us
Minor Cycle 4 1450 us 1400 us
Minor Cycle 5 2631 us 2581 us
Minor Cycle 6 3088 us 3038 us
Minor Cycle 7 1463 us 1413 us

Table 4.2-1 Transmission Delay Time Data

TDT increases when BCIU transmissions occur because the master processor
must respond to a status exception raised in the remote processor. The
master processor is unaware of the status except ion until a status word
is received from the remote processor. If BCIU transmissions are in
progress, idle polling is disabled so there is no regular transmission of
status words to the master processor. The status word cannot be
generated until either idle polling is enabled again or a BCIU operation
involv ing the remote processor causes a status word to be generated. It
is this delay caused by a “busy” bus which lengthens the TDT in minor
cycles 0 and 5.

The above-nominal TDT In minor cycle 6 has a different cause. In this
minor cycle, an applications task performs an asynchronous WRITE of a
global COti’OOL block. This request is placed in the asynchronous
transmission queue before the SCHEDULE statement is executed. Thus the
SCHEDULE request cannot be sent to the master processor until the qlobal
WRITE is completed, causing the observed increase in TDT.
TDT will always be above nominal if there is already an entry in the
asynchronous transmission queue when the statement of interest is
executed. This was verified by running TDT tests with TCT SACIA. As
just one example of the manner in which TDT changed when another
asynchronous bus transm ission ex isted, the addition of an asynchronous
global WRITE to minor cycle 1 caused the measured TOT to increase from
1375 us to 3268 us.

The most useful estimate of TDT is for optimum (or minimum) response.
-
~ The minimum TDT occurs when idle polling is in effect on the bus and the

asynchronous transmission queue is empty. This will be the Drevailing
situation in a program designed to DAIS standards. Good system design
will entail infrequent use of asynchronous transmissions (so the queue
will gener al ly be empty) and heavy use of the bus will be confined to
min’,r cycles devoid of applications tasks that might require bus
support. TDT measurements were obtained for five minor cycles which had
no other bus activity. Averaging these measurements gives a TOT of 1405
us. Correcting this value for the instrumentation overhead produces the -

fol lowing resul t:
Optimum Transmission Dela.y Time = 1355 us.

-43-

L~
~~~~~~~~~~~~~~~~~~~~ _ _ _ _ _ _  

- - - -  _ ____ - - - -—

~~~

— — -.~~~ -.-— ~ -___ g-~--M ~~ A~ — ~~

-~~~~~~~~~~~~~~~~~~~ - - - - -
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

-

In the following paragraph TOT estimates are generated for situations
other than the optimal one.

4.2.1.5 TOT Theoretical Modelinq

In this section we develop a mathematical model for the prediction of the
average asynchronous Transmission Delay Time in more general
circumstances. It is felt that since the times of occurance and times of
ser v ice of asynchronous events are inherently ran dom, a statistical model
is necessary for complete analysis. This model is formed using known
results from statistical queuing theory and measured DAIS parameters.

For the purposes of this work, a mathematical model is used in which
several assumptions must be made. These assumptions are only partially
justified at this time since the model is used for predictive purposes
only and should be judged solely on that basis. From this model we can
show, theoretically, the effects of system utilization on asynchronous
transmissions. We then check our model by comparing theoretical
prediction with the data presented in section 4.2.1.4.

We begin by describing the model we use for this work. It is assumed
that the system (composed of asynchronous transmission requests, the bus
transmission queue and bus transmissions) behaves like a single server
queue with a Markov interarrival time distribution and a Markov service
time distribution. That is, we assume that asynchronous transmission
requests are distributed randomly in the applications program and the
time between requests has an exponential distribution (described below).
Furthermore, we assume that the time necessary to service each
asynchronous transmission request is a random variable with an
exponential distribution. Random service times are justified by assuming
the asynchronous activity of remote terminal s ties—up the bus for random
periods of time as discussed under “Factors Affecting the Length of the
T ime L ine” in paragraph 4.2.1.1. We quant ify the above by letting:

= time between asynchronous transmission requests (a random variable)
and

= ser vice time, that is, time required to perform the transmission once
the request reaches the head of the queue (also a random variable)

Defining

Ft (t) = P (t ~ t) (the probability that ~ is less than or equal to t), andF~ (x ) = P 
~~~~~~~~~ 

x) (the probability that ~ is less than or equal to x)

then by exponential waiting times we mean
•

~ (t) = 1~ F’~(t) = Xe~~
t (t ~ 0)-, and

f. (x) = ~~~ F.~(x)
= ue~~ (x? 0)

(Both densities are zero for arguments less than zero.)

-44- —

1

By specifying A , the average number of asynchronous requests per second
and ~a the average number of transmissions per second, we completely
speci#y the statistical behavior of the queue. Note that

E(t) I = 1/ (average interarrival -time), and
E(~) = = 1/u (average service time)
where E represents mathematical expectation (the “averaging operator”).

We define Transmission Delay Time as the time spent waiting in the
transmission queue (waiting time) plus service time. Hence, average
transmission delay time is given by

where W is the average waiting time. Our model will predict 1’TYF. -In
this model the key parameter is the system utilization factor,p. We
define p by: 0 X x ; it may be thought of as the ratio of the rate at
which asynchronous ~transmission requests arrive to the capacity of thesystem to transmit these messages. -It may also be thought of as the
average fraction of the available time that transmissions take place.

The aver age number of requests per second ; determined by the
applications programs. The average service time i~ dependent on thelength of time taken to transmit the message and, in our model, it is

-
~ also dependent upon the amount of bus activity other than the

- asynchronous activity requested by the master processor. That is, we
consider the delays caused by all synchronous bus acti vity and the
asynchronous activity not requested by the local processor as additional
average service time, .W.

For ou r particular queue, we find from Kleinrock (Queueing Systems
Volume II; Computer Applications, Wiley Interscience, (New York), 1976)

-
- that:

W - 1 - p

and hence,

From the data analysis in the previous section, we find that the average
transmission time (serv ice t ime) is approx imately Y z 1355 usec. Using
th is value, we obtain the_plot shown in fIgure 4.2-1. For average
Transmission Delay Time (TIJI) vs p.

In order to finish (on the average) the transmission load placed on the
system in one minor cycle before the foll~ .ing minor cycle begins loading
the system, we require that the average transmission delay time be less
than the minor cycle period, 7812.5 usec. From figure 4.2.1, thIs
corresponds to o 0.8266 which in turn corresponds to

-45-

L _ _ _ _ _ _ _
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

• __
~~~~~ _ _ _ _ _ _ _ _ _

~ 

~~~~~~~~~~~~~~~~~
- . - - - - - i_~ _ — - ~~L1 ~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~

___________ ~~~~~

2_ 0.8266 6 610 events/sec

that is, 610/128 = 4.77 events/minor cycle. Hence, we should expect to
perform no more than 4.77 asynchronous transmissions per minor cycle on
the average without falling behind. Indeed, the data collected thus far
indicates that no more than four asynchronous transmissions per minor
cycle are accomplished (by the remote processor), and on the aver age
slightly less than four per minor cycle are observed. Taking into
account the small number of minor cycles sampled (8), as well as the
unverified modeling assumptions specified earlier, the agreement is
considered reasonable. -

- - For minor cycles 0, 5, and 6 (refer to figure 3.1-5) we make the
assumption that the additional bus activity is uniformly distributed over
a mi nor cycle and that this may be viewed as additional service time.
For example, from table 4.2-1, we use an average service time (

~
) of 1869

usec for minor cycle 0 and an average service time of 2581 usec for minor
cycle 5. The entry for minor cycle 6 represents the average service time
for two asynchronous transmissions and hence the average service time for
one transmission is 1519 usec. When we apply the above analysis to minor
cycles 0, 5, and 6 we obtain the curves shown in figure 4.2-2 for T5T
vs p . Continuing the analysis, we develop the table below which gives

• the expected and the observed maximum number of asynchronous
transmissions per minor cycle based on the assumption that the max~~urnT~’T allowable is the length of one minor cycle.

Minor Cycle Theoretical Maximum Average Observed Maximum Average
Number Number of Transmissions Number of Transmissions

0 3.18 3.1
5 2.03 2.0

H 6 - -
-

4.14 3.5
1, 2, 3, 4, 7 4.73 3.5

This table may be considered as a check of the theory developed in this
section and as a verification of the assumptions behind the theory. It
appears that the model is accurate for very busy periods and is somewhat
optimi stic for periods with little or no additional bus activity. Once
again, the small number of minor cycles sampled must be considered when
assessing the results.

The primary conclusion that can be drawn from this analysis is the
unsurprising statement that this executive is amenable to processing only
a few asynchronous transmissions per minor cycle.

4.2.2 Test #2 - Interrupt Service Overhead

Interrupt Service Overhead (ISO) is def i ned as the time from the receipt
of an interrupt signal to the time of the return to the interrupted
program (either an actual return or a transfer of control to some
controlling program). See the “Test Plan for the DAIS Executive
Evaluation for a more detailed discussion of the Interrupt Service
Overhead test. -

-46-

~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



——---- - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~—-~~~~- - -

minor cycle t u e  I............•.••••...y. ......•........................... ............... . ............ ...

- 

7~~ I

Jfri

~Ij

- LI ..._~~~ I 4- 4 I

(unitlees)

FS~~~~r. 4.2-1 Av.ro~, Trtrimela.ian DeiQy Time vi, Sy.t.ui Utilization Footor
- -47-

-p
• - 

_____ __________________ _______________ — - -
. —-

- 
-

-.1-~~~~~~~~~~~~ - -~~~~~~~~---~~ - - -~~~~ - - - -- -- - -  -- - —- --~~~~~~~~~~~~~ --~~

- ~~•:
••-~~•~ ~~ ~~~~~~~~

~~~~~—~~~~--- __± ~~
-‘-

~~~~~ - ~~~~~ — — .— ~— — —-----—-~—--~ ~~~~~~ 
- -~ -~~ ~~~~~ ~~ ~ . ~~~~~~~~ ~~~~~~~~~~~~~~ — ~~~~~~~~~ ~A. ~.



rpr 
-.—..— - -- -- - .---._- -~~ - -

8~~j _ • • I
cinor cycle time

. ...... . . . ._ . o. .f l . . f l.f l•. f l f l•f l l f l • •s • • • •I •  ....... . ... • .SSSS$f l S•S•S.

luLl

uIL’

iinor~~le5 
/

It ’

I / cinar cycle B

‘U

uinor cycle 6

• ‘U 
-~~~~

H
_ _ _ _ _ _  _ _ _  -

(unitlese)
Fi9ure 4.2-2 Avera9e Tr~~mieeion Oel~y Time vs. System Utilization Factor

with Additional Rue Loading

______ 

- - - - 

-48-

r - - - - -______ ~~i • ‘,

—
_~~~~~~ — - - - . 

~~~~
.

~
. ~~~ ----- L

~~~~~~~~~~~ .. .~. ~~~~~~~~~~ ~~~~ ~~~~~~~~~~~~~~~ —



4.2.2.1 ISO Test Description

The Interrupt Service Overhead test is instrumented in both the master
and remote processors s ince each processor responds to a different set of
interrupts.

4.2.2.1.1 ISO Master Processor Test Description

4.2.2.1.1.1 Instrumented Routine

In the master processor all Interrupts are fielded through one coninon
routine, M$INTH. The address of the appropriate interrupt handling
routine is loaded into register 1 and a jump to subroutine is executed to
cause the transfer of control. The return from the interrrupt handling
routine is always through the address in the linkage register 2. The
jump to subroutine via register 1 instruction is replaced by a jump to
the interrupt service overhead data gathering routine.

M$INTH Instrumentation:

Location Contents Descr ipti on of Contents

*M M$INTH + X’C2’~~ 7220 JS 2,
M M$INTH + X’C3’ 7F00 ISOM1

Only one instrumentation hook is required since routine 150141 ensures
that upon completion of the interrupt service, 150142 will be entered to
record the end of Interrupt service. See “Executive Evalution Software”
program documentation for a more detailed description of these
subroutines.

4.2.2.1.1.2 Factors Affecting Interrupt Service Overhead — ISO (Master)

Sequence of Events:

1. Hardware interrupt is taken and routine M$INTH is entered. -

2. M$Ir4TH calls M$BINT (for bus interrupt), M$GIN T (for general
interrupt) or M$TIMA (for timpr A Interrupt).

3. Interrupt is handled and return is to MSINTH to dismiss the interrupt.

- TU~~II
4.2.2.1.1.3 Master ISO Time Line:

Execut l ve Interru pt 1 I’
Hjndling Routine

Inter~uptab le Routi ne ________ - aZSS
$ 1  I f

DISMISS
INTh SftUPT • - INTER* 1

*IIM1I signifies a modification of the referenced location
~~“X” indicates an offset

- —49—

- - — -—— --- ---—-.-- -- —— --— - - -- -~ - -— - — - — - --- - --- — —-~~~—- ——- - - - - - --
— —~•-,-‘ - --f.

h. ~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ - - -  — ~~~~~~ -~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-_._ - 

~~~~ ~~
-.--- .

~~~~~~~
-,-.‘

~
-_



4.2.2.1.2 ISO Remote. Processor Test Description

4.2.2.1.2.1 Instrumented Routines

In the remote processor all interrupts are fielded through one coimion
rou tine, X$REM1 and the actual handling of the interrupt is through
X$AREC , X$ATRO and a small internal subroutine in XSREM1 named MC. After
Interrupt service, return is always through i nterna l subrou tines SUSPEN or
RETN in X$REM1. -

X$REM1 Instrumentation 
-

Location Contents Descr iption of Con tents
N X$REM1 + X’FC ’ 7220 JS 2,
M X$REM1 + X’FD’ 5026 ISOR1

14 X$REM1 + X’llE’ 7220 JS 2,
M X$REM1 + X’llF’ 504C ISOR4

M X$REM1 + X’124’ 7220 JS 2,
M X$REM1 + X’125’ 5032 - ISOR2

M X$REM1 + X’126’ 70F0 JC 15,
14 X$REM1 + X’127’ 505A ISOR5

M X$REM1 + X’130’ 7220 JS 2,
M X$REM1 + X ’ 131’ 503E I SOR3

The instructions which are overstored at X$REM1 + X’llE’, X$REM1 + X’124’
and X$REM1 + X’130’ are saved in the Execu tive Eva lua ti on Software (EES)
modu le:

-Location Contents Description of Contents

14 I-SOSV1 8A00 Overstored instruct i en - 
-

N ISOSV1+1 8008 from X$REM1 + X’130’

M ISOSV2 50F0 Overstored instruction
M ISOSV2+1 0495 from X$REM1 + X’llE’

N ISOSV3 8F2O Overstored instruc tion
M ISOSV3+1 014E -from X$REM1 + X’126’

The instructions which are overstored at X$REM1 + X’FC’ and X$REM1 +
X’124’ are not saved since they are both JS 2 instructions which are
replicated in the Executive Evaluation Software module. See the
“Executive Evaluation Software” documentation for a more detailed
discussion.

-50-

_ _  :
_
~~ ~~~~~~~~~

—- ---- • — - - - - - - ---

~~

--- -

_ _  

-
~~~~~~~ 

‘--~~~~-~~~~~-
~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ I~~~~~~~~r



— -- - - -——--,- —-- ~---.~----—--—.—•----- --- -—.----—--- ---- ---,- ---.---:------------------—--- ——-——- ---—--— — ———-~‘

4.2.2.1.2.2 Factors Affecting Interrupt Service Overhead - ISO (Remote)

Sequence of Events:

1. Hardware interrupt is taken and routine X$REM is entered.

2. X$REM calls XSAREC or X$ATRO (f or bus interrupts) or sets the minor
cycle.

3. X$REM dismisses the interrupt.

4.2.2.1.2.3 Remote ISO Time Line:

Interrupt 3

JC.$ARE.C/ X.$ATRO ______________________

Executive Interrupt 
-

Handl i ng Routine -

Interruptable Routine 
_________ 

~iso 

________

In terrupt 5

Execu tive In terru pt
Handling Routi ne

Interruptibl e Routi~~
_______ AlSO -b

4.2.2.1.2.4 Factors Affecting Length of Time Line

Interrupt 3:
The time spent in X$ATRO is affected by the presence of another
message in the asynchronous transmission queue

The time spent In XSMEC depends upon whether this is a reception or
a retransmit request

Interrupt 5:
The time line Is fixed for an interrupt 5.

—Si -

_ _ _ _ _ _ _ _ _  
I

_ _



-~~~~~~~~~~~~~

4.2.2.2 ISO Instrumentation Timing

These estimates are based upon the instruction times provided in “DAIS
Processor Ins truc ti on Set,” SA 401301.

4.2.2.2.1 ISO Master Processor Instrumentation Timing

M$INTH (at start of ISO Timing - ISOM1) 47.4 usec
MSINTH (at end of ISO Timi ng - ISOM2) 41.2 usec

4.2.2.2.2 ISO Remote Processor Instrumentation Timing

X$REM1 + X’FC ’ (start of interrupt level 3 timing) 45.8 usec
XSREM1 + X’llE’ (end of interrupt Liming) 48.8 usec
X$REM1 + X’124’ (start of interrupt level 3 timing) 45.8 usec
X$REM 1 + X’1~6’ (end of interrupt timing ) 48.8 usec
X$REM1 + X’130’ (start of interrupt level 5 timing) 48.8 usec

4.2.2.3 ISO Test Control Tables

Test Control Table PINS3 and PINS4 were used to generate data for the
Interrupt Service Overhead (ISO) tests. A description of these test
control tables can be found in paragraphs A.2.3 and A.2.4 of appendix A.

4.2.2.4 ISO Performance Data

The time required by the DAIS executive to process all major interrupts
was measured in this test. Certain interrupts which occur infrequently
were not measured (e.g., the interrupt signalling a rollover in timer B
occurs every 6.5 seconds and was not measured). The interrupts are
described below according to the processor in which they occur.

4.2.2.4.1 Master ISO Data

All master processor interrupts were measured in a variety of operating
• env ironments. The time required to process an interrupt 10 (timer A)

depended upon the existence of a TRIGGER in the system. The major
interrupts in the master processor and the time taken to process them are:

-52-

r -— - - - ______- ______________ - 

- 
- - 

- 
-~~-t - - - - — - - 

- - - -

k - - - 
- 

- - 

~

- - — ---- -- —
~
:-‘------ - — -

- —,— -——_ --•-~~~~ •~~~~——-._—~~~~ -
__ —~~~~~~~~~~~ --- - — -

~ 
— ___________________________



- -~~~~~ ---~~ -~~--~-—- 
—- - — -  

— —~ - - - - - --- - - —~~-~~~~~~~~-- -~ -------~- -

Measured Corrected
Interrupt Description Time Time

1 BCIU Halt 219 us 176 us

3 Asynchronous completion (either 281 us 238 us
reception or transmission)

5 Status exception (asynchronous 398 us 355 us
request)

10 Timer A (minor cycle completion 226 us 183 us
w ith no TRIGGER queued )

10 - Timer A (minor cycle completion 362 us 319 us
with a TRIGGER queued)

10 Timer A (upon completion of TRIGGER) 190 us 147 us

H Table 4.2-2 Master Processor Interrupt Times

The measured times include the instrumentation overhead. After
correcting the measured values for the instrumentation overhead, the true
interrupt times in the master processor are shown in the last column of
table 4.2—2.

- Figure 4.2-3 depicts the overhead time used for master processor
interrupts as a function of the number of interrupts encountered for
interrupts 1, 3, 5, and 10 (TRIGGER completed). The straight lines
indicate that the overhead time per interrupt does not vary as a function
of processor load.

4.2.2.4.2 Remote ISO Data

All remote interrupts were measured in a variety of operating
environments. The measured interrupt times do not vary with processing
load; however 1 interrupt 3 times depend upon whether the cqmple~ed BCIU
process was a reception or a transmission. The measured times for the
remote interru pts are:

Interrupt Description 
- 

Measured Time Corrected Time

• 3 Asynchronous Transmission 127 us 77 us
3 Asynchronous Recepti on 196 us 146 us
5 Minor Cycle Mode Code Receipt 114 us 64 us

Table 4.2-3 Remote Processor Interrupt Times

- —53-

— - _~~~~_ . _ —
~~~~~~ ~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~


- - — -- - - - - - ---~-- - —-- _ _ _ _ _ _ _ _

a.

—5

/

~~~~~~~~~~~~~~~~~~~ 1nte~~ Pt 3

Nu~ er of Interr9 ts - 
-

Figure 4.2-3 Master Processor Interrupt Overhead Times vs. ~~er of Inten~ ts

• _cd-

- -- - - -- -- -~ - - - -

~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .. ___________ — ~~~~~ ~~~~


- - - ---
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _~~~~~~~

—
~~~~~

- ~~~~~~~~
-- fl

The measured times include the Instrumentation overhead. These
measurements were corrected for the overhead incurred, and the corrected
interrupt times for the remote processor are shown In the last column of
table 4.2-3.

Figure 4.2.4 depicts the overhead time used for the remote processor as a
function of the number of interrupts 3 encountered (interrupt 5 occurs
only once per minor cycle and is not shown). The straight lines indicate

• that the overhead time per interrupt does not vary as a function of— processor load.

4.2.3 Test #3 - System Response Time

System Response Time (SRI) is defined as the amount of time between a
ready-to-transmit state in the DAIS executive and receipt of a response
to that transmission. For this particular measurement, an interprocessor
service request is used for both the transmission and the response.

To all ow measurement of the System Response T ime, a special PINS task
resides in each processor. The first task requests a SCHEDULE of the
second task (which is resident in the other processor) and the first
task then requests a WAIT for event. When the second task is activated,
it will SIGNAL the event to the first task.

4.2.3.1 SRI Test Description

The System Response Time test i-s instrumented in both processors and is
the same in both. Since a SCHEDULE realtime statement is used to start
the timing, the routine which queues the schedule request, XSIPSR, is
instrumented. Also , a SIGNAL from the other processor will end the
System Response Time timing so the event handling routine, X$EVHA, is
Instrumented.

4.2.3.1.1 SRI Master Processor Test Description

• 4.2.3.1.1.1 Instrumented Routines

The start of timing is in the interprocessor service request routine
X$IPSR.

X$IPSR Instrumentati-~rn

• Location Contents Description of Contents

74 X$IPSR + Xh1E’~ 7220 JS 2, —

M X$IPSR + X ’lF ’ 7F15 SRTM1
The Instruction which is overstored at X$IPSR + X’lE ’ is saved In the
executive evaluation software for execution prior to return to the inline
code of X$IPSR.

*“M’I signifies a modification of the referenced location.
**NXII signifies an offset.

-55-
$ —

~~ — —~—--- -.——- ----~

- -S
~~~ ~~~~~~~~~~~~~~~~



- - _ - — - -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~ - — ~-~-~~~ - — ~~-- — ----- 
~~-

I Mynck~~* /

/

a

II  

/ 
_.

P~iuiber of Intemipts -

Figure 4. 2-4 

- 
Remote Processor Intemj t 3 Overhead Time. vs. ~~er of Intempts

L_ _ _  - _ _

_ _ _ _ _  - - —-— -- - - -~~~~-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . - _ _ _ _  — 
~~~~

~~. ~~~~ ~i•••_____. —~~~~
—h

~~~~~~
-’- 

~~~~~~~~~~~ — - i~. ~~~~~~~~~~~~~~~~~ _ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


7--- — :-- —-—----- -- —----- —~--~~~~~~~~ - - —-- --5-

Location Contents Description of Contents

M SRTSV1 8030 Overstored instruction
M SRTSV1+1 048C from X$IPSR + ‘lE’

The end of timing is in the event handling routine X$EVHA.

X$EVHA Ins trumentation

Location Contents Description of Contents

74 XSEVHA + X’8’ 7220 JS 2,
N X$EVHA + X’g’ 7F28 SRTM2

The Instruction which is overstored at X$EVIIA + X’8’ is saved in the
executive evaluation software for execution prior to return to the inline
code of X$EVHA.

Location Contents Description of Contents

74 SRTSV2 8O1F Overstored instructio,~M SRTSV2+1 0001 from X$EVHA + 8

4.2.3.1.1.2 Factors Affecting System Response Time - SRI (Master)

Sequence of Events:
- 1. Applications task in master processor issues SCHEDULE request for - -

counterpart task in remote processor.

2. Interprocessor Serv ice Request program queues SCHEDULE request for
other task. -

3. Application s task enters WAIT for event SIGNAL from counterpart task.

4. Schedule request is transmitted to remote processor.

5. Task is SCHEDULEd in remote processor and is activated.

6. Task in remote processor SIGNALs event which is queued as an
interprocessor request and a status exception is raised.

7. Master responds to the status exception and asynchronous transmission
of the request is started.

-

• 8. SIGNAL is queued and local executive in master processor is notified. -

4.2.3.1.1.3 Master SRI Time Line

~~~~~~~~~~~~~~~~~~~

u

~~~~~~~~~~~~~~~JTh’ ”

_ _

-
!NTEUUPT 1NTC~RUPT

I -b Sri-is_ C Phi d • —~~

-•

-
-‘ :

___ — — -~_~_~~~~~__~~••..5._. - - ~~~~~~--- S
~~~~~~~~~~~~~—,

~ — --u------ .----- •_ _--•• . - - — 
________—, - - - -  - . - - 

- — - 
— -.

~

-—- _— —_
~

_
v.-’——---— 

- - — 
- - -— _•a.S____S_ ~~~~~~~~~~ 

~~~~~~~ ~~~~~ —‘~~~~~—~~-~~~~ .-—- i~ .. . . ___________ -~~ —~


-, — -

~~~~~~ 

- 
- r - ~~~-’---.,,- ~ 

4.2.3.1.1.4 Factors Affecting Length of Time Line

Items a - e below refer to se~nents of the above time line.

a. if bus is not active, X$ATR 1 and ~ ASI are ca ll ed; otherw ise X$IPSR
simply adds the request to the as.yn:hronous transmission queue.

b. varies by the number of asynchronous transmissions in the queue ahead
of the one being measured and a currently active synchronous
tran smission, if any. The interrupt that terminates time b is the
interrupt that allows this request to be transmitted.

— 

c. is fixed and is the time to effect this transmission when It reaches
the top of the queue.

d.~ varies by the amount of time It takes the master processor to
- 

- 
acknowledge the request for an interprocessor serv ice request
(SIGNAL) and ready it for transmission.

e. varies by master executive functions or local executive functions
already pending when the SIGNAL Is received.

4.2.3.1.2 SRT Remote Processor Test Description

The start of timing for the System Response Time test is in the
Interprocessor Service Request routine X$IPSR.

X$IPSR Instrumentation
- Location Contents Description of Contents

M X$IPSR + X’lE’ 7220 JS 2,
M X$IPSR + X’lF’ 5068 SRTR1

The instruction which is overstored at X$IPSR + X’lE ’ is saved in the
executive evaluation software for execution prior to return to the inline

- 

- • code of X$-IPSR.

Location Contents Descr iption of Contents

M SRTSV1 8030 Overstored Instruct-Ion
N SRTSV1+1 048C from X$IPSR + X’IE’

The end of timing is in the event handling routine X$EVHA.

Location Contents Description of Contents

M XSEVHA + X’8’ 7220 JS 2,
N XSEVHA + X’g’ 407A SRTR2

The instruction at XSEVHA + X’8’ which is overstored Is saved In the
executive evaluation software for execution prior to return to the Inline
code of XSEVHA. 

-

Location Contents Description of Contents

M SRTSV2 801F Overstored instruction
N SRTSV2+1 0001 from XSEVHA + X’8’

-58- -

- - - _~~~~~ _iI. - - - 
5 - 

-- --:~-~~ ----~~-- ~~~~~~~~~~~~~~~~~~~~~ - -
— -~•~~~ -- — _•5__.~S 

-
~~ 

—
~ 

*
~
,-‘5-. 

—‘-5- ~~—_ -5- ~~~~~~~~~~~~~~~~ — - ~~— ~~~~~~~~~~~~~~~~~~~~~~~~~



~~~~~~~~~~~~~~~~~~~~~~~ -~~~~:~~~~~~~~~~~~~~~~~~~~~~ .-- --— -——----—-—-- -
‘.5- - - --------—-5- — --- - — ---- - - -—---5-—-5—5---.-S----- — -5— -- —5- -

4.2.3.1.2.2 Factors Affecting System Response Time - SRT (Remote)

Sequence of Events:
1. Applications task in remote processor requests SCHEDULIng of

counterpart task in master processor.

2. X$IPSR queues the request; the applications task enters a WAIT state.

3. Request becomes first in queue and status exception is raised.

4. Master responds to status except ion and effects asyn~hronous
transmission.

5. Local executive in master schedules and activates counterpart task In
master processor.

6. Counterpart task requests an interprocessor SIGNAL.

7. Interprocessor signal request is queued.

8. Interprocessor signal request becomes first in queue and master
effects the transmission.

- 9. Interprocessor SIGNAL is received in remote processor.

10. Event handling routine completes application task WAIT.

4.2.3.1.2.3 Remote SRI Time Line

~~~~~~~~~~~~~~~~~~~~~ 

_ _ _

_ _ _ _

- 
!NTERRU~T !NTER~UPT I XSEY1~

e—.- I b ‘1~ 
c

I— AS*T

4.2.3.1.2.4 Factors Affecting Length of lime Line

Items a-d below refer to se9nents of the above time line.

a. if transmission queue is empty, X$ATR1 is called to raise a status
exception.

b. Is terminated by the interrupt which allows this request to be the
next transmission. This time is affected by the bus list and the
polling sequence which determines when the master will see the - status
exception.

c. Is terminated by the interrupt resulting from the receipt of the
asynchronous signal which the applications task is WAITing on. This
time Is dependent upon the number of asynchronous transmissions In
the master processor asynchronous transmission.

d. this time Is dependent upon the number of asynchronous receptions In
the queue ahead of the SIGNAL request from the master.

-59-

S

- ~~~~~~~~~~ - S

________ 5- ~.s s A ~~~~~~~~ ~~
-
~~~~~~

-‘- -- - -- “
~ ‘~‘

U — --- --5-— - -

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

4.2.3.2 SRI Instrumentation Timing

These estimates are based upon the instruction times provided in “DAIS
Processor Instruc tion Set,” SA 401301.

X$IPSR (at start of SRI Timing) -
— 

(on true compare on ASYNCH ID) 55.0 usec
(on untrue compare on ASYNCH ID) 21.4 usec

X$EVHA (at end of SRI T im ing)
(on true compare on EV’TAB’OFFS) 55.0 usec -

(on untrue compare on EV’TAB ’OFFS) 21.4 usec

4.2.3.3 SRI Test Control Tables

Test control tables SACIA and PINS3 were used to measure the SRT. A
description of these test control tables can be found in paragraphs A.2.1
and A.2.3 of appendix A.

4.2.3.4 SRI Performance Data

System Response Time was measured by adding the SCHEDULE statement used
to measure SRI to the base load shown in figure 3.1-5. The SCHEDULE
statement was added to each mi nor cycle in turn (omitting 7 since the
load in 7 is identical to the load in 3) to obtain data for SRT. The
averaged data are shown in table 4.2-4.

Minor Cycle Number Measured Corrected

0 4581 us 4531 us
1 3656 us 3606 us
2 - 3694 us 3944 us
3 3656 us 3606 us
4 4081 us 4031 us
5 5475 us 5425 us
6 5369 us 5319 us

Table 4.2-4 System Response Time Data

As found with the transmission delay time (see paragraph -4.2.1.4) the —

times obtained in minor cycles 0, 5, and 6 are substantially higher than
the others. Once again, the cause of these Increased response times can
be traced to the existence of bus traffic in minor cycles 0, 5, and 6.
BC IU transm issions of synchronous CONPOOL b loc ks occur in minor cyc le 0
and 5, while an asynchronous transmission of a COMPOOL block occurs in
m inor cycle 6. System response time Is slowed in minor cycles 0 and 5
because the bus is busy with synchronous transmissions and status
exceptions cannot be recognized by the master executive until the current
bus transmission is completed. System response time is longer in minor
cycle 6 because a previous asynchronous request is already queued in the
asynchronous transmission queue when the SCHEDULE request is processed.
The previous request must be handled before the SCHEDULE request can rise
to the top of the queue.

-60-

- _______ —~~~~ - - - 
-5 - 

- -5 -5 

~

- ~~~~~~~~~~~~ 
- - 5 -  -5.

5- —--—- -—5~~~~~~~
S __

~~~~~ 

—
~~~~~~~~~~~~~~~~~~~~~~~~~~~ __S~ _~S5~_-5 ~~~~~

‘—i- —S — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —~~~ - ---~~- ~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~ — .s- — ~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~ ~L


_ _ _ _
_ _ _

As with TDT, SRI will always be above nominal if there is a previous
entry in the asynchronous transmission queue. This was demonstrated by
running SRI tests with TCT SACIA. As just one example of the manner in
which SRI changed when another asynchronous bus transmission existed the
addition of a TRIGGER to mi nor cycle 6 caused SRI to increase from 5~69us to 6819 us.

The most useful estimate of SRI is for optimum (or minimum) response.
The optimum SRI occurs when idle polling Is active on the bus - and the
asynchronous transmission queues in both the master processor and remote
processor are empty. This will be the prevailing situation in the
majority of cases when a system response Is required. The measurements
for m inor cycles 1, 2, and 3 were made in just such an operational
environment. Averaging these measurements yields an SRI of 3669 us.
Correcting this value for the instrumentation overhead produces the
following result:

System Response lime = 3619 us.

It should be emphasized that this figure represents the minimum system
response time that can be expected. As noted above, the addition of even
one or two other asynchronous requests can greatly increase this time.
During this study, processor loads often caused the system response time
to exceed one minor cycle. This is an important point for designers
since it may not be assumed that a non—local task will always be
activated during the same minor cycle in which It is scheduled.

4.2.3.5 SRI Mathematical Model

In this section we construct an approximation model in order to predict
- system response time as a function of the basic bus busy time. By basic
bus busy time we mean the bus loading time (over and above nominal)
imposed by the activities of the various minor cycles of figure 3.1-5.
For instance, in minor cycle 0, two 16-word COfi’OOLs are transmitted and
this causes a basic bus busy time of 640 usec (for minor cycle 0). The
other basic bus busy times are 0. usec for minor cycles 1, 2, 3, and 4,
1760 usec for minor cycle 5 and 1355 usec (estimated from section
4.2.1.4) for minor cycle 6. -

To form the linear predictor we plot the measured system response times
(refer to the previous section) versus the nominal bus busy time referred
to above. This is shown in figure 4.2-5. The least squares straight
line (regression line) is then fitted to the data. This is also sh~.n infigure 4.2-5. We then use the regression line equation as our predictor:
SRT = 1.002 (Nomina l Bus Busy Time) + 3808 usec, where SRI is the —
estimated system response time.

This analysis shows that there is almost a one-for-one slide in SRI as a
result of the additional bus activi ty imposed by the various tasks of
figure 3.1-5. The curve in figure 4.2-5 would be expected to level out as
more and more bus activi ty is added. This is due to the fact that
eventual ly some of that bus activity will be queued after the scheduled
request. This was not the case for this test.

-61-

~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _ _ _  ~~~~~~~~~~~~~- 
.5

_______________________________________ 5-— —5-— ~~•~••~•••~~



- - —- 5 — —-5 —-5- - -—-5-  -
~~-- -5--- - - — - 5-  —5-,’

I

1. øø2x+38~8
-5 

1-1

S

5- 
L ‘~~~~~~~~~ is 

.-

~~~~~~~~~~~~~

Bo.io Bus 8usy lime (
~.ec)

FI9Lr. Response Times

~~~~~~~ - - ---------- -~~~- - -- —- - -5-— -- —- - — - 5—— -----—-5 - - - - -- i - - - 
- 

-
-- - - 5  -

.-~~~~~ - 5

— ~~~~~~~ 5-’ — ~~ ~~~~ — -  &J~ ~~~~~~~~~ - ~~~~~, ~~~~~— -



4.2.4 Test #4 - Event Service Overhead

Event Service Overhead (ESO) is defined as both the total amount of time
spent In the executive handling event service and the amount of time
spent handling the individual event services by type.

The events which were selected for the DAIS Executive Evaluation Event
Service Overhead timi ng include:

o Application s Task Signal Request
o PrIvileged Task Signal Request
o Applications Task Event Wait Request
o Local Executive Task Event Handling —

o Loca l Execu tive Even t Han dli ng
o Local Executive Minor Cycle Event Handling

For a more detailed description of the Event Service Overhead test , see
the “Test Plan for the DAIS Executive Evaluation Program.”

4.2.4.1 ESO Test Description

4.2.4.1.1 Instrumented Routines

As specified in the Test Plan, the ESO test is instrumented in the remote
processor only. ESO processing ‘is the same in the master orocessor, but
the data is more difficult to extract because of the additional
interrupts in the master processor .

Due to the design of the DAIS Executive Program, the gathering of ESO
data cannot be accomplished by instrumenting the executive at the entry
to and exit from an event service routine because during the handling of
the event, an interrupt may occur causing control to pass to another
executive routine rather than return to the requesting routine. When
this occurs the time spent servicing the interrupt must be taken into -

account rather than treating it as event service overhead. Addit1on~lly,the return to the requesting task may not be effected due to the event
-
~ - service. In this case the time must be noted when the transfer of

control takes place. To accomplish this the executive routine X$REM1 is
instrumented at the three points where transfer of control is effected.

o X$SUSP -

o X$CALL
- o -X$REST - -

In addition to these instrumentation hooks, the routines which han jle the —

event service types listed above will be instrumented. These routines
are: -

o XSASIG
o X$PSIG
o X$AWTE

U o X$TEVH -

o X$EVHA

L 

- o X$MCSE

The actual Instrumentation In each 0f these routines Is described below.

—63—

— -5- — —5- 5- —-----5--— -
~~ 

— 

—
— — 5- —5-— ~~~~~~~~~~~~~~~~~ _ . 5~~ .5. 5- ~~~~~~~~~~~~ — ~



-5 5-,- — —- ---5—- ----5- -— - —— - 
- —-

X$SUSP Ins trumentation

Routine X$SUSP is instrumented since event service is complete at this
point.

Location Contents Descr iption of Contents
*t4 X$SUSP + Xh14’*’* 70F0 JC 15,

M X$SUSP + X ’15’ 5154 ESOR14

The instruction which is overstored at X$SUSP + X’14’ is saved for
execution prior to return to X$SUSP. 

-

Location Contents Descr ipti on of Contents

H ESOSV14 - - 50F0 Overstored Instruction
M ESOSV14+1 - 0495 at X$SUSP + X 14

X$REST Ins trumentation 
-

Routine X$REST is instrumented at- the point just prior to returning to
the current task.

Location Contents Description of Contents

H X$REST + X’OC ’ 70F0 JC 15,
M X$REST + X’OD ’ 529A LEOR2O

The instruction which is overstored at X$REST + X OC ’ is saved for
execution prior to return to X$REST.

Location Contents Description of Contents

M LEOSV2O 50F0 Overstored instruction
M LEOSV2O+1 0495 at X$REST + X’ O C ’

X$CALL Ins trumen tation

Routine X$CALL is instrumented at the point just prior to jumping to the
program to be executed.

Location Contents Description of Contents -

H X$CALL + X’06’ 70F0 JC 15,
M X$CALL + X’07’ 

- 

513C ESOR13

The instruction which is overstored at X$CALL + X’06’ is saved for
execution prior to return to X$CALL.

*“M” signifies a modification of the referenced location .
**‘X•’ signifies an offset.

-64-.

— 5-- — - ----- -- --- -‘---- --- - —-5— - - -.~~

~ 

- - — - -~~~~r~~~ -- - . - ------—-—-5’-- 
-‘-—--- — — ~-. — — ~~~~~~~~~~~~~~~~ ~t4á- ~~~~~~~~~ ~,, ~ —



-- 
I—--- -5-5-5-5--5-5-5-5 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - --  _______-- - -

-- - -—— - ‘ — -  -

Location Contents Description of Contents

M ESOSV13 80FF Overs tored instruc tion
H ESOSV13+1 FFE8 from X$CALL + X’06 ’

X$ASIG Ins trumentation

Routine X$ASIG is instrumented at only one point, the entry, because
there is never a return to the requesting program from X$ASIG.

Location Contents Description of Contents

H X$ASIG + X’OE ’ 7220 JS 2,
M X$ASIG + X ’OF ’ 508C ESOR1

The instruction which is overstored at XSASIG + X’OE ’ is saved for
execution prior to return to routine XSASIG.

-j Location Contents Descr ipti on of Contents
M ESOSV1 801F Overstored instruction
M ESOSV1+1 0001 from X$ASIG + X ’O E ’

X$PSIG Instrumentation -

Routine X$PSIG is instrumented at both the entry and exit points since it
is called from a privileged mode task and return after interrupt service
will be to the privileged mode task.

Loca tion - Conten ts Descr iption of Contents
H X$PSIG + X’2’ 7220 - JS 2,
M X$PSIG + X ’3’ 5OAA ESOR 3
M X$PSIG + X ’18’ 7OFO JC 15,
M X$PSIG + X ’19’ 5OBA ESOR4

The instruction which is overstored at X$PSIG + X’2’ is saved for
execution prior to return to X$PSIG. The instruction at X$PSIG + X’18’
is not saved since this instruction is a return via general register 2.
This instruction ‘is duplicated in routine ESOR4.

- Location Contents Descr ipti on of Contents

H ESOSV3 8O1F Overstored instruction
M ESOSV3+1 0001 from X$PSIG + X’2’

X$AWTE Ins trumentation —

Routine X$AWTE Is instrumented only at the entr~, point because there isnever a return to the requesting program from X$AWTE.

Loca ti on Contents Descr ipti on of Contents
H X$AWTE + X ’OE ’ 7220 JS 2,
M X$AWT E + X ’OF ’ 50C8 ESOR5

-65-

~JJ~ ~~~ 11T1J ____________ _ _ _ _



p

The instruction which is overstored at X$AWTE + X’OE ’ is saved for
execution prior to return to XSAWTE.

Location Contents Description of Contents

H ESOSV5 801F Overstored instruction
M EXOSV5+1 0001 from X$AWTE + X ’OE ’

XSTEVH Instrumentation -

Routine X$TEV H is instrumented at the entry and exit points. Since it
operates in the privileged mode it will run to completion.

Location Contents Description of Contents

-
~ M XSTEVH + X’2’ 7220 JS 2,

M XSTEVH + X ’3 ’  50E6 ESOR7

M X$TEVH + X ’7C ’ 70F0 JC 15,
M X$TEVH + X ’7D ’ 50F6 ESOR8

The instruction which is overstored at X$TEVH + X’2’ is saved for
execution prior to return to XSTEVH. The instruction at X$TEVH + X’7C’
is a jump to the address in R2 (Return) which is effected in the EES
code, therefore it is not saved.

Location Contents Description of Contents

H ESOSV7 801F Overstored instruction
M ESOSV7+1 0000 from X$TEVH + X’2’

XSEVHA Instrumentation

Routine X$EVHA is instrumented at the entry and exit points. Since it
operates in privileged mode it will run to completion.

Loca tion Contents Descr ipti on of Contents

M X$EVHA + X’2’ 7220 JS 2,
H X~EVHA + X’3’ 5104 ESOR9

M XSEVHA + X’EA ’ 7OFO JC 15,
H X$EVHA + X’EA ’ 5114 ESOR1O

The instruction which is overstored at X$EVHA + X’2’ is saved for
execution prior to the return to X$EVHA. The instruction at X$EVHA +
X’EA ’ is not saved since it is a return via register 2 which is
duplicated in the EES code.

Location Contents Description of Contents

H ESOSV9 801F Overstored instruction - -

H ESOSV9+1 0000 from X$EVHA + X’2’

~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ 

- --

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

— 5-— , ______5k_ ~4~__ _ 
~~~ ~~~~~~ ‘5 — -..-—. ~~

- ~~~~~~~~~~~~ ~~~~~ ~~~~~~ —

-5- — —-5— -5- -5—

X$MCSE Ins trumentati on
Routine X$MCSE is instrumented at the entry and exit points because it
operates In privileged mode and wil l run to completion.

Location Contents Description of Contents

M XSMCSE + X’2’ 7220 JS 2,
M X$MCSE + X ’3’ 5122 ESOR11

H X$MCSE + X’186 ’ 70F0 JC 15,
M X$HCSE + X’187’ 5130 ESOR12

The instruction which is overstored at X$MCSE + X’2’ is saved for
execution prior to the return to X$MCSE. The instruction X$MCSE + X’186’
is not saved since it is a return via register 2 which is duplicated in

H the EES code. -

Location - Contents Description of Contents

M ESOSV11 801F Overstored instruction
M ESOSV11+1 - 0000 from X$MCSE + X ’2 ’

4.2.4.1.2 Factors Affecting Event Service Overhead - ESO

In order to assess the factors which affect the ESO the measurement must
be defined. In this test the total ESO wac measured as well as the
individual event service types. Since the total is in fact just a
sumation of the individual event service times, only the individual
event service measurements will be examined.

Sequence of Events:

Signal (Within Local Processor)
1. Applications program issues a signal.

2. Signal service routine calls the event service routine.

Signal (From Non—local Processor) -
1. Asynchronous message is received and queued.
2. Local executive recognizes the interprocessor signal and calls the

event handling routine.

WAIT (Abso lute T ime)
1. Applications task calls the absolute time wait routine.
2. Task is suspended and entered into time wait queue.

WAIT (For Event)
-- 1. Application s program calls event wait routine. -

2. Task is suspended and entered into wait queue.

Minor Cyc le -

1. Master function mode coninand is received and Interrupts the processor.
2. MInor cycle number is stored and minor cycle event flag is set.
3. Interrupt is dismissed .
4. Local executive recognizes minor cycle event and calls mi nor cycle

setup routine.

L

— -~~~~~~~~
_ _ _ _

:

5 - - - - - --
-

-
~~~~~~~~

‘
- - -

~~

—5- — -5-— ~~~~-‘--5 ___II~_ — -s-~, _~~~~
__,_ -~~ -~~---—~~~~~

.-- ‘~~ 
—- .-—--

~~ 
—



- - ‘~~~~~~~
..

~~
—5--,- -‘--5— — --~~~

-
~’~~

--- .—‘—— ----—----,--  —-5-’-- - — — - - - -  -- -‘ --‘- ---- --- —-- - —5-

4.2.4.1.3 ESO Time Line

Signal (Within Local -Processor)

APPL_rpIsls 
—

—s b — c

-~~Eso

Signal (From Nonlocal Processor)

~:iSO -“.

~

WAIT

~
&

1L~LJ~~
IlP___8C50 

~4

Mi nor Cycle

~~~~~X*MCSE~~~~~

INTE
~~~~

UPT ( I~TEY

_ 1~
a+b — ESO

-68-

L— 
-— -- - 5 — . -- - - - - - - 5 - 5  -- 

_ _

—5- —-5 --5-— 
—-5— — —~~- ~~~~~~~~~~~~~~~ ~~~~~~ 5- - ..,_,4 ~~~~~~~~~~~~~~~~~~~~~~~ ~‘ta~~ ~~~~~~~~



- 5-- ” -- _ ‘ _  
~~~~~ ~~~~~~~ 

- -

4.2.4.1.4 Factors Affecting Lengths of the Time Lines

The items a - c below refer to segments of the above time line.

SIGNAL (Within Local Processor)

a. fixed

b. dependent upon the number of non-local copies of the event.

c. dependent upon the number of tasks waiting for the event and the
number of tasks activated by the event that have task activation
events.

SIGNAL (From Non-local Processor)

dependent upon the number of tasks waiting for the event and the
number of tasks activated by the event which have task activation
events

WAIT —

dependent upon whether this is the only task event in the queue (the
actual difference is negligible).

Minor Cycle

a. fixed and measured in ISO test #2.

b. dependent upon the number of tasks waiting for this minor cycle event
and number of tasks activated by this minor cycle event which have
task activation events.

4.2.4.2 ESO Instrumentation Timing

These estimates are based upon the instruction times provided in NDAIS
Processor Instruction Set,” SA 401301.

XSSUSP (at -end of ESO Timing)

22.0 usec (if timing is not active)
57.8 usec (if timing is active)

X$REST (at end of ESO T iming)
22.0 usec (if timing is not active)
57.8 usec (if timing is active)

~$CALL (at end of ESO Timing)

27.2 usec (if timing is not active)
63.0 usec (if timing Is active)

X$ASIG (at start of ESO Timing) - 51.0 usec

-69- -

~~~~~~~-— — - =~~~~~~~~~~~~~~~~~~~~~~~~~~~ _~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



-5— ---- 5 -- - -- ---~~~~ --—------—--—--- -5 --- - -5 - --—-
~~~

X$PSIG (at start of ESO Timing) — 51.0 usec

XSPSIG (at end of ESO Timing) — 48.6 usec

XSAWTE (at end of ESO Timing) — 51.0 usec

X$TEVH (at start of ESO Timing) - 51.0 usec

X$TEVH (at end of ESO T im in g) - 48.6 usec

X$EVHA (at start of ESO Timing) - 51.0 usec

X$EVHA (at end of ESO Timing) - 48.6 usec

XSMCSE (a t start of ESO Timi ng) — 51.0 u~ec

X$MCSE (at end of ESO Timing) - 48.6 usec

4.2.4.3 ESO Test Control Tables

Test Control Tables SACIA and PINS2 were used to collect data for the ESO
tests. A description of these Test Control Tables can be found in
paragraphs A.2. 1 and A.2.2 of appendix A.

4.2.4.4 ESO Performance Data

During the ESO tests , timing data was collected for four local executive
processes: the event handler , signal , event wait , and minor cycle
setup. The event handler and the signal processes require varying
amounts of time depending upon the destination of the event in question.
The time required to process an event which must be sent over the bus is
not the same as the time for an event which is local to the processor. A
summary of the times measured for the event handler, signal , and event
wait is given in table 4.2-5 . As implemented in PINS, there is only one
task waiting for each event and one task activated as the result of the
event .

Executive Process Measured Time

Event Handler — Generate Local Signal 252 us
Even t Han dl er - Generate Signal for Another Processor 340 us
Event Handler - Receive Signal from Another Processor 233 us .

-

Signal - For Local Processor 469 us
Signal - For Another Processor 563 us
Event Wait 353 us

(Refer to table 4.2-7 for times corrected for overhead)

Table 4 .2-5 Event Service Overhead Data

-70-

— 5— - --5— — — — — - 5

—i-i-—.’-- — ‘5-’— ~ ~~~~~~~~~~~~~~~~~~~~ — —--- i a~~
. ~~~~~~~ ‘~~~~~~~ ‘~~~‘ ~-. ~~~~~~~~~ ~~

-5 -. - ---5 —

The data listed in table 4.2-5 are not independent. Since the signal
- routine always calls the event handler , the times measured for the signal
routine include the times for the corresponding measurement on the event
handler. In particular , the local signal time of 469 us Includes the 252
-us spent in the event handler, and the global signal time of 563 us
includes the 340 us spent in the event handler. Since the time of
interest to a system designer is the total time spent in servicing the
signal request, the fractional times represented by the first two entries
for the event handler will not be carried forward to table 4 .2-7. The
third entry for the event handler provides the time spent in servicing a
signal received from another processor and this entry is carried forward
to table 4.2—7 .

In order to correct the signal processing times for instrumentation
overhead, it must be remembered that the measured times include two sets
of instr umentation hooks. The first set of instrumentation hooks records
the entrance Into the signal routine itself while the second set records
both the entrance to and the exit from the event handler. The corrected
times given in table 4.2-7 reflect the el imination of the extra
instrumentation hooks (used to trap the event handler service time) from
the signal processing time.

The final item studied in the ESO testing is the minor cycle setup time.
Since the minor cycle setup time depends in part on the number of tasks
being activated during that minor cycle, Id SACIA was used to monitor
several minor cycles which had varying numbers of tasks being activated

• in different test phases. Table 4.2-6 shows the data that were
obtained. The first thing that is evident about this data is that the
base - load setup time reported in minor cycle 1 is inconsistent with the
values reported for other minor cycles. This is because four privileged
mode tasks are activated and run in minor cycle 1. Table 4 .2-6 can be
used to find the difference between the setup time in the base load and
the setup time when extra tasks are added.

Minor Setup Time In Setup Ti ie When Extra Tasks Are Added
Cycle Base Load 1 Extra Task 2 Extra Tasks 3 Extra Tasks

0 280 us
1 - 1127 us 1427 us 1506 us
2 522 us 675 us 742 us
3 360 us
4 271 us
5 330 us
6 364 us 436 us
7 - 269 us

Table 4.2 —6 Task Activation Time Data

—7 1-

~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

_________________ —•—~~~~~~~ ‘ -~~-- — - - 5 - -  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



—-- ---~~~~~~~~~~~~ -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ‘—- --- -- 5 - ’ ’  _

These differences (delta setup times) can be plotted- as a function of the
number of additional tasks to determine the average length of time
necessary to activate one additional task during minor cycle setup
(figure 4.2-6). This can be determined by taking the differences in the
reported values and averaging the numbers (i.e., determining the slope of
the straight line in figure 4.2—6). The result obtained is:

Task Activation Time - 74 us

Data for minor cycle 1 is shown separately since it does not follow the
pattern established by the other minor cycles. -

With the exception of the task activation time, all of the ESO
measurements summarized above include the instrumentation overhead.
These measurements were corrected for the overhead incurred, and the
corrected event service times are shown in table 4.2-7.

Executive Process Corrected Time

Signal - Receive From Another Processor 183 us
• Signal - To Another Processor 413 us

Signal - To Local Processor 319 us
Event Wait 303 Us
Task Activation 74 U5

Table 4.2-7 Event Service Overhead Times

The data in table 4.2-7 are shown graphically in figure 4.2-7.

4.2.5 Test #5 - Master Execu tive Over head

Master Executive Overhead (MEO) is defined as the total amount of time
used to perform the bus control and system control services in the master
processor. This time excludes any local executive overhead in this same
processor.

For a more detailed discussion of the master executive overhead test see
the “Test Plan for the DAIS Executive Evaluation Program.” -

4.2.5.1 MEO Test Instrumentation 
-

The majority of processing in the master executive computer progr am is
accomplished in routine M$BCON in response to various system requests.
Therefore, M$BCON is instrumented at the entry and exit ooints.
Additional master executive processing occurs in the local executive
interface routines M$ACB an d M$ASI so these routines are also
instrumented at the entry and exit points.

—72- -

_—-5- - --5- -5— - — — — -5 — — — —
~~~

--

-5-

I_ ~~~~~~~~~~~~~~~~~~~ -.-,~~-~~_--- . — -.:t_~_~ ~~~~ ~~~~~~~~~~~~~~~~~~~~~

_ _ _ _ - - - -

a

+

+

I

- +~~iinm’ cycl. l
// • ~~ othw iin~ cycles

11

I -

- - Pk~~er of Additi~~~iol b ike

-
-

-
Figure 4.26 Task Activoti~ Ti.. Data

F ‘ -

~~1

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ 



-— - -- — -
~

---—- —v---—- 

-5

_

I 

-

Si~ol ToAnotherProceaor

/

Si~ a1 - To Local Prooei.r

//Ev

e~~vait

- 

// 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~~~~~~~~~~~ Taak Aoti~ tion

~W,er of Executive Service Requests 
-

Figure 4.2-7 Event Service Overhead u ses
-74-

--5—-— —-5 —-— -- --5--- -~~ — - - - - - - - - - ------- -—- -5 
_ _ _ _ _ _ _  __________

-5 
5-— - —  — — ——~~~~~~~~ ——5-- 

--—-~~~~-~‘- ~~~~~~ —-5 —~~-5- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



-

Since almost all of the master executive overhead processing is in
response to an interrupt of some sort , the data must be closely
correlated with the interrupt service overhead for the master processor.
Also since M$BCON operates with interrupts enabled most of the time the
correlated interrupt service overhead data must be extracted from t~e
master executive overhead data.

M$ASI Ins trumentation

Routine M$ASI is instrumented at the entry and exit points since it is
called by a privileged mode local executive routine and the return will
be to that routine.

Location Contents Description of Contents

*M M$AS I + X ’2 ’~~ 7220 JS 2,
M M$ASI + X ’3 ’  7F3A MEOM1

M M$ASI + X’14’ - 7OFO JC 15,
M M$ASI + X’15’ 7F48 MEOM2

The instruction which is overstored at M$ASI + X ’ 2 ’  is saved for
execution prior to the return to M$ASI. The instruction at MSASI + X ’14 ’
is not saved since it is a-return via register 2 and is duplicated in the
EES code. - -

Location Contents 
- 

Description of Contents

M MEOSV1 801F Overstored Instruction
14 MEOSVI+l 0000 from M$ASI + X’2’

M$ACB Ins trumentation

Routine M$ACB is instrumented at the entry and exit points since it is
called by a privileged mode local executive routine and return will be to
that routine.

Location Contents Description of Contents

14 M$ACB + X’02’ 7220 JS 2,
14 M$ACB + X ’O3 ’ 7F56 MEOM3

* -

14 M$ACB + X’8E’ 7OFO JC 15,
N t~ACB + X ’8F ’ - 7F64 MEOM4

- The instruction which is overstored at MSACB + X ’2 ’  Is saved for
execution prior to the return to M$ACB. The instruction at MSACB + X ’8E ’
is not saved since it is a return via reg-ister 2 and is duplicated in the
EES code.

*‘114I’ signifies a modification of the referenced location.
**UX” signifies an offset . -

• —75— -

-5 —5-- -—~~~~~-— —‘---- _________________ _____ 
- ~~~~~~~~~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ :1: i : _ 2 - ~--~ --~~ ~~~~~~~~~~~~~~~


- — --5 —

~~~~~

—

~~~

--- -- —-- - - - 5 - 5 - -n

Loca tion - Contents Description of Contents

4 M MEOSV 3 801F Overstored instruction
M MEOSV3+1 0000 from M$ACB + X ’2 ’

M$BCON Instrumentation

Routine M$BCON is instrumented at the entry and exit points since, even
though it is interruptable, it will always run to completion.

Location Contents Description of Contents
14 M$BCON + X ’50E ’ 7220 JS 2,
M M$BCON + X ’50F ’ 7F72 - MEOM5

M M$BCON + X ’5DA ’
70F0 JC 15-,

M M$BCON + X ’5DB ’ 7F8E MEOM7

The instruction which is overstored at M$BCON + X ’50E ’ is saved for
execution prior to the return to M$BCON. The instruction at M$BCON +

X’5DA ’ Is not saved since it is a return via register 2 and is duplicated
in the EES code .

Location Contents Description of Contents

M MEOSV5 9000 Overstored Instruct ion
M MEOSV5+1 OC7C from M$BCON + X ’50E ’

4.2.5.2 MEO Instrumentation Timing -.

These estimates are based upon the Instruction times provided in “DAIS
Processor Instruction Set,” SA 401301.

-

M$ASI (at start of Timing) - 48.8 usec

M$ASI (at end of Timing) - 45.8 usec

M$ACB (at start of Timing) - 48.8 usec

M$ACB (at end of Timing) - 45.8 usec

M$BCON (at start of Timing) - 49.2 usec

MSBCON (at end of Timing) — 46.2 usec

4.2.5.3 MEO Test Control Table

Test Control Tables PINS3 and PINS4 were used to generate data for the
MEO tests . A description of these test control tables can he found in
paragraphs A .2.3 and A.2 .4 of appendix A.

-76-

- —- -55---~5----- - - - -5 - -5 - -~ —-5 -- —--—-5 -- - —-5— -- - -5— -5--- -

4.2.5. 4 MEO Performance Data

During the master executive overhead tests , timing data was collected for
four master executive rou tines: fielding a timer A interrupt (M$TIMA),
adding a critical ly timed block to the queue (M$ACB), the local executive
asynchronous interface (M$ASI), and the bus control routine (M$BCON) .
Since M$TIMA - is called by the interrupt handler whenever an interrupt 10
is serviced, the times measured for the MSTIMA routine were essentially
the same as those measured for the interrupt 10. Since the Interrupt 10
times are already listed in paragraph 4 .2.2.4 , the M$TIMA data will not
be repeated here . The M$ASI measurements were made for SIGNALs being
transmitted -to the remote processor. The times measured for MSASI did
not appear to be heavily dependent on bus activity; the sane results were
obtained no matter when the executive request occurred.

The length of time required in M$BCON is dependent upon the interrupt
which imediately preceded it. M$BCON time is reported separately for
the four interrupts (1, 3, 5, and 10) which It follows. The M$BCON
interval that follows an Interrupt 3 can vary in length. When the
interrupt 3 was generated fol lowing a TRIGGER completion, the M$BCON
processing time was less than normal .

In a simi lar manner , the M$BCON interval that follows an Interrupt 10
varies ‘In length. Processing for an Interrupt 10 which marks the precise
time for a TRIGGER transmission (critically timed message) takes slightly

• longer than processing for an interrupt 10 which initiates a new minor
cycle. The performance data showed this difference In processing time to
be less than 10 us and the data are combined in a single interrupt 10
entry in table 4.2-8 . -

The data - collected in the MEO measurements are summarized in the table
below. These measurements Include the Instrumentation overhead which was
removed to obtain the corrected times shown In table 4.2-8.

Executive Process Measured Time Corrected Time

M$BCON - Interrupt 1 353 us 310 us
M$BCON - Interrupt 3, normal - 388 us 345 us
M$BCON - Interrupt 3, following TRIGGER 335 us 292 us
M$BCON - Interrupt 5 507 us 464 us
M$BCON - Interrupt 10 383 us 340 us
M$ASI 1081 us 1038 us
M$ACB - 176 us 133 us

Table 4.2—8 Master Executive Overhead Times

It is interesting to note that the increased processing time required to
service an Interrupt 10 when a trigger is queued is almost entirely due
to the addition of an M$ACB routine to the process. As noted in
paragraph 4.2.2.4, the normal processing time for an interrupt 10 of 183
us jumps to 319 us when a TRIGGER is queued. The difference of 136 us
compares very well with the M$ACB time of 133 us reported above.

-77—

-_-
__-5 -5--- -5— —-5 -5 - -5

5- — ~~~~~~~~~~~~~~~~~~~~~

- 5-— - - -5 - — -~ —-~~~~~~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~ ~~~~
, - ~~~ ~~~~~~~~~~ 1

By combining the processing times reported in table 4.2-8 with the master
executive Interrupt times presented in paragraph 4.2.2.4.1, the total
time required for the master processor to service an applications “even t”
may be estimated. These events follow two different processing paths in
the executive , one path for TRIGGERs and another for all other events
(e.g., SCHEDULE, CANCEL , WRITE , SIGNAL) . In addition, requests received
from the remote processor are handled somewhat differently from reques ts
rece ived from the local executive in the master processor. For all

- - requests (except TRIGGERs) received from a remote processor , the master
executive fields one interrupt 5 and services it through M$BCON, and

-
- then, when the transmission is completed, fields one interrupt 3 and

services it through M$BCON. The total master executive processing time
for these events ~s:

-
- Interrupt 5 355 us

M$BCON - Interrupt 5 464 us
Interrupt 3 238 us
MSBCON — Interrupt 3 345 us

Total Processing Time 1402 us

For requests received from the local executive in the master processor ,
the local executive interfaces with the master executive by calling
M$ASI. When the transmission is completed, the master executive must
then field the interrupt 3 and service it through M$BCON , as above. The
total master executive processing time for these events is:

M$ASI 1038 us
Interrupt 3 238 us
M$BCON - Interrupt 3 - 345 us

Total Processing Time 1621 us

Servicing a TRIGGER is more complicated since TRIGGER processing is
spread over several minor cycles. Data collected for executive activity
in the first minor cycle (when the TRIGGER is queued) and the last minor
cycle (when the TRIGGER is sent) will apply to any TRIGGER generated in
the system. The total amount of executive time required to service a
TRIGGER will vary however , since for each minor cycle that the TRIGGER is
queued, the M$ACB routine must be activated. In PINS, a TRIGGER COMPOOL
block is transmitted over the bus three minor cycles after the TRIGGER
request is received by the local executive. For a TRIGGER generated in4 the remote processor by PINS, the timing in the master executive breaks
down as shown in tab le 4.2 —9.

- 5 --

-78-

•1

~
-5 -- - - - 1:4

5- - - - -~~~~ —~~~~-t

- --
~Tr,~’r. j,~-~~~~~~~~-------— — _ : - ~~ ‘ W 75 - r~~~’~~~~~~~~ -~~ - - ~~—-----—--ec,-—-j.at-r- ,- -

Minor Cycle Executive Routine

1 Interrupt 5 355 us
1 M$BCON - Interrupt 5 464 us
1 M$ACB 133 us 1668 us
1 Interrupt 3 238 us
1 M$BCON - Interrupt 3 345 us
1 M$ACB 133 us
2 M$ACB 133 us 133 us

3 M$ACB 133 us 133 us

4 Interrupt 10 147 us ~4 M$BCON - Interrupt 10 340 us 1 1017 us
4 - Interrupt 3 238 us J4 M$BCON - Interrupt 3 292 us

Total TRIGGER Time 2951 us

Table 4.2-9 TRIGGER Overhead Time

Th is TRIGGER time of 2951 us has meaning only for the particular case
when the TRIGGER is scheduled to be sent three minor cycles after it is
queued. The TRIGGER timing estimate can be made applicable to the
general case by subtracting out the M$ACB times in minor cycles 2 and 3
and treating them separately. The result is:

TRIGGER Time = 2685 us + (n-1)133 us,

where n is the number of minor cycles specified in the TRIGGER statement.

The processing time for a TRIGGER originating in the master processor is
-the sane except the initial Interrupt 5 and its M$BCON processing are
replaced with a M$ASI routine. For a TRIGGER generated by the local
executive in the master processor , the processing time in the master
executive Is:

TRIGGER Time = 2904 us + (n— 1)133 us,

where n is the number of minor cycles specified in the TRIGGER statement.

The processing times reported above cover all cases when the master
executive must service a request from a loca l executive. In sueunary, the
master executive service times are shown in table 4.2-10. A graphical
represen tati on is shown in figures 4.2-8 and 4.2—9.

-79-

-——~~.-——---- _ _ ‘.... _.. _ . ._ _ _

‘ -
-- - 5 -

-
-

- -

— - -— --5
..-~~~ I,

__
-

5
— - -

-
- -

-

~•
——-

~

- -
~~~~~~~~

— -  - - -

— —-i-— 5-——--—-~~~~~~ - ------5-- — -55-5-5— —~~~~~~~ •- ‘ - ~~~~—‘~-,- - 
-
- - - -5 -5 - -~~ - 

-
- - ~~~~~~-g~~~~- - ~~~~~~~~~~~~~~~~~~~ ~~~~~~~~



- -

0

Service Requests -
-
~ 

- 

Loca1(~’i9in

//
1 :

- 

- 
/

1

I -
~~~~~~ I I -I

~Ii~ er of Events

Figure 4.2 8 t4aster Executive Overhead use far Nan-Tri~er Event.

;~~~~~~~

_

~~

_ - - -
— -• —

-I - -- — - —- - --—-5- -- .~~~~~~~~.---- ------- -‘ - - - - - - —- 5 - — - —
-5 - --

-
-

_.... ~~~~~~ ~~~~~~~~~~~~~ ~~~~~~~~ ~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ .~~~~-t ;
~~~



1 

- - -

- - - - ~ igin

//

/
- 

/ ,,,
,,,“~~ste ~ igin

- 
/

/
/

//
‘

/
/

/
/

I I- —4
csJ CT) -5

P~juuber of Minor Cycle. Specified in Tri~ er Statement

Figure 4.2-9 Master Executive Overhead Ti ... Far Trig9sr.

-81-

____  -5 ----5 --- 5 -

— — —-•- —5-•--- — -~ ~_.L .  ~~ _‘~~~~~ ~~L I I  
~~~~~


I AD—A073 Ob8 BOEING AEROSPACE CO SEATTLE WA BOEING MILITARY AIRPL—ETC F~ G UI?EVALUATION OF DAIS TECHNOLOGY APPLIED TO THE INTEGRATED NAVIGAT—ETC (IJ) fl
MAY 79 0 DEWEY. R BOUSLEY. S BEHNEN, .J MASON F33615—77—C—1233

I UNCLASSIFIED AFAL —TR—79—1061 NI.

ir~ L~~~~ L~I.V L

II ~ L1g ~2.O
ii 1.1 ~ IIt~~~

~ 1.25 III $ 4 r,.o’~.
II ____ HOI~~~

4
MICROCOPY RESOLUTION TEST CI$i~ T
NAT)O+~A& BUREAU O~ S1*NDARDS-1963-,4.

~~~~~~~~~~~



(1) Serv ice Request, Non—local Origin (2) 1402 us
Serv ice Request, Local Origin 1621 us
TRIGGER , Non—local Origin 2685 us + (n—1)133 us (3)
TRIGGER, Local Origin 2904 us + .(n-l)133 us (3)

NOTES :
1 A service request results from any local executive process (other

than a TRIGGER) which requires a bus transmission

2. Non—local origin identifies a service request originating in a
remote process or, while local origin identifies a service request
originating in the master processor.

3 The integer n is the number of minor cycles specified in the TRIGGER
statement.

Table 4.2-10 Master Executive Service Times

The results given above were derived from measurements made on individual
routines in the master executive. An independent estimate of the total
master executive processing time required for asynchronous service
requests may be obtained from the wait count maintained in PINS (see
paragraph 3.1.4.1.1). To determine this additional rirocessing time, the
PINS program is run with a base load and the wait time is recorded for
the master processor. The PINS program is run a second time with the
addition of several asynchronous operations in the remote proce.ssor, and
the new wait time is recorded. The difference in wait times represents
the increased CPU time in the master processor to support the
asynchronous requests. Most of this extra time is required by the master
executive, but some of the time is also required by the local executive
to suspend the wait task (to allow the master executive to take over the
CPU) and then to restore the wait task when the master executive
finishes. For this reason the master executive overhead times as
measured by the wait task will be somewhat larger than they actually
are. With this in mind , measurements with TCT PINS3 yielded the
following times for requests originating the remote processor.

SCHEDULE 1715 us
WRITE 1812 us Times measured by the
SIGNAL 1758 us PINS wa it count
TRIGGER 3562 us -

These numbers compare favorably with those given In the table above. The
non—TRIGGER services required about 350 us more total executive
processing time than table 4.2-10 indIcates. It is reasonable to assume
that this extra time was used by the local executive to suspend and
reactivate the wait task that was running when the service request
occurred. The TRIGGER service required about 600 us more total executive
time than Indicated In table 4.2-10. This Is also a reasonable number
s ince, for a TRIGGER , the local executive must twice suspend and restore
the wa it task - once when the TRIGGER Is queued, and a second time when
the TRIGGER COMPOOL block is transmitted over the bus.

-82-

_________ I



Up to this point, the discussion of processing in the master executive
has been primarily concerned with asynchronous events. It is also
possible to examine in some detail the synchronous processing performed
in the master executive. The master executive is responsible for
synchronizing the minor cycles in every processor and for setting up the
synchrt~nous instruction list for a new minor cycle. These requirements
lead to a fixed set of processing wh ich must occur during every minor
cycle that the system is operating. The master executive routines
exercised are:

Interrupt 10 183 us
M$BCON - Interrupt 10 340 us
Interrupt 1 176 us
M$BCON - Interrupt 1 310 us
Interrupt 1 176 us
M$BCON - Interrupt 1 310 us

Total Time 14~95 us
This is the time required by the master executive to set up each minor
cycle, but it is still not the total master executive overhead that
exists when there are no asynchronous requests to be serviced. There are
other factors which contribute to the total MEG for an ‘1dle” system
(that is, a system which is not generating any asynchronous requests.
The idle load in the master executive is the amount of processing
required for a system even if it has no applications tasks). One major
source of processing time which has not been measured is the interface
between the master and local executives. It is estimated that this
interface could be responsible for another 200 us of processing time in
each minor cycle. Another source of overhead is the idle polling
sequence on the bus. To determine how much overhead can be traced to the
idle polling process, two sets of measurements were made on the system
when all of the applications tasks were removed. The first set of
measurements was made with the bus operating normally and the second set
was taken after the normal idle polling sequence was changed to a singl e
pass polling sequence. Processing time decreased by 293 us in each minor
cycle. When the master—local interface and idle polling factors are
added to the setup time, the revised MEO for an idle system is 1992 us.
This figure is still somewhat lower than the total MEO which will be
incurred under actual operating conditi ons since not every executive
instruction has been isolated for measurement in the Phase I studies.

As was done with the asynchronous tasks, the total master executive
overhead can be measured by using the wait task in the PINS program. To
find the idle load overhead, both the asynchronous tasks (which are

H controlled by inputs in the TCT) and the synchronous tasks (which
transfer COMPOOL blocks in support of the bus transmissions in the
synchronous Instruction list) were disabled. This left the wait task as
the only applications task operating during the measurement period. Thus —

the wait task was able to directly measure the local executive overhead
In the remote processor and the sum of local executive overhead and
master executive overhead in the master processor. The percentage of
time each processor spent in idle load overhead was:

Master Processor - 37.5%
Remote Processor - 10.3%

-83-

____________ -



Since the overhead in the master processor Is just the sum of the
overhead In the master executive and the local executive, we derive the
percentage of the time spent by each executive to support an idle load to
be:

Master Executive — 27.2%
Local Executive - 10.3%

Each mi nor cycle lasts 7812.5 us. The master executive overhead In each
minor cycle is therefore 2125 us. This result is In excellent agreement
with the estimate of 1992 us derived above, particularly since that
estimate was expected to be slightly low.

4.2.6 Test #6 - Local Executive Overhead

Local Executive Overhead (LEO) is defined as the total amount of time
spent performing local executive service functions and the time spent
handling the individual local executive functions.

The functions chosen for measurement were :
o Loca l Executive Control Function
o Schedule Serv ice Function
o Cance l Serv ice Function
o Terminate Serv ice Function
o Event Wait Serv ice Function
o T ime Wait Serv ice Function
o Signal Service Function
o Privileged Signal Service Function
o Read Serv ice Function
o Privileged Read Service Function
o Wr ite Serv ice Function
o Privileged Write Service Function
o Trigger Service Function
o Compool Broadcast Service Function

For a more detailed description of the local executive overhead test, see
“Test Plan for the DAIS Executive Evalution Function.”

4.2.6.1 LEO Test Instrumentation

The local executive overhead test is instrumented in the remote processor
only.

In most cases the local executive overhead Is a function of an
application s program call. The service is performed In response to the
cal l and a return is made to the calling program; however, this is not
always the case since the DAIS executive design allows Interrupts during
most local executive services and the local executive service itself may
cause a change in the state of the system.

-84-

.~~~~~~ -- - - _ _ _ _ _ _  

— ___

—~ -~-~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ‘~. _ _ _ _ _ _ _ _  

—
~~

-
~~~~~

-
_ _

When servicing an interrupt which occurs during performance of an
executive service, the Interrupt service time must be determined so that
it can be extracted from the executive service time since this time is
not really chargeable to the local executive service overhead. For this
test, this will be accomplished by running the remote interrupt service
overhead test using the same test control tables which are used to run
this test and the results will be collated for analytical purposes.

By the same token, when the handling of a service request or an Interrupt
causes a change In the system state, the associated overhead should not
be charged to the service request but to local executive overhead In
general. To accomplish this, the local executive control (XSLXCO)
routine will be instrumented at the entry point and the two possible exit
points, X$REST and X$CALL. These three subroutines are not actually in
X$LXCO but they are the only exit poInts from the local executive control
function to the appiciations software.

In addition to XSLXCO, X$SUSP, XSREST and XSCALL the following local
executive service routines are instrumented:

o X$ASCH
o X$ACAN
o X$ATRM
o X$AWTE
o X$AWTA
o XSASIG
o X$PSIG
o X$ARD
o X$PRD
0 XSAWR .
o X$PWR
o XSATR
o .X$CBBR

The actual instrumentation for each of these routines is described below
and the local executive overhead software routines are described In thegocumentat i on for the executive evaluation software.

X$LXCO Instrumentation
Routine XSLXCO is instrumented at the entry point only since the exit for
purposes of this test will be either X$CALL or X$REST. Additionally,
X$LXCO is a never ending ioop, so the EES software has been designed so
that only one measurement will be taken in X$LXCO for each true entry.

Location Contents Description of Contents

*M X$LXCO + X’2’** 7220 JS 2,
M X$LXCO + X ’3’ 42AE LEOR2I

The instruction which is overstored at X$LXCO + X’2’ Is saved for
execution prior to return to XSLXCO.

*“M” signifies a modification of the referenced location.
**I’XIS sf gnifies an offset.

-85-

____ _______ ___________________ —.-—--- — -— -—

~~~~~~~~~~~~~~~~~ ~~~~~~ ~~~~~~~~~~~. ~J



.—--
- - - - - .w---~ - , - -

X$CALL Instrumentation -

Routine X$CALL is instrumented at a point just prior to the jump to the
routine to be actlvated~

Location Contents Descripti on of Contents

M X$CALL + X’6’ 70F0 JC 15, -

M X$CALL + X ’7 ’  5238 LEOR14

The instruction which is overstored at X$CALL+6 is saved for execution
prier to returning to XSCALL.

Location Contents Description of Contents

M LEOSV14 80FF Overstored instruction
M LEOSV14+1 FFE8 from X$CALL + X’6’

X$REST Instrumentation

Routine X$REST is instrumented at a point just prior to returning to the
current task.

Location Contents Description of Cofltents

M X$REST + X’OC ’ 70F0 JC 15,
M X$REST + X ’OD ’ 529A LEOR2O

The instruction which is overstored at X$REST + X’OC ’ is saved for
execution prior to returning to X$REST.

Location Contents Descripti on of Contents

M LEOSV2O 50F0 Overstored instruction
M LEOSV2O+1 0495 from X$REST # X ’ OC ’

X$SUSP Instrumentati on

Routine X$SUSP is instrumented since upon entry, the requested executive
service is complete whether control is returned to the requesting task or
is passed to X$LXCO.

Location Contents Descripti on of Contents

M XSSUSP + X’14’ 70F0 JC 15,
Il X$SUSP + X’15’ 5250 LEOR15

The instruction which is overstored at X$SUSP + X’14’ is saved for
execution prior to returning to X$SUSP.

Location Contents Descripti on of Contents

Fl LEOSV15 50F0 Overstored instruction
M LEOSV15+1 0495 from X$SUSP + X ’14’

-86- 

- 
_ _ _

-- —~~~~~~~-~~~~~~~~~ - 

~~~~~~ : ~~~~~~~~ 
- . _ _

_______________ ~~~~~~~~~~~~~~~~~~ ~~~~~— ~~~—-- ~~~~~~~~~~~~

_ _

X$ASCH Instrumentation

Routine X$ASCH is instrumented only at the entry point since a return to
the requesting program will never be made by X$ASCH.

Location Contents Descripti on of Contents

M X$ASCH + X’OE’ 7220 JS 2,
M XRASCH + X ’OF’ 5168 LEOR1

The instruction which is overstored at X$ASCH + X’OE’ is saved for
execution prior to return to X$ASCH.

Locatjon Contents Description of Contents

M LEOSV1 801F Overstored instruction
N LEOSV1+1

-
0001 from X$ASCH + X’OE ’

X$ACAN Instrumentation

Routine X$ACAN is instrumented only at the entry point since a return to
the requesting program will be through X$SUSP and not X$ACAN.

Location Contents Description of Contents

M X$ACAN + X ’OE’ 7220 JS 2,
M X$ACAN + X ’OF’ 5178 LEOR2

The instruction which is overstored .at X$ACAN + X ’OE ’ is saved for
execution prior to returning to X$ACAJ1.

Location Contents Description of Contents

M LEOSV2 801F Overstored instruction
M LEOSV2+1 0001 from X$ACAN + X’OE ’

X$ATRM Instrumentation

Routine X$ATRM is instrumented only at the entry point since a return to
the requesting program will be through X$SUSP and not X$ATRM.

Location Contents Description of Contents

N X$ATRM + X’OE’ 7220 JS 2,
N X$ATRM + X ’OF ’ 5188 LEOR3

The instruction which is overstored at X$ATRM + X’OE ’ is saved for
execution prior to returning to XSATRM.

Location Contents Description of Contents

M LEOSV3 801F Overstored Instruction
N LEOSV3+1 0001 from X$ATRM + X’OE’

-87-

- Jr~~~~~~~~~~- - ~~ -‘ - - - -. • - -
--

.-~~~~
.---- .. ~~~~~~~~~~~~~~~~~~~~~~

.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



X$AWTE Instrumentation

Routine X$AWTE Is instrumented only at the (~fltry point since a return to
the requesting program wil l be through X$SUSP and not X$AWTE.

Location Contents Descripti on of Contents

M X$AWTE + X’OE ’ 7220 JS 2,
M X$AWTE + X ’OF ’ 5198 LEOR4

The instruction which is overstored at X$AWTE + X’OE is saved for
execution prior to returning to X$AWTE. -

Location Contents Descripti on of Contents

M LEOSV4 801F Overstored instruction
M LEOSV4+1 0000 from X$AWTE + X’OE’

X$AWTA Instrumentation -

Routine X$AWTA is instrumented only at the entry point since a return to
the requesting program wi ll be made through X$SUSP and not X$AWTA.

Location Contents Descript ion of Contents

M X$AWTA + X’OE ’ 7220 JS 2,
M X$AWTA + X ’OF ’ 51A8 LEOR5

The instruction which is overstored at X$AWTA + X’OE ’ is saved for
execution prior to returning to X$AWTA.

Location Contents Description of Contents

M LEOSV5 801F Overstored instruction
M LEOSV5+1 0001 from X$AWTA + X’OE ’

XSASIG Instrumentation

Routine X$ASIG is instrumented only at the entry point since a return to -

the requesting program will be through X$SUSP and not X$ASIG.

Location Contents Description of Contents

M X$ASIG + X’OE’ 7220 JS 2,
M X$ASIG + X ’OF’ 51B8 LEOR6

The instruction which is overstored at X$ASIG + X’OE ’ is saved for
execution prior to return of X$ASIG.

Location Contents Description of Contents

M LEOSV6 801F Overstored instruction
M LEOSV6+1 0001 from X$ASIG + X’OE ’

-88- 

~----~~ -_

_

—-- . .  

_ _

r 
____  - 

- ________

- 
“ -  .. ~~~~~~~~~~~ ~

- -------
‘.-

— -... --- ~~~.— .—.~—--. ~~~~~~~~~~~~~~~~~ -p-- ~~~~~~~~~~~~~ .. .-



—
~~~~ --~~~ 

~~~~~--

XSPSIG Instrumentation

Routine XSPSIG Is instrumented at the entry and exit points since it is
called from a privileged mode task and the return will be to the
privileged mode task.

Location Contents Descripti on of Contents

M X$PSIG + X’2’ 7220 JS 2,
M X$PSIG + X’3’ 51C8 LEOR7

N X$PSIG + X ’18’ 70F0 JC 15,
M XSPSIG + X’19’ 527E LEOR18

The instruction at X$PSIG + X’2’ is saved for execution prior to return
to X$PSIG. The instruction at X$PSIG + X’18’ is not saved since it is a
return via register 2 which is duplicated in the EES code.

Location - Contents Descripti on of Contents

M LEOSV7 8O1F Overstored instruction
M LEOSV7+1 0001 from X$PSIG + X’2’

X$ARD Instrumentation

Routine XSARD is instrumented only at the entry point since a return to
the requesting program will not be made by X$ARD.

Location - Contents Descript ion of Contents
- N X$ARD + X’OE’ 7220 JS 2,
M X$ARD + X’OF’ 5108 LEOR8

The Instruction at X$ARD + X’OE ’ is saved for execution prior to the
return to X$ARD.

Location Contents Description of Contents

M LEOSV8 801F Overstored instruction
N LEOSV8+1 0001 from X$ARD + X’OE ’

X$PRD Instrumentatiqil

Routine X$PRD Is instrumented at both the entry and exit points since it
is called from a privileged mode task and the return will be to that task.

Location Contents Description of Contents —

M X$PRD + X’02’ 7220 JS 2,
N X$PRD + X’03’ 51E8 LEOR9

M X$PRD + X’56’ 70F0 JC 15,
N X$PRD -+ X’57’ 5264 LEOR16

-89-

S 

-__ 

_  

. - . - -  - ~~-.

-~~~~~~-~~~~~

-. —~~~~~~~~~~~~~~ -- —.. .— -.~~~ ——— — — — ~ —~~-- ——---.——-—-— — .— .. — -. ~~. — _!~~_. ~~~~~~~~~~~ ~.‘ 
— ~~~~~~~~~~~~~~ ~~~~~~~~~ — ~~~~~



—~~
--- --—- - . - — — —• --—--- - ———  . — --— ——-~~~--—-~ - — --

The instruction at X$PRD + X’2’ is saved for execution prior to return to
X$PRD. The instruction at N X$PRD + X’56’ is not saved since it is a
return via register 2 and is duplicated in the EES code.

Location Contents Descripti on of Contents

M LEOSV9 801F Overstored instruction
M LEOSV9+1 0000 from X$PRD + X’2’

X$AWR Instrumentation 
-

Routine X$AWR is instrumented at the entry point since a return to the
requesting program will not be made by X$AWR.

Location Contents Description of Contents

M X$A~ + X1OE ’ 7220 JS 2,
M X$AWR + X ’O F ’ 51F8 LEOR1O

The instruction at X$AWR + X’OE ’ is saved for execution prior to return
to X$AWR.

Location Contents Description of Contents

N LEOSV1O 801F Overstored instruction
M LEOSV1O+1 0000 from X$AWR + X’OE’

X$PWR Instrumentation

Routine X$PWR is instrumented at the entry and exit points since it is
called from a privileged mode task and the return will be to that task.

Location Contents Description of Contents

M X$P~ + X’2’ 7220 JS 2,
M X$PWR + X’3’ 5208 LEOR11

N X$PWR + X ’gC ’ 7OFO JS 15,
M X$PWR + X’9D’ 5272 LEOR17

The instruction at X$PWR + X’2’ is saved for execution prior to return to
XSPWR. The instruction at X$PWR + X19C s Is not saved since it is a
return via register 2 which is duplicated in the EES code.

Location Contents Descrtptlon of Contents

N LEOSV11 801F Overstored instruction
M LEOSV11+1 0000 from X$PWR + Xs21

X$ATR Instrumentatloan

Routine X$ATR Is instrumented only at the entry point since a return to
the requesting task will not be made by X$ATR.

-90-
S

- ~~~~~~~~~ , - ~~--- --.-- ~~
- -.-. --- - ..

-—

~ 

_ _ _ _ _ _ _ _ _ _ _ _ _  

2~~~
_ 

~~~~~~~

— —.-—~~
—-—. .— t .—~~~ -~— — ~4 ~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~

-- -~-~ -
.-

Location Contents Description of Contents

M X$ATR + X’OE ’ 7220 JS 2,
N X$ATR + X’QF’ 5218 LEOR12

The instruction at X$ATR + X’OE’ is saved for execution prior to return
to X$ATR.

Location Contents Description of Contents

N LEOSV12 801F Overstored instruction
N LEOSV12+1 0001 from XSATR + X’OE ’

X$CBBR Instrumentation

Routine X$CBBR is instrumented at the entry and exit points since it is
called by a privileged mode task ~ind the return will be to the requesting
task.

Location Contents Descripti on of Contents

M X$CBBR + X ’2’ 7220 JS 2,
N X$CBBR + X ’3’ 5228 LEOR13

M X$CBBR + X’136’ 70F0 JC 15,
N XSCBBR + X’137’ 528C LEOR19

The instruction at X$CBBR + X’2’ is saved for execution prior to return
to X$CBBR. The instruction at XSCBBR + X’136’ is not saved since it is a
return via register 2 and is duplicated in the EES code.

Location Contents Description of Contents

N LEOSV13 801F - Overstored instruction
N LEOSV13+1 0000 from X$CBBR + X ’2 ’

4.2.6.2 LEO Instrumentation Timing

These estimates are based on the instruction times provided in “DAIS
Processor Instruction Set,” SA 401301.

X$LXCO (start local executive overhead timing)

19.8 usec (if timing is already active)
55.8 usec (If timi ng is not active)

X$CALL (end local executive timing)

27.2 usec (if timi ng is not active) -63.0 usec (if timing is active)

X$REST (end local executive timi ng)

22.0 usec (if timing is not active)
57.8 usec (if timing is active)

-91-

S -

- - - _ _ _ _ _ _ _ _ _ _ _

~~~~~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~~~~~~~~~~~~ ~J



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
—---.- ---- — - - .- —-— ----- .— - . - —  - -T -

X$SUSP (end local executive timing)

22.0 usec (if timing is not active)
57.8 usec (if timing Is active)

X$ASCH (start local execu ti ve timing)

51.0 usec

X$ACAN (start local executive ~-~iing)

51.0 usec -

X$ATRM (start local executive timing)

51.0 usec

X$AWTE (start local executive timi ng)

51.0 usec

X$AWTA (start local executive timing )

51.0 usec
X$ASIG (start local executive timing)

51.0 usec

X$PSIG (start local executive timing)

51.0 usec

X$PSIG (end loca l execu tive tim i ng)

48.6 usec

X$ARD (start local executive timing )

51.0 usec

X$PRD (start local executive timing)

51.0 usec

XSPRD (end local executive timi ng)

48.6 usec

X$AWR (start local executive timing )

51.0 usec

X$PWR (start local executive timing)

51.0 usec

_________________________ —~~~~ ~~~~~~~~~~~~~~



- - 
- -~~~~

XSPWR (end local executive timing )

48.6 usec

XSATR (start local executive timing)

51.0 usec

X$CBBR (start local executive timing)

51.0 usec

X$CBBR (end local executive tim..~g)

48.6 usec

4.2.6.3 LEO Test Control Table

TCT PINS2 was used to gather data for the LEO tests. A description of
this TCT can be found in paragraph A.2.2 of appendix A.

4.2.6.4 LEO Performance Data

H During the LEO test, timing data was collected for each of the local
executive- routines. Timing for certain routines was dependent upon
whether the applications request required a bus transmission (that is,
was the request destined for another processor) or whether It affectedr only the local processor. The timing for the X$LXCO routine also
varied. Much less time was required for XSLXCO if it was required only
to queue a task of lower priority than the task currently executing.
Each of these processing times was measured during the LEO test. All of
the data collected for the LEO test is summarized in table 4.2-11. The
first column tabulates the times measured for each routine; these
measurements include the instrumentation overhead. The second column of
figures tabulates the corrected~measurements after the instrumentation
overhead has been removed.

The “extra task” grouping represents a PINS activity controlled by the
Id which causes a low-priority task to be scheduled in the local
processor and then activated by a local SIGNAL.

Executive Process Measured Time Corrected Time

TRIGGER 
- 

391 us 341 us
CANCEL 400 us 350 us
READ 187 us 137 us
WRITE - Other Processor 450 us 400 us
WRITE - Same Processor 314 us 264 us
SIGNAL — Other Processor 425 us 375 us
SCHEDULE — Other Processor 310 us 260 us
SCHEDULE - Same Processor 141 us 91 us ‘~ Extra
SIGNAL - Same Processor 344 us 294 us 1 Task -
X$LXCO — lower Priority Task 188 us - 138 us J 523 us
X$LXCO - Minor cycle Setup or 590 us 540 us

Higher Priority Task

Table 4.2-11 Local Executive Overhead Times

-93-

~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- - ~:

- --~~~.- .~~~~~~~--~~~~~~ -~~~ - --- - ________ - - ,.- ---—-- ---

The times reported in the table above do not represent the total
executive processing time associated with the “events” listed. Events
which must be transmitted to another processor will be followed by an
interrupt 3 when the transmission is completed. Requests received from
another processor will cause an interrupt 3 (signifying the message has
been received) and initiate a pass through the X$-LXCO routine (to route
the message). The total time required to service each of these events is -

shown in table 4.2—12 and in figures 4.2—10, 4.2—11, and 4.2—12.

Base Int 3 Int 3
Event - Time Transmit Receive X$LXCO TOTAL

Local to Processor .

READ 137 us 137 us
WRITE 264 us 264 us
SCHEDULE 91 us 91 us

H CANCEL 350 us 350 us
H SIGNAL 294 us 294 us

Transmitted to Other Processor

TRIGGER 341 us 77 us 418 us
WRITE 400 us 77 us

-
477 us

SC}1EDULE 269 us 77 us - . 337 us
CANCEL 350 us 77 us 427 us
SIGNAL 375 us 77 us 452 us

Received from Other Processor

WRITE 264 us 146 us 138 us 548 us
SCHEDULE 91 us 146 us 138 us 375 us
CANCEL -350 us

-
146 us 138 us 634 us

SIGNAL 294 us 146 us 138 us 578 us

Table 4.2-12 Local Executive Service Times

As was done with the master executive (see paragraph 4.2.5.4) the local
executive service times can be verified in a general way by comparing
them to times obtained from the wait count task in the PINS program. To
determine the time from the wait count, the PINS program was first run
with a known processing load and the wait time was recorded. The PINS
program was then run a second time with additional local executive tasks
being performed and the new wait time was recorded. The difference in
wait times provided the total additional processing times represented by
the local executive and the applications tasks.

Two sets of events were measured in this fashion. The first set
consisted of events originating in the local processor. Some of these
events occurred in pairs because the design of the PINS program forces
that pairing. Each of these events required some processing by
applications tasks. Therefore, the times-measured for them using the
wait count are expected to be somewhat higher than the estimate - for the
local executive alone. The results of these measurements are shown in
table 4.2.13. As expected, each of the times obtained from the wait
count is somewhat higher than the local executive overhead time alone.

-94-

~~~~~~~~~~~~~~~~~~~~~~~~ --~~~~
- -  

‘

. - - 

~~~~~~~~~~~~~~~~~ -.. ~
—-—--—- --.— .—-—~~~~~ -——.a ~ a ~~~~~~~~~~~~~~ - • ~~~~~~~~~~~~~~~~~~~~~~~~~~ :~~~~~~

‘
~~~~ 
. ..



—‘

/

~~~O1

~~~~~~~~~~~~~~~~~~~~~

Irite

- Re~//
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~

erof Evwt.

Fl~r. 4.2-10 Local Executive Service Tiuse-Loxi to F’roo...or
- 95_ —

r

- --- - —~~~- -

~~~~~~~~~~~~~~~~~r — - - - _______ - --- — —
~~ -—— ~~~~—~~ —-‘- - - - - - _________________________________

L. ~~~~~~~~~~~~~~ - — .. -~ ~~~~~~~~~ ~~‘ —



~~~~~~~~ — -  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

In to

Si9ial
I C~ce1

I

-~~ /7/
I

-

-

.

1~~~~

-

L ,J- —-
~~~~

‘--

-- 

~~ erof Events

Figis’. 4.2-11 Local Executive Service hues - Tr iieuitted to Other Proo.eeor

•

S.- - ~~~~ 
— — -———-r ___________

_ _ _ _ _ _ _  _ _  I



-~~~~~~~~~~--—-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
_ _  _ _

- 

/
tenOSl

/ 1Si~~l
- Vrit. 

—

Sche&~e

I

~~sr of Events

Fi~r~ 4.2-12 Local Executive Service Ti... - Received Frau Other Pr~o...or

-97-

— T ~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~

- - - - - _ w——~~~~ _~~1 ~~~~~~~~~~~~ -
—----—— -. 

-

_________ -~~ — - ~ ~~~~~~~ 
I



Event Local Executive Time Total Processing Time

TRIGGER 418 us 500 us

SCHEDULE (Other Processor) Plus
CANCEL (Other Processor ) 764 us 937 us

READ plus WRITE (Other Processor 614 us 750 us
SIGNAL (Other Processor) 452 us 500 us

Extra Task 523 us 562 us

Table 4.2-13 Event Generation Time Comparison

The second set of measurements was done on events received from another
processor. None of these events required processing by applications
tasks and the times obtained from the wait count measurements are
expected to be quite close to the local executive overhead times obtaine~i

-
~ from table 6.2-12. The results of these measurements are shown In table

4.2-14. 
- 

-

Event Expected T ime Measured T ime
(Table 4.2—12 (Walt Counti

SCHEDULE and CANCEL 1009 us 1000 us
WRITE 548 us 531 us
SIGNAL 578 us 531 us

Table 4.2-14 Event Receipt Time Comparison

Since the wait count measurement -is only accurate to about 40 us, It can
- be seen that the data are In excellent agreement.

Up to this point , the discussion of processing In the local executive has -

been primarily concerned with asynch;’onous events, but the local
executive is also subject to synchronous activity. During every minor
cycle the local executive must respond to the interrupt 5 (minor cycle
mode code receipt) and execute the X$LXCO routine to achieve minor cycle
setup. This requires 604 us. This is not the total local executive
overhead for an Idle system, however, since not every local executive
process could be measured in the test. The total local executive
overhead In an idle system was measured by using the wait count In the
PINS program as described In paragraph 4.2.5.4. The percentage of time
used by the local executive to service Idle load events was found to be
10.3%. Since each minor cycle lasts 7812.5 us, the local executive
overhead In each minor cycle Is 805 us. As expected, this result is
somewhat higher than the estimate made above. The executive overhead
that results when applications tasks are added to the system can be found
by using equation (8) in paragraph 4.3.

-98-

-

~

- - - -— ___ _

— -_~~~~_~~~~~ 
_ _ _ _ _ _ _ _ _ _ _ _ _  . 

_ _ _ _ _ _



—-~ --—. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~-—— 
— - --

~~~~~
- - - - - -

4.3 Performance Data Prediction

It is possible to develop generalized predictive algoritlins for DAIS
executive overhead - in any operational environment. The data reported in
paragraph 4.2 reveal that both the master executive and the local
executive are, to good approximations, independent linear systems. As
such, the overhead for a multiprocessor configuration can be described as:

Owp = O w e + O l e (1)
Orp = O le (2)

where: -

Omp = Over head in master processor
Orp = Overhead in remote processor
Owe = Master executive overhead -

Ole = Loca l executive overhead
and,

0 = m1 M
~ (~

)
Ole =~~ l~ L~

-

(4)

where:
-

M = Process ing time for “event” i in master executive
m1 = Number of occurrences of “event” i
Li = Processing time for “event” j in local executive -

= Number of occurrences of “event” j

in their present form, equations (3) and (4) are of little value to the
average user of the DAIS executive. The average user wants to know the
overhead he can expect when performing a specific set of tasks In one

- mi nor cycle, a different set of tasks in the next minor cycle and so on.
There are two areas of concern: w ill the overhead be excess ive in any
single mi nor cycle, and will the overall time-averaged overhead be within
acceptable bounds. To satisfy the needs of this user, equations (3) and
(4) can be redefined as follows:

0me =K mT+~~
bj Bj (5)

Ole = K1T + ~ si S
i (6)

where:
= Percentage of processing time required by the master

executive to support an “idle” load

K1 Percentage of processing time required by the local executive
to support an- ‘Idle” load

I = Duration of observed processing Interval

Process ing time for “event” i In master executive, where
event I Is in addition to idle load level

-99-

S

- - -

~

— -~ -~~~~~~~~
. - - -

~~~~~~~~~~~~~~
____



- - 
~~~

—- - — — - - - - - - --- -——- -.--—---— — - -~~
-—-—--——— - ------- - -— -~~~~——--~~- --—--— - - — -- ---—-—--- - ____________________

b = Number of occurrences of event i in measured interva l

S1 = Processi ng time for “event” j in local executive, where event
1 is in addition to Idle load level

S
j

= Number of occurrences of event i In measured interval

As used in equations (5) and (6), “idle ” load represents the smallest
amount of processing that must be performed by the DAIS executives to
provide an operational environment for the applications tasks. For the
master executive, this includes the following processing during each
minor cycle of operation:

(a) Respond to the interrupt 10 signIfying the end of the last minor
cycle

(b) Perform timer A processing to setup the timer to expire at the
proper time in the next minor cycle

Cc) Setup the DMA pointers for the synchronous Instruction list to be
executed during the next minor cycle

(ci) Respond to an interrupt 1 and halt idle polling

(e) Respond to an interrupt 1 and start idle polling

This level of activity is required for the master executive even if there
are no applications tasks in the system and is therefore referred to as

• the “idle ” load. I n the same fashion, the local executive has a minimum
amount of processing which must occur every minor cycle to support an
idle system. As described in paragraph 4.2, the idle load for DAIS
processors operating with 128 minor cycles each second was found to be:

Master Processor - 37.5%
Local Processor - 10.3%

Substituting these values into equations (1) and (2), we find the idle
l oad for the executives to be:

Master Executive - 27.2% -

Local Executive - 10.3% -

A DAIS user may now calculate overhead by counting the number of
executive services being requested by applications prog~ ins, determiningthe time required to process these services and substitu .ing these values
into the following equations:

—

One - .272T + ~ b1 B1
(7)

Ole = .1031 + ~ S1
S
1

(8)

A list of the times required to support each master executive service is
provided In paragraph 4.3.1, and paragraph 4.3.2 provIdes the
corresponding InformatIon for the local executive.

~~~~~~~~~~~~~~~~~~~~~~~~ 4~~~L



— ----------———-- ———-—— --- -— - - -- -

4.3.1 Master Executive

Table 4.3-1 presents the complete set of master executive service times
that will be needed by a DAIS user. The times are extracted from table
4.2—10 In paragraph 4.2.5.4 . The values given in the right column of
table 4.3—1 are the B1 of equation (7) . To obtain the bj inputs, the
DAIS user must determine the total number of master executive services
that will be required to support all applications tasks in all processors
during the Interval being studied. These services fall into the
following categories:

(a) Asynchronous Global Writes - C014’OOL blocks which must be
transferred over the bus asynchronously. Synchronous global
writes are not counted since they are transmi tted through the
synchronous Instruction list and require no special support from
the master processor .

(b) Global S ignal s — Signal s originating in any processor which must
be sent to another processor.

(c) Schedule - Schedule a task residing in another orocessor .

(d) Cancel - Cancel a task residing in another processor.

(e) Trigger - Any trigger generated within the system. A trigger is
the only executive service which is spread over several minor
cycles. For users Interested in predicting overhead on the minor
cycle level , the trigger serv ice time can be divided as follows:

(1) Queuing Time — Master executive service provided during the
minor cycle in which the TRIGGER statement is executed.

(2) Maintenance Time - $eryic~ provided b~ timer A processing
for every minor cycle that the IKIbG~R is queued.

- (3) Transmission Time - Master executive service causing the
TRIGGER COMPOOL block to be transmitted over the bus.

The service times for these phases of TRIGGER processing are listed in
table 4.2-9.

After the DA IS user determines the number of master executive services
that will be required in the interval I, these bj inputs may be
substituted into equation (7) to obtain the predicted overhead for the
master executive. 

-

-101- 

———
~~~~~~~~ 

-
_ _

~~~~~i~~•~~~~~~

L - p.~
• - -

~.
. 

- 
.-.q_

~- - - ~. -- - -



Event Master Executive Service Time

WRITE Local (1) 1621 us
SCHEDULE Loca l 1621 us
CANCEL Local 1621 us
SIGNAL Local 1621 us
TRIGGER 

- 
Local 2904 us + (n—1)133 us (3)

WRITE Non— local (2) 1402 us
SCHEDULE Non— local 1402 us
CANCEL Non-local 1402 us
SIGNAL Non- local 1402 us
TRIGGER Non-local 2685 us + (n-1)133 us (3)

(1) A type of local Identifies an event that originates in the local
executive resident in the master processor.

(2) A type of non—local identifies an event that originates in the
local executive of a remote processor.

(3) The integer n is the number of minor cycles specified in the
TRIGGER statement.

Table 4.3-1 Compiled Master Executive Service Times

4.3.2 Local Executive

The service times, S~, for local executive routines have been reportedin paragraph 4.2. Tt~ese va l ues, corrected for instrumentation overhead,
are collected in table 4.3-2. This table contains the complete set of
local executive service times that will be needed by a DAIS user to
predict local executive overhead. The user must determine the number of
times , S~~~, that each service is requested during the measured interval ,
T, by applications tasks resident in the processor of interest. These
services fal l into the following categories:

(a) READ - Each COMPOOL b loc k READ -

(b ) Loca l WRITE - Any WR ITE whi ch updates a local copy of a COMPOOL
block

(c) Global WRITE - Any WRITE which must perform an asynchronous
update on a COMPOOL block that Is not local to the processor.
Note that synchronous updates are timed as local writes.

(d ) Local SIGNAL - A SIGNAL of an event whi ch is used only in the
local processor

-102-

~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ T~~~~~T~~ _ _ _  - - - - _ _ _ _  

-.



-- -

(e) Global SIGNAL - A SIGNAL of an event used in another processor

(f) Loc al SCHEDULE - Scheduling a task res ident in the local processor

(g) Global SCHEDULE - Scheduling a task which is resident in another
processor -

(h) Local CANCEL - Cancelling a task resident in the local processor

(-I ) Global CANCEL — Cancelling a task which is resident in another
• processor

- (I) WAIT - Enter ing a WAIT state for an applicat ions task

(k) TRIGGER - Servicing a TRIGGER request from an applications task

(1) Task Activations - Each task activated for execution in a minor
cycle

After the DAIS user determines the total number of local executive
- services required in the interval T, these sj inputs may be substituted

into equation (8) to obtain the predicted ovth’head for the local
executive.

-103-

S 

_ _ _ _ _ _  _ _ _  _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  -- ~ta*.~~~~~~~~~~~ J~~~~~~~~~~~~ -~ -~~a~~~ .~~~SM?~~~~~4. -  —

r — ‘~~ J~T -
~~~~~~~~~~ 

-

_ _ _ _ _ _ _ _

Event
—

Local Executive Service Time

READ Local (1) 137 us
WRITE Local 264 us
SCHEDULE Local 91 us
CANCEL Local 350 us
SIGNAL Local 294 us

WRITE Transmit (2) 477 us
SCHEDULE Transmit 337 us. ‘ I
CANCEL Transmit 427 us
SIGNAL Transmit 452 us

WRITE ReceIve (3) 548 us
SCHEDULE Receive 375 us
CANCEL Receive 634 us
SIGNAL Receive 578 us

TRIGGER 418 us
Event Walt 303 us
Task Activation 74 us

Notes:

(1) “Local” Identifies an event that is originated and used by the
same processor - the master executive is not involved.

(2) “transmit” identifies an- asynchronous request which must be sent
to the master executive for servicing (a bus transmission Is
involved).

(3) “rece ive” identifies an asynchronous request which originated In
another processor and was sent to this processor by the master
executive via a bus transmission. -

Table 4.3—2 Compiled Local Executi ve Serv ice T imes

4.4 Phase II Summary

The validity of the predictive algorittins developed In paragraph 4.3 may
be verified by applying them to the DINS program developed for Phase II.
As the first step in determining executive overhead, the total number of
executive services requested for DIMS must be determined. The DIMS
processing load is shown In figures 3.2-5 and 3.2-6. Nearly every DIMS
service request is local to the remote processor. All of the DINS tasks
that are active during a test reside In the remote processor . The only
executive service request made by DINS which causes an asynchronous bus
transmiss ion Is an asynchronous WRITE .

_______________ - -

1 flA

- - —.-. .

~~~~~~~~~~~~ ~~~~~~ ~~~~i - ii~ ~~



r—T —-

~~~~

-

~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

_ - - —--- -—

A study of- fIgures 3.2-5 and 3.2-6 shows few differences in service
requests in the first and succeeding seconds of a Kalman filter
sequence. In order to eliminate redundant calculations , the predictive
algorittins will be applied only to the DINS load depicted in figure
3.2—6 . This processing load occurs in the DINS system during five out of
every six seconds.

By summing the executive requests listed for every minor cycle shown in
figure 3.2—6 , we obtain the total number of requests that are made in a

• one second period. This data is shown In table 4 .4—1. This table
defines all of the executive service requests originated by the
applications tasks in the remote processor . The values supplied In this

• table constitute the 5~~ of equatIon (8) in paragraph 4.3. The Siinputs are found in table 4.3—2. The processing times listed In this
table were shown to be valid for the DIMS system by Instrumenting the
DAIS executive while DIMS was running; the service times observed for
DIMS were the same as those obtained for PINS. By substituting the
values Into equation (8), we obtain the following:

0le = .103 (106 us) + 723 (137 us) + 304 (264 us) + 32 (477 us) +
15 (294 us) + 8 (91 us) + 276 (74 us)

= lO3 ms + 99.l ms + 80 3 ms+15 .3 ms+4.4 ms+O .7 ms + 20.4ms

°le = 323.2 ms over a one second period

0 1. 2 3 4 5 6 7 TOTAL

READ 3 416 192 112 723
WRITE-Local 48 128 80 48 304
WRITE—Global 32 32
SIGNAL 15 15
S(HEDULE - 8 - 8
Task Activation 34 144 64 17- 17 276

Table 4.4-1 Anticipated DIMS Executive Service Requests for One Second Period

We can also determine the predicted overhead for the local executive In
the- master processor. In the DIMS program, the local executive has only

- 
one appl ications function - to receive the asynchronous COMPOOL blocks
sent to it by the remote processor. Using the number of global writes
listed in table 4.4-1, we can determine that the local executive in the
master processor must receive 32 COMPOOL block-s each second. From table
4.3—2, we can determine that each of these will require 548 us of
processing time. Substituting these values Into equation (8) we obtain:

°le = 103 (10 USI + 32(548 us)
= 103 ms + 17.5 ms -

°le = 120.5 ms over a one second per iod

-105-

S

— ~~~~~~~~~~~~~~~~~~~~ -. ~~~~~~~~~~~~~~~~~ - - - St - - - -

_ _ _ _ _ _ _  _ _ _ _ _ _  _ _ _ _ _ _ _ _ _ _  ~~~~~ ~~~~~
— 

~~~

-

~~~~~
--

~~~~~~~~
-

~~~~~~~~



-
~~~~~

Finally, we can predict the processing load in the master executive. As
pointed out above, the only master executive service required in the DIMS
program is to fiel d the asynchronous CO1’POOL blocks written 32 times each
second. By substituting the service time from table 6.3-i into equation
(7) of paragraph 4.3, we obtain:

°me = .272 (106 us) + 32(1402 us)
-

= 272 ms + 44.9 ms

°me = 316.9 ms over a one second period

Substituting °me and Oi into equations (1) and (2) of paragraph 4.3,
we determine the predicted overhead in each processor:

0mp = 437.4 ms over a one second period = 43.7%

°rp = 120.5 ms over a one second period = 12.0%

The predictive algorItiris should always be applied to processing
interval s that contain an above—average number of executive service
requests. Careful analysis of such i ntervals will enable a designer to
elimi nate possible “choke points” in a system. Choke points occur when
the system processing load exceeds the resources available . When such a
situation arises, the execution of tasks will be delayed one or more
minor cycles until the backlog can be eliminated. Table 4.4-1 indicates
that minor cycle 2 will have the heaviest DINS processing load, so minor
cycle 2 is the logical place to begin a search for potential choke points.

Overhead for minor cycle 2 is calculated in the same fashion that the
overhead was predicted for the full one second i nterval . Table 4.4-1
lists the number of executive services required in minor cycle 2 for a
one second period (note that minor cycle 2 repeats 16 times in a one
second interval). By substituting these values and the service times
from table 4.3-2 Into equation (8) , we obtain:

°le = .103(125000 us) + 416(137 us) + 128(264 u~) + 32(477 us) + 144(174 us)
= 12.9 ms + 57.0 ms + 33.8 ms + 15.3 ms + 10.7 ms

°le = 129.7 ms in a 125 ms period

Since the predicted overhead alone exceeds the processing time availabl e,
it is apparent that minor cycle 2 will be a DIMS choke point. A major
portion of the processing planned f or minor cycle 2 will not be completed
in that minor cycle. Fortunately, minor cycle 3 has a very low
processing load and will be able to accommodate the tasks that cannot be
completed In minor cycle 2. .

Since the most heavily loaded DINS minor cycle was found to be a choke
point, we must now look at the next most heavily loaded minor cycle. A
study of table 4.4—1 shows that minor cycle 4 will have the second
hi ghest overhead In DIMS. We calculate this overhead as we have done
before, by substituting the appropriate values into equation (8):

°le = .103(125000 us) + 192(137 us) + 80(264 us) + 64(74 us)
= 12.9 ms + 26.3 ms + 21.1 ms + 4.7 ms

°le = 65.0 ms In a 125 ms period

-106-

_______ ____________________

~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



Although the over head load in this minor cycle is not as critical as in
minor cycle 2, it is still severe. In order to service the requests
generated by the applications tasks in minor cycle 4 , the local executive
will require more than 50% of the available processing time. This will
severely limi t the number of applications tasks that can be handled in
this mi nor cycle. As a rule of thumb, few systems perform acceptably
when the executive over head (in the absence of applications requests)
exceeds 30% of the total processing load; using this guidel ine, it is
reasonable to assume that minor cycle 4 coul d al so be a DIMS choke point.

The isolation of these potential overload points in DINS demonstrates the
val ue of the predictive algorithms. In the normal system desi gn process ,
the designer would now go bac k and restructure the task load to eliminate
these trouble spots . This was not possible with DINS , however , since the
DINS design was al ready complete and the system was being tested in the
laboratory when the predictive algorithms became available. Thus , the
measurements made for Phase II should show evidence of overloading in
minor cycle 2 and perhaps al so in minor cycle 4.

For Phase II , DIMS was instrumented and tests were run to determine the
performance of the DAIS executive. For the most part , these tests were
successful; however, the high level 0f DIMS activi ty during minor cycles
2 and 4 caused so many entrances to executive routines that the ability
of our equipment to record the dat a was exceeded. Hence, complete
information was never collected for minor cycles 2 and 4. Partial data
on these minor cycles was obtained by reducing the number of
instrumentation hooks being used. Even so , some of the fINS READs and
WRITEs were never successfully trapped and no data could be gathered on
the number of task activations. The events that were trapped are shown
in table 4.4-2. Notice that the number of events trapped for low
frequency executive requests (i.e., global WRITE, SIGNAL , and SCHEDULE)
is the same as the number expected in table 4.4-1. This indicates that
the DIMS program was performing as designed and discrepancies in the
number of high frequency events are due entirely to the limited capacity
of the recordi ng equipment . -

MINOR CYCLES -

0 1 2* 3 4* 5 6__J__7 TOTAL

READ 3 160 112 112 387
WRITE - Local 48 64 80 48 - 240
WRITE - Global 32 - 32
SIGNAL 15 15
SCHEDULE 8 8

* Data recording equipment overloaded in minor cycles 2 and 4

I
Table 4.4 —2 Observed DIMS Processing Load for One Second Period

—107—

_________ - - - - - _______________

_

~~

i

~

_

~ 

:ii i~:i~~ ~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ J~



- -• -•- •~~~~~~~~-~~- ---- -~~ -•----

The data In table 4.4—2 permit some interesting observations about the DIMS
choke points that were predicted earlier. By comparing the number of READs
observed in table 4.4-2 with the number expected in table 4.4—1 , it is
apparent that not all of the tasks scheduled f or activation in minor cycle 2
are in fac t being activated in that minor cycle. - Many of the READs we
expected in minor cycle 2 do not -get executed until minor cycle 3. Our
prediction of a system overload In minor cycle 2 is thus borne out by
measurements in the laboratory. The value of using the predictive algorithms
to locate potential choke points In a new system has been graphically
demonstrated.

The primary purpose of the predictive algorithms Is still to predict the
overhead for a system with a known processing load. To determine the accuarc.y
of the predictive algorithms, the total DAIS executive overhead for DIMS was
measured In. the master processor and determined to be 41.6%. By comparing
this result to the 43.7% figure predicted earlier in this paragraph, we find
that the predictive algorithms came within 2% of the actual executive
overhead. The verification phase has thus demonstrated that the predictive
algorithms developed in this study can provide other users of the DAIS
executive with an effective means of predicting overhead for new systems.

-108-

— ~~~~~~~~~~~~~~~~ 
_•

-
~
•-.- -. —

— — - - . --~-‘~ -•- —•~ 
-
~~

— — -•------ 
~
-
~~~

-

~ \

,•_

~

,I_.

~~~~

_•

~

___ __ -

~ 

-

~ 

— - 

~~~~~

- - .41

5.0 DAIS Executive Support Analysis

During the development of the Pseudo-Integrated Navigation System (PINS)
and the DARTS Integrated Navigation System (DINS) , the DAIS Software
Development Standards (SOS) and the DAIS Support Software were evaluated
by actually using them and eval uating the results, through observation.
The analysis of the DAIS Software Development Standards (PA 200101)
appears in paragraph 5.1. The analysis of the DAIS Support Software
appears In paragraph 5.2. All comments made In this section refer to the
1q77 vers ion of the DAIS executi ve, its support software and the
accompanying documentat ion. AFAL has been and is continually Improving
this software and its documentation. Many of the problems noted In this
section have already been corrected in newer versions of the executive.

• 5.1 DAIS Software Development Standards

The DAIS Software Development Standards , documented in PA 200101 (15 Jan
76 Draft), provide guidelines for building DAIS applications software
systems. The DAIS Software Development Standards are comprised of:

o Architecture Standard
o Documentation Standard
o Structured Requirements Design Standard
o Program Specificat ion Design Standard
o Implementation and Verification Standard

Paragraph 5.1.1 provides a general analysis of each of these standards.
Paragraph 5.1.2 discusses in detai l problems encountered with the use of
the standards, errors In the documentation, and specific recommendations

-

~~ for changes.

Two avionic software systems were built during the course of this study
using the standards: the DARTS Integrated Navigation System (DIMS) and
the Pseudo—Integrated Navigation System (PINS). These guidelines were
followed during the development of each system.

In general, the standards were found to be adequate in describing
methodology for building dependable and maintainable DAIS- appliations
software systems. The standards were successful in reducing program
complexity by imposing a hierarchical control structure, top-down design,
and a high degree of modularity.

5.1.1 Anal ysis of DAIS Software Development Standards

5.1.1.1 Architecture Standard Analysis
-

The DAIS architecture standard describes the system structure and system
control structure as consisting of a MIL—STD-1553A/DAIS multiplex bus —

with DAIS processors and DAIS Remote Terminals (RT) communicating via
this bus. This architecture standard also defines the relationship
between the applications software and the hardware system.

The major strength identif led In this standard was the functional
isolation of components in the system architecture. This functional
isolation stressed the individual development of functional components
all built to a rigid interf ace which assures the orderly integration of
these components into an operational system. -

—

• -109-

~

.- • -.~~~ - - • -~~-~ .-~~~~~ • - ~~~~ - —

~~~~~~~ •;
— _ _

~~~~~~~~~~ ~~~~~~~~~

—•~~~ —-— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - •

• - - - - - -—- - — - - — -
~~~~~~~~ --- - -~~~~~~~~~~~~~~~~~~~ - - -~~~

- --- . --

Another major strength relative to the standard is the requirement for
absolute isolation of the operating system or executive computer oroqram
from the applications software. This functional separation forces
adherence to interfaces during the applications software develooment
(which is unusual In avionics programs), because the executive computer
program was complete and under configuration control.

5.1.1.2 Documentation Standard Anal ysis

The documentation standard addresses the structured representation of a
program module , the definition of a program module ’s data module and
naming conventions.

The documentation standards specified in the DAIS SOS were not apolled to
either program used in this evaluation. These standards follow general
industry practice, therefore existing Boeing standards were used.

One specification in these standards which departed from general industry
practice wa-s determined to be quite good and was integrated into existing
standards. This was the specification referred to in the SDS as a “data
module.” The data module defines the realtime interface of a program
module with the rest of the operational system, including the local
executive.

5.1.1.3 Structured Requirements Design Standard Analysi s

This standard addresses the specification of mission requirements in
terms of a structured design. The benefits that are anticipated through
this methodology Include data integrity, and a hierarchical relationship
of functions.

The standard specifies a hierarchical top-down methodology of designing a
control structure. This methodology has been proven throughout industry
and was judged to be a good standard for -;.ystem design. -

The standards implied that each program module should perform a “sing le
function ”. This interpretation of the standards was used to design the
DIMS program and was found to generate a plethora of task modules.. The
standards should be reworded so that it is clear that closely related
program modules may be Integrated into an executable entity.

5.1.1.4 Program Specification Design Standards Analysis

This section of the DAIS SOS specifies the methodology for the
construction or coding of program modules. Included In thl~ methodologyare detailed naming conventions and usage of the JOVIAL J73/I high order
language. Also specified is the realtime Interface definition with the
DAIS executive, a system generation methodology including a “buildi ng
block” program structure, and a set of rules for the use of tasks, task
states and events.

-110- 

_ _

- --——

~~~~~~~~~~

_ _ _
_________ : ~~~~~~~~

- - —---~ — --V—

The key element of this section is the specification of the
executive/applications Interf ace. The rigid definition of this Interf ace
is the one single aspect of these standards which is most important to
the overal l development of appl ications software. The overal l
integration effort was greatly reduced because absolutely no executive
computer program modification or development was necessary.

Naming conventions were al so defined in these standards and were judged
to be of relatively little benefit. In many cases, the effort to develop
meaningful or mnemonic names produced such lengthy results that confusion
was actually Increased.

The interf ace with the executive computer program is maintained through a
series of realtime statements. Because of their importance, these
statements should be documented in more detai l and include more
examples. This Is particularly true of the SCHEDULE realtime statement.

5.1.1.5 Implementation and Verification Standard Analysis

These standards address the testing and integration testing of the
applications program after the program modules have been coded. The

-~ standard addresses two testing concepts. One was unit test of the
program module which is a very necessary and important test. The other
is the actual integration of the unit-tested program modules. The
standard specified that this be accomplished in a top-down manner which
has been proven throughout industry.

5.1.2 Problems Encountered With Standards

In using the standards defined in PA2001O1 (15 Jan 76 draft) some areas
were discovered where the standards were somewhat ambiguous or unclear.
This section describes these problems or deficiencies.

5.1.2.1 Architecture Standard Problems

For this study one of the guideline s was to live within the architecture
standards. Since these standards specify interfaces beyond the scope of
executive control , no particular deficiencies were discovered. For a
federated control system operating in a singl e bus architecture comprised
of DAIS processors and DAIS RTs, these standards are very applicable.
5.1.2.2 Documentation Standard Problems

As was reported In paragraph 5.1.1.2 above, these standards were not used
in this study; however, the standards were reviewed. One di screpancy
apparently exists between the structured requirements design standard and
the program specification design standard. The di screpancy is foWnd in
paragraph 3.2.2.9 where “outer subroutines invoked” and “outer datavar iables referenced and ass igned” are discussed. According to the
structured requirements design standard and the program specification -

design standard these types of references or definition s are prohibited.

—111—

_ _ _ _ _ _ -
-- —~~~~~~~~~~~~~~-— - - ~~~~~~ --—~~~~~~~ - - —~~~~~~~ -—~~~~~~~ . - - .- - -

— -p—

~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ ~~~~~- _______



- T  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

5.1.2.3 Structured Requirements Design Standard Problems

Some problems were noted in this standard and some areas needed further
clarificat ion for the designer. These problems are discussed below.

5.1.2.3.1 Controller s Remaining Active

Paragraph 3.3.3-5 states that a task should not suspend itself by
entering a WAIT state, waiting for an event signal . Paragraph 3.3.3-6
states that a controller should remain active to field error conditions

- from any of its descendants. Paragraph 3.3.6 I.B.2 states that the
priority of a process is higher than the priority of all processes below
it in the control tree. Taken together, these three standards present
the designer with a difficult problem. A control ler must remain active
whenever one of its descendants is active, but it is not allowed to enter
a WAIT state to do so. Since the controller will generally have a higher
prior ity than any of its descendants, the controller will execute
indefinitely, precluding the execution of its descendants. Either
paragraph 3.3.3-5 or 3.3.3—6 of the standard need revision to correct
this difficulty.

5.1.2.3.2 Data Integrity -

Paragraph 3.3.6 (11) contains a statement that a module may not receive
data nor assign data unless the data is “known” by its controller. This
statement creates problems since it implies that any data read by a
process must be written by its controller or if a process writes data it
must be read by its controller. Implementation, however, restricts
multiple access of the same data block. Therefore, the intent of this
statement should be clarified in the document.

5.1.2.3.3 Data Access

Paragraph 3.3.6 (12) states that communications among processes must use
COMPOOL blocks transferred through the executive system. This-
restriction ensures data integrity but it pl aces unnecessary burdens on
the system in general .

This large number of executive requests could be reduced substantially if
only the controller were required to access the COIVPOOL blocks used by
its descendants.

As an exampl e, consider the situation where a controller has a set of 10
tasks operating under it. As a group, these tasks require four input
C0?fOOL blocks, and the average task READs two of these ~nd WR ITEs
another. As a group, these tasks generate four output blocks which will
be synchronously written onto the data bus. Thus, as a unit, the group
READs four input blocks and WRITEs four others. As individual tasks, 20
READs and 10 WRITEs are required. This task group executes 16 times a
second which means that 480 requests for executive service will be made
in a one second period.

-112-

_ _ •~~~~~~~~~
L

- -

- -.~~~-.---. .-•-~--— — ‘- — ~
-••

~
•- — —•-

~~~~~~~~~~~~~~ ~ .—~~~ ~~~ ~~- J



- - ----- - - - - --~~~ - -~~ -— ‘ • - _ — - — --- - - -—- --~ -,- ----- -~~ ---- -,-——,-•_ —~—, 
~u1

If the data access restriction were not imposed, a COMPOOL could be
defined which is known to the controller and Its descendants. Data could
be READ by the controller using the executive services and moved to this
COIfOOL. Since the descendants have implicitly READ the data (because
the controller has), they could manipulate the data without requiring any
further support from the DAIS executive. When all of the descendants
have completed processing, the controller could WRITE the data produced
by its descendants, placing It In the executive controlled database usin
executive services. This procedure would not only reduce system overhea
but would satisfy the intent of paragraph 3.3.6 (11) discussed above.

This approach could be applied to our previous example by defining a
local COMPOOL available to all 10 tasks. The controller could READ the

• four input blocks into this COMPOOL, wait for the descendants to finish
execution and then WRITE the output COMPOOL blocks. Data integrity would
be maintained since only the controller and its descendants would have
access to the data and these tasks would execute in a predefined sequence
(in order of task priority). For our previous examole, only 128
executive service requests would be generated by the controller.
Adoption of this approach would save 354 executive calls In a one second
period.

5.1.2.4 Program Specification Design Standard Problems

Overall these standards provide useful guidelines for coding applications
tasks operating in a DAIS environment. There are some deficiencies which
are outlined below.

- 5.1.2.4.1 Task State Event

Paragraph 3.4.5.2.1 of the DAIS SDS discusses the use of a task state
event in the condition set of a SCHEDULE realtime statement; however the
DAIS local executive does not support this option.

A change in one task ’s state cannot change another task ’s state from
INACTIVE to ACTIVE , a situation which was only discovered only after a
program was designed, built , and undergoing laboratory testing. Finding
this problem and developing another method of controlling activation
required several days of debugging and rebuilding effort. WAIT
statements were finally used, which is in violation of øaragraph 3.3.3-5
of the Standards. -

—113—

—-- -~ -- - -~~-•~~~~~•~~~~ . —~~~• 
-~.-.•~- ~~~~~~~~~~~~~~~~~~~~~~~~ 

_ _ •
~~

•••~c__•.-• ~
- -~: ~~~ 

- -



- -- - - - -_- -

5.1.2.4.2 COMPOOL Block Defintions

Paragraph 3.4.4.3.1 of the SDS restricts the length of a COMPOOL block to
a maximum of 32 words. This restriction is imposed by MIL-STD-1553A/DAIS
protocol since the bus interface hardware allows only 5-bits for data
length in a bus message. This is a reasonable standard for external data
which Is transmi tted on the data bus; it is even reasonable for data
passed between logical branches of the tree structure; however In actual
implementation , very few tables Internal to a control structure lend
themselves to 32-word block definition . Further, data structures

-~ 
requiring two or three levels of nesting are impossible to define in
32-word blocks with intervening tag words; J73/I does not support
processing of such a data structure.

Even for external and intertask data transfers, the data need not
necessarily be restricted to 32 words since the executive computer
program could easily accomodate blocks of varying length and break them
into the 32 word blocks required for transmission . Means of oroviding
l arger block sizes (largely for internal use by tasks reporting to a
sin gle controller) should be investigated for future versions of the DAIS
system..

(This discussion rel ates to the discussion in 5.1.2.3.3 above.)

5.1.2.4.3 Task Sizing

Several guidelines state that the size of program units should be kept
between 10 and 40 executable statements. In addition , there is an
implication that program units are equivalent to executable tasks. As a
result , the system designer is discouraged from combining a number of
program modules into executable tasks. If the system design calls for a
controller with three different sets of calculations to perform, the
standards imply that the designer define four separate executable tasks -
the controller and three calculators. This is an inefficient
implementation guideline which may degrade system performance.

For example , consider the situation described in paragraph 3.2.3.3 where
many different COMPOOL blocks are accessed. If the three calculators
were included in the controller as imbedded procedures, there would be no
need to define additional COMPOOL blocks to satisfy paragraph 3.3.6 (12)
since the data would already be available to the controller as stated In
3.3.6 (11). None of the benefits of smal l program units would be lost
since the program modules would be maintained as lTnbedded procedures.

5.1.2.4.4 TRIGGER Statement Parameters

The TRIGGER statement contains two time fields , time and delta time
At the end of the SDS TRIGGER description (paragraph 3.4.3.5.2.8, p.55)
is a statement that the time field alone Is sufficient for some
applications. This statement Implies that the delta time field may be
omitted from the TRIGGER statement if the time field provides
sufficient accuracy. An attempt to use the TRIGGER statement without a
delta time field proved unsuccessful; the delta time field must be

Included In every TRIGGER statement. The documentation should be
clarified in this respect.

-114- 

- ____________



The SDS states that the delta time field is scaled in units of ten
microseconds (paragraph 3.4.3.5.2.8, p.55). This Is incorrect. The
delta time field is entered as an inteqral number of millisec onds. The
documentation needs to be corrected on thi s point. In addition, the
documentation should indicate that weapon releases cannot achieve
relative spacings of more than one millisecond accuracy.

5.1.2.4.5 COMPOOL Directive

The SOS shows two examples of the COMPOOL directive In table 3.4.9 on
I’ page 62. Both examples incorrectly show the format to be

!COt.POOL ‘XXXXXXX.CMP ’ . Attempts to use this format proved
unsuccessful. The correct format is !COMPOOL (‘XXXXXX. CMP ’);

5.1.2.4.6 EJECT Directive

The SOS has two tables (table 3.4-11, p.66 and table 3.4-13, p.69) which
demonstrate the use of the EJECT directive. Both examples incorrectly
show the format to be EJECT . Attempts to use this format were
unsuccessful. The correct format is !EJECT;

5.1.2.4.7 Priority Field in SCHEDULE Statement

Paragraph 3.4.3.5.2.1 discusses the PRIOR ITY field in the SCHEDULE
statement but omits the option of setting PRIORITY = PRIVILEGED. Since
privileged tasks have many important uses in the DAIS software system,
the standards should be revised to discuss this option.

5.2 DAIS Support Software

Various DAIS Support Software tools were used durThg the development of
two DAIS application software systems. This support software was found
to be generally adequate in enabling straightforward and dependable DAIS
application system development. Section 5.2.1 provides general analysis
of each program of the DAIS Support Software which was used. Section
5.2.2 discusses in detail the problems encountered with each program and
makes specific recommendations for changes. Section 5.2.3 details the
problems encountered with each program’s documentation and recommends
changes.

5.2.1 Analysis of DAIS Support Software

5.2.1.1 JOVIAL 373/I Compiler Analysis

The compiler reads programs coded in JOV IAL 373/I and produces
relocatable files in AN/AYK-15 machine language. This program was found
to be fairly efficient and quite reliable. The Boeing engineers who used
the compiler varied from novice to experienced orogrammers, but none had - —

previous- JOVIAL 373/I experience. All were producing source code at the
end of a week and the compiler generated reliable machine language code
from these source programs.

The first version of the compiler, deli vered as GFE, did have some errors
in the code generation. These errors were predictable and could be
worked around with a great deal of time-consuming effort. The Air Force
Avionics Laboratory provided an updated compiler which corrected these
problems.

—115— 

-•-, - .—•—— —••— ..—•-— .--- -t - -

L_~ ~~~~~~~ 
~~~~~~~~~~~~~~~ 

—.

Other problems resulted from weak documentation. For example , the JOVIAL
373/I Computer Programming Manual (MA204200-1 , Oct. 75) provides
relatively meaningless examples which appear to be directed more toward
students than to software designers and coders.

One other problem concerned the error/diagnostic messages generated by
the compiler. These messages were not always clear and they were
inadequately described in the manual .

5.2.1.2 PALEFAC Preprocessor Analysis

The PALEFAC preprocessor (PP) program reads applications software
pro-grams written in JOVIAL J73/I. One function of the orogram is to
extract information relative to the applications program interf ace with
the DAIS local executive. The program reformats this information and
writes a file used by the PALEFAC program. A second function of this
program is to examine the J73/ I source code for compliance with DAIS
Software Development Standards.

The PALEFAC PP successfully read JOVIAL J73/I source code programs and
produced the input file for the PALEFAC program. In addition , the
PALEFAC PP audited the 373/I source code for compliance with most of the
DAIS Software Developn~’nt Standards.

The cost (in computer resources) of operating the PALEFAC PP program was
extremely high. The cost to run this one program was found to exceed the
total cost of the rest of the system generation process.

5.2.1.3 PALEFAC Analysis

The PALEFAC program reads the file created by the PP program along with
system configurat ion data and produces the tables that provide and
maintain the interface between the executive and the applications. The
output of this program is a series of JOVIAL J73/I source programs which -

contain the tables for task control and event control , synchronous bus
lists to provide synchronous bus traffic, and global COMPOOL blocks for
the data which is transferred either intertask or via the bus. The
tables used for the asynchronous data transmission are also produced.

Another output of the PALEFAC program is the control statement for the
software test stand linker (LINKS). It was found that PALEFAC does not
produce control statements for the Hot Bench Computer (HCC) or AN/AYK-15
processor load module. -

The tables produced by PALEFAC served their purpose and were generally
complete. Some errors were discovered in the program but new versions of
the program supplied by AFAL corrected most of the problems.

5.2.1.4 Software Test Stand Linker (LINKS) Analysis

The LINKS program was used to link—edit the relocatable modules produced
by the JOV IAL J73/I compiler and the ALAP assembler program. No errors
were discovered In the operation of the program.

-116-

_ _ _ _
_ _ _

-

-

~~~~~~~~



F 

- - - ----- -- - 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

LINKS ci~cumentation, however, provides too little information to be ofuse to an engineer. The linkage control necessary to build loadable
modules was provided by AFAL personnel , so Boeing engineers did not have
to attempt to interpret the document and construct linkage control.

5.2.1.5 Performance Monitor and Control (PMC) Analysisr
The PMC program Is a realtime software control and monitoring tool. This
program was used in a very limi ted way during this study, therefore a
detailed evaluation of this program was not made.

5.2.1.6 DAIS Diagnostic Program (M$DIAGN) Analysis

This program is provided with the executive software for the purpose of
displaying elements of the executive database In non—realtime. The
program was used during system integration debugging and was found to be
fairly useful. Better use mi ght have been made of M$DIAGN had
documentation been -available.

5.2.1.7 DAIS Processor/Cross Assembler (ALAP) Analysis

ALAP reads assembler language code specified for the AN/AYK-15 processors
and produces machine language programs for the AN/AYK-15 processor. The
output of this program was suitable for processing by the STS linker
program-LINKS .

5.2.1.8 ASYTRN Analysis

ASYTRN reads the load file created by the linkage editor program and
produces a file in the proper format to be loaded by the CIU connected to
the AN/AYK-15 processors. The program performed this function without
any problems.

-

5.2.2 Problems Encountered With DAIS Support Software

5.2.2.1 373/I Compiler Problems

5.2.2.1.1 Padding Wor d Insertion
The entire database of a DAIS application software system is composed of
small groupings of data called blocks. These blocks are centrally
defined in a COIIPOOL for reference by all program units. Blocks are the
data structures used to pass information between tasks within the same
processor and between processors and remote terminals.

The J73/I compiler is generally free to re-order Items within a block or
to insert padding words between Items in order to efficiently assign
memory locations. This occurs frequently with floating point items,
which must be assigned to an even memory address for the most efficient
code generation. The problem encountered here is with blocks used to
transfer data to and from remote terminals. In thi s case, the remote
terminal design may require that a certain structure be maintained for a
block, but the designer has no simple , straightforward method (such as a
hlkeywordu) of telling the compiler to leave the block exactly as the
designer has specified. The use of the Jovial overlay declaration will
prevent the compIler from re—ordering items In a block, but It does not
prevent the compiler from inserting padding words. —

—117—

- - -— --——--.-- -—-—-- - _______ -- - —•-- ______________________

—S ~~~~~~~~ - - - - -- -—————-

- --~~~~•-•-- , ~~~~~~~~~~~~~~~~~~~~~~~~~ .~~~~~~~~ •t ~~ ~~~~~~~~~

_ _ _ _

Additionally , the compiler gives no Indication to the programer that a
re-ordering or padding word insertion has taken place for a given block.
In our case, this caused interface problems between the DAIS processors
and the Harris/6 computer which were not discovered until the system had
been built and was executing. This could easily have been avoided had
the compiler issued warning messages or if the progranriner had a clean
method of preventing the compiler from reordering or padding COMPOOL
blocks.

5.2.2.1.2 Incorrect Block References -

During the first stages of DINS development, a version of the J73/I
compiler dated September 28, 1977 was used. This compiler was found to
generate incorrect address references for some COMPOOL blocks. In some
cases the references were one or two words off, but in another case they
were consistently off by 32 words. The compiler generated no diagnostic
messages for these cases, so the problem was discovered only after the
program was executing on the DAIS processors. Since the cause of the
problem was not imediately understood, lengthy machine code patches were
generated so that testing could proceed. Eventually source code changes
were discovered which enabled the compiler to generate correct
references. This problem did not occur with the compiler dated August
31, 1978, whIch was used for the later DINS system builds .

5.2.2.2 PALEFAC Preprocessor Problems

The PALEFAC Preprocessor reads the DAIS applications software source code
and produces a file of information needed by the PALEFAC program. Every
applications task must be processed by the oreprocessor , and certain
changes to a program unit in a task require that the task again be
processed by the preprocessor before another PALEFAC run is made. The
preprocessor builds a disk file cal led the PALEFAC Module Input (PMI)
file which is then read by the PALEFAC program. -

5.2.2.2.1 Cost to Execute Preprocessor

The preprocessor proved to be a ver y expensive program to execute. A
maj or change to a DAIS applications software system, as routinely occurs
when using top-down integration techniques, typically requires a
preprocessor run involving a large share of the tasks in the system. In
this case , the computing cost for the preprocessor run was approximately
twice that of the balance of the system generation (which includes a
PALEFA C run and a LINKS run). This cost factor inhibits the designer
f rom making frequent system rebuilds, but this rebuild capability is one
of the strongest assets of DAIS and should not be eroded by excessive
computing costs. It is recommended that the preprocessor be examined for . — --

possible areas for optimization. - -

-118-

I. - - ______-
-~~ -

- — ________ -
-

-S~~~ -- ~~~~~~~~~~~~~~~~ ~

5.2.2.2.2 L~~k of User Status Information

More than once during the study, a preprocessor run executed on the
University of Washington DEC-10 computer required more than four hours to
comp lete. During this period, the user has no feedback at the terminal
which will allow him to determine if the run is progressing normally.
Since the user does not wish to stop a run prematurely, the tendency is
to let the program execute. Nearly every time that the preprocessor
program was run, the computer operator at the University of Washington
called to tel l us that the program appeared to be in a loop. On one
occasion the operator called three times before the run was completed.
Although the preprocessor general ly performed well , there were occasions
when the program did begin looping. Since no status information was
provided, the runs were allowed to execute until it became obvious that
they were not going to finish. These runs which had to be redone cost
approximately $1000 each in unnecessary computer rental time.

A file which contains status information, the PALEFAC Preprocessor Text
Output (PPT) File , is not made available to the terminal user until the
end of the run. It is recommended that the program be modified to
provide at least a reasonable subset of the PPT file to the terminal
user. This information should include , at the least, the input file
being operated upon and program phase of the PALEFAC preprocessor program
which is currently operating.

5.2.2.2.3 Truncation of Input

The preprocessor requires that all input must be in the form of card
Images. The preprocessor documentation does not adequately describe this
requirement. During the study, the preprocessor was run with input from
a disk file which had records exceeding 80 characters in length for
input. The program appeared to achieve a normal completion . It was not
until PALEFAC was subsequently run using the PHI file oroduced by the PP
that discrepancies were noted in the output. Upon investigation , it
became apparent that certain entries in the PMI file did not contain all

- of the expected data. Further investigation showed that all of the
missing data should have been extracted from the last lines in a file,
and the cutoff point coincided with an input line that exceeded 80
characters In length. After the offending line was shortened, the PMI
was updated using the preprocessor and PALEFAC executed normally.

It may be deduced that an input card image with more than 80 characters
causes the preprocessor to terminate processing on that file, although
the date/time group is still appended to the truncated PMI entry. Since
no warning message Is presented to the user, PALEFAC was executed before
the problem was- found. Several engineering hours were required to —

- isolate the problem, which should and could have been reported by the
program itself. This problem may have been prevented had the -

documentation adequately described the requirement.

-

-119-

5.2.2.2.4 Compliance with Software Development Standards

The preprocessor is designed to examine the application s sou~- e code to
determine compliance with the DAIS Software Development Standards. In
general, the preprocessor does an excellent job of monitoring the code
f or compliance with the standards. Unfortunately, all standards are not
checked by the preprocessor and erroneous code can s~ip through. Three
such items found during this study are:

a. The SCHEDULE statement is used to sequence and provide conditions for
the execution of tasks. One of the fields of the SCHEDULE statement
wMch the r~esigner is required to supply according to the standards
is the priority field , which is used to determine each task ’s
prior ity in relation to all other tasks in the system; however, the
preprocessor does not test to see that the priority field has been
supplied. If the priority field is inadvertently omitted, the task
being scheduled is assigned a privileged priority status, which is
for a special high-priority class of tasks. No error or warning
message is produced by the preprocessor and the user may not he aware
of the problem until debugging runs in the laboratory demonstrate an
undesired task execution sequence.

b. Another field in the SCHEDULE statement is the period specifier,
which indicates how often the task being scheduled is to be
executed. Because of the DAIS executive design , this period

-

specifier is limited to values which are powers of 2; however, the
preprocessor does not check the value supplied for the period field
of the SCHEDULE statement. During the DINS development, a period was
incorrectly coded as 127. The preprocessor produced no diagnostic
message, and the end result was an error in the task execution
sequence which was discovered in the l aboratory.

c. For each COMPOOL block referenced by a task, the standards require
that the designer indicate the type of the block as READ (referenced
only in a READ statement), WRITE (referenced only in a WRITE
statement), or UPDATE (referenced In both READ and WRITE -

statements’~. The preprocessor however, does not check to see that a
block declared as UPDATE is In fact both read and written by the
task. In one instance during the DINS development, a task had a
COMPOOL block declared as being UPDATE, but the READ statement for
the block was inadvertently omitted. The preprocessor produced no
error or warning message, and the error had to be discovered in the
laboratory.

It is recommended that the preprocessor’s capability in monitoring for
adherence to the Software Development Standards be improved.

5.2.2.3 PALEFAC Problems

This program reads the preprocessor ’s output (the PMI file) as wel l as
two other designer-coded files and produces several database modules for
use by the DAIS executive. PALEFAC is generally run once for each DAIS-
applications system build. If an error is found in a task , It is
corrected in the source code and the task is recompiled. Tt may then
require a second pass through the preorocessor, and finall y PALEFAC Is
run again. When the run is error-free, the designer can compile the
PALEFAC output modules and then proceed to the link step.

_____ ______

I--
- _

z-~-~--
- - --

- ~~~~~~:‘
-

~~~~~~~~~



- 
- -- --~~—-~- - --~~ -- —-~~~----—-- - - -

5.2.2~3.1 CLASS Field Processing

One of the PALEFAC input files that the designer codes is called the
PALEFAC Global Input (PGI) file. In one section of this file the
designer explicitly defines all data communications over the multiplex
bus which are to take place on a reqular, repeated basis. For each of
these synchronous messages defined , the designer can specify the CLASS of
retry he wants the system to attempt in the event of a failure of the
message transmission. If he chooses a CLASS called “automatic retry,” he
can enter an additional field which specifies how many times (0-3) that
he wants the failed transmission to be retried.

In the DINS application , we attempted to use this retry field with no
success. No matter what retry count we coded, PALEFAC did not produce
any non—zero retry count in its output. We also attempted to let PALEFAC
produce a default retry count for each message by omitting the CLASS
field , but this was not successful.

This PALEFAC error cost us much time and effort. A non-zero retry count
must be specified for each message in order to enable the system to
recover from mi nor bus transmission problems, so each time the DAIS
processors were loaded, it was necessary to enter patches to the entire
bus message list.

5.2.2.3.2 Required Pairing of Transmissions with Receptions

One of the things the PALEFAC program ct,ecks Is the COMPOOL block READ
and WRITE statements included In each applications task. If a particular
block .is written by any task, PAL EFAC checks to see that the block is
al so read by a task somewhere in the system. If the block is not read,
an error message is produced.

This restriction creates an extra burden for a designer who chooses to
follow a top-down integration plan . In such a plan , the designer
develops the software system as a series of progressive iterations where
the first iteration pro~,1des ony the skeleton of the system andsucceeding Iterations add major functions one at a time. A result of
such a plan is that there will be many COMPOOL blocks defined during any
one iteration which will not be used until a later iteration Is
completed. Typically, a COMPOOL block that Is generated (written) as a
result of processing incorporated into Iteration (n) will not be used
(read) until Iteration (n + 1) incorporates the set of tasks designed to
use those inputs .

Normally these “stubbed” outputs present no problem to a designer, s ince
they will all be picked up in later Iterations. PALEFAC, however, makes
no allowance for this possibility . The designer is unable to stub the —

outputs, so a dummy task must be created which does nothing but read the
offending COMPOOL block. While this process is trivial for any single
COMPOOL block, the complexities of a large system can create many extra
hours of- work- for the designer.

- It is reconwended. that PALEFAC produce only a warning message for this
situation.

—121-

L Iii _ _ _ _



,—- !- 
~~~~~~~~~~~~ ~~~~~~~~~~ ~~ 

-,- - --- —,—-
~~~~~~~ —‘--r-——~~— — ~------—- - —~.,-~-

-—~- — ------—--- —- •---~-——---- ‘ _
~~~~ 

-- -—.
~~~

———.—— --,-— -

5.2.2.3.3 COMPOOL Block Update Affects Only Local Copy

When a task writes a COMPOOL block, the copy of the block residing In the
local processor is updated. When PALEFAC processes each WRITE statement,
it checks to see if a copy of the block being written also resides in a
remote processor or terminal. If so, it generates the necessary bus
message instructions to accomplish the transmission of the data to that
remote copy of the block.

If a COMPOOL block is both read and written by a task, PALEFAC does not
generate the bus message instructions to update any remote copies of the
block. This causes the designer some oroblems. If the task in question
is synchronous (scheduled to execute at a particular time on a cyclic
basis) then the desired bus message can he specified by the designer to
follow the execution of the task. But if the task Is asynchronous, the
desi gner must choose between one of two alternatives:

a. Specify the transmission of the block in the PGI file as being
synchronous. This will result in the block being transmitted over
the bus at regular interval s, even if the task in question which
writes the block does not execute. This compromise increases the bus
load unnecessarily.

b. Create another COMPOOL block (“B”) which is simply a copy of the
first block (“A”). When the task in question finishes updating block
A , it will copy the data into block B. Then it will write block A
and block B. This -second write will cause PALEFAC to create the bus
message instructions necessary to accomplish the transfer of the data
to the remote processor or terminal. This compromise wastes core
storage in the form of extra blocks and code and it wastes execution
time. 

-

If a task READs and WRITEs a COMPOOL block , PALEFAC should produce an• asynchronous update message for all global copies of the block , not just
the copy in the local processor. Also , the system designer should b~notified by PALEFAC in the form of a warning message when such an update
is generated. This will al low the designer to consider less costly
alternat ives for transmitting the data in question.

5.2.2.3.4 Asynchronous COMPOOL Blocks Can be Read in Only One Task

In the DAIS Mission Software Executive Specification (SA 201302), figure
3.1.2.4.3—1 states that an asynchronous COMPOOL block which is only read
in the processor, not written, may be read by only one task. This
introduces some unnecessary design restrictions. If two tasks need this
same input data, one task must pass this data to the other by copying it
to a second block and then writing it. This wastes core storage and
execution time. -

It is recomended that PALEFAC Only generate a warning message for this
case. This will allow the system designer more flexibilIty while still
helping him to maintain data integrity.

-122-

- ~~~~~~ - - - - - - •-- - - - - - - - -— - -- —-- - -——--
~~~~~

--- , —- ~~r~-

— - -~~~-~~~~~~~~~

5.2.2.3.5 Synchronous COI4’OOL Blocks Can Be Written In Only One Task

PALEFAC allows a synchronous COMPOOL block which is only written in the
processor, not read, to be written by only one task (described in the
DAIS Mission Software Executive Specification, SA 201302, figure
3.1.2.4.3—1). This is to prevent the possiblity of a second task
attempting to update and write the same block before the synchronous bus
message was executed to transfer the data generated by the first task.

The PALEFAC restriction thus ensures compliance with design standards
that will guarantee data integrity for synchronous COMPOOI. blocks. There
are situations, however, where a slightly less rigid standard will still
provide complete data integrity. One such situation is a orogram which
has independent processing paths where only one path can be active at any
tune and where the same outputs are generated. As an ex~~ le, comsider a
navi gation program that has many sources of sensor data which can be used
to generate a common output, such as an updated position vector. Each
sensor source requires special tasks to handle its Inputs and transform
them into a standard format for processing. These tasks are not active
unless the corresponding sensor has been selected as the data source.
Thus, even though many tasks in the system are capable of updating the
position vector, only one of these tasks can be active at any one time.
Even though data integrity would be maintained In this situation, the

• restrictions in PALEFAC cause the designer to generate an extra task
whose only function is to take each “different” position vector and
generate a standard output.

It is recommended that PALEFAC only generate a warning message for this
case. This will allow the designer more flexibility while still helptnq
him to maintain data integrity.

5.2.2.3.6 LINKS Control Statements -

The PALEFAC program is supposed to generate the control statements
necessary to link-edit the program modules for the operational system.
This feature works for the DEC-10 load modules but does not work for the
HSC option of the linkage editor. It is recommended that this be
implemented. -

5.2.2.3.7 Bus Load and Predicted Executive Overhead

In its original concept, PALEFAC was to have provided a partitioning
facility -designed to allocate tasks to orocessors in an efficient
manner. The result would have been a configuration with the lowest
possible bus traffic and executive overhead. Because this is a complex
task, it may not be practical to modify PALEFAC to perform It. There are
however , two areas in which PALEFAC could be used to generate valuable
input to a designer. The first is to calculate the bus load by minor
cycle as called for in the Phase II development plan for PALEFAC. The
second would be to predict executive overhead, both local and master, by
minor cycle. These Inputs would provide a designer with invaluable
assistance in locating potential trouble spots in the execution sequence.

-123-

-
~~±:: i

________________ ~_~j iij

-~ ------~ -r----------•----- —-
-

5.2.2.4 Software Test Stand Linker (LINKS) Problems

The LINKS program was effective . in linking the files produced by the
JOVIAL J73/I compiler and the HBC Processor/Cv’oss Assembler. The run
times associated with this program were reasonable considering the task
that was being performed by this program.

The only problem associated with using LI$KS was the diagnostic messages
produced when errors were detected by the -program. In most cases these
error messages had little meaning to the engineers using the program and
the messages did not appear in the documentation , “User’s Manual for
Software Test Stand Linker,” MA 212200.

For example, the error message “Multiply Defined Global Detected” is
produced when more than one global symbol of the same name is discovered,
but the program does not indicate which of the symbols it will use to
resolve references.

The program should be modified so that the diagnostic messages are more
meaningful and provide some insight into debugging.

5.2.2.5 Performance Monitor and Control (PMC) Problems

The Performance Monitor and Control (PMC) program ran on the DARTS
facility PDP 11/40 -computer connected via the bus to the DAIS
processors. The program capabilities include loading the orocessors from
files stored on disk on the 11/40, modifying the contents of the DAIS
processor core storage, and monitoring and recording selected bus
transmissions for offline analysis.

The PMC program was never fully operational at the DARTS facility. Of
its many capabilities , only the load and record features were used
successfully. However, PMC Is fully operational at AFAL.

Of the PMC features that were not operational at DARTS, two would have
been especially useful. One Is TALK, a feature which allows the PDP
11/40 to accept CIU commands at the 11/40 teletype and relay them to the
CIIJ . Throughout the study, numerous patches had to be made to the
software resident in the AN/AYK-lS processors. Every one of these
patches had to be entered by hand at the CIU in a lengthy and error-prone
process.- (It should be noted that although the Hazeltine cassette unit
was available to transmit patches to the CIU, it was unreliable and often
failed in the middle of a load.) If the TALK feature had been available ,
a set of these patches could have been entered one time at the POP 11/40
teletype and stored on disk as a command file. The patches would then
have been available whenever needed simply by executing that command file
i n the TALK mode.

-124-

•1

•.- - ---—---- - - -—- —

-- -- - ~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ ~~ ~~~~~ ~~~~ -

r - -
- -

- -

~~

The second PMC feature that would have been helpful is UNLOAD. This
feature allows a program residing in an AN/AYK-1S processor to be read
and stored on a disk file of the PDP 11/40. This feature would have been
used to save debugged and patched applications programs. Twice during
the study software errors were located which could be corrected only by
patching several hundred words of the program. It is not reasonable to
enter this many patches into a program every time it is loaded. Since -

neither TALK nor UNLOAD were available , new load modules had to be
generated by rerunning PALEFAC and LINKS. It is estimated that the lack
of the TALK and UNLOAD features at DARTS cost two to three man-weeks in
additional engineering effort.

5.2.2.6 DAIS Diagnostic Software (M$DIAGN) Problems
- This software is executed on the DAIS processors in response to commands
entered from the CIU keyboard. It is used as a debug aid to display
various executive data. It can also read and display the DAIS BCIU
registers.

The displays generated by this software~were generally very helpful Indiagnosing- problems. The main problems encountered using this program
were the errors in the displays (e.g., *ong values displayed on the
PSTTB page) and the lack of documentation. The diagnostic software has
the potential to be a most useful debugging tool. In addition to
improving the documentation and correcting existing errors, it is
recommended that the text accompanying the various displays be expanded
to make them useful to all users of the DAIS executive software. As the
displays now exist, a user must have considerable knowledge of the
executive design in order to make full use of the information presented,
but as the executive evolves, the users’ necessary level of knowledge
about its internal design will decrease, so expanded diagnostic
caoability will be of great importance to the users’ debugging efforts.

5.2.2.7 ALAP Problems

The version of ALAP (Hot Bench Computer Assembler Program) used during
this study was the same one being used at the Avionics Laboratory at
WPAFB , Ohio. The program performed the function of reading code written
in an ALAP specified assembler language and produced executable machine
language programs for the AN/AYK-l5 processors. The “ALAP specifIed”
assembler language should be stressed since ALAP is actually a cross
assembler and one of the Inputs to the program is a specification of the
assembler language to be input to the program.

5.2.2.7.1 ORGIN Statement Error

The ORGIN statement did not work as intended. Many attempts to use this
- particular instruction to produce listings relative to realtime memory
residency were not successful. ORGIN values less than 1000(16) and
larger than 8000(16) faIled. The diagnostic message produced by the
program was not meaningful since it only reported that the value was too
large; however , 5000 and 7F00 both were used successfully but 1000
was “too large” as was 40 . The ORGIN statement is of great value, so
this problem should be examined and corrected In future versions of ALAP.

-125- -

,•*

~

- - • - - - - — - — - — — •

-- ~~~~~~~~~~ -~~~~~~ —— ~~~~~~~~~

fl -

5.2.2.7.2 DIagnostic Messages in Interactive Mode

When operating ALAP in interactive mode (via a remote terminal ’), the
program would find errors in the source code and report that errors had

-

- occurre d; however , the source code line number(s) in error was not
provided. So the prograniner had to wait until the ALAP output file was
printed (up to 12 hours) or dlspla .y the file on the terminal itself in
order to determine what the error was. These two alternatives both
proved costly.

The program should be modified to produce an error file which contains
- - only selected error messages and the source statement sequence number.
-

- This file should be made available to the interactive terminal user for
realtime problem determination and correction.

5.2.2.7.3 Abnormal Program Halts

On three occasions during this study the ALAP program simply halted and
displayed the DEC-10 program counter. No more information was provided
and attempts to rerun the program produced the same result. In all three
instances -the resolution was to re-create the Input file in Its entirety
and rerun the program.

It is recommended that more run—time information be provided at the
user ’s terminal .

5.2.3 Problems Encountered With DAIS Support Software Documentation

5.2.3.1 J73/I Compiler Documentation Problems

Our compiler documentation was the JOVIAL J73/I Computer Programing
-J Manual (October 1977) which adequately described the syntax of the

language features. The lack of applicable examples, howeve r, added to
our software development time significantly. A detailed syntax chart is
of limi ted value without adequate examples of usage.

Al so , the error messages issued by the compiler need to be better
described in the manual . What the programmer needs, particularly the
novice, Is a real description of the error related to the obviously
violated syntax rule. This is especially true in the area of data
structure definition .

Additi onall y, we encountered several restrictions which were not
documented In the manual. These may be errors in the compiler itself, or
omission s in the documentation. The fol lowing paragraphs describe these
problems.

5.2.3.1.1 IN Attribute With GLOBAL Copies

Any program which has the IN attibute on the PROC statement (as required
by the DAIS Software Development Standards) will produce a fatal and
ambi guous compiler error message if it al so references a COMPOOL block
using the GLOBAL ’COPY directive. This is not documented.

—126-

_ _ _ _ _ _

_ _ _ _ _ _
_ _

_ __ _ _

1 -
- - — — -- — ~~~

- -

~~~~~~
---— -

‘~~~
----- - —- —- —----- -—------ _ __ _ _

IIr____ -~~ — — .
~

— 
~
-, .u~

_ 
__  —~~~ —.. — 

~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ 
--.

~
‘— -‘-

~ .- -“---~~

____________ -~~ ~~~ —~ -~~~---- - ——~
— — —

——- - - -

5.2.3.1.2 Table Items In OVERLAY Statements

The compiler does not allow table items to be used in OVERLAY
statements. This is not documented.

5.2.3.1.3 IN Attribute With Local Tables

The compiler produced ambiguous error messages when the IN attribute was
used with local tables. In one case the compiler allowed the IN
attribute only on the first-declared local table, giving an “illegal
allocation specifier” error message for a subsequent local table
declaration with the IN attribute. The compiler then gave a “missing
semi—colon ” message for the next declaration.

5.2.3.1.4 RESERVE Data

Any program data which is RESERVE by default may not be explicitly
dec lared RESERVE , since this causes ambiguous and undocumented error
messages.

-

5.2.3.2 PALEFAC Preprocessor Documentation Problems

The documentation for this program consisted of the Interface Control
Documen t (lCD) , PALEFAC Preprocessor/PALEFAC to Mission Software, SA
8O23O9C, and the User ’s Manua l for PALEFAC , MA 2022008.

Together these documents proved generally satisfactory for using the
preprocessor effectively. Specific problems encountered which should be
corrected, are detailed in the following paragraphs.

5.2.3.2.1 SCHEDULE Statement Inputs

The Interface Contro l Documen t (LCD , PALEFAC Preprocessor/PALEFAC to
Mi ss ion Sof tware, SA 802309C, paragraph 3.1.3.2.1.5, p. 60) states that
the task parameters for a SCHEDULE statement may appear in any order.
This is incorrect. For example, In a privileged mode task, the PRI=PRIV
field must appear before an UPON . In a normal mode task, however,
the PR! parameter may appear anywhere. The documentation also states
that the priority field is mandatory, but the preprocessor does not check
to see If the field is present.

5.2.3.2.2- Two SCHEDULE Statements for the Same Task
- -

The lCD (paragraph 3.1.3.2.1.5, p. 60) states that if two or more
SCHEDULE statements are written for the same task, only the first

* statement Is examined by the preprocessor. This Is incorrect. The
preprocessor examines every SCHEDULE statement present in the code. If
the same task Is referenced in two of them, the scheduling Information
provided by the second statement replaces the data from the first. Thus,
if there are several SCHEDULE statements for a single task, the
scheduling data passed on to PALEFAC is that contained in the last
statement examined by the preprocessor. This behavior was documented In
preprocessor runs made during the course of the study. The lCD should be
corrected to reflect the behavior of the preprocessor.

-127-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~ ~~~~~~~~~~~ ~~~~~ .~



p.-
, 

— - - -- --.--------------- —
~~ 

- - -  - - - ----— — -- — - - - - -— - - --- - - - -- --- -- ---- -~ -‘I’

5.2.3.2.3 PM! Record Format

The PALEFAC Preprocessor Detailed Design Specification (PALEFAC PP ODS,
SA 202201, figure 3.2.3.b, p. 6) incorrectly describes the content of
byte 8 in the PALEFAC Module Input (PM!) file record. The documentation
should indicate that the field contains a — if the scheduled task
pr iority is relative, a 0 if it is absolute, and a b If it Is privileged.

The description for bytes 9-12 incorrectly shows the format as bbbO if
the task is privileged . The correct format Is bbbb.

5.2.3.2.4 Subfunctlon Control Flow

The PALEFAC PP DDS describes a number of subfunctions on page 14. It is
unclear from the documentation how these subfunctlons relate to one
another. It would be helpful to the reader if the control function
flowchart on page 12 were updated to show how the subfunctions fit into
the overall scheme.

5.2.3.2.5 Trim Subfunction

The flowchart describing the trim subfunction (PALEFAC PP DDS, SA 202201,
fi 9ure 3.3.2.1.4.a, p. 18) contaIns a number of errors. These errors,
which appear both In the equations -and In the flow, make it difficult to
use the flowchart. Without the flowchart, the reader is unable to
determine how the trim subfunction affects the JOVIAL source code. This
information is important because the trim subfunctlon may be at least
partly responsible for the very lengthy processing times required for
preprocessor runs. -

5.2.3.3 PALEFAC Documentation Problems

The PALEFAC program documentation was the Interface Control Document
(lCD), PALEFAC Preprocessor /PALEFAC to Mission Software, SA 802309C, and
the User’s Manual for PALEFAC , MA 202200B.

These two documents were generally satisfactory for using the PALEFAC
program effectively . Specific problems encountered, which should be
corrected, are detailed in the following paragraphs.

5.2.3.3.1 Module Naming -

Each applications module possesses two names. One is the four character
“common” name used for cross-referencing by other modules, the second is
the multlcharacter extended name which is used to Identify a particular
version of the module (if more than one exists). These two names are not
interchangeable in their use, a c i rcums tance whi ch can lead to some
confusion.

-128-

— ~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ .. ... ~~~~~~ .~~~~~~



r ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- : Although the User’s Manual for PALEFAC (MA 2022008) recognizes this
problem by supplying an appendix C on Naming Application Modules, the
appendix is incomplete and the body of the User’s Manual makes inadequate
reference to It. For example, the PALEFAC Global Input (PGI) file
specifies which modules are to reside in each processor. But the PGI
writeup (paragraph 3.1.3, p. 12) neither tells the user which name should
be used nor refers, to appendix C for the information. In contrast, the
description of the PALEFAC Auxiliary File (PAF) does describe which name
is to be used, but again, no reference is made to appendix C. In this
case, the omission is probably wise since appendix C does not mention
which name is to be used in the PAF . One other clarification should be
made to appendix C. Unlike other JOVIAL names, the extended task name
may not contain an apostrophe. The PALEFAC preprocessor treats the
apostrophe as a delimi ter and truncates the name at that point. This
preprocessor behavior was discovered during one of the first runs
conducted for this study.

5.2.3.3.2 PGI Bus Messages

The bus message segnent of the PGI (User’s Manual for PALEFAC MA 2022008,
paragraph 3.1.2.4, p. 20) contains an activity register (ACTREG) field.
The description provided for this field is inadequate. Without
supplementary information, a user is unable to determine the nature of
the data to be supplied.

5.2.3.3.3 PAF Format

The User ’s manual is inconsistent in specifying the format required for
the blocksize input to the PAF. The PAF description (paragraph 3.1.3, o.
23) states that the field is in column 9. This is ambiguous since the
field can contain two numbers. Does the field start or stop in column 9
and is it right- or left-justified? The example (A.7, p. A13) provides
no help whatever since it shows the blocksize field starting in column
14. To further confuse matters,. the PAF file used during this study
executed successfully when- the first character of the blocksize field was
placed in column 11. To assist the user in creating the PALEFAC inout
files, each field should be described in terms of its maximum extent, and
whether data contained within that field must be right— or left—justified.

5.2.3.4 Software Test Stand Linker (LINKS) Documentation Problems

The documentation for the LINKS program was the User’s Manual for
Software Test Stand Linker , MA 212200. This is a seven page manual with
a twelve page appendix - extememly poor documentation for such a key
program.~ Almost nothing is explained adequately, and no error messagesare documented in any way. This lack of documentation cost us many
man-hours during the first few of our system builds. -

5.2.3.5 Performance Mon itor and Control (PMC) Documentation Problems

The Performance Monitor and Control (PMC) Executive User’s Guide (MA
207301), does not provide sufficient detail to allow an inexperienced
person to use the system without outside assistance. In addition , there
are errors in documentation which could cause difficulty for a reader.
Specific problems, which should be corrected, are detailed in the
following paragraphs. - 

-

- -129-  

-~~~~~-- -. - - - - - - ~~~
-- _

-- 
- - 7~
—,-.--—-----

~~~~~~~~~~~~~~~~ ~~~~~~~ ~~~~~~ . - - ~~~~~~~~~ ~~~~~~~~~~~~~~ . ~~~~~~ ~~~~~~ -~-- ~ .--.. ~~~~~~~~~~~~~~~~ 
~~~~~~~~ ~~~~~~~~~~~



5.2.3.5.1 ImplIed DEC—10 Availability

An Implicit assumption is made that a DEC-10 computer Is linked to PMC.
This assumption does not apply- to users lacking an In-house DEC-10
facility.

5.2.3.5.2 Lack of Hardware Configuration Information

No information is provided on the hardware configuration which PMC
supports.

5.2.3.5.3 Incorrect CIU Command Format

The example given for the CIU command is CLU $2, whereas the format used
during the study was Clii 2.

5.2.3.5.4 No Default Information

No information is provided on the defaults supplied in PMC. For
instance, the Clii command need not be used if CIU 1 is desired after
loading PMC. The CONFIGURE command is also presupposed by the dt-faults,
as well as a multiprocessor configuration . In short, a person who runs
PMC to load a Westinghouse processor through CIU 1 must, according to the
User ’s Guide , sequence through the following commands:

CONFIGURE -

Westinghouse Processor #2 -

SCADUS?
URT? (Answer with V or N)
SSDF?
MODELS?
DEC-10 TALK?
BMU?
4-Port Buffer Memory?
CIU 1
LOAD XXXX .XXX

In fact, the user need only enter the LOAD XXXX.XXX command to achieve
the desired result.

5.2.3.5.5 No RI-il Information 
-

No Information is provided on the RT-11 under which PMC operates, nor is
there any reference to RT-11 manuals which may be available.

- 5.2.3.6 DAIS Diagnostic Software (M$DIAGN ) Documentation Problems

Documentation was not provided for this pr gram. This software package
was a valuable debugging tool , but much better use could be made of It if
it were carefully and fully documented.

-130- 

~~~~~~~~~~.-- _ _ _


-

~~~~~

5.2.3.7 ALAP Documentation Problems

The document provided was DAIS Processor/Cross Assembler User’s Manual,
MA 206200, 22 December 1976. The documentation for the ALAP program
proved to be generally weak. For instance, to use the program as Boeing
used It (to produce object code for an AN/AYK—15), the legal instructions
or operation codes are found in the “DAIS Processor Instruction Set,” SA
401301; however no mention of or reference to this manual appeared In the
documentation. Specific problems, which should be corrected, are
detailed in the following paragraphs.

5.2.3.7.1 ALAP Directives -

In section 7 of the User’s Manual a number of directives for the program
are listed , however nowhere in the document are these directives
discussed. No explanation or definition of operands Is provided.

5.2.3.7.2 Syntax Rules

SectIon 3.0 provides a set of syntax rules for each input statement.
This set of rules provides the format of the input statement but very
little about the rules for the formation of the fields in this format.
For example, the discussion of the “ARGUMENT FIELD” contains references
to “one or more subfields;” however, no discussion or description of
these subfields is provided.

5.2.3.7.3 Program Operation -

The instructions provided for operating the program (such as input or
output files, program switches, or options) will not work. The format of
the RUN command successfully used to run the program does not agree with
the format given in the example. -

5.2.3.7.4 Missing Section

There is no section 6 in the document. Section 7 is labeled “section 6”
and Is preceded by section 5.

5.2.3.7.5 Erroneous Error Messages

Appendix A contains an error list; however some of the error messages are
not clear. In fact, some of the error messages refer to directives not
even defined for the version of ALAP used in the study. Examples include:

- 
EXTRNS (Is this EXTERNAL?)
ESTORAGE (?)
ORG (is thi s ORGIN?)

These examples are from error message 11. Does this error message really
mean that external references are not allowed? For interactive users,
these messages should reference an Input line number.

-131-

- - - -~~~~T~
k 

- - -- -  -

~ ~~~

— — - ---- - -
i ~

- ---—---—-,--
~~

.-— .— -~
— j ---- —— ~—~~-- ~~~~~~~~~~~~~~~~ -~-~~~--I~.A...* ~~ .. _. - ~~~~~~~~~~~~~ —~~~ -. -



r ~~
——-----—- - -

5.2.3.8 DAIS Processor Instruction Set Documentation Problems

The documentation provided for the DAIS processors was the DAIS Processor
Instruction Set, SA 401301. This manual has several key omissions,-
needing correction , which are detailed in the following paragraphs.

5.2.3.8.1 Execute Instruction

The description of the execute (EX) instruction (DAIS Processor
Instruction Set, SA 401301, p.51) does not mention that the memory
address must be an even location . If a user attempts to use an odd
memory address, the processor will halt in a manner that does not allow
the user to locate the instruction in error. The EX description should
be amended to include the even memory address requirement.

5.2.3.8.2 Console I/O Instruction

The description of the console I/O to peripherals (d O) instruction (p.
53) does not include timing. Since the processor waits until the console
operation- is completed , the timing could become important to a designer.
As a case in point , the master executive uses the ClO instruction to
generate messages for display on the Hazeltine consoles. During this
study, one frequently seen message was “M$BINT : XSWR 1 IGNORED.” This
message was often associ ated with i rregularities in program operation.
What was not krown was how the act of displaying the message was linked
to those irregularities. When the program irregularities proved
difficult to trace, the disp lay of the message was eliminated from the
executive code and several of the previously unresolved problems -

immediately disappeared.

It became apparent that at least some of the problems were a result of
delay ing program execution in order to produce a message display at the
console. Since no timing estimates were available for the ClO
instruction , it was impossible to anticipate this problem. Until timing
estimates are made available to a designer, the only safe procedure to
follow during program development and test is to eliminate all such
disp lays from the DAIS executive .

5.2.3.8.3 Floating Point Instruction Timing

In the “DAIS Processor Instruction Set” (SA 401301), instruction timings
are provided which are useful to the designer for estimating timing
requirements. - The instruction timinqs for floating point arithmetic ,
however , are Incomplete as each is expressed as a constant plus “function
of numbers. ” ‘Function of numbers ” is not defined and since floating
point arithmetic can be time—consuming the designer is left without
critical timing information.

5.2.3.8.4 Input and Output Extended Mnemonics

A set of extended mnemonics are provided for the Input and output
instructions such as DSBL and ITB . These are not defined in the
Instruction Set Manual.

— 132—

— — 
—* —------ — — — ~~~~~~~~~~~~~~~~~~~~~ - 

— iv.,



~ 
~~~~~~~~~~ -~~~--~~~ ~~~~~~~~~~~~~~~~~~~~~~~ ~~--~~~~~~ - -

~~~~~~~~~

6~O Recommended Changes and Modification Considerations

This section discusses recommendations for possible changes- or
modifications to the DAIS Executive Computer Program that could be
considered for future Implementations of the program. The majority
of these recommendations are based upon analyses and trade studies
of military aircraft requirements. They were formulated using the
1977 versIon of the DAIS Executive Computer Program.

AFAL has been and is continually developing this program for
future use on aircraft within the Air Force inventory. Consequently the
program is constantly being upgraded in the laboratory and as a result a
number of the changes recommended here are already being implemented or
are being considered for implementation under separate efforts.

Paragraph 6.1 discusses change considerations relativ : ~: the ~ersion of
the program which was provided to the contractor in September of 1977 for
evaluation. Paragraph 6.2 dIscusses change considerati ons for advanced
versions of the program for support of avionics systems in the future.

6.1 1977 Version of DAIS Executi ve Computer Program

The 1977 configuration of the DAIS executive was determined to be
efficient, considering the numerous tasks it performs.

A shortcoming of the program as evaluated was in the area of error
handling and recovery (EHAR). EHAR, as implemented , consisted almost
entirely of recognizing an error, reporting the error, and halting the
program. EHAR for an operational flight program (OFP) requires graceful
degradation and reconfiguration features to enable the most critical
functions to continue operating as long as possible. Reliability is one
of the most crucial features In aircraft systems and necessarily must be

- 
included in the airborne software system design.*

During appl i cation software design with the 1977 executive program, a
software system was built around an avionics system architecture to
operate under control of a standard reusable executive computer program.
This was accomplished through a-very rigl.d interf ace between the
executi ve and the applications program. This interf ace is enforced and

- maintained through a set of static tables which reflect an optimum state
- of the operational system. Being static, the tables cannot be
reconstructed In realtime to handle the dynamic needs of various failure

— modes and reconfiguration requirements.

The rigid interface is one of the key aspects of the DAIS executive and
adds tQ the usefulness of the program. This rigid interf ace makes it
possibie to design modular, reusable software applications programs, —

however, this rigidl y defined i nterf ace did not necessarily have to be
carried through into the coded configuration to be effective. If the
format and syntax for a realtime lnterf ace between the executive and
application software can be defined and maintained , for example, then the
applicatlon~ software can be moved from one application to anotherproviding the same interface exists In the new application. The 1977
implementation goes far beyond this in that real time parameters are, in

*E~~R provisions are Included in the 1979 version of the DAIS Executive.

—133-

- 

- - ,  “

~~~~

- - -

- - - --
:-- - --

- - . . ~~~~~~~~~~ ~~~~ -*.~~~~- :~~~~~~~~~~~~~~~~~
- -.--

~~~~~~~~~~



_____ 
— .

~~

-,

~

——,-- . 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

effect , hard coded addresses. This particular implementalon certainly
maint ains the i nterface, but it excludes any dynamic or realtime control
of the operational system through a data base which reflects the realtime
state of the system.

6.1.1 DAIS Local Executive

6.1.1.1 Stat~c Tas~ Tables

Probably the major problem associated with using the DAIS local executive
was the ordering of executable tasks Into a static sequence so that they
would execute as required. This problem was not so apparent when
executing a fi~ed set of tasks such as those associated with an enroutenavi gation fun :tion; however , if some other function was required to
au~~ent the navi gation function and had to operate i nterleaved in the
sequence, the function then had to be pl aced in the static sequence at
th~ time the system was constructed. This is due to the static
charac~ ’ristjc of Task Table B and the fact that the order of Task Table
B dictates the execution sequence of tasks.

It was e~treme 1y difficult ot i ntegrate into the system applicat ions
tasks which did rot operate in a truly cyclic manner, but operated when
required , by the completion of other tasks. For example, it was

• referable , from a performance point-of-view, to compute a computed air
release point (CARP) when navigation data became availabl e, not at the
end of a cyclic navigation function processing. Another difficult
problem to soi d’e was the i ntegration , into the operational sequence, of
the processing of sensor data which was Ørovided at a lesser update rate
than other sensor data. A good example is Global Positioning System
(GPS) data which was provided on a six second basis. When the GPS data
was available (every six seconds) the software programs which operated on
this data needed to be interleaved with the free inertial navigation
tasks. In order for these tasks to operate in the proper sequence, a
fairly difficu~t set of signals and activation events had to be devised.
This could have been imp lemented by including the GPS processing
algorithms in two free i nertial navigat ion tasks. This is not an unusual
solution , but it is not in keeping with the principle of modular reusable
software since the software cannot now be readily moved to a different
avioni c application without GPS.

Modifi cation of the executive to handle dynamic scheduling requirements
rather than servicing static requests which are frozen during design
should be considered. If this executive is to be used in a tactical
weapons system, the task for a designer to compute and account for, in a
static table structure, all the combinations of computati onal
requirements will be difficult.

A possible implementation includes handling static cyclic dispatch lists
which are activated or presented to the executive by a knowledgeable
controller and demand or noncyclic tasks are scheduled dynamically and
then executed immediately.

6.1.1.2 Event Service

Another problen. closel y allied with the static task table problem is the
complexity of the event service which is forced by a static execution
sequence.

-134-

- -— . -r~~~_ -. ~~~~~~~ —

For example, suppose tasks A and B are routines scheduled by controller
Cl to run In sequence A—B . Also suppose that under certain conditions
another task AA is to execute immedIately after task A (perhaps to modify
data written by A and read by B). Due to structured design
considerations, task AA is scheduled by a different controller, C2, which
has a higher priority than Cl. Thus, task AA has a higher priority than
tasks A and B.
In order to establish the execution sequence A-AA-B, the designer might
consider the following alternat ives:

1) Put the completion of task A in the condition set for activating task
AA. Unfortunately this is not supported by the DAIS executive as
evaluated.

2) In task A , issue a SIGNAL of an unlatched event which is in the
condition set of task AA; hut because AA needs data written by A,
this SIGNAL would have to come after the WRITE statements in A, which
would violate the Software Development Standards as reported in
section 5.0. This alternative al so presents a problem if task AA is

H scheduled with the same minor cycle event as A in its condition set.
In this case , task AA would never execute since the minor cycle event
must be the last event sat isfied in a condition set in order for the
task to be made active.

3) In task AA, as the first executable statement, Issue a WAIT statement
for the completion of task A. This is also a violation of the
standards and results in more tasks waiting than would seem
desirable, but it does represent a solution.

This example serves to illustrate the complexity of condition set and
event interplay. This complexity could be reducec~ by the use of dynamicscheduling, in which a task would become eligible for execution
imediately upon being scheduled. The current DAIS execution sequencing
design should be reexamined and possibly replaced with a dynamic
scheduling capability. Event service as It currently exists could
probably be simplified to a WAIT service.

6.1.1.3 Lack of Local Input/Output Capability

As the flAIS executive is designed and implemented with the static table:
(task table B, event tables, minor cycle event tables, etc.) the program
is quite large primarily due to the size of the static tables. For
example, the DIMS program including the local execut ive and the necessary
Interface tables in the remote processor was In excess of 45K, which
forced the use of a 64K processor. In the same application the memory
requirement in the mas-ter processor for the master executive was 6.5k,
the local executive 12.3K, and the interface tables 2.5K , for a total of
over 21K. With memory requirements such as these, program overlays and
realtime storage devices are definitely necessary to support the
applications programs.

In the present configuration and design the program has no capability to
support an online device. The current DAIS processors do not have this
capability either. Yet this capability is desirable in many airborne
applications.

-135—

-~~~~~~~~~ -

~~~~~~~~~~~ 

- - _ _ _  _ _ _

— 4 — -~ ~~~~~~~~ ~~~~~~~~~~ ~~~~~~~~~ ~— - --—- —-— -- -~~ ~~- -••- ~~~~~~~~~~~~~ ~~~ ~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -
~ A



To support overlay programs stored on an online disk or drum and possibly
to support realtime mission data recording a capability to handle input
and/or output f rom devices such as disk , drum or magnetic tape is
necessary.

6.1.2 DAIS Master Executive (Bus Controller)

6.1.2 .1 Error Handling and Recovering (EHAR)

If a subsystem or an RI were to fail , there is no intelligence provided
to the system by the master executive aside from a table local to the
master executive being updated and bus instructions for that device being
NO-OP ’ed. The master executive has no information whatever relative to
the tasks which use the RI data.

A method of coninunicating with both the local executive and with the
application program dependent upon data from a specific device, needs to
be implemented to ensure proper system operation. The EHAR issue needs
to be examined in more detail and a mean s provided to support
requirements for avionics applications.

6.1.2 .2 Lac k of Test Capability

When operating a program in an integration test or debug mode, there is
no real method of halting the program and resuming from the point of
interrupt . In those cases where inspection of realtime data is
necessary, an attempt to halt a remote processor for data inspection
results in the remote processor being failed and the bus instructions
associated with that processor being NO-OP ’ed. Resumption of program
operation requires either a reload of the master processor or very
tedious patching to return the data base to the original state.

One possible method of solving this problem would be to utilize a debug
switch which would be checked by the master executive in the event that a
remote processor did not respond in the alotted time. At the time of
recognition, Vie master could send an idle message to the other
processors (which would not contain any minor cycle updates ) and
then poii the nonresponsive processor. At the time of initiating the
poll of the nonresponsive processor , a displ ay could be generated to the
Console Intelligence Unit (CIU) to inform the operator . If the “failed”
processor did ‘espond, the master executive could then send a special
interprocessor service request which would inform the other remote
processors of the resumption and a minor cycle update to resynchronize
the system. If , in debug mode , the processor did fail , rather than
simply halt , the system would probably have to be reconfigured anyway.

Another possible method of implementing this action would be to effect a
failure in debug mode through a time delay or an operator action to allow
“real ” failure testing.

6.1.2.3 No Reconfiguration Cap-ability

Reconfiguration has been implemented in the EHAR design as a method of
reloading a different system configuration from a mass storage device on
the MUX.

-136-

_ _ _ _ _ _ _ _ _ _  _ _ _  _ _ j



-- -- - 
- -

~~~~

Failure processing (in the 1977 version) consists of reporting the error
and dropping the miscreant terminal from the configuration. One of the
major obstacles to attaining a reconfiguration capability is the fact
that the system configuration is frozen in the design stage by a support
software program which precedes operational software production by at
least two steps.

This software support program is the PALEFAC program which produces
tables that provide and maintain the interface between the DAIS Executive
Computer Program and the applications program. These tables are rigidly
constructed and do not allow reconfiguration because of this rigidity. A
system is built (by PALEFAC) on the assumption that a particular program
will reside in a given processor and the source and/or destination of a
message will always (for the life of an operational system) be the same.
The PALEFAC program does not “build’ an operational system but constructs
an executive data base to represent a singl e configuration which is
static and cannot be modified in realtime. In order to build another
operational system, the PALEFAC program is run a second time using a
different data base which reflects another single confi guration.

The DAIS executive and applications software interf ace should be
reexami ned with the goal of making it less rigid for the purpose of
reconfiguration. Attempts have been made to solve the reconfiguration

• • problem by using different load modules for each of the various possible
system configurations, all residing on a DAIS mass storage device. This
is a possible solution to the problem, but In actual practice this method
will probably be severely limited by available space on the mass storage
device. This Is because a different software system must be built for
each hardware/software configuration to be supported. This Includes the
PALEFAC processing, LINKage EDITing, compi lation of Interface tables and

- -
- the loading of all of the different softwar e systems onto the mass

H storage device..

Another method which should be examined is a dynamic reconfiguration
method in which an initialization (or reinitiallzation) program
determines the hardware configuration and then customi zes the software to
fit. Algorithm s similar to those used by the PALEFAC program could be
used. The problem with this approach is that almost all realtime
executive requests are translated into static offsets in the static
tables generated by PALEFAC. If reconfiguration were to be implemented
with this approach, some dynamic executive service request scheme would
have to be employed. Methodology such as this has been successfully
implemented In a number of airborne systems in the past including E3A and
E4B.

6.1.2.4 Realtime Handling of Asynchronous Transmission Requests

At the present time, the DAIS master executive (bus control) program upon
recognizing a status exception (request for asynchronous activity) will
suspend the synchronous activity at the end of the current transmission.
This is a costly and- wasteful implementation that introduces an
unnecessary degree of complexity to the program. The need for a
nonsynchronous transmission is perhaps necessary, but the present

• -137—

-- - - —- -—~~~~~~~~~~~~~~~~~~~~~~
—- - -

~~~~~~~
- ~~i :  — -  

-T-
~~~

~~~

-
• _ _

- -~~~~
-
~~~~ 

.-
~~-- —- - -.•— — - - ~~~ -•- -~~~----• ——-~ - ~~-• - --- - .~•—‘• ~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~ - ~ -•-•- •—----~---. ~~~~~~~~~ ~~~~~~~~~~~~~~~

1’
- - - -----

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

implementation interrupts the synchronous bus list processing and inserts
a new message sequence into the bus list (I/O instructions). This
asynchronous processing could probably be handled as easily at the end of
the synchronous bus list processing. By doing the asynchronous
processing at this point, a degree of complex i ty is eliminated from the
program. The time in a minor cycle after processing the synchronous bus
list is free time , since nothing but idle polling is taking pl ace . An
implementation of this sort would delay the response to these

—
“asynchronous” requests by a maximum average of 0.5 minor cycles. Idle
polling is a query for any asynchronous message transfer requests.

Interruption of synchronous bus list processing to handle an asynchronous
message seems to be inconsistent with the system design philosophy, which
is based on cyclic or synchronous processing.

A situation to cite as an example occurred during PINS testing where a
number of asynchronous requests were pending and the resultant processing
skewed system synchronization to the point of failure. Although PINS was
purposely designed to introduce heavy loads to the executive , even a
well-partitioned operational fl ight program could experience heavy
asynchronous loads during transitory periods (such as those Induced by
mode changes) when a number of signal s must be set, data blocks written,
and tasks cancelled and scheduled.

P 6.2 Change Recommendations for Future Programs

The DAIS Executive Computer Program in the present configuration will
support a limited number of avionic architectures. The executive is
limi ted to supporting those architectures that have the fol lowing
limiting features:

o AN/AYK-15 or Magic 362F Processors
H o - 1553A / DAIS Bus Protocol

o Federated , single level bus architectures
o DAIS BCIU and RT interface hardware

The trend in avionic architecture arrangements are those using multi-level
buses and microcomputers that use microprocessors. A lso , the
MIL—STD -1553A /’)AIS protocol has already changed to MIL-STD-1553B.
Obviously, the limiting features listed above are not compatible with
future avionic architecture requirements. Changes or modifications will
have to be made to the program to accommodate multilevel bus,
microcomputer-based distributed architectures.

To assist in upgrading the DAIS Executive Computer program to- accommodate
the systems of the future and to be consistent with the DAIS philosophy,
the following change or modification recommendations are presented:

o Machine Independence
o Architecture Independence
o Modularity

-138-

r~~ — --~---- —--- -~~-- . 1
i _ _

:~~ -•~~

-
-

________ t à. ~~~~ ~~

v--- — -- ~~~~~~~~~~~~~~~~~~~~~~~~~

6.2.1 Machine Independence

It is apparent that machine independence was considered when the program
was developed. For example, the majority of the program was coded In
higher order language (HOL). In addition to the program being
implemented in a theoretically retargetable language, the processor
hardware interfaces are fairly wel l isolated in code, however, the
processor dependent code is not isolated wel l enough to make the rest of
the executive machine independent.

The proposed MIL-STD-175O attempts to provide machine Independence. If
it does become a standard, some of the interface problems will be
minimi zed, and perhaps relative to the target computer the program will
become machine independent, however the hardware dependency is not
entirely in the lnterf ace to the computer itself. Probably a more
confining or restricting interface is with the BCIU. The DAIS BCIU
operates off a set of programmable registers which must be set in
software. In some cases tables must be generated in software to satisfy
this interf ace.

It is recommended that the hardware interfaces (e.g., interrupt handlers
and timers) be totally Isolated into proqrmn modules. There should be
one module for each piece of hardware and the interface with the
remainder of the executive shoUld be rigidly defined and rigidly
enforced. - Using this methodology, if a piece of hardware Is changed for
an application then only the module which deals with that piece of
hardware need be changed. -

- - 6.2.2 System Architecture Independence

The present DAIS executive was designed for only one system architecture,
which is a single point control federated system operating with
1553A/DAIS protocol on a single level MIL-STD-1553A MUX bus. If the
executive program is to be reusable (in keeping with the DAIS
philosophy), then the program should be modified so that it can easily be
implemented with other protocols or system architectures. To achieve
this goal, the DAIS executive must be modularized to be a family of
independent functions so that selected modules can support a variety of
system architectures. Possible modularity is discussed In 6.2.3. -

Bus control is basically a set of functions which include the hardware
•

Interface and the software response to the protocol. In some cases, the
bus control may also include some sort of contention control, but whether
operating in a system with sing le point control or contention, once BCIU
control Is established It is Independent of protocol. Graphically this
appears as: -

—
Nirdwsre Softwar.

_____ ________

Bus - T
B CXU IBus Control Protocol

i , ., Control
Iiardwar,I ‘ ‘ (PC)

Processor (HI) C DII

-
______ j (CC)

Other
Ezecut ive
Function

-139-

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ — --- •- - -

—----

—— ~~~~~~ ~~~~~~~~~~~~ ~~ ~~~~~~~~~~~~~~~

-

If the protocol were to change from 1553A/DAIS to 1553B, only module PC
would have to be replaced. If a contention system was desired, then the
appropr i ate CC module would be included . The interfaces are rigidly
maintain ed so that the individual modules can be built to be independent
of the rest of the executive.

6.2.3 Modularity
-

In addition to attaining independence from hardware or system
architecture , modularity can simplify maintenance; each function is built
into a functional building block with very rig id interfaces, which
isolates the functional area requiring maintenance from other functional
areas.

There Is a practical degree of functional modularity that can be attained
for an executive program. First program complexity and size must be
considered . For example , If the DAIS executive in the maximum
configuration was to be treated as a single reusable program and used in
a microprocessor-based intelligent sensor, it would probably force the
memory size of the microprocessor to 32K and perhaps double or triple the
necessary processing capability. The intelligent sensor would then

-

-

contain elaborate task control algorithms and interprocessor service
request algorithms. Probably the microprocessor—based intelligent sensor
would need, at most, l imited task control , bus interf ace control and -

• l ocal I/O handling software functions to augment its processing
capability. As the DAIS executive Is Implemented , two choices are
available. One, develop new executive programs to handle these functions
(which is not in keeping with modular reusable software) or two, purchase
a larger microprocessor to house the unnecessary executive functions. An
alternative solution would be to modularize the DAIS executive so only
the necessary functions need be included in the operational executive for
an application . The degree of modularity for a program of this type
would necessarily ‘~ave to be traded against the implicit added overhead
due to modularity (e.g., additional interfaces such as CALLs and
linkages).

Executive control requirements for distributed multilevel hierarchical
architecture differ little from an exclusively federated single level
arch itecture except in three areas: (1) multiple buses must be
controlled by a master bus controller, (2) variations in bus control
philosophy may be used to control the bus depending on the application
and (3) processors of limited capability will be used in distributed
archi tecture. Each of these areas requires more modularity and isolation
between modules in the software than the DAIS/executive currently
contains. Areas (1) and (2) Imply that the bus control software has a
well defined interface which separates the bus control from the local
executive. The third area of limited processing capability implies that
the local executive should contain only those executive support
capabilities required by the applications software in that one —

processor. Table 6.2-I contains a suggested list of executive modules
which could be implemented to create a modular executive for distributed
hierarchical architectures Table 6.2-2 describes the functions that each
of the modules might Include .

-140-

—______

—

- -~~~~~ —-~~~~~~ - •—-~ - -•- ~~~~~~~ &~~~~~ ~~~~~~~~~~~
-
•- -~ ____________ - — - -

- - - -

-~ ‘ ! ‘ — ‘ ‘ ~~ r ’— ~
--- -----—— —

a) • 0 4 1
4)
4)
1- 3 4;
o , - a) •0

VI U C 41
C O 4;
.1- C C

I.
C C 41

VI 4 1 . .C
I— 0 4’ 41
3 ~no. w 4’
o .0 4) .C
.c 1w . 4 1 E
UI 4) 3....

VI 1-
4) 4) O C 41
3 E’- - C
.0 VI VI 3 0

.1-’ 41 — •1~
4) u 4-’
4) • C 4)

1w 0 5 . 4 1 •,- I.
- 1- 1w • 4’ 3

C 0. ..- C 0)
4) C 41~~~~~ 0 4)
4’ 0 VI C 4) 9-
U) U -o VI C

4) 0) U) 1 0
41 .00 C X 0
.0 1wS.. 41 0 41 41

1- 4 1 .1- C I.
I. ,—C 4.) 0
4) VI 4) 0 C 41

V I a) 9- C 5-
0) 41 U ••- 3 4) 4.’ 3

C 0 41 4) 9 -0 VI 4)
3 0 C 0
U) 0 W — C

LU 4) VI 9- .0 C 41 i— I- 1-
l f l O C l~~~0

4)
•1-
5-

- 4)

4) 41 4, a) 3
> > > 4) 41 41 4) 4 1 - 4) 4) >

LU -.- -I- •1- > > > .1- 0
4.’ 4’ 4.’ 1 .

~~~ ~~ 
.,. .

~~~ 
. ... 4’ X

— 3 3 3 4.) 4) 4) 4’ 41 4) 4) 3
U U 0 3 3 3 3 3 3 3 U 4)

LU 41 41 41 o u o u ~ 41
X X 41 41 4) 41 41 41 w x

LU LU LU IC IC IC IC IC IC IC LU .4.)
I— LU LU - LU LU LU LU LU 3

5.. 5.. 5- 5.. U
LU 41 4; 4; 1- .— 1- .— .— 1- — 4? 4)

~~ 4) 4~ 4) 1w 4) 4) 4) 4) 1w 4) 4.’ IC
U) VI VI 1w 4) U U U U U 0 1w U VI LU
4) 4) 10 ~~ 0 0 0 0 0 0 .. 0 ~~C.) Z ~~ C C - ..J ..J ..J ..J _J .J C ..J ~~

4.’
U)
U
0)
0)
3
‘I,

I- ’

c..J
• 1-

0 - 1.0

S..
1. 4.’ 4)
a) C 1-

0 4.)o C.) VI 1w

41 4; I.-
(0 3

4) 4 1 4) 4 1 4) 4’
1w 4;

• 5_ -•_ 0 0 0 0

1.#) ~~~~~~~~~~~~~~~~ 4) 4; -

O C 1 w 1 w 1 w 1 w U) U 4)
0 0 ~

.- I-. C 41 4)
41 Q ~~~~~~~~~~~~~~~~~ a . > E > 0.

• U - IS U) C C 41 41 0. . S... U) V

V ~~ 0 ~~~4 1 O 0 U0 u~ 4) C 41 4.’
LU 9-

- 4’) 4’) 1. . ~~ .r- ..- ~~ 41 1. Cl) 1w 4.~ -
5.. 1.0 4) 0) 4)4.1 ~~ oc 4) 1. 4) .~(4) 41 LC) 1.0 0 C 01 C C Cl) Cl) C 5. VI

~~
4) U .4 “ 0 C 41 dl 41 0 0 -

O C 41 5.) ~~ ., 4) 4) 4) 41 p- 0 5.) VI U) VI ~~z ~~ I_ r- . — -C C O E 0 1w - VI 3 3 —
5.. 0 0 C 0 0 0 0- .- ..- 5.. ‘1.- 4) 41 0 0 ~~LU I. 41 5- 5. 0 0. 0. C.) 5.) I— I— 4.’ 5.. C U C 0 0 .C ~~

0 4’ 4’ 4’ .- C 41 41 0 0 0 •-. ~~~ LU
LU .—4 IA C C C 4-~ 0 4-’ > S.. 1- 1. — LU
1.fl I.- VI ‘-4 0 0 C S I I I I I C.) C IU 0. .0 .0

a) 5.) 5.) 4) .-. ... I. U U .— ~~~ 1w -
U ~~~

4) .~~~
4) dl C 0 IS 1w .0

~~~~~LU 0 ‘-4 VI U) C U) VI k 4) >~ U U 0
5.. 5.) 3 3 0 1w 3 ..- C U) VI 0 0 ~~~

0. LU -0. ~~~ 
4.) 1-  ~~~ I- ‘-~~ ~~ _I ..J C~

-~~~~~~~ 

. 

, - ~~ - ~~ - — - s-

-

~~~~



~~~~
--

~~~~~~ 
—--------

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~1

1- — _

e .
~~~4.’ .0 4’

4) 41 C 0 VI
VI 0 9 - (f l 0 .0

4-’ • 0) 3 00 0 4)
o. U) -o - o - -

~~~ 
-
~~3 4) 5 U 410. VI 0 3 •

1. 0. .— C 4;If l 3 5 .— 5.. 1. 4)41
5.. 3 U -.- V I a )  .0 0 U 41 0 3.— —4) 5.. C - S.. C - .— U) 0.0
4) 5.. •-  .0 40 .0 I-I ~~ VI 0) C

— 1- U) • 0 4) 1(10
9- 4) VI 3 5-.- . -.- 4) I— • 5.. 0 41.0

0 — 0 00 .- 1w .- • 4’ 0
5.. •.- .0 9- 0. .0 .0 > 1w 5.. 0 1- 5.. 0

O I— - 1 0  10 • I. > 0 0 0. 0—
4- ~~ U) VI 4; 4~ .— 4) 41 5.. VI 0 9- 3

I-. -.- 5>  U) -.- 0 4) 41 VI (0 0
S.. C.) • .0 .0 .,- 4) 40 C 0 4.’ 4) VI VI Z
0 ~~ Cl) ~— 4.) > 41 ~~ C U 3 0 4-’
In — 4)-.- .0 .0 3 ..- 0 .0 4) VI 0)
VI 0 ~~ .0 ~fl ,- 0. 5.. U
41 4’ 0 • 4-’ 0 3 - 

0) 4) 0. 41 .— 53
U 0. 0 C VI ..- .0 41
0 In .~~ 4’) 0) 44 4~ 9- 10 4) 0 4 10
S.. .0 (‘1 I~~ 04 0  a’ 4’ 0 1. E

0- 0 U) U) — .0 4) 0) 10 0 0 ..-.

0 sn — ‘—0 0 .0 V 0 4) 4.) U U) 9-
4) 0. .-I I .— 4.) 1w • U) C U .— I. ~~ 0

.0 ~n I 0 VI 4’ VI 0 ..- .— -o 0 (0.0
4 4) 4; .0 4) 5- aj .— 4; -.- 41 9- V C S.. I..- -~

S.. 4) U) 4-~ U) 0 0  0 .0 — 0 0 4’ 4)
.0 Cl) I C C  S~~ C VI 41 U .) 0. C U) U
4.’ .0 I 0 0  4’ U 40 (0- VI U In 0 41 •

C • 00. C 3 44 0. • 41 0 .0 5. (4
50- ,- VI ~~~ Ui 0 0. .- 5.. .0 Il) In U) I. 5— 0 • 0.

04) 0 4) .~~~L. -o
C VI •0 5.. 4) 5.. VI 5.. 4) 

~~
- (0 VI U 0 C VI ~~0 1. S~ 0 0 4~ 5- 4’ 4- 0 (0- .-. 0 40- • 4) 4/) UI

-.- 4) 0 0  9 - -  9-~~~~~ 0 4)  C 10 5. 5. 4~~~W 1w V IU 0 .  C
4) 4’ ~I- U) (0 -.- 9- 0) 0 4.1 4) C .— 4’ 0~~~~ 0
10 U) U 0 4) (0 0 .— C 4) 9- (0 5.. 10 VI S... -.-o -.- 0.0 0) VI ..- .— VI 0 0 4- 0.0 0 C 4) 0.~e- 4)

0) 4; 0 — 0  S. — VI VI I. U 44 U) 0) 5 0 0.
C 4) — 0 9- U 4) 0 0) 3 4’ 0)4’ U) 9- 05.. •I~~9 S.. 9- -.- r— 4) 0.0 .0 C VI .-. C In 4) U) 4)0)4.) - 

- S..
E -i- cl) U 01 — C 0 5 0 4; o 5.. .0 0. 0

C .— U — 4 1 0  0 0  40- 4- 0) U .0 5.. .0 5 0 4’ 4.1..- VI
0 0 4) ~~ 0. 9 5.. 5.) 0 .0 4’ 0 0. 1. C W O W  41
U 5.. 0.0 In ~ 4) 0 4.’ 9- 4- C 4’ 0) 0. 4) U C U 0

4’ VI C .0 41 -4.’ 0 0 0 ( 0 5 .  > .5- 10 41
~0 C .- (fl. 0 U) 41 4- 0 0. (4 0) > 5.. 41
C 0 tn — 40-.- 0~~~ 41 VI 0 0) 4) - VI 4) 5. C
(0 0 44 10 10 3 U) C C 4— U 0 .0 4).,- 4; 3

VI 0 0 40 1. 4) 0 .0~~~ 4) C U) .0 .0
a., ~~ .— 4- 09- S C 0 41 .0 E > 44 .04’ 0
C — 0 0 C.) 0 .0~~~ 0.5.. > VI .0 0. .0 5.. — S.. w
. 5.) U 0 .— VI 0 0 - U) S C 0) 10 0) 0 0

~~~ 0 0)  4~ 0) .— 41 ~~~9- 0) 3 40- VI U C U) ~I- C 4)
4.’ 0 0 C 40- 5- 5.. .I~ 0. ,— 0) 0 9- U) VI 40- >o • 9- 0 -.- 5. -.- 9- (0 C .0 C 0)41 0 41.. -

(00 0 5.. .— 0..-~ 41.0 4; 0 4) •p- 1w 0 > U4)
- C 41

.0 0 C C > 5. u— 4) > .— 4’ 0 4 0 0 3
9- 0) 0 r- C 41(0 4.’ 0 01 U) 9- .— 41 0 5.. U) 9- 0

.4.’ 4) C .- 10 0 (0 4.1 4) C 0
.

1. 0) 0) 3 3 S.. 0. VI 4;
0.10 0. 0 5 - . 0 0 VI -i- 0 40- .0 U 4’ VI 5.. 4) U) IC
S N 4.) 5.. 4) 0 .41 V I U 0 4) 4) 01 4 1 0) C 5— US...- LU
5.. ..- 4) 4’.0 C 0 U 0 U .0 .0 .0 .0 1< 0 — 4.-’ IDE
5 . 1 — 4) C C 0 0 , — C 0.-U) ~0 4’ 4) 4~ 0 4) U < C In -

4) ID U) 0 ID 0 40 . U S In C
U 40- 3 41 .0 4) 0) 0) 4) 41 ID 0 1 w I

~ 1 ~~~+.‘ U 0 in 0 0. i- .— .— .— 41.0 4..’ 4) 41.,- 5.. C~.Jo i -.- .0 4.) 34.’ U .0 U 0 .0 .0 .0 4) (4 r- .04) -
0 4.’ .0 .0 .- VI C~~~ C C C C 4) 0 .0 40i—I tn ..- 4) U 0 (0 .0 10 ID (0 40 4) C C 4;

4) VI U) U) VI U) 0.4) .0 C .0 .0 .0 .0 VI .0 VI 40 40 41.0 41
.0 5.. 0) U C U 0 0) 40 0) 4) .0 .o 04.’

~ I 3 0 ‘— ‘— 0 — 0 .0 (0 0 . 0 .0 .0 .0 .— ,— .0
C-) I .— 4) 0 .0 0. .00. .— VI .- 1- .— .— ,— . 0 .- .0 .— .- >.0 44I/)1 0 0 0 C V I C U) 3- U) 3 0 3 3- 3 5 0 3 0 .- .— 5. 4) 5-
L U . C U ‘0- 1 0 4 1 I 4 U 00) 00 0 0 0 0 ‘00 44 .

~~~4)0
° I ‘—~ > ~~ I- ~~ I- ~~ C 10 ~ = ~~ ~~ VI .0

5.. 5.. 5.. 1.
41 0.) 4) 41

Cl) C S .  1. 0 0 0 0

— 04) U 01 0 41 ~0 4) 4) Cl)
9 - >  > .1~ C .~~~ C VI - 00.

0 4) 0 0 (0 10- 40 40- 0 9-
U ~~. C~~0 0) I.- 

~~~ I— - 0 -

W C .~~~ 0. ,— S.U
4’) 4)10 V C C 41 4) V I — 0 0.1 4.14! -

U) U) C I— 0 0 U U 4) 0 1. C/) UI
5.. U) U) 0 9- 9- 9- 9- 5. 4) 4)
4) 4) i-I i-I C.) 0)

-
0) 4.’ 4) ,— r- ~~ 4’ 0 S.. S

4) Q ~~
..- ~~~- C C C C In Cl) 01 C 0 00

0 1w ‘- ..— 41 G~ .— - 0 0 C.) ~n
— ‘4- .— — .— — 5-. 4-) 4.) 0 405.) U) ~~ S..

1. 0 0 0.— .— C 0 5. 9- 4) 41 4)
5.. U 5.. 5~ 5 .0 0 0 0 .,.. 4.’ 5 - 4 0 C O W . .-
0 4.’ 41 4) 4) 0. 0. 5.) 5.) 5-. 5- C U 4-~ 41 00.0

(U) o C C 0 4J(0 >
LU I U) i-i 0 0 0 5.) 00 LU 0.> 1w

-.4 I ~~ C.) C.) 5.) I I I S I I ‘.4 -S.. 5-5.=
U -

~~ 41 41W -

01 — Ifl VI VI VI VI 4..’ 4/)
C.) 3- 3- 3- (0 3- 9- 0

~~~ 
10 .  

~~ 
5- 5- — -

-142- 

_ 
_  _

- ~~~~~~~~~~~~~~~ ~~~~~~ ~~~~~ -: ~~~~~~~~~~~~



_ _ _ _ _ _  —~~- -
~~~ 

—.
~~-

-

(4-
41

41
VI
C 3-
0 0
0.
VI
41
S.. C

(0
4’
0. .-
3- 0
5.

4’- 41 C
41 - 0
C U
.5-

VI
3-

C .0
(D

.C
0 4) —5.
0 c”..J
.5-
4’ I5~V C 0
N 0
9- .5-
— 4.’

• 14 U 41
0 C a)
0 4) 3- V .

• 9- 9- 9., 0.
U) C C C —
In 0 - 9. 0

— .5- U VI
0 4~ 0) • C
VI 0. C 5. C 0
C 4) 0 “ 9-
1w U -o U) 4.)
5.. 41 3- U) 0.’
4) 5.. r— U I. •1~~U 1) 0 5..
U U C 0 5- U0) 0) ..- S.. 5.. U)
40 V 0. U
In U) In
VI VI U 1w ,
U 4) 0 V 01
E E 0 .0 —

> 4.’ 0 3-U) VI 4) ,— .0
5 3- .0 ,— 0)
0 0 10
C C 0 0 5.

O 0 ~~
... 0 0 . - 41

5. 5.. p- C >
.0 .0 00 -.-
U U ~~~ VI U-i- 4)
C C V 5. 4)4) -

~~ >1 >, U 0 U) V U
0 VI U) 0 1. >.,S.. 41
— V V .— S.. V I S IC
I— 41 0) LU
0. U) ~) U) in .,-
-4 0) 0) 41 a) U4-

1- 1- 1- 1- r- C C’..’
C.) 0 .0 .0 .0 0
Cl) C C C C C U C’-.’
LU 1w V V SO V W
0 S.. 40

41
1-
.0

4.’
9- 4)
C > -
VI
C 41 —

• V US.. 4)
5-. ~~
VI U)
3- 3
0 0
C ~~ 0 ~~~0 0 ~~s X U.’
5.. 5 - - ‘i LU

LU .0- .0
-.4 U U , r- V
~~ C C 41 41 .0
0 >) ~~~ U U 00 U) U) 0 0
X ~~ < ~J J CD

-143-

~~~~~~~ _ _ _ _ _ _ _ _ _ _ _  ~~~



v - .

Appendix A

Test Control Tables

The Test Control Table (TCT) controls the processing load that the
Pseudo-Integrated Navigation system (PINS) places on the DAIS executive
through executive service requests. Section A.1 of this appendix
describes the features of the TCT and how it can be used. Section A.2
describes in detail the four Test Control Tables used in Phase 1 of this
study.

A .1 Introduction to the Test Control Table

The TCT provides the test controller interf ace to PINS. Through the TCT,
the test controller can control the individual components of the
processing load requested by the PINS program. By entering the
appropriate set of values in the TCT, the user may control both the
absolute number of realtime statements resulting in executive service
requests and the minor cycle in which these statements will be executed.

Each entry in the TCT defines the control for a test phase (a test phase
lasts one second). Each test phase is independent of any other. For
example, READs and WRITEs may be examined in one test phase, SCHEDULEs
and CANCELs in a second, and SIGNALs in a third, or all three may be
examined in a single test phase. The TCT can provide the most effective
in si ght into the operation of the DAIS executive if phase control
definition causes the executive load to vary in a gradual manner. Thus
one phase mi ght generate a single READ in minor cycle 2, while the next
phase generates two READs in minor cycle 2 and a third phase generates
three READs in minor cycle 2; or one phase may be designed to study one
WRITE in minor cycle 4, while a second phase studies the WRITE combined
with a SCHEDULE, and a third phase combines the WRITE and a SIGNAL. By
carefully controlling the processing load in this manner, the user may
obtain detai led information on the performance characteristics of the
DAIS executive.

A con~1ete discussion of the structure of the TCT and the manner in whichthe TCT controls the PINS processing load is provided in paragraph 3.3 of
“Executive Evaluation Software Design” , CRDL #1. Also found in paragraph
3.3 are definitions of special terms (e.g., base load) that are used in
the descriptions that fol low. -

A.2 Detailed Descript ions

During the study, four TCTs were used to generate the data found in this
report. These four tables have one coninon characteristic - each begins
with a calibration phase consisting of what is referred to as the “base
load” . Phase 1 of each TCT is the calibration phase. A description of
the cal ibration phase (base load) is presented in figure 3.1—5.

_____ _______________ 
I- -- - -

1 ~~~~~~~ 
- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- - —-—--— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

IlL. ~~~~~~~~~~~~~~~~~~ -~~-~~~~ —---~‘ ~~-~ ----- ~~~~~~ I

-—- - - - — —~~~~~-~~~~~~- ---~~~~~ -~~~~~~

A.2.1 Test Control Table SACIA

Test Control Table SACIA was designed to study the effect of SCHEDULE and
CANCEL statements when they are encountered In a variety of processing
load levels. Figure A.2.1-1 shows the background load (0, 1, or2) that
is executing during each test phase, the number of extra “events~
occurring in each test phase, and the mi nor cycles (modulo 8) in which
these extra TMevents1’ are to ãccur. As used here, “Event” refers to a
request for an executive service, such as a READ or a WRITE.

Phase 1 is the calibration phase and phase 2 permits-the study of a
single SCHEDULE and CANCEL in a min imal ly loaded minor cycle (minor cycle
7). The remaining phases examine how the SCHEDULE and CANCEL statements
perform in the three different background load levels and in two
different local processing (local write) load levels.

Figure A.2.1—2 provides an explicit listing of the number of executive
functions being performed in each minor cycle of each test phase of TCT
SACIA. In each block of figure A.2.1—2, the test phases are arranged in
the following pattern: -

i~~ 2 1 3 1 4 1 5

6 1 7 1 8 1 9 1 1 0
--- -I--t—- I. -

~1~~- 11 12 13 14 15

16 17 ~ 18 19 1 20

Each value in a block of figure A.2.1—2 represents the number of
occurences of the corresponding parameter in each minor cycle for the
test phase indicated by the value ’s pattern position. For example, in
minor cycle 1, of test phase 16, 4 READs, 1 local WRITE, 1 global WRITE,
0 SCHEDULEs and 0 CANCELs will occur.

An empty block in figure A.2.1-2 indicates that the particular Nevent~was never executed in the corresponding minor cycle.

-145-

S

p. ~~~~~~~~~~~
- - -.

~
.. - - - *!J. Sflfl. .~~ - -

~~~~~~~~~~



— --- — - - -  —- - -~~~~~~~~-

MINOR CYCLES

PHASE BACKGROUND LOCAL TRIGGER SCHEDULE
LOAD WRITE AND

CANCEL

1 0 0
2 0 - 0 7
3 0 0 0,2
4 0 1 0,2
5 0 - 0 0,6
6 0 1 0,6

7 1 0 6 0,1
8 1 1 6 0,1
9 1 0 6 0,2
10 1 1 6 0,2
11 1 0 6 0,6 -

12 1 1 6 0,6

13 2 0 2,6 0,1
14 2 1 2,6 0,1
15 2 0 

- 2,6 0,2
16 2 1 2,6 0,2
17 2 0 2,6 0,3
18 2 1. 2,6 0,3
19 2 0 2,6 0,5
20 2 1 2,6 0,5

- Figure A.2.1-1 Test Control Table SACIA

A.2 .2 Test Control Table PINS2

Test Control Table PINS2 provides the means to study the processing load
generated by each individual “event” . This was done by placing a single
extra “event” in several minor cycles to permit the timing data for that
event to be isolated. “Event” in this usage refers to a request for an
executive service such as a READ or a WRITE.

Figure A.2.2-1 shows the background load that is executing during each
test phase, the number of extra “events” occurring in each test phase, -

and the minor cycles (modulo 8) in which these extra “events ” are to
occur . As always , the first phase is the calibration phase. Phases 2
through 6 examine the effects of adding events in minor cycle 1, while
phases 7 through 11 do the same for minor cycle 5 and phases 12 through
16 examine minor cycle 6. Phases 17 through 21 repeat phases 12 through
16 while adding a number of local writes.

-146—

~~~~~~~~~~~~~~~~~~~ H. ~i-~L


- ~~~~~~~~~~ — ~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~ 

—. -- —5--- 
- - —

00 0C  0 0 0C
p.4 p.4 p.4 p. 000 C 000 C

5.. .4 P~4 ~~1 p. 000 C 000 C

— 5-4 P-i p. —‘00 C — 00 C “ VIr_  J~~5-I . 4  . 1  ~~ 0 00 C 000 C 0 0

C’4 CY) cVI~~~ 0 ,-i -0 .— -4 C’S J C ’  — . D OC  ~-4 0 -Q C 0 .-i .-.. .- 
C C .

CY) CsJ~~~— c .  .-4 0 .-4 0 ,-4 .—, C’sI C’ 000C 0Q~~~~~~ 0.- i .-...-

40 C’..’ C’) C’) ~~ 0 .— 0 .-4 p-i .-l C’J C’ 000 C 000 C 0 .-4 .—.. .- 
U, ii)

C’.JCSJC’)CV Q-D -r-. 0 —. ,—i -.-..C’ 00.—i C 00.-i c 0.-i .-.. .- 5 . 5 -
0)41

.i C’) C\J -’~ 0 .-4 0 .-. .-4 .—, .—. C’ 0 -.-4 -.-4 C 0.—4 ..- C 00.-i.- (4_ i...
______ ______ ______ ______ ______ ______ ______ ______ _____ 

in U)
— _ _ _ _  - C C

4 0 4 0u_ i .—i —i .-i .- 0-0 0 .- 000.-i 5.. 5..

~~~ p—i —i .-i.- 000 — 000.-i 
5- 5-

U)
-

-

- ,.‘~
.-4 ‘-4 p-i .- 00 0 C 0000

p _.4 p.4 p.4 p- 00 0 C 0000
.0 -
41 p-i .—. ,- p. 0-0 0 C 0000
I-.

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ — —5-
- 40.0

—
0 .-i ‘-4 ~~iS..
4.) u-S p.4.-i p.
C
0 u-i p.5 4 .-
C.)
4) La.’

l~ ~~~~~~~~~~~~~ _ _ _ _

-
_ _ _ _ _ _ _ _ _ _

S.. J C ’ 000.-.
4.. .

~~‘)C ’0O , . 4O 000 0 0 0 0 0

.
~~~

‘ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 000.-i000.-. 
-

-

S.. - - , .-4 C’s.’ 0000 000.-i 000.-.
0 000 0 000

0
1w
0 1 f l 0 00 l D Q p.4 0.— -.i 0 D ,_ . .-. 0 0O P•i 5-i
-J

C%J CsJ Lfl .~~~00,—i000..-i .. .—i - .—.00.--4 p-4 O0 00.—i ,-i

~J ~~~~~~~~~f l0Q 0 . -,00 .-. .,-i .-i0c~ - .ooo oo.-. ,--~
- - C” .I C’.l C’..I~~~~00 0 0 D O 0 . — i 0 00 D Q o Q o 000 .— .VI -

U Q00 0 O Q p-i QOp..D0O.-~ O 0 0~~~4
-

8 - _ _ _ _ _ _ _ _ - _ _ _ _ _ _ _ _ _ _ _

S.. -
— 0.

p-i C’)~~~~C’)D0.-40 D r-i .-4 .--400.-., Q 00.-i D
c’.J

p-i ~~~~~~~~‘)~~~~~0p.40.. 4 0 .-S.-40.-i~~~~~~ 0.-i .-iO
—
C’.J ~~~~~ ~~~C’)0 0..4 0 0 ’~4 p-i ~~~i0..4 0 D O

.-l.-4 C’)~~~ 000 p-i D 0.—. .-S 0 0 0 0 0000

a)
-

S..
3- — — .-i — — — — — _ _ p—i p.4
a) -
‘ S0 — — — ‘- — ‘- ~ , ‘ p_

~ ,~~ — —- _
— —

-
— ~ “

p-4 .-i ..4 ..4 0 P~.i. ~4 .-4 0.-i — —— — — — 0.-i — p.4 0~~~~~~~..i

-5. - .— -~~5-. 5._S.. 5. -S. — 5 - p - - S . .
La.’ L U4 1 0 4) 0 W 4 1 Q 4 0 0• .-. ..J .0 U) .0 in ~~ ...J U U) U U)

U) — U) 10 ~~~ 4.1 U) ..~ _J 4’ U) LU ~~ 0 U) ..J 0 VI
~~ U) - U.’ 40 LU .0 ~~ O W LU ~ O W CD 0 4) ~~ _J 41• .
~~ 0 5-- C) I- C LU U C.) ~~ U CD Li.’ U ~~‘-.6 ‘-i i-- ~~~ C 0 ~~ ~D C 0 0 Q C D C

LU ~~ ..J ~~ CD C..) ‘-4 5.. -
— — I. ~~ .) ~~~ 5.. — 5..

- -~~~ ~~~ ~~~ U) 0. (.) U) 0. ~-.
U) .~~ 0. U) -.- 0.

-147-

- — ~~~~~~~~~~~

- — ~~~~~~~~~~~~~~~~~~~~~~ ~~
—

~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~


Ff
—

Figure A.2 .2-2 provides an explicit listing of the number of executive
function s being performed in each minor cycle of each test phase of TCT
PINS2 . In each block , the test phases are arranged in the following
pattern:

2 1 3 1 4 1 5 1 6—~4— i—- --i- — i— —

12 13 114 115 116
17 I 18~~1 1 2O~~~iI I i I

The calibration phase (phase 1) is not shown in figure A.2.2—2 .

______ _____________ _________ __________

MINOR CYCLES

SCHEDULE READ
TEST BACKGROUND LOCAL AND AND EXTRA
PHASE LOAD WRITE TRIGGER CANCEL WRITE SIGNAL -TASK

1 0 0
2 0 0 1
3 0 0 1
4 0 0 1
5 0 0 1
6 0 0

7 0 0 5
8 0 0 5
9 0 0 5
10 0 0 5
11 0 0 5

12 0 0 6
13 0 0 6
14 0 0 6
15 0 0 6
16 0 0 . 6

1. 0 3 6
18 0 3 - 6
19 0 3 6 —

20 0 3 . 6
21 0 3 6

Figure A.2.2 — 1 Test Control Table PINS2

-148-

S

.

~~

__________5- - - —-- ---—- -5——- - —

- —
- ~~~~~~~~

-

- -

5.1~~~~_ —
~~~~~~- - ~~~~~~~ ... AuIIL~~



P r - -_.,--_ s ~~~~~~~ 
—

~~ 
—__•_ -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~

— — — —— — — —S.- 
_ — — —
-4 _ p- i  -4

— 
— 

— a
csjcsJ r’J~~~- O 0 0 C~J— -4 . — , . - i 0 O Q Q0-0 D-0  ~~000  0 000  )0— .— 0 0 .—. .-.
C..) C’..’ C~4 ~~ 000  C’s .—i ,-4 .--i . — i 000  00 00 0  ~ 0.—i .-~i 000 0  ~ 0 0 0 0 0-00

40 C’..’ C’.) C’) U) 0 0 0  C’. u-i p--i C’..’ C’..’ -00 0 0 0 0 0 0  ~ 0 0 0  0000  ) -00 0 0 0 0 0
O 0 0 C \) .-i .-4 .-i .-i00.—, .-s0D.-4 p-I~~~ -0 0 0 0 0~~~~~~ Q0 0 0 Q O Q

C~J C sJ C s1~~~~000Cs .-,p-4.-..-i000 Q000O~~~~Q0000 ._i.—i ~~00 0 0 O 0 O
— ____ — C C

1 w - 4 1
* — — — — 000 0 0 0 0  0 0 00  D 000  0 0 0 0  ~ .—i D 0.-i 00 1. 5.

c.i .~~~ 
p--i .~~~~--i .--i 000 00 000 0 0 0  ~ .—i 0 0  0 00 ~ 0 00 0  0 00II) -

~~ Lf l’’C’.J ’-~ .-4 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ‘—
0. —i ,--i .-.i p-i 00-0 0 . - 4 0 0 0 .- 100 00 0 0 0 0 0 0)0 0 0 0 0 0 0  ~~~~~
4.’ ~~4.-i u-i ,-4

— - _ _ _ _- -_ _ _ _  _ _ _ _  _ _ _ _  _ _ _ _

.0 . 50 .0
iO

• I- u-i .-.

.- -4 -4 -4 -4

-S. •~~. — — — —C — p-i .-.,.i
- -

C..) 
~,

‘-4 - - i — —I-. ~ p_ i — i-i —s- b-i

. - 4— — —
‘C-p.. 

~~~~~ ~-i p-.4 -
S..

~~4J - ___ ___ ___ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

C’.’ Cs.’ C~si C’) 000.-4 000..-’
SO J Cs J C’)O0O p.~~~~~~~0 ..-4
3 ~~ C’..’ C’4 C’.J C’) 0 0 0 .- 000.-.
0) C’.’ C’.’ C’.’ C’) 000.- 000 u-i
C - -

00 0— 0 .-4
VI ______ ______ ______ ______ ______In -
4) -
U .-4.-l.-i.-4 0-00000000-000 D 0000000 -4000.-. C) 00

0 0 O D O 0 0 O 0 0 Q 0 - i 0D O O O Q 0~~~~0 00 0 D 0~~~

C’.J . p-i ,-lp-i 0Q00,-iOO0.-i00QDC~~~,Q 0 O D0D 0 Q 0 D O0

— — -i — 0000 00 00 0 0 00 ~ 0 0 0 .-i000 D 00 0 ~ 0 0 0
Cs)

P-I ..4 p-i p-i
a) -
S.. ,~

0 -4 .-4 p-i .. .i
4 - I

U. -4,-i .-i .-s -
.i p_i p-i -4

LU _ -

5-. 5. 5.. 5.5. p- S.
U.’ -~~~ LiJ W O 4 10 W 4 0 O 5 0 0

— _J ~~ ,~ .0 in ~~ ..J U in U U)
U) U) 4) U) ~.J ..J 4~ U) LU ~~ 0 U) ..J Q VI

U) LU 50 LU .6 6 0 4 1 LU < 0 0) ~ 41 <.J 4)
<0 5— U 5— 0 Ui U 5.) Z U t~ U) U ~~‘-~~0 ..- ~~~C0 ~~ C D 0 O b X 0 0 (DCIA) .J ~~ CD 5-) — I. ~~ -i~~~~~I. ~~ .) , 5.. —~~~ 1.

~~~~~~~~
. 

~~~~~ — lñ — 0. C.) U)..—Q. — fl .-.Q. U)— 0 .

-149- -

_______ 5 ____-.-— - —
~~~~

•
~~~~ ,•-

5 - - — 5--—-
. _ - _.!s

_;__
.

__ _______
~
_ _

— ~~~ — ~~~~~~~ -~~~~~~~~ .~~~~ -) P.~~ .-
.~- ~ S -. Lb~S. J~~~~~~~~~~~~~ -S~~~~’

r5 - —-——‘
~~~~~ 

- —---‘~~~~~ ----—-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -
~~~--~~~~~~

-.—- - - - -- - -

A.2 .3 Test Contro l Table PINS3

In TCT PINS3, each of the user controlled PINS events (TRIGGER , SCHEDULE
and CANCEL, READ and WRITE , SIGNAL , and Extra Task) is studied as a
function of the PINS base load. A-single occurrence of each event is
added to each minor cycle in turn. This permits the study of the
executive performance when processing the event in a variety of operating
environments . The executive performance is not investigated in minor
cycle 7 since the base load in that minor cycle is identical to the base -

-

load in minor cycle 3 (see figure 3.1-5). Instead, the eighth test p-hase
for each event calls for the processing of that event in every minor
cycle.

- -

Figure A.2.3-1 shows the background load that is executing during each
test phase , the number of extra “events ” occurring in each test phase ,
and the mi nor cycles (modulo 8) in which these extra events are to
occur. The first phase is the calibration phase (the base load shown in
f i gure 3.1-5). Phases 2 through 8 examine the TRIGGER statement , phases
9 through 16 study SCHEDULEs and CANCELs , phases 17 through 24 study
READs and WRITEs, phases 25 through 32 study SIGNALs , and phases 33
through 40 examine Extra Tasks.

-

Figure A.2 .3-2 provides an explicit listing of the number of executive
functions being performed in each minor cycle of each, test phase of TCT
PINS3. Since there are too many phases to include on a single chart ,
f i gure A.2 .3-2 has been split into two parts . Figure A.2.3-2a shows the
tasks performed in the first 20 phases of TCT PINS3 while figure A.2.3-2b
presents the tasks performed in the last 20 phases of TCT PINS3. In the
data blocks given in the figures, the test phases are arranged as fol lows:

- 1 1 2 1 3 1 4 J~~5

- 6J
~

7
~

8 1 9 1 1 0

11 12 ~~3 I 14
16 l17 , 18~~ 19 I 2O

I I I I

Test Phase Pattern in Figure A .2.3-2a

2]~j 2 2 !~2~j 24 f25
26 I 27 I 29 I ~3o -

3i~~~2

36 371’38 39 I 40

Test Phase Pat-tern in Figure A .2.3-2b

-150-

—5 - - -

5- __ 5-~~~~~~~

— V.— —-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
•— _._ __z

~ -_~—
— -

—
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- — —

MINOR CYCLES
SCHEDULE READ

TEST LOCAL AND AND EXTRA
PHASE LOAD 

- 
WRITE TRIGGER CANCEL WRITE SIGNAL TASK

1 0 0
2 0 0 0
3 0 0 1
.4 0 0 2
5 0 0 3
6 0 0 4~7 0 0 5
8 0 0 6 

_ _ _ _ _  

-

9 0 0 0
10 0 0 1
11 0 0 2
12 0 0 3
13 0 0 4
14 0 0 5
15 0 0 6
16 0 

— 
0 

__________ 0-7 
_______ ________ ________

17 
- 

0 0
18 0 0 1

p 19 0 0 2
2 0 -  0~~~ 0 3
21 0 0 4
22 0 0 5
23 0 0 6

- 2 4  0 0 
_ _ _ _ _  _ _ _ _ _  

0-7 
_ _ _ _  _ _ _ _

25 0 0 0
26 0 0 1
27 0 0 2
28 0 0 3
29 0 0 4
30 0 0 5
31 0 0 6
32  0 

__________ __________ 

- 0-7 
________

33 0 0 0
34 0 0 1
35 0 0 2
36 .0 0 3
37 0 0 - 4
38 0 0 

- 

- 5
39 0 0 6
40 0 

- 

0-7 
—

Figure A.2.3-l Test Control Tabl e PINS 3

—151—

‘

S 

- 

- --5- —- -— — •. -!
‘
i

~

_

~

___ .

~

J_ _ 
.
~~~~: ~~~~


-
~~~~~ 

- — - — 5 -  
- - - - 

~

‘

~~1

~~~~~4 p.4 p_i 00 000 0 C 1
p-I p_i p-.5~~_i 00 0 0 0 0 0

— — p- I ..-.— 000 0 0 00 Q
—p _ i .-.— 0 0000 00 0
.-i p-I ._i p_i 000._ i000 . - , 0 0

- _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ aa
C~4 C’..’ C’..’ Cs.’ p-i .-ip-j 0 .-1000u--i 0 00 0 0

C’.J CsJ C4 C’..’ ~-i p_i i,4 0 0 Q Q 00 0 000 0
CsJ~~~

.
p-i p_i p--4 , - i0 0 0 0 0 0 O p-4 0 0 -

- Ifl il)
I.’..’ Cs) C’.) C’..’ ._i ._i ._i . — 4 0 0 0 C) 00 0 0 00 00 5.1.

: 414)
CsJ C’.) C~sJ Cs) .-4 p—i .— i p—i 0 0 0 p—I 0 C) 0 — 0 0 .0 45.. i5~- VI I!)— C C

p-4 p-i p-i p_ i
-

00000000 0000 1. 5. -

‘—4 —5 p-i p-_i 00.-i C) C) Q p-_i 0 00 00

.—s p--i 0000 00 00 0 0 C~~~0

-~~ .-I p-l u-l u-i - 00000000 0 ._i C) 0
0. - -

p-I p_i u-4 p-i 0 u- i000p- i 0-000
C)

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ — -.5--
C’-) —

50.0
—.5-

-~~ p-_i p-4 u-i u-i 000 0000 0000
..-i ,_, .-i .-i 0 0 0 0 0 0 00 0 00-0

U. ..~~~~~~ p-4 p-i 0 u-i 0 ~ 0.-i 0 0 0 0 0
U) ._i p-l p-i .--i 0 0 0 0 C) CD 00 00

I’) LU
U) ._i .-4 p--I 000.-i 0 0 0~~~ 0~~~~00C.)
p.-. > _ ___ ___ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

0~ p--i~~~~~~~ C5J 0 0 0 u- l 0 D 0 0 OC)l~~ C)
- C-) p - i u-~~.~~~~~~ Q 0 0 0 0 Q 0 0 C~~0 00 0 0

0000000000C)D 0000

X p-~ iu-i ._i p-_i 00 00 00 000..i0 0 0 0 0
S.. ..-,p -~~~ — 0 0 0 0 0 0 0 .- i D 0 Op -i 0 000

- _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

-
~~~ CSJ C’sJ C%J C’J 0 0 0 0 0 0 0 0 0 0 0 0  0 00 0
C) C.J C’.) C’) C”) O 00~~ i C )Q C ) 0 0 00~C) .-* 000

C’) C’.’ C’) C’.’ -00000000 D 000 0000

C C’.’ c’.j C’.’ -0 0 0 0 0 0 0 0  D 000  0000

C’..’ C’.) C’) Cs.’ 00 00 00  p-I — D 0.-iu-i 0 0 0U,
4) - ___ _ _ _  _ _ _  _ _ _  _ _ _  _ _ _  _ _ _  _ _ _  _ _ _

00000.- i 000 ~~i 00 0 0 0 0

00000000000C) 0000

-? ,—t .—i p--i .-i C’.J 0 0 0p4 0000  D0 0 0  .—i000
p -4 p--4 ._i p-i 0 0 00 0 0 00  D 00 0  00,00

0 D 0 QQ0—i D 00 .—i 00 00

.—i ._i .—i — 0000000 )C)00 0000
4) -
S. 

~~~
-4

~~~~
-4

~~
-i 00000.-SOD ~~._i00 ~~~0O 0

8 -4~~-s~~--~ 00 00 0 000  ~~0O0 0000

U.: - . _ i p 4 . i C ’ i  0 0 0p _i 000 0  ~~0Q 0  P - 1 0 0 0

-4 p—’ ._i — -0000000~~~~ ~~ 0o .—i  ~~ 000

__ __ __
I-. 1._ I. 5 . 5 .  ,— S.. .- .S.
LU L U W O  4 ) 0  W 5 0 0  5 00

p- ..).0 U) .0 VI ~~~ ..J 4) U) U U)
tO U) 50 4) U) ~4 ...J 4) 1!) LU 

~~~ 0 5!) -J 0 4!)
LI) Ui IC W.ó - 0 0 4) LU < O W ~D 0 —i 41 <_J C)

<0 5- U 5— 0 LU U ~.) ~~ U CD U) U Z U

-152—

-~~-~~ ~~~~~~~~~~~~—- - -5-- - - - -5----- —5-— __ ..w
~~~~~~~~~ 

-- -5- - - . - —-—-5—---- — ~~— --~---— - _ -_
~~
-:- ‘_

~~ - - -

5- — ~~~~~~~~~~ —5-— ___,___ __ __a___
~~

_
~~ •5-5_5-~~ —~~ 5-- - 5- ~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~ —--~~-



F- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —5-- -5--- ----  - - -

-__ --- -~~~~~~~~~~~~~~~--- - - - - -

- - — — — — - ~~~~~~ -- —

- . 4— — — o oOc Q OC 000.- 00 0.-4

C’.’ u-i --i —4 —.0 0 C 0- 00 C 0 0000 0 00

~~ -4—--.—
000 C - 00 0 C 0 0 0000 0 C

•_i p_i p_4 p_i 0 0 0C 00p__ i C ~~~~~~~~~~~~~~~~~~~~~
Ul l!)
i- I-

000 C 0- 00 C - 0 0 0 C 00 0 00

C’.I C’J C’J CSJ .—i .-I .-i .-i 0 0 0C 000. -$000 .-4 S
C’) C’.J C’J C5-J C ’ J p 4 p 1 . . 4 0 0 0C 00.. 00 0.-I

CsJ’t

4.Ø~mC’ JCSJ CSJ C’J p-i u-4 .. 0 0 0C 000< 0 0 00
I!) 4!)

CS) C’J C’.’ C’.) ,-4 .-i .-’i .- 00.-I C 00 0 C 0 0 0 1. 5.

C’.) C’) 1’) C’) .-.4 u-i u-i.. 00 u-4 C 000 C 0 0 0 0 45.. 4
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

in .!’
— _ _ _ _ _ _ _ _ ____ —— C C

..-. .-.. .-i .-i 00-0 C 0 .—i 0 C 00 u-5 0 00p--i 5. 5.
-

C’J .-S .—~~.—S .- -~~~~~~~
-~~~~~ c 0 000-0 -0 -0 -0

VI ri .-.l ._i i 0 0 0 C 0 0 0 C 0 C D Op- i 0 0 0 .—I ~ 4
a)
U) C’.J .-i u-I p-i . — i O OC 00.-iC 0 0 000000 ~~~~~
.0 r-I~~-i ._i~~~i 0 0 0 C - 000 C 0 0- 0 0000 0
0.

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ —
- 5 0 . 0

0 —.5--
CS.’ p-I p.5 p_i u-i 000 C 000 C 000.- i000. i

C’.) — — — ,—100 C C) u-i C) C 0 00 0 0 0 0 0

000 C 000 C 00-000000

— ~3 p-..5 p—5 p_i p.4 0 0 0C 00.-IC DD0~~ i0 0 Q i

~
—j C” Ju -i .-i .-i .—i0OC 00 0C 0 0 0 0 0 00

~~ _ _ _ _ _ _

s_ i J
0.

~~~~~~~~~~~ 0 0 0C  00 0C

- 
~~~, ~~ C’) - ._i .-.i00 C 0 0 0  C - 000 0 0 0 0 0

~- ~~~~~ 4S~~~P~~4~~~~4 - 4 - 4 0 0C 0 u - i OC 0 000-00 0 0

.-i p-i -S .-4 0 0 0C 00.-i C 0 000 0 00 0

Z u-, ,- •-~~ -.~ 0 0 0C 0 0 0C 000.-i000.--i

- - _ _ _ _ _ _ _ _ _

C’.) Cs.’ C’) C’-) - 000 C
-

0 0 0 C 00.-i..~i 0 0 p - i.-i

C’) Cs) C’.) C’) .—i 0-0 C 00 C 0 -00 0 0 0 0 0

‘.I C’.J C’) C’) C’) 000 C 0 0 C 0 0 0 0 0 0 0 0

- C.) C’) C’) C’) - 0 0 0 C 0 .—i .—4 C 0 0 0 0 0 0 0 0

C’) C’) Cs) C’s) 00 C 00 0 C 0 0 0 00 0 0 0
VI -
4)

p-i .-i.-i r---I 0 0 0 C
- 000 C 0 00 . 4 0 0 0 . . 4

C..) — — u-i .-400 C 000 C 00p-4 0 .-i O

p-4 ._i u-i p_i .--i 0 0 0C 0 0 0C 0 0 000 0 0 0

.~~~ .-. p-i .-.p--i 0 0 0 C -
00,-i C 0 0 0 0 00 0 0

C) ~~~~~~~~~~~~~~~~~ 0 0 0C C) .—.O C 00 0 00 00

Cs)

0 0-0 C . — 0 0 C 00 0— 4 00.-i

~~ ~~~~~~~~~~~ ~~~000 00- 0 0 0 0 0 000 0 0

— — — ‘—4 000 0 0 0 0 00~~~ 000~~~ 0— — — u-i 0 0 0 0 00.-i 0 00 0 0 0 0 0

6.
~~~~~~~~~~~~~~ 00 0 C  0D00  ~~000~~~ 000

—.5
- -

I- 5.1- 1-1. .— S .  u— I.
Li LU OJ O 4 10  L U s 0 0 r d O

• - — .j.0 U) .0 U) ~~ —5 U VI U I!’
LI) r- LI) 50 4) 5!) ..J _i 4) U) LU ~~ 0 5!’ ..J 0 VI

LI) Lii 54 Lii .A ó 0 Ci LU < O W  ID 0 ~J 41 ~~ Si

<0 5- 4) 5- 0 LU U I) ~~ U ID LU U ~~
-~~e 

.— ~~~C0  ~~ ~~C0 — X C0  I D 0
Ui c~ ..J ~~ CD C.) 1.. ~~ — — I- ~~ L) ‘~~ 1.
X a— ~~~ 10 0. C.) fl’... .0. ~~~~-.Q. ,~~~

S 

—153—

-  
-

~~-- ---- ~~~~ 
_ _  j .j_~~ __ 

-

L___~_.. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - 
- .

~- - - -
— 

~~
—

~~
--

~~~~
--- — -- - - - -

— —~~ 5-_ -.-.——~ — ~~~~~~~~~~~~~~~~~~~~ - . ~~~~~~~
5- .4

- - —5-— --- 5-~~~- - - - - 5 - -~~~~5- -~~~~— - - - —-- -—5--
- 5--- - 5 - 5 - - - - 5 --

,’

A.2.4 Test Control Table PINS4 -
-

Test Control Table PINS4 examines the DAIS executive performance when two
- of the user controlled requests occur In the same mi nor cycle. Only the

more likely combinations or requests were selected for Inclusion in TCT
PINS4. An examination of typical applications design requirements
indicated that READs and WR ITEs, and SIGNALs would generally be the most
numerous realtime statements executed in a program. TCT PINS4 combined
these events with others in the following test phases:

Base Task Added Task Test Phases

READ and WRITE TRIGGER 6—12 -
- -

READ and WRITE SCHEDULE and CANCEL 20—26

READ and WR ITE SIGNAL 3440

-
SIGNAL TRIGGER 13-19

SIGNAL SCHEDULE and CANCEL 27—33

Figure A.2 4-1 shows the background load that is executing during each
test phase , the number of extra “events” occurring in each test phase,
and the minor cycles (modulo 8) in which these extra events are to
occur. The first five phases in TCT PINS4 are cal ibration phases: The
base load is executed in phase one, while the user controlled extra
events are examined separately in phases 2 through 5. Figure A .2.4—2
provide s the explicit listing of executive functions in a pattern
identical to that in figure A.2.3-2 (the test phase pattern is described
in paragraph A.2. 3).

-154-

- - - - -- - 5-——- _ _ _ _ _ _ T
~~~~

- ---—
~
- -
~~~~

— — —~ --

—
__~____ f_~_ —-— ~~~~~~~~~~~~~~~~~~~~~~ ~~5- _.5-

~ ~~~~ A — _5~~ ~~~~~~~~~~~~~~~~ ..-~ . 4 ~ ~~~~~~~~ ~~~~~~~~~~~ ~~~~~

~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —- -

MINOR CYCLES
SCHEDULE READ

TEST LOCAL AND AND
PHASE LOAD W RITE TRIGGER CANCEL WR ITE_ SIGNAL
1 0 0

—— __________ _______ ____________

2 0 0 0
3 0 0 0
4 0 0 0
5 0 0

_ _ _ _ _ _ _ _ _ _ _
0

6 0 0 0 0~~~7 0 0 1 1
8 0 0 2 - 2
9 0 0 3 3 - - -

10 0 0 4 4
11 - 0 0 5 5
12 0 0 6

_ _ _ _ _ _ _
6

13 ~~~0 0 0
14 - 0 0 1 -

- 1
15 0 0 2 2

0 0 3 3
17 0 0 4 4
18 0 0 5 5
19 0 0 6

__________ _______
6

20 0 - O O 0
21 0 0 1 1
22 0 0 2 2
23 0 0 3 3
24 0 0 4 4
25 0 0 5 5
26 0 0

6 6

— 27 - O 0 0 0

28 0 0 1 1
29 0 0 2 2
30 0 0. 3 3
31 0 0 4 . 4
32 0 0 5 - - 5
33 0 0

6 - 6

34 0 0 0 0
35 0 0 1 1
36 0 0 2 2
37 0 0 3 3
38 0 0 4 4
39 0 0 5 5
40 0 0

_ _ _ _ _ _ _ _
6 6

— -
—

Figure A.2.4-l Test Control Table, PINS4

-155-
S - -

- i---- - -5—- ~~~~--~~~~~~~~~~~~~~~~~~ ~~~
-
~~~~~~~~~~~~~~

- - 
~~~~~~~~~~~

—

5- -.---~ - —~~~~~~ -‘--—~~~~- ~~~~— 5-- -- --- - ----‘--- - 5-~~~~~~~ . —~~ ~~~•— -~ ._ ____)_,,6_ ~~~~~‘ ~~p-~
j 6

5 - --- ---

.-i u-i ,-i p--4

. p i p- p-i p-i

-
V I I ! ’
I- r~— u-i p--s ... i - 0 0aa

C’) C’.’ C’) C’) ~ir-4 .-4 .--I 0000000 C

Cs) C’) Cs) C~ p—i p-i p-i p-i 000.-i 0 0 0 r-i - C.) C.)

~~ C’) C..’ C’) C’.) p--i p_i u-l p-4 00000 0 0 0 -
Cs)

~~~

~ 5J C’) C’) Cs.’ .-i .--5 C’) u-i 0 0 00  00u-i  CD

C’) Cs) C’) Cs) ._i p-i u-i p—i 000000 0 0
- - —‘5----- . C C

— - 4 — p - - i  00 00  00 0 0 0 000

~~~~~~
-i r-i .-i .-i 0 0 0 0 00 000 0 0 0 5-5 -

— .-s p-i r4 0 0 0 0 0 0 0 u-s 000.—. — —tfl p-4 p--i p--4 p-4 0 0 0 0 0 00 0 0 0 0 0 -
00,-iD 0 0 C D 0 0 0 . — i0

It
- ______ _______ _______ _______ _______ ~~~~~6~~~

54.0
p-i C5J p-1 0 i 0 C) 0 0 00 0 00

Cs) .-i .-i .-i p-i 0 0 00 0 0 00 0 0 0 0
4-’ -4 -4 p-—4 p-i 0 0 00 0 0 0 0 0 00 0 -
U, r~~-

— p - - i — — 0 00 0 00-0 .-. 000.-i
u-i p_i p-s p~ 4 0 00 0 0 0 000 000

-

000 0 Q 0 0 0 0 0 0 0
-

u-i C’) ~-s p--s C) p--i 00

000 0 0 0 0 0 0 0 0C

~—1 .—4 -4 — 0 0 0 0 0 0 0 0 0 0 0 0

p-i p-i p_i p_i 0 0 00 Q Q 0~~ 4 C) 0 0 u-i
- x

_____ _____ _____ _____ _____ _____

C’ JCsJ C\J C’4 000C) 0 0- 4 0 0 0_ C) -

C’-) C’) Cs.’ C’) 00C) Q 0 00 00000 -

~~ C’) C~
(‘fl) C’) c’s.’ Q p-_i (DC) 0 000 Op-i D 0 -

-~~ C’s.’ C’s) C’) Cs) C) CD 0 0 0 CD 0 0 0 0 0 0
CS) C’) C’) (‘~I 0 00 0 0 000 0 00 0

C — — ———— _____ ____ _____ _____ _____ _____

.-I p—i — p—S 0 00 0
-

0 0 C) 0 CD 00 0
.—S p—i p— s -4 0 0 CD CD 0 0 — C) 0 Q p—i 0

-4 - 4 — p - i—i 0 000 0 0 0 00 0 0 0
0~~~~00 0 0 0~~~~0 .-i0Q

p--4 u-4 .-I DO DD 0 00 0 0 00 0 -

Cs r 4 . - 4 .-i (’) 000.-i D0C).- i ~~C)0 ._ i .-i000 0 00
C’) —4 .-s .—i _i 0 0 0 D 000 D 00000 00 0 0 0 0

0 0 0 0 -i 0 0 0 -i 0 0 0 CD C) .—i D 00.-i C)
0 .-.-i,-i u-i 0 00 0 i 0 0 0 : > 0 00 0 00 0 ,-i000

u-S CS) p-l u-i 0 p- i (D 0 D 0 00 D 000 CD 0 00 0 p 4 00

-.5 —.5

5- 5.1. 5.1. u-C . u-I.
U) U J W O W e LU lC O 5 4 0

— r .j.0 U) 0 U) C~ ~J 4) II) C) in
U) ~~ 4) Il> 4) w ~~ o in _i o in

(I) U) SC W A 0 0 U LU < O W CD 0 41 < -.5 Ci
<0 I— 4) 5- 0 U) U C.) ~~ U CD LU u
0. — 0 ~~ C 0 ~~ CD C ~~ C 0 ID - C

~~ ID C.) s_i %. < 4 ‘-4 C.) ‘-5 5. — — C.CO 0. C.) LI) —0. 5— II) .50. U) s~~

-156-

I’,
-

~~

——— —--— —

~

-5- - —5- — - — —-5- —
~~

—,——--—-
~ -----—- --____________

~~~~~~~~~ ~~~~~~~ .L ~L-... .S~~~ _____



- - -.~~~~~~~~ p-5-~~~~~~ -5----— — - 

~1~

-4 -4 u-i u-i

-4— -4 -4

p.-i

... ip.-i p’ il) 4#)
u- u--
0 0

- : a a
C’) C’) C’s) C’ p-i .-4 .—i Cs) 0 0 0 0 0 0 0 0: >  00 .-i
‘J C”PI C’sJ C~ u-. u-i . — i 000 0 0 000  D 0 0 0

ID C’) C’,) C’..’ C’ -i p—i p-i s—i 0 0 .—i000 0 D 0 p—i C) 
C”) ~~

C’s,I C’) Cs ) -C.  ~-i 0 0 C D O 0 00 0D 0O O  5._I-.
C’. J C’ ) C ’ J C \  p i C ’ J u - sp—50 000 00 D 0 0 0
______ ______ ______ ______ ______ ______ ______ ______ ______ 

In
- 0,0

C’) — — u- p—I 0 0 0 u-i 0 0 0 — 0 C) 0 D 0 0 0

~~~~P—5 .--I .-4 C’s 0 0 0 . — 0 D 0 0 00 00 D 0 0 . - i
p- i u-i u-i p-1 0 0 0-00 0000 0 0 0 D000

0 0 0 0 0 0p -4 0 0 0P5 0 D0p-i 0 -

p.-i u-i p-iu- 0 0 0 0 0 0 00 00 0 0 D 0 0 0
.0 - _____ _ _ _ _ _ _ _ _ _ _

-
_ _ _ _ _ _ _ _ _ _

0. - 54.0

C) p-i p-_i .-4 .- 000 00 0 0 0 0 0 0 0 D 000
Cs.’u-i p—i s.-- ~- i0 Q 0 p- - i o 0o p i 0 0 o : > o oó
p--I p-i ~-i C’S.’ 00 C)~~i O O 0 0 0 O 0 0 D00.—i -

u-S i — i 0 0 0 0000 0 0 0 0 0 D 0 0 0

—
__l

~~~~~~~~~~~~~ 0 0 0 0 0 0~~~ 00 0—  0 D0.—. 0
C.)

_ _ _  - _ _ _  _ _ _  _ _ _  _ _ _  _ _ _  _ _ _  _ _ _

~~
s-. s--i .--i --i .-i 00 C) 0 0- 4 0 0 0— 0 0  D - 40 0
0. -

D .-i .-i .-i .- 0 0 0 00 0 0 0 0 0 0 0  D 0 0 0

- 
‘-i C.) ~~iu-S p - 4 0 0 0 u-4 00 0  i 000:> 000

- — .-i — Cs.’ 000u-i  000 0 0000 D C) O p—i

u-iu-i .- lu- 000 0 0 0000 00 0  D 0 0 0
PS- - -
I. _ _ _ _  _ _ _ _  _ _ _ _  _ _ _ _  _ _ _ _  _ _ _ _  _ _ _ _  _ _ _ _  _ _ _ _

43

C%.’ C’.J C.J C’, 0 0 0 0 0 0 0 0 0 0 0 0 D 0 0 0
C ’ J C 5 ) C ’ 4 C s  00 0 0 0 — i00 0 .- - s 0 0 :> . - - i 0 0

C”J C’) CsJ CsJ Cs, 0 0 000 0 0 0 0 0 0 00 0 0
_J

C’) CS) C’) C’s ..-‘iOOO.-i 000 -5 0 00  D 00 0
I - C Cs) C’s) C’-) C’) 0 0 0~~~ 0 0 0-00 0 00  :> 00~~~.—4 VI — ______ ______ ______ ______ ______ ______- ______ ______ —

VI -U P—i~~ --i CS) 0(D 0 0 0 0 0 000 0 D0 u - i0
U -
0 — — —5 .- 00 0 00 0 00 0 00 0  0 0 0  -

I-
0. i —i .--i u-i~~---i 000 0 p - i 0 0 0p . .4 0 0  D p-s 0 0

P-i P_i u-i Pi 0 0 0 0 0 0 0 0 : > 0 0 0 D 0 0 0
.0
C’) C’s) — — — .-100C) p_i 00 i 000 D 000 -

- ___ ___ _ _ _  _ _ _  _ _ _  _ _ _  _ _ _  _ _ _  _ _ _

C’) -— — — u- 00000000  0 0 0  D 000
-

.-i ~~~~i C sJ ,—i 00 ..4 0 0 0 0 0 0 0 0 0 D 0 . - i0
U -

~ 0~~
-i

~~~~
-4

~~~ 
c ,o o o o o o~~~~: > o o o : > o0 o

— -i s--’ u- 0 0 0 D 0~~~ 00 :> — 0 0  D p-s o 0

— u-i — .—1 0 o 0 0 0 0 0 o D 0 0 CD 0 0 0 :
I

—.5

• I-. 1. 1. 5 . 5 .  u-- I. s— I.
u.s LU C i D  510 U 5 4 0  5 4 - 0

_ u- ..J .C U) J&I i) (J i!’
U) LI) SC 41 U) ..J _) 4) U) U) 5 in J 5 in

t - LI) 13) 54 W.0 00  ~i LU 0 Ci ID .- Si - 
<..J Si

— U I— 0 LU U C.) ~~ U ID II U ~~— O  ~.i p.. 
~~~~~~~ D O D  — X . C. O ~.D - C

S LI) ~~~_I ~~ ID C.) S—i L. ~~ -4 5-i l. ~~ .) I . $
~~~~~~~~~ ~~~~~.- V)~~~0. ~~~ — 

~~~

‘“
~~~~

-157-

‘I 
_ _  

_ _

— 
- - 5---- —5- 

_ _ _ _ _ _ _ _  _ _ _ _ _-

~~~~~~~~ ~~~~~~_ 
— ~~~~ - i-—. -~~ ~~~~~~~~~~~~~~~~~~~~ ~~~~~

- - - - — ‘ ‘ - -— — - - - - - — — —
~~~~ — - -—  -

- 
Appendix B

Laboratory Configurat ion

The test facility used to evaluate the performance of the DAIS executive
consists of the Boeing DARTS facility (paragraph B.1), GFE supplied by
AFAL (paragraph 8.2), the DEC-10 facility at the University of Washington
(paragraph B.3), the software that was supplied by AFAL to be evaluated
(paragraph B.4), and the software developed by Boeing to evaluate the 

- 
-

DAIS executive (paragraph B.5).

8.1 Boeing DARTS Facility

The Boeing DARTS facility contains many computers , programmable bus -

control interf~~e units , computer peripheral devices, test equipment, andsupport software . Only a portion of the equipment in DARTS was used in
the executive eva uation program. Those elements of the DARTS facility
used are shown in figure B.1-1. A description of the elements is given
below .

B.1.1 POP 11/40

The PDP 11/40 was used to control the AN/AYK-15 processing load during
test operation. The POP 11/40 also provided control of online recording
(tape or disk), realtime display (CRT), and offline non-realtime display.

B.1.2 Harris /6 - DARTS

The Harris /6 computer provided simulated realtime sensor inputs, and
accepted control and display and sensor correction outputs. The Harris /6
peripheral devices included a CR1 for realtime displ ay, a ma9netic tape
transport for data recording and off line data analysis, a printer and
card reader for off line program generation and program control , and a
disk for system residency.

B.1.3 DARTS Bus Control Interface Units (BCIU)

These Boeing-built devices provided the MIL-STD—1553 multiplex bus
interf ace within the DARTS facility. Two BCIU’ s were used, one for the
POP 11/40 interface and one for the Harris/S interface. The DARTS BCIIJ ’ s
are programmable and can act as bus controllers (master or slave) or a
DAIS defined universal remote terminal .

B.1.4 Modest Control and Display Units (MCADU)

The Boeing—bui lt MCAOU ’s were connected to the Super Control and Display
Unit (SCADU) port on the AN/AYK-15 processors. They provided a
capability for realtime data recording by passing data from the AN/AYK—15
to the POP 11/40. The MCADU’ s operate on an address and instruction
trigger and when both are satisfied , the MCADU will read data from an
internal AN/AYK-15 data bus, buffer this data and signal the POP 11/40
that data Is avai lable. The MCADU is housed in the PDP 11/40 BCIU
equipment rack. 

-

- - -158-
- 

-—5- -- - -   - - -  

- - 5---—-—- —- — — -———-- 
—-5 ---  - - - —-5--- — 

— .—- - - -

~~~~—- ~~~~~—~~~~~~~~~~~~~~~~~~~~~~~~~ -— ~~~~-~~~~ — — i _ _  ~~~~~~ ; ~: ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


5--—--- ~~- ----— —-- - - -.-—-- — - - - - — - - - - ------ - -- —-—--- --- -- ----. —-- -- - - - - - - - - - - -- - - -----‘.- —-- -,---- ----

_ _ LI
~~~~~~~~~~~~~~~~L~~~~~~~~~~~~~~~~~~ Lp1

_ _ sa I)
i ~ i s -I J~ g U l  ‘4 ‘4

_ _  r~~411-~Si~1
I~ CI~~ I ~~~ Ti~~!i i r— -—i s

I I” zS I t *LU. c
~~~~,~~~~~I

I — *L 1.3 * -
‘i—S * *II,

• —
a I

~~~~~ 

L 
~~ 

::

:~~~IJ* -f
1

~~Ld~
--
~

I
—if 

—4~~~ J r

I _ _
I - I~~~ 1 —1 L ~~~~~~
“

- [ii] 
- 

- 

_ _ _ _  _ _ _

-

-

- 
-

- 

_ _  _ _  _ _  _ _  _ _

- -159—
4 - - -

- _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  _ _

- — 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ I


r - - - - - - ---— ----
~~~~ 

- -  -- 5-— _~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _~~_ - 5

B.2 GFE Supplied by AFAL

The GFE elements , and their connections into the DARTS facility, are
shown in figure B.1-1. The GFE elements are described below .

8.2.1 AN /AYK- 15 Processors

Two Westinghouse AN/AYK-15 (DAIS) processors were furnished as GFE under
the contrac t to evaluate th~ DAIS Executive Computer Program. These
processors are identical to those Instal led at the DAIS laboratory at the
Air Force Avionics Laboratory (AFAL) at Wright—Patterson AFB, Ohio.

8.2.2 DAIS Bus Control Interface Units (DAIS BCIU)

Two IBM—built DAIS BCIU’ s, identical to the DAIS BCIU’ s Instal led In the
AFAL DAIS laboratory, were mounted in a cabinet next to the AN/AYK-15
processors. The DARTS BCIU’ s were programmed to be compatible with the
DAIS aCIU’ s.

B.2.3 Console Intelligence Units

The Westinghouse -built console ntelligence units were used for software
checkout on the AN /AYK— 15 computers. These devices provided access to
the AN/AYK-15 main memory and a display capability.

B.3 University of Washington DEC-10 Facility

Figure 8.2-2 shows the interface to the components of the University of
Washington DEC-10 facility which were used in support of this program.
These components are described below.

8.3.1 CDC 752 Terminal

The CDC 752 terminal , which included an alphanumeric keyboard, line
printer and acoustic coupler , was used for test software development.

8.3.2 DEC-10 (KI 10) Processor 
- 

—

The processor was used to host and operate the DAIS DEC-10 support
programs. These programs, supplied by AFAL , included the J73 compiler ,
PALEFAC , ALAP , LINKS and ASYTRN.

8.3.3 DEC-10 Peripheral s

A magnetic tape transport was used for writing load tapes for subsequent —

loading on the AN /AYK-15 processárs via the CIU-PDP 11/40 interface. A
line printer was used to generate program listings and load maps of the-
generated l oad modules. A disk was used for support program storage and
storage of intermediate program modules.

-160-

_ _ _ _ _  _ _  _ _

TT~ T1.~ ~~~~~~~ . .T~ .Tr ThiT ~~ ~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ 
- ‘-~~‘ -.--



F 5-- 
~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-
~~~~~~~ -

~
, - - ‘ - - _

~~~~~~ 
~~~~~~~

_ _— —-,—_— - ‘_—
_

~~~~~~~
-- - -—-,. .--_------- -- — -------—- -—-- —5- -—- - -5— --- 5---- 5-— - -- - - - - - - - - - --—- ---,---——-- ---—

CDC 752 -

-

Termi nal

-
DIAL UP

-

-

-

LINE
-

-

u o r w MAG ErIc

- PROCESSOR - TRANSPORT

-
J

~~~~~~Th~~
ER

DISK
STORAGE

Figure B.2-.1 University of Washington DEC-10 Facility

- 

- 
- 

-161- 

- 

- 

-

- - - - - 5- - 

- 

- 
- --

~~ 
‘-—.5-;

— -~~~,‘--- 5- - —5-.---- ~~~_-t ‘~• ~~~~ I
_

~

_ ~~~~~~~~~~~~~~~~~~~ l~~~ 5- ~~~~~~~~ ~~~~~~ 5- 
.
‘ 

- — —

—5-- ~~~~~~~~~~ ~~~~~~~~~~~~ — ~- .~— —  -~~~ ~~~~~~~~~~~~~~~~~~~~~~ —



- — 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- ---—---i---- -- —
- -- - 5- ~~-- . . -5- . - - ----- -5 -’

8.4 GEE Software

The GFE software programs to be evaluated were the DAIS executive and the
DAIS Support Software used in the development of standard application
software. These programs are briefly described below.

5 8.4.1 DAIS Executive . Computer Program (GEE)

This computer program is a general purpose executive designed to operate
on a single level MIL-STD-1553 MUX bus distributed system. The control
structure is federated so that there is local control within each

- processor in the system, but only one processor controls the bus traffic
for the entire system. The local control function , named the local
executive , is responsible for controlling Its own processing -

environment . The local executive includes task control , event and timing
control , and local data control. The overall bus system controller,

- - referred to as the bus control ler, is responsible for system coordination
(synchronization), data flow and control of same throughout. the system.
There is only one bus controller in a DAIS system and it resides in the
master processor. Every processor (including the master processor) has a
l ocal executive. -

8.4.2 DAIS Support Software (GFE) -

- A number of DAIS Support Software programs were used in the executive
evaluation . A brief description of each program is below:

Performance and Monitor Control (PMC)

This program was used for loading the AN/AYK-15 processors with the
executable load modules via the CIU-POP 11/40 interface.

ASYTRN

This program was used to translate the load modules generated by the
linkage editor program (LINKS) into a format suitable for loading the
AN/AYK-15 processors.

J73/I Comp iler

This program was used to read and interpret source programs written in
J73/I into object code (machine language).

PALEFAC

This DAIS support program was used to generate the tables which provide
the i nterface between the DAIS Executive Computer Program and the
operational applications software.

PALEFAC Preprocessor

This program was used to read programs written in J73/I source l anguage
and extract data to be used by the PALEFAC program to generate the
necessary interface tables.

-162- -

- - -
~~~~~~~~~~~~~~~

-
~~~~~~~~~~~

---—
~~~~~

-—- 

.—

______________________________________________________________________________________ 5. 
— 

~~~~~~ k —


-~~

LINKS

This program was used as the linkage edi tor to process the output of the
J73/I compiler and ALAP i nto executable load modules. Processing
primarily consisted of resolving external references in other compiled
units within the overal l load modules and assigning absolute main memory
addresses.

ALAP

This program was used to process source programs written in assembler
language for the Westinghouse AN/AYK-15 processors. The output of this
program was suitable for processing by the LINKS program.

8.5 Boeing Developed Test Software

Six computer programs were developed by Boeing to assist in the
evaluation of the DAIS executive. For the Phase I parametric evaluation ,
an “executive test program” (paragraph B.5.1) was developed for counting
the number of executive tasks executed and measur Ing the time required
for each. A programmable applications program called the
Pseudo— Integrated Navigation System (paragraph B.5.2) was also developed
for creating predictable tasks for the executive. Test control software
(paragraph B.5.3) for the DARTS facility test control and data analysis
software (paragraph B.5.4) were al so dev~loped and were used in both the
Phase I parametric test and the Phase I~ validation test. Integrated
nav igation system software (paragraph 8.5.5) developed by Boeing for a
medium STOL transport aircraft was used to verify the test results from
Phase I. Sensor simulation programs resident in the Harris/6 “DARTS
Environmental Control System Simu lation ” (paragraph B.5.6) were used to
simulate aircraft and sensor inputs to the integrated navigation
software. A description of the Boeing developed software is below.

8.5.1 Executive Test Program
-

This program provides hooks for instrumenting the DAIS executive to
branch to the performance data gathering programs. The performance data
gathering programs selectively gather performance data on the DAIS
executive and make this data available to the MCADU to ensure that the
performance data is recorded.

8.5.2 Pseudo— Integrated Navigation System (PINS)

This program can simulate the processing load of a real aviQnics
program. Through PINS’ various levels of message transmission on the
MIL-STD-1553 MUX bus and executive service requests can be programmed to
simulate virtually any avionic software function. The program was
designed so that message levels, requests for executive services and
processing resource demands could be controlled In realtime. This
program is described in detail in “DAIS Executive Evaluation Software
Design,” Attachment #2, CDRL #1.

—163-

-. . - _______. . _____

-
—

~~~~~
-

~~~~~


5 - 5 --~ -

~~~~~~~~~

-

~

-

The primary use for this program was during the Phase I parametric study
because different levels of activity could be controlled and performance
of the DAIS Executive Computer Programs could be examined at these
controlled levels.

B.5.3 DARTS Facility Support Software

This software provides a number of functions associated with testing and
control. The test control function provides the capability for control
messages to be transm i tted from the PUP 11/40 to an AN/AYX-15 via the MUX
bus in realtime. The bus monitor function allows selective bus traffic
monitoring by terminal address, subaddress and type (such as send or
receive mode code). This function al so provides for realtime display via
a DARTS CR1. The data recording function reads performance data from the
MCADU ’s and sends it to the magnetic tape transport for recording.

B.5.4 Data Analysis Program

This program reads the performance data recorded by the executive
evaluation software via the MCADU-PDP 11/40 interface and produces
statistical data and reports. The program contains the capability to
select the data to be operated on, based upon input parameters. One of
the input parameters is the “DAIS Executive Computer Program” time (i.e.,
minor cycle). -

8.5.5 DARTS Integrated Navigation System (DINS) 
-

This is an avionics program designed from the requirements of a tactical
transport aircraft. The prime function of the program is integrated
navigation using a strapdown IMU, GPS receiver models, and a Kalman
filter smoothing and prediction algorithm . In addition to the integrated
navigation function of the program, limited controls and display, and
simulated computed air release point algoritt-mis were mechanized. DINS
was designed to operate under control of the DAIS executive in a sing le
level distributed MUX data bus system just as the PINS program was.

8.5.6 DARTS Environmental Control System Simulation

This program contains models for GPS receiver, air data computer,
strapdown 1MW and associated controls and displays. These mudels were
used for environmental simu l ation and in the laboratory provide simulated
sensor inputs to the navigation program. DECSS accepts sensor
corrections supplied by the navigation program and applies these
corrections in the models as if they were being applied to live sensors.
The DECSS program responds to up to 31 terminal addresses for simulating
multiple sensors and/or remote terminals.

-164-

-- - — -~~~~~~~~~~ --- . ---~~~~~~~~~~~~~ - 
- I

— ——- -- - —-—-- ----- - —-— — - - - —------- - ~~~~~~~~~~~~ ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 1



- . . - - - - -- - -- --- - -----—-

Appendix C

Phase I Data Samples

This appendix contains samples of the data collected during Phase I of
the DAIS executive study. The samples consist of statistical s,.nuaries
produced by the offline-analysis program from magnetic tapes recorded
during Phase I tests. A description of the method used to collect the
data Is provided in paragraph 3.1.3. The format of the data contained in
the stati stical summaries -is described in paragraph 3.1.5.

Three sets of sample data are provided from the Phase I tests. Each set
consists of statistical output from nine passes through the magnetic tape
recorded during the test. The first pass combines all dat a collected
during each minor cycle. The succeeding eight passes each examine one
minor cycle (niodulo 8) in turn by extracting and compiling statistics on

- j ust the data collected in that minor cycle.

The first set of data is from an Interrupt Service Overhead (ISO) test
performed on the master processor. This particular test was designed to
concentrate on requests received from the remote processor; the master

• configurator was disabled to prevent any master processor response to
Test Control Table (TCT) inputs. TCT PINS3 (described in Appendix A) was
used to control the asynchronous executive requests serviced in the
remote processor . The interrupts for which data were collected are
identified by the last number provided in the event type heading on the
listings.

The second set of data Is from an ISO test performed on the remote
processor. This test was designed to concentrate on requests originating
in the remote processor; the master configurator was disabled to prevent
any master processor response to the TCT inputs. TCT PINS4 (described in

L - Appendix A) was used to controi the asynchronous executive requests
serviced in the remote processor.

The final set of data is from a Transmission Delay Time Test (TDT).
Since the TDT test only monitors executive service requests originating
in the remote processor, the master configurator was disabled during this
test. TCT PINS3 (described in Appendix A) was used to control the
asynchronous inputs for this test. This TCT generates SCHEDULE requests
only in test phases 9 through 16; therefore, TDT data was collected only
during these test phases.

- —165—

~~~~~~~~~~~~~~
-- - — -

~~~-~_ —~~._-- ~ IiIT Zi~~ . ..~~~~J .J ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 



- -  . - . - ——---—- —

Appendix U

Phase II Data Samples

This appendix contains samples of the data collected during Phase II of
the DAIS executive study. The samples consist of statistical summaries
produced by the off line analysis program from magnetic tapes recorded
during Phase II tests. A description of the method used to collect the
data is provided in paragraph 3.2.3. The format of the data contained in
the stati stical summaries is described in paragraph 3.1.5.

Two sets of sample data are provided from the Phase II tests. Each set
consists of statistical output from nine passes through the magnetic tape
recorded during the test . The first pass combines all data collected
during each minor cycle. The succeeding eight passes each examine one
minor cycle (modulo 8) In turn by extracting and compiling statistics on
just the data collected in that minor cycle.

The first set of data is from an ISO test performed on the master
processor. The data cover four complete Kalman filter cycles, each of
which lasts six seconds. The high processing time observed in the remote

• processor reflects the large number of matrix manipulations occurring in -

the navigation system. The load is highest in the first three seconds of
each six second sequence since the Kalman filter is processed then. The
interrupts for which data are collected are identified by the last number
provided in the event type heading on the listings .

The second set of data is from an ISO test performed on the remote
processor. The master processing times shown in the listing are
meaningless because the software clock that measured processing time was
not instrumented in this test. - -

- 

-166-

-
- 

~~~~ — .—- - - - ——--- —~~~~- - — 5 - - - - - - -  — 

. - - _ _ _ _ -~~~~~~ 1

— — — — —~~ — ~~~ . -~~
. -5- .w - .

~~~~~~~~~~~~ ~~~~~~


