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AUCTIONS AND BIDDING MODELS: A SURVEY~~ ____

by
and/~ ,

Richard Engelbrecht—Wiggans 
D1~ .

~ 8P0c1&l

Abstract

Auctions and bidding models are attracting an ever increasing

amount of attention. The Stark and Rothkopf f9O-~ bibliography in-
cludes approximately 500 works on the subject; additional works have
appeared since the bibliography was compiled . This paper presents a
general framework for classifying and describing various auctions and

bidding models , and surveys the major results of the literature in terms
of this framework.

Introduction

Auctions and b idding have long been used as methods for allocat—

ing and procuring good s and services. Although seldom analyzed formally

several decades ago, a substantial body of literature has developed more

recently. The recent Stark and Rothkopf [90] bibliography includes

approximately 500 works on the subj ect and the number is rapidly increas-

ing.

*This work relates to Department of the Navy Contract N00014—77-.CQ)18
issued by the Office of Naval Research under Contract Authority NR 047—
006. However, the content does not necessarily reflect the position
or the policy of the Department of the Navy or the Government , and no
official endorsement should be lnf erred.

The United States Government has at least a royalty—free , nonex—
clusive and irrevocable license throughout the world for Government
purposes to publish, translate, reproduce , deliver , perform, dispose
of , and to authorize others so to do, all or any portion of this work.

~Michae1 Rothkopf and an anonymous referee provided helpful comments
on an earlier draft of this paper .
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This paper presents a unifying framework for classif ying sed

describing auctions and bidding models and for discussing the related

theory. A variety of major results, concepts , and controversies are

surveyed within this framework. Hopefully, such a survey will indicate

not only what has been done , but also give a feel for what areas of

possible interest have been neglected.

The objective of this paper is to survey the major ideas related

to auctions and bidding. In a number of cases, specific results have

been interpreted, reworded, or slightly extended to be consistent with

the overall framework of the survey; responsibility for any incorrect

or misleading comments and interpretations remains mine. Although an

attempt has been made to cite a representative sample of relevant papers ,

the objective is to survey the knowledge of the subject of auctions and

bidding models. Thus, no attempt baa been made to reference every paper.

General Auction Model

Auctions may be viewed as games with incoi~ lete information as

defined by Haraanyi [47, 48, 49]. In auch models, there is

an underlying true state of nature. The true state of nature prescribes

the relevant characteristics and number of objects being auctioned, the

von Neumann and I4orgenstern [94] utility functions and number of par-

ticipating strategic players (typically some or all of the bidders),

and the behavior of any non—strategic players (typically the auctioneer

and perhaps some of the players).

While it is assumed that all players know precisely what true

states of nature are possible and the probability distribution over the•.

possible states, the players do not know precisely what true stats of
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nature prevails (or “has been chosen by Nature”) in any particular situ-

ation. Each player, however, may receive some information about the

true state of nature by observing the value (or outcome) of a, perhaps

vector valued, random variable; the value is not revealed to any of the

other players. An example of such information in offshore oil lease

sales is any estimate of a site’s true value derived from seismic data.

The probability distribution of the possible observations by each player

depends on the true state of nature; the conditional distributions are

known precisely by all the players. (Note that, from a practical view-

point, this assumption, made by most theoretic models, is very strong.)

Each player must choose a bidding strategy. A bidding strategy

specifies how a player will use any information he might observe to deter-

mine his actual bid. In practical situations, a player need not calcu-

late his entire strategy; he need only determine the bid corresponding

to the information he actually observes. In determining his bid , he

must however consider how the other players would bid for all possible

values of information they might observe. Thus, a choice of bid depends

on the strategy employed by the remaining bidders, and we emphasize that

the choice of strategy is independent of the actual information by assum-

ing that strategies are chosen before any information is observed.

Bidding strategies may allow players to bid arbitrary functions

of the observed information. Alternatively, the model may restrict players,

for example, to specifying a single “multiplier” and having the player ’s

bid be this number times an unbiased estimate of the true value of the

object. Other possible restrictions will be discussed below.

The game has a payoff function, again known precisely to each player.

The payoff func tion determines, on the basis of players ’ bids, to whom each 
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object is awarded and how much is paid by or to each player. Although

charges to players for objects received or by players £ or services rendered

are the usual cause for such payments, there may be payments associated

with the cost of participating in the auction, the cost of preparing each

bid, or in the case of fair division schemes, the division of the revenue

generated by the auction.

There is an important distinction between the probability distribu-

tion of a random variable (e.g., the true state of nature or Information to

be observed by a player) and the value or outcome of the random variable.

All the probability distributions are known precisely by all players, whereas

the outcome of each random var iable is known to only one or none of the

players. Likewise, there is a distinction between bidding strategies and

bids; the strategy is a function of the (usually) random valued information

a player might observe and is used to determine the player ’s bid only after

he has observed any informat ion available to him.

Specific auction methods Include sealed bid, progressive, and Dutch.

The methods differ  from one another in the degree to which the auctioneer has

any active role and in the effect of sequential bidding. The model presented

above does not capture the finer distinctions of these various alternatives;

a variety of such very specific models and examples are discussed and coin—

pared by Greismer and Shubik [44].

Most of the existing auction models , although often not specif ically

defined as games with imperfect information, are consistent with this game

theoretic view. A scheme is presented below for classifying such auction

models. Of the models which are clearly not game theoretic, for instance

those which do not view the true state of nature as a random variable, most

still f i t  comfortably into the classification scheme.
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Throughout this survey, auctions will be described according to four

major components, to wit: players, objects, payoff functions, and strate-

gies. Some of these components in turn consist of several more specific

sub—components. The various components and their possible descriptions

are listed below.

1. Players:

a) Number of participating: n , 1, 2 , 3, ... , Random;

b) Utility functions: Linear (known) , Non—linear (known) ,

Random;

2. Objects:

a) Number: m, 1, 2, 3, ..., Random;

b) Information on object’s value: Known, Symmetric, Identical,

Other ;

c) Physical characteristics: Identical, Symmetric, Other;

3. Payoff func t ion:

a) Award Mechanism: Highest/Lowest bidder(s) , Shared , Other ;

b) Price: Incentive, Bonus , Prof i t  share, Royalty, First re-

jected, Lowest accepted, Other;

c) Reservation price: None, Zero, Known (non—zero), Set

(randomly) by auctioneer and non—strategic players, Other;

d) Other transfers: Auction participation costs, Bid prepara-

t ion costs, Information costs, Redistribution of revenues

(fair division schemes);

4. Strategies: Unrestricted, Multiplicative/Additive factor ,

Linear function, Function of particular statistic, Additive

across objects, Other.
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In this classif ication, the terms “known,” “identical,” and

“symmetric” have special meanings. The values of objects (for example)

are “known” if there is no uncertainty about the value (i.e., this coinpon—

ent of the random variable describing the true state of nature is degenerate).

The values would be “identical” if they are all equal to a single outcome

of the random variable and “symmetric” if they are equal to the outcomes

of independent identically distributed random variables.

A player, or strategic bidder , is anyone whose bidding strategy is

unspecified by the model . Thus, traditional decision theoretic models cor-

respond to games with one player; the one player being the lone strategic

bidder. The behavior of any non—strategic bidders is incorporated into

the true state of nature, one component of which is the reservation price

of each object. Bidd ing models may specify a fixed number of players, most

often two. Some models are in terms of n players , where n can be any

integer strictly larger than one. Occasionally, the number of players is

random. Although game theoretic models usually have a known (fixed) number

of players, the case of random numbers of players may be modelled by having

only a random number of players receiving information which results in corn—

petitive bids.

Players are often assumed to have linear utility functions; occasion-

ally the assumption is explicit, but more often it is implicit in a state—

ment such as “bidders are assumed to maximize expected profits.” Non—

linear utility func tions are sometimes considered for single player models.

Very occasionally considerations of risk aversion or capacity and budget

constraints result in models with more than one player each with the same

non—linear utility function. The case of different players having different

values for the object is modelled by allowing random utility functions;

I 
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each player, however, is completely informed about his own utility func-

tion .

Many bidding models are of auctions with only one object. If there

is more than one obj ect , the objects are usually assumed to be identical .

Models with more than one symmetric , or more generally valued , objects are

rarely studied explicitly. Commonly, multi—object auctions are treated

as if they were a number of independent single object auctions.

The physical characteristics (e.g., the number of barrels of oil

under a given offshore tract) of an obj ect may either be known to all players

or uncertain. Note that even if an obj ects ’ characteristics are known to

all players, different utility functions may result in players having dif—

ferent values for the objects. When the characteristics of the objects are

not known, players ’ strategies will in general be non—trivial functions

of any information they observe abou t the true state of nature.

In auctions where the players are bidding in order to obtain an ob—

jec t such as an offshore oil lease, the object , if awarded at all, is al-

most invariably awarded to a higher bidder . When players are bidding on

a contract , the contract is usually awarded to a lowest bidder . Actually

when one uses the convention (as this survey will) that positive prices

indicate money being paid by the player (to the auctioneer, or more gen-

erally, to Nature) , then “high bid wins” and “low bid wins” auctions are

actually the same. While there may be some implicit differences between

“high bid wins” auctions and “low bid wins” auctions, most results for one

applies directly to the other; this survey describes all such auctions as

awarding the object to a “high” bid .

Occasionally, auction models are stud ied in which objects may be

“shared”; players may be awarded fractional shares of objects. In such

A 
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cases, and in models with more than one object , the awards are usually made

so to maximize the sum of the bids submitted by the players on the sets

of object s they are awarded . The sum would be minimized in situations

analogous to “low bid wine” auctions. Such award mechamisms are natural

extensions of those awarding the object to an extreme bid in single objec t

auctions.

Occasionally awards are made in part on considerations apart from

the monetary bid . Such cases may of ten be modelled by having players spe-

cifying multi—component bid functions. The non—monetary components of the

“bid” may include product delivery dates, and quality or performance guar-

antees. Gilbert [41) models bidding on cable television franchises

as an auction with multi—component bids in which the players are uncertain

how the components will be combined to determine the awards.

Multi—component bids are also used in many civil engineering and

defense contracts. A player specifies a unit cost for each item required

by the contract. The contract, if awarded , goes to a firm with the extreme

estimated total bid; the estimated total bid is calculated by summing over

all items the unit cost times the sellers estimate of the number of units

required. Stark [88] discusses the question of how, given a fixed total

estimated cost, a firm should set unit costs so as to maximize profits and

to provide a desirable flow of income over the duration of the contract.

Occasionally there are “auctions” which might more appropriately

be described as more general games . An example is the dollar bill auction

in which the bill is given to the highest “reasonable” bidder ; a bid is

“reasonable” if less than zero or less than twice some other “reasonable” 

_ _ _ _ _ _  
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bid . This survey focuses on auctions with single component bids and

awards being made to a higher bidder.

The reservation price in an auction may be known to be zero, or it

may be known that there is none (i.e. , a reservation price of negative in-

finity); it may also be a known or unknown amount set by the sellers. In

decision theoretic models the reservation price is the lowest bid which

will result in an object being awarded to a strategic bidder. Thus, the

reservation price may be determined by the (random) “bids” of any non—

strategic bidders.

In single item auctions, bidding strategies may be arbitrary functions

of any information observed , or may be restricted to special forms . The

most coimnon restriction is that a player’s bid is a multiple of some (usually

unbiased) estimate, based on any information observed , of the true value

of the object. Bids could possibly consist of several components; however

we will not consider such cases. If more than one object is being sold,

then the strategy may specify  a bid for each possible subset of objects

or be restricted to specifying a bid on each individual object and the bid

on a set of objects being assumed to be the sum of the bids on the individual

objects in that set. Other possible strategies include allowing players

to submit a bid on each possible fractional share (any real number from

zero to one) of an object.

The discussion to this point has been in terms of “one shot” auctions,

any information obtained about the true state of nature or other players’

bidd ing strategies is of no use in subsequent auctions. Such assumptions

are at best an approxi.matio~ to practical situations. The assumptions be—

come especially suspect when certain parameters of a one shot auction are

estimated using historical data on similar auctions.
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While it is possible to model an entire sequence of games as a single

big game, modelling a sequence of auctions as one big auction obscures much

of the underlying structure and results in a model very difficult to analyze.

A practical alternative us.-J by Oren and Rothkopf [63] is to model a se-

quence of auctions with a single player as a control problem. Agnew [2]

uses a similar approach and presents an algorithm for determining the lone

strategic bidder ’s optimal markup over his known true value.

A slightly different approach is to try to determine the general

structure of optimal (or at least good) strategies. Kortanek, Soden and

Sodaro 154 1 determine that in order to maximize the total of the awarded

objects’ contribution over direct cost in a variety of models, the general

form of the bid on an object should be the sum of the direct cost, the op-

portunity costs , and a competitive advantage fee; each of these terms may

have slightly different definitions for different models. Attanasi [5]

and At tanasi and Johnson [7] use a similar approach but arrive at a

slightly different interpretation of the form of optimal bidding strategies.

Sequences of auctions with more than one player are much more diff i—

cult to analyze; there are essentially no results in this area. Oren and

Rothkopf [63] consider a model with one player choosing bids in a sequence

of auctions where the remaining players are assumed to react to the bidding

(in the previous stage) in a prescribed manner. Such a model is not strictly

game theoretic, but can provide some insight into sequential auctions; the

strategies calculated by Oren and Rothkopf for this model are similar to

those in a one shot auction except for a single term in the expression.

Brains and Straf fin [13] examine the athletic drafting system and

show that if a team knows precisely its own preference (ranking) of athletes

and if teams are allowed to “bid” strategically (teams need not always choose

- -  —- - - - —
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the highest ranked of the remaining athletes) , there are simple examples

in which non—Pareto optimal allocations of athletes occur. Indeed, the

resulting allocations are “far” from Pareto optimal in the sense that no

sequence of bilateral trades (between one athlete f rom each of two teams)

can result in a Pareto optimal allocation - Although, athletic drafts are

not auctions in the traditional sense, the possible inefficiency in them

indicates that more traditional sequential auctions should be examined

for similar inefficiencies.

The order in which objects are auctioned a f fec t s  the final allocation .

Schotter [80] considers a model of a horse auction. Each of a number of

sellers has a horse to be sold and has a reservation price below which he

will not sell. Each of a number of buyers wants exactly one horse ~nd has

a maximum price which he is willing to pay for a horse; as far ~~ each buyer

is concerned, all horses are of equal value. Each horse is sold in a pro-

gressive auction or, equivalently, sold to a high bidder at the second highest

price, and it is assumed that bidding i~ “sincere” ; buyers bid their true

values. Depending on whether the horses are sold in decreasing or increasing

order of reservation price, the number of horses and the prices at which

they are sold varies. Selling the horse with highest reservation price

first results in the greatest number of horses sold; the richest buyersbuy

the most expensive horses, leaving the less expensive horses to the less wealthy

buyers. The reverse order results in fewer horses being sold, but with a

greater total profit to the sellers. Engelbrecht—Wiggans [31] gives ad—

ditional examples of sequential auctions where, if players are restrained

to bid their true values, no order of auctioning the objects results in

more than a small fraction of the profits and revenue of a Pareto optimal

allocation. Although the above mentioned examples assume sincere bidding,

_ _ _  _ _ _  _ _ _
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the results suggest the order in which objects are auctioned plays strong

role in the outcome of sequential auctions.

Players

The case of one player (the one strategic bidder) corresponds to a

decision theoretic approach. The non—strategic, though often still random,

bidding behavior of the remaining bidders is incorporated into the true

state of nature via the reservation price. Thus, whether or not the player

is awarded an object in response to a particular bid depends solely on the

random reservation price ,

Several models have been proposed for calculating the probability

distribution of the reservation price. Friedman 137), in his pioneering

work on auctions, suggested that the probability distribution of the reser-

vation price be determined by multiplying together the distributions of

the various non—strategic bidders’ bids. The non—strategic bidders’ die—

tributions might be obtained by considering historic data on related auc-

tions. The implicit assumption of this approach is that the probabil ity

of winning an object is equal to the probability of independently outbidding

each of the non—strategic bidders.

Subsequent work in auctions has cast doubt on the appropriateness

of such an independence assumption. If the player is uncertain about the

true value of the object , a high bid may result from his observing informa-

tion suggesting an overly optimistic true state of nature; a low bid may

result conversely. Thus, chances are that if the player outbids a particu-

lar non—strateg ic bidder , the player has submitted “too high” a bid and

will most likely also have outbid a number of the remaining non—strategic

bidders. Conversely, a bid which is beaten by a particular non—strategic

_ _  _ _  _ _ _  
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bidder tends to be a “low bid” which will likely be less than a number of

the remaining non—strategic bids. Thus, as Capen, Clapp, and Campbell [16]

were perhaps the first to observe, the probability of outbidding a particular

non—strategic bidder would not be independent of outbidding another non—

strategic bidder. The independence assumption is inaccurate when the player

is uncertain about the true characteristics of the object; alternative ex-

planations, including limited collusion among non—strategic bidders, have

been used to argue against the independence assumption when the player knows

the characteristics of the object precisely.

The value of any model depends not so much on if it is absolutely

correct or not, but rather on how good of an approximation it is. Thus, in some

cases, the Friedman approach may be appropriate. An alternative approach, apparently

without mathematical justification, but based purely on empirical goodness of f it

is a formula of Gates [40]. A considerable controversy has insued over the

relative merits of the “Gates model” versus the “Friedman model .” Rosen—

shine [72] succinctly reviews and discusses the controversy to that point,

but did not manage to end it. Apparently the source of the problem lies

in an attempt to prove one or the other model as THE correc t approach; prob-

ably, neither is absolutely correct, but each may be an appropriate, simple,

model in different situations. However , as observed by Clerckx and Naert

[19] the Gates and Friedman models may result in quite different optimal

bidding strategies for the player , and thus the choice of Gates or Friedman

...or neither . ..model should be of som e concern .

An alternative approach is to ignore the ind ividual cospoasnt. giving

rise to the distribut ion and simply use the distribut ion of r.aelt ing reser-

vation pr ice. LaValle [56] uses such an approach to analyse one player

models. The approach would however be imprac t ical if one must specif y the

.
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ac tual distribution of the reservation pr ice as par t of the model . Fortu-

nately, thi s diff iculty is avoided if there ia sufficient historical data ;

the data required may actually be less than that required by the Gates or

Friedman approaches . As suggested by Hanssmann and Rivett [46], the past -J

da ta may be used to obtain an empirical distribut ion of the ratio of the

players’ estimate of the value of objects awarded in past auctionz. to the

highest non—strategic bid in each corresponding auction. This distribution

approximates the probability distribution of the reservation price.

When all the bidders are strategic bidders, and thus considered players,

the reservat ion pr ice (if any) is usually assumed to be f ixed by the auc-

tioneer and known to all the players. Situations in which the reservation

price is not known can be handled, at least theoretically, by the game theo-

retic model. However, practically speaking, such an approach would require

some means for estimating an appropriate distribution on the reservation

price.

Auctions with a variable number of players have received consider-

ably less attention than auctions with a fixed, known, number of bidders.

Models with uncertain numbers of bidders have the additional requirement

that a probability distribution must be specified. Casey and Shafter [18]

Dean [22] and Friedman [37] have each suggested that the number of bidders

is Poisson distributed. These suggestions, however, are not based on eapiri—

cal arguments.

In auctions with a number of similar players, each deciding inde-

pendently of the others whether or not to bid on a particular object, it

might be assumed that each player has the same probability of bidding on

an object. Under such conditions, the number of bids an object receives

will be binomially distributed. As the number of players becomes large,

_ _ _ _  _ _ _ _ _ _ _ _
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and the probability any one of the players actually bid s becomes small in

such a way that the average number of bids on the object remains constant ,

then the binomial distribution approaches a Poisson.

When data can be observed from a number of auctions with similar

objects, the observed distribution of the number of bids may be used to

estimate the actual distribution. Keller and Bor 153) study bidding data

for a collect ion of approximately similar construction contracts in the

United Kingdom. The observed data is consistent with the Poisson model;

an alternate distribution for the data is a Gamma distribution.

The distribution of the number of bids in federal offshore oil lease

sales appears not to be Poisson. Indeed, the distribution is occasionally

strongly bimodal. Engelbrecht-Wiggans, Dougherty and Lohrenz [32] pro-

pose a simple model to show that assumptions similar to those for the

co~~~n Poisson model may also hold here. When the objects being sold

differ  in value or other characteristics, there may be different distri-

butions for the number of bids on the different objects. The observed

distribution of bids would be a composite of these different distributions

and need not be Poisson even if the underlying distributions were. In

particular, the distribution of the number of bids on an object may

be different than the composite distribution over all objects, Thus care

must be taken if one, as Hartsock (50] suggests, uses the empirical com-

posite data (611 to approximate the actual distribution of the number of

bids on a sing le object.

While the above suggests that players behave differently with

regard to different objects in multi—object auctions such as federal

offshore oil lease sales, work of Dougherty and Lohrenz (24] suggests

that bidders may also differ  in how seriously they bid . In studying the
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distribution of the size of bids, Dougherty and Lohrenz [25] developed

the “30—30 deletion algorithm” to identify “non—serious ” bids ; bids either

much less than the next higher bid or only a small fraction of the mean

of the remaining bids. Of the 170 non—serious bids (1.9% of the total )

identified by the algorithm, 89% were submitted by three firma; further-

more, 90% of these three firms’ bids were identified as non—serious.

The evidence suggests that there may be both serious and non—serious

bidders; this observation is, however, only tangentially related to the

main subject of the paper, and the statistical significance of the data

(if any) is not explored.

Although most bidding models assume linear utility functions, the

effects of non—linear utilities has received some attention in auctions

with only one player where the player knows the physical characteristics

of the single object being auctioned. Hanson and Menezes 1451 prove the

existence of an expected utility maximizing strategy under quite general

continuity assumptions on the utility functions and the distribution function

of the reservation price (or , equivalently, highest non—strategic bid) .

Uniqueness of the optimal strategy is proven under somewhat more restrictive

conditions. Explicit bounds are established for the effect on the optimal

— strategy of changes in the true value; the change in bid is in the same

direction, and of magnitude not exceeding, that of the change in the value

of the object.

Hanson and Menezes discuss three different measures of risk aversion.

One of these, the risk index of Arrow [3, 4] and Pratt [65], is

used by Baron [8] to characterize and compare utility functions in deci-

sion theoretic models. An increase in the risk index (signifying increased

risk aversion) results in an increase in the optimal bid. The increase in
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the optimal bid due to an increase in true value increases with risk

aversion.

Blaydon and Marshall [12] note that the above results depend on

the assumption that the player knows the value of the object. An example

is provided to show that if the value is uncertain, the optimal bid may

vary in either direction with changes in the risk index. Baron (9] ela-

borates further on this point.

Attanasi and Johnson [7] consider sequential auction models with

non—linear utility functions. The models consider optimal bidding stra—

tegies in a sequence of markets, and thus assume there is only one

strategic bidde r. The effects of risk aversion in sequential auctions

are similar to those in one—shot auctions.

In auctions with more than one object, either the analysis must be

in terms of expected dollar value of various subsets of items or else the

utility function must have several components. If the concern is expected

total value or if the utility functions are additive across components then

multi—object auctions may be treated as independent simultaneous single

obj ect auctions. However, Engelbrecht [29] and Scott [81] have shown

that additive utility functions are equivalent to multi—attribute risk

neutrality.

Multi—object auctions have received almost no attention; the apparent

implicit assumption being that it is appropriate to treat such auctions

as a number of independent sir.~ultaneous auctions. Such an approach is in-

appropriate in at least some situations where bidders face capacity con-

straints, are subject to budget restrictions, or have risk averse utility

functions. The few, very specialized, models will be described later.
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Objects

By far the most comonly atudied auction is that of a single object;

if there is more than one object , the number is usually known and the objects

are usually identical. Sometimes the true characteristics of an object are

assumed to be known to all players and either different players have dif-

f erent utility functions (and thus , different true values for an object)

or the players must decide how much and on which objects to bid subject

to some capacity or budget constraint. More often, the true characteris-

tics of an object are not known. Different players may observe different

information and form different estimates of the object’s true value; as

noted by Brown 114], such a situation gives rise to imperfect competition

among the bidders

When the true characteristics of an object are not known, each player

gains information about the true state by observ ing the value of a random

variable whose distribution depends on the tru e state. A common assumption,

especially in the literature on oil lease bidding, is that the information

random variable is a random multiple of the true value of the object; some—

times the information random variable is a random error term added to the

t rue value .

The distribution of the multiplier (or additive error) is often

assumed to be independent of the true state of nature; the distribution

is often assumed to be lognormal . If , as Arps [1) suggests, the esti-

mates of t rue value are derived by multiplying together several components,

then the lognoraal choice has theoretical support; the product of many

independent random variables is approximately lognormal. Statistical work

of Crawford E211 and Dougherty and Lohrenz [25] for bidding on oil leases

supports the hypothesis that information is a lognormal random variable
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(with a distribution independent of the true state of nature) times the

actual true value. Winkler and Brooks -f 99] study models in which the

observed information consists of a normally—distributed error random var-

iable added to the true value; with the appropriate exponential transforms,

thi. model is similar to the lognormal multiplicative error model. Rarely

considered are more complicated dependencies of the information random var-

iable on the true state of nature, perhaps in part because in practical

applications it may be difficult to estimate such general conditional dis-

tributions.

The dependence of the observed random variable on the true state of

nature is not always clearly specified in the literature. Indeed, it appears

that “observed value” and “unbiased estimate of the true value” are often

(implicitly) assumed to mean the same thing. However, for additive or mul-

tiplicative errors, these two numbers are not, in general, equal.

Payoff Functions

The payoff function of a game determines who gets what on the basis

of the strategies chosen by the players and the true state of nature. In

auctions, the payoff function determines the prices of the objects and to

whom each object is awarded. Occasionally, the payoff function also speci-

fies fees for preparing or submitting bids, or a cost for participating in

the auction.

Almost invariably, single object auctions with single component

monetary bids award the object (if awarded at all) to a high (or low) bidder;

if all the bids are less (respectively, greater) than the reservat ion price,

the object is not awarded to any player . Perhaps the only seriously studied

exception to this rule is the share auction in which fractional shares of
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the objec t may be awarded ; such an auction however may be viewed as a limit-

ing case of the multi—object auctions discussed next.

When more than one obj ec t is being auctioned , a conuson extension

of the high bid wins rule is to determine a partition of the objects into

subsets, one for each player , which maximizes the sum of the amounts bid

by each player on the subset of objects actually awarded to him . In cases

where different players have different utility functions, know their res-

pective true values for each obj ect precisely and bids are equal to true

values, this award mechanism assures a Pareto optimal allocation of the ob-

jects, When bidding strategies are restricted to being additive across

objec ts, then this award mechanism is identical to awarding each objec t to

a high bidder on tha t obj ect.

In addition to determining to whom each item is awarded, the payoff

function sets prices on the objects. While the price paid for an object

is often set equal to the amount bid by the player to whom the object (or

set of objects) is awarded , many var iat ions are possible and actually used.

There may, of course, also be charges for things other than objects; for

example, bid preparation costs.

The price may be a function solely of the amount bid by the player

to whom the object is awarded and on the true state of. nature. Examples

of such pricing mechanisms include incentive, bonus, royalty, and profit

sharing. Additional variations are possible.

Under incentive pricing, the price is the true value of the object

(perhaps including a standard profit) less a fraction of the amount by which

- - 
this true value exceeds the amount bid. In the extreme case that the frac—

tion is zero , the mechanism becomes “cost plus fixed fee .” The other extreme

case, the f raction equal to one , results in a price equal to the amount bid.
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One goal of the intermediate forms of incent ive pr icing is to encourage

ef f iciency. If bid s are unbiased estimates of the true value of the con-

tract (recall , that by our convention, the value of a contract is the nega-

tive of its cost) then the contracted firm is paid a positive “incentive”

whenever the cost is less than the estimate (the negative of the bid).

Fisher [36] observed tha t such apparently desirable “under—runs” tend

to be larger for incentive contracts (with an intermediate incentive rate)

than for cost plus fixed fee contracts, but suggests that this may be due

to players strategically over—estimat ing the cost rather than increased

efficiency. However, neither Fisher nor Deavers and McCall j2.3] found

any conclusive relationship between the incentive rate and the under—runs .

Variations on an extteme case of incentive pricing include the bonus pric-

ing currently used in most offshore oil lease auctions. Under bonus bidding,

the price is equal to the bid amount plus a fraction of the value of any

oil recovered. Under such a scheme, the actual price of an object (i.e.,

lease) will not be known immediately upon conclusion of the auc tion; the

price is not known until the site has been developed and its true value

becomes known. Other variations on incentive pricing are possible, many

of which result in a price which is a linear combination of the amount bid,

the true value, and any (positive) profit .

A slightly different form of variation is when players bid on the

incentive rate or the fraction of profits to be included in the price.

Scherer [78] studies setting the incentive rate through negotiations in—

dependent of setting the target cost. The United States Government experi-

mented with selling a small number of oil leases under royalty bidding;

a players’ “bid” is the fraction of the gross revenu e which will be paid

to the seller.
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The amount of revenue generated under various pricing schemes has

been compared . Reesf [681 conc ludes that for oil Lease sales, on the

average, profit share pricing should result in more revenue than royalty

pricing, and royalty pricing in more revenue than the currently used bonus

pric ing . Different price mechanisms may also have affects on how leases

will be developed ; the expected revenue should not be the on].y criterion

for comparing different price mechanisms. Attanasi and Johnson 16]

and Kalter , Tyner and Hughes (52] have also compared various pric ing

mechanisms for oil lease auctions; all authors reach basically similar

conclusions. Wilson [98] concludes that , on the average, a share auction

would result in even less total revenue than an auction with bonus bidding .

There have not yet been enough experiments with different price mechanisms

in federal offshore oil sales to give conclusive results on which scheme

is most desirable.

In a number of “second price” auctions , the price of an object depends

on bids other than just the highest bid . In the common progressive auction , bidders

raise the price of an objec t until no one desires to raise it further and the object

is then awarded to the last bidder to raise the price at the price to which

he raised. This auction scheme has been modelled, by Vickrey [92], as an

auction in which the object is awarded to a highest bidder at a price equal

to the second highest bid (or at some small increment above the second highest

bid). If several identical objects are being auctioned, and players may

bid on how much they would pay for the first, second, etc., objects awarded

to them, then an appropriate extension of the model is to set the price

of all objects equal to the highest unsuccessful (rejected) bid. As will

be discussed later, second price auctions tend to result in bidding stra-

tegies which are simpler to calculate (or at least estimate) than for other

s irr~~r ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~ -~ — - ----— -~~~~~~~~ --- — - - ‘
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auctions. In addition , equilibrium strategies in second price auctions

may also have the strong property that an individuals equilibrium bidding

strategy maximizes his expected profit regardless of the strategies used

by the other players.

Milgrom [57] delineates necessary conditions for there to exist

an equilibrium in second price auction. He then proves that equilibrium

strategies satisfy a rational expectations property. In particular, even

though a player’s bid is a function only of his own information , a player

would use the same strategy even if his strategy could depend on the bids

submitted by other players; a player gains no additional information rele-

vant to determining his bid from the bids of other players.

Vickrey [92, 93] has shown that second price auctions can result

in as much total revenue as auctions in which the price is set equal to

the amount bid. If different players have different true values for each

of a number of identical objects, each player knows his value, and there

is no reservation price or entry cost, then setting prices either at the

amount bid or setting prices uniformly at the highest rejected bid (or

even, uniformly at the lowest accepted bid) will result in the same ex-

pected revenue under the respective equilibrium strategies. If a player

must pay the price he bids, he will on the average hedge more than if he

will typically pays less than his bid .

A larger expected revenue will accrue to the seller if he charges

an appropriate entry fee or sets an appropriate reservation price. Riley

[70] and Riley and Hirshleifer [71] prove that there is a positive entry

fee which maximizes the sellers’ expected revenue in second price auctions

(with no reservation price) . Myerson [59) proves that over quite a large

class of symmetric auctions , the expected revenue is maximized by using
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a second price auction with positive reservation price but no entry fee;

the high expected revenue is due to the more aggressive bidding created

by the positive reservation price . Notice that both of the above schemes

result in larger expected revenues than those of Vickrey, but in each

there Is also a positive probab fllty that the auctioneer does not sell

the object; this overall inefficiency might agrue against revenue maximizing

as a criterion in determin ing the mechanism for sel ling public goods.

Since second price schemes may generate as much revenue as first

price schemes and strategies for second price schemes are easier to cal-

culate and less informationally demand ing than first place schemes, Friedman

[38, 39] proposes that the second price mechanism be used in treasury

bill auctions. In treasury bill auctions, however, all players typically

have similar true values for the bills; the difficulty is that the true

value is unknown . Goldstein [42] argues qualita t ively that second price

auctions may not result in as much revenue. Smith [87] gives examples

of distributions of the reservation prices such that a profit maximizing

player in a second price auction will expect to pay more than when the

price equals the price bid; first and second price auctions will give rise

to different distributions of the reservation price, but is not clear that

there is any example which would result in the two distributions used in

this example.

In some special cases (e.g., Ramsey [67]) ,  second price auctions

result in a higher revenue while in others such auctions result in reduced

revenue. Thus the appropriateness of second price auctions for treasury

bills must in part depend on the details of the treasury market, and in

particular should consider the resale market of the bills.

In addition to payments for objects received or services rendered
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and for cost of bidding or participating in the auction, another form of

payments arise when fair division problems are viewed as slightly generalized

auctions. Typical fair division schemes involve auctioning the estate

according to some multi—commodity auction and then dividing the resulting

revenue among the heirs. Such auctions are outside of the scop’ of this

survey; Butler [15] surveys a large number of traditional fai’ division

schemes, while Dubins [28] and Engelbrecht—Wiggans [31] study several

schemes allowing players to express preferences as to how objects are allo—

-~ cated among the other players and permitting bids to be non—additive across

objects.

There are a variety of auction related games in which each player

must pay an amount (which depends on his bid) whether or not he wins the

object. Shubik ’s [82] “dollar auction” and Smith and Parker’s [85] and

Smith and PrIce~s [86] animal behavior models are examples of conflict

situations which may be modelled as auctions in which the highest bidder

wins the object, but each of the non—winning bidders must also pay the

amount that they bid. In wars or animal competition for territory or mates,

an individual expends progressively more time, energy, and other resources

until it is clear which of the players is willing to go the furtherest.

Since the resources committed are not recoverable, such games are second

price auctions in which all non—winner s pay the maximum amount they were

willing to bid .

It should be noted that such a payoff function results in equilibrium

bids substantially less than the individuals perceived value of the object.

An animal competing fo r an essential piece of territory (without which,

it may be assumed , death is imminent) need not compete to death , but may

stops as soon as he realizes tha t he will , sooner or later , be unable to
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to match the resource expenditures of some competitor.

Bidding Strategies

Players may be assumed to select their bidding strategy according

to any one of a number of criteria. In “mm —max” models, each player chooses

a strategy which maximizes the minimum possible utility of the final outcome

over all possible combinations of bidding strategies of the remaining players;

however easy to calculate, such strategies appear to -have little practical

value. Occasionally, especially in simulations of auctions with small stakes,

the players will try to maximize the amount by which their profits exceed

those of the remaining players.

In most multi—bidder models, however, Nash [60] equilibrium

strategies are sought; strategies are in equilibrium if each player uses a

strategy which, for the particular strategies used by the remaining players,

maximizes the expected utility of the outcome. One slight variant of such

equilibria, are “local” equilibria in which each player’s strategy results

in attaining a local maximum of his expected utility; such a concept is

useful to eliminate the spurious equilibrium which requires all players to

bid arbitrarily low whenever there is a positive probability of there being

no other bids submitted. A second variant on equilibrium strategies is to

consider sets of stable strategies; strategies are stable if they come “close”

to satisf ying the equilibrium conditions .

Much of the literature considers models with one strategic bidder .

Such models correspond to the traditional Bayesian decision theoretic

analyses of auctions . In any “one shot” situation, a player should concern

himself with deriving a best response to the strategies used by the remain-

ing bidders rather than deriving an equilibrium strategy; in particular,
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a player should use the strategy which , for the strategies used by the

remaining players, maximizes the expected utility of the final outcome.

If the remaining players bid according to an equilibrium strategy, then

a best response is to also bid according to the equilibrium strategy.

When there are at least two players and all are concerned with ex-

pected profits (i.e., all players have single attribute, linear, utility

functions), receive symmetric information and are restricted to real valued

bids then the symmetric pure equilibrium strategy (if one exists) is the

solution to a linear first order differential equation. Thus it is pos-

sible to write an explicit symbolic expression for the symmetric equilibrium

strategy. However, it is in general impossible to obtain a closed form

expression for the equilibrium strategies.

In asymmetric cases, analytic solutions may be even more difficult

to obtain. Wilson [96] and Ortega—Reichart [641 give systems of first

order differential equations which any equilibrium strategy must satisfy.

However, as Engelbrecht—Wiggans and Weber [34] indicate, equilibrium stra-

tegies are quite simple to calculate if there is one “well informed”

player who observes all the information observed by the other players.

The fundamental relation between inf ormation and bids may be re—

stricted . A common assumption , is that bid functions are “multiplicative.”

Under multiplicative bidding, a player ’s choice of strategies is limited

to specifying a multiplier (before observing any information) ; his bid is

this multiplier times an estimate of the object ’s true value based on what-

ever information is observed .

Perhaps the simplest multiplicative (and additive) strategy is for

each player to use any information observed to calculate an estimate, typi—

catty unbiased, of the true value of an object and let his bid be equal

______ _____________II _________ 
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to that estimate. Work of Bec kmann I l l) ,  LaValle [55] and Vickery

[92] shows that all players bidding their expected values for an objec t

in a single objec t auction is in equilibrium if the object is priced at

the highest rejected bid and if each player ’s expected value of the object

is independent of any informat ion observed by the remaining players. An

example of such a situation is when different players have symmetric true

values for the object and each player knows his own true value precisely.

Vickery [93] gives a similar result for auctions with several (e.g. N )

identical objects when one object is awarded to each of the N highest

bidder s and each object is uniformly priced equal to the highest rejected

bid (i.e., the )ff1
5t bid).

For general single object auctions (or auctions with several identi-

cal obj ects where at most one object is awarded to any player) with prices

of all objects uniformly equal to the highest rejected bid and with all

players maximizing expected profits and receiving symmetric information,

it is relatively easy to calculate the symmetric equilibrium strategy.

The equilibrium strategy is the ratio of two single integrals involving

the distributions of the true state of nature and the information observed

by a player. Even though it is often impossible to evaluate the integrals

in closed form , numer ical approximations of single integrals are relatively

accurate and easy to calculate. In general, the equilibrium strategy is

not simply the expected value of the object based on any information observed

by a player .

In auctions with the price of an objec t equal to the amount bid by

the winning player, each player simply bidding his expected value of an

object is not in equilibrium. The disequilibrium of any particular strategy

may be verified by showing that it does not satisf y the desired differential

I
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equations . Such a verif ication is particularly simple in the case of players

maximizing expected profit and receiv ing symmetric information.

One intuitive explanation why bidd ing expected values is not in equi—

librium is a phenomenon known as the “winner’s curse”; the individual to

whom an object is awarded tends to be the one who most ove’estimated the

true value of the obj ect. This phenomenon was originally analyzed in single

player auctions by Capen , Clapp and Campbell [16] . Oren and Williams

[62) study the winner’s curse in general symmetric auctions with more

than one player where the price of an object is equal to the amount bid ,

and prove that the “winner” tends to pay more than his expected value of

the object after discovering that his bid exceeded the unbiased estimates

of the remaining bidders. Recall , however , that the ration expectations

property observed by Milgrom [57] for second price auctions indicates that

the “winners” curse may be a phenomenon peculiar to the first price auctions.

If each player bids an unb iased estimate of his own true value for

an objec t , then the maximum bid will in general be biased (upward) with

respect to each of the player ’s true values; the maximum of an unbiased

estimate and any second random variable will be biased upwards unless the

second random variable is never greater than the unbiased estimate (in

which case, the maximum would always be equal to the unbiased estimate,

and thus also unbiased). Thus, the selling price would tend to exceed the

t rue value.

In sy etric equilibria. each bidder shares equally in the shortfall

between true value and average price; thus each bidder expects to loose

money if bids are unbiased estimates of true value. Winklsr and Brooks

[99] indicate that this is not nscessarily true in asy etric situation..

For ezaapl., if there are two bidders whos, errors are perfectly correlated,
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but one player’s error is always twice the other ’s, then the better informed

player will win when the value was under—estimated and can therefore expect

a positive profit. Of course , even in asymmetric examples, the average

selling price is greater than the true value, and thus in the above, the

better informed player profits at the expense of the less informed player.

Wilson [97] and Milgrom [58] give conditions such that the
- 

- maximum bid tends (in probability) to the true value as the number of bidders

becomes large. It appears that, since a player will win only if his bid

exceeds the maximum informed player’s bid, the poorly informed player’s

bid must exceed an amount typically very close to the true value in order

to win. Thus, if poorly informed players appear likely to make little,

if any, profit.

It can indeed be established that appropriately poorly informed players

can not expect positive profit. In particular, Engelbrecht—Wiggans and Weber

[34 1 show that if there is a (poorly informed) player all of whose infor-

mation is also known to at least two other players, then at a Nash equilib—

rium, the poorly informed player can not expect a positive profit; one must

have proprietary information before one can hope to make a profit. Wilson

196] allows a player without proprietary information to announce his mixed

strategy publically before the bids are submitted. If he chooses his mixed

strategy on the assumption that the informed player will use a best response

strategy, then there are choices of mixed strategies by the poorly informed

player such that both the informed and poorly informed players have

a greater expected profit than under a Nash equilibrium.

Hughar t [51] considers the case of one well informed player and

one or more less informed players. He comments that if the less informed

players expect zero profit , then they have no incentive at all to bid .
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If the less informed players do not bid , then there is no competition for

the well informed player and the object may be sold at a very low price.

In order to expect a positive profit from bidding, the less informed players

H must obtain additional information, presumably at some cost, and possibly

duplicating some of the information already obtained by the well informed

player. Hughart claims that lack of competition and duplicated information are

socially costly and undesirable; suggested alternat ives are using a second

price auction or having the seller gather accurate information and provide

this inf ormation wi thout cost to all potential bidders.

In analyzing alternative auction mechanisms for offshore oil lease

auctions, Reese [69 ] concludes that if the government is as efficient

at obtaining information as private oil companies, then it should obtain

such inf ormation and distribute it to all potential bidders. In doing so,

the government can expect not only an increase in revenue from the auction

in excess of the cost of the information distributed, but also that the

revenue increases by more than the players’ profits decrease. This

suggests that such dispersement of informat ion will result in an allocation

of oil leases closer to a Pareto optimal allocation.

An alternative to simply bidding the expected value of an object,

is to bid some fraction of it. If the fraction is sufficiently less than

one, then the actual price need not average higher than the true value.

Such multiplicative strategies are often considered in the literature on

offshore oil lease auctions (e.g., Dougherty and Nozaki [27]).

The optimal bid fraction depend s on the number of players and the

accuracy of the information they receive . The bid fraction has a maximum

for a finite number, typically less than a dozen, players. For many players,

there is likely to be at least one player who grossly overestimated the 
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true value of the object; thus in order to avoid the winner’s curve, one

bid s more conservatively aga inst very large numbers of players. If there

are only a very few players , then there is a chance of obta ining the object

at a bargain price; thus one should also bid more conservatively against

very small numbers of players . The more accurate the information observed

by the players, the less of an effec t the winners ’ curse has. Thus, as the —

variance of the ratio of the informat ion to the true value decreases, the

optimal bid fraction increases. Capen, Clapp and Campbell [16] obtain

similar results for the optimal bid fraction in auctions with only one

player.

Equilibrium multiplicative strategies are not necessarily in equilib-

rium when strategies are unrestricted. Rothkopf [73, 74] proves that

if the information is a random multiple of the true value and the posterior

distribution (after observing any information) of the ratio between the

observed informat ion and the true value is independent of the observed in-

formation , then equilibrium multiplicative strategies are also in equilib-

rium when the strategies are not restricted. Rothkopf [77) also observes

that these conditions are in general only satisfied exactly i~ the true value has

a diffuse uniform distribution prior to observing the information. Winkler

and Brooks [991 prove a corresponding result for models with additive

information.

Teisberg [91] (implicitly) assumes that any information observed

and any information in a non—diffuse prior distribution of the true value

can be summarized by a single statistic sufficient for the true value.

Under this assumption, an equilibrium is obtained when each player bids

the appropriate multiple of his posterior (Bayes) estimate of the true

value after observing all available information.
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Engelbrecht—Wiggans and Weber [351 prove that for non—diffuse prior

distributions, there is in general no equilibrium strategy which is a closed

form function of players observed information. In particular, bidding

multiples of ones Bayes estimate is not in equilibrium, and equilibrium

strategies are not functions solely of a single statistic sufficient for

the true value unless there is a diffuse prior distribution on the true

value (in which case, the information itself is a sufficient statistic).

In general, a player is concerned not only with estimating the true value,

but also with estimating how the competition will bid ; a single statistic

sufficient for the true value is typically not sufficient for both these

purposes.

The appealing simplicity of multiplicative strategies suggests de—

termining how close equilibrium multiplicative strategies are to equilibrium

unrestricted strategies. Rothkopf [75] calculates equilibrium linear strategies;

linear strategies are linear functions of the information. As the van —

ance of the prior becomes large compared to the variance of the random

error multiplier in the information, the equilibrium linear strategy

approaches a multiplicative strategy. However , this approach does not

determine how close multiplicative strategies are to being in equilibrium;

to be almost in equilibrium, a strategy must yield approximately the inaxi—

mum possible expected profit.

Engelbrecht—Wiggans [30) studies the disequilibrium of multiplica-

tive strategies by considering a numerical example based on a federal

offshore oil lease sale . Equilibrium multiplicative strategies are quite

far, in terms of expected profit, from being in equilibrium. It is, how-

ever observed, that under appropriate naive reactions by players in a

sequence of auctions, the bidding strategies can very quickly converge to

:
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a strategy very nearly in equilibrium.

Smith and Case 1841 consider sets of strategies which are almost

in equil ibr ium. In particular applications (e.g., in repeated auc t ions

with converging strategies as in the above example) any set of strategies

close enough to equilibrium will t end to be stable; no player will find

it beneficial to deviate from any strategy which is sufficiently close to

giving the maximum possible expected utility. Since stable strategies have

similar self policing characteristics to equilibrium stra tegies, they can

be used as alternative solutions to bidd ing games . Smith and Case examine

a collection of stable sets of strategies and give an example where there

is a stable set which results in substantially more profit to all players

than the equilibrium strategies. They suggest that the players might strive

(e.g., through signalling in repeated auctions) to converge to such a set

of strategies. Once the players are using such strategies, there appears

to be little incentive (especially for any far sighted player) to deviate

from them in future auctions; thus players may repeatedly use the same stra-

tegies even though they are not strictly in equilibrium.

Oren and Rothkopf [63], using a mixed behavioristic and game

- 
- theoretic model , observe that strategies which are optimal in the long

term need not be in equilibrium at each stage, and indeed may well result

in greater expected profits than one stage equilibrium strategies.

An alternative source of apparent non—equilibrium behavior is if

it is assumed that bidders do not share information yet there is actually

some collusion (and the strategies are in equilibrium when taking into account

the collusion) . Schilhing and Gallo [79) have developed a collection

of computer programs which attempt to discover collusion among bidders

when none is allowed. Occasionally, as with jointly prepared offshore oil

_ _ _ _ _  _ _ _ _  _ _ _ _  _ _ _  
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lease bids , some collusion among bidders is explicitly allowed . Dougherty

and Lohrenz [26] study the effec t of permitting joint bids in offshore

oil leases and conclude t tiat it does not decrease the number of bids sub-

mitted. Since joint bidder s presumably have at least as accurate informa-

tion as solo bidders, allowing joint preparation of some of the bids should

result in mor e competitive bidd ing and thus a higher expected revenue to

the government .

When more than one object is being auctioned, it is possible to re-

strict the relationship between bids on various subsets of objects. In

particular, bids may be restricted to being additive across objects; the

bid on a subset of objects is equal to the sum of the bids on the individual h
objects in that subset.. Occasionally, the players’ utility functions are

such that bids will be additive even if not restricted to be so. However,

Raiffa [66] shows that if the objects are statistically independent

monetary valued lotteries,then players’ true value functions are additive

in general if and only if their utility for money is either linear or ex—

ponential. This suggests that bids are not likely to be additive unless

so restricted.

Although at least a hundred oil lease sites are typically auctioned

simultaneously, most analyses assume bids to be additive across objects

and have been in terms of multiple simultaneous independent single object

auctions . While treating multi—commodity auctions as a number of simultan-

eous independent single commodity auctions simplifies the analysis, such

an approach may ignore the effects of budget or capacity limitations, con-

straints on exposure, or risk aversion. These aspects of multi—commodity

auctions have received relatively little attention.

Goodman and Baurmeister [43] and Stark and Mayer [89 ] consider 
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multi-commodity auctions wi th one player . The single player faces a decision

theoretic problem of how much to bid and in which auctions to participate.

Stark and Mayer model the optimization problem as a linear program. Good-

man and Baurmeister develop an optimization algorithm which they claim is

computationally efficient for up to six or seven simultaneous auctions .

In a related vein; Rothkopf (-751 derives a mathematical programming model

to decide how much and in which auctions a player should bid if he faces a

constraint on exposure; there is limit on the total amount of the bids in

a set of simultaneous auctions.

The problem appears to become substantially more difficult if there

is~more than one strategic player . Engelbrecht—Wiggans and Weher f 33] examine

a very simple example of a number of non—independent simultaneous single

commodity auctions. The objects are all identical and each auction uses

the first rejected pr ice mechanism; each player values a single obj ect at

some fixed (known) amount , consider s additional objects worthless, and is

allowed to independently submit bids in up to two randomly selected auctions.

In this example, the mixed equilibrium strategy (no pure strategy exists)

is for each player to submit one “high” bid and one “low” bid . Although

all the objects are identical and all players have the same known value for

an obj ect , the players ’ capacity constraint on the number of objects they

can use results in two distinct levels of bidding. Although this is only

a very simple example, it suggests that some of the variation among bids

in auctions with pure strategy equilibria is due to capacity constraints

rather than just different estimates of an object’s true value.

In many practical situations, including treasury bills and offshore

oil leases, there is an active after market in which players may adjust their

holdings. Capacity requirements and budget constraints are less important

—
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when there is such an after market. Unfortunately, after markets are very

rarely included in auction models .

The existence of after markets, however, indicates the inefficiency

of the auction itself. The auction typically fails grossly to achieve ef—

ficient allocations of many obj ects. Players must therefore incur the costs

of a secondary market; obj ects must be inventoried, capital is tied up,

and additional sales must be conducted. In addition , the seller (e.g.,

the federal government) may desire to eliminate the need for secondary

markets; in allowing secondary markets, there is the potential for consider-

able communication among players and this may reduce the overall “compe-

titiveness” of the allocation mechanism.

In a similar vein, Case [17] considers the problem of a seller

who has the option of selling an object to the highest bidder or of re-

jecting the highest bid and re—offering the object at some later time.

When the distirbution of bids is uncertain, the seller’s decision must be

based on both the best offer and on any estimate of how much better subse—

quent offers might be; this estimate typically depends on the range or on

the variance of the previously observed offers. The decision also depends

on the relative costs of delaying the sale of the object and of accepting

an inferior offer; for the parameters considered, the seller should reject

the highest bid in at most a very few auctions.

Cook, Kriby and’Menndiratta [20] consider a class of two player

sulti—object auctions where the players have limited resources. The results,

however, depend in an unnatural way on the discretization of possible bids ;

strategies often require the smallest possible positive bid. This model

appears of limited practical value.

Finally, there may be fixed payments to and from players in addition

I 
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to the variable payments for objects. Typical examples include the costs

of preparing bids, obtaining information, and partic ipating in an auction.

Auction models typically do not include such costs; such costs may be

negligibly small in some situations.

Occasionally such costs have been considered explicitly. Most of

the results however are for two player constant sum games, commonly referr ed

to as “Colonel Blotto” games. Typically, the major concern is how players

should allocate their limited resources among the various objects. Such

games are however only a very specialized case of multi—commodity auctions;

the interested reader is ref erred to the surveys and discussions of Beale

and Heselden [10] and Shubik and Weber [831.

Further Research

This survey reveals at least a few areas which might warrant further

research. Included among these are the effects of auctioning more than

one object simultaneously, the equilibrium nature of bidding strategies

actually used, and the effects of asymmetries in players’ information or

t
-: utility functions. Each of these areas is discussed briefly below.

• The simple second price auction example surveyed indicates that

multiple independent simultaneous auctions may result in allocations which

are far from Pareto optimal . The question remains of how inefficient in-

dependent simultaneous auctions are in more typical situations, e.g., situ-

ations with less severe capacity constraints. Are there any alternative

auction mechanisms which result in allocations sufficiently closer to Pareto

optimal allocations so as to justify any additional costs from using such

schemes?
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Some of the difficulties associated with capacity constraints in

simultaneous independent auctions are alleviated if the objects are auctioned

sequentially . However , the order in which objects are auctioned may affect

the f inal allocation. Most existing sequential auc tion models assume that

• players know precisely the true value of each object and that players will

use multiplicative bidding strategies. In what situations, if any, is a

sequential auction to be preferred over independent simultaneous auctions?

When several similar objects are being sold, a player may rationally

submit different bids on the objects even if he estimates them all to have

the same value. Thus, some of the variance among bids on an object arises

— from sources other than players’ uncertainty about the objects true value.

In practical situations, how much of the variance in bids is due to such

strategic considerations; how should one use data on the distribution of

bids observed on an object to determine what uncertainty players face?

Multiplicative strategies are not necessarily equilibrium strategies.

Indeed, rather restrictive conditions must be satisfied before multiplica—

tive strategies are precisely in equilibrium. Under what conditions are

multiplicative strategies in equilibrium, and how sensitive is this equi-

librium to slight changes in the model parameters? Even if multiplicative

strategies are not exactly in equilibrium, are they close enough to be con—

sidered stable?

In the example surveyed, multiplicative strategies can be thought

of as an initial strategy which will be modified and converge to a stable

strategy under repeated play. In this example, strategies based on Bayes

estimates resulted in faster convergence than multiples of unbiased esti-

mates. Is this true in general? Are there other simple forms of strategies

which converge rapidly to stable strategies. Is it possible to neatly char-

acterize what initial strategies will result in convergence to a stable
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strategy or an equilibrium strategy, can one estimate the rate of convergence,

and how is the convergence affected if the nature of the auctions changes

• slightly from one auction to the next (for example, what happens if , at

some point , the number of players changes)?

Most of the formal equilibrium analysis of auctions has been for models with

identical players. The symmetry of such models greatly facilitates calcu-

lating equilibrium strategies. However, actual auctions, at best, only

approximately satisf y such symmetry conditions . While it may be difficult

to analyze general asymmetric models , perhaps slightly less general models

may be analyzed to determine what is the value of additional (or more accurate)

information, what effect a number of amatuers (who use simple bidding stra-

tegies and/or receive less accurate information) has on the auction, and

how the outcomes are affected if the players have symmetric information

but are allowed to form coalitions which pool members’ information and sub-

mit joint bids.

Any model is only an approximation of the real situation. The use-

fulness of any results from analyzing the model depends on the appropriate-

ness of the model . Seldom have auction models been analyzed for their

robustness; the question of how much small changes in the model affect the

analysis and resulting conclusions has received very little attention.

Many of the models require that certain parameters or probability distribu—

tions be determined empirically. Inaccuracies in determining these param-

eters , together with any approximations built into the model , could lead

to results and conc1usion~of little or no relevance to the situation being

studied.

A number of questions may be asked related to the robustness of a

model. How close to equilibrium are strategies if players are slightly

• I 
_ _ _  ______ - -~~~- -

___ 
i1I_ :ii -



r ’  

H 
41

mistaken about the true underlying probability distributions and bow does

this affect their expected profit and the auctioneers’ expected revenue?

Is a player ’s optimal strategy or expected profit strongly affected by aiy

mistakes made by opponents in determining their optimal strategies; in how

global of a sense are equilibrium strategies close to equilibrium. In

particular, how should strategies be modified if one acknowledges the ex-

istence of an after market and the possibility that one’s behavior will

have important long term affects on other’s behavior, or how should one

bid if one suspects that some of the other players are bidding sub—

optimally?

Finally, what are the affects of some of the finer details of actual

auctions? Do players obtain useful information in a common progressive

auction (as opposed to conducting it as a sealed second bid price auction)?

What are the effects of slight collusion (e.g., signalling among players)?

What is to be done about the possibility that the rules of the game may be

changed after the bidding has started (e.g., a Federal judge may declare

an oil lease auction null and void and prevent any immediate development

of oil leases)? Further insights into these, and many other, practical

questions are needed before the theory can be more widely applied.

_ _ _  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
_

~~~~~~~~~~~~~
_ • ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

_ _ _: i i~~~~~~~~~~ ~~~~~~~~~~~~~~i~~~~J:__



42

REFERENCES

(1] J. J. Arpe , “A Strategy for Sealed Bidding,” Journal of Petroleum Technology,
Vol. 17 , pp. 1033—1039 (1965).

(2] 11. A. Agnew, “Sequential Bid Selection by Stochastic Approximation,” Naval
Research Logistical Quarterly, Vol. 19, pp. 137—143 (1972) .

[3] K. 3. Arrow, “Comment on James S. Dusenbury, ‘The Portfolio Approach to the
Demand for Money and Other Assets,” Review of Economics and Statistics,
Vol . 45 (1963).

[ 4 ]  
_________, “Aspects of the Theory of Risk Bearing, ” The Academic Book Store ,

Helsinki, Finland (1965).

(5] E. D. Attanasi, “Some Interpretations of Sequential Bid Pricing Strategies,”
Management Science, Vol. 20, No. 11, pp. 1424—1427 (1974).

(61 
__________ 

and S. R. Johnson, “Leasing Policies for the Extractive Industries,”
Annals of Regional Science, Vol. 10, No. 2, pp. 36—49 (1975).

(71 
_________, “Sequential Bidding Models : A Decision Theoretic Approach ,”

Industrial Organization Review, Vol. 3, No. 1, pp. 43—55 (1975).

[8] D. P. Baron, “Incentive Contracts and Competitive Bidding,” American Economic
Review, Vol. 62, No. 3, pp. 384—394 (1972).

[91 
__________, “Incentive Contracts and Competitive Bidding: Reply,” American

Economic Review, Vol. 64, No. 6, pp. 1072—1073 (1974).

[10] E. M. L. Beale and C. P. M. Heselden, “An Approximate Method of Solving Blotto
Games,” Naval Research Logistical Quarterly, Vol. 9, No. 2, pp. 65—80
(1962). -

[11] M. J. Bockmann, “A Note on Cost Estimation and the Optimal Bidding Strategy,”
Operations Research, Vol. 22, No. 3, pp. 510—513 (1974).

[12] C. C. Blaydon and P. W. Marshall , “Incentive Contracts and Competitive Bidding:
Comment ,” American Economic Review, Vol. 64, No. 6, pp. 1070—1071 (1974).

[13] 5. 3. Brams and P. 0. Straff in, Jr., “Prisoners’ Dilemma and Professional
Sports Drafts,” American Mathematical Monthly, pp. 80—88 (1979).

[14] K. 3. Brown, “A Note on Optimal Fixed—Price Bidding with Uncertain Production
Cost,” Bell Journal of Economics, Vol. 6, No. 2, pp. 695—697 (1975).

(15] D. Butler, “Topics in the Theory of Fair Division,” unpublished masters
thesis, Cornell University (1970) .

(16] E. C. Capen , R. V. Clapp and W. M. Campbell , “Competitive Bidding in High
Risk Situations,” Journal of Petroleum Technology, Vol. 23, pp. 641—651
(1971) .

-

S

. ~ ____________ ________________

_  _



p~ s — — - - 
— ——----

-
- - - - -

~~

-- — —- - - - - - - -- - - 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~ _ 

~~~~~~~1~

42

REFERENCES

(11 3. J. Arps, “A Strategy for Sealed Bidding,” Journal of Petroleum Technology,
• Vol . 17 , pp. 1033—1039 (1965).

(2] R. A. Agnew, “Sequential Bid Selection by Stochastic Approximation,” Naval
Research Logistical Quarterly, Vol. 19, pp. 137—143 (1972).

[31 K. 3. Arrow, “Comment on James S. Dusenbury, ‘The Portfolio Approach to the
Demand for Money and Other Assets,” Review of Economics and Statistics,
Vol. 45 (1963).

[4] 
_________, “Aspects of the Theory of Risk Bearing,” The Academic Book Store,

Helsinki, Finland (1965).

[5] E. D. Attanasi, “Some Interpretations of Sequential Bid Pricing Strategies,”
Management Science, Vol. 20, No. 11, pp. 1424—1427 (1974).

[63 
________  

and S. H. Johnson , “Leasing Policies for the Extractive Industries,”
Annals of Regional Science, Vol. 10, No. 2 , pp. 36—49 (1975).

[7] 
__________, “Sequential Bidding Models: A Decision Theoretic Approach,”

Industrial Organization Review, Vol. 3, No. 1, pp. 43—55 (1975).

(8] D. P. Baron, “Incentive Contracts and Competitive Bidding,” American Economic
Review, Vol. 62, No. 3, pp. 384—394 (1972).

[9] 
__________, “Incentive Contracts and Competitive Bidding: Reply,” American

Economic Review, Vol. 64, No. 6, pp. 1072—1073 (1974).

[10] E. M. L. Beale and C. P. N. Heselden, “An Approximate Method of Solving Blotto
Games,” Naval Research Logistical Quarterly, Vol. 9, No. 2, pp. 65—80
(1962). -

[11] N. J. Beckmann , “A Note on Cost Estimation and the Optimal Bidding Strategy,”
Operations Research, Vol. 22, No. 3, pp. 510—513 (1974).

[12] C. C. Blaydon and P. W. Marshall, “Incentive Contracts and Competitive Bidding:
Comment,” American Economic Review, Vol. 64, No. 6, pp. 1070—1071 (1974).

[13] 5. J. Brams and P. 0. Straff in, Jr., “Prisoners’ Dilemma and Professional
Sports Drafts,” American Mathematical Monthly, pp. 80—88 (1979).

[14] K. J. Brown, “A Note on Optimal Fixed—Price Bidding with Uncertain Production
Cost ,” Bell Journal of Economics, Vol. 6, No. 2 , pp. 695—697 (1975) .

[15] D. Butler, “Topics in the Theory of Fair Division,” unpublished masters
thesis, Cornell University (1970) .

(161 E. C. Capen , R. V. Clapp and W. N. Campbell, “Competitive Bidding in High
Risk Situations,” Journal of Petroleum Technology, Vol. 23, pp. 641—651
(1971) .

__________ -—-• - — —  —•—--•--
— _ - -~~~~

- —  — - - — — —— -
~

_- .- - —  
— :- ~~ • •~~ ~ - - I. — ——— — — _____,_•_____s___ — ~~~~~~~~~~~~~~ s ~jh...S r ~~~~ 

-. ..



43

[17] 3. Case, “On the Nature of Optimal Search Strategies,” paper presented
at TIMS/ORSA National Meeting, New Orleans, Los Angeles, May (1979) .

[18] B. J. Casey and L. R. Shaffer, “An Evaluation of Some Competitive Bid
Strategies for Contractors,” Report #4, Department of Civil En-
gineering, University of Illinois (1964).

[19] N. Clerckx and P. A. Naert, “Alternative Bidding Models: Application
to a Bidding Problem in the Construction Industry,” Working Paper
73—37, European Institute for Advanced Studies in Management,
Brussels (1972).

[20] W. Cook, N. Kirby, and S. Mehndiratta, “A Game Theoretic Approach to a
Two Firm Bidding Problem,” Naval Research Logistical Quarterly,
Vol. 22, No. 4, pp. 721—739 (1975).

[21] P. B. Crawford, “Taxes Offshore Bidding Patterns,” Journal of Petroleum
Technology, March, pp. 283—289 (1970).

[22] E. V. Dean, “Contract Award and Bidding Strategies,” Technical Memo 20,
Case Institute of Technology (1964).

[23] K. L. Deavers and J. 3. McCall, “Notes on Incentive Contracting,” The
RAND Corporation, RN—5019—PR (1966).

[24] E. L. Dougherty and J. Lohrenz, “Money Left on the Table in Sealed, Com—
petitivo Bidding: Federal Offshore Oil and Gas Lease Bids,” Paper
presented at Society of Petroleum Engineers Meeting, Dallas, Texas,
February 21—22 (1977).

[25] 
__________, “Statistical Analysis for Bids for Federal Offshore Leases,”

Journal of Petroleum Technology, November, pp. 1377—1390 (1976).

[26] 
__________, “Statistical Analysis for Solo and Joint Bids for Federal

Offshore Oil and Gas Leases,” Paper presented at Society of
Petroleum Engineers Meeting, April (1977).

(27] B. L. Dougherty and H. Nozaki, “Determining Optimal Bid Fraction,”
Journal of Petroleum Technology, March, pp. 349—356
(1975).

(28] L. E. Dubins, “Group Decision Devices,” American Mathematical Monthly
Vol. 84, No. 5, pp. 350—355 (1977).

(29] H. Eztgelbrecht, “A Note on Multivariate Risk and Separable Utility Func-
tions,” Management Science, Vol. 23, No. 10, pp. 1143—1144 (1977).

[30] R. Engelbrecht—Wiggans, “Bidd ing in Auctions with Multiplicative Lognormal
Errors: An Example,” Cowles Foundation Discussion Paper #500R,
Yale University (1978).

(31] 
__________, “On the Fair and Efficient Allocation of Indivisible Commo-

dities,” School of Operations Research and Industrial Engineering
Technical Report #356 , Cornell Un iversity (1977) .

.1~
— - — - -W e —. - -fl —•-- — -  - - 

- —

_ _  111



[32] 
__________, E. L. Dougherty and J. Lohrenz , “A Model for the Distribution

of the Number of Bidders in an Auction ,” Cowies Foundation Discussion
Paper #495R , Yale University (1979) .

133J R . En ge lbrech t -W ig g an s  and R. J. Weber , “An Example of a Multi—Object Auction
Game s” Cowles Foundation Discussion Paper #494R, Yale University (1979).

[34) __________, “Bidding without Proprietary Information ,” Cowlea Foundation
Discussion Paper # , Yale University, May (1979).

(35] 
__________, “On the Non—Existence of Multiplicative Equilibrium Strategies,”

Cowles Foundation Discussion Paper #523 , Yale University, Apr il
(1979). -

[36] I. N. Fisher , “An Evaluation of Incentive Contracting Experience,” Naval
Research Logistical Quarterly, Vol. 16 , pp. 63—83 (1969) .

[37] L. Friedman , “A Competitive Bidding Strategy, ” Operations Research, Vol .
4, pp. 104—112 (1956).

[38] M. Friedman , in U .S. Congress , Joint Economic Committee , “Hearing; Employ-
ment , Growth , and Price Levels,” 86th Congress, First Session (1959) .

[39] 
__________, “Price Determination in the United States Treasury Bill Market,

A Comment,” Review of Economics and Statistics, pp. 318—320 (1963).

[40) M. Gates , “Bidding Strategies and Probabilities ,” Journal of the Construc-
tion Division, ASCE, Paper 5159, pp. 75—107 (1967) .

[41] R. J. Gilbert, “Valuation Uncertainty and Competitive Bidding,” undated
manuscript.

[42] H. Goldstein, “The Friedman Proposal for Auctioning Treasury Bills,”
Journal of Political Economy, Vol. 70 , No. 4 , pp. 386—392 (1962).

[43] D. Goodman and H. Baurrneister , “A Computational Algorithm for Multi—Contract
Bidding under Constraints,” Management Science, Vol.. 22, No. 7,
pp. 788—798 (1976).

[44] 3. H. Griesmer and M. Shubik, “Toward a Study of Bidding Processes, Part
Three. Some Special Models,” Naval Research Logistical Quarterly,
Vol. 10, No. 3, pp. 199—217 (1963).

[45] D. L. Hanson and C. F. Menezes, “Risk Aversion and Bidd ing Theory, ” in
J. P. Quirk and A. M. Zarley (eds.), Papers in Quantitative
Economics, Lawrence, pp. 521—542 (1968).

[46] 7. Hanssmann and B. H. P. Rivett, “Competitive Bidding,” Opera tional
Research Quarterly, Vol. 10, No. 1, pp. 49—55 (1959).

[47J 3. C. Harsanyi, “Games with Incomplete Information Played by ‘Bayes ian’
Players, Part I. The Basic Model,” Management Science (1967).

[48] 
__________, “Games with Incomplete Information Played by ‘Bayesian ’ Players.

Part II. Bayesian Equilibrium Points ,” Management Science, Vol.
14, No. 5, pp. 320—334 (1967).

L — — — —________ 
—

~~ 
-



-

~~~~~~~~~~~~~~~~~~~~~ 

--- -- :~~
‘ -

~
-- 

-~~~
- -

[49] 
__________, “Games with Incomplete Informa tion Played by ‘Bayesian’ Players,

Part III, The Basic Probability Distribution of the Game,”
Management Science, Vol. 14, No. 7, pp. 486—502 (1967).

150] 3. H. Hartsock, “A Competitive Bidding Model That Uses Historical Data,”
SPE 6358, paper presented at SPE Economics and Evaluation Symposium,
Dallas, Taxes, February (1977).

[51] D. Hughart, “Informational Asymmetry, Bidding Strategies, and the Market-
ing of Offshore Petroleum Leases,” Journal of Political Economy,
Vol. 83, No. 5, pp. 969—986 (1975).

[52] R. J. Kalter, W. E. Tyner, and D. W. Hughes, “Alternative Energy Leasing
Strategies for the Outer Continental Shelf ,” Department of Agri-
cultural Economics Working Paper, Cornell University (1975).

1531 A. Z. Keller and R. H. Bor, “Strategic Aspects of Bidding Against an
Unknown Number of Bidders,” paper presented at TIMS—ORSA Meeting,
New York, N.Y., May (1978).

1541 K. 0. Kortanek, J. V. Soden, and D. Sodaro, “Profit Analysis and Sequential
Bid Pricing Models,” Management Science, Vol. 20, No. 3, pp. 397—
417 (1973).

155) I. H. LaValle, “A Note on the Vickrey Auction,” Research Paper, School
of Business Administration, Tulane University (1967).

[56] _________, “A Bayesian Approach to an Individual Player’s Choice of Bid
in Competitive Sealed Auctions,” Management Science, Vol. [3, No.
7, pp. A584—A597 (1967).

(57] P. Milgrom, “A Bidding Model of Price Formation under Uncertainty,” Working
Paper #364, Northwestern University, December (1978).

[58] 
__________, “A Convergence Theory for Competitive Bidding with Differential

Information,” Research Ppaer #400, Graduate School of Business,
Stanford University (1977).

(591 R. B. Myerson, “Optimal Auction Design,” Working Paper, Graduate School
of Business, Northwestern University, December (1978).

— [60] J. Nash, “The Bargaining Problem,” Econometrica, Vol. 18, pp. 155—162
(1950).

[61] Office of OCS Program Coordination, “An Analysis of the Royalty Bidding
Experiment in OCS Sale #36,” (undated).

162) N. B. Oren and A. C. Williams, “On Competitive Bidding,” Operations
Research, Vol. 23, pp. 1072—1079 (1975).

[63] S. S. Oren and M. H. Rothkopf, “Optimal Bidding in Sequential Auctions,”
Operations Research, Vol. 23, pp. 1080—1090 (1975).

S

. 

_______________________________ 

________________________________

— - — — - - - — -- -- -—-—-————--- —.---- — ~~~~~~~~~~~~ - - -..-—--- -
~ 

- - - - -



~

(64] A. Ortega—Reichert, “Models for Competitive Bidding under Uncertainty,”
Technical Report #8, Depar tment of Operations Research, Stanford
University (1968).

[65] 3. W. Pratt, “Risk Aversion in the Small and in the Large,” Econometrica,
Vol. 32, pp. 122—136 (1964).

(66] H. Raiffa, Decision Analysis, Addison Wesley, Reading, Massachusetts (1970).

[67] J. B. Ramsey, “Federal Offshore Lease Sales and a Theoretical Analysis
of Alternative Bidding Procedures,” Working Paper #78—08, Depar t-
ment of Economics, New York University (1978).

(68] D. K. Reese, “An Analysis of Alternative Bidding Systems for Leasing
Offshore Oil,” Working Paper, Graduate School of Business and
Public Administration, Cornell University (1978).

(69 ] 
__________, “Competitive Bidding for Offshore Petroleum Leases,” Bell

Journal of Economics, Vol. 9, No. 2, pp. 369—384, Autumn (1978).

(70] 3. Riley, “Contests in which Entry is Costly,” Manuscript, February (1979).

[71) 
__________ 

and 3. Rirebleifer, “Elements of the Theory of Auctions and
Contests,” Working Paper , UCLA (1978).

(123 H. Rosenshine, “Bidding Models: Resolution of a Controversy,” Journal
of the Construction Division, ASCE, Vol. 98, pp. 143—148 (1972).

[73] M. H. Rothkopf, “A Model of Rational Competitive Bidding,” Management
Science, Vol. 15, No. 7, pp. 362—373 (1969).

[74] 
__________, “An Addendum to ‘A Model of Rational Competitive Bidding,”

Management Science, Vol. 17, No. 11, pp. 774—777 (1971).

[75] 
__________, “Bidding in Simultaneous Auctions with a Constraint on Ex-

posure,” Operations Research, Vol. 25, No. 4, pp. 620—629 (1977).

[76] 
__________, “Equilibr ium Linear Bidding Stra tegies,” Working Paper, Xerox,

Palo Alto Research Center (1977).

[77] 
__________, “On Multiplicative Bidding,” Working Paper, Xerox, Palo Alto

Research Center (1977).

[78] F. M. Scherer, “The Theory of Contractual Incentives for Cost Reduction,”
Quarterly Journal of Economics, Vol. 78, No. 2, pp. 257—280 (1964).

[79] D. 3. Schilling and J. C. Gallo, “Computer Programs to Detect Collusive
Bidding on Public Contracts,” Working Paper, Department of Econo-
mics, University of Missouri, Columbia, Missouri (undated)

(80] A. Schotter, “Auctioning B8hm—Bawerks Horses,” International Journal of
Game Theory, Vol. 3, No. 4, pp. 195—215 (1974).

(811 R. F. Scott, “Multivariate Risk Aversion, Utility Independence and Sep-
arable Utility Functions,” Management Science, Vol. 22, No. 1,
pp. 12—21 (1975).

_ _ _  _ _ _ _  - 

-

~~

-i ~~~~~~~~~~~~~~~~~~~



47

.182] N. Shubi k, “The Dollar Auction: A Paradox in Non—Cooperative Behavior
and Escalation,” Journal of Conflict Resolution, Vol. 15, pp.
109—111 (1971).

[83] 
__________ 

and R. J. Weber , “Systems Defense Games: Colonel Blotto ,
Command and Control ,” Cowles Foundation Discussion Paper #489 ,
Yale University (1978) .

(84] B. Smith and 3. Case, “Nash Equilibria in a Sealed Bid Auction,” Manage-
ment Science, Vol . 22 , No. 4 , pp. 487—497 (1975) .

[85] 3. M. Smith and G. A. Parker , “The Logic Asymmetric Contests,” Animal.
Behavior, Vol. 24 , No. 1, pp. 159—175 (1976) .

186] J. M. Smith and C. R. Price, “The Logic of Animal Conflict ,” Nature, Vol.
246, pp. 15—18, November (1973).

187] V. Smith, “Bidding Theory and the Treasury Bill Auction: Does Price
Discrimination Increase Bill Prices?” Review of Economics and
Statistics, Vol. 48, No. 2, pp. 141—146 (1966).

188] R. N. Stark, “Unbalanced Highway Contract Tendering, ” Operational Research
Quarterly, Vol. 25, No. 3, pp. 373—388 (1974).

(89.3 _________  
and R. H. Mayer, Jr., “Some Multi—Contract Decision Theoretic

Competitive Bidding Models,” Operations Research, Vol. 19, No. 2,
pp. 469—483 (1971).

J9Q) R. M. Stark and M. H. Rothkopf , “Competitiv e Bidding : A Comprehensive
Bibliography, ” Qperations Research, Vol.27, No. 2, pp. 364—390
(March—April 1979) .

[91] T. 3. Teisberg, “A Model of Rational Competitive Bidding, ” unpublished
Ph.D Thesis , University of California , Berkeley (1978) .

[92] W. Vickrey , “Counterspeculation, Auctions and Competitive Sealed Tenders ,”
Journal of Finance, Vol . 41, No. 1, pp. 8—37 (1961) .

[93] _________, “Auction and Bidding Games,” in Recent Advances in Game Theory,
Mathematical Annals #29 (1961) .

.194] 3. von Neumann and 0. Morgenstern, Theory of Games and Economic Behavior,
Princeton University Press , Princeton , New Jersey, 1944 , 2nd
edition 1947 , 3rd edition 1953 (1953).

[95] R. B. Wilson , “Competitive Bidding with Asymmetrical Information,”
Management Science, Vol. 13, No. 11, pp. A8l6—A820 (1967).

[96] __________, “Competitive Bidding with Disparate Information,” Management
Science, Vol. 15, pp. A446—A448 (1969).

(97 3 _________, “A Bidding Model of Perfect Competition,” The Review of
Economic Studies , Vol . 44 , No. 3 , pp. 511—518 (1977) .

S
I 

- - ___________

____ ______zI ii

~

Ii

~

_i - 

~~~~~~



r~ r 
- - — 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

-- --

~~

- -- -.-

~~~

- - --— _ - _ --.
~~~ 

—

~~~~~

-

~~~~~~~~~~~~~~

-

~~~

- 

~~

_

~~~~

—- - - --- - 

~~~~~
-

48

198] 
_________, 

“The Loss of Revenue in a Share Auction,” Research Paper #388,
Graduate School of Business, Stanford University (1977).

[99] R. L. Winkler and D. C. Brooks, “Competitive Bidding with Dependent Value
Estimates ,” Working Paper, Indiana University (1977).

S

- - -~~ 
__  - -   

_ _  

-


