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INVERSION OF ISOPARAMETRIC MAPPINGS AND APPLICATIONS
OF COMPUTER GRAPHICS TO THREE DIMEKSIONAL

FINITE ELEMENT ANALYSES i

'\\ﬁ ABSTRACT

Finite element analyses of two and three dimensional structures

often require the use of curved isoparametric elements. The overall

'efrectiveness of such analyses by large scale finite element com-

puter programs is often handicapped by the costly and tedious Jjob

of verifying input data and the lack of a comprehensive graphical
presentation of the output. This contract work involved mathematical
research concerning various approaches to improving this pre- and
post processing of finite element data utilizing interactive computer
graphics. A key aspect of this work was the characterization of

the existence of the inverses of isoparametric mappings, as well

as the development of efficient algorithms for the numerical inver-

sion of such mappings.

\
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INVERSION OF ISOPARAMETRIC MAPPINGS AND APPLICATIONS
OF COMPUTER GRAPHICS TO THREE DIMENSIONAL

FINITE ELEMENT ANALYSES

1. INTRODUCTION

—

Finite element analyses of three dimensional structures with

[ o— |

curved bounding surfaces most often require the use of curved

"isoparametric brick" elements, C6J. One such brick is illustrated

[ S—1

in Figure 1.
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FIGURE 1. The 20=node isoparametric brick element e
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The trial functions in the finite element (or Ritz-Galerkin)
method for such elements are exﬁressed in terms of the curvilinear
(or natural) coordinate system (r,s,t) and the computations of
stiffness matrices, etc. are carried out in this same local

system; not the giobal (x,y,2z) system. Since the unknowns are,
say, the displacements at the nodal points, there is no problem in
going from the local (r,s,t) system to the global (x,y,z) system.
That 1is, built into the transformation T 4s an explicit 1-1 corres-

pondence between the 20 nodes of 8 and the 20 nodes of the "standard"

brick‘J: (0,1) x (0,1) x (0,1). For example, the geometric des-
cription of E includes global coordinates (xl,yl,zl) of node 1 and
T associates node 1 with (0,0,1) in the (r,s,t) local systerm.

However, such an explicit relation for points other than nodes
does not exist in general. ff
This leads to the investigation of the question of existernce |
of an inverse mapping T'lz é?-o,f as well as efficient algorithms
for its evaluation. An understanding of the dependence of the
invertibility of T on the choice of nodal topology is imperative
for the successful construction of finite element idealization of

a given structure.

The question of the existence of an inverse 1ltself 1s of interest

il

since it 1s not guaranteed a priori. Heuristic techniques for

checking the existence of an inverse which rely on graphics are

presented in (3],

SERPSEEIRY

The.ovortll effectiveness of solving three dimensional
problems by multipurpose finite element computer programs 1is
handicapped by:
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- (1) the costly and tedious job of setting up and verifying
input data (esp. geometric data), €l1,2,3,53,

(11) the lack of a comprehensive graphical presentation of
the computed stress distributions for three dimensional structures,

G,7n.

By utilizing newly developed tools of numerical analysis and
computer graphics, numerical methods and assoclated computer programs

were developed which can be used in:

(1) a pre-processor mode to aid in more efficiently describing

and verifying the gegmetric input and,

(11) a post-processor mode to edit and plot contours of

various components of stress in and perpendicular to a given plane.

We emphasize that the key to the development of such a graphics
package 1s in fact efficient algorithms for the numerical inversion

" of isoparametric mappings.
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2. RESULTS OF INVESTIGATION

A. PRE-PROCESSOR: VERI.:CATION OF PROBLEM GEOMETRY

In preparing input for a multi-purpose finite element program
the verification that the three dimensional structure has been
amenably decomposed into "isoparametric" curved bricks is of utmost
importance. As a means of verifying that the subdivision contains
no anomalies, it is desi;ed to have the capability of passing a
given plane through the catenation of brick elements approximating
the structure and viewing the resulting two-dimensional intersection.

Figure 2 i1llustrates the intersection of a three dimensional

O SO P e e - cee-

isoparametric brick with a plaﬁe; .Thfs figureiﬁas generated using

the program PLANIT, €11,12] developed at the University of Pittsburgh.

One goal of this work program was the development of computer scoft-
ware to plot such intersections via a CRT and/or an incremental
plotter such as CALCOMP., This computer program determines the
intersection of a given plane with a union of many such 20-node
isoparametric elements. Cf. Figures 5 and 6.

The program PLANIT accepts as input for each element

(1) element number,
(11) coordinates (xi,yi,zi) of the nodes,
(141) sufficient information to determine the intersecting
plane, e.g. point and normal.

The program proceeds to

(1) determine those elements through which the plane passes;

(11) défine the curves determined by the intersection of the
plane with each element from (1);

.y T
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(111) produce an orthogonal view of the region which represents
the intersection of the plane with given structure;
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The intersection of a plane with a single 20-node brick.

(a) 1Isometric view. (b) View along normal to plane.
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(iv) store the information necessary to retrieve this same
plane intersection (4f desired) to be used in the post-
processing mode to plot various stress distributions.

In order to determine the intersection of a plane
(1) a)x + 2,y +azz+a = 0

and an element face determined by

X(E,n) Xy
(2) Y(&,n) = I o,(&,m) vyl >
Z2(g,n) 5
1
the nonlinear equation
(3) F(g,n) = a,X(§,n) + a_Y(g,n) + a3Z(g,n) + ay =0

is sélved-numerically for n aé a function of §, say n = £(§&).
Given a specific value of £ = £  then F(Eo,n) is a quadratic in n
which 1s easily solved. The algorithm tests 1f there are zero, one,
or two admissible values of n. Equation (3) is obtained by sub-
stituting (2) into (1). The locus of points (X(E,f(E), Y(E,f(&),
Z(§,f(E)) determined by (3) is the desired curve C in 3-space.

If n 1s a unit normal to the given plane (and Pyt (X»Y,»2))
is a point in the plane designated as the origin then a point :
Plz (xl’Yl’zl) is also in the plane Cpif

(Easbe) « A= 0,

(As input, n and a point Pl in the plane ® could be given, or,
given three points in the plane n could be computed.) A coordinate

system is established by the orthogonal unit vectors
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The curve € can now be plotted in the plane P relative to the

L |
P

established coordinate system by .

[ =ra

s = (P=Py) ° El
t = (PaP,) * 32

where P traces over €.

—
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Figures 3 and 4 illustrate two other intersections of single

bricks with a plane. As indicated, the boundary of intersection

& ase A
et

may be disjoint and the intersection may not be simply connected,

[ e—]
[ |

i.e., it may be the union of disjoint lines or even single pcints.

For that reason, one must be extremely careful in connecting the

)

computed points of the boundary of the intersection by a curve.
Such decisions are best made interactively by the analyst with

the aild of a graphics terminal.
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3 l This intersection of a 20=-node brick and a plane is annular in shape. d
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This intersection of a 20-node brick and a plane is multiply
connected and one subregion is a point.
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The pre-processor strategy 1s as follows:

oA geometry file for the proposed finite element idealization

is constructed.

o The user views this idealization and chooses a cross-sectional

plane of the structure for close scrutiny.

e The user specifies all or some of those brick elements he

wishes to be scanned.

¢ The intersection of each brick with the specified plane is
determined (if such exists) and displayed.

e The user labels each portion of the intersection that he desires

appended to a master plot file.

e After considering the totality of bricks to be scrutinized,

the master plot file is displayed. Voids between, or overlarring

of elements will appear as unlabeled or multiple labeled subregicns.

e The geometry file can then be scanned and corrected as needed.

Figure 5 1llustrates a portion of a reactor vessel near the

intersection with a h5° lateral. The finite element idealization

R T e I T 1. LV LT P L e O Ty T e

contains 450 brick elements. This figure serves to demonstrate the |
seemingly impossible task.of detecting anomolies in the geometric i é
data as well ai gauging the distfibution of nodes. The above |
strategy was implemented for this structure and Figure 6 contains

a plot of a plane of intersection. From this figure it is not

difficult to see that an error exists in the original geometric
data. Specifically, as described by this data, elements 407 and

408 are not continguous to, but penetrate, element 206.
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FIGURE 6.

Plane of intersection and a section

of that intersection which has been windowed
for greater detail. Note the overlap dbetween
elements 206, 407 and 408. There are two

subregions which are unlabeled and the order in
which their boundaries were drawn indicates
an overlap.
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B. INVERSION OF TWO-DIMENSIONAL TSOPARAMETRIC MAPPINGS

The nature of two-dimensional isoparametric mappings T: J *;
(where‘f ¢ (0,1) x (0,1) and £fis the specified element) and in
particular the exisience of inverses for such mappings has been

analyzed. Various results are reported in [8) and include:
(a) The straight sided quadralateral mapping Tl is bijective
(one-to-one) if and only 11‘5 is convéx. (Cf. Figure 7).

(b) The 8-node quadratic isoparametric mapping T2 is bijec-

tive if 1its Jacobian 1is nonzéro throughout Jand the mapping is

one-to-one on the boundary. A class of element shapes 1s specified

for which the Jacobian is nonzero. (Cf. Figure 8).

(¢) For the 8-node quadratic isoparametric mapping Tz,
sufficient conditions are given to guarantee that overspill cannot
occur. Further, under rather weak assumptions it 1s proven that

Tz is bijective i1f and only if overspill does not occur.,

(d) Perturbation arguments are given to provide another set

of sufficient conditions for the bijectivity of Tz.

Details of this work can be found in reference [8], 3

Mathematics of Computations, 32, July 1978, pp. 725=-TU49.
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Invertible 8-node isoparametric mapping f.‘,.
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!. An algorithm for numerically inverting th; two=dimensional

i 8-node quadratic isoparametric mapping TZ has been developed. The

: 1} ' algorithm is based on bigradients and appears to be relatively

A efficient. (Cf. Figure 9). This algorithm will determine all
H pre-images of a point 1n5, including those which do not lie in
1 q‘. A program (SOLV8) which implements this algorithm was documented
{

and submitted for publication, [103. This paper was revised and

i resubmitted in June, 1979. The algorithm now includes an iterative

improvement strategy based on Newton's method.

T
U gt
U g

[ )

FIGURE S

The pre-images of the points marked "x" were found to be those
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C. THE CONSTANT STRAIN CONDITION

The constant strain condition for classes of second and
fourth order boundary value problems was 1nvestigate§!:l’h.D.
Dissertation, A. E. Frey, 1978). Results concerning the effect
on the error in calculating stiffness matrices when using elements

with curved boundaries include:

(a) Second Order Problems. Exact integration preserves an
element's ability to satisfy the constant strain condition even
when curved boundaries are introduced. For any reasonable numeri-
cal integration formula, it is shown that even though large errors
may be introduced in the entries of the stiffness matrix due tc
rational integrands (caused by curved element boundaries) the
vectors 1, x and y are in the null space of this error matrix.
Hence any such numerical integration formula also preserves an
element's ability to reproduce constant strain. This work is

reported in €131, which has been accepted for publication.

(b) Fourth Order Problems. We were unable to find in the
literature =a Cl-compatible element which satisfies the constant
strain condition for elements with curved boundaries. Using sub-
parametric element mapping concepts, such an element was developed.

(Paper in preparation.)
D. SUPPORT PROGRAMS

(1) Computer graphics routines BCS8E2 and B20E3 were developed
which graphically display the images of two and three dimensional

isoparametric mappings. These were documented in (9).
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(2) An algorithm PLAINT, [9] was developed which determines
the intersection of a single 20-node isoparametric (3-dimensional)
brick and a given plane. The necessary software for graphic

representation of this intersection was also developed. (Cf.

Figures 2, 3, and U4.)

(3) A conversational computer graphics program PLANIT was
developed using PLAINT to plot the intersection of a given plane

with a union of isoparametric bricks. Cf. Figures 5 and 6.

PLANIT has been documented in [11], and was reported on at a

symposium [12] and in Computers and Structures, 10, 1979, pp. 149-154.

(4) The bigradient algorithm used in [10] for the 8-node

T A 85 I PR 37 0 B 401 )R 7 i

element was considered for the numerical inversion of the three
dimensional 20-node isoparametric element. This does not seem -
to be a fruitful approach due to the complexity of the elimination
process. An algorithm based on Newton's method was implemented

and seems to perform reasonably well.

E. POST-PROCESSOR: PLOTTING OF STRESS DISTRIBUTIONS

T

A finite element program computes various components of
stress in terms of the global (x,y,z) coordinate system. A
program STRSIT [16] was developed which plots in a post-processing
mode contours of components of stress in and perpendicular to a
given plane which intersects the structure.

The input is an output flle of the program PLANIT. This

file contains the intersection of the plane and the finite element
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idealization. In addition, the element geometry file 1s available.
An. analyst also specifies those components of in-plane and .
out-of-plane stresses which he desires to be plotted.

Given the mesh point displacements (ui,vi,wi) dete.mined by

a finite element program, the displacement components

u(x,y,z) = [ uy ¢,(r,s,t)
v(x,y,2) = } vy ¢,(r,s,t)

w(x,y,2) = ) W, ¢,(r,s,t)

can be reconstructed element-by-element. The displacement vector

§ = (u,v,w) is independent of coordinate system and can be
projected onto the given plane and a normal to the plane (cf.Figurg
10). If we denote the new components of § relative to the (r,s,t)

system, respectively,
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FIGURE 10

u',v',w', then the strains relative to the (r,s,t) directions
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These computations necessitate inverting various isoparametric

stresses are then determined as

-

"maps and their associated Jacobian matrices.

du'/dr
av'/3ds
aw'/3t
av'/3t + aw'/3s
ow'/dr + 3u'/adt

ou'/ads + av'/ar

are

Via Hooke's Law the
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where D i1s the appropriate 6 x 6 elasticity matrix.

The program STRSIT (element~by-element) computes
g the stress state a}st and plots those components desired in the g
plane specified in the input. A sketch of such a contour plot is

given in Figure 11 where the plane intersects fourteen different i

elemernts., (The program HOLESY4 [15] is used to plot the contours),
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Contour plot of Oy showing also the intersection of the

plane with the fourteen bricks which contribute to the stress

distribution.
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