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A GENERALIZED TIME-TEMPERATURE-TRAN SFORMATION

PHASE DIAGWI FOR TMERNOSETTIN G SYSTEMS

John K. Gjllham

Polymer Mater ials Progra m
~‘epar ’~nent of Chemioal Engineering

Prineeton University
Pz ’inoe ton, !17J 08544

ABSTRACT
.. ... .. ..

A generalized time—temperature—transformation diagram for

the thermosetting process is presented in which the four physical

states encountered (i.e., liquid, rubber , ungelled glass and

gelled glass) are related to the time and temperature of cure.

Gelation and vitrification , as a consequence of quenching morpho-

logical development and chemical conversion respectively , are

discussed with respect to control of material properties.
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~~ IATIC~ 13~ VITRIFICATION

Gelatien and vitrifiastlen are bio macroscopic phancmsna which

are encountered as a cons qusnc. of the reactions which convert a

liquid to a solid in the th.rmo..tting process • On the molecular -

level , gelatioh corresponds to the incipi.nt formation of branched

molecules of mathematically infinit. molecular weight and occurs at

a critical and calculable extant of reactio n for th . particular

reactive system (1) . A network d.v.l~p. by intramolecular reactions

of branched molecules. Eventually th. total mass can be one molecule.

Macroscopically, gelation is associated with a dramatic increase in

viscosity and a corresponding decrease in processibility . Gelation

times are usual ly measur ed rheologically by the time between the

beginning of the reaction and the attainment of a fixed viscosity .

Vitrification is the formation of a glassy solid. In thermosets

this usually foll~~s gelation and then occurs as a consequence of the

network becoming tighter throu gh further chemical reaction (crosslinking).

A network structure will be a rubber (elasta une r) at a given temperature

if the segments between junction points of the network are flexible.

If the segments are i ucbilized ~y further chemical reaction , or by

cooling, the structure will chan ge to a glassy (vitrified ) state .

Vitrification can retard further reaction. The overall transformation

from liquid to gel to rubb.r to glass due to chemical r.action is

termed “cure” 
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The properties of th.rmos.t materials are intimately related

to their formation (cure). The material properties therefore depend

on the interplay between such factors as chemical reactants , viscosity
chemical conversion,

prior to gelation, gelation, phase separation, vitrification,*tine_

temperature paths of cure, and limits of thermal stability. The fol-

lowing section discusses a generalized time—temperature—transformation

diagram (Figure 1) which is instructive for understanding these inter-

relationships. It displays the four distinct material states which

are encountered during cure; these are liquid, elastauner (rubber) ,

ungelled glass and gelled glass.

The phase diagram may be constructed by measuring the time to

gelation and the time to vitrification versus the isothermal tempera-

ture of cure (Tcure
)
~ 

A convenient technique involves using a torsion

pendulum in which the specimen is an inert substrate (generally glass

braid) impregnated with the system under investigation (2). Use of a

supported sample permits investigation of the complete cure process

versus time, and after cure the thermomechanical behavior with the

same specimen. Times to gelation and to vitrification are measured by

the lapsed time to the maxima of mechanical loss peaks: transition

tempera tures are similarl y located with re spect to temperature.

A GENERALIZED PHA SE DIAGRA.M FOR THERMOSETTING SYSTE!IS (Figure 1)

Consideration of the cure of a liquid ther mosetting system at a

series of constant temperatures leads to the conclusion that there will

be three types of behavior depending on the t~~ç.ra ture of cure (3 ) .

-
—--—~~~~~-_ _ ------ ~~
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At elevated isothermal temperatures , above the maximum glass

transition temperature of the cured system (T
r

) but in the absence

of degradation , a curing liquid gels and forms an elastoser (rubbe r)

but does not vitri fy.

At low temperatures , above the glass transition temperature

of the reactants (~~5j~Tg) but below a critical temperature (gelTg)
~

the now viscous curing liquid can vitrify simply by an increase of

molecular weight. If chemical reactions are quenched by vitrification

it need not geL

At intermediate temperatures ( T < T < T ) ,  the curinggel g cure r
liquid first gels and later vitrifies. gelTg is the isothermal tem-

perature at which gelation and vitrification occur at the same time.

The time to gelation is expected to decrease exponentially with

increasing temperature since the chemical conversion at gelation is

constant according to Flory’s gelation theory. Activation energies

for the reactions leading to gelation can therefore be ubtained from

plots of the logarithm of the time to gelation versus rec iprocal

temperature in degrees Kelvin (3,4). The time to vitrify passes

through a minimum between T and T (4). This reflects
gel g

the competition between the increased rate constants f o r  reaction and

the increasing chemical conversion required for vitrification at higher

temperatures.

It is apparent that if reactions are quenched by the process of

vitrification (Tcur. 
C Tgi.,) •  the glass transition t çerature (T

9
) of

the system af ter isotherma l cure will then equal the temperature of

cure . The vitrification curve then provides the minimum tim. to reach

the glass transition temperature which the reactive system can attain 

- . - - --~- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



— ~~~~~~~~~~
- .  — 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- -

~~~ - - —— -- . -
~~~

--- 
~~~~ -

5
at t~~~erature ~~~~~~ It also follows that gelTg is the glass transition

t~~~erature of the reactive system at its point of gelation (3).

The cure/phase diagram therefore shows that the the rmosetting process

is usefully characterized by the thre, temperatures ~~5j~Tgi gelTg and

which will vary from system to system.

The temperature between g.iTg and T~~, at which the time to vitrify is a

minimum may be of practical importance beyond being the most economical tem-

perature for producing solid from fluid. As a consequence of the exothe rmic

reactions, cure of specimens below this temperature will lead to the inside

vitrif ying before the outside ; and vice versa. The volumetric shrinkage on

vitrifi cation will result in a skin—core struc ture for the latter case with

built—in curing stresses . (This type of struct ure with residua l thermal
- 

stresses also results on cooling after cure since the outside cools more

rapidly than the inside.) - - 
- .

Whereas ResinTg~ gei
Tg and T~~ are singular physical transition tempera-

tures definable by a temperature (and time scale) , thermal degradation cannot be

— 
so easily defined . Therma l degradation can lead to a gelled glass (as in Fig. 1);

however other types of degradation can lead to other physical states (e.g.

ungelled glass, liquid and gas).

The cure/phase diagram explains a number of practices in the field of

thermosets.

If the storage temperature is below gelTg a reactive fluid material will

convert to a vitrified solid of low molecular weight which is stable and can be

later liquified by heat and processed; above gelTg the stored material will have

a finite shelf—life for subsequent processing since gelation will occur before

vitrification. (A galled material does not flow in the usual sense.) This

concept lies at the basis of a widespread technology which includes th rmosetting

molding cospounds and “prepregs” with latent reactivity.

In general, if 
~ 
T~~, a reactive material will vitrify and full

k ~~~~~~~~~~ vi11 bep nt*d$ thS *atSri~l Vt11 then usually need to be
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po.tcured abova T~, f or  development of optim um properties. For the manufacture

of thjects of finit, size it is necessary to go through a mult i-step process

because of the exothermic nature of the reacti ons. A more sophisticated

pproach for controllin g highly exothermic systems is to cure the material by

raising the temperature -at a rate such that Tg and Tcur e coincide .

For highly crosslin kable or rigid—chain polymeri c materials Ta,, can be

abov, the limits of therma l stability in which case the ther moset material may

not have a measurab le glass transition temperature and full chemical conversion

of the original network—for ming reactions would not be attained. For composite

materials in which a component othe r than the cured resin is the rmally sensitive ,

for the thermosetting resin should be below temperatures which would lead

to damage of any part of the assembly. (An example would be adhesive bonding

of aluminum by a .ther mal]y. stable epoxy .~) .  .Simi]arly, if a composite system - .

cannot be heated above a limiting temperature because of its size , then the

curing system should have its T~~ below that limitin g temperature . (An example

would be painting an airplane in a hanger.)

It should be feasible to molecularly design systems such that Tg is

above the temperature of cure . Suggestions include cure by small molecules

which are able to diffuse through the glassy state , incorporation of sterica lly

well situated react ive groups in the polymerizing system, and employment of

systems with pr ominent glassy state relaxations (5) .

The extent of cure affects not only the value of the glass transition but

also properties at temperatures well below it. For example, it appears that

the modulus at room t~~~eratur• can be decreased and the intensit y of the T < T
9

relaxations (as measured by the area under the loss peaks) can be increased by

post—cure (6,7) • This suggests that the free volume is increased and tha t the

density at RT is decreased by the post—cure in spite of the increase of

________________________________ ~~— ~~-~~~~~~~~~ —— ——- --  — — —  —— 
——-
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This is prea~~~bly a result of the glassy state being further from

.quilthrLus at ~~‘ the higher the Tg• Subseq uent physical aging at

room t~~~erature l ads to densification and esbritt l.msnt as the

material spontaneously relaxes •

If Tr is below room temperature , the polymer system will be

used as an .lastcmer .

The cure/phase diagram is being extended to two-phase systems .

(Rubber is often incorporated in inherent ly brittle polymeric materials

as a method for increasing toughness. The curing of rubber—modified

systems oft.n involves change from an initially homogeneous solution

to a heterog eneous multiphase morphology.) Evidence has been presented

to -show that the process of gelation arr ests the development of mor-

phology , and therefore that the time to gelation can be used to control

material properties (8) • The gelation time can be varied by catalysts

and temperature. Similarly, by reaction at different temperatures,

a single chemical composition can produce distinctly differen t morpho—

logies which in turn are responsible for distinctly different macro-

scopic behavior. The temperature of gelat ion , 
~gelat ion’ is therefore

a characteristic one for defining the morphology developed isothermally

by a particular system (9).

Rubber particles nucleate and grow during the polymerization

process. In general, as in crystallization, nuclea tion is favore d by

low t~~~eratures whereas growth is favored by high t~~~ ratures. The

— —~~~— - • _ —~~~~~ -- —~t.. ~~~~~~~~~~~~~ ~~~~~~~~~
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- overall extent of phas. separation can therefore be expected to be at

a ximum at intermediate t~~~erat ur es (9) •

• Quenching of the development of morphological changes by the

phenomenon of gelation may be explained by an abrupt decrease in dif-

fusion of rubbery material to the growing domains of rubber which

occurs in the transformation from a viscous liquid to a soft gel as

infinite molecules form in the process of gelat ien. This is a longer

ran ge and lar ger scale diffusion process than that which is involved

in the quenching of chemical reactions which occurs in the transforma-

tion from a rubbery stats to a glassy state (vitrification) by re-

strictions on the more localized motions of chemically reactive parts

of the molecules.

The cure/phase diagram is idealized in several respects.

If there are cosipeting network—forming reactions having different

- reaction rates then different time—temperature paths will lead to

different molecular networks in the fully cured materials and so to

different material behavior . T~~ and 
9.l

Tg will vary accordingly.

For example, values for T~~ may be higher after prolonged initial

reaction at low rather than at high temperatures prior to completion

of the reactions by post—cure (7).

Vitrification times will be longer than those measured operation-

ally from the time to the peak of the mechanical loss maximum assigned to

the vitrification process since vitrification, with respect to the

quenching of reactions, is bitter defined when the rigidity levels

off (6) .
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The microscopic assignment of gelation by a rheological easure-

mint (which corresponds to an isoviscosity measurement) does not necessarily

correspond to its molecular definition (which corresponds to an isocoiçosi- I 

-

- 

tional state) • However, values obtained theologically for the activation

• energies of reactions leading to gelat ion can be close to those determined

from times to reach constant chemical conversion (6,10,11)

The phase—diagram (above) has been obtained experimentally from a

series of isothermal reactions. A similar diagram can be obtained for

a given system from a series of temperature—programsed scans from low

to high temperature at different heating rates (7) . A typical scan will

then reveal glassy—stat e relaxations of the unreacted resin below its

glass transition, p~5j~Tg• gelat ion , vitrification, devitrification

(i.e. Tg)I and )bdVe T,, re-vit~i!icition du~ to degradation .

CCNCWSICN

Experimental examination of the phenomena encountered in the thermo-

• setting process has led to a generalized time-temperature—transformation

phase diagram which provides a theoretical and convenient basis for

understanding th. factors which bear on the molecular engineering of

thermosetting materials.

• - • - . •~~~~~~~- .  -—-— ~~—~~--—- - ~~~~~~~~ --- -—-——-- ~~~~~ ---- • - - .- -.-—--——~~~ • -- -~~~~~~
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FIGURE CAPTION

Figure 1. Time—temperature-transformatiOn diagram:

time to gel and time to vitrify vs isothermal cure
— 

temperature. Resin
Tg’ gei

Tg and

are critical temperatures in the phase diagram

which shows the four states of materials encountered

in the thermosetting process , i.e., liquid , rubber ,

ungelled glass, and gelled glass .
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of material properties.r.
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