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I. INTRODUCTION
A. Near Infrared (SWIR) Emissions

The vibrationally-excited OH radical, which persists at concentra-
3

tions between 10" and 10° molecules/cm® in the region of the mesopause,

gives rise to an intense (about 2 MR/um) band sequence of airglow in

the wavelength region from 2.6 to 4.4 ym. Predictable enhancements of
an order of magnitude have been observed. Auroral energy deposition,
gravity waves, lasering, and changes of 0; and 0O concentrations are

among the suggested causes of these enhancements. The computer codes

need to be evolved, based upon actual OH airglow measurements, in order

i g

to predict enhanced conditions due to artificially-induced as well as

natural causes.

B. Stratosphere and Mesosphere Aerospace Environment

The OH radical, although it is a minor constituent, involves both
an odd oxygen and an odd hydrogen atom and thereby plays a central
role in the chemistry of the troposphere and the D and E altitude

regions. The production, destruction, excitation, and deactivation

3 mechanisms in the context of the large matrix of process paths needs

: to be understood. The hydration of ozone and the oxidation of water,
hydrogen peroxide and perhydroxyl to produce OH, important links in

the oxygen-hydrogen reactive chemical cycle, occur under poorly
understood circulation and vertical eddy diffusion conditions. Detailed
knowledge of the constituents of the upper atmosphere and an understand-
1 ing of how they interact with one another (reaction rates and their

J temperature dependence) are necessary. Computer-aided modeling can

4 then provide the capability of predicting the future state of the

i atmospheric medium in which the Air Force systems operate. E

II. THE OH RADICAL

A. Diatomic Heteronuclear Molecule

The hydroxyl free radical belongs to the class of atmospheric dia-
{ tomic molecules which are nonhomonuclear and consequently have a non-
! zero electric dipole moment matrix. The molecule therefore is a good

antenna for the emission and reception of the electromagnetic radiation. | 1

Samn et
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The characteristic vibration-rotation spectra of the Ol molecule,
which occur at near 1n§rared wavelengths, are knoun as the Meinel
sequences and are extensive. These emissions constitute the brightest
component of the night airglow (other than nonchemiluminescent thermal
emissions).

The energy of formation of the OH molecule is 0.401 eV. The dis-
sociation energy of OH is 4.395 eV, and the ionization energy is 12.94
eV.

B. Atmospheric Concentrations

0dd hydrogen plays an important role in the recombination of
odd oxygen on Earth. Also, one sink of atmospheric HOx is the escape
into space of H which has crucial implications in the evolution of
planetary atmospheres and the presence of water in liquid or vapor form
on the planet.

In the daytime, OH has a peak number density of about * X 107
molecules/cm® at an altitude of around 30 km in the troposphere. It is
produced primarily from the oxidation of H,0 and H, by 0('p). The
concentration drops off two orders of magnitude at about 70 km. At
85 km, the concentration is about 10° molecules/cm?3.

During the night-time the number density of OH molecules in th.
troposphere drops off approximately an order of magnitude. At 85 km,
on the other hand, which is about the altitude region of the infrared
OH airglow layer, the concentration rises just after sunset to nearly
2 x 10° molecules/cm®. « There appears to be a secondary maximum at about
the 85-km altitude, above a minimum which is at about 50 km (compared
with 70 km in the daytime).

By way of comparison the H,0 and HO, concentrations at 85 km are
about 4 x 10° and 4 x 10* molecules/cm®, respectively. The HZO2 has
a number density of only 4 x 10°. The atomic H concentration peaks at
about 90 km at a value of 6 x 10°® molecules/cm®.

The ozone concentration profile appears to have two maxima. The
major one occurs at about 30 km with a number density in excess of 10'*
which persists through night and day. A secondary maximum occurs at
about 85 km with nearly 107 molecules/cm’. The salient diurnal variation
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of the 0, concentration is a sharp decrease just after sunrise which
takes three or four hours to recover.

The atomic oxygen, which is the "kingpin" species in the mechanisms
leading to the formation and quenching of excited OH, has a peak con-

centration in the vicinity of 100 km. At 85 km the number density of 0

i ranges from about 3 X 10'! just after sunset to 3 x 107 just before
morning twilight. The electronically-excited state 0('D) formed by

i the sunlight photolysis of 0, is important in forming OH by the oxida-
é tion of H,0 or H,0,. The ozone at 85 km is formed primarily by the

4 oxidation of 0, by 0.

-

ITII. EXCITED STATES OF OH
A. Rotating Vibrator

Tne hydroxyl Meinel sequences of radiation in the near infrared

airglow are attributable to vibration-rotation transitions within the
ground electronic state of the OH molecule. Electronic absorption and
emission spectra from OH occur in the ultraviolet. The lowest energy

electron configuration for OH is

K(2s0) 2 (2po) 2 (2pm) ® Zni : |
This ground electrconic state for the OH molecule is designated II
since A = 1. The quantum number A is that associated with the vector

K which represents the component of the resultant electronic orbital

angular momentum f along the internuclear axis. Its magnitude is
i A(h/2m). This state is doubly degenerate because of the two possibili-
A ties +A and -A. This gives rise to the so-called A splitting due to
the interaction of the electronic orbital angular momentum f with the
angular momentum of nuclear rotation ﬁ. At high speeds of rotation,
this A splitting can approach 1 cm™! in difference of rotational energy
level.
Since the OH molecule possesses an odd number of electromns, it
has an even multiplicity 2S+1, where S is the quastum number corres-

ponding to the resultant electronic spin angular momentum §, As the

total number of electrons is odd, S is half integral (S = %), and the
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Figure 9. Comparison of field-widened interferometer and
grating spectrometer spectra.
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states are doublets. The spin vector ] precesses about the internuclear
axis because of the presence (A#0) of a magnetic field in the direction
of the internuclear axis due to the orbital motion of the electrons. The

total electronic angular momentum about the internuclear axis is
=1+2 (1)

where f is the constant component [with a magnitude Z(h/2m)] of the vec-
tor spin § along the line joining the nuclei. The corresponding quan-

tum number of the resultant total electronic angular momentum about the

internuclear axis is Q = |A+I|. For the case here, A=1, I=tS=#, Q=% k.
From the foregoing, the OH electronic state under consideration is
designated

[el.st.]zs+1

[Alg > X*My, , (2)
Since the states are doublets, each rotational line of the spectrum
resulting from a vibration-rotation transition is split into two lines
according to whether Q=% or Q=%.

For the light OH molecule, the spin § is only weakly coupled to
the internuclear axis. As a consequence, the molecule is modeled as
Hund's case (b). Accordingly, the electronic orbital momentum component

-
K and the nuclear rotation angular momentum vector N form a resultant
> ->
K=K+7% (3)

called the total angular momentum without spin. The corresponding rota-
tional quantum number is K which takes on integral values. The total

angular momentum (including spin) is then formed by
FeK+8§ . (4) :

The corresponding quantum number J takes on half integral values,
J =K+ S =K=*%X%, since the OH molecule has an odd number of electrons.

Thus, each level with a given K consists of two components. The
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molecular rotation produces a slight magnetic moment in the direction

of K, which produces a small coupling of § with ﬁ. This, in turn,

produces a slight splitting of levels which have different J but the
same K. This spin splitting (Q = %, %) effect increases with increas-

ing K.
The energy levels expressed in em™! of the le'Igl2 » state of OH
£l

are given by i
T = G(v) + F(J) . (5)

The vibrational energy values (term values) of the anharmonic oscilla-

tor are given by
= 1) ! — 1 2
G(v) ue(v + L) wex .+ B+ o (6)

where v is the vibrational quantum number v = 0, 1, 2,... . For the :
f 0'®H! isotope, w, = 3735.21 cm~! and wx, = 82.81 cem™!. The rotational
energy (term) values for the nonrigid rotator are given by the Hill and

Van Vleck formulas

FLQ) = B, {®+ 12 = 1 - 54k + 1)? + Y(¥ - §1%)

" ;
- D (K + %) )

F,() = B, (K2 = 1+ 5[4 + Y(Y - 917} - D K+ 13" (8)

where Y = A/B_. The coupling constant A is a measure of the coupling 1

strength between § and K. In the case of OH, Y = -7.41. Such doublets

5 with a negative Y, and therefore a negative A, are said to be inverted.
F,(J) and F,(J) are the term series for J = K+ % and J = K - 4%, res-
. pectively. For the OH inverted 21 states, the F, and F, terms corre-

spond respectively, to the ZH%& and 2IIxi states. For a given K number,

the 2Hk spin levels form at a slightly higher energy level than the

2
H%& spin levels.
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The mean rotational constant Bv for the rotator in the vibrational

state v is given by

Bv = Be - ae(v ) oy SRR (9)

where the value of Be is calculated from Be = h/8v2curz. The mean rota-
tional constant Dv representing the influence of centrifugal force is
approximated for small values of v by

Dv = De o4 Be(v Rk kB e (10)

where D_ = 4B;/w:. The values of these parameters for 0'®H! are

=)
]

18.871 em™ !, a, = 0.714, r_ = 0.9706 X 10~ %cm,

D -0.65 x 10~"* and u = 0.948376.

e = 4.5 % 10™%, Be

The lowest vibrational interval for OH is 3570 cm™! (0.443 eV).

B. Infrared Spectra

For the hydroxyl molecule the infrared vibration-rotation spectra
can be described from the quantum values under the constraints of the
following selection rules. 1In the airglow, the vibrational quantum num-
ber v can take on the values v = 0,1,2,3,...., 9 with allowed changes

during emission of
o= 1, 2, 35 oiey 9 (11)

The ensemble of rotational lines, which occur near one another wave-
lengthwise, that are associated with the transition from one vibrational
state to another are known as a band. An example is the (v', v") = (5,3)
band. 1In transitions the quantum numbers of the upper level energywise
will be designated by a single prime and those of the lower level by

double primes. Bands grouped according to the Av are called band
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sequences. The band sequence with Av = 1 is referred to as the fun-
damental, and Av = 2 called the first overtone sequence, etc.

The total-angular-momentum-without-spin quantum number K can have
the values K = 1,2,3,... . The selection rule, however, is

AKX = 0, (12)

I+
-
o

The collection of rotational lines within a particular band but grouped
according to the value of AK are called branches. The branch for AK = 0
is called the Q branch, that for AK = +1 is the R branch and that for
AK = -1 is the P branch.

The spin splitting, arising from the multiplicity of 2, namely,
Q= %& and % gives rise to two subbranches for each of the branches Q,
R and P. The set for Q = 3, are referred to as the Qs R, and P, lines.
The set corresponding to Q =) are the Q,, R, and P, lines. The further
splitting of each of these lines, the so-called A splitting due to the
use of +A and -A for the electronic angular momentum orientation in one
direction or the other along the internuclear axis in the eigenvalue
formulation, are designated by the subscripts c and d. Each designation
c or d is a combination of the orientations as the eigenvalues do not
separate out clearly as might be supposed. Following this scheme for
designating each of the rotational lines, those of the (5,3) band
listed in order of increasing wavenumber (energy) are as follows in
Table 1. The K" for the lower state of each line is given in parenthe-
ses.

For large rotational quantum numbers, the A splitting increases
approximately quadratically with K for the multiplet ZHi states, i = c,d.
For the P, lines the wavenumber differencel\%d(K) = FIC(K) = Fld(K)’ is
less than a wavenumber for K < 6.

The total angular momentum quantum number (with spin) J has two
values for each value of K according to whether Q = % (the P,, Q,, R,

lines) or @ =% (the P,, Q,, R, lines). Thus,

J=K+%=15 2% 3% .... Q= 3%) (13)
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The selection rules on J are the same as for K,

A Sl S, L S 82

AT =R0, T (14)

Table 1. Rotational lines of OH(5,3) band.

Rotational Wavenumber Rotational Wavenumber |
Line o(em™1) Line o(em™1) |
{
4 P 4(6) 5,751.34 P, 42 5,937.95
{ P, .(6) 5,752.83 P,.(2) 5,940.15 |
' P 405 5,797.07 Q,.(2 5,984.52
P, (5 5,797.17 q, 452 5,985.89
: P, .(5) 5,810.11 Q.M 5,990.12
! P, (5) 5,810.34 Q4D 3,990.76
| P 5,839.74 9,4 5,992.25
| P, (&) 5,839.84 Q,, (1) 5,992.75
E ‘ P, (4 5,855.17 R4 6,059.43 |
: P, (&) 5,855.22 R, . (D) 6,059.61 |
i P g3 5,879.26 R,q(2) 6,068.04 |
:; P, (3 5,879.33 R,.(2) 6,070.22 |
j B3 5,897.84 R, 4(2) 6,081.88 ]
| Fratd) 5,898.83 R, .(2) 6,082.52
P 5,915.67 R,.(3) 6,101.19
P,.(2) 5,916.58 R, 4(3) 6,101.60

Notes: ( )»K"; P+AK = -1; Q*AK = 0; R*AK = +1; 1+Q= %; 2+Q =5

‘c,d+> * A combination.

Since the values of the quantum number K begin at 1, and the P
’ lines correspond to AK = 1, the first P line that can be observed in OH .

is P(K=2) where K refers to the lower state. Thus, there are no Pl(l)

g




19

or Pz(l) lines, giving the "missing tooth" effect in the spectrum of OH.
The Q and R lines, on the other hand, begin with Q(1) and R(1). The
spacing between adjacent rotational levels (of the same ) is about ZBe.
For the P, lines of the OH(5,3) band whose Q center is at 5991 em™ !
(1.669 ym) this is Ao = F1(3) - FI(Z) = 37 cm~!. Due to centrifugal

| force this spacing increases with increasing K values. For the R, lines
ﬁ of the CH(5,3) band the separation is about 22 cm™! and decreases with

| increasing K values.

IV. EMMISION INTENSITIES

A. Spontaneous Emission |

The volume emission rate in photons s~'cm™? of a central line is

given by

o va v A, ’ (15)

IV'J', V"I" J v J', V"J"

where Nv'J' is the number density (population) of molecules in the
initial state v', J' carrying out the transition to the state v'", J".
is the Einstein transition probability of

The Coefficient AV'J' E V"J"

spontaneous emission. In order to express I in terms of power (inten-

L At sy

: sity) it would be necessary to multiply by hcov'J', oI where OV'J',

" is the wavenumber (frequency) of the photon

j OVIJI, v " = Fev'y, 3Y) = Ble", I (16)

For the case of electric dipole radiation the Einstein coefficient
1y "nn
is related to the element of the dipole moment matrix i by

2

|
% 64 T (0 170 " n)3 1 "wn
: * vd's, v'J IRV J'y v J l (17)

Agrgr, ygn = 3h

' The values of the Einstein coefficients as computed by Mies [1974]
are given in Table 2 for the OH(5,3) band.
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Table 2. Einstein coefficients (sec'l) for OH(5,3) band.

J! P, Q, R, P, Q, R,

0.5 0.000 0.000 0.000 72.290 35.341 0.000 |
1 1.5 45.622 61.574 0.000 67.099 7.749 32.736
o 2.5 55.591 25.180 26.464 65.770 3.748 37.896
3 3.5 59.653 13.263 34.190 65.638 2.360 39.065 i
| 4.5 61.967 7.995 36.808 65.970 1.685 38.856 {
! 5.5 63.575 5.255 37.398 66.487 1.289 37.990
i 6.5 64.824 3.673 36.996 67.063 1.029 36.751
| 7.5 65.850 2.687 36.042 67.634 0.844 35.275
| 8.5 66.715 2.038 34.751 68.166 0.707 33.642
1 9.5 67.436 1.590 33.229 68.634 0.600 31.891
! 10.5 68.057 1.270 31.577 69.039 0.516 30.075
| 11.5 68.567 1.034 29.823 69.362 0.448 28.206
E? 12.5 68.967 0.855 27.999 69.595 0.393 26.302
3 13.5 68.259 0.717 26.128 69.733 0.346 24.377
4 14.5 69.444 0.609 24,230 69.772 0.307 22.445

253 69.521 0.521 22.319 69.709 0.273 20.518

B. Lifetimes

The mean life of an excited state v', J' is that time T that

it takes, in the absence of quenching and production of new molecules
in the state, for the number of molecules left in the state v', J'
to decrease e-fold, that is, to 1/e of the initial number. The expo-

nential decrease of the molecules in tne state v', J' due to radia-

tive relaxation is
t
| > % <v"§ AV'J',V"J" )
1: vaJv = vaJv e (18)

q The summation is over all of the possible transitions downward from o

the initial state v', J'. Thus, the mean lifetime is

1
: T [ 1 - .
| v'J
"EJ" Av'Jl ’VHJ'I
v

(19)

; Using the Einstein coefficient values of Mies (see Table 8),

the mean lifetime 6f a particular v'-state of OH* ranges from 3.3 msec
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for v' = 9, to 8.1 msec at v' = 5, up to T = 50 msec for v' = 1. The
results of the calculations are given in Table 3.

The mean age of an oi¥ molecule in a particular vibrational level
can also be approximated ignoring quenching, assuming a given injection
level. These OHF ages are computed (see Table 10) and the results tabu-
lated in Table 3 for the cases of injectirn of the vibrational energy

at the v' = 9 or the v' = 6 levels.

Table 3. Mean radiative lifetime of vibrational state and mean age
since original formation of O¥ molecule relaxing from v'.

Lifetime T Age, v'>9 Age, v'>6

v' (msec) (msec) (msec)
9 i 3.3 -
8 3.9 7.2 -

7 4.7 8.2 -
6 6.0 10.4 6.0
5 8.1 14 14

4 11.1 17 17

3 16.2 24 23

2 25.4 35 33

1 49.6 63 60

Age is given for injection at v' = 9 and 6 levels for no quenching case.

These lifetimes and ages can be compared with the mean times be-
tween collisions of OH molecules with the ambient molecules and atoms,
primarily N,, 0,, A and 0. The atmospheric collision frequency ranges
from 1.4 x 10% at 75 km, to 2.2 X 10" at 85 km, to 1.2 x 10 at 100 km.
The corresponding mean times between collisions are 7.1 usec at 75 km,
45 usec at 85 km, and 0.83 msec at 100 km. Using the ages from Table
3, the mean number of collisions with ambient molecules at 85 km before
mean time of occurrence of radiative relaxation ranges from 70 for the
v' = 9 level to 1400 for v' = 1.
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V. ROTATIONAL TEMPERATURES
A. Maxwell-Boltzmann Distribution

Under conditions of rotational state thermal equilibrium, the dis~
tribution of the molecules over the different quantum numbers is des-
cribed by the Maxwell-Boltzmann distribution law,

-EV'J'/kT
Norgr = Cyr¥yee (26)
where NV'J' is the number of molecules in the rotational state J' of a

vibrational level v' at the temperature T and w_, = 2J'+ 1 is the sta-

'
tistical weight of the state J' with its (2J' +J1)-fold degeneracy.
The constant Cv" whose actual value is not needed to compute rotational
temperatures from the intensity of the rotational lines of a band, is
given by C , = Nv'/Qr = Nv,kT/th; N, is the total number of molecules
in the v level and Qr is the partition function (sum of Boltzmann fac-
tors over all the rotational states of the level). The energy of the
rotational state is designated by Ev'J' = Fv,(J')hc.

Equation (20) inserted into Equation (15) gives the volume emis-

1cm'a) of each rotational line arising in

sion rate (in photons sec”
transitions from an upper state v'J' to a lower state v'"J" under con-

ditions of rotational equilibrium.

~F ,(J")hc/kT

v
Iv'J', Yt s cv,(ZJ' + 1l)e Av'J', " (21)
B. Temperature Calculation
Equation (21) when solved for the absolute temperature T is
F ,(")hc/k
\'4 o
T = R - (°K) (22)
Zn vlJ' ,V"J"
va(z\]""l)Av'J"ann
where he/k = 1.439 °K/em™! and
Rv'J',v"J" e Ichv, ann/l‘“ (23)




23

is the radiance (in rayleighs®) of the rotational line of volume

emission rate Iv'J' With this equation the apparent rotational
’

vllJ"'
temperature of any observed OH band can be computed using a minimum of
two rotational lines (of the same branch). The constant Cv' can thus
be eliminated. The temperature, therefore, can be computed from the
absolute value of

(hC/k) [FV' (J;) 'l FV' (JE)]

T = (24)
R, (2J3+1)A,

R, (2J{+1)A,

In

where the subscripts 1 and 2 refer to the two rotational lines selected
(with upper rotational states J; and J;) and R),» and A, , are the appro-
priate radiances and Einstein coefficients for the lines.

The usual procedure is to plot values of Zn[RK(ZJI'(+1)'l AK"]
as an ordinate value versus hc Fv'(Jk)/k as the abscissa for the
various rotational lines of a branch whose radiances are observed,
K=1, 2, 3, ... . For the relatively bright PI(K) lines of OH, K =
2, 3, 4, 5, ... . Furthermore, for this ZH%& case Jk = K'+%, so that
2Jg + 1= 2(K'+ 1) . Thus, for the P,(K) lines, x = In[R (K'+1)™" A ~']
is plotted versus y = hc Fv'(K')/k. The negative of the slope of
the straight line through the points gives the rotational temperature T.
Due to noise, or any departure from an exact Maxwell-Boltzmann distribu-
tion, the best approximation may be a least squares fit of a straight
line y = - Tx through the points, where b is the slope given by [Ware,
1976]

. in Zyi - nZ.‘x:Lyi

T (25)

B 2
ani (in)

where n = 1, 2, 3, ... is the number of points and each sum is from n =1

ton=1.

-1

*The conversion from radiance L in watts cm~2sr™! to rayleighs for a

monochromatic line of wavenumber 0 in em~ ! is R = 27L x 10'7 /o.

i
i
i
i
i
i
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C. Equilibration
In order for the rotational distribution to be Maxwell-Boltzmann,

the OH* molecules on the average have to undergo sufficient collisions
with the ambient N, to approach rotational state equilibration. One
would expect that not less than perhaps ten collisions would be required.
Using the ages given in Table 3, the altitude at which OH* rotational
equilibration might be expected to occur can be estimated.

The mean time between collisions of neutral atmospheric molecules

versus altitude in the region of interest may be approximated by
T = 4.4 x 10712 &% 190 (gec) (25b)

where h is the altitude in kilometers. For the promptly-radiating 9th
vibrational state, the altitude level which corresponds to averages of
ten collisions during the 3.3-msec radiative lifetime of the level is
estimated to be 120 km. At the other extreme, the average OH* molecule
in the v'=l state, with the 63-msec age since original formation of the
OH# molecule which subsequently cascaded, can be expected to have experi-
enced some 1400 collisions if the molecules were located as low as 80 km.

It would appear that the rotational temperature of OH¢ radiation
emanating from altitude regions around 85 km would effectively be in
Maxwell-Boltzmann distributions. Seen from the ground, the temperature
would be an integrated effect over the altitude range of the optically-
thin layer. This layer thickness is about 10 km, with the peak drop-
ping fiom about 87 km for the night airglow to about 83 km for the day
airglow. This altitude shift must be taken into account in assessing
the rotational temperature as a measure of the ambient upper atmospheric
temperature of the neutral species.
VI. OH PHOTOCHEMISTRY

A. Ozone Hydration

By the Bates and Nicolet [1950] theory vibrationally excited OH
is produced by the exothermicity of the chemical reaction

ky
H + 0,~ OHF + 0,

(+3.3 eV=78 kcal/mole)
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The rate constant

K = ar® e¢/T (27)

1.5 x 107'2? cm¥/sec. The kinetic

is given by Nicolet [1972] as a
temperature dependence of the rate constant is estimated at b = 0.5.
Some [Blank et al., 1974] have given a value of c as high as 500°K; for
our purposes we will take it as zero.

Thus, the production rate by the ozone hydration process can be

described by

d[or™]/dt = k[H][0,] (28)

The night-time H and 0, concentrations at 85 km are both on the order
of 10® molecules/cm®. For a temperature of 220°K, the production rate
computed by ignoring all other production and loss mechanisms is about
2 x 105 molecules sec”!cm™3. Observations [Krassovsky, 1963] give a
yield of nearly 10° 0H*/sec-cm3. Under day-time conditions, with the 0,
number density decreased by some two orders of magnitude, the produc-
tion rate of vibrationally-excited OH is likewise much lower.

B. Perhydroxyl Reduction

The oxidation or hydration of HO, can lead to the formation of

vibrationally-excited OH,

k2
0 + HO, ~ OHF + 0, (29)
(+2.3 eV=54 kcal/mole)
ky
H + HO, > OHT + OH (30)

where the rate constants are given by [Xaufman, 1969] k, = 1 x 107!!
and k, = 3 X 1072 cm®/sec. Representative night-time number densities

are 2 x 101!, 2 x 108, and 2 x 10° for [0], [H] and [HO,], respectively,
2

OH* production rates therefore are about 4 X 10° and 1.2 x 102 molecules

sec~lem™?, respectively.
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C. Loss Mechanisms

When quasi-steady-state conditions obtain, the production of OH*
is approximately balanced by the loss of vibrationally-excited OH.
The two principal loss mechanisms are radiative relaxation and quench-

ing. These photochemical reactions include the following:

ky
ob¥ > obF + hv (k,

= 10%) (31)
ks
OHF + 0> H+0, (k=3 x 10712 T (32)
ke
OHF + M > OH + M (k, = 107'%) (33)

Representative number densities for [0] and [M] in the nighttime
atmosphere at 85 km are 2 x 10'! and 5 x 10'* molecules/cma. Thus,
quenching is often ignored in comparison with radiative relaxation in
a first order modeling. The complete set of photochemical reactions,
together with the appropriate rate constants, is given in Table 4.

The rate constants for interactions of OH* (v'=9) with M are
given by Worley et al, [1972] in Table 4. As with 0, the rate constants
can be expected to be a function of v' and the resulting effects may
be large if there exist near resonances between OH (v') energy level
and an excited state of 0 or M. Such selective quenching, and possible
pumping up of OH* by energy going the other way as well, could change
the distribution of the OH state populations.*

As a first look, the loss rates for atmospheric OH at 85 km are
calculated using representative day-night concentrations for the species
involved. The results are tabulatcd in Table 5. By way of comparison
(See Table 6) the production rate of OH* (v £9) by the H + 0, reaction
(k = 2.2 x 107! cm® sec™!) ranges from 2 x 10°® mol. cm™3 sec™! during
the day to 4 X 10" at night using an atomic hydrogen concentration of

108 mol./cm® at 85 km. From Table 6 the radiative relaxation rate

*For examgle, the 15,868 cm™’ energy level of 0I('D) is close to
the 16.201 cm™' of on(xzn%, v'=5),

o P
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Table 4. Rate constants for interactions of OH* (v'=9) with M [Worley
et al., 1972]. 3
M k

cm® molecule™! sec™! -
0, 7.7 £/6.3 x-10™*
3 0, 1.0 £ 0.1'x 107"
N, 3.0 £ 0.5 x 107!%
NO E.5' ¢ 0.3 xg1?
N,0 & 8% 2.2 » Yo"
CH, 1.4'% 0,2 % 01"
co, 2.4 % 1.0 % o0
cos 2.5+ 3,5 197t
so, 2.4 £ 0.6 % 107"
H,S 7.5 t By R g
H,0 Z2.0°% 1.6 % 107

A T A

Table 5. Loss rates of OH at 85 km.

M [M] Kk k[M] [OH]
(ecm™ %) (cm¥sec™?) (em 3sec™!)
Day - Night Day - Night
0 3x10 -3 x 10t b4 % 20~1° 1x 10! -1 x 10°
RO 3.0 x 10713 3 x 10° - 3 x 10"
8, 3x10°? 1.0 x 107" 3 x 10% - 3 x 10*
0y 10° = 10° 7.7 % 307° 8 x 1072 - 8 x 10°

.

Night-day concentration of OH is taken as 10* - 10° cm™?

, respectively.

is on the order of 102 cm?/sec for relaxation from the high (v>6) vibra- ﬁ
tional states and is about 30 for relaxation of the low states (v<6) to

the unexcited level. 3
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A representative distribution might be 31% of the OH# at levels
above v'=6 and the rest (69%) is at v'<6 (see Table 13). Consequently,
the relaxation rate of OH* by radiation ranges from £ x 10° to 3E x 10°
cm” 3 sec-l, where F is the ratio of the total OH which is in an excited
Xzﬂi state. Thus, it appears that at 85 km the radiative relaxation
dominates the quenching by collision processes given in Table 5.

D. Vibrational Distributions

Unlike the rotational levels, the thermal distribution of the vi-

brational levels can be expressed as a simple Maxwell-Boltzmann factor

e-E/kT. The number of molecules in the state v is

-G, (V) he /KT

N
Nv = 6\: e (34)

where N is the total number of molecules, Qv is the partition function,
and Go(v) is the vibrational energy term value referred to the lowest
level,

A ¥ 2
Go(v) w v w X Vv L (35)

where W = W = WX + . « ¢« ¢« @and @ X = WX = . « « =
o e ee 0o e e

For the OH(XZHi) molecule the parameter values [Kifte, 1959] are

w_ = 3,651 cm™! and w x = 82 em™!
o oo

given in Table 7.

. The values of Go(v) for OH are

The entity RV'V"/Gz'v" is called the vibrational band strength
(analogous to the rotational line strength SJ). The sum of the band
strengths of all bands with the same upper state is proportional to the

number of molecules Nv' in the upper state

; Ryrgn/Og 0 = Ny (36)

v

since the dipole-moment overlap integral evaluates to a constant when
squared and summed over all v". Since in thermal equilibrium the popu-
lation Nv' is proportional to exp[—Go(v')hc/kT], we can substitute
Equation (36) into (34) to obtain

prame
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Table 7. Vibrational term values for X2Il state of OH.
G, () (cm™1)

v' R=3% Q=%

0 0 126.3
1 3,568.4 3,695.2
2 6,971.1 7,097.3
3 10,210.5 10,336.6
4 13,287.0 13,415.7
5 16,201.0 16,330.3
6 18,952.1 19,082.1
7 21,538.0 21,671.3
8 23,949.4 24,080.1
9 26,184.3 26,316.4
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(37)

where C, is a constant.

Therefore, by plotting the logarithms of the band strength sums
ZIRv'v"/oé'v"] versus the vibrational term values [Go(v')], a straight
line is obtained whose slope* is hc/kT and thus gives the vibrational
temperature T. The band strengths need only be relative. Unless condi-
tions of thermodynamic equilibrium exist, the vibrational temperature
will not necessarily equal the rotational temperature. Even for non-
thermal conditions, the plot will often approximate a stra‘z“t line (by
a least squares fit) to give an apparent vibrational temperature.

I'he relative populations cobserved in sequences of the CH airglow
are the net result of a number of factors: (1) the population upon
formation by one or more photochemical mechanisms, (2) subsequent cas-
cading with level-dependent lifetimes, and (3) quenching with possible
energy selectivity (resonances). Since these factors depend upon the
concentrations and temperature, a complete modeling is required taking
into account the diurnal variations of solar energy and its depth of
penetration.

The H + 0, > OH* + 0, reaction has just enough exothermic energy
(heat of formation) tc vibrationally ~vcite the UL up through the 9th
level.

st e s (38)

= 26,500 cm™!

60 % 107*9(3.3)
6

1
" 663 % 10 7°(3.0 % 10%Y)

as can be seen from Table 7. The energy level for v = 9 is 26,184 em™!,
The H + HO, reaction, on the other hand, has an exothermic energy of
only 2.3 eV = 18,500 em™!, Consequently, the chief perhydroxyl mechan-
ism excites vibrational levels v < 6, where translational energy is

available.

*The numerical value of hc/k is 1.439 °K/em™!.
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Upon formation of OH¢ by the hydrogen ozone reaction, the v = 9
and 8 states apparently receive most of the energy. Polanyi [1971] .
gives the initial formation distribution of Table 9.

4 Table 9. Relative vibrational level populations of OH (XZHi) formed
| by H + 0, in terms of percentages [Polanyi 1971].

3 6 thru O
| N >38%  >31% <15% <15%

The vibration levels below v = 9 are significantly populated by
cascading from v = 9 and 8. The branching ratios are obtained from
the transition probabilities. Table 10 summarizes these in terms of
percentages.

Table 11 gives the results of a computation of the steady-state

relative emission radiances of tlie vibration bands of OH(XZHi). These
theoretical intensities were computed ignoring any quenching or collision
effects. A steady-state condition was assumed using én initial forma-
tion ratio of 46.8%:38.2%:15%, respectively, into the v = 9, 8 and 7

levels. The branching ratios of Table 8 were used. The results are

expressed as percentages of the formation rate of OH from the H + 0,

‘ reaction.

'} The theoretical relative band radiances of Table 11 and the

i band origin wavenumbers of Table 12 were used in Equation (37) to cal-
ﬁ culate the relative populations of the vibrational levels. The results
ﬁ are tabulated in Table 11. It is evident that ayétraight line fit of
anRv'v"/cav'v" to G(v') does not occur over all the values of v'. The
distribution is non-Boltzmann as to be expected since thermal equili-

brium conditions have not been imposed. It is interesting to note,

though, that a nearly straight line does occur for v' < 5. A least

squares fit gives a slope of T = 9500°K.
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Table 10. Branching ratio percentages for OH*(XZHi) cascading.

]
v _(from) 8 7 6 5 4 3 §ii
v'"' (to)
8 16.9
7 48.9 9.9
6 30.1 64.2 4.3
5 3.6 23.4 76.7 1.4
4 0.4 2.2 17,5 85.1 3.6
3 0.2 1.4 12.6 87.4 13.7
2 0.8 8.6 81.4 33.8
1 0.3 4.8 64.7 64,2
0 1.5 358 100

Calculated from Einstein coefficients of Mies [1974] for 200°K.

In those situations where quenching is important (daytime, lower
altitude OH*), the vibrational distributions will, of course, be altered.
The general effect can be expected to show up as a decreased population
of the lower vibrational levels relative to the upper. This is because
quenching would tend to occur before the time-consuming cascading pro-
cess could be carried out.

The effect on the vibrational level populations of inclusion of
the perhydroxyl reactions, on the other hand, would be to populate low
v levels relative to the high. This is because of the lower exother-

micity of the HO, reactions relative to the 0,.
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Table 11. Relative emission band intensities of steady-state, unquenched
OH(XZHi) from H + 03.

v' (from)
1 v" (to) 9 8 7 6 5 4 3 2 1
8 8%
g 7 I
% 6 14 30 2
i 5 AR (1 SRS e
: 4 1 7 39 2
3 1 6 40 6
! 2 4 40 18
; 1 2 34 40
: 0 1 22 76

Calculated using formation populations of Polanyi [1971] and transition
probabilities of Mies [1974] for 200°K, and expressed as a percentage
of total formation rate of OH.

|
3
B
1
“
|
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Table 12. Wavenumbers (cm™!) for OH(XZHi) vibrational band origins.

,
v (from) 4 8 7 6 5 4 3 2 1

v" (to)

8 2236

7 4650 2414

6 7236 4999 2585

5 9987 7751 5336 2752

4 10666 8252 5667 2915

3 11329 8744 5993 3078

2 9233 6318 3240

1 9722 6644 3404

0 10212 6974 3570 4

Table 13. Theoretical relative OH(XZHi) vibrational population distri-
bution.

v' 9 8 7 6 5 4 3 2 1
Nv' 167% 10 5 4 4 6 10 17 27

G(v)l26,184 23,949 21,538 18,952 16,201 13,287 10,210 6,971 3,568
(em™")

Calculated from theoretical radiance distribution (Table 9) without
quenching.
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VII. OHF AERONOMY
A. Altitude Distributions

Although a number of ground-based techniques have been attempted
over the years, at present there are only two satisfactory methods of
ascertaining the distribution of OH airglow emissions with altitude:

1. Flying a rocket with an onboard sensor through the layer.

2. Obtaining an exo-atmospheric limb look at the layer from

a sensor onboard a rocket or satellite.
The latter approach has the advantage of higher signal levels, more
nearly simultaneous observation of the portions of the profile, observa-
tion of lateral spatial variations, and longer observing times of the
layer. The disadvantages are a more complicated geometry, possible
long path absorption or stimulated emission effects, and the need for
very narrow fields of view (at least in one dimension) with extremely
good out-of-field rejection.

Most measurements of OH emission altitude profiles available to
date have been obtained from vertically-viewing sensors flown aboard
rockets. The technique has been well described by Packer [1961]. A
composite of such measurements is given in Figure 13. These measure-
ments, which were made in the visible region were complicated by a
background continuum as well as the usual problem of unfolding the
aspect geometry [see Grieder et al., 1976].

In the AFGL/USU program, infrared rather than visible-range sen-
sors were used to alleviate the background continuum problem. (The
continuum has a different altitude distribution than the OH*.) The
sensors, developed in the USU Electro-Dynamics Laboratories (EDL) by
Wyatt, Kemp and Frodsham, are dual-channel radiometers. Filters were
selected (Figure 14) to obtain simultaneous measurements of the
zenith radiance in two separate wavelength intervals. This makes it
possible to look for a different altitude distribution for OH*(Av<6)
than for the OH*(AV>6).

The 4720 to 5400-cm™! (1.85-2.12 um) bandpass includes the (8,6)
and (7,5) emission bands of OH, and the 5820 to 6075~cm~! (1.64=1.72
um-1) bandpass includes the OH (5,3) band. A second filter of bandpass
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5960 to 6820 cm™! (1.47-1.68 pm) has also been employed on some flights.
In order to obtain the OH band intensity distribution, it is desirable
to look at only one band per channel. However, this simplification is
achieved at the cost of signal-to-noise ratio.

In Figure 15 the volume emission rate profiles from four different ;
flights from the AFGL/USU program are presented [Ulwick and Grieder, s
1975, and Rogers et al., 1973]. Two of the profiles were made under i
night conditions at the U.S. Army's White Sands Missile Range (WSMR) ‘
in New Mexico. The other two profiles were obtained at the University
of Alaska's Poker Flat Research Range (PFRR) in Alaska. One was taken
during the night and the other at evening twilight. In both latter
cases, although the measurements were taken in the auroral zone, quiet
conditions prevailed at the time. In Figure 16 the profiles of the OH*
(v < 6) band measurements of three of the flights are given as indicated.

To facilitate the comparison, all six profiles are plotted on the
same scale in Figure 17. The apparent emission layer centers and depths

from each measurement are summarized in Table 14. From these data the

layers appear as Chapman~like with a usual half-intensity depth of about
8 km. It would also appear that the centers (between half intensity
points) lie between 84 and 89 km in altitude.

There is evidence that during evening twilight (X = 80° in this
case) that the layer is formed at a slightly lower altitude than is the
case at night-time (y = 116°). However, the twilight signal-to-noise
ratios of the measurement are much lower than during the daytime (Figure
15), and so at best the altitude resolution of the volume emission rate
profile is several kilometers. The volume emission rate n is computed
from the zenith radiance profile using [Baker, 1974]

dR

n =10 EE-(photons sec™! cm™?) (39) i

where R is in rayleighs [megaphotons sec ' (cm? column)”'] and the alti-

tude h is in km. The signal-to-noise ratio and therefore the altitude
resolution of the slope dR/dh of the profile is much lower than that of
the zenith radiance profile itself.
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Murphy suggested that the OH volume emission rate profile, computed
from the slope of the measured zenith radiance versus altitude curve,
can in turn be used to calculate the altitude profile of atomic oxygen
concentration. This technique was carried out by Rogers et al. [1973]
and Good [1976]. The formula, ignoring deactivation processes other

than radiative relaxation, is

10 dR/dh (cn™?) (40)

(0] = pkto, 10M]

where R is the zenith radiance in the radiometer filter bandpass, € is
the ratio of the radiance in the bandpass to the total radiance from
OH* at all wavelengths, p = 3.9 is the production efficiency (number of
photons emitted per OH molecule formed), k = 1.1 X 103" exp(500/T)

6sec”!

cm is the reaction rate for the formation of ozone by 0 + 0, +
M~>0, +Mand [0,]1, [M] are the concentrations of molecular oxygen and
the total atmosphere (primarily N,), respectively.

B. Spatial Distributions

The horizontal spatial distribution of the upper atmospheric OH
airglow emission layer can be observed from flying aircraft, from a
network of surface-based sensors or from one or more sensors which
can scan in elevation and azimuth. The latter technique requires cor-
rections for the Van Rhijn effect in looking obliquely at an extended,
optically-thin emitting layer.

Kieffaber [1973] has used the latter technique to carefully make
an extensive set of OH sky emission contours. A pronounced latitudinal
gradient decreasing from north to south in the Northern Hemisphere has
been observed. Also, by using image intensifiers Peterson and Kieffaber
[1974] have observed apparent emission cells and patchiness.

Both the latitudinal gradient and the apparent patchiness of the
OH atmospheric airglow have been observed using infrared filter radio-
meters aboard the AFGL KC-135 flying laboratory. The decrease of OH(5,3)
band radiance with latitude is illustrated in Figure 18. The cellular
phenomena are illustrated in Figure 19. The lateral extent of a cell

ranges perhaps from ten to as much as a hundred miles.
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C. Dynamical Behavior

The temporal variations of the atmospheric OH airglow can be cate-

gorized as follows:

is made in Table 15.

51

An attempt to generalize these temporal changes

Table 15. Temporal variation generalization of OH airglow.
y Period
i of
{ Variation Categorization Characterization
i Minutes High-frequency Appears as high variance
4 fluctuations on radiance and rotational
i temperature measurements.
|
{
£ Hours Low-frequency Appears as wave-like
fluctuations modulation of slowly-
changing radiance and
temperature levels.

Daily Diurnal variations Cyclical changes of OH
levels with two twilights
as the transition between

: day-time and night-time
i conditions.
t Monthly Periodical variations Appears as slowly changing
: radiances and temperatures
from night to night in auroral
1 zone associated with solar
rotation.
‘ Yearly Seasonal changes Appears as brighter
radiance in winter than
j summer.
i)
Decade Epochal changes Would appear as changes

with the solar cycle.

With the advent of spectrometers of high throughput and detectors

of high (signal-to-noise) sensitivity, it is possible to observe successive

spectra of

the OH bands taken tens of seconds apart.

Unexpectedly, the
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rotational temperatures calculated from the successive spectra exhibit
a variance of about five degrees (Kelvin). This may be a noise arti-
fact of the instrumentation, or it may be characteristic of a "granular"
OH layer. The temperature '"seen" is an integrated effect over some 8
kilometers in a dynamic, optically-thin medium.

The longer term fluctuations are illustrated in Figure 20. Both
the radiance of the OH(5,3) band and its rotational temperature appear
to fluctuate with a not consistently repeating period of about an hour.
Merriwether [1974], Shefov [1970] and others have reported seeing simi-
lar patterns of fluctuations. Armstrong [1976] theorizes that these
fluctuations are due to acoustical gravity waves. Perhaps they are
associated with the deposition of energy in the auroral regions. The
changes of intensity and of rotational temperatures might be due to
the vertical displacement of the emission layer. The reaction rates
are temperature dependent; the temperature asymptote toward which the
rotational states of the OH molecules tend to equii: rate is dependent
upon altitude. If the low frequency fluctuations are due to wavemotions,
the speed at which the waves are propagated is of interest. Krassovsky
reports: "After geomagnetic storms an enhanced hydroxyl emission domain
moves from high latitudes towards the equator at a speed of about 103
cm/sec."

Establishing the intensity levels and rotation-vibratiomal distri-
butions of the OH airglow as it undergoes diurnal variations is of high
priority. Lytle [Hunten, 1967] made an early measurement of the sharp
fall of hydroxyl emission intensity at the moment of morning-time illu-
mination of the atmosphere at 80 km. Moreels [1970] has reported simi-
lar balloon-borne measurements. More extensive measurements of the
diurnal variations have been made [Huppi and Stair, 1969] from aboard
the AFGL aircraft. Typical ground-based measurements of the night-time
variation of OH(5,3) band emission at Poker Flat and at White Sands are
shown in Figure 23 and Figure 24. The Moore-Kennealy [1975] atmospheric
computer program is particularly suited for applying changing solar
radiation onto a distributed chemical model of the upper atmosphere.
Their predicted diurnal variation of the OH concentration at 80 and 90 km
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is given in Figure 25. The OH concentration is mostly in the vibra- &
tional ground state. The prediction of the emission intensity 1svca1— |
culated from the production rate of OH*. Such a prediction of the _
diurnally-varying OH production rate as calculated by Gattinger [1969] |

is given in Figure 26.

A case of the periodic variation of the OH airglow emission is shown
- in Figure 27. Over a 9-day period at Poker Flat, Alaska, the zenith
| radiance of the OH(5,3) emission band dropped from a high of 140 kR
3 (March 1, 1975) to a low of 20 kR (March 9, 1975). The region was

aurorally very quiet over this period and all of the airglow emissions

] which were observed dropped markedly in intensity over the period.
These airglow emissions included the OI green (5577A) and red (6300 A)
lines, the N’; band at 3914 A, the Oz(alAg) band at 1.27 um, and the
02(b122) band at 8645 A. The Stanford Research Institute incoherent
backscatter radar at Chatanika reported an electron precipitation level
below its sensitivity level (~10° elec/cm®). The OH rotational tempera-
ture dropped from an average of over 220°K on March 1, tounder 190°K

on March 10. The low frequency fluctuations of the OH emissions are

readily apparent in the rotational temperatures as shown in Figures
20-22. To the human eye the night of March 9 appeared exceptionally
dark. On March 10, the auroral activity came on strong again and the
OH airglow levels started to build up again over the succeeding nights.

It would appear that the high levels of the OH airglow seen in the

arctic regions (compared with midlatitude values) may be due to sus- 3
tained auroral energy-deposition. If so, correlations with the 28-~day
solar rocation period are to be expected. Other auroral-zone data are
given in Figure 28 and 29.

ﬂ The AFGL program has concentrated its measurements in the fall and

early spring time of the year. Consequently, the statistics for ascer-

taining seasonal variations of OH emissions are inadequate. Krassovski

and Sherof, who have led a program involving numerous stations over the
Soviet Union, have the statistical base for phenomenologically assessing
the changes of the OH airglow with season and from year to year over the i
ll-year solar cycle. The trend is for higher airglow levels in the winter |

than in the summer and for higher levels during periods of solar sunspot |

activity.




59

% 107 :

105
90km
b —
4
12 16 20 22 24 28

Figure 25. Diurnal variation of OH concentration predicted

; by Moore and Kennealy [1975] for early March at
3 White Sands.
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VIII. PROGRAM OBJECTIVES AND GOALS

A.

Objectives

The priority objectives in satisfying the mission of the program

are as follows:

1.

2.

Establish the quantitative relationship between the fundamental
and overtone band sequences of OH.

Establish the quantitative intensities to be seen by limb looks
at the OH layer in specific near-infrared bands.

Establish the spatial behavior of OH emissionmns.

Establish the altitude dependence of OH emissions.

Establish the temporal behavior, enhancements and correlations

of OH emissions with other atmospheric airglow species.

Goals

Specific goals that need to be met in accomplishing the objectives

include:

1.

2.

Measure the absolute radiance of each band of the OH* airglow
as a function of solar zenith angle and altitude.

Apply an atmospheric transmittance to these measurements and
then calculate vibrational and rotational population distri-
butions.

Establish the phenomenological behavior of these emissions
regarding short-term, diurnal, long-term and seasonal fluctu-
ations.

Determine the dependency of OH* excitation and emissions upon
latitude and auroral energy deposition.

Establish the applicability and reliability of rotational popu-
lation distributions for remotely measuring the temperature at
the mesopause.

Determine if and under what circumstances (altitude, solar
angle, etc.) HO, plays a significant role in the excitation
of OHF in the earth's upper atmosphere.

Determine the circumstances (altitude, solar angle, etc.) that

quenching (0, 0,, etc.) plays on the level populations and

therefore on the emission intensity distributions.

M ot e et
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8. Establish the characterization and causative mechanisms for
observed dynamical behavior, including apparent wavemotion and
patchiness, of on¥ airglow.

9. Determine the parameters necessary for computer codes to pre-
dict OH* emission means and variances for emissions within the
bandpasses of both limb-look and staring sensors for the geo-
metries which are applicable.

10. Measure the concentrations of H,0 at mesospheric altitudes.

11. Establish the temperature dependence of the reaction rates
involved in OH photochemistry.

12. Establish the energy level dependence of the OH* quenching
rates.

13. Establish strengths of long path absorption =nd stimulated

emission effects in OH.

IX. SUMMARY OF PRESENT STATUS
A. Field Experiments

The experiments that are being planned and carried out by AFGL in
accomplishment of the program mission include rocketborne, aircraft-
borne and ground measurements of the OH atmospheric airglow together
with related atmospheric parameters. Quantitative measurements are
sought at state-of-the-art resolution with regards to: (1) spectral
distributions, (2) temporal variations, and (3) three-dimensional spa-
tial distributions.

B. Rocket Flights

A summary of the rocket flights carried out under the AFGL/USU

hydroxyl measurements program is given as Table 14. 1In the 1965 flight
a visible photometer was used to measure the OH(8,3) band [Baker and
Waddoups, 1967]. All of the other flights employed near infrared radio-

meters. The filter bandpasses were discussed under Section VII-A.
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Table 16.

OH program.

Field experiments planned or carried out which suppori the

Field Experiments

Assist Objectives

1.

1975 Aircraft Traverses
1976 Aircraft Traverses
1976 FWI Rocket

1973-76 SWIR Rockets
1973-76 Ground Measurements
1977 A/C FWI and RAD

1977-8 Satellite Measurement

#l, 3,5
#3, 5
#1,4

#1, 2, 4
3, 5
#f, 3,5

#1, 2, 4
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