
AD A072 338 NAVAL RESEARCH LAB WASHINGTON DC FIG 12/1
IPWORMATION THEORETIC APPROXIMATIONS FOR MIGII AND GIG/I QUCUIN—Etelu)
JUL 79 JESHORE

UNCLASSIFIED NRL—MR—40k7

END
DA T E

FIL~~ E D

9-~g
Dot

I

H



l.O~~i~~l~_ _ _  ~ ~ 32  

~2.2
L

~Q!I ‘ ‘ ~~~~ 

~~~~

11111’ .25 IIIQ~
4 Iirn~ .

0

MICROCOPY RESOLUTION T EST CH~~T
NA1~ONAt~ BUREAU OF STANOARDS-19€3- ~.



-~~

—

~~~~~~~~~~~~

‘

NRL Memorandum Report 4047

Information Theoretic Approximations
for M/G/i and G/G/i Queuing Systems

JOHN E. SHORE %
c o : ;~~~~~~:~~~sion 

~~~

July 18, 1979 C

NAVAL RESEARCH LABORATORY
Wasblugtoe, D.C.

Apprired t.u public rica..; di.Ir$b.~Io,s unlimited.

79 08 06 104
--



,
~~~

-. -~~~~~~ -~~~~~~~~~~~~~ —,-~~~~~ -_— —~-—— —

SECU RI TY Ct .A SSIF I CA T I O N OF THIS PAG E (bT~.n 0.1. bnI.,,d)

REPORT DOCUMENTATION PAGE 
1 

BEt’ ORE COMPLETING FORM
I REPORT NUMBE R 2 GOVT ACCESSION NO. 3 RECIPIENT ’S CA r aLoo NUMB ER

NRL Memorandum Report 4047 
__________________________

4. T T L E (.nd S1b WI ~~ ~~~~~~~~~~~~ —~~~~~~~ 
‘~~ ~~yr-t or REfWflI ~~P4fi~OO COVERE D

~ 
(p J~~FORMATION ~~iEORETIC4~PROXIMATIONS FOR ! ) Final ~e p t  ~

~~~~ ~~/G/1 AND G/G71 QUEUING SYSTEMS - l= - -  

— 
6. P E R F O R M I NG ORG. REPORT N UM S E R

___________________________________________________— 
• C O W T R A C T O R G R A P 4 T NUMBER(.)

1’~~~~ 
1!i~~ -- -

_ _ _ _ _ _ _ _ _  _ _ _ _ _ _ _ _ _

6. PERFORMING O R G A N I Z A ’ IGN NAME AND ADDRESS *0. PROGRA M ELEME NT . PROj ECT . TAS K -

- - -~~~ 
_~~~~~~~ AREA 6 WOR K UNIT NuMSE RS

Naval Research Laboratory i t  (~) i’j q NRL Problem B02-35
Washington , DC 20375 I I  i J .~~ I 

~ 
61153N,j ~R014-09’41

II CONTROLLING OFFICE NAME AND ADDRESS *2. REPORT D A T E

I ‘ July 18, 1979 
_______ _______

-- 
~ 

3 N U M R E R O F P A G E S  
—_____

____________________________ 
39 

___________________

II . MONITORING AGE NCY NAM E S AO ORESS (I I  dIf f.r.nt Ir o~. Cont,ollIng OIfI~~.) *5. SECURITY CLAS S (~( Ibis .sPo~I)

- UNCLASSIFIED
( I ~ hS.. DECL ASS,FIC*- ION;DOWNG RACI-G

~ I_ &.)~~ L/ .~,4.. r SCHEDULE

*6. DISTRI BUTION ST ATEMENT (of thi s Rs poII)

Approved for public release ; distributIon unlimited. 
~

- 

~~~~~~ N ~ 
— ftJ fi’ — ~~ ,1t ~

*7. o , s rRIe uTIo N S T A T E M E N T  (of rh~ •bsI,.rl .., I~ ,•*’ in Bloc k 20. ii dIflo,.nt i,o, n R.po.P)

*5. SUPPLEMENTARY NOTES

Ii . KEY WORDS (ConIinus on I•osfss •id. ii n.c...a..y .d idsnfiiy by bto.~k n,m,b..)

Queue approximations M/G/1 systems
Maximum entropy GI G/ i systems
Information theory

20 A eSTRA CT (CnnUnos on ..‘.a. .Id. If n.c ..u.y wd id.ntIfy by bIo~ k n..mt .,) 
_ ,,

. 
—

The behavior of single server queuing systems is characterized by various bo$erformance distri-
butions”~inc1uding distributions of queue length , waiting time , residence time, busy period , numbe r
served in a busy period , etc. In principle , if the arrival and service time distributions are known
exactly , then these performance distributions can be computed using standard techniques. We
consider the problem of estimating the distributions when only the first few moments of the
service time distribution are known . Our approach uses standard relations to compute moments ...~~ 4,4~ /
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20. Abstract (Continued)

of the performance distributions from the known moments of the service time distribution and
the principles of maximum entropy and minimum cross-entropy to estimate the performance dis-
tributions themselves. For M/G/ 1 systems with known average arrival rates, we derive analytic
results for cases when one or two moments of the service time distribution are known, and we
show how one can compute results using as many moments of the service time distribution as
are available. For G/G/i systems, our results are limited to the case in which only the average
arrival and service rates are known . Among the results obtained with this Information theoretic
approach is a new light-load approximation for the M/M/i busy period probability density.
Throughout the paper , we illustrate our approach using M/MI 1, M/H 21 1, and MI D/ i  examples.
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I. INTRODUCTION

For single server queuing sys tems , we consider the problem of estimating

various interesting probability densities and distributions when only partial

knowledge of the service time distribution is available. In particular, we

consider M/G/1 systems: customers arrive with independent, exponentially

distributed interarrival times from an infini te customer pool , wait in an

infini te capac ity queue, are served independently by a single server wi th a

general service time d istribution, and return to the customer pool. The

performance of such systems depends on the details of the service time

distribution and is charac terized by various interes ting probability

distribut ions and densities , including queue length , busy period length,

nu~~er served during a busy period, waiting time, etc. We refer to these as

the “performance distributions.” In prh~ciple, given the service time

probability densi ty s( t) , one can compute the performance distributions using

standard techniques Efl—r3h But suppose, instead of s(t) , one knows only its

first n moments

— S dt ~m5 (t) . (1)

What is the best way to use this information in estimating the performance

distributions?

Our approach exploits the fact that moments of the performance

distributions are themselves determined by the service time moments (1) and

the average arrival time (a sufficient statistic of the exponential

interarrival time density). For example, the first n moments of the

dis tribution of the number of customers served during a busy period can be

expressed in terms of the the average arrival time and the firs t n moments of
Note: Manuscript submitted May 29, 1979.

1
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s(t). Thus, the information (1) giving moments of 8(t) is equivalent to

information giving moments of the performance distributions. Given this

information , we use the principle of maximum entropy to estimate the

performance distributions themselves. Because entropy maximization has been

shown to be a uniquely correct, self—consistent method of inference about

probability distributions when new information is in the form of expected

values [4), [5], we refer to the resulting estimates of the performance

distributions as information theoretic approximations.

The remainder of this paper is organized as follows: Section II

summarizes the principles of maximum entropy and minimum cross—entropy (a

generalization), and discusses inf ormally the sense in which these princ iples

provide correct, general methods of inductive inference. Information

theoretic approximations for M/G/l queue length, number served in busy period ,

busy period length, residence time, and waiting time are discussed , with

examples, in Sections 111—Vt. In these applications we assume uniform

distributions for estimates of the performance distributions available prior

to learning the service time moments (1). Additional applications involving

the use of non—uniform prior estimates of the performance distributions are

suggested in Section VII. Some results for GIG/i systems are derived in

Section VIII. Discussion follows in Section IX.

II. ENTROPY MAXIMIZATION AND CROSS-ENTROPY MINIMIZATION

A. The Maximum Entropy Principle and the Minimum Cross—entropy Principle

Suppose you know that a sys tem has a set of possible states x1 with

unknown probabili t ies qt(x.), and you then learn constraints on the

2

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ J~~~I~J~~ ~~~~~~ V - - . . . 
V



— 
— . _~ V~ ~~~~~~~~~~~~~~~~~~~~~ — ~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

distribution qt : either values of certain expec tations L ~ (x
i
)f
k
(xi)

or bounds on these values. Suppose you need to choose a distribution q that is

in some sense the best est imate of qt given what you know. Usually, there

remains an infini te set of distributions that are not ruled out by the

constraints. Which one should you choose?

The principle of maximum entropy states that, of all the distributions q

that satisfy the constraints, you should choose the one with the largest

entropy -

~~~~~ ~ 
q(x

1
)log(q(x

1
)). Entropy maximization was first proposed

as a general inference procedure by Jaynes [61 . Since then , it has been

applied successfull y in a remarkable variety of fields, including traffic

ne tworks 17] , and queuing theory [81. For a lengthy list of applications and

references , see [51 .

The principle of minimum cross—entropy is a generalization that applies in

cases when a prior distribution p that estimates qt is known in addition to

V the constraints. The principle states that, of the distributions q that

satisfy the constraints, you should choose the one with the least cross—

entropy 
~ 

q(x~ )log(q(x
1
)/p (x~)). Minimizing cross—entropy is

equivalent to maximizing entropy when the prior is a uniform distribution.

Unlike entropy maximization, cross—entropy minimization generalizes correctly

for continuous probability densities. One then minimizes the functional

5 dx q(x)log(q(x)/ p(x)) . (2)

The name cross—entropy is due to Good [91 . Other names include expec ted

weight of evidence 110, p. 721 , direc ted divergence [ii, p. 71, and

discrimination information [11, p. 371. First proposed by Rullback

[11, p. 371, the principle of minimum cross—entropy has been advocated in

H 3
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various forms by others [9], 112], [13], including Jaynes [14] , who obtained

(2) with an “invariant measure” playing the role of the prior density . Like

entropy maximization, cross-entropy minimization has been applied in many

fields (see 151).

B. Justifying the Principles as General Methods of Inference

Until recently , entropy maximization was justified best on the basis of

entropy ’s unique properties as an uncertainty measure. That entropy has such

properties is undisputed: one can prove, up to a constant factor, that entropy

is the only function satisfying axioms that are acce pted as requirements for

an uncertainty measure [15]. Intuitively , the maximum entropy principle

follows quite naturally from such axiomatic characterizations. Jaynes states

that the maximum entropy distribution “is uniquely determined as the one which

is maximally noncommittal with regard to missing information” 16, p. 623], and

that it “agrees with what is known, but expresses ‘maximum uncertainty ’ with

respec t to all other matters , and thus leaves a maximum possib le freedom for

our final decisions to be influenced by the subsequent sample data” [14, p.

2311. Somewhat whimsically, Benes justified his use of entropy maximization

as “a reasonable and systematic way of throwing up our hands” 17, p. 2341 .

Similar justifications can be advanced for cross—entropy minimization.

Like entropy, cross—entropy has various properties that are desirab le for an

information measure 1121,1131 , and one can argue 1161 that cross—entropy

measures the amount of information necessa ry to change a prior p into a

posterior q. The principle of minimum cross—entropy then follows intuitively

much like entropy maximization.

To some , entropy ’s unique properties make it obvious that entropy

maximization is the correct way to account for constraint information. To

4
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others , such an informal and intuitive justification yields plausibili ty but

not proof -—— why maximize entropy ; why not some other function? As a result,

entropy maximization has remained controversial despite its success.

Recently, we have obtained a new, forma l justi f ica tion for entropy

maxim ization using a different approach 15]. This approach is based on the

V observation that previous justifications are weak , not only because they rely

on informal, intuitive arguments, but also because they are indirect ——— they

are based on a formal description of what is required of an information

measure rather than on a formal description of what is required of a method

for taking new information into account.

Our approach in 15] was to formalize the requirements of inductive

inference directly in terms of a set of consistency axioms that make no

reference to information measures or properties of information measures. All

of the axioms are based on a single fundamental principle: If a problem can be

solved in more than one way, the results should be consistent. Informally,

the axioms may be phrased as follows:

1) Uniqueness. The results of taking new information into account should

be unique.

2) Invariance. It shouldn ’t matter in which coordinate system we account

for new information.

3) System independence. It shouldn ’t matter whether we account for

independent information about independent sys tems separately in terms

of different probability densities or together in terms of a joint

density.

4) Subset Independence. It shouldn ’t matter whether we account for

information about an independent subset of system states in terms of a

separate conditional density or in terms of the full system density.5
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We were then able to prove that the principle of maximum entropy is correct in

the following sense: Given information in the form of cons traints on expected

values, there is only one distribution satisfy ing these constraints that can

be chosen in a manner that satisfies the axioms; this unique distribution can

be obtained by maximizing entropy. This result for entropy maximization was

obtained both direc tly and as a special case (uniform priors) of an analogous,

more general result for the principle of minimum cross—entropy.

C. Mathematics of Entropy Maximization and Cross—entropy Minimization

We treat entropy maximization as a special case of cross—entropy

minimization. Let ~~, denote a single state of some system that has a i~et ~ of

possible system states and a probability densi ty qt (x) of states. We assume

that the existence of qt is known but that q~ itself is unknown. Given p(,~),

a prior density that is our current estimate of qt~ we wish to selec t a

pos terior q(x) based on new information that qt (and therefore q) must sa tisfy

the expected value constraints

Jdx q(~~ g~(~~ ~~~ 
= 1r 

(3)

for a known set of bounded functions g~ (x) and numbers r 1,...,n.

The solution to this inference problem is obtained by varying q(x) so that the

cross—entropy

H(q,p) $ d x q x l o g qi x / p x~~ (4)

is minimized subject to the constraints (3) and the normalization constraint

$ d x q x  — 1 . (5)

6
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Mathematically, the solution is obtained using the method of Lagrangian

multipliers and standard techniques from the calculus of variations. The

minimization condition is

log(q(~ )/ p(x)) + ~ + + 
r ~~ g~~(x) 0 , (6)

where the and 
~~ 

are L
~~ rangian multipliers correspond ing to the

constraints (3) and (5). The solution of (6) is

q(~ ) = p(~ )exp(— ~ — 

r ergr
(
~

)) ,

where ~~ = + 1. It is convenient to write (7) in the form

q(x) = Z 1p(~ )exp(— 
~ r 

a~g~ (x)) , (8)-

where Z is the “partition function”,

Z exp (Q) = 5dx  p(x)exp(—~~ r ~~
g (x)) . (9)

The values of the multipli ers 
~r 

are determined by the known expec tation

values in (3). One can express the posterior q directly in terms of the

values j  by solving the equations

— —1 ~z5r ~~~~~~
r

- 

~~~ 
log(Z) (10)

for the 
~r’ 

or by substituting (8) into the constraint equations (3) and

solving for the 6r~ 
Such solutions are often difficult or impossible to

obtain analytically, but one can obtain them computationally in general

[4 , Appendix B), (17).

7 
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The principle of minimum cross—entropy also app lies when , in addition to

equality constraints (3), we gain new information in the form of a bound on an

expec ted value,

$dx q(x)g(x) E <g) ~ . (11)

Such an inequality constraint is ha.dled as follows: First one solves for the

minimum cross—entropy density given only the equality constraints (3). If the

resulting density happens to satisfy (11), then this density is the overall

solution. If (11) is not satisfied , then the overall solution is the minimum

cross—entropy density given (3) and the additional equality constraint (g) =

The principle of maximum entropy applies when one has constraint

information (3) but no prior. In this case one selects the posterior by

maximizing the posterior entropy

}I(q) = J d~ q(x)log(q(x ))
D

subjec t to the constraints (3) and (5) .  The solution is the same as ( 6 ) — ( 9 )

with p(x) deleted. In general, selecting a posterior by maximizing entropy is

equivalent to assuming a uniform prior and minimizing cross—entropy [5].

8

~~~~~~~~~~~~ . ~~~~~~~~~~~~~~~~~ i~~~1~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~ 
_ _ _ _



— 
~~~~~~~~~ ~~~~~~~ _  ~~ - ‘VTVT - 

~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

III. N/C/i QUEUE LENGTH DISTRIBUTION

We consider an M/G/l queuing system with an average arrival rate X and a

service t ime probability density 8(t )  with moments (see (1)). Let

be the probability that k customers are in the sys tem (queued or being

served), and let c be the momentsm

c — ~~~~ kmq~ (k) -

The first moment c
1 

is just the expected number of customers in the system.

In this Section, we use the Pollaczeck—IChinchin formula to express c1 in

terms of the first two service time moments ~~ s~ , and we derive a

maximum entropy est imate of q~ (k) given c1. We then derive a formula

expressing c
2 

in terms of 5
~~
, 
~2’ 

and 83, and we compute maximum

entropy estimates of q given c
1 

and c
2
. As examples, we consider

N/N/i , N/H
2/ l, and MID/i systems.

The result of maximizing the entropy of q subjec t to the single known

constraint c1 
and the normalization constraint ~ ~q~ (k) 1 is

q~(k) = z le B
~
( 
, ( 12)

where

Z = 

k 0  

e~~~~ = (1 - e~~ )
l (13)

(see ( 8 ) — ( 9 ) ) .  We apply (10) in order to express the mult ipl ier  ~ in terms

V of the constraint c 1,

V B —1
c1 —~~~log(Z) (e — 1) -

9 
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This yields e B 
— c1/( 1 + c

1), which we use (with (13)) to eliminate

B from (12):

q~ (to) 1 
~ 

c
1 

~k (14)
1 + c1 ~i + c1)

This expression gives the maximum entropy estimate of 
~~ 

direc tly in terms

of the known information c1.

Now, knowledge of and 
~2 

yields knowledge of c
1 
by the

Pollaczeck—Xhinchen formula 13, p. 187]

— + ~ 2 ( l + C 2
~

1 2 ( l — p )

— p + ~2 (15)
2 (1 — P )

where p = Xs1, and C is the coefficient of variation

C — Thus , (14) and (15) provide an information

theoretic approximation to for an N/C/i system given the average arrival

rate and the first two moments of the service time density.

As an example application, we consider an M/H2/ 1 sys tem solved exac tly

by Kleinrock 13, pp. 195—96]. The service time distribution is

8 (t )  = ~ Xe~~
t + ~ (2X)e

_2Xt 
, (16)

for which 
~ 

= Xs~ = 5/8 and C2 31/25. Substituting these values into

(15) yields c 1 1.79166. The information theoretic approximation (14) then

b ecomes

q~ (k) = 358209( 641791)k . (17)

10
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The exact solution for is [3, p. 1961

q~(k) - 3 (2)k + 9
(2)

k 
. (18)

We compare the one-moment approximation (17) with the exact solution (18) in

the first three columns of Table I.

The extremely close agreement arises because the exact solution (18) is

the sum of two similar geometric terms~ which can be approximated closely by a

single geometric term (17). In general, the single—moment result (14) can be

thought of as providing the geometric distribution that is the bes t

information theoretic approximation to

If the exact solution itself happens to be geometric, then the

approximation (14) will be the same as the exact solution. For example,

suppose that the service time distribution is exponential 8(t )  =

Then (15) reduces to c1 — p/(l — p ) ,  with p — Xs1 — X/~ , and the

approximation (14) becomes q~(k) — (1 — P )~k, which is the well—known

exact solution for the N/Nil system 13, p. 96].

If other moments besides c1 are known, the maximum entropy es timate of

will no longer in general be geometric. In order to illustrate

multi-moment approximations, we begin by deriving an expression for c
2 
in

terms of the service time moments 8
m• 

Our starting point is the relation

c2 c1 
+ X2r2 , (19)

where r
2 

is the second moment of the system residence t ime probability

den8ity [3, p. 2401. The moments rm 
are related to the 8

m 
and to the

moments of the waiting time probability density by

rk 
- 

~~ (~)wk_1
s1 , (20 )

i _ a

11 V 

~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



where v0 1 13, p. 2021, and the w
m 

are in turn related to the

5m 
by the Takacs recurrance formula 13 , p. 201)

A ~~~
‘ /k\ 5

i+1
w = I w (21)k 1 - p L \i/ i + 1 k—i

By combining (15) , (20) , and (21) with (19), we obtain
2 42 3 3X s 2 X S 2 A s

3 ~
‘
~~l~2 2

c2 ~~+ + 2 + + + X s 2
2(1 — p) 2(1. — p) 3(1 — p) (1 — p) (22)

Now the maximum entropy solution for q~ (k) given c
1 and c2 cannot be

expressed analytically in terms of the moments s , so we resort to numerical

techniques. We use an APL function written by Johnson 118] that computes

maximum entropy distributions given arbitrary expected value constraints.

This function requires that the constraints (3) be written in the form

2.k g~
(k)q(k) = 0

The APL function accepts as input the matrix Mrk 8r
(k) and uses the

Newton—Raphson method to find the maximum entropy solution for q(k). When the

known expected values are moments c , the input matrix becomes

= km _ c
m

For the M/H2/1 example, we have c1 — 1.79166 from before. The moment

8
3 
15 easily obtained from (16), and c2 

8.68055 follows from (22).

Using the APL function to find the maximum entropy appproximations for q

given c 1 and c2, we obtain the results shown in the fourth column in Table

I. This approximation, which was computed for 50 points, required 1.5 CPU

seconds on a DEC PDP—1O KI processor. It is worth noting that single—moment

12
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results from the APL function agreed with the analytic expression (14) up to

eight digits.

As an additional example, we consider a system with constant

(“deterministic”) service time 1/p. ——— i.e., M/D/l. The service time

probability density is s(t) 6(t — 1/p.), with moments

8m 
— 11

m (23)

We use (23) , (15), and (14) to obtain a single-moment approximation for

and we use (23), (22), (15), and the APL function to obtain a two-moment

approximation. For X — 1 and p. — 2, the results are shown in Table II

together with simulation results. The simulation result q~ (k) is the

relative amount of time the system had k customers present during an overall

period covering 5000 arrivals. The two—moment approximation in Table It

required 1.6 CPU seconds.

Approximations involving more moments can be computed similarly since c
m

can in general be expressed as a function of ~~~~~~~~~~ ——— one method is

to differentiate the Pollaczek—Khinchin transform equation 13, p. 1941. But

the accuracy of the two—moment approximation for the M/11
2/1 and M/D/i

examples , which have radically different service time densities , and the

reduction of the one-moment approximation to the exact result in the N/N/i

case , together suggest that the two-moment approximation will in general be

quite accurate for M/G/l systems. This is only a conjecture, however , and

more detailed studies are needed.

13
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F IV. NUMBER SERVED IN A N/G/l BUSY PERIOD

If the system is empty and a customer arrives at time t1, and if t
2 

is

the next time at which the system is empty, then the period between t1 and

is called a busy period. Let q~(k) be the probability that the number

of customers served in a busy period is k, and let be the moments of

As before, we assume that the mean arrival rate A and some moments of

the service time density s(t) are known.

Now the first four moments of can be expressed in terms of the first

four moments of a as follows [2, p. 158]:

1
— 1 — p

n — 

l + X 2K2
2 (~~~~p)

n — 

3(1 + X
2
K2)

2 

— 

2 — X
3
K~ 

(24 )

3 (l — p) (1 — p)

n — 

6 + X41(4 
- 

10(1 + X
2
1
2
)(2 - A3K3) 

+ 
15(1 + X

2
K2)

3

(1 — p) (l — p) ( 1 — p ) 7

where p — As
1 

— K
1 and the K are the cumulants (semi—invariants)

—

2
K2 

—

(25)

K3 — 8
3 

- 

~~~~ 
+ 2s~

2 2 4
K4 

— 84 
- 

~~~~~ 
- 

~~~ 
+ 12a 1~2 

—
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Thus , for example , knowing the mean service time is equivalent to

knowing the mean number served during a busy period (n
1). The maximum

entropy distribution in this case is

q~ (k) — Z e 81
~ ,

V where

z — ~~~~~ — (eB’~ j)
1

1

From (10) we have

— — 
~ log(Z) — (e8 — 1)

_i
1

which we use to express q
~ 

directly in terms of the known constraint

k
q~(k) — 

1 (n 1 —_1) 
(26)

n1 -1 \ n
1

This result differs from the previous single moment result (14) because the

domain of q0(k) is k — 1,..., ~ instead of k — 0,...,~~ . Using the relation

n1 
— 1/(1 — p) (see (24)), (26 ) becomes

q~ (k) — (1 — p) ~k 1  (27)

where p — A s1. Eq. (27) provides an information theoretic approximation to

the number served in a busy period for an N/C/i system given the mean arrival

rate and the mean service time.

Now, unlike the case for the distribution the distribution for

an fl/N/i system is not geometric. In fact, the exact result is [3, p. 2181

— .1 (2k : 2) ~k_1(1 + ~)
l-2k (28)

-- 
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This gives an opportunity to show how knowledge of higher moments than

can be used to provide better approximations than (27). Now, for an N/fl/I

system with s(t) — p.e~~
t
, the moments s are

— m!/p.
m 

. (29)

For a given ?. and p. , we use (29), (25), and (24) to compute the moments

and we use the APL function to compute the maximum entropy distribut ion

q~ (k) given the In Table III , for A = 2 and p. = 8, we compare the

exac t solut ion (28) with the single moment approximation (27) and the four

moment approximation computed by the APL function. (As should be expected ,

approximations based on two and three moments fall between the approximations

shown.) In Table IV we present the same comparison for A 1 and p. = 2.

As another example, we again consider the N/D/1 system. As in the N/N/i

case , the exac t result for is known , namely 13, p. 2191

q~ (k) = 
(kg)~~~ e ’~ (30)

For a given A and p. , we use (23) , (25), and (24) to compute the nm and

then the APL func tion to compute maximum entropy approximations to q
~
.

Results comparing the exact solution (30) with one— and four—moment

approximations are given in Table V and VI. (The values for A and p. are the

same as those for the fl/N/i examples in Table III and Iv.) The four-moment

approximations in Tables V and VI required about 1.5 CPU seconds each.

V. M/C/1 BUSY PERIOD LENGTH

We now consider the probability density q~(t) for the length of the busy

16 
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period. The first four moments of q~(t)

I m
b — dt t q~(t)m

can be expressed in terms of A and the service time moments s as follows:

b1 
— 1 - p

b2 
— ~2

(1 — (31)

2
5, 3Xs

b = +
(1 - p) 4 (1 - p)5

S . lOAs s l5X 2
s3

_ _ _ _ _  
2 3  2

b = 5 + 6~~~ 7
(1 — p) (l — p) (1 — p)

where, as usual , p — As 1 13 , pp. 214—51 .

If only 
~1 

is known, then only b
1 
is determined. The resulting maximum

entropy solut ion for is q~(t) — (11b 1)exp(—t/b1). (We omit the

standard derivation, which is just the continuous analog of the derivation of

(14).) Combining this solution with the expression for b1 from (31) yields

= (p. ’ — A  )e~~~ 
— A  ) t (32)

where p.’ L/ s~~. Eq. (32) provides an information theoretic approximation

to the busy period probability density for an N/C/i system given the mean

arrival rate and the mean service time.

If higher moments than are known, then better approximations can be

obtained using (31) and the numerical techniques described in Section IV.

These techniques must be modified slightly since here we are dealing with a

continuous probability density. To put the problem into a discrete form, we

- — 
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approximate the moment integrals by

b
m 

— S:dt tmq~ ( t) 
~ 

$ dt tmq~ ( t)

~~

for some sufficiently large T, where the are widths of intervals

surrounding the points tk~ In these terms , the normalization constraint is

— q~(t) ~ ~~k ~~q~ (t~)

We can write the known constraints as

~..k 
q(k) — 1 (33 )

k (t~ 
— b~)q(k) — 0 , (34 )

where q(k) is a discre te distribution defined by q(k) = 
~~q~(t~).

From (33)—(34 ) we can use the APL func tion to compute the maximum entropy

distribution q(k) given the known moments bm~ The result yields an

approximate solution for at points tk, since q~(t~ ) = q(k)/ L~~.

As in the previous section, the exact solution for an N/N/i system is

known , namely [3 , p. 2151

q~ (t)  — 
1 e~~~

u1~~
t I1(2t ~r~

) , (35)

where I~ is the modified Bessel function of the first kind (order one). We

therefore illustrate the foregoing by assuming 8(t) to be exponential, 
V

computing various approximations based on (31) and (29), and comparing the

results with (35). Results for the case A — S and p. — 10 are shown in Fig.

1. Results for the case A — 1 and p. — 10 are shown in Fig. 2 for the

18
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one—moment approximation and in Table VII for the four-moment approximation at

selected points. The single moment approximations, which were computed by the

APL function, agree in both cases with (32).

The results in Fig. 2 suggest that (32) might be a good light—load

app roximation for the M/M/1 busy period density (35) . Although systematic

studies are needed to support this conjecure , it appears from a few addi tional

runs that, for p~~~.1, (32) is accurate to within 5—10% in the range where the

cumulative probability dis t r ibut ion of q~~(t )  is as large as about .95. The

conjecture is supported further by the following argument , which is due to

A. E. Ephremides [181 : Equation (2 )  is identical to the exact N/N/i residence

t ime probability density 13 , p. 2021 . Since most busy periods will consist of

single customer residences under ligh t load conditions , it makes sense that

the busy period should tend to (2 ) .

VI. M/C/1 RESIDENCE TINE AND WAITING TIME

Residence time is the total time a customer spends in the system. Waiting

time is the interval between the arrival time and the time at which service

• begins. Moments r
m 

of the residence time probability density q~(t) can be

expressed in terms of the service time moments 8m 
by using (20) and (21).

For example, we have

As 2
— 2(1 — ) +

(36)
As

- 
2

2(l - p) A

where p As1. This is related to (15) by Little ’s result Ar1 
— C

1
. The

maximum entropy densi ty q~ (t) given r1 is just

— (l/ r 1)exp(— t/r1
) . (37)

19
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Eqs. (36)—(37 ) provide an information theoretic approximation to the residence

time probability density for an fl/C/i system given the mean arrival rate and

the f i rs t  two moments of the service time density. If higher moments than

are known , then better approximations for can be obtained by using

(20), (21), and the computational methods discussed earlier.

For an N/N/i sys tem, (36 ) reduces to r 1 
= p/A( 1 — p )  and (37 becomes

g~(t) — p.(l —p)exp(—p .(1 —p )t), where p.— 1/s~ , which is the exact fl/fl/i

solution 13, p. 2021 . This behavior is similar to that of the one-moment

approximation for q~(k) discussed in Section III. The similarity arises

from (37) being the continuous analog of (14) and from Little ’s result.

The situation for waiting times is somewhat more complicated . Let

be the waiting time probability density with moments w .  The V can be

expressed in terms of the 8
m 

using (21); for example,

As (38)
— 2
2(1 — p )

where p — As1. The maximum entropy solution given just w
1 

is

— (l/w 1)exp(—t/w1
) . (39)

In the fl/N/i case , (38) becomes w1 
= p/p.(1 — p )  and (39) becomes

q~(t) 
— (p ./ p ) ( i  — p)exp(—p.(l — p ) t / p )  , (40)

in contrast to the exact filM/ i result (3, p. 2031

q~(t) 
= (1 — p)6(t) + X(l — p)exp(—p.(l — p)t) . (41)

Eqs. (40) and (41) have the same mean w1, but (40) lacks the implulse term

at t = 0 that results from the finite probability q~ (O) that the sys tem is

20
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empty when a customer arrives. We can, however, improve on (40) by noting

that and 
~2 provide information abou t q~ ( O) .  In particular , we have

— (1 + c1)~~

(1 + p + w1
)

from ( 14) . Now the total probability in q~ (t) that is concentrated at t = 0

must equa l ~~ (O) .  We express this fact as

lim J d t  u5 (t ) q~ (t )  = ~ (o) = (1 + p + Xw
1
)~~ , (42)

where

u (t) fi~ t~~~~€

1~o , t > ~~

But the integral in (42 ) is just a constraint (3) that we can impose in

addition to the moment constraint $dt tq~ (t )  = w1. The maximum entropy

density that sat isf ies  these constraints is

q~ (t )  (Aw 1 + p + iY ~~~(t )  + w1B
2exp (—Bt) , (43)

where

B 
p +Xw 1 (44)

w1(1 + p + Aw 1
)

Eqs. (43) , (44 ) , and (38 ) provide an information theoretic approximation to

the wai ting time probability density for an N/C/ i system given X and

Unlike (39) , (43 ) reduces to (41) in the M/ 14/1 case w1 
= p / p . ( l  — p  ).

VII. SOME C/C/i RESULTS

We consider a C/C/i queue that has a probability density of interarrival

21
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V.,

times a(t )  with moments am and a probability density of service t imes s(t )

with moments We discuss approximations for the case in which only a1
and 

~i 
are known.

Eq. (14) is the maximum entropy distribution of queue length q g iven

the f i rs t  moment c1. The probability that the system is empty is therefore

= (1 + c
1
)~~ . (45)

Now , if the G/C/ 1 system is in equilibrium,

(1 — = 1/ a1

must hold. Solving for q~ (O) and substi tut ing the result into (45) yields

— s / a
C
1 

— 1 1 (46 )
(1 — s1/a 1)

Eq. (15) then yields

q~ (k) (1 — 

~ 
)pk (4~)

where p = s l /a i . This is an information theoretic approximation for the

C/C/ i queue length given the f i rs t moments of the arrival and service t ime

densities. As was the case for the M/G/ 1 approximation ( i 4 ) — ( 15) , Eq. (47)

yields the exact N/N/i  result when a(t )  and s(t )  are exponential. Stated

dif ferent ly , (47 ) shows that the N/N/ i  result is also the proper information

theoretic approximation for G/G/ i systems given only a1 and s
~~
.

Next we consider the residence t ime density q .  Eq. (46 ) and Li t t le ’s

result c1 
= r1/a 1 yield

r
1 

— s
~~

/
~~ 

— s1/a 1) .

22 
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The maximum entropy density ~~ given r 1 is then

= p .( 1 — p ) exp (— p .( i  — p )t) . (48 )

where p = s1 /a 1 and p. 
= i/ s~~. This is an information theoretic

approximation for the C/C/i queue length given the f i r s t  moments of the

arrival and service time densities. Like the N/C/i approximation (36)—(37),

(48) yields the exact N/N/i result when a(t )  and s(t )  are exponential and also

shows that the N/N/i result is the proper information theoretic approximation

for C/C/i systems given only a1 and s,.

Similar arguments based on results from Section VI apply in the case of

the waiting time density w~. In this case, the C/C/ i approximation given

ai and is

q~~( t)  = (1 — p )6(t) + A( 1 — p )exp(—p.(i — p ) t )  . (49)

where p = s1/a 1 and p. 
= l/ s~~.

VIII .  USING NON-UNIFORM PRIORS

Since entropy maximization is equivalent to cross—entropy minimization

with a uniform prior (Section II), the information theoretic approximations

discussed in Sections III—VII are properly thought of as being based on

uniform prior estimates of the performance distr ibutions. If information

abou t the performance distribut ions in addition to the s is available andm

can be expressed as non—uniform prior approximations, it is likely that better

approximations would result. For example , if it is suspec ted tha t the service

time densi ty s( t) is nearly exponential, it would be reasonable to use M/N/ 1

23
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performance distributions as prior approximations of N/C/i distributions . As

V a specific example, suppose we wish to estimate the busy period density 
~~

based on measurements of A , a1 and As a prior approximation, we use

the exac t N/N/i result (35 ) with p. = sp and we compute the moments b 1 and

b2 from 
(3i). We obtain a posterior approximation by minimizing

cross—entropy with respect to the prior subject to the constraints b
1 and

b2. If 
~2 

happens to satisfy

= 2s~ , (50)

which would always be the case if 5(t) were exponential , then the posterior

would be unchanged from the prior since the N/N/ i prior i tself sat isf ies  the

constraints b1 and b
2
. If (50) is not satisfied , then the M/M/ l prior

does not satisfy the constraints b1 and b
2 and the posterior will be

different. In an information theoretic sense, however, it will be the closest

distribution that satisfies the constraints.  Figure 3 shows an examp le in

which two—moment approximations for were computed using both uniform and

N/N/ i  priors. The parameters in both cases were A = 5, a1 
= .1 and

82 
= .04 . The second moment is larger than it would be if s( t )  were

exponential ——— the coefficient of variation is 1.74 instead of one. Since

A = 5 and l/s~ = 10, the non—uniform prior used in computing the result in

Fig. 3 is the same as the N/N/l curve shown in Figure 1. The results in Fig.

3 were obtained using an APL function that finds a minimum cross—entropy

posterior given an arbitrary prior and an arbitrary constraint matrix 1181 .

L 
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IX. DISCUSSION

There are at least three possible uses for the results in this paper .

First , the techniques presented could be used as a general method of compu t ing

the performance distributions in cases where all of the service density

moments are available , i.e., when the density s(t) is known exactly. Second,

the analytic approximations ——— (14) and (15) , (27), (32), (36) and (37), (38)

and (43) , (47 )— (49 ) ——— could be useful in various studies whenever explici t

forms for the performance distributions are required . Third, and probably

best, the techniques provide a means of estimating the performance

distributions when only the f i rst  few moments of s(t) are known and s(t)

itself is not known.

How accurate are these information theoretic approximations ?

Unfortunately, about all that can be said in general is that the

approximations are the least—biased choices given the information available.

To use the language of statistics [11), the approximations are the hypotheses

that are best supported by the information available. Depending on the actual

performance distribution and the number of moments considered , an information

theoretic approximation may or may not be a good approximation in the
V 

mean—squared—error sense, although it is true that the mean—squared—error can

always be made suf f ic iently small by taking sufficiently many moments into

account. On the other hand , it is not generally known what kind of error

measure is best for judging the accuracy of performance distribution

approximations. It may well be that measures such as mean—squared—error are

less important than information measures such as cross—entropy.

25
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More can be said about the queue length distribution and the busy

period density 
~~ 

because , although an explicit proof is lacking, it seems

clear that these must be monotonically decreasing functions for a wide class

of fl/G/l systems. If so, then and don ’t have basic stucture that

would be seen in approximations based on many moments but not seen in

approximations based on only a few moments. This in turn means that the basic

shape will be revealed by approximations based on the fir st few moments , and

suggests that a large number of moments will not in general be required in

order to achieve low mean—squared—error. In the case of the queue length

distribution, the diverse examples discussed in Sec tion III sugges t that a

two-moment approximation may in general be quite good. Assuming that both

and are monotonic , it seems reasonable to conjec ture that both the

mean—square—error and its rate of change will decrease monotonically wi th the

V 
number of moments used. If true, this would help in judg ing how close the

approximation is to the unknown true distribution.

Queuing models , particularly ones with Poisson arrivals and exponentially

distributed service times, have been used with remarkable success in the

performance modeling and analysis of computer systems. Because computer

systems do not satisfy many assumptions made by the stochastic process models

that are used, this success has been somewhat puzzling. The results presented

in this paper show that the information theory viewpoint may be the bes t one

from which to understand this success. For example, Sec tion VII showed that

various M/M/! formulas are also information theoretic approximations for C/C/i

26
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systems . That is , the fl/N/i formulas are the best hypotheses about G/G/i

behavior given only the mean arrival and service rates. Thia fact has nothing

at all to do with the various assumptions that must be debated when

considering the applicability of stochastic models.
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Table I

Comparison of exac t and approximate solutions
for N/H2/1 queue length distribution

q~(k) q~(k) qc (k)
k (exact) (1 moment (2 moment

approx.) approx.)

0 .375 .358 .367
1 .225 .230 .229
2 .i40 .148 .144
3 .0893 .0947 .0914
4 .0580 .0608 .0583
5 .0380 .0390 .0375
6 .0251 .0250 .0243
7 .0166 .0161 .0158
8 .0110 .0103 .0104
9 .00734 .00662 .00688
10 .00489 .00425 .00458

Table II

Comparison of information theoretic approximations and
simulation results for M iD/ i  queue length distribution.

(A l a n d p. 2)

k q~(k) q~(k) q~(k)(simulation) (1 moment (2 moment
approx.) approx.)

0 .50 .57 .51
1 .33 .24 .30
2 .12 .10 .13
3 .038 .045 .044
4 .0093 .019 .011
5 .0025 .0083 .0022
6 .00047 .0035 .00033
7 .0000081 .0015 .000037
8 0 .00065 .0000032
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Table III

Comparison of exac t and approximate solutions for
distribution of number served in an M/M/1 busy period.

(A 2 and p. = 8)

q~(k) q0(k) q~ (k)
k (exac t) (1 moment (4 moment

approx.) approx.)

1 .800 .750 .793
2 .128 .187 .142
3 .0410 .0469 .0372
4 .0164 .0117 .0133
5 .00734 .00293 .00611
6 .00352 .000732 .00334
7 .00177 .000183 .00205
8 .000921 .0000458 .00134
9 .000491 .0000114 .000888
10 .000267 .00000286 .000567

Table IV

Comparison of exact and approximate solutions for
distribution of number served in an M/M/l busy period.

(A  = 1 and p. — 2)

q0(k) q~ (k) q~ (k)
k (exact) (1 moment (4 moment

approx.) approx.)

1 .666 .500 .629
2 .168 .250 .195
3 .0658 .125 .0737
4 .0365 .0625 .0332
5 .0227 .0312 .0174
6 .0i52 .0156 .0104
7 .0106 .00781 .00696
8 .00765 .00391 .00511
9 .00567 .00195 .00404
10 .00428 .000977 .00337
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Table V

Comparison of exact and approximate solutions for
distribution of number served in an M/D/i busy period.

(A — 2 and p. — 8)

q~(k) q0(k) q0(k)
k (exact) (1 moment (4 moment

approx.) approx.)

1 .779 .750 .767
2 .151 .187 .169
3 .0443 .0469 .0433

- j 4 .0153 .0117 .0127
5 .00583 .00293 .00426
6 .00235 .000732 .00169
7 .000990 .000183 .000682
8 .000430 .0000458 .000321
9 .000191 .0000114 .000167
10 .0000863 .00000286 .0000949

Table VI

Comparison of exact and approximate solutions for
distribution of number served in an M/D/i busy period.

(A i and p. =2)

q~ (k) qn (k) q~ (k)
k (exact) (1 moment (4 moment

approx.) approx.)

1 .606 .500 .589— 

2 .184 .250 .208
3 .0837 .125 .0868
4 .0451 .0625 .0420
5 .0267 .0312 .0230
6 .0168 .0156 .0140
7 .0110 .00781 .00927- - 

8 .00744 .00391 .00657
9 .00515 .00195 .00490
10 .00363 .000977 .00378

30
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Table VII

Comparison of exact and four—moment approximation
for probabili ty density of fl/fill busy period length

(A — 1 and p. — 10)

q~ ( t) q~(t)time (exact) (4 moment
approx.)

.01 8.96 9.05

.03 7.22 7.27

.05 5.84 5.87

.07 4.74 4.75

.09 3.87 3.87

.11 3.17 3.16

.13 2.60 2.59

.15 2.14 2.14

.25 0.861 0.854

.35 0.373 0.369

.45 0.171 0.171
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Fig. 1 - Exact and approximate fi/M/i busy period probability
densities (A — 5, p. — 10)
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Fig. 2 - Exact and i-moment approximation for N/N/i busy
period probability density (A — 1, p. = 10)
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Fig . 3 - Twn-moment approximations for N/G/l busy period probability
density using uniform and N/H/i priors (A = = .1, 

~2 = .04)
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