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I. INTRODUCTION

For single server queuing systems, we consider the problem of estimating
various interesting probability densities and distributions when only partial
knowledge of the service time distribution is available. In particular, we
consider M/G/]1 systems: customers arrive with independent, exponentially
distributed interarrival times from an infinite customer pool, wait in an
infinite capacity queue, are served independently by a single server with a
general service time distribution, and return to the customer pool. The
performance of such systems depends on the details of the service time
distribution and is characterized by various interesting probability
distributions and densities, including queue length, busy period length,
number served during a busy period, waiting time, etc. We refer to these as
the "performance distributions." In principle, given the service time
probability density s(t), one can compute the performance distributions using
standard techniques [1]-[3]. But suppose, instead of s(t), one knows only its

first n moments

5 e fd: Ms(t) . (1)

What is the best way to use this information in estimating the performance
distributions?

Our approach exploits the fact that moments of the performance
distributions are themselves determined by the service time moments (1) and
the average arrival time (a sufficient statistic of the exponential
interarrival time density). For example, the first n moments of the

distribution of the number of customers served during a busy period can be

expressed in terms of the the average arrival time and the first n moments of
Note: Manuscript submitted May 29, 1979.




s(t). Thus, the information (1) giving moments of s(t) is equivalent to
information giving moments of the performance distributions. Given this
information, we use the principle of maximum entropy to estimate the
performance distributions themselves. Because entropy maximization has been
shown to be a uniquely correct, self-consistent method of inference about
probability distributions when new information is in the form of expected
values [4], [5], we refer to the resulting estimates of the performance
distributions as information theoretic approximations.

The remainder of this paper is organized as follows: Section II
summarizes the principles of maximum entropy and minimum cross-entropy (a
generalization), and discusses informally the sense in which these principles
provide correct, general methods of inductive inference. Information
theoretic approximations for M/G/1l queue length, number served in busy period,
busy period length, residence time, and waiting time are discussed, with
examples, in Sections III-VI. In these applications we assume uniform
distributions for estimates of the performance distributions available prior
to learning the service time moments (1). Additional applications involving
the use of non~uniform prior estimates of the performance distributions are
suggested in Section VII. Some results for G/G/1 systems are derived in

Section VIII. Discussion follows in Section IX.

I1. ENTROPY MAXIMIZATION AND CROSS-ENTROPY MINIMIZATION

A. The Maximum Entropy Principle and the Minimum Cross-entropy Principle

Suppose you know that a system has a set of possible states x; with

unknown probabilities q'(xi), and you then learn constraints on the

e o % e i i st Cil, il PPN (PTIVE. SRR SRR
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distribution q': either values of certain expectations Z‘iq (xi)fk(xi)

or bounds on these values. Suppose you need to choose a distribution q that is
in some sense the best estimate of q* given what you know. Usually, there
remains an infinite set of distributions that are not ruled out by the
constraints. Which one should you choose?

The principle of maximum entropy states that, of all the distributions q
that satisfy the constraints, you should choose the one with the largest
entropy -EE i q(xi)log(q(xi)). Entropy maximization was first proposed
as a general inference procedure by Jaynes [6]. Since then, it has been
applied successfully in a remarkable variety of fields, including traffic
networks [7], and queuing theory [8]. For a lengthy list of applications and
references, see [5].

The principle of minimum cross-entropy is a generalization that applies in
cases when a prior distribution p that estimates q' is known in addition to
the constraints. The principle states that, of the distributions q that
satisfy the constraints, you should choose the one with the least cross-
entropy }2 i q(xi)log(q(xi)/p(xi)). Minimizing cross-entropy is
equivalent to maximizing entropy when the prior is a uniform distribution.
Unlike entropy maximization, cross-entropy minimization generalizes correctly

for continuous probability densities. One then minimizes the functional

Idx q(x)1log(q(x)/p(x))

The name cross—entropy is due to Good [9]. Other names include expected
weight of evidence [10, p. 72], directed divergence [1l1, p. 7], and
discrimination information [11, p. 37]. First proposed by Kullback

[11, p. 37], the principle of minimum cross-entropy has been advocated in
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various forms by others [9], [12], [13], including Jaynes [14], who obtained
(2) with an "invariant measure" playing the role of the prior demsity. Like
entropy maximization, cross-entropy minimization has been applied in many
fields (see [5]).

B. Justifying the Principles as General Methods of Inference

Until recently, entropy maximization was justified best on the basis of
entropy's unique properties as an uncertainty measure. That entropy has such
properties is undisputed: one can prove, up to a constant factor, that entropy
is the only function satisfying axioms that are accepted as requirements for
an uncertainty measure [15]. Intuitively, the maximum entropy principle
follows quite naturally from such axiomatic characterizations. Jaynes states
that the maximum entropy distribution "is uniquely determined as the one which
is maximally noncommittal with regard to missing information" [6, p. 623], and
that it "agrees with what is known, but expresses 'maximum uncertainty' with
respect to all other matters, and thus leaves a maximum possible freedom for
our final decisions to be influenced by the subsequent sample data" [14, p.
231]. Somewhat whimsically, Benes justified his use of entropy maximization
as "a reasonable and systematic way of throwing up our hands" [7, p. 234].

Similar justifications can be advanced for cross-entropy minimization.

Like entropy, cross-entropy has various properties that are desirable for an

information measure [12],[13], and one can argue [16] that cross-entropy

measures the amount of information necessary to change a prior p into a
posterior q. The principle of minimum cross-entropy then follows intuitively
much like entropy maximization.

To some, entropy's unique properties make it obvious that entropy

maximization is the correct way to account for constraint information. To
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others, such an informal and intuitive justification yields plausibility but
not proof --- why maximize entropy; why not some other function? As a result,
entropy maximization has remained controversial despite its success.

Recently, we have obtained a new, formal justification for entropy
maximization using a different approach [5]. This approach is based on the
observation that previous justifications are weak, not only because they rely
on informal, intuitive arguments, but also because they are indirect --- they
are based on a formal description of what is required of an information
measure rather than on a formal description of what is required of a method
for taking new information into account.

Our approach in [5] was to formalize the requirements of inductive
inference directly in terms of a set of consistency axioms that make no
reference to information measures or properties of information measures. All
of the axioms are based on a single fundamental principle: If a problem can be
solved in more than one way, the results should be consistent. Informally,
the axioms may be phrased as follows:

1) Uniqueness. The results of taking new information into account should

be unique.

2) Invariance. It shouldn't matter in which coordinate system we account

for new information.

3) System independence. It shouldn't matter whether we account for

independent information about independent systems separately in terms
of different probability densities or together in terms of a joint
density.

4) Subset Independence. It shouldn't matter whether we account for

information about an independent subset of system states in terms of a

separate conditional density or in terms of the full system density.
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We were then able to prove that the principle of maximum entropy is correct in

the following sense: Given information in the form of constraints on expected
values, there is only one distribution satisfying these constraints that can
be chosen in a manner that satisfies the axioms; this unique distribution can
be obtained by maximizing entropy. This result for entropy maximization was
obtained both directly and as a special case (uniform priors) of an analogous,
more general result for the principle of minimum cross-entropy.

C. Mathematics of Entropy Maximization and Cross-entropy Minimization

We treat entropy maximization as a special case cf cross-entropy
minimization. Let x denote a single state of some system that has a set D of
possible system states and a probability density q'Qg) of states. We assume
that the existence of q' is known but that q¥ itself is unknown. Given p(x),
a prior density that is our current estimate of q', we wish to select a
posterior q(z) based on new information that q'* (and therefore q) must satisfy

the expected value constraints

’ (3)

Idg aeig (s} = (g = T,
D

~

for a known set of bounded functions grgg) and numbers Er, T = l,ceeyNls
The solution to this inference problem is obtained by varying q(x) so that the

cross—-entropy

Ha,p) = | dx a(x)log(a(x)/p(x)) ()
D

~

is minimized subject to the constraints (3) and the normalization constraint

jdzq(x) -1 ", (5)
D ~

e




Mathematically, the solution is obtained using the method of Lagrangian
multipliers and standard techniques from the calculus of variations. The

minimization condition is

log(q(x)/p(x)) + 1 + o * Zr Brgr(lg) = 0, (6)

where the B, and o, are lsizrangian multipliers corresponding to the

constraints (3) and (5). The solution of (6) is
q(x) = p(x)exp(- a - z c Pe8.(x)), (7)
where o = a, + 1. It is convenient to write (7) in the form

q(x) = Z-lp(;g)exp(- Zr Brgr(gg)) % (8)

where Z is the "partition function",

2 = exp(@) = Jdeg‘g p(exp(-) B g () . (9

~

The values of the multipliers Br are determined by the known expectation
values Er in (3). One can express the posterior q directly in terms of the

values 'g'r by solving the equations

w 1 EE
& - BBr

"
36, log(2) (10)

for the B,» or by substituting (8) into the constraint equations (3) and
solving for the B+ Such solutions are often difficult or impossible to
obtain analytically, but one can obtain them computationally in general

[4, Appendix B], [17].




The principle of minimum cross-entropy also applies when, in addition to

equality constraints (3), we gain new information in the form of a bound on an

expected value,

| & awew = @ > 7 . (11)
D

~

Such an inequality constraint is ha.dled as follows: First one solves for the
minimum cross-entropy density given only the equality constraints (3). If the
resulting density happens to satisfy (11), then this density is the overall
solution. If (11) is not satisfied, then the overall solution is the minimum
cross—entropy density given (3) and the additional equality constraint (g) = g.
The principle of maximum entropy applies when one has constraint
information (3) but no prior. In this case one selects the posterior by

maximizing the posterior entropy

H(Q) = | dx a(x)log(a(x))
D

~

subject to the constraints (3) and (5). The solution is the same as (6)-(9)

with p(x) deleted. In general, selecting a posterior by maximizing entropy is

equivalent to assuming a uniform prior and minimizing cross-entropy [5].
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III. M/G/1 QUEUE LENGTH DISTRIBUTION

We consider an M/G/l queuing system with an average arrival rate A and a
service time probability demsity s(t) with moments s, (see (1)). Let
qc(k) be the probability that k customers are in the system (queued or being
served), and let o be the moments
@®
i m
¢, = ) W®q (0 .
k=0

The first moment c is just the expected number of customers in the system.

in

In this Section, we use the Pollaczeck-Khinchin formula to express )

terms of the first two service time moments 819 Sy and we derive a
maximum entropy estimate of qc(k) given ;e We then derive a formula
expressing <, in terms of Y and 84, and we compute maximum
entropy estimates of q. given < and o As examples, we consider
M/M/1, M/HZ/I, and M/D/1 systems.

The result of maximizing the entropy.of q, subject to the single known

constraint < and the normalization constraint zz ch(k) =1 is

g () = g ta Bk (12)
where
z = z P P R (13)
k=0

(see (8)-(9)). We apply (10) in order to express the multiplier B in terms

of the constraint s

cy --Sglog(z) a TP =1y,




This yields P

= cll(l + cl), which we use (with (13)) to eliminate
B from (12):

k

qc(k) = : ).
1+ < A <,

This expression gives the maximum entropy estimate of 9. directly in terms

(14)

of the known information e, -
Now, knowledge of s, and s, yields knowledge of < by the

Pollaczeck-Khinchen formula [3, p. 187]

2)
g = P # p2 Sl_:_g__
Hr s py
2
- pow A (15)

-y

where p = Xsl, and C is the coefficient of variation
C= (s2 - sf)%/sl. Thus, (14) and (15) provide an information
theoretic approximation to q, for an M/G/1 system given the average arrival
rate and the first two moments of the service time density.
As an example application, we consider an M/Hzll system solved exactly

by Kleinrock [3, pp. 195-96]. The service time distribution is

s = fae 4 3 et (16)

for which p = lsl = 5/8 and 02 = 31/25. Substituting these values into

(15) yields c, = 1.79166. The information theoretic approximation (14) then

becomes

q (k) = .358209(.641791)% . (17)

10
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The exact solution for q is [3, p. 196]

k k
q () = %(%) + 5%(%) : (18)

We compare the one-moment approximation (17) with the exact solution (18) in

the first three columns of Table I.
The extremely close agreement arises because the exact solution (18) is
b the sum of two similar geometric terms. which can be approximated closely by a
! single geometric term (17). In general, the single-moment result (14) can be
thought of as providing the geometric distribution that is the best
information theoretic approximation to q.-
If the exact solution itself happens to be geometric, then the
; approximation (14) will be the same as the exact solution. For example,
suppose that the service time distribution is exponential s(t) = ue-ut.
Then (15) reduces to ¢, = p/(1 =p), with p = As; = A u, and the
approximation (14) becomes qc(k) = (1 - p)pk, which is the well-known
exact solution for the M/M/1 system [3, p. 96].
If other moments besides c, are known, the maximum entropy estimate of
q, will no longer in general be geometric. In order to illustrate
multi-moment approximations, we begin by deriving an expression for c, in

2

terms of the service time moments 8¢ Our starting point is the relation
€y, = ¢, * N'r, (19)

where r, is the second moment of the system residence time probability

density [3, p. 240]. The moments r  are related to the $n and to the

moments w_ of the waiting time probability density by

k

k
% By o™ Z(i)wk-isi ’ (20)

] 1=0




where w) = s, = 1 (3, p. 202], and the v are in turn related to the

s by the Takacs recurrance formula [3, p. 201}

k

Schigi Zk $1+1
Vi R (i) T T Mt (21)
1=1
By combining (15), (20), and (21) with (19), we obtain
kzsz 14s§ X333 K38182 2
c, = p+ + 5+ + +1\%s,
2(1 -p) 21 -p) (L =p) (1=-p) (22)
Now the maximum entropy solution for qc(k) given ¢, and ¢, cannot be

expressed analytically in terms of the moments s s 80 we resort to numerical
techniques. We use an APL function written by Johnson [18] that computes
maximum entropy distributions given arbitrary expected value constraints.

This function requires that the constraints (3) be written in the form
A
Z,k g (Kq(k) = 0 .

The APL function accepts as input the matrix M, = gr(k) and uses the
Newton-Raphson method to find the maximum entropy solution for q(k). When the

known expected values are moments e the input matrix becomes

m
Mmk = gm(k) = k - ey -

For the H/Hzll example, we have ¢ = 1.79166 from before. The moment

8, is easily obtained from (16), and c, = 8.68055 follows from (22).

2
Using the APL function to find the maximum entropy appproximations for 9.
given <y and Cyy we obtain the results shown in the fourth column in Table

1. This approximation, which was computed for 50 points, required 1.5 CPU

seconds on a DEC PDP-10 KI processor. It is worth noting that single-moment




results from the APL function agreed with the analytic expression (14) up to |
eight digits. j

As an additional example, we consider a system with constant i
("deterministic") service time 1/p --- i.e., M/D/1. The service time

probability density is s(t) = 6(t - 1/p), with moments

s, = 1" . (23)

We use (23), (15), and (14) to obtain a single-moment approximation for 9
and we use (23), (22), (15), and the APL function to obtain a two-moment :
approximation. For ) =1 and y = 2, the results are shown in Table II |
together with simulation results. The simulation result qc(k) is the

relative amount of time the system had k customers present during an overall

period covering 5000 arrivals. The two-moment approximation in Table II

required 1.6 CPU seconds.

Approximations involving more moments can be computed similarly since n

can in general be expressed as a function of 8y seces8 --- one method is

m+]
to differentiate the Pollaczek-Khinchin transform equation [3, p. 194]. But
the accuracy of the two-moment approximation for the H/Hzll and M/D/1
examples, which have radically different service time densities, and the
reduction of the one-moment approximation to the exact result in the M/M/1

case, together suggest that the two-moment approximation will in general be

quite accurate for M/G/1 systems. This is only a conjecture, however, and

more detailed studies are needed.

13




IV. NUMBER SERVED IN A M/G/1 BUSY PERIOD

If the system is empty and a customer arrives at time ty and if t, is
the next time at which the system is empty, then the period between t and

t, is called a busy period. Let qn(k) be the probability that the number

2
of customers served in a busy period is k, and let n be the moments of

LI As before, we assume that the mean arrival rate )\ and some moments of
the service time density s(t) are known.

Now the first four moments of q, can be expressed in terms of the first

four moments of s as follows [2, p. 158]:

= 1 .
" 1-p
2
1+ 1K,
u =

. (1 - p)3

31+ %)% 2 - x3x3 (24)
n, = =
2 a-p° a-p*
6+ x4x4 1001 + xzxz)(z . x3x3) 15(1 + x2x2)3
L 5 6 ki 7
(1-9p) (1 - p) (1 -9p)
where P = lsl = Kl and the Km are the cumulants (semi-invariants)
Kl = 81
z & 2
K2 82 81
(25)

+ 12555, = 38

NN - W

4
1

14

K, = 8, -~ és3sl - 3s

TRy S Ty
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Thus, for example, knowing the mean service time (sl) is equivalent to
knowing the mean number served during a busy period (nl). The maximum

entropy distribution in this case is

-1,-gk

,

qn(k) = Z

where

2 = Yo o Pt
k=]

From (10) we have

n, = - dlg@ = (& -n7,
KR
which we use to express q, directly in terms of the known constraint n,:
k
g0 = ! (“1 1) (26)
n, - 1 n,

This result differs from the previous single moment resalt (14) because the
domain of qn(k) is k = 1,..., ® instead of k = 0,...,® . Using the relation

s 1/(1 - p) (see (24)), (26) becomes
q (0 = (1 -p)p*] (27)

where ¢ = As,. Eq. (27) provides an information theoretic approximation to
the number served in a busy period for an M/G/1 system given the mean arrival
rate and the mean service time.

Now, unlike the case for the distribution 9 the distribution q, for

an M/M/1 system is not geometric. In fact, the exact result is [3, p. 218]

q (0 =i (2‘; . f) p*"l1 + 12K (28)




This gives an opportunity to show how knowledge of higher moments than 8,

can be used to provide better approximations than (27). Now, for an M/M/1

-t

system with s(t) = pe ", the moments s, are

=
sn m!/u . (29) 4
'!
h For a given } and p , we use (29), (25), and (24) to compute the moments
§ | no and we use the APL function to compute the maximum entropy distribution

qn(k) given the n. In Table III, for A = 2 and y = 8, we compare the
3 exact solution (28) with the single moment approximation (27) and the four

moment approximation computed by the APL function. (As should be expected,

—r

approximations based on two and three moments fall between the approximations
shown.) In Table IV we present the same comparison for A\ =1 and y = 2.

As another example, we again consider the M/D/1 system. As in the M/M/1

e

! case, the exact result for q, is known, namely [3, p. 219]

k-1
q () = Ql%—e'k" (30)

For a given )\ and p , we use (23), (25), and (24) to compute the n_and
then the APL function to compute maximum entropy approximations to %
Results comparing the exact solution (30) with one- and four-moment
approximations are given in Table V and VI. (The values for A and pu are the |
same as those for the M/M/1 examples in Table III and IV.) The four-moment

approximations in Tables V and VI required about 1.5 CPU seconds each.
V. M/G/1 BUSY PERIOD LENGTH

We now consider the probability density qb(t) for the length of the busy




T T T e

period. The first four moments of qb(t)

(-]
bm Ldt t qb(t) .

can be expressed in terms of A and the service time moments s, as follows:

s
1
L i~p
b-__sz_
2 1 3
(1-9) (31)
Sy 3ks§
B MetEmma o B
(1 -p) (1 = p)
23
s, 10As,.s 150"s
b, = 3 +_2“"'3-+ 2

S a- a-o°  a-p’
where, as usual, p = Xsl [3, pp. 214-5].
If only s, is known, then only bl is determined. The resulting maximum
entropy solution for q, is qb(t) = (llbl)exp(-t/bl). (We omit the
standard derivation, which is just the continuous analog of the derivation of

(14).) Combining this solution with the expression for bl from (31) yields

-\t

g (t) = ' aye @ (32)

where |, ' = llsl. Eq. (32) provides an information theoretic approximation
to the busy period probability density for an M/G/1 system given the mean
arrival rate and the mean service time.

If higher moments than s, are known, then better approximations can be
obtained using (31) and the numerical techniques described in Section IV.
These techniques must be modified slightly since here we are dealing with a

continuous probability density. To put the problem into a discrete form, we
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approximate the moment integrals by

i m 4 m
b = Ldt t qb(t) ~ Ldt tq, (t)

% Zk Bty (ty)

for some sufficiently large T, where the Ak are widths of intervals

surrounding the points t,e In these terms, the normalization constraint is
5 3
1= [atq® = ), 8t .

We can write the known constraints as

-

) a0 = 1 (33)
zk (g - b )q(k) = 0 , (34)

where q(k) is a discrete distribution defined by q(k) = Akqb(tk).
From (33)-(34) we can use the APL function to compute the maximum entropy
distribution q(k) given the known moments b . The result yields an
approximate solution for q, at points tr since qb(tk) = q(k)/ By -

As in the previous section, the exact solution for an M/M/l system is

known, namely [3, p. 215]

1 (vt ™
q (¢) = —_ I.(2t FYTH I (35)
: e M !

where I, is the modified Bessel function of the first kind (order one). We
therefore illustrate the foregoing by assuming s(t) to be exponential,

computing various approximations based on (31) and (29), and comparing the
results with (35). Results for the case A = 5 and 4 = 10 are shown in Fig.

1. Results for the case A = 1 and p = 10 are shown in Fig. 2 for the

18
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one-moment approximation and in Table VII for the four-moment approximation at

selected points. The single moment approximations, which were computed by the
APL function, agree in both cases with (32).

The results in Fig. 2 suggest that (32) might be a good light-load
approximation for the M/M/1 busy period density (35). Although systematic
studies are needed to support this conjecure, it appears from a few additional
runs that, for p<.l, (32) is accurate to within 5-10% in the range where the
cumulative probability distribution of qb(t) is as large as about .95. The
conjecture is supported further by the following argument, which is due to
A. E. Ephremides [18]: Equation (2) is identical to the exact M/M/l residence
time probability density [3, p. 202]. Since most busy periods will consist of
single customer residences under light load conditions, it makes sense that

the busy period should tend to (2).

VI. M/G/1 RESIDENCE TIME AND WAITING TIME

Residence time is the total time a customer spends in the system. Waiting
time is the interval between the arrival time and the time at which service
begins. Moments B of the residence time probability demsity qr(t) can be
expressed in terms of the service time moments s by using (20) and (21).

For example, we have

ksz
e e T T M
A (36)
¥a
— 4
2(1 - p) A

where p = ksl. This is related to (15) by Little's result xrl =c. The

maximum entropy density qr(t) given T, is just
qr(t) = (llrl)exp(-t/rl) o (37)

19

B ]




Eqs. (36)-(37) provide an information theoretic approximation to the residence

time probability density for an M/G/1 system given the mean arrival rate and

the first two moments of the service time density. If higher moments than

2
(20), (21), and the computational methods discussed earlier.

For an M/M/1 system, (36) reduces to r

gr(t) = (1 - plexp(-u(l -p)t), where u= 1/s), which is the exact M/M/1
solution [3, p. 202]. This behavior is similar to that of the one-moment
approximstion for qc(k) discussed in Section III. The similarity arises

from (37) being the continuous analog of (14) and from Little's result.

are known, then better approximations for q, can be obtained by using

= p/A(1 - p) and (37 becomes

The situation for waiting times is somewhat more complicated. Let qw(t)

be the waiting time probability density with moments v The W, can be

expressed in terms of the s wusing (21); for example,

) (s XSZ
2(1-9) ’

where p = \s,. The maximum entropy solution given just w, is
e 1 1
qw(t) = (llwl)exp(-t/wl) y

In the M/M/1 case, (38) becomes w, = p/p(l = p) and (39) becomes

1
qw(t) = (p/p)(1 =plexp(-u(l = p)lt/p) ,

in contrast to the exact M/M/1 result [3, p. 203]

qw(t) = (1 -p)8(t) + A1 = plexp(-pu(1l -p)t) .

Eqs. (40) and (41) have the same mean Wy but (40) lacks the implulse term

at t = 0 that results from the finite probability qc(O) that the system is

(38)

(39)

(40)

(41)




empty when a customer arrives. We can, however, improve on (40) by noting

that s, and s, provide information about qc(O). In particular, we have

1
-1
qc(O) = (1 + cl)

= (1 +p + kwl)-1

from (14). Now the total probability in qw(t) that is concentrated at t = 0

must equal qc(O). We express this fact as

lim [dt u (O)q () = q (0 = (1+p +rup™t (42)
€0
where
UG(t) = } 4 i &
0, t>e¢ .

But the integral in (42) is just a constraint (3) that we can impose in
addition to the moment constraint ‘[dt tqw(t) = w;. The maximum entropy

density that satisfies these constraints is

qw(t) = Qw, +p + D7 (e) + wleexp(—Bt) 5 (43)
where
B p ¥ : (44)

wl(l +p + lwl)

Eqs. (43), (44), and (38) provide an information theoretic approximation to
the waiting time probability density for an M/G/l system given A and S1»

s,. Unlike (39), (43) reduces to (41) in the M/M/1 case v, pu(l =p ).

2

VII. SOME G/G/1 RESULTS

We consider a G/G/1 queue that has a probability density of interarrival

21




times a(t) with moments a and a probability density of service times s{t)
with moments Sy We discuss approximations for the case in which only a,
and s, are known.

Eq. (14) is the maximum entropy distribution of queue length 9. given

1 the first moment e The probability that the system is empty is therefore
q.(0) = (1 +c)h (45)
c 1
Now, if the G/G/1 system is in equilibrium,
(1 - qc(O))/s1 = l/a1

must hold. Solving for qc(O) and substituting the result into (45) yields

s,/a
ut LIt (46)
(1 = sl/al)
Eq. (15) then yields
} k
q (k) = (1 -p)p ’ 47)
£ c
3
* where p = sllal. This is an information theoretic approximation for the

G/G/1 queue length given the first moments of the arrival and service time
densities. As was the case for the M/G/l approximation (14)-(15), Eq. (47)
yields the exact M/M/1 result when a(t) and s(t) are exponential. Stated
differently, (47) shows that the M/M/1 result is also the proper information
f theoretic approximation for G/G/1 systems given only a, and s,.

Next we consider the residence time density 9, Eq. (46) and Little's

result e = rl/al yield

r, = 81/(1 - sllal).

1
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The maximum entropy density q, given r, is then
qr(t) = p(l -plexp(-u(l -p)t) . (48)

where p = s1/a1 and py = llsl. This is an information theoretic
approximation for the G/G/1 queue length given the first moments of the
arrival and service time densities. Like the M/G/l approximation (36)-(37),
(48) yields the exact M/M/1 result when a(t) and s(t) are exponential and also
shows that the M/M/1 result is the proper information theoretic approximation
for G/G/1 systems given only a, and s,.

Similar arguments based on results from Section VI apply in the case of
the waiting time density wee Inm this case, the G/G/1 approximation given

al and s1 is

qw(t) = (1 -p)6(t) + A(1 -plexp(-u(l -p)t) . (49)

where p = sllal and p = llsl.

VIII. USING NON-UNIFORM PRIORS

Since entropy maximization is equivalent to cross-entropy minimization
with a uniform prior (Section II), the information theoretic approximations
discussed in Sections III-VII are properly thought of as being based on
uniform prior estimates of the performance distributions. If information
about the performance distributions in addition to the L is available and
can be expressed as non-uniform prior approximations, it is likely that better
approximations would result. For example, if it is suspected that the service

time density s(t) is nearly exponential, it would be reasonable to use M/M/1
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performance distributions as prior approximations of M/G/1 distributions. As
a specific example, suppose we wish to estimate the busy period density 9
based on measurements of )\, s, and Sye As a prior approximation, we use

the exact M/M/1 result (35) with p = $,» and we compute the moments b, and
b2 from (31). We obtain a posterior approximation by minimizing

cross-entropy with respect to the prior subject to the constraints b1 and

bz. 1f s, happens to satisfy
2
4, = 28, (50)

which would always be the case if s(t) were exponential, then the posterior
would be unchanged from the prior since the M/M/1 prior itself satisfies the
constraints b1 and b2' If (50) is not satisfied, then the M/M/1 prior

does not satisfy the constraints b, and b2 and the posterior will be

1
different. In an information theoretic sense, however, it will be the closest
distribution that satisfies the constraints. TFigure 3 shows an example in
which two-moment approximations for q, were computed using both uniform and
M/M/1 priors. The parameters in both cases were A = 5, s, = .1 and

s, = .04. The second moment is larger than it would be if s(t) were
exponential --- the coefficient of variation is 1.74 instead of one. Since
A =5 and 1/81 = 10, the non-uniform prior used in computing the result in
Fig. 3 is the same as the M/M/1 curve shown in Figure 1. The results in Fig.

3 were obtained using an APL function that finds a minimum cross-entropy

posterior given an arbitrary prior and an arbitrary constraint matrix [18].
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IX. DISCUSSION

There are at least three possible uses for the results in this paper.
First, the techniques presented could be used as a general method of computing
the performance distributions in cases where all of the service density
moments are available, i.e., when the density s(t) is known exactly. Second,
the analytic approximations --- (14) and (15), (27), (32), (36) and (37), (38)
and (43), (47)-(49) --- could be useful in various studies whenever explicit
forms for the performance distributions are required. Third, and probably
best, the techniques provide a means of estimating the performance
distributions when only the first few moments of s(t) are known and s(t)
itself is not known.

How accurate are these information theoretic approximations?
Unfortunately, about all that can be said in general is that the
approximations are the least-biased choices given the information available.
To use the language of statistics [11], the approximations are the hypotheses
that are best supported by the information available. Depending on the actual
performance distribution and the number of moments considered, an information
theoretic approximation may or may not be a good approximation in the
mean-squared-error sense, although it is true that the mean-squared-error can
always be made sufficiently small by taking sufficiently many moments into
account. On the other hand, it is not generally known what kind of error
measure is best for judging the accuracy of performance distribution

approximations. It may well be that measures such as mean-squared-error are

less important than information measures such as cross-entropy.




More can be said about the queue length distribution q, and the busy
period density 9 because, although an explicit proof is lacking, it seems
clear that these must be monotonically decreasing functions for a wide class
of M/G/1 systems. If so, then q, and 9 don't have basic stucture that
would be seen in approximations based on many moments but not seen in
approximations based on only a few moments. This in turn means that the basic
shape will be revealed by approximations based on the first few moments, and
suggests that a large number of moments will not in general be required in
order to achieve low mean-squared-error. In the case of the queue length
distribution, the diverse examples discussed in Section III suggest that a
two-moment approximation may in general be quite good. Assuming that both
q. and q, are monotonic, it seems reasonable to conjecture that both the
mean-square-error and its rate of change will decrease monotonically with the
number of moments used. If true, this would help in judging how close the
approximation is to the unknown true distribution.

Queuing models, particularly ones with Poisson arrivals and exponentially
distributed service times, have been used with remarkable success in the
performance modeling and analysis of computer systems. Because computer
systems do not satisfy many assumptions made by the stochastic process models
that are used, this success has been somewhat puzzling. The results presented
in this paper show that the information theory viewpoint may be the best one
from which to understand this success. For example, Section VII showed that

various M/M/1 formulas are also information theoretic approximations for G/G/1
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systems. That is, the M/M/1 formulas are the best hypotheses about G/G/1
behavior given only the mean arrival and service rates. This fact has nothing
at all to do with the various assumptions that must be debated when

considering the applicability of stochastic models.
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Table I

Comparison of exact and approximate solutions
for M/H2/1 queue length distribution

qc (k) qc (k) qc (k)
k (exact) (1 moment (2 moment
approx.) approx.)
: 0 .375 .358 .367
| 1 .225 .230 .229
i 2 .140 .148 .144
3 .0893 .0947 .0914
§ 4 .0580 .0608 .0583
5 .0380 .0390 .0375
6 .0251 .0250 .0243
7 .0166 .0161 .0158
8 .0110 .0103 .0104
9 .00734 .00662 .00688
10 .00489 .00425 .00458
Table II1

Comparison of information theoretic approximations and
simulation results for M/D/1 queue length distribution.
(A\=1and p = 2)

3 (simulation) (1 moment (2 moment
1 approx.) approx.)
0 .50 .57 .51
1 .33 .24 .30
2 .12 .10 .13
3 .038 .045 .044
4 .0093 .019 .011
5 .0025 .0083 .0022 1
6 .00047 .0035 .00033
7 .0000081 .0015 .000037
8 0 .00065 .0000032




Table III

Comparison of exact and approximate solutions for
distribution of number served in an M/M/1 busy period.
(A =2 and , = 8)

k (exact) (1 moment (4 moment
approx.) approx.)
1 .800 .750 .793
2 .128 .187 142
! 3 .0410 .0469 .0372
} 4 .0164 .0117 .0133
5 .00734 .00293 .00611
6 .00352 .000732 .00334
7 .00177 .000183 .00205
8 .000921 .0000458 .00134
9 .000491 .0000114 .000888
; 10 .000267 .00000286 .000567
x
?
Table IV

Comparison of exact and approximate solutions for
distribution of number served in an M/M/1 busy period.
(A=1andu = 2)

29

qn(k) qn (k) qqn (k)
k (exact) (1 moment (4 moment
approx.) approx.)
1 .666 .500 .629
2 148 .250 .195
3 .0658 .125 .0737
4 .0365 .0625 .0332
5 .0227 .0312 .0174
6 .0152 .0156 .0104
7 .0106 .00781 .00696
8 .00765 .00391 .00511
9 .00567 .00195 .00404
10 .00428 .000977 .00337




Table V

Comparison of exact and approximate solutions for
distribution of number served in an M/D/1 busy period.

(A =2 and p = 8)

’ k (exact) (1 moment (4 moment
approx.) approx.)
‘ 1 779 .750 .767
f 2 .151 .187 .169
? 3 .0443 .0469 .0433
E | 4 .0153 .0117 .0127
f 5 .00583 .00293 .00426
i 6 .00235 .000732 .00169
; 7 .000990 .000183 .000682
E 8 .000430 .0000458 .000321
| 9 .000191 .0000114 .000167
i 10 .0000863 .00000286 .0000949
|
Table VI
4 Comparison of exact and approximate solutions for
distribution of number served in an M/D/1 busy period.
(A =1andy =2)
qn(k) qn(k) qn(k)
k (exact) (1 moment (4 moment
approx.) approx.)
1 .606 .500 .589
2 .184 .250 .208
3 .0837 .125 .0868
4 .0451 .0625 .0420
5 .0267 .0312 .0230
6 .0168 .0156 .0140
7 .0110 .00781 .00927
8 .00744 .00391 .00657
9 .00515 .00195 .00490
10 .00363 .000977 .00378
3
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Table VII

1 Comparison of exact and four-moment approximation
3 for probability density of M/M/1 busy period length
[ (A =1 and p = 10)
; qp(t) qp(t)
time (exact) (4 moment
approx.)
.01 8.96 9.05
.03 7.22 7.27
= .05 5.84 5.87
.07 4.74 4.75
.09 3.87 3.87
.11 3.17 3.16
«13 2.60 2.59
.15 2.14 2.14
.25 0.861 0.854
.35 0.373 0.369
.45 0.171 0.171
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4-MOMENT APPROX.

1-MOMENT APPROX.
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Fig. 1 - Exact and approximate M/M/1 busy period probability
densities (A = 5, p = 10)
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Fig. 2 - Exact and l-moment approximation for M/M/1 busy
period probability density (A = 1, p = 10)
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RESULT WITH M/M/1 PRIOR

RESULT WITH UNIFORM PRIOR
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Fig. 3 - Two-moment approximations for M/G/1l busy period probability
density using uniform and M/M/1 priors (A = 5, 8, =

1, 85 = .04)
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