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Sumary

Detalls are given of an implicit six-point finite-difference scheme
for solving two-temperature chemical nonequilibrium laminar boundary-layer
flows in ionizing argon. The analysis extends previous work by considering the
radiation-energy loss and the chemical reactions in the plasma of the ionizing
boundary layer. The variations of transport properties based on the known
elastic-scattering cross-sections for an argon plasma across the boundary layer
are considered. The effects of the chemical reactions, radiation-energy loss
and the electric sheath on the boundary-layer structures are discussed. Both
the flat-plate and the shock-tube sidewall boundary layer flows are analyzed

. and compared with interferometric data obtained using the UTIAS 10 cm x 18 cm
Hypervelocity Shock Tube at shock Mach numbers Mg~13 and ~ 16 at an initial
argon pressure po ~ 5 torr and temperature To ~ 300 K. Fairly good agreement

" was obtained between analysis and experiment for both types of boundary layers.
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1. INTRODUCTION

1.1 General Considerations:

An understanding of boundary layer flows in partially ionized gases
is helpful in designing successful spacecraft for re-entry into the Earth's
atmosphere at hypersonic conditions. It also provides insight into the ph¥sical
phenomena of interactions between solid surfaces and plasma flows. The presence
of ions and electrons introduces new transport mechanisms and chemical reactions
in the boundary layer. The magnitude of the various transport properties of an
ionized gas can be markedly different from a perfect gas. Therefore, the boundary
layers in an ionizing gas are generally more complex than those in noniornized-gas
flows. Despite years of research,.boundary-layer flows of partially-ionized gases
are not fully understood experimentally and theoretically.

The character of the id_nizixgbounda.ry layer problem was schematically
described by Knods (Ref. 1). The following characteristics are important in
considering partially-ionized boundary-layer flows:

(a) Transport properties

(b) Interactions between moving plasma and metal surface
¢) Atomic-collision processes

d) Chemical reactions

(e) Radiation-energy transfer

(f) Electromagnetic fields

The full boundary layer problem is exceedingly complex, ‘and only a
few cases have been treated by early investigators. Usually, some approximations
are made to suit a given problem and to reduce the computation-time costs.

In general, a ﬁixtu.re of an ionizing gas is composed of molecules,

.atams, molecular ions, atomic ions and electrons. However, since the dissocia-

tion energy is much less than the ionization energy, ionization can be considered
to become appreciable only after dissociation is practically completed. There-
fore, the mixture is assumed to be composed only of atoms, atomic ions and
electrons. The presence of electrons in a gas introduces some features quite
different from those encountered in chemical dissociations. For example, the
collisional energy-transfer processes between electrons and heavy particles
(atoms and ions) are relatively slow, giving rise to the possible situation

that the electrons may have a temperature much different from that of the heavy
particles. The extremely low mass of the electrons yields a species possessing
a thermal conductivity that can be much greater than that of the other species.
When such a gas is in contact with a cold surface, a space-charge sheath is formed
which may affect the energy transfer to the surface. The electrons may have a
higher temperature than the heavy particles near the cool surfaces. In such
cases, the electrons make a greater contribution to the electrical and thermal
conductivity than would be expected solely on the basis of their number density.
Finally, the charged species are sensitive to electromagnetic fields yielding

a possible method of controlling the energy transfer processes between electrons
and ions. Therefore, the boundary-layer flows in ionizing gases are exceedingly
more complex than in nonionized or dissociated gases.

The state of the mixture of a.tcmq , ilons and electrons is uniquely
described by three independent state parameters: pressure, temperature and
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degree of ionization. In general, the mixture of an ionizing gas is in a state
of nonequilibrium, that is, both thermal nonequilibrium and chemical nonequili-
brium. In thermal equilibrium, which in general cannot be expected to occur in
a boundary-layer flow, the temperatures (Tg and Te) of both heavy particles and
electrons are equal. In chemical equilibrium, the degree of ionization a is
immediately adjusted to its local equilibrium velue, so that the degree of
ionization can be given as a function of pressure p and temperature T via the
Saha equation. In the frozen state, the electron number density production
rate ne is equal to zero. The following models have been considered by a
nunber of authors in solving ionizing boundary layer flows:

One-temperature equilibrium: T, =%.,a=12(y, T)
Two-temperature equilibrium: P T,, @ = f(p, T, or T,)
One-temperature frozen: Ty = Ty» n .
Two-temperature frozen: e # T,» fle =0
One-temperature nonequilibrium: T, =T, n 5 #0
Two-temperature nonequilibrium: T FT a® Do #0

The thermodynamic quantities and the descriptions of equilibrium,
frozen and nonequilibrium flows are given in Appendix B.

The following brief review may be helpful. Many investigators have
treated weakly ionized, collision-dominated boundary layers. Their main aim
was to study the effects produced on the electrical characteristics of Langmuir
probes. Examples are the incompressible flow of a weakly ionized gas treated
by Su and Lanb (Ref. 2) and the Couette-flow problem studied by Chung (Ref. 3).
The kinetic theory of ionized-gas flows was used in the analysis. Recently,
Chung, Talbot and Touryan (Ref. 4) have summarized the theoretical results for
electric probes.

Based on thermal equilibrium in temperature and chemical reactions,
Fay and Kemp (Ref. 5) have studied the heat transfer to a shock-tube end-wall
from an ionized monatomic gas and Knoos (Ref. 1) generalized it to a simple
thermal Rayleigh boundary layer in an equilibrium flow. Back (Ref. 6) studied
the heat transfer through a one-temperature laminar boundary layer from a par-
tielly-ionized gas to a highly-cooled wall for frozen and equilibrium-flow
models based on similar assumptions. A finite-difference method was applied
by Blottner (Ref. 7) to a one-temperature nonequilibrium laminar boundary layer
in ionizhg air. Park (Ref. 8) analyzed the frozen and equilibrium flow over a
flat plate and at an axisymmetric stagnation point based on similar and one-
temperature models. Finson and Kemp (Ref. 9) extended the theory of Fay and
Kemp to stagnation-point heat transfer. Using one-temperature and constant
transport properties, the equilibrium, frozen and nonequilibrium solutions were
obtained by Liu (Ref. 10) through an integral method.

For the two-temperature boundary layer, Sherman and Reshotko (Ref. 11)
have obtained the electron temperature profiles for chemical-equilibrium flow
based on similar solutions. Nishida and Matsuoka (Ref. 12) solved the similarity
equations for frozen flow with constant transport properties. Analyses of flat-
plate boundary layers in partially-ionized gases with thermal nonequilibrium and
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recambination were investigated by Tseng and Talbot (Ref. 13) based on similar
solutions and constant transport properties. Recently, Takano and Akamatsu
(Ref. 1k4) used a finite-difference method to solve the shock-tube side-wall
boundary-layer flow with constant transport properties. The thermal Rayleigh
boundary layer flow for partially-ionized argon with varied transport proper-
ties were studied numerically and experimentally by Mansfeld éRef. 15) for
thermal and chemical nonequilibrium cases. Honma and Komuro (Ref. 16) studied
an ionizing nonequilibrium boundary layer behind a moving shock wave by using
a finite-difference scheme.

The numerical methods for solving the boundary layer equations can
be divided into the following categories: .

éa.) Local-similarity method
b) Integral method

éc) Difference-differential procedure
d; Series-expansion method
Perturbation method

f) Finite-difference method

With the exception of the finite-difference -scheme, all these tech-
niques involve, in.one. way or another, the reduction of the nonlinear partial-
differential equations to ordinary—differential equations. In the local-
similarity method the history or the flow is ignored except insofar as it
appears in the calculation of the variable x (or &), where x is the coordinate
along the surface. This results in a set of ordinary-differential equations
with two-point boundary conditions. In the integral method one or more assump-
tions are made regarding the profiles of the flow quantities. The equations
used are obtained by taking suitable integrals of the boundary-layer equations
across the boundary layer. The boundary-layer equations reduce to a system of
ordinary-differential equations of the initial-value type. In the difference-
differential procedure, the derivatives in the direction along the surface
are replaced with finite-difference relations and the nonlinear partial-differ-
ential equations reduce to ordinary-differential equations with two-point
boundary conditions. In the series-expansion method, the coefficients of a
series in an x-dependent variable are obtained from a solution of ordinary-
differential equations. The expansion varisble depends on the external-flow
conditions. The perturbation method is based on the concept that a perturba-
tion of a known boundary-layer solution is considered and an expansion is
carried out in terms of a parameter. A critical review of the early work up
to 1969 was given by Blottner (Ref. 17).

Two difficulties exist in the analysis of ionizing boundary-layer
flows: (1) the evaluation of the reaction-rate coefficients near the wall,
(2) the boundary conditions for the degree of ionization and the electron
temperature at the wall. First, near the wall, where the temperature of the
heavy particles is in equilibrium with the wall temperature, the temperature
of the heavy particles is very small compared with that at the edge of the
boundary layer. Near the wall the electron-number density is also very low.
In this low temperature and low electron-number-density domain, thermal
ionization hardly occurs. Consequently, thermal transport processes will
dominate. The reverse chemical-reaction-rate coefficients for atom-ion-
electron and electron-ion-electron collisions are extremely large and difficult
to evaluate in that domain. Second, the boundary conditions for the degree of
ionization and the electron temperature at the wall are usually determined from
the collision-free sheath theory. However, some authors, for example Mansfeld
(Ref. 15), found that owing to the assumptions and incomplete description of the
electric sheath a comparison of theoretical and experimental results would be

3
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of questionable value. Careful experiments for electron-number density near
: . the wall must be done in order to check the validity of the electric-sheath
| theory.

{- The difficulty in using the finite-difference method for an ionizing

i : boundary layer lies in the stability of the scheme and in significant computa-

% tion times. The stability criterion for the set of strongly-coupled nonlinear

i partial—differential equations with their boundary conditions of a mixed
Neumann/Dirichlet type in the finite-difference scheme is difficult to evaluate.
In order to avoid the difficulty of stability, Mansfeld (Ref. 15) applied the
backward implicit method in the time-dependent one-dimensional Rayleigh problem.
However, his program is near the maximum acceptable computation time. In the
present two-dimensional boundary-layer flow, which is more complex than the
Rayleigh boundary-layer flow, the stebility criterion and computation time should
be examined carefully.

Blottner (Ref. 17) mentioned that the iteration procedure for controlling
the nonlinear terms is not required for a dissociated boundary-layer flow. However,
when the variations of the transport properties across the boundary layer are
taken into account in the ionizing boundary-layer equations, a successive iteration
procedure is necessary in the present problem. This iteration scheme increases
the computation time. Therefore, in the present calculation, the implicit six-
point finite-difference method and nonequidistant step sizes are applied in order
to decrease the computation time. ;

1.2 Scope of Present Work

The present paper gives the details of an implicit six-point finite-
difference scheme for solving the nonlinear partial—differential equations of
thermal and chemical—nonequilibrium boundary-layer flows in ionizing argon. The
transport properties evaluated from known elastic-scattering cross-sections of
the plasma are varied across the boundary layer. The radiation-energy loss of
the plasma and the appropriate chemical reactions are both considered. The
flat-plate and shock-tube sidewall boundary-layer flows are studied. The theore-
tical results are compared with interferometric measurements obtained in the ;
UTIAS Hypervelocity Shock Tube for argon boundary layers on a flat plate and J
on the shock-tube sidewall behind a shock wave under close initial conditions. i

In Chapter 2, the basic equations for laminar boundary-layer flows
in partially-ionized monatomic gases are discussed and transformed. The basic @
assumptions are evaluated. The transport properties and chemical-reaction rates ’
are considered using the known elastic and inelastic-scattering cross-sections
for an argon plasma (see Chapter 3) The initial and boundary conditions are
given in Chapter 4. The implicit six-point method of the finite-difference
scheme is presented and discussed in Chapter 5. The analytical and experimental
results are compared in Chapters 6 and 7 for flat-plate and shock-tube sidewall
boundary-layer flows, respectively. Discussions and conclusions are given in
Chapter 8. The explanation of the computer program is presented in Appendix A.

The computer program is listed in Appendix F.

1.3 Basic As sumptions

In the present analysis, the following basic assumptions a.ré used.

(1) For a mixture of atoms, ions and electrons, it will be assumed that each
species has a Maxwellian-velocity distribution with an appropriate temperature.

4
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The governing equations for the plasma motion can be obtained from
the Boltzmann equation by employing approximations to the distribution functions.
One of the cases for which the equations are solvable is when the particles have
a Maxwellian-velocity distribution. The assumption of a Maxwellian-velocity
distribution can be justified when all the gradients in the macroscopic properties
of the plasma are small and no external forces act on the plasma. In suck a case
the plasma flow is an isentropic flow, and it can be proven that the velocity
distribution is Maxwellian. The condition that the velocity distribution for
the electrons and ions is near a Maxwellian distribution is that the Larmor
radius is much greater than the mean-free-path, or the ela.stic-collision frequency
is to be large during the time—evolution process.

- Under this assumption the eva.luation of the binary-collision integrals
in the macroscopic equations can be greatly simplified. This assumption should
be valid for the region of the boundary layer except the sheath region adjacent
to the wall where the electron and ion-nunber densities are very low.

(2) Only a singly ionized species is considered. The electron-number density
can be assumed equal to the ion-number density. The plasma is quasi-neutral.
Therefore, the effects of elastic and magnetic fields on the boundary-layer
structure are neglected. The essential requirement for quasi-charge neutrality
is that the Debye length ig much smaller than the characteristic length of the
problem (Ref. 18). The ambipolar character of the diffusion process results
from this assumption providing that no electric currents cross the boundary.

The temperatures of heavy particles and electrons considered here are
much smaller than the ionization temperature. Therefore the assumption that
ions are singly ionized is valid in general. However, in the region adjacent
to the wall, a space-charge sheath exists wherein the gas is no longer quasi-
neutral. The sheath 'is composed of excess ions, yielding an electric field to
repel electrons. Therefore special consideration of the sheath region is needed.

(3) The atom and. ion temperatures are equal. Therefore, atoms and ions have
the same velocity. This assumption can be justified since the mass of the ions
is almost equal to that of atoms, and therefore only few collisions between atoms
and ions are necessary to reach a common temperature. Jaffrin (Ref. 27) has
investigated the structure of a steady plane shock in a partially ionizing gas
using the Navier-Stokes equations. He showed that ion temperature is almost
identical with atom tempersture in the whole region. However, the collisional
energy-transfer processes between electrons and heavy particles are relatively
slow, giving rise to a situation that electrons may have a temperature much
different from that of heavy particles. It is shown from the analysis of shock
structure that electrons have a much lower temperature than the heavy particles
in the ionization-relaxation zone. However, in a boundary layer, electrons may
have a higher temperature than the heavy particles near the cool surfaces.

ot bl ol 2o

Additional assumptions made in the present analysis are described in
Chapters 2 and 3.

1.4 Regions of Flow Near the Wall

As suggested by Dix (Ref. 18), three distinct regions exist near the ';
wall: (1) Oontinuum-flow region; away from the wall, the gas is quasi-neutral,
the ion-diffusion velocity is small, and the continuum equations are valid. The
boundary-layer equations described in this report should be applicable. (2) Tran-
sition region; near the wall but not adjacent to it, the gas remains quasi-neutral,
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but the ion-diffusion velocity is of the same order as the ion sound velocity.
The continuum equations are not valid. (3) Sheath region; in the region
adjacent to the wall, quasi-charge neutrality collapses near a catalytic
boundary. In this so-called sheath region with thickness on the order of a
Debye length, strong electric-field strengths are created in order to prevent
the plasma from being broken down in a very short time. The sheath is composed
of excess ions, yielding an electric field to repel electrons. The Boltzmann
equation is required in the latter two regions.

For the flow conditions considered in the present analysis, the thick-
nesses of the transition and sheath regions are very small compared with the
boundary-layer thickness. Since a major difficulty exists in the solution of
the transition region, it is neglected and the solutions at the edge of the
sheath region are regarded as the wall conditions of the boundary-layer flow.

The physical phenomena of the sheath region can be described as
follows. Whenever a charged particle strikes an absorbing surface, this
particle loses its charge by recombination on the surface. Thus, solid
surfaces act as sinks for charged particles. Electrons have much larger
thermal velocities than the ions. Consequently, per unit time more electrons
are likely to strike the surface than the slower ions. As the electrons
diffuse in the general direction of the surface, the slow ions retard the
diffusion by setting up an electrostatic field. This process is called ambi-
polar diffusion, and the associated electric-potential field falls in the
direction of the charge motion. Immediately next to the wall, the electron-
number density becomes too low to carry the ions, and the potential of the
surface and the ion-diffusion motion take over. Therefore, a sheath of high
electric field exists. Two methods can be applied to the analysis of the
sheath region: (1) the continuum-sheath theory, and (2) the collisionless-
sheath theory. In the present analysis, the simpler method of collisionless-
sheath theory is considered and described in Section 4.1.

2. BASIC EQUATIONS AND TRANSFORMATION

2.1 Boundary Layer Equations for Ionizing Monatomic Gases

A partially ionized monatomic gas or plasma is considered consisting
of a mixture of atoms, ions and electrons. For each species the macroscopic
balance equations can be expressed by using the plasma macroscopic properties,
as shown below (Ref. 19),

& npzl + % [ng <p, V3] = 1(s,) (1)

where the quantity <¢s> is the average of the property ¢g, ng is the number
density of species s, I(¢s) is the source term of property ¢g, and Vg is the
total velocity of a particle of species s. The source term expresses the change
in <¢pg> as a result of both external influence (i.e., electric, magnetic and
gravitational fields) and internal influence (i.e., chemical reactions, heat
transfer, radiation, diffusion and viscosity). The continuity, momentum and
energy equations are obtained by putting ¢g = mg, mcV.Y and 1/2 msvsdvsd + €int
respectively, where m is the mass of particle and ejpnt is the internal energy
of particle.
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The thermodynamic quantities used in this work are presented in
Appendix B.

The general formulation of the gasdynamic conservation equations
for individual species in a nonequilibrium partially ionized gas mixture has
been discussed by Appleton and Bray (Ref. 20), Kaufman (Ref. 21), Grewal and
Talbot (Ref. 22), Spitzer (Ref. 23) and Igra (Ref. 19).

Following the above considerations the basic equations for a boundary-
layer flow of a partially ionized gas are given by

Continuity equation for plasma:

& (o) + & (o) =0 (2)
Momentum equation for plasmag
pu%‘*w%=-g§+%<ug;-;> : (3)

Energy equation for plasma:

-S4 SRR TORFREE TERY- DTN ®

Conservation equation for electron species:

pu %‘ + pv % = a % [pivi] + maﬁe (5)
Energy equation for electrons:
ahe-c- ale- ape+ ®e a( + ) +V @e_'_ +
NE&E " ""E 'TE T ettty % t Yy

(6)

with u, v as the velocities of the plasma in X, y directions, x coordinate

along the body surface and y nommal to it; p, plasma density; p, plasma pressure 3
B, plasma-viscosity coefficient; H, total enthalpy of the plasma; q., plasma
heat-conduction flux; g4, plasma diffusive-energy flux; Qg, plasma radiation-
energy loss; (!, degree of ionization; Vi, ion diffusion velocity relative to

V; Mg, mass of atom (or ion); fe, electron-number density production rate; he,
electron specific enthalpy defined in Bq. (7); Qels; rate of thermal energy

given to free electrons by elastic collisions; Qinel, inelastic energy-transfer
rate; pe, electron pressure; subscript e denotes electron encounter. The
following quantities are applied in Eqs. (2)-(6):

p= n‘(n‘ +n,)




P = (na + ne)kBTa. + nekBTe
H= oz, + or,) + Ko + u’/2
a= ne/(na + ne)

xr, ar,
g, = - (7‘a+)‘1)$_' s
oa - 0Ty + 02

E o2} or-a) 3 (F
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e = PefBTe

where subscripts a, 1 and e denote atam, ion and electron, respectively; T,
temperature; Ty, ionization temperature; n, number density; R, gas constant;
A, thermal conductivity coefficient, Dy, ambipolar-diffusion coeffiéient; kg,
Boltzmann constant.

The rate of radiant energy loss Qg of a plasma consists of the rates
of energy loss by continuum radiation and by line radiation. In order to
simplify the calculation, the rate of the line radiant-energy loss for the
argon plasma is assumed equal to its continuum radiation-energy loss. This
assumption has been discussed in Refs. 24 and 25. Based on the assumption of
local-temperature equilibrium, Qg is given by

128113/2 6 n2

e
6 = < n,

(hv, + KT )& Zirr (8)

QR=

with e, electron charge; h, Planck constant; c, speed of light; Vos cut-off
frequency; g, Gaunt factor; Zgse, effective nuclear charge.




It has been shown that excitation to the first state is rate-
controlling for the overall ionization process. We assume that atoms in the
ground level are excited to the first-excitation level by collision with
other particles, then excited atoms are ionized by subsequent collisions.
The rates of reaction among levels higher than the first are assumed to be
in thermal equilibrium with the electrons in the entire flow. The following
reactions are considered for the collisional-ionization processes:

k
.
Ar + Ar « Ar + Ar + e

ra

(9)

-
Ar + e T—’ Ar +e +e

with ke and ky as forward and backward-rate coefficients.
. Based on the two-temperature two-step model of Hoffert and Lien
(Ref. 26), the electron-number density production rate rie can be written as

g = (Bg), + (B¢ (10)

where (fig)g and (fie)e denote the net electron number density production rates

by atom-atom collision and electron-atom collision, respectively. The following

equations are used for the electron number density production rates:

. 2 2
(ne) a kfana. ] kea.na.ne
(10a)
b we § 3
(ne) e kfenane krene

The elastic energy-transfer rate Qe) is the sum of the rates of
thermal energy given to the free electrons by electron-atom and electron-ion
elastic collisions (Ref. 27):

me
% ~ 37, <;“;> (Veq * Ves)i5(Ty - To) V)

where veq and vgj are elastic-collision frequencies due to electron-atom and
electron-ion encounters, respectively.

The inelastic energy-transfer rate Qjne; is the sum of the rates of
thermal energy given to the free-electrons by electron-atom and electron-ion-
electron inelastic collisions and by bremsstrahlung. The latter is neglected
in the boundary-layer flow since it is small compared with the former. For
the two-step model, Qinel is given by,




UYner T - kBTI(ﬁt.e)e (12)

where the term for the creation energy of electron due to atom-atom ionization
collisions is very small and can be neglected in inviscid and viscous flows.

In order to simplify the present analysis, two approximations are
made for the boundary-layer flows:

(l) pivi = pDa g ( )
13

we
(2) v - Vp, ~0, viay—aso

Approximation él) has been widely accepted by many authors (for example,
Refs. 12 and 20 in the analysis of two-temperature boundary-layer flows in
ionizing gases. Approximation (2) has been used by Chung and Mullen (Ref.
28) and Takano and Akamatsu (Ref. 1) since these terms are very small
compared with others on the RHS of Eq. (6). However, in the analysis of
inviscid flow for ionizing gases (for example, the analysis of shock-wave
structure given in Refs. 24 and 25, approximation (2) should not be made.

Under these approximations, the total energy equation, Eq. (L), for
the plasma becaomes

mBrwE-L(ag ) L(nE)

«»%[pD&(R'rI»«(:I)zxre)%]+%<pu%‘>-qR (14)
where X = A\ + N - |

The conservation equation for electron species, Eq. (5), becomes

pu§+av§=%<pna§‘)+maﬁe (15)

Using Eq. (15), the electron-energy equation, Eq. (6), can be re-
written as

or or ar_\ :
w[a e ] O E) g o
< Qg - (gTp + 3 510 (y), - 3 15T, (8), (16)
10

B e



The total-enthalpy equation, Eq. (14), can be rewritten in terms of
T bY using Egs. (3), (15) and (16):

cp[pu§e+pv;$_a_]=.ug+g;(a§e)“(g)2
" Qo1 - KpTr(d,), - G | an

The basic equations for the boundary-layer flows are given by Egs.
(2), (3), (15), (16) and (17) with five unknowns: u, v, @, Tg and To. The
boundary conditions of these equations are discussed in Chapter 4.

2.2 Transformation of Boundary-Layer Equations

The similarity transformation coordinates are applied:
X

E(x) ;f Pglgedx

o

. (18)
n(x,y) = —= f pdy
Fg o
where the subscript & denotes the edge of the boundary layer.
From Eq. (18),
dag _
Ex‘ " Pe's%s il
19
% = 'ib
N-T3

By employing the transformed continuity equation,

-_ [ ataRE ¢ g f "
- (428
and the transformed convective operator,

pu

mhood B8 o (Eh-EE) k)

the basic equations are transformed from the coordinates (x,y) to the coor=
dinates (&,n). Here,
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The transformed equations for momentum, electron species, atom
temperature and electron temperature are .

[ce"]" + ££" +af[-ﬁ-f'2 ]=2§[-f'%? g-gﬁ ]-_A(zo)

(] o v

g ; e A L=,
{-é-az ] + fz -ﬂzzf +——2pa =2§[-f YT gz ](21)
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= 2kz [ £ g% - %fi e’ ] (23) ‘

where the prime denotes d/0n and the following definitions are used:
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e = -T-a—- Pr = ——2
ad A |
're uC %)
0 =77 Pr_= (2
Tes S Contd. ..
12




._3'07

n
I
(o]

We note that solutions of Egs. (20)-(23) are strongly dependent on
the thermal properties of the ionizing gas. The transport propc :ies are
calculated from the elastic-scattering cross-sections and the chemical-
reaction-rate coefficients are calculated from the inelastic-scattering
cross-sections for the ionizing gas. In the following chapter, the thermal
properties of ionizing argon are discussed.

v
I
W

E.,_ 3. THERMAL PROPERTIES OF AN ARGON PLASMA

3.1 Ela.stic—ScatteriEQ Cross-Sections

The elastic-scattering cross-sections @re used in determining the
transport properties of ionizing gases. They will be evaluated here from
experimental results for argon. The average atom-atom elastic-collision
cross-section ogg is obtained from the values of the viscosity coefficient
given by Amdur and Mason (Ref. 29). At high temperature p = 31 x 10~7 Ta3/ 4
g/cm-sec, which corresponds to A

¢, =17%x 10-1“/’.1:'2'25 cn® (25)

Experimental data complied by Fay (Ref. 30) show that the average
atom-ion elastic cross-section oy is much bigger than the atom-atom elastic
cross-section because of the charge-exchange mechanism. This cross-section
decreases very slowly with the atom (or ion) temperature and will be taken.as

¢y~ 2.45h4 x 10'11*/T2'°9 n® (26)

The average momentum-transfer cross-section between electrons and
atoms ogg for argon was calculated by Devoto (Ref. 31) using the momentum-
transfer cross-section determined by Frost and Phelps (Ref. 32). An approxi-
mate value of ogeg for argon by curve fitting is

M 6 2

(0.713 - 4.5 x 107'T_ + 1.5 x 10”17 %) x 107*° n

o= for T_ < 3000 K 27

ea
) (-0.488 + 3.96 x 1o’l‘Te) x 10726 @ for T, > 3000 K

The average momentum-transfer cross-section between electrons and
electrons oge can be obtained by assuming the relative kinetic energy of

13
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electrons equal to 1.5 kT, in the Coulomb scattering cross-section:
3, 3
j % 2113“ 95 Te
o, = 200 (o (28)
9(kBTe) e ne
Note that if the above assumption does not apply, one may obtain the following

: form by using the Maxwellian distribution in the sereened Coulomb-scattering
: cross-section:

| 4 ok 3r 3
i = .. - Y e
. °'ee h(kBTe)z B <’+'ne6ne >

Similarly, the average elastic-scattering cross-section between
ions and ions, oy is given by

Raara s R adlg Al 2o aosil

(29)

o 4 <9kB3Ta3 > 22

T her)?

Since Te/me >> Ta/ms, the electron temperature is the relevant
temperature in the calculation of ion-electron collision cross-section,
therefore,

o
it lrae6ne

aei 4 o'ee : (31)

3.2 Transport Properties of Ionizing Argon

The kinetic theory of gases provides a means of estimating the
transport coefficients of a partially-ionized gas. In this section,
transport properties of partially-ionized argon are considered as based on
the mixture rule of Fay and Kemp (Ref. 5).

The viscosity of plasma can be calculated as
o

o ai
1l + —
l+a l-acaa
1-ao'ai+a o'ii
m U
Y g X % Rnoch’l (32)
32 Taa l+oz°'ai
1-0 ¢
aa

where
. e <8kBTa >1/2
a m,

is the mean thermal speed of the atoms. The electrons make no contribution

to the viscosity because of their extremely low mass compared with atoms
and ions.
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The ambipolar diffusion coefficient Dg is defined in terms of the
atom-ion diffusion coefficient‘Dai ey v .

2
Dy ~T5a Das (33)

&L : ;

or approximately as .

where the contribution of the electron temperature due to electron-ion
collision is negligible owing to the small electron mass.

The thermal conduction coefficients for atoms, ions and electrgﬁs
may be written as (Ref. 27) e 3

5k, ﬂk.BT 1/2 r no, T1

N = < . a) R n:"aa T (35)
kg M T 1/2 r no, T1

N &a.:’L(ma.a) .l+n:°'a.i.T o

o 5k, <1ikBTe >1/2 [1 . N2 n o, ]—1 e
? Ghuée(l +2) Ve 1+ Né)'neo'ee

3.3 Inelastic-Scattering Cross-Sections and Reaction-Rate Coefficients

The forward-rate coefficient ke, Eq.(10), can be obtained from
kinetic theory by computing the collision rate between two particles. The
calculation requires knowledge of the dependence of the inelastic-collision
cross-sections for the first and higher excitation steps on incident energy.
For a two-step model considered here, a knowledge of the energy dependence of
the cross-section for the first excited state is required. Since only the
energy dependence of inelastic cross-sections near the threshold energy is
Jmportant in the calculation of the rate coefficients, some knowledge about
the energy dependence of inelastic cross-sections near the threshold is
required. The inelastic cross-sections thus obtained are often expressed in
terms of the following relation:

o*(e) = o, <:1 - i? )

where oo 1s a constant and e* is the threshold energy.
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Nevertheless, by making use of Wigner's R-matrix theory, Eu and
Liu (Ref. 33) have obtained a general form for leading threshold behaviour
of inelastic cross-sections in the form

o* 1/2

o*(e)=co<1-?

which fits the experimental data fairly well within the experimental errors.

For the present analysis, a reasonably good approximation to this
cross-section is given by the linear relationship:

om(e) = Sk (e - &) for € > et (38)

where € is the kinetic energy (in centre-of-mass coordinates) of particle b
(b cap be atom or electron), e* is the first excitation energy of particle a,
and S:b is the first-excitation collision cross-section slope.

The forward rate coefficient appearing in Eq. (10) can be written as,

kg (T,) = % [% (%}3 >T/2(kﬂmb)1/ 2 (%b- +1 acp(-T*/Tt(,;g)

where T¥ is the first excitation temperature of particle a, and this rate
coefficient must be divided by two for like-like particle collisions.

From a comparison of theoretical and experimental results for argon
shock-wave structure, we found (Ref. 24) that S-:,a = 1.0 x 10719 em?/ev. A
more recent electron-atom excitation cross-section constant S*e =4.9 x 10-18

/eV for argon obtained by Zapesochnyi and Felston (Ref. 3143 is used here.
Therefore, kfg and kee yield:

-T%/T
kfa,(Ta) =, bA % lO-oni'5<Tﬁa +2 > e N (cm3/sec) (ko)

-T%/T
keo(Tg) =263 x 207002 ( B e Yo 0 (adfose)  (h)
: e

Hoffert and Lien (Ref. 26) used a chemical equilibrium concept for
the present chemical-nonequilibrium case to determine kpq and kpe. However,
for low temperatures these results are not valid and the ionic-recombination
theory based on the classical electron-impact cross-section is needed. In
order to avoid the difficulty of determination of the reverse reaction-rate
coefficients, a critical temperature T, is defined which separates the high
and low-temperature regions. This critical temperature can be obtained by
ensuring the continuity of the rate coefficients at To. For the electron-
catalyzed reactions, Hinnov and Hirschberg (Ref. 35) have obtained an empirical
relation for the reverse reaction-rate coefficient at low temperature (Te <
4000 K). The following reverse reaction-rate coefficient kpe for electron-
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catalyzed reactions is used,

- (T -T%)/T
9.03 x 10’33(T*/Te +2)e * ® /s

forT >T
k_(T) = < el (42)

1.09 x 1078 T;h's cm6/s

t far B <P

where T, ~ 3100 K.

For the atom-catalyzed reactions, a similar procedure can be applied.
However, there is no available empirical relation for krg at temperatures Tg
below 3000 K. At the same time, the chemical equilibrium concept used to
determine kra by Hoffert and Lien (Ref. 26) is in serious error for the case
i where the electron temperature is considerably different from the atom temper-
i ature. In order to avoid a significantly large value of krg at low atom
temperature, the following forms are applied (Glass and Liu, Ref. 2U4)

- X (T, -T%)/T
4.83 x 10737 (T%/T, + 2)e . > cm6/s

3 J for T, > T,

(43)
T -T%) /T
4.83 x 10737 (T*/Tc + 2)e( . )/ . cm6/s

. for T, <T, it has a constant value

The physical meaning of the cut-off of krg at low temperature is
that at low Ty the reverse atom-atom reaction rate is frozen at some particular
rate and the re-excitation from the first excited state is not rate-controlling
for atom-atom collisions. In general, the reaction rates due to atom-atom
collisions are very small compared with those due to electron-atom collisions
for atom temperature below about 15,000 K. Therefore, the atom-catalyzed
reactions can be neglected for Tg < 15,000 K, in a flat-plate boundary-layer
analysis where the flow has cooled significantly. However, for the case of
a shock~-tube sidewall boundary layer near the shock front where the atom
temperature is large (~ 25,000 K), atom-catalyzed reactions are more important
than the electron-catalyzed reactions and kpg must be retained. Byron et al
(Ref. 36) have shown that for the low-temperature case, de-excitation from
other than the first-excited state can be rate controlling in the recombination
process. For the present two-step model, the approximation made in Eq. (43) is
necessary in order to avoid the unknown physical effects due to a very large
value of Krg. It is also worth noting that a large value of kpg destabilizes
the finite-difference scheme.

Another method for evaluating the rate of atom-catalyzed reactions
is to cut off krg and to limit the rate of recombination reaction of atom-atom
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collision at some particular value. The following equation can be applied:“

(n.) k,n®-k nn? if(ﬁe)a>0

e’a fa'a ra a e
(k)
=0 if (ﬁe) Y
4. BOUNDARY AND INITIAL CONDITIONS FOR BOUNDARY-LAYER FLOWS
4.1 Boundary Conditions
The boundary conditions for Egs. (2)-(6) are
y = 0: u =u
v =0
. =2 (or ara/ay = 0 for zero heat transfer)
(45)
Y oot u =g
(07 -a5
¢, =2
Te X Teb

where the wall values uy and T, are usually given. The other values ug, Qp,
Tap and Tep are determined from the inviscid-flow region (see Section 4.3).

The boundary conditions, Eq. (45), for the transformed equations,
Eqs. (20)-(23), are

n:O: £ =0

£ = “w/ua

o = El.".y/fl?&5 (or @' = 0 for zero heat transfer) : !
(46) ?
ne: f£'=2]
z =1
e =1
8 =1
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The other required boundary conditions are z and © at the wall 3
these can be obtained fram the following methods:

(1) Wall-Sheath Properties:

For the case in which the wall is at floating potential, the first
equation is obtained from Langmuir-probe theory for a Maxwellian distribution
of electrons:

n _<v>
i 8 (- ﬁ%)' NCARE (u7)

/

where <Ve> = (8kpTes/me)/2, Vi = (kgTo./mg)l/2, Ap is the potential difference
between wall and plasma and subscript s aenotes the value evaluated at the
sheath edge.

The second equation is the continuity of mass flow of ions at the
outer edge of the sheath:

&\ _
PD, s <$>s = psasV; (48)
The energy equation at the edge of the gheath is
or n_ &>
[ | - 1o, = (g, + o) 2 ey (- r,f%) (1)

where Vg is the ambipolar-diffusion velocity.

From Eqs. (47) and (48) we obtain

91,'::%(:_23)“['%%*?:%]“5‘& (50)

and Eq. (49) becomes

<

2 = (), 2 e (51)

where Vig = (kBTeﬁ/ma)l/ 2 ang e/p/kpTeg = Ln(m.,/z-me)l/ zew.

This model, based on continuity at the sheath edge, was widely used
by many authors, for example, Camac and Kemp (Ref. 37), Dix (Ref. 18), Nishida
and Natsuoka (Ref. 12), Sherman et al (Ref. 11) and Mansfeld (Ref. 15). However,
Mansfeld (Ref. 15) mentioned that the artificial boundary condition used for
the two-temperature equilibrium model leads to values of ne near the wall which
seem to be in much better agreement with the experimental results than the
values obtained from an electric-sheath consideration. He concluded that the
validity of the boundary condition for z and © at the wall derived from a
presently incomplete description of the sheath is still unknown.
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(2) Catalytic Wall Model

By analogy with the dissociated boundary-layer flow, the wall is
assumed to be a catalytic wall when an equilibrium composition is used at
the wall. For a one-temperature equilibrium model where T,, = 300 K, the
boundary condition for z at the wall is approximately given by

z =0

W
For a two-temperature equilibrium catalytic wall model, z, is given by
zZ =g
where g is a constant value.
For a cooled-wall case with a wall sheath model, Takano and
Akamatsu (Ref. 14) have shown that

z, ~0 (10'2)/&3

g -4
AR (107

where Re is the Reynolds number.

We also note that Nishida and Matsuoka (Ref. 12) have shewn that
the slope of the electron temperature at the wall is almost equal te #ero.
Mansfeld (Ref. 15) has obtained the following results even when x is very
small:

z =0 (52a)

w

8, ~0 (52b)

ote et b

In order to obtain better asgreement between theory and experiment,
Tseng and Talbot (Ref. 13) have used a measured value of zy as the wall
boundary condition:

z_ = 0.02
w

4.2 Compatibility Conditions

At the edge of the boundary layer, the following boundary conditions
must be satisfied: y
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e' =0

(53)
8 =0

By using the above boundary conditions, the compatibility conditions at
% — o can be obtained from Egqs. (20)-(23):

AR Sk
£ )
Ps"s
B = 2 Ta’e
z Peiss Pe%
5 i S (54)
B =-8 __ua__ 2§.Qel+kBE:_(ng)a+qR
Ta T Colas p5u5u52 P6Cp a6
> e B Al - b
2§ Qel 5 (kBTI 5 § kBTeG > (ne)e = § kBTeﬁ(ne)a
Bp = 5
e Pgisls PeCpled™s

These conditions must be satisfied in the calculations in order
to avoid a discontinuity in the gradients of the dependent variables at the
edge of the boundary layer.

The value dpg/dé appearing in Eq. (54) must be obtained either
from experiment or theory. The following considerations should be noted
in the calculation:

(1) If the external effects (for example, an unsteady effect) or
interactions (for example, the interactions with a shock wave or an expansion
wave) occur in the inviscid-flow region, the value dpg/dt is obtained from
the solution of the inviscid flow with these effects or interactions taken
into account.

(2) If there is no external effect or interaction in the inviscid
flow, another equation is needed to form a complete set of equations with
five unknowns: dpg/dt, Br, Bz, BT, and Pre. This equation is obtained from
the continuity equation of the plasma flow, Eq. (1),




d.l.l6 dp
. 5
T " Vo :E

where pg is related to pg by the equation of state,
Pg = PeR(Tyg + UgTep)

After some algebraic arrangement,

G e
Be = A*ubz [Taaﬁma e

where Pr,, Bre and By are calculated from Eq. (54) and

ecPr g% YeTesPy )

oo
A% -u—é (1 +Ct§-r)Ta5- 1
)
Tas

It was shown by Blottner (Ref. 17) that a swallowing of the
inviscid flow into the boundary layer is necessary in order to satisfy the
compatibility conditions.

Since some approximations have been made in the boundary-layer
equations with respect to the inviscid-flow equations, the values dpﬁ/d!,
Br, Bz, Pr, and Pp, obtained from the above equations should be slightly
different %rom that obtained from the inviscid-flow region. If there is no
approximation made in the boundary-layer equations, or the inviscid-flow
equations are obtained directly by letting all d/dy terms equal to zero in
the boundary-layer equations, then the above method provides the same
results that would be obtained from the inviscid-flow region.

A local-similarity method was applied by Brown and Mitchner (Ref.
38) in predicting the electron-temperature and electron-nunber-density
profiles of a flat-plate boundary-layer plasma. They predicted that the
electron temperature at the edge of the boundary layer is smaller than the
atom temperature and explained it as due to the radiation-energy loss.
However, it is clear that the compatibility conditions described above
were not applied in their calculations. The electron temperature at the
edge of the boundary layer must be calculated from the equations for the
inviscid flow and not from the boundary-layer equations. In their calcula-
tion, in order to satisfy the boundary conditions at the edge of the boundary
layer, Eq. (53), the values of the degree of ionization and the electron
temperature at the edge were adjusted.
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4.3 solutions for Inviscid-Flow Region

The solutions for ug, Tgp, Tep, O and pg must be obtained from
the equations for the inviscig-flow region. The quasi-one-dimensional
equations for inviscid flow are obtained from Egqs. (1)-(5) by letting

9/dy = 0:

L (eu) =0 (55)

ax (o]
pugt =0 (56)
pu G = -q (57)
i % i ma..e (58)

d dpe

Pu X (acpTe) “vE Q@ *4a (59)

;_ Equations (55)-(59) have been solved by Glass and Liu (Ref. 2k)

b for the shock-wave structure of ionizing argon and by Glass et al (Ref. 25)
for a krypton shock-wave structure. The inviscid flow generated by a

shock wave can be separated into two zones: (1) an ionization-relaxation
zone and (2) a radiative-cooling zone. In the relaxation zone the elastic
and inelastic-collision processes are important while in the radiative-
cooling zone the radiation-energy loss is significant. Equations (55)-(59)
provide a unified treatment applicable to both zones. However, from our
numerical experience in solving the shock-wave structure, a complete solution
for the radiative-cooling region requires a small step-size to be stable. As
the plasma is nearly in equilibrium, values for ug, Tgg, Teps Qg and pg in

: the cooling region can also be obtained approximately by solving only Egs.
(55)-(57) together with the Saha equation. Whitten (Ref. 39) has shown

that the error in using a radiant equilibrium model is within 2% of the
present nonequilibrium model. ‘ .

4.4 Tnitial Conditions

The initial profiles are required for a finite-difference method.
At the start of the boundary layer, ¢ = O, and the partial-differential
equations become ordinary-differential equations. At & = 0: Bf = PBrg =
PTe = Bz = 0, the following ordinary-differential equations are obtained
from Eqs. (20)-(23): N

'[Cf"]' + ff" =0 (60)
[g_éz'] +f£2' =0 (61)
: o 2 ;
C 1 -, (] 6 "2 _ ‘
= g + f' + ——— Cf =0 (62)
[ Pr CpTaﬁ |
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c T 9_ 1O ' =
[-ﬁ‘.;e ] + 55 0g2'0' +aare’ =0 (63)

Equations (60)-(63) with two-point boundary conditions can be
solved using the usual iteration techniques (for example, the Newton-Raphsan
method). A subroutine BEGIN for solving Eqs. (60)-(63) is discussed and
presented in Appendix F.

5. FINITE-DIFFERENCE METHOD

5.1 Mathematical Considerations

Numerical methods have developed rapidly in the last decade and
solutions have now been found to many systems of simultaneous equations
which, prior to the development of the digital computer, could not be solved
because of the immense amount of calculation required. One of the most
common numerical techniques for solving partial-differential equations is
the finite-difference method, where the differential equations are replaced
by a large number of difference equations, which are then solved by various
algebraic methods.

The means of solving simultaneous algebraic equations can be
divided into two general types called direct and indirect methods. Direct
methods, which include elimination and matrix inversion techniques, require
a finite number of steps to obtain an exact solution. Indirect methods
theoretically require an infinite number of steps to obtain a solution but
often can provide a sufficiently accurate solution in a much smaller number
of steps than would be required with a direct method. The large number of
difference equations resulting from partial-differential equations make
direct methods impractical for solving a problem. For indirect methods,
for example, the modified-Leibmann method, or over-relaxation method, are
free from round-off errors and have the additional advantage that they can
often be adapted to solve nonlinear equations. The direct methods are
usually applied in the parabolic or hyperbolic-type partial differential
equations having sides with an open boundary. The indirect methods are
applied to elliptic-type equations with a closed boundary.

The finite-difference method for linear partial-differential
equations has been well established. Unfortunately, methods for solving
nonlinear algebraic equations are lagging far behind. Recently, because
of the large number of physical and engineering problems which are described
by nonlinear equations and the prospects which the computer offers for their
solutions, the techniques for solving nonlinear algebraic equations has
become an active field of mathematical research.

Two general methods have been developed for the solution of a set
of simultaneous nonlinear algebraic equations. The first is called by
Greenspan (Ref. 40) the nonlinear-Liebmann method, which involves linear-
izing the equations by putting known walues into the nonlinear terms and
requires iteration. The resultant set of linear algebraic equations is then
solved by the extrapolated-Liebmann method or some other method. The process
of iteration 1s continued until all the residuals are suitably small. The
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second method, known either as the generalized Newton's method or nonlinear
over-relaxation, is an iterative procedure where the grid is scanned in
order. The generalized Newton's method is the faster of the two nonlinear
methods according to Greenspan, but this is based only on examples and not
a general mathematical theory.

The above iteration techniques are general mathematical methods
developed to be applicable to a wide range of nonlinear differential equations.
When the generalized Newton's method was applied to some engineering problems,
it was found to work satisfactorily only for one-dimensional cases.

When a nonlinear differential equation is a description of some
physical situation, the nature of the nonlinearity is known and often a
special numerical method can be devised to control the nonlinearity during
a relaxation-type iteration procedure. When the generalized Newton's method
has serious drawbacks then the above becomes necessary. For example, the
projection method (Ref. 41) can be applied in order to control the nonlinear
terms.

For the nonlinear parabolic differential equations, the projection
method is usually applied in order to control the nonlinear term. For example,
we consider the following nonlinear equation:

a(F) %{% =§

The finite difference analogs used in solving this simple type of equation
are centred around the time level t + 6t/2, and the coefficient a(F) must
be evaluated at this time level. The simplest method of solving this type
of equation is an iteration process where for all grid points i, the terms
a(Fi) are first evaluated using the values of Fj at time t. Substitution
of these terms into the difference equations results in a set of linear
equations which are easily solved for the function F at the time t + Ot.

The coefficients a(Fj) are then re-evaluated, using for F; the average of
its value at time t and the newly calculated value for time t + &t. After
substitution of the newly calculated a(Fj) terms, the difference equations
are again solved for the function Fi{ at time t + 6t. This iteration is
repeated until the function Fj determined in two successive iterations agree
within a predetermined tolerance. The nonlinear terms have been projected
forward to the level t + 6t/2. More sophisticated techniques use a Taylor ]
series in conjunction with the finite-difference analog of the original *
equation to project the nonlinear terms to the half-time level. The sbove 1
projection method can be used in the usual boundary-layer equations. Further
discussion on the nonlinear partial-differential equations in engineering
applications can be found in Ref. 42.

Many methods can be applied for the parabolic-type partial-
differential equations, for example, the explicit method, implicit method,
Crank-Nicolson method, DuFort-Frankel method, Saul'yev method, and the j
explicit and implicit alternating-direction methods. In the explicit method, '?
usually undesirable restrictions on the step-size increment occur in the
computation. The implicit method can overcome this difficulty at the expense
of a somewhat more complicated calculation procedure. However, the discreti-
zation errors for both methods are still too large. The Crank-Nicolson
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method is of the implicit type and also can decrease the discretization
errors. It is always stable and the error is of second order.

The solution of equations resulting from the implicit or Crank-
Nicolson method can be obtained by any elimination technique. However,
since the resulting equations have the form of the tridiagonal-type the
camplete algorithm method, which has less of an iteration scheme than the
Gaussian or Gauss-Seidal elimination methods, can be applied. A general
form which can be applied by explicit, implicit or Crank-Nicolson method is
i ¥ developed in the present work. An excellent review for the finite differ-
ence method of solution of the boundary-layer equations has been given by
Blottner (Ref. 17).
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5.2 Finite Difference Egquations

The nonlinear equations, Egs. (20)-(23), with the boundary
conditions of a mixed Neumann/Dirichlet type are solved numerically by
3 s the finite-difference method. An implicit six-point finite-difference
3 : scheme is applied.

These equations are first linearized in a form suitable for an
iteration scheme. Blottner (Ref. 17) has stated that the order of the
equations is important. The momentum equation is solved first, and the
species must be solved before the atom temperature. Therefore , these
linearized equations can be written in order as follows:

cpf‘fl) + [Cn + £+ 2§f§]F$'p) - afnr(P) = 2m(§P) - B, %Q (64)
C ’ C n (
(& ] +[(&), ~eomn ] - [or - m2 ]
- 2gra?) (65)
R ) g . ()_ PeTe
[Pr ] “m * KPr),, o ] *n [F <5Ta. 3 1_""+a6.-r>
T (fl ) . aa'r
i % {' 'g' Tweai * I n_e;Ta ] e ¥ st T A (66)
c c c (
<'PTe Gfl:) + [<F'3>q + <§6 ) aﬁzn +o(f + 2&1‘;) ] enP)
Be 7 o(p)
e BN L e
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The superscript p denotes the order of the iteration process and
the quantities without the superscript denote those evaluated at the p-1
iteration order. F = of/dy or

£ =de1. (68)

o

These linearized equations are of the second order and are solved
for the unknowns F, z, 6 and @ in that order. The derivatives and the
integral in the y-direction are then expressed by three-point difference
formulae. The derivatives in the g-direction are approximated by a forward-
difference scheme. -

: Let i and j be the indices of the w, &-coordinates for the
difference net at the point considered in Fig. 1. Any function W (F, 2z, 6

or 8) is written in terms of the values of two adjacent points in the
g-direction as »

W= (i, j¥1) + (1 - A)W(i, J)

where A is a weighting factor which can be suitably adjusted for improving
the convergence of the iteration scheme:

O0: Explicit method

: Crank-Nicolson method

>
I
NI

1l: Implicit method

In this formulation either equal intervals or nonequal intervals
in n-direction can be used. In the present case, the interval in w-direction
is increased in a geometric progression as
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where k is a constant which is set with a value slightly greater than unity.

=k

The following derivatives are applied:

W = od

2
| (l‘i’k)k A'll [w(i+l, j'i'l) + (k —1)“(1, j+l) - kaw(i_l’ J"'l)]

+_1'_7\_An [W(i41, 3) + (KB-1)W(1, §) - KW(i-1, 3)] (69)
(1+)kt
o 5 :;\kai_l 112 [W(i+l, j+1) - (1+k)W(i, j+1) + kW(i-1, j+1)]

. (i:;:%i_l A:12 [W(i+l, §) - (1H)W(i,3) + kW(i-1, j) (70)
wg =— [W(i, j+1) - w(i,3)] (71)

where A'ql_ is the first interval in y-direction.

The quantity £ is evaluated at a point between two adjacent
points as 1

§ = A §3+Itl-x) gj

The values f and fg at a (i,j+1) point are given by

£(1, §+1) i i;i“‘_; [(2+3k F(4-1, §41) +(Je)m, 341)
A (s ) 2w, o0 | & i
it 0 =) (2 Y r i, s + (42 )1y s ’
- (y ) myaens 9| (73)
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where

Fy(4, 341) = 35 [F(8, 392) - B(4, 9))

The linearized equations, Eqs. (64)-(67), may be written in the
following common form with

(1)(1)

(i)"a(;:)* (1>w511)+ (L)1) - o (1) 4 x{8) (7h)

g

where W(l) =F, w(a) =z, W(3) = 6 and w(l‘) = 6. The expressions x(i) (1=1
to 4) for the momentum, species, atam temperature and electron t rature
equations are listed in Appendix C.

Substituting Eqs. (69)-(71) into Eq. (74), the following equation
is obtained:

| Ait)w(t)(i-l, j41) +B§f')w(t)(1, JH) + cit)w(t)(m., JH1) = D:(lt) (75)
where t =1 tol; i =1 toNand jJ =1 to M.
ICRNECINC
(%)
L = -ay x§_t)(l+k) + ey X.gt)(ke-l) + A xgt) - %r

C:(Lt) "y ’E(Lt) ¢ "ét)“i (758)

S 1 -

D§"‘) = -b, x§t) B - ay <5 - (1-7\)x§t) W(i,3) - x—zg— W(i,3) + xgt)

_ o 1
5 (1+) k23T A{é
ging 2(1—)\2 1
- ﬁ
e, =—2_ L1
1 )
& sl

(1) Anp

M= WAL, §) + (KP-1)W(4,3) - KBW(i-1, 3)
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22W = (141, 3) - (L+E)W(1,5) + BH(i-1, 3)

The boundary conditions

=0 (q=0): uP(o, 34)

w3 (0, 341)

w30, 54)

w(l‘)(o, Jj+l) =

=N (n >

W, s4) =

for the finite difference equations are:

u
-
= o
=0 for z, = 0
= w(a) (r, jv1) - AlAql for z"' = 1&_
ik &
Tab
w(“)(l, j*1) - An,  for 8= A,
w(h)(l’ j+1) for 6, = 0

=1
W@, 0) =1
W(w, g4y =1
WM, g41) =2

The maximum value of i (or N) which represents the freestream
condition can be determined as follows: After the values k and Aw; are
chosen (see next section), the results for all grid points at a fixed J
with an arbitrary value N are compared with that calculated from the N+1

value.

If they do not have the same value, then N is increased until the
results of using N and N+l have identical values.
that the value N used represents the freestream condition for all j, N is given
by N = No + 20, where Ny is the minimum value of N at x = O.

In order to guarantee

of 9 is obtained from the following equation,

T =) L Oy
iml

The computational scheme is an iterative one. The ; :
momentum equation is first solved with assumed distributions of species and.
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atom and electron temperatures. The resulting velocity field is employed for
the species equation. The resulting species field is then applied to the
equations for atom and electron temperatures, respectively. The new species
and atom and electron temperature distributions are then used to replace the
assumed one and the process is continued until the solutions converge to
satisfy a preset criterion.

3 The convergence criterion of the system of difference equations to
f the differential equations has not been investigated. However, Douglas et al
(Ref. 43) stated that an implicit or Crank-Nicolson difference scheme is
convergent for an equation of the type given by Eq. (74).

R

In order to avoid third-order derivatives in the momentum equation,
Blottner (Ref. 7) has introduced a transformed normal velocity and retained
the continuity equation. However, in the present method, the stream function
is introduced and the momentum equation is written as a second-order equation.
The partial differential equation for momentum involves f and fg. The value
of f can be readily obtained from an integration once the value of the tangen-
tial velocity component across the boundary layer is known. The same method
was applied by Fannelop (Ref. L4). Sells (Ref. 45) also used the same implicit
finite-difference method for a laminar compressible boundary layer and Chan
(Ref. 46) for a turbulent incompressible boundary layer.

5.3 Accuracy and Stability

The accuracy of the numerical solution has to be better than the
accuracy of the different physical models. The models used for the descrip-
tion of transport properties, chemical reactions and sheath theory are not
supposed to have a higher accuracy than 0(10'1) . The accuracy of the experi-
mental results is at best 0(10-2). Therefore, it seems sufficient to achieve
numerical results which are accurate to 0(10'é) 5

The accuracy of the numerical method can be achieved to any small
order, say 0(10'5) ,» at the expense of computation time. Once the accuracy of
the problem is determined, the upper bounds for At and Ay are posed.

The accuracy of any numerical method can be checked by: (1) varying
the & and n increments, (2) disturbing the boundary conditions slightly, (3)
applying the difference-differential method or other numerical methods, (4)
applying a stability analysis to the linearized equations, and (5) applying
the method to a simple problem that can be solved analytically. In the
present analysis items (1) to (4) were applied to check the accuracy of the
Crank-Nicolson scheme. The step sizes used in the calculation are decreased
by half and the solutions follow this in a way corresponding to the orders
of the local truncation errors and remain stable. A small disturbance to the
input data gives a small change in the solution. The results obtained by
using A = 0.5 (Crank-Nicolson method) and A = 1 (implicit method) were
compared and the accuracy was within 0(10-2).

In the present analysis, nonequidistant step sizes were used in
order to decrease the computation time. However, the nonequidistant discreti-
zation may lead to larger inaccuracy and can even spoil the solution completely.
Also the determination of error bounds for nonequidistant step sizes is more
complicated than an equidistant regular network. Fortunately, the nonequidistant
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discretization can be checked in the present program by comparing the results
with k = 1 and with k # 1. It was shown that the nonequidistant discretization
does not lead to larger inaccuracy or spoil the solution in the present program.

As mentioned in Section 5.2, the stability criteria for a system
of nonlinear partial-differential equations are difficult to determine. When
the Crank-Nicolson scheme is applied, bounded oscillations in E-direction
appear in the analysis. Crandall (Ref. 47) showed that at a relatively large
step size in E-direction, bounded oscillations are possible even for linear
equations. According to Smolderen (Ref. L48) this may be even worse in the
case of nonlinear equations. Douglas (Ref. l&9) ‘also mentioned the possibility
of oscillations in the solution using a Crank-Nicolson scheme with boundary
conditions of the mixed type. These oscillations do not occur when a backward-
implicit method is used. However, a smaller step size, AE, then the one used
in the Crank-Nicolson scheme is needed for the backward-implicit scheme for
the same accuracy. This results in more computation time. For the present
case, the oscillation can be controlled by a suitable choice of the parameter
A. From our experience of the present analysis, the Crank-Nicolson scheme
provides a bound oscillation in E&-direction. This oscillation does not damp
out even for a very small step-size AE. Therefore, decreasing step size AE
is not the best way to get more accuracy. This oscillation can be checked
by using different values of A in the calculations starting from an optimum
value 0.5 to a maximum value of 1.0, and the smallest value of A in this
range which just eliminates the oscillations is the one to use. In the
present analysis, the best value of A was found to be 0.75 where the oscilla-
tion damps out in the first few steps. With A = 0.75, the discretization
error is expected to be O(Agl-5), which is smaller than O(At) for a backward-
implicit scheme.

For example (see Chapter 6, for the flat-plate boundary layer)
Up = 3.53 x 107 cm/sec, Tap = Tep = 1.059 x 10% K, & = 0.031 and pg = 1200
torr was used for all x. The step-size At was increased with x. At first
the value of the weight parameter A = 0.5 was used, and in all runs oscilla-
tion in fy and zy started at the first step downstream. This oscillation
tended to be small at i = 45. In another run A = 0.75 was used, and this
time the oscillation damped out within two steps downstream and did not re-
appear. Figure 2 shows how the values fy and z", oscillate as the step number
J increases. Consequently, the CrankeNicolson scheme (A= 0.5) was abandoned
and A = 0.75 was used in the present analysis.

Attempts were made to relate this oscillation to errors due to the
step-size Ay and At with the aid of formulae like the Richardson-extrapolation
rule, but a satisfactory answer was not obtained. Therefore, the oscillations

were not induced only by a finite step-size as they were considerably larger
than the errors expected from such step sizes.

5.4 Transformation of Coordinates

The conditions at the edge of boundary layer, Up, O§, Tgf, Tet and
Pp, resulting from the solutions of the inviscid flow equations (see Section
4.3) are a function of x. A table of these edge properties as a function of
X was used and the interpolation was applied to obtain the edge conditions
for any value of x. However, the finite difference procedure was applied for
the transformed (&,n)-coordinates. Therefore s the final results must be
related back to the physical (x,y)-coordinates.
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The relation between the transformed coordinate £ and the distance

x along the surface can be determined from Eq. (18). The relation between
£ and x can be determined by the following equation:

b = £ + o8 (76a)
with

88 = 85 [y(xy) + o(x; + )]
7(xj) = [p5 ) US] at x = Xy
x;]-i-l = x'j + Ax

The coordinate y relating to coordinate % is given by
J_ [ <]
2
vy = _ﬁ_g_ f % dy (768)
5 o

where the three-point formula for nonequidistant step sizes applied in Eq.
(72) can be used for Eq. (76).

6. FLAT-PLATE BOUNDARY-LAYER FLOWS IN IONIZING ARGON

6.1 General Considerations

Experiments on shock-wave structure and the boundary-layer flows
induced by a strong shock wave were recently conducted at UTTIAS in the
Hypervelocity Shock Tube. These experiments provided unigue and reliable
interferometric data for both types of flows. Experiments on shock-wave
structure were conducted by Bristow (Ref. 50), Brimelow (Ref. 51), Tang
(Ref. 52) and Whitten (Ref. 39), and on the flat-plate and the shock-tube
sidewall boundary layers by Whitten (Ref. 39) and Brimelow (Ref. 51,
respectively. Comparisons of numerical and experimental results on shock-
wave structures are given in Refs. 24 and 25 for argon and krypton, respec-
tively.

Measurements of ionizing flat-plate boundary-layer flows have been
reported by some authors (Tseng and Talbot, Ref. 13; Brown and Mi tchener,
Ref. 38; Bredfeldt et al, Ref. 53) for low temperatures and low electron-
number densities. Under these conditions, the radiation-energy loss in the
plasma is small and can be neglected for both the inviscid and viscous flow

regions. Thus, the conditions at the edge of the boundary layer can generally

be calculated from a nonradiant model in which the freestream-flow quantities
are constant and independent of time.

Figure 3 shows schematically the experimental generation of a flat-
plate boundary-layer flow over an airfoil model with a sharp expansion corner
in the UTIAS 10 cm x 18 om Hypervelocity Shock Tube. Such a boundary layer
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can be regarded as developing in a steady flow if the shock wave is travelling
at a constant velocity and tHe radiant energy loss is small. However, for the
case of a flow induced by a stronger shock wave (Mg > 13), the radiation-
energy loss becomes significant and the boundary layer develops in a somewhat
unsteady (nonunifiorm) flow. :

A typical analysis of the inviscid radiant flow behind a shock wave
travelling at constent velocity is shown in Fig. 4. In this case, the shock
wave is moving at a Mach number Mg = 12.8 into quiescent argon at po = 5.01
torr and To = 297 K and has been shown at a location xg = 40 cm past the
leading edge of the flat plate. The gradients result from the radiation-
energy loss. Clearly, as the nonstationary shock wave travels along the tube,
the inviscid-flow conditions above the plate change with time, introducing an
unsteady (nonuniform) effect. Along the flat plate, it is seen that ug and pg
decrease as x increases from the leading edge (or as one moves closer to the
shock front) while Tag, Teg and O all increase. However, the fact that the
inviscid flow with respect to.the plate is unsteady rather than steady with
flow gradients, is emphasized by a consideration of the overall momentum
equation for the plasma. In a steady, one-dimensional inviscid flow,

dh5- 0y
PeleTE T T &

That is, the velocity gradient and pressure gradient should have opposite
signs, which is not the case in this flow.

It can be seen, however, that the variations of ug, Ta3, Tep and pp
are quite small, particularly as the distance, xg, from the leading edge to
the shock wave increases. Under these circumstances, it is reasonable to
regard the flat-plate boundary-layer flow as quasi-steady to a first-order
approximation, such that the steady-flow analysis described previously can be
applied. It should be mentioned that the relative changes in Op are slightly
larger, however, and the full extent of this effect on the quasi-steady-flow
assumption is not known at the present time.

For comparisons of boundary-layer profiles measured at a position
Xm with analytical predictions, the inviscid flow conditions at xm were
assumed to prevail over the entire freestream region (all x) in order to
satisfy the steady-flow assumption in the analysis. The initial conditions
for the shock wave and the freestream quantities resulting from the radiant
inviscid flow are listed in Tsble 1.

In the finite difference analysis, the best value of the weight
parameter was found to be A = 0.75, where the oscillations damped out during
the first few steps. Case 2 of Table 1 was run with k = 1.05, Ay = 0.05 and
N = 46 by using a step-size Ax started with 0.01 cm at x = O and increased
to 0.2 ecm &t x = 14 cm. At first the value of the weight parameter A = 0.5
was used, and in all runs oscillations in fy and z", started at the first-step
downstream. The oscillations were bounded and tended to become small as
X increased. The other run with A = 0.75 was used, and this time the oscilla-
tions damped out within two downstream steps and did not reappear. Therefore
the Crank-Nicolson scheme (A = 0.5) was sbandoned and A = 0.75 was used in the
analysis.
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6.2 Comparison of Theoretical and Experimental Results

For the case of Mg = 16.6 and po = 4.81 torr, the initial flow
profiles (at x = 0) are shown in Fig. 5. The nondimensional electron-
temperature profile 6 is u.nit;y for all y, resulting from the electric-sheath
condition'8' = 0 at x = 0. The atam-temperature profile 6 increases from
0.029 at § = 0 to 1 at q =l95, and reaches a maximum value 1.04 at 3 = 2.4
and then approaches unity at y = 4.25. The normalized velocity profile f'
increases from zero at 3 = 0 to 1 at y = 4.5, while the normalized degree of
ionization profile z increases fram O at § = 0 to 1 at g = 3.5.

The variations of the transport properties at x = 0 of Pr, Sc, C
and Pre with g are shown in Fig. 6. The Prandtl number for the heavy
particles Pr is constant (Pr = 0.667) fram its definition in this analysis.
The ratio of density-viscosity product C decreases from 2.8 at 4y =0 to 1
at 4 = 2.23. The Schmidt number Sc increases from 1.5 at § = 0 to 2.42 at
9 = 1.4, and then decreases to the freestream value 2.39 at § = 3.12.
Similarly, Pre increases from 0.035 at y = 0 t0 0.52 at y = 2.4 and then
decreases to the freestream value 0.507 at § = 4.79. These transport-
property parameters are functions of ng, ne, Ty, Te and pg. The variations
of these parameters with g have some effects on the boundary-layer structure.
The effect of Pre on the electron-temperature profile is more significant
than that of C on the velocity profile and of Pr on the atam-temperature
profile. The total-Prandtl number Pr of the plasma can be obtained from the
following equation:

Eaon
==

¢ S .
¥z Pr P

The variations of the flow profiles with distance x are shown in
Fig. 7. The velocity profile f' is almost independent of x. The variation
of atom temperature ratio 6 with x is also small. Therrfore, the momentum
and atom-temperature equations can be obtained approximately from a similarity
assumption. However, significant variations of the degree of ionization ratio
z and electron-temperature ratio ¢ with x do occur, as shown, and errors will
result from a similarity assumption. The degree of ionization @ and the
electron temperature Te decrease as X increases at a constant 5. At 3 =0,
Oy decreases from 1 at x = 0 to 0.87 at x = 14 cm.

The variations of Prg with y for x = 0 and x = 14 cm are shown in
Fig. 8. It is seen that for x > O, Pre exceeds the freestream value (0.507),

up to g ~2.5.

In addition to the profiles of the various flow quantities across
the boundary layer, parameters that characterize the skin friction, heat
transfer due to conduction and diffusion processes and thickness of the boundary
layer are important. The va.ria.tions of the skin friction parameter f,, and the
heat transfer parameters ew and zw for conduction and diffusion processes,
respectively, with distance x are shown in Fig. 9. The values of fw are
almost independent of x, while 9w increases at small x and approaches a nearly
constant value for large x. The quantity zw decreases significantly for x < 2
cm and approaches a nearly constant value for large x. The boundary-layer- |
displacement thickness 6* is plotted in Fig. 10 as a function of x. For x E
greater than 4 cm, 6% inereases almost linearly. The physical-boundary-layer |
thicknesses with a flow-quantity ratio of 0.995 for velocity Of, degree of
ionization 6,, atom temperature Or, and electron temperature Ore are plotted
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in Fig. 11. It can be seen that the boundary-layer (x > 3 cm) thickness for
velocity is greater than the other boundary-layer thicknesses for this case.
The thickness of the electron thermal layer, Ore, is thinner than the
velocity thickness which differs from the result found by Honma and Komuro
(Ref. 16) for a sidewall boundary-layer flow. They showed that the thickness
of the electron thermal layer is almost ten times that of the velocity or
atom~temperature thicknesses.

The large change in the chemicsal-reaction rates with temperature
has an importent effect on the boundary-layer structure for the case of a
large degree of ionization. Figure 12 shows the effects of chemical-reaction
rates on boundary-layer structure. The results for a frozen flow (ng = 0)
are compared with those for a nonequilibrium flow at x = 14 cm and Mg = 16.6.
The profiles of velocity f', and heavy particle temperature 6, hardly differ
for both cases. However, the profiles of electron temperature 6, degree of
ionization z, and electron Prandtl number Pre, are significantly affected by
the chemical reactions. For a given Y, the electron temperature 6 is lower
for a frozen flow than for a nonequilibrium flow, while the reverse is true
for the degree of ionization z.

Comparisons of analysis with experimental results are shown in Figs.
13 and 14 for plasma density and electron-number density, respectively. Better
agreement is obtained for the measured plasma density profile with the frozen-
flow analysis. However, poor agreement with analysis is obtained for the
electron number-density profile with either solution. The experimental data
show a significant bump in the ne profile which is not predicted by either the
nonequilibrium or the frozen-flow analysis. A similar bump appears in the
exparimental data for the degree of ionization profile shown in Fig. 15, while
theie¢ is no bump in the ‘analytical result. This disagreement has not been
resolved.

For the second case with Mg = 12.8, po = 5.01 torr and To = 297 K,
the nonequilibrium and frozen-flow profiles at x = 14 cm are shown in Figs.

16 and 17, respectively, for comparison. It is also shown that significant
differences exist for degree of ionization and electron temperature profiles,
as predicted for Mg = 16.6 case. The analytical and experimental results

for plasma density and electron number density profiles are compared in Figs.
18 and 19, respectively, while the corresponding degree of ionization profile
is shown in Fig. 20. Unlike case 1, the experimental plasma-density data

shows better agreement with the nonequilibrium or the calculated equilibrium
similarity-solution profiles, which are very close. The experimental results
for ne lie between the analytical nonequilibrium and frozen-flow profiles. The
two-temperature frozen-flow solution predicts a larger bump than that obtained
from the experiment, while no bump occurs in the nonequilibrium or equilibrium
profiles. The experimental data for the degree of ionizstion lie closer to
the calculated frozen profile rather than the nonequilibrium profile.

e ek e

The local-similarity solution based on thermal and chemical equili-
brium are also plotted in Figs. 18-20 for case 2. It is seen that equilibrium
would not occur in such boundary-layer flows. Of the three models used in
the analyses for ne and @, the equilibrium profiles provide the worst agreement
with the experimental results. The ne profile is the most sensitive indicator
of the state of the boundary layer. The fact that the density data agree
with the three models used in the analyses shows that it is not a sensitive
parameter. Undoubtedly, measurements of electron and heavy-particle temperatures
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are desirable as they would be sensitive indicators of the state of the

* boundary layer. ;

The disagreement between theory and experiment for ne (or @) may
result from: (i) the boundary-layer flow is assumed to be quasi-steady while
in the experiments it is actually nonstationary with time resulting from
radiation losses (which were only partially accounted for), and the effects
of the sidewall boundary layers (which were not taken into account at all
and have flow effects similar to radiation). These effects will be more
pronounced at higher shock Mach numbers where the radiation-energy loss is
significant. For example, the agreement between theory and experiment for
Mg = 16.6 is worse than that for Mg = 12.8 for the ne and & profiles. In
order to assume that the boundary-layer flow is quasi-steady, the variations
of the flow quantities at the edge of the boundary layer with distance were
neglected in the theory. This error might have a significant effect on the
boundary-layer structure. (ii) The assumptions made in the basic equations
(such as pjVi ~ -pDg &¥/dy and ¥ - Vpe =~ 0). the uncertainty of the para-
meters used to describe the elastic and inelastic-energy-transfer rates and
the model used for the radiation-energy loss, may all affect the entire
boundary-layer structure. However, the comparison of analysis and experiment
for the Mg = 12.8 case is quite good and lends support that the assumptions
made in the basic equations are reasonable. Furthermore, from the shock-wave-
structure analyses (Glass and Liu, Ref. 24; Glass et al, Ref. 25) the parameters
used for the elastic and inelastic-energy transfer and the radiation model are
considered as accurate within the limitations of present-day collision theory.

As noted earlier same possible errors in the present analysis may
result by neglecting the re-absorption of the radiation-energy loss in the
freestream and the effects of the sidewall boundary layers on the freestream
flow. An exact solution to the set of simultaneous ordinary differential
equations for the freestream flow including re-absorption would be difficult
since the re-sbsorption coefficient is a function of the complete structure
of the radiation cooling zone. The question would also arise whether the
shock tube has a finite or an infinite optical depth. The Rosseland mean-
free-path for argon at the freestream conditions of Mg = 16.6, po = 4.81
torr and To = 296 K (case 1), is sbout 97 cm. Therefore, the freestream
plasma is optically thin and the re-asbsorption energy should be small. For
the present calculations it was necessary to consider the worst case when
there is no re-absorption. The shock-tube sidewall boundary layer will have
some effects on the freestream conditions. In general, it would be desirable
to study the present flat-plate boundary layer after the effects of the
shock-tube sidewall boundary layers on the freestream were determined. In
the present analysis the freestream conditions were obtained under the
assumption that the flow was one-dimensional; the role of the sidewall
boundary-layer growth on the inviscid flow was not considered. Mirels (Ref.
54) has shown that the flow between the shock wave and contact surface in an
actual shock tube is non-uniform due to the wall boundary layer. Recently,
En@moto (Ref. 55) has studied the effects of the boundary-layer growth in
shock tubes of various cross-sections on the shock-wave ionization-relaxation
process in argon. He used Mirels' boundary-layer theory for a perfect gas
to get some estimates. He showed that by considering the sidewall boundary-
layer effects the ionization relaxation time was shortened. The inclusion
of re-absorption of radiation energy and sidewall boundary-layer effects will
increase the degree of ionization in the freestream. Neglecting these two
effects in the analysis might alter the freestream conditions. In order to
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. and thermal Rayleigh boundary layer flows, it has been shown that electrons

study the effects of the freestream conditions on the boundary-layer structure
for the Mg = 16.6 case, where the theoretical and experimental boundary-layer
thicknesses for ne are 0.8 mm and 2 mm, respectively (x = 14 cm), three
different freestream values (at t = 20 ps, 40 us and 60 ps after the passage
of the shock wave) were used for comparison. Even then, the theoretical
boundary-layer thicknesses for ne are between 0.8 mm and 1.2 mm and still
differed from the experimental results. It is shown that the boundary-layer
thickness for ne increases as the degree of ionization in the freestream
increases.

It is worth noting that the error due to neglecting the photo-
ionization in the analysis may not be small. Near the wall, where the
ionization due to electron-atom collisions is small compared with that in
the freestream, photons resulting from stimulated emission and radiation
processes may have an opportunity to ionize atoms. The populations of the
photon flux should be known before any calculation on the photo-ionization
rate can be done.

The effects of chemical reactions on boundary-layer structure and
the sidewall boundary layer on the shock structure are discussed in Appendices
D and E, respectively.

Finally, from a comparison of the theoretical results of Mansfeld
(Ref. 15) and the experimental results of Kuiper (Ref. 56) for a thermal
Rayleigh boundary layer, it was shown that the frozen models lead to values
obtained from a nonequilibrium model. No bump in ne occurred in either theory
or experiment for a thermal Rayleigh boundary layer. Details of the results
described in this chapter are given in Ref. 57.

7. SHOCK-TUBE SIDEWALL BOUNDARY-LAYER FLOWS IN IONIZING ARGON

T.l1 General Considerations

A considerable amount of theoretical and experimental work has
been done on the prediction of heat transfer and the variations of transport
and thermodynamic properties through the shock-tube sidewall (or Rayleigh)
boundary layers. Kuiper (Ref. 56) made an interferometric study of the
shock-tube endwall boundary-layer flow. Mansfeld (Ref. 15) compared his
numerical results with Kuiper's experimental data. However, except for
Brimelow's results, there are no experimental data on shock-tube sidewall
boundary-layer flows for ionizing argon.

From the comparison of analyses and experiments for the flat-plate

have a temperature which is very different from the heavy particles owing to
the slow collisional energy-transfer processes between electrons and heavy

particles. In the inner part of the boundary layer (i.e., near the wall) an
equilibrium assumption is not valid. : ' 3

Shock-tube sidewall boundary layers for ionizing argon flows were
analyzed by Kndds (Ref. 1) for flows with thermal and chemical equilibrium, Honma
and Komuro (Ref. 16) for frozen flows and by Takano and Akamatsu (Ref. 14) for flows
with thermal and chemical nonequilibrium. Radiation energy losses in both free-
stream and boundary-layer flows were neglected in these analyses. Kndds has shown
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that the equilibrium solution for the degree of ionization is in good agreement
with experiment only near the edge of the boundary layer. Honms and Komuro
found that the thickness of the electron thermal layer for frozen flow is

about ten times the thickness of the viscous boundary layer, which is in
contrast to the results for flat-plate (described in Chapter 6) and thermal
Rayleigh boundary-layer flows.

The present chapter deals with comparisons of measurements and
related analyses of the total-density and electron-number-density profiles in
shock-tube sidewall boundary layer flows. The shock-wave-structure model of
Glass and Liu (Ref. 24), which includes radiation-energy losses, was used and
Brimelow's interferometric data were accurately re-evaluated for this purpose.
A comparison was also made between theoretical and experimental plasma tempera-
tures. Satisfactory agreement has been obta.ined for shock-tube sidewall boundary-
layer flows in ionizing argon. ;

7.2 Comparison of Theoretical and Experimental Results

The main differences between the flat-plate and shock-tube sidewall
boundary layers are: (i) the velocity profile for the flat-plate case increases
from zero at the wall to the freestream value at the edge for the sidewall
boundary layer. (ii) Ionizing-nonequilibrium phenomena occur in the freestream
flow behind the shock front. - Consequently, variations of freestream conditions
for the sidewall boundary layer are significantly larger than for a flat plate.
(11i) The sidewall boundary layer induces significant changes in the freestream,
especially in the ionizing shock structure and beyond where the radiation losses
are large. .

Recently, Brimelow's data were re-evaluated and compared with the
radiant shock-structure model of Glass and Liu. The data show that (i) no
bump occurs in the electron-number-density profile in the sidewall boundary-
layer, unlike the flat-plate case, and (ii) significant two-dimensional and
wall effects on the freestream flow exist in the sidewall case at higher shock
Mach numbers.

Accurate interferometric determinations of the excitational cross-
section constants for argon and krypton atom-atom.collisions in the relaxation
zone were made by Glass et al over ranges of the initial shock Mach number and
pressure of 13 < Mg < 18 and 3.1 < po < 5.2 torr, respectively. This shock wave
structure model was used to determine the range of freestream conditions.

Two cases were studied for Mg = 13.1, po = 5.6 torr and Mg = 15.9,
Po = 5.10 torr. The initial conditions and the freestream conditions at the
measuring station xm are given in Table 2. Figure 21 shows schematica.lly the
shock-tube sidewall boundary layer behind a shock front.

Figure 22 shows a plot of the freestream conditions for Mg = 13.1
and po = 5.16. The boundary layer profiles were measured at the cascade front
where the electron number density is a maximum and the variations of the free-
stream conditions are significant. At the cascade front, the radiation energy
loss rate is maximum. :

The dimensionless nonequilibrium-flow profiles of velocity F,
degree of ionization 0, atom temperature ¢ and electron temperature 6
are shown in Fig. 23. It is seen that the velocity profile F is signi-
ficantly different from that of the flat-plate boundary layer (Fig.
16). The thickness of the electron thermal-layer is much thinner
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than that predicted by Honma and Komuro. They indicated a thickness almost
an order greater than the present result.

A comparigon of analysis with experimental data is shown in Figs.
24 and 25 for plasma density and electron number density, respectively.
Much better agreement is obtained between the measured results and the
nonequilibrium solutions for the sidewall than for the flat-plate boundary layer.
Better agreement was obtained between the measured plasma density and electron-
number-density profiles and the frozen-flow analysis for the flat-plate boundary
layer. A bump appeared in the experimental data for the electron-number-density
profile in the flat-plate case. No bump appeared in the sidewall case. The
agreement with the frozen solution is rather poor for the sidewall case. The
corresponding profile for the degree of ionization is shown in Fig. 26. Owing
to the shape of the velocity profile, §* is now negative, as expected. The
boundary-layer displacement thickness, &%, is plotted in Fig 27. It is seen
that the displacement thickness increases almost linearly with X > when X is
greater than 2 cm. A comparison with Fig. 10 shows that ™ ' 5
the sidewall boundary layer is about an order thicker for an equivalent X.

For the second case with Mg = 15.9 and po = 5.1 torr, the freestream
conditions for pg, neg and Qg are shown in Fig. 28 together with experimental
results. Good agreement is found. The dimensionless nonequilibrium and
frozen-flow profiles at x = 18 cm are plotted in Fig. 29. Except for the
velocity profile F, these are significantly different between the nonequilibrium
and the frozen-flow solutions for degree of ionization, and the atom and electron-
temperature profiles. For the flat-plate case, profiles of velocity and atom
temperature hardly differ for both cases. Chemical reactions have a significant
effect on the degree of ionization profile.

Comparisons of analysis with experimental results are shown in Figs.
30 and 31 for plasma density and electron-number-density profiles, respectively.
Better agreement is obtained for the measured plasma-density profile with the
nonequilibrium analysis. However, only fair agreement with analysis is obtained
for the electron number density profile. The latter is overpredicted by analysis,
which is in contrast with the results for case 1. It is also shown that the
electron-number density continued to increase with distance from the wall and
did not reach asymptotic values. This phenomenon was also observed in the shock
wave structure experiments (see Fig. 13, Glass and Liu, Ref. 24). In the
relaxation region near the shock-tube wall, the electron cascade front moves in
towards the wall slowly at first and then very rapidly. The reasons for this
premature ionization close to the wall in the experimental shock wave structure
are far from clear. One possibility considered was that a gas-surface inter-
action occurred between the argon plasma and the chromium-plated steel shock-
tube wall. However, two experiments were carried out to try and eliminate
this possibility by changing the surface material. However, no changes were
observed. This phenomenon is much more in evidence for the stronger shocks.
For this reason, experimental results for electron-number density for Mg = 15.9
are lower than that predicted. For the previous case with Mg = 13.1, the flow
parameters reached their asymptotic values at the edge of the boundary layer.
The corresponding profile for the degree of ionization is shown in Fig. 32 and
the displacement thickness, &%, is plotted in Fig. 33 as a function of distance x.
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The determination of electron temperature of a shock-heated argon
plasma has received wide attention. Among the commonly used plasma diagnostics
for electron temperature determination in a flowing gas plasma are Langmuir
probing and microwave transmission. The difficulty in measuring two temperatures
of a plasma generated by sbtronger shock-induced boundary layers has been recog-
nized. In the present case, the experimental temperature of argon plasma is
determined from the measured plasma-densiity and electron-number-density profiles.
by assuming thermal equilibrium in the boundary-layer flow. Even this assumed
experimental tempersture cannot represent the actual atom or electron tempera-
ture. However, some interesting features can be found from a comparison of
the theoretical and experimental plasma-temperature profiles. The experimental
plasma-temperature profile together with the calculated two-temperature profiles
are plotted in Fig. 34 for Mg = 13.1 and po = 5.16 torr. It is shown that the
experimental plasma temperature is close to the electron temperesture profile
near the wall. In the outer part of the boundary layer, agreement between the
theoretical and the indirect experimental results is excellent. A comparison
of the temperature profiles for Mg = 15.7 and po = 5.1 torr is shown in Fig.

35.

From the foregoing comparison of theory and experiment for both
flat-plate and sidewall boundary-layer flows, the following differences are
observed: (1) The experimental data and the nonequilibrium analysis show
that there is no bump in the ne profile for the sidewall boundary layer.
However, such a bump is observed in the experimental flat-plate boundary
layer profile. The frozen solution predicts a bump for both layers. (2)
Better agreement is obtained between experiment and the nonequilibrium analysis
in the sidewall case, while the frozen solutions agree better with experiment
than the nonequilibrium solution for the flat-plate case. (3) More significant
differences exist between the analytical nonequilibrium and frozen plasma-
density profiles for the sidewall boundary layer, while this difference is
small for the flat-plate case. (U4) Even though the predicted displacement
thickness for the sidewall boundary layer is an order of m?gnit’ude greater, the
predicted and actual density, electron-number density and degree of ionization
layers have correspofidingly similar values. The depsity thickness is usually
about half the electron-number density thickness. It shows that the total
density is not a sensitive indicator of flow variations.

By and large all analytical profiles are consistent for both types
of boundary layers. The fact that the experimental data is in better agree-
ment for the sidewall boundary-layer flow may result from:. (1) The unsteady
effects on the sidewall boundary layer close to the shock front are smaller
than those for the flat-plate cases where the shock wave is threefcld the
distance away. (2) There is significant ionizing nonequilibrium in the free-
stream flow in the sidewall case but the flat plate is almost in a state of
radiant equilibrium. (3) The degree of ionization at the points measured
for the sidewall case is two to threefold larger than that for the flat-plate
cases and may favour the agreement with the nonequilibrium analytical profiles.

It is worth noting that the step size Ax, used for the sidewall
boundary layer, is much smaller than for the flat-plate case and results in
increased computation time.

The assumption piVj = -pDg(d*/dy) made in the analysis wss removed
and replaced by
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in the computer :program It is shown that the effects on the electron-nunber-
density and plasma-density profiles are very small. This was done to remove
instabilities at higher shock-Ma.ch number for the sidewall boundary layer by
using the above equat:.on

_ Fina.lly, from a comparison of the theoretica.l results of Hutten-
Mangfeld (Ref. 15) and the experimental results of Kuiper (Ref. 56) for a

"therma.l Rayle!igh boundary layer, it was shown that no bump in ne occurred in

both results. It should be noted that in Kuiper's experiment with Mg = 11.1
and po = 5 torr, radiation cooling is not negligible. Nevertheless, similar
trends of the flow profiles are observed in their end wall boundary layers
and our ﬂa.t-plate and sidewall boundary layers.

8. DISCUSSIONS AND CONCLUSIONS

The complete set of partial-differential equations for a laminar
boundary layer in ionizing argon have been solved with a six-point implicit
finite-difference scheme. The new features in the analysis are the inclusion
of the radiation-energy loss and the appropriate chemical reactions. The
latter also include the atom-atom reactions. Account was taken of the varia-
tion across the boundary layer of the transport properties based on the known
elastic-scattering cross-sections for an argon plasma. The compatibility
conditions and the electric-sheath model were described and incorporated into
the analysis. The flat plate and shock-tube sidewall boundary-layer flows
were analyzed and compared with interferometric data obtained using the UTIAS
10 cm x 18 cm Hypervelocity Shock Tube equipped with a 23-cm diam Mach-Zehnder
dual-wavelength interferometer at shock Mach numbers Mg =~ 13 and 16 at an ini-
tial argon pressure py -~5 torr and To :~ 300 K.

The analysis is probably the most complete and detailed done to
date. It clearly shows that the measured electron-number-density and degree-—
of-ionization profiles in the boundary layer for equilibrium, frozen and
nonequilibrium flows are more sensitive than the measured complementary
total-number density profile for determining the actual state of the boundary
layer, as might have been expected. Agreement between theory and experiment
for the density profiles appears good to excellent as there is little difference
between the three analytical profiles for the flat-plate boundary-layer flow.
However, agreement of experiment with analysis for electron-nunber density is
only fair for the flat-plate case. The experimental data lie between the
analytical frozen and nonequilibrium profiles. The experimental data show a
bump in the ne profile at both Mg = 16.6 and Mg = 12.8 for the flat-plate
cases, while analysis only predicts a bump for the frozen case at Mg = 12.8.
The nonstationary character of the inviscid flow may have an important effect
on the boundary-layer structure at high shock Mach numbers where the radiation
energy loss is significant. However, a substantive explanation for this
phenomenon has not been found.

For the shock-tube sidewall boundary-layer flow it was shown that
there is no bump in ne profile for both the nonequilibrium analysis and the
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actual experiments. Better agreement with experiment was found in this case
with the nonequilibrium analysis, rather than the frozen analysis. A comparison
of the indirect temperature measurements and theory for the plasma-temperature
profiles shows excellent agreement.

General conclusions obtained from the comparisons between theoretical
and experimental results for the flat-plate and shock-tube sidewall boundary
layer flows are given as follows (Liu and Glass, Ref. 58):

(a) Near the wall the flows are in nonequilibrium or near frozen. Equilibrium
solutions are only valid for the flow at the outer part of the boundary
layer. The same conclusion was drawn by Knbds for a sidewall boundary layer
and by Hutten Mansfeld for a thermal Rayleigh boundary layer.

(b) The variation of the flow profiles with distance x for the two types of
boundary layers are different. For example, for the flat-plate boundary
layer the velocity profile is almost independent on x but not so for the
sidewall boundary layer. Consequently, similarity assumptions are reason-
able for the velocity and atom temperature profiles for the flat-plate
case where the freestream variations are small; and even for the sidewall
velocity profiles. However, large errors will arise in electron-number-
density and temperature profiles from similarity assumptions in both cases.

(c) Unlike the total-number density, the electron-number-density profiles are
very sensitive indicators for comparing frozen, equilibrium and nonequili-
brium analyses with experiments.

(d) The thickness of the electron thermal layer is of the same order of magni-
tude as the viscous boundary layer for both flat-plate and sidewall boundary
layers. A similar conclusion was made by Hutten Mansfeld from a comparison
between his analysis and Kuiper's experimental data for a thermal Rayleigh
boundary layer.
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FIG. 5 INITIAL FLOW PROFILES AT x = O FOR NORMALIZED VELOCITY f', DEGREE OF
IONIZATION z, ATOM TEMPERATURE 6 AND ELECTRON TEMPERATURE © WITH 7

FOR Mg = 16.6, po = 4.81 TORR AND T, = 296 K (CASE 1).
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FIG. 6 VARIATIONS OF TRANSPORT PROPERTIES: HEAVY PARTICLE PRANDTL NUMBER Pr,
RATIO OF DENSITY-VISCOSITY PRODUCT C, SCHMIDT NUMBER Sc AND ELECTRON
PRANDTL NUMBER Pre WITH n AT x = 0 FOR Mg = 16.6, po = 4.81 TORR AND
To = 296 K (CASE 1).
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FIG. 7 VARIATIONS OF NORMALIZED FLOW PROFILES OF VELOCITY f', DEGREE OF
IONIZATION z, ATOM TEMPERATURE @ AND ELECTRON TEMPERATURE € WITH
LEADING-EDGE DISTANCE x FOR Mg = 16.6, p, = 4.81 TORR AND T, = 296 K
(CASE 1).
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FIG. 8 VARIATION OF ELECTRON PRANDTL NUMBER Pre WITH n FOR LEADING-EDGE
DISTANCES x = O AND x = 14 CM FOR Mg = 16.6, po = 4.81 TORR AND
To = 296 K (CASE 1).
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FIG. 10 VARIATION OF BOUNDARY-LAYER DISPLACEMENT THICKNESS &% WITH LEADING-EDGE
DISTANCE x FOR Mg = 16.6, p, = 4.81 TORR AND T, = 296 K (CASE 1).
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FIG. 11 VARIATIONS OF BOUNDARY-LAYER THICKNESSES OF VELOCITY Op, DEGREE OF
IONIZATION 6, ATOM TEMPERATURE bp, AND ELECTRON TEMPERATURE Brg
WITH LEADING-EDGE DISTANCE x FOR Mg = 16.6, po = 4.81 TORR AND
To = 296 K (CASE 1).
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FIG. 12 VARIATIONS OF NORMALIZED PROFILES OF VELOCITY f', ATOM TEMPERATURE 6,
ELECTRON TEMPERATURE 6, DEGREE OF IONIZATION z AND ELECTRON PRANDTL
NUMBER Pro WITH f AT LEADING-EDGE DISTANCE x = 14 CM FOR NONEQUILIBRIUM
AND FROZEN FLOWS FOR Mg = 16.6, po = 4.81 TORR AND T, = 296 K (CASE 1).
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FIG. 13 COMPARISON OF ANALYTICAL AND EXPERIMENTAIL PLASMA-DENSITY PROFILE p
WITH DISTANCE y IN THE BOUNDARY LAYER FOR Mg = 16.6, po = 4.81 TORR
AND To = 296 K (CASE 1). ,
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FIG. 14 COMPARISON OF ANALYTICAL AND EXPERIMENTAL PROFILES OF NORMALIZED
ELECTRON-NUMBER DENSITY ng/ngg WITH DISTANCE y IN THE BOUNDARY LAYER
FOR Mg = 16.6, p, = 4.81 TORR AND T, = 296 K (CASE 1).
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FIG. 15 COMPARISON OF ANALYTICAL AND EXPERIMENTAL PROFILES OF NORMALIZED DEGREE
OF IONIZATION o//ctg WITH DISTANCE y IN THE BOUNDARY LAYER FOR Mg = 16.6,
Po = 4.81 TORR AND T, = 296 K (CASE 1).
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FIG. 16 NONEQUILIBRIUM-FLOW PROFILES OF NORMALIZED VELOCITY f', DEGREE OF
IONIZATION z, ATOM TEMPERATURE 6 AND ELECTRON TEMPERATURE © AS A
FUNCTION OF n AT LEADING-EDGE DISTANCE x = 14 CM FOR Mg = 12.8,
Po = 5.01 TORR AND To = 297 K (CASE 2).
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FIG. 18 COMPARISON OF ANALYTICAL AND EXPERIMENTAL PLASMA-DENSITY PROFILE p
WITH DISTANCE y IN THE BOUNDARY LAYER FOR Mg = 12.8, p, = 5.01 TORR
AND T, = 297 K (CASE 2).
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FIG. 19 COMPARISON OF ANALYTICAL AND EXPERIMENTAL PROFILES OF NORMALIZED
ELECTRON NUMBER DENSITY ne/nes WITH DISTANCE y IN THE BOUNDARY LAYER
FOR Mg = 12.8, po = 5.01 TORR AND T, = 297 K (CASE 2).
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FIG. 20 COMPARISON OF ANALYTICAL AND EXPERIMENTAL PROFILES OF NORMALIZED i
DEGREE OF IONIZATION ¢t/0tg WITH DISTANCE y IN THE BOUNDARY LAYER FOR g
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OF IONIZATION z, ATOM TEMPERATURE 6 AND ELECTRON TEMPERATURE © AS A
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APPENDIX A

DESCRIPTION OF COMPUTER PROGRAM

The program BLEIG for solving Boundary Layer Equations for Ionizing
Gases is written on CDC-6600. The other versions of BLEIG on IBM-370 and
PDP-10 have been written. The CGS unit system is used through all programs.
The flow chart of the program is given in Fig. 28. Free format of the input
data is used. The computer program is given in Appendix F.

A.l1 Main Program

Before describing the notations used in the main program, the main
features of the calculation procedure will be reviewed. A rectangular grid
system indicated in Fig. 1 has been adopted, the j-lines running in the 9
(or y) direction, i.e., normal to the plate, and the i-lines in the & (or x)
direction, i.e., parallel to the plate. Conditions along some initial j-line
are known and the conditions along the (j+l)-line have to be determined. The
main sbeps in the procedure are then,

(1) If this is an original run, the solutions of the flow at leading edge
(x=0) are obtained by calling SUBROUTINES SETUP and BEGIN. If this is _
not the original run, then the solutions at some particular point of x ’
are read in from a restart file in a magnetic tape.

(2) From the known solutions of F, z, 6 and © on the J-line, the solutions
at (j+1)-line are assumed.

(3) Using assumed solutions at (j+l)-line, the new velocity profile F at
(§+1)-line is calculated.

(4) Using new value F and assumed z, 6 and © values, the new value of z is
calculated.

(5) Using new values of F and z and assumed values of 6 and 6, new value of
6 is calculated.

(6) Using new values of F, z and 6 and assumed © value, new © value is
calculated.

(7) Repeat from step (3) to step (6) until the solutions at (j+l)-line
converge to satisfy a preset criterion.

(8) Calculate the boundary-layer characters and determine a suitable step-
size Ax. :

(9) Use the same procedure to advance from the (j+l)-line to the (j+2)-line
and so on.

The notations used in the main program are listed and explained

below:




EDU (MREAD)

EDTA (MREAD)
EDTE (MREAD)
EDALP (MREAD)
EDP (MREAD)
XDIS (MREAD)
DENNE (I)

WF (1)

Wz (I)

WA (I)

WIE (I)

SF (I)

SFX (1)

WFP (I)

WZP (I)

WLAP (I)
WIEP (I)

GUESS (4)

WORK (I)
F(I)

Z (I)
THETA (I)
THETE (I)
ETAY (I)
YREAL (I)
CR (I)

]

Ut‘) values at the edge of boundary layer.

t['a,5 values at the edge of boundary layer.

Te. values at the edge of boundary layer.

(o}

. values at the edge of boundary layer.

o}
Pg values at the edge of boundary layer.
Reading x values for the freestream conditions.
n, at grid point (1, j=).

F at grid point (i, j+1).

z at grid point (i, j+1).

@ at grid point (i, j+l1).

© at grid point (i, j+1).

f at grid point (i, j+1).

£, at grid point (1, j+).

F at grid point (i, Jj)

z at grid point (i, j)

0 at grid point (i, J)

©® at grid point (i, J)

Initial guess values of [Cf'] , [-C— z' ]w ’ [C— 8' }w
and ew. ' 1
A function evaluated at (i, j+1).
Weighted F value at (i, j+1).
Weighted z value at (i, j+l1).

Weighted 6 value at (i, j+l).

Weighted © value at (i, j+1).
g at (i, j+1).
y at (1, j+). 1

Cat (1, 3=1).




CRER (I)
CRsC (I)
CRPRE (I)
RHO (I)
CRP (I)
CRPRP (I)
CRSCP (I)
CRPREP (I)
OLDWF (I)
OLDWZ (I)
OLDWTA (I)
OLDWTE ()

RENERRIAE T

TAED

C/Pr at (i, j+)

C/Sc at (i, j+1)

c/Pre at (i, j#)

p at (1, j+1)

C at (1, J)

C/Pr at (i, J)

¢/Sc at (i, J)

»c/rre at (1, J)

Previous iterative value of F at (i, j+l1)
Previous iterative value of z at (i, j+l)
Previous iterative value of 6 at (i, j+l1)
Previous iterative value of © at (i, j+1)
Ao O+ )

A

OO0 R DO, MRS 1 BN 4 S e




A(T)
B(1)
c(1)
(1) .
D1(I)
D2(I)
X(t)

TION
TEXC '

Meximum value of i

Ak;

If IBC = 1, sheath-wall condition for T, is used

If IBC

Matrix element A‘.’L
Matrix element By
Matrix element C;
Matrix element D
1/[ (145 am k']

2/L (1)Pt 2oy By

Ta., ceri

Te seri

hy
3.2
Used in o, = QaAC/TO 27

. - 0.09
Used in o, = Q.AIC/Ta

2, sheath-wall conditions for T = and O are used




i cc1, cc2, cc3,
E cclh, TEEA, DD1,
. DD2, DD3, DD4 =

EEl, EE2, EE3

HVC o=

EPS =

ITYPE =

ICASE =

CONTL =

THICKD =

‘Used in the equation:

5 . 3 -16
o, = (CC1 + CC2.T, + CC3-T .~ + cch T,”) x 10
if T, < TEEA
2 Gy 3 -16
g » (pp1 + Dp2-T, + DD3-T .~ + DD4 : 7% ) x 10

if Te > TEEA

Used to calculate the statistical weight of ion, ZI’

see FUNCTION EQK: ZI = EEl + EE2/exp(EE3/T)

Maximum value of x

Tolerance criterion

ITYPE = 1 for flat-plate boundary layer
ITYPE = 2 for sidewall boundary layer
ICASE = 1 for nonequilibrium flow
ICASE = 2 for frozen flow

Parameter used in the control of step size /Ax

y value in mm

displacement thickness &* in cm

J

X in cm

g

Iteration number

Solution step print selector in x direction. Output

will be printed on the line printer every IPRNTX step




IFILE

FIN

FOUT

DWFDY
DWZDY
DWTADY
DWTEDY
GAML
GAM2
TAWX
ALTAU
TAUU
BETAF
BETAZ
BETATA
BETATE

TEW

SLOPE

Solution step print selector in y direction. Output will
be printed on the line printer every ILPRNTY -stép

Restart file solution step selector. A restart record
will be written to the restart file every IFILE step
Read in restart file name

Written out restart file name

Nunber of points freestream conditions

N-1

(oF/am),,

(z/3m),,

(38/am),,

(96/0m),

Tea/ s -

T aﬁ

2¢/p.p.U 2
5060

Ny




A.2 Subroutines

Subroutine INTERP:

The Aitken-Lagrange and Lagrange interpolations have been applied
before. However, it was found that these interpolations are not suitable for
the sidewall boundary layer where the variation of ag with x is significant.
Therefore, a linear interpolation INTERP is applied in the present program.

Y = The resulting interpolated function value.

X = The argument value specified by input.

M = An input value which specifies the number of points in table (XF, YF).

XF = The input vector of argument.

YF = The input vector of function values of the table.
Subroutine SETUP:

Equations (60) - (63) are the ordinary differential equations with
two-point boundary conditions. The Newton-Raphson method for the iteration
techniques (see Subroutine BEGIN) is applied. In the BEGIN svbroutine, four
guess values for [Cf"]y, [(C/Sc)z'Jy, [(C/Pr)e']y and 6, (or [CE"ly, Zy:
[(C/Pr)e']w and @) are required. If the guess initial values are not reasonable,
then the computation time is more consumable and stable solutions cannot be
found in the Subroutine BEGIN. In order to avoid this difficulty, some knowledge
about how to guess the initial values are necessary.

From the integral method described in Ref. 10, the following ways to
guess the initial values are presented:
= " A
GUESS (1) = C, £/ (A1)
where

P

n
n
—~
[ 0

]

.
~

. 985 . 227
Ff o (l > 7) 9007 15 1287 7(1 " 7)

=D TR Do r S R R SR S e S ot

S T e o N s e gl g S




GUESS (2) = <-§E>z' (42)

¥
where
z! =-l_
w m
e
L T )\o
i, 20¢
Se 28X
1
Co=gf (1-2J)( -9 +F(1-32)
= 22
Cl _Egg (l = 7) +T§
GUESS (3) = <g—r>_e", ()
w g
; where
b
g o' =—-l_..
w
E ».}X 72
)‘o
Lz B -l te
1 A
1—+ OB
Pr 2 1

By =332 (1- 6)(1- ) +3 AL - o)

TR R TN

_ 821 3
By “Tooiz (-2 *+35 7

_ooam
&) "§o‘g§ 1-9+g3
U52 5
b, = -2Pr (1 - 9)
2 C o

A-8




o

]
n
—~
(i

]

s
~

&% ~-31- 9
a5 = 6(1 - )
8.6 = -2(1 = 7)

cuEss () = 6, T

Using the boundary condition @, = O and Eq. (63), we obtain GUESS (4) = 1.0.

In the above equations, the trangport properties, C, Sc, Pr are
evaluated at some particular distance y* from the wall. However, it is
difficult to'determine y* from theory. From our experience, the guess
transport properties are approximately equal to the average values of
that at the freestream and at.the wall.

Subroutine INTRG:

This is a subroutine to perform the following integration by three-
point difference formulae. ° - 3
2 ]
e[ v

(e}
or
N ,i-1 3
k An :
1 2 + 3k B o i *
z=2 3 K = )y(l" 1) +<_k_2>y(1)
i=0
4 g
“Hiew Y+ l):l
: \
It is worth noting that I = 1 in the program corresponds to i = 0
here.
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Subroutines BEGIN and BLF:

These subroutines are used to solve Eqs. (60) - (63) by means of
the Newton-Raphson iteration techniques (Ref. 10). The following notations

are applied:
¢
YINIT (1) = £_-
YINIT (2) = £!
YINIT (3) = [Cf"],
YINIT (4) = z,
C i
YINIT (5) = [-S—c z L
YINIT (6) = o,
1 E‘ c
3 . YINIT (7)=[E e'l
YINIT (8) = 8,
YINIT (9) =l-i e;.l
~Pre dw
F = f' =u/u
Z =2z
THETA =9
THETE =8
NORD = Nunber of ordinary differential equations
Y (1) =f
Y (2) = £
Y (3) = cf"
Y (4) =z
o ELwi
IO =g
Y (6) =9
e Ao
Y (7) S Pr %]
A-10




| Y (8) =0

;‘ Y (9) == &

f YPRIM (i) = Y'(1) i=1¢%t09
Subroutine RKGIL:

This subroutine uses the Runge-Kutta method with Gill's coefficients
for the solution of initial-value problems.

Y = Input vector of initial values, y
YPRIM =y'

NORD = Number of equations

A = Lower bound of the interval

B = Upper bound of the interval

STEP = Step size

DER = An auxiliary storége array of y'

Subroutine DENSIT:

This subroutine is used to calculate Ny, Ng and p by given p, Tgs
Te and .

Subroutine TRANSP:

This subroutine is used to calculate the transport parameters. The
following notations are used:

I
q

SEA aa
QAT =0y
- " %ea
QEI *. O
o =~ Tee
QII =044

A-11
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Subroutine RATES:

This is a subroutine to calculate the reaction rates.

NEDOTA = ‘(ne) a'/n "

NEDOTE = (ne)e/ne

KFA = kfa.

KRA = kra.

.EQ.K = Keq

KFE = kf o

KRE = k?e

SAA = First excitational cross-section constant between

atom and atom

B

First excitational cross-section constant between
atom and electron

ool b g b e i dea it
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Function EQK:

This is a function to calculate the equilibrium rate constant for
a given temperature.

ZI1 = Statistical weight for an ion
EQK = Keq

Function QRAD:

This function is used to calculate the radiation energy loss.

HVC = Cut;off frequency of the plasma
ZEFF = Effective nuclear cha.rge

QC = Continuum radiation energy loss
QRAD = Total radiation energy loss

NE = Electron number density

TE = Electron temperature

Subroutines MINVRS and SUBMCS:

These subroutines are used to calculate the matrix inverse of matrix
A. The input matrix and resulting matrix inverse are specified by A.

Subroutines CRANK and TRDG:

Subroutines CRANK and TRDG are an algorithm to solve a tridiagonal
matrix most efficiently. The matrix equation is given by

AW, 1 +B.W, +C,W D

. o s e T e |
where 1 =1 to N-1, and W, and Wy are given. The matrix form is

- 1 fitoiss

B} C LY : | :
A, B, Gy 0 W, D,
by Wy 8 o Dy

: Ay.2 By2 Oy | | Wne2 Dy.o

Ayer Byea | | W L”ﬁ-l

A-13

ot P B G i s e




It Wo is given, then

B
Df =B - LY,
b ¢ 4 (aw/aq)o is given, then
o iy

- e (&)

For the present boundary layer case, Wy (=1) is given, and
therefore, DX . =D__ - c_ _.
> “N-1 N-1 N-1

The arguments of CRANK are

IBC = Type of boundary condition at the wall; 1 for Dirichlet
type boundary condition and 2 for Neumann type boundary
conditions

SLOPE = (%W)

o
DETA1 = Anl
WSTART = Resulting solutions

Subroutine COEFF:

This is the subroutine used to calculate the matrix element Ay,
Bis> C; and Dj (given by Eqs. 75) used in Subroutine CRANK.

F Subroutine DXCTL: 3
' This is the subroutine used to control the step size Ax. The :
arguments are . !
DX = Step size Ax E
THICKD = Displacement thickness of boundary layer &* |

CONTL = Control parameter (input value)

A-14
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the use of default values.

: (3) MREAD —NUMBER OF POINT FREESTREAM CONDITIONS READ
(%) im:s(mm), EDALP(MREAD), EDU(MREAD), EDTE(MREAD), EDTA(MREAD),

DIFF = Maximum velue of [W(i, j+1) - W(i, J) |
ITER = Tteration number used for previous step size

The step size DX is given by
= CONTL - |[o* |

Subroutine OUTDSK: Subroutine to write out the results on Tape 3.
The subroutine OUTDSK is used for writing the necessary results on

the magnetic tape under the output restart file name. These results are
needed for the calculation starting at x greater than zero.

A.3 Input and Outpﬁt
' The inplit data for BLEIG is a description of boundary layer charac-
ters, freestream conditions, physical parameters and parameters of boundary
layer structure. Where possible, 'free format' input has been used to simplify
The following cards are needed for input data (using CGS units):
(1) ].TYPE 'ICASE, IBC, IPRNTX, IPRNTY, IFILE

(2) N, DETAl, XREAL, DX, XMAX, K, CN, TW, EPS, CONTL, ZW

EDP(MREAD)
(5) FIN, FOUT— READ IN AND READ OUT RESTART FILE NAMES

(6) I8AS —IF IGAS EQUALS TO ZERO, THEN DEFAULTED VALUES ARE USED IF IGAS
IS NOT EQUAL TO ZERO THEN READ THE FOLLOWING DATA

(7) MA, R, TION, TEXC, SAA, SAE, TACRI, TECRI

(8) O,AAC, QAIC, CCl, CC2, CC3, CCh, DD1, DD2, DD3, DD4, TEEA
(9) EEL, EE2, EE3

(10) HVC, ZEFF

For example, the following six date cards are used for a nonequilibrium
flat-plate boundary with Mg = 16.6, p, = 4.81 torr and T, = 296 K:

B 3:1, 1,5, 3; 280
(2) 70, 0.035, O, 1.E-6, 14, 1.05, 0.75, 296, 1.0E-4, 0.1, 1.E-5
3) 1

(4) 214, 0.021, 4.86E5, 1.049E4, 1.049E4, 0.27E7

(5) WSL .RST
(6) ©




(1)
(2)
(3)
(¥
(5)
(6)

(7
(8)

The following outputs are given in the present program:
State of the boundary layer flow.
Numerical parameters.
Input freestream conditions.
Read in and write out restart file names.
Physical parameters of gas particles.

If XREAL in input data is zero, then the initial GUESS value obtained
fram SETUP and Y(1) to Y¥(9) obtained from BEGIN are given.

XREAL, XI, J, ITER, DX, UED, TAED, TEEP, ALPED and PED
I, ETAY, Y(mm), WF, W2, WIA, WIE, CR, CRPR, CRSC, CRPKE, RHO and NE
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Flow Chart of Main Calculation Loop

READ JOB

STATISTICS
v

INITIALIZE ALL PARAMETERS
READ ALL INPUT DATA

RS
RESTART

Y

OUTPUT ALL INFORMATION

YES

y

READ SOLUTIONS FROM RESTART FILE

NO

X

J=0 Y
+

OUTPUT SOLUTIONS CALL SETUP

AT x = 0 CALL BEGIN

x=_x+Dx

J=J+1
¥

INTERPOLATE FREESTREAM CONDITIONS

| ITER = 1

4

CALCULATE NEW VELOCITY PROFILE
! ;*
CALCULATE NEW DEGREE OF IONIZATION PROFILE ITER = ITER + 1
1 B -
| CALCULATE NEW ATOM TEMPERATURE PROFILE
4
[ CALCULATE NEW ELECTRON TEMPERATURE PROFILE NO
4 z
1 NO ) =1
| IS TOLERANCE SATISFIED? |— |
YES
IS ITER > 157 |
YES - R
CALCULATE BOUNDIRY-LAYER CHARACTERS [¢merrmme=l 1S IT ACCEPTABLE? |
SELECT OUTPUT,RESTART FILE AND STEP-SIZEDx NO
o NP R YES__(Stods
S max 'u

FIG. A.l TFLOW CHART OF THE PROGRAM BLEIG.
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APPENDIX B

THERMODYNAMIC QUANTITIES

The definitions and the equations for thermodynamic quantities
of a two-temperature ionizing monatomic gas will be summarized. The detailed
formulations of the thermodynamic equations can be found in the text books and

in the literature.

In this stud,y, we are dealing with a mixture of atoms (&), ions (i)
and electrons (e). Atoms and ions have the same temperature Tq and electrons
have a temperature Te. For each species j we have

P n‘_j kB TJ (Bl)
T
o G (B2)
h —f Coy 4Ty +
(o]

where pi is the pressure of j species, is the number density of j species,
kg is the Boltzmann constant, hj is t;he nthalpy per unit mass of j species,
_CPJ is the specific heat at constant pressure per unit mass of species j and

hg is the chemical enthalpy per unit mass of species J.

i Rl (e i i b B e i

The total pressure of the mixture is defined by Dalton's law as

= ij (B3)
J

and the density of the mixture p is given by

— (BY)
J
where Pj mi o is the mass of the species j. Since the mass of an elec-
tron 13 negl gibly small compared with the mass of an atom, p is written as

p=mn(n, +n) (B5) ‘

where = n, for singly ionized gas.
o e

The mass fragtion of ions, &, which is also called the degree of
ionization, is given by
n

o)
a = —j-'- = n +en (B6)
< a e

3




; The mass fraction of electrons is given by

P D
; — =—q (B7)
£ p ma
and the mass fraction of atams is
o)
F-a =1-qa (B8)

The total number density of the plasma is

n =an =0 %o (B9)
n

The relations between n, ng and 0 are given by

ta]
]

a = (1 0)/m, (810)
n, = ea/m_ (B11)
Therefore, n can be written as

n=p(l+a)/m (B12)

The total pressure p of the plasma becomes
p= (na i ne)kB To. iy kB Te (B13)

= pR(T, +oT,)

where R is the gas constant referred to the atomic gas and defined by R = kB/ma.'
Let Nj be the nunmber of j-particles in the volume V and F. be the

Helmholtz free energy function of one particle of the species j, th&n the
Helmholtz free energy F of the mixture is given by

F =ZNJ FJ (B1k4)

o AT TN W <D
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where NJ = nJV and FJ is given by

b 1
= kT Gl " B1
=k 3[log g5 - log N, + log gy +1] (B15)
g;' and 'g; are the partition functionsassociated with the translationsl and
internal degree of freedom, respectively.

The entropy S is defined by

S ='ZNJSJ (B16)
J
where 8y = °(aFJ/arJ)AV' .
The internal energy E is defined by

E=F + TS =2NJEJ (B17)
where
E, = -1,° 9 ﬁ
d Ty e 2
J J
The enthalpy H is defined by
i =ZNJ B, (18)
3
where
i o= ¥
G S Gaae N,

Finally, the Gibb's free energy of the plasma G is given by

G =;NJ Gj (B19)

where

G, =H, - TS

J J J

According to the above relationships, the specific properties, i.e.,
the properties per unit mass of an ideal ionizing monatomic gas can be derived
from the partition functions of each species involved. The partition function

B-3

MM
st n e " il




vy S e,

associated with the translational mode is given by

(2ym,xr,)3/2 - €o/KT
g§=—-3-13-AL——Vgoje 37 (B20)

where €. is the excess energy of the ground states of the j-species above the
referenct (ground) energy level, G0y 18 the probability or the statistical
welight of the ground energy level €03 and h is the Planck comstant.

The internal mode of electronic excitation is always assumed to be

at its ground state. The internal partition function for electronic excitation
is given by

i =z '%/u,j

g5 g e (B21)
where en is the energy of the n-th state of the particular species above its
ground state and g, is the statistical weight of state n.
Using Egs. (B20) and (B21), the specific internal energy e (e = E/gV)
and the specific enthalpy h (h = f/ pV) of the mixture can be derived as follows:
- '
e=3 R(Ta +,dre) + omI (B22)

h=e+%=%R(Ta+aTe)-f-dRTI s (323)

The component specific heats C,, and the frozen specific heat of the
mixture cpf at constant pressure are defﬂed by

(B24)

The specific heats are all S5kg/2 per particle. Therefore, Cpe is . 1
given by .

C.=2R(1+q) (825)

pf—§

Similarly, the specific heats d2¥ and the frozen specific heat of
the mixture Cyr at constant volume are gned by

o, |
= —-1 b :
c 5 (81‘3 ) (B26)

Contd...
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Cot Z Hey=3na s (326)

When the mixture is in chemical equilibrium, Gibb's free energy has
its minimm for all possible changes in camposition of a system at a given
pressure and a given temperature. The equilibrium equation for the degree of
ionization can be obtained by using this condition. A detailed derivation
of Qgq = ,:?%, T) based on this concept was given by Glass and Tekano. Another
derivation of the Saha equation, or equilibrium equation, is described as
follows: Let the overall reaction paths be represented by

e RN
A+A == A +e+A

rs
k (B27)
fe +

A+e = A +e+e

kre

where A denotes atoms.

Production rates of electron number density associated with Eq.
(B27) can be expressed as follows: '

: g 2 2
(ne)a. =k, n-° - kra, n, n, (B28)
(ﬁe)e = kf‘e B O ne3 (B29)

where ke and ky are forward and reverse rate coefficients » respectively.

In an equilibrium state, the forward and reverse reactions are balanced
in the process. Therefore,

kfa(Ta) i o ni e (Ta)
E_(T) = Keq(Ta) = n'a’éqi'lr * (%)
kfe(T) L ne2e (Te)
E.m T Keq(Te) = —4—‘1(—)-,1&’6‘1 T, (831)
where K q(!E) is the equilibrium constant, which is given by
28; s2mkT \3/2
Keg(® =g —héﬁ?- exp (-T./1) (B32)
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and gg, g; are the electronic excitation partition functiomsof atom A
and ion AT particles.

Using Eqs. (B10) and (B1l), the equilibrium value of degree of
ionization, ®eq> is obtained from Egs. (L30) and (B31l) as follows:

azq ma. )
= K_ (T (B33)
1l- aeq peq eq

where T stands for Ta and T -

If the system is in thermal equilibrium (Te = T, = T), then the
equilibrium value of density Peq is given by

Peq =TT 70 (B34)

q

Introducing a characteristic density for ionization, prs the
equilibrium equation for @ becomes

K Ty 5/2 T1/T 1/2
aeq(p, T) = [FI%T—I 7 e + 1]- (B35)
where
3/2
_ (B \3/2 & (2mgTy) /2
e gl .

For argon, py = 150.27 g/an3.

Equation (B35) is known as Saha's equation. Given pressure p and
temperature T, the degree of ionization a is calculated from Eq. (B35) if the
flow is in chemical equilibrium.

Production rates of electron number density, (fig)g and (ig)e, given
by Eqs. (B28) and (B29) became

2

(ﬁe)a 5 kra(Ta) na[Keq(Ta)na Bl ] (B37)
(ﬁe)e B kre(Te) ne[Keq(:I’e)na. i ne2] (B38)

The equilibrium degree of ionization Q,, is obtained by setting the
square brackets in Eqs. (B37) and (B38) equal to Fero and solving for a@. Thus
the equilibrium degree of ionization is a function of the local temperature
and pressure. This does not imply that (nie)s = O and (1ig)e = O or even that
ne approaches zero at equilibrium, since to achieve equilibrium the reverse
reaction rate coefficient krg and kre must become infinite. As krg and ke

B-6
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approach infinity, equiiibrium is attained. The case k.o =0 and kpe =0
corresponds to frozen flow. The actual value of (3g)eq 88 a function of the
boundary layer coordinate y cannot be calculated from chemical kinetics
but must be determined by solving the boundary layer equations.

In the inviscid flow region if the flow is frozen then @ is coastant
since the ambipolar diffusion velocity .of ions and ‘electrons 1s assumed very
small and can be neglected. However, if the flow is frozen then a is nat
constant in the boundary layer flow due to the diffusion process of ions and
electrons. ; ;

The following mathematical expressions for the flow conditions are

given:
Equilibrium;
L3 m . o
(fig) oq = K, e [(ne).,Il + (d,)]
re ¢
(0 -’a,q

Froze{x:

(ﬁe)frozen o
Nonequilibrium:

ﬁefo
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APPENDIX C

EXPRESSIONS OF FUNCTIONS xgil

With 1 = 1, W) = p:

e ot

X =C +reant,
x3=-ﬁfF
xh-ng

3

"

]

._bm
Y
° lo,'b

With i = ZLW(Q) = gz

_e
*1 TS5
x2=<c—> +f+2¢f
Sc " 3
A
w e
x3--BZF+Ta;1:
xh=2§F
X5 = 0
With 1 = 3, W3) = o
_ .
L T 3
=<9_ +f+28f
%2 Pr [ 3

5o r (o, T ) Ve




o bl e R S R i

X, =2 ¥

. T . ‘
x5 = -1g CF 2+, a/(eC '.l'a)-o-ar_:..o[_;.r =
+Bf'rf1'ze—-L.

1+a

with 1 = b, W) = o

X

ke
SRR

w2l c ‘
x5 (Pre>n+<8c>°‘b‘q+°‘(f+2“;)
X, = = B F+3 ﬁe
3 R Veas * T n—e-’

x), =2t Fa

Cc-2
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APPENDIX D

EFFECTS OF CHEMICAL REACTIONS ON BOUNDARY LAYER

The large change of the chemical reaction rates with temperatures
has an important effect on the boundary layer structure for the case of large
degree of ionization. Two important effects, mathematical and physical effects,
of chemical reactions on the boundary layer structure are described as follows:

X The equation for conservation of electrons is given by Eq. (21).
This nonlinear equation is coupled to the equations of conservation of plasma
and electron energies, momentum and mass of the remaining species through the
functions C, Sc, f, f' and ne. Without any loss in the general character of
the equation for electron species, we assume a local similarity equation with
C/Sc =1, £ =1 and £' = 0:

2" ¥E e ﬁe =0 : (D)
where
piod) a2l
Peiss O

In order to illustrate the nature of the problem involved, the following
linearized and simplified version of Eq. (D1l) is considered:

z" +2' -« K2z=0 (p2)

where K is a constant which includes the chemical reaction term.

This simplified and linearized equation, Eq. (D2), contains all the
difficulties associated with the integration scheme used in numerical solution
of the boundary layer equations. The general solution of Eq. (D2) is

L+ TR MK -1
z2=C e + Oy @ (83)

where K > O. The constants C; and C2 can be determined from the two-point
boundary values of z = zy at =0 and z =1 at y - or z' =z at 4 = 0 and
z=18at g 9o,

It is seen from Eq. (D3) that if the initial guess for z§ is not
correct, then the second term in Eq. (D3) will dominate at large values of 3
so that 2 5 at § 9®. Only if K =0, 2z at § - e will achieve a finite value
that can be used to refine the guess for zj.
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Blottner (Ref. 17) has used a finite-difference method to solve
Eq. (21). However, he did not linearize the source term Ne as we have done in -
Chapter 5. The solutions given by Blottner (Ref. 17) appear to be cases for
which K << 1. The method used for linearization in Chapter 5 is similar to the
method of quasilinearization used by Fay and Kaye (Ref. 5) in the solution of
similar nonequilibrium boundary layers. ;

For the frozen flow (e = 0), Eq. C1 becomes:

z" +2' =0 (Dk)

Solution of Eq. D% is given by

= ~N
z Cle +02

Therefore, no ma.thematical difficulty associates with the frozen flow.

2. The dependence of the reaction rate coefficients on the temperatures
are described in Section 3.3. For low temperature (below 1000 K), keo(Ta)

and kee(Te) are very small compared with kpng(Tg) and k,.o(Te), respectively,
and the forward reaction rates can be neglected. Witk temperatures above
10,000 K, forward reaction rates become significant. However, these forward
reaction rates are still very small compared with the reverse recombination
rates. The following relations are satisfied at temperature about 10,000 K:

!
kre ne >> kfe na ne

2 2
kra. na ne >> kfa na.

3 2
Ere fe > Kpq By T,

Therefore the reverse recombination rate due to electron-ion-electron collisions
is the important process in the boundary layer structure.

However, in the region where atom temperature is about 25,000 K (for
example, in the region near the shock front where atom temperature is much
greater than electron temperature), the following relations hold:

2 2
kfa. na. >> krta. na ne

3
kfe na ne >> kre ne







APPENDIX E

EFFECTS OF BOUNDARY LAYER ON SHOCK WAVE STRUCTURE

The analyses in Refs. 24 and 25 on shock-wave structure were made
with the assumption that flow was one-dimensional. The role of the boundary-
layer growth on shock-wave structure was not considered. Mirels/(Ref. 54) has
shown that the flow between the shock and contact surface in an actual shock
tube is nonuniform due to the side-wall boundary layer. Recently, Enomoto
(Ref. 55) has studied the effects of the boundary-layer growth on the ioniza-
tion relaxation in argon, based on Mirel's boundary-layer theory. Enomoto
(Ref. 55) showed that the temperature, density and pressure increase in value
with distance from the shock front due to boundary layer growth, and the
lonization relaxation time is significantly shortened by introducing side-wall
boundary-layer effects.

The present section only discusses the governing equations which are
applicable to quasi-one-dimensional nonequilibrium flow behind a shock wave.
Details of the effects of the side-wall boundary layer on the shock-wave
structure is under study and will be presented in a forthcoming UTIAS Report.

The specification of a problem in the field of gasdynamics requires
the flow equations (mass, momentum and energy) with supplementary information
on the equation of state of the gas. The governing equations for fiow behind
the shock wave are written in shock-fixed coordinates as

%%x-(Apu)=° (E1)
iEed-- i
%%(Apumhgﬁ (E3)
S oua)=m 4, (E4)
e un) =G gDy + 4 (=3

where A is the effective cross-sectional tube area, and <f> = [ £ da/A.

By using the equation of state, p = pR(Tg + OTe), the governing
equations can be approximated as (Enomoto, Ref. 55)

m n
%xE =_::T£ (E6)
du _ u dK 2 do,
a-g}_—sp [ﬁaz*?"“xa*d‘%] (E7)




e 3o P diaa. o Sl T R el el SR b Sl

NP

e=gQ‘el Q‘i.nel_aﬂ"e_d_u (E8)
dx 3 n,u 3u dx

ar 4T

a_ u du e 2 a
a—-'qa'“a—-@e*s%)a'% (E9)
% =-pu%;_: (E10)

The above five equations, Eqs. (E6 - E10), are required for the five
dependent variables: @, u, Ty, Te and ». The initial conditions at x = 0,
immediately behind the frozen shock, are

a =0
u

S {“_3_]
5 Mz

s
5 2 3 7

et [# (W -22)8 ]
a o| 16 s 5M82 8

Te ~Ta or To

where the subscript o denotes quantities evaluated in the unionized (@ = 0)
upstream gas. The length required to reach quasi-equilibrium is nearly
identical for both initial values of Te.

The values A and dK/dx can be obtained from the solutions of side-wall
boundary layer (Chapter 7).

It has been shown by Glass and Liu (Ref. 2L) that the radiation-energy
loss has no effect on the relaxation length. The condition that the side-wall
boundary layer effects on shock structure can be neglected is only good when

L <<——-—2‘DRTIA &= (E11)
dx 5p dax

It can be shown that the side-wall boundary-layer effects in the
UTIAS 10 cm x 18 cm Hypervelocity Shock Tube at shock Mach numbers of Mg =~ 13 ~ 16is
not small since Eq. (E1l) is not satisfied.

A detailed study on the mutual interactions between shock structure and
shock-tube sidewall boundary layer flows based on the correct set of effective
quasi-one-dimensional flow equations will be reported by K. Takayama and W. S. Liu.
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