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Su~~ary

Details are given of an Ixpli cit six-point finite-difference scheme
for solving two- temperature chemical nonequilibrium laminar boundary-layer
flows in ionizing argon . The analysis extends previous work by considering the
radiation-energy loss and the chemical reactions in the plasma of the ionizing
boundary layer . The variations of transport properties based on the known
elastic-scatte ring cross-sections for an argon plasma across the boundary layer
are considered. The effects of the chemical. reactions, radiation-energy loss
and the electric sheath on the boundary-layer structures are discussed. Both
the flat-plate and the shock-tube sidewall boundary layer flows are analyzed
and ccmpared with interfer~~etric data obtained using the UTIAS 10 cm x 18 cm
H.ypervelocity Shock Tube at shock Mach nunbera N5 ~ 1.3 and -j 16 at an initial
argon pressure Po 5 torr and temperature T0 300 K. Fairly good agreement
was obtained between analysis and experiment for both types of boundary layers .
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Notation

A1 Coefficient s of finite-difference equations, Eq. (75 )

aj Constant value defined. in Eq. (75)
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C Eq . (24 )
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Constant value defined in Eq. (75)
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h Planck constant , Eq. (8)

he aCpTe~ ~~~ (7)
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~~i÷i/~~i
Bo1t~~ann constant

kf Forward reaction-rate coefficient, Eq. (10)
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Electron-nunber density production rate

p Pressure

Pr Prandtl ntmber defined in Eq.(21e)

Pr~ Electron Prandtl nunber defined in Eq. (24 )

Plasma conduction heat flux, Eq.(7)

Plasma diffusive heat flux, Eq. ( 7) - 

-

Rate of thermal-energy transfer to electrons due to elastic collisions , - 

-

Eq.(11)

~inel Rate of thermal-energy transfer to electrons ilue to inelastic collisions ,

Eq.(l2)

Plasma radiation-energy loss, Eq.(8)

R Gas constant, Eq.(7)

Sc Schmidt nuither defined in Eq. (24)

S~, Excitational. cross-section constant of particle a due to colli sion with

particle b , Eq.(38)

T T~~~erature

u Velocity of plasma in x-direction

Ua Defined in Eq.(32)

v Velocity of plasma in y-directicn

Va Anbipolar-diffusion velocity, Eq.0i9)

V~ Defined in Eq.(48)

<Va> Defined in Eq.(~ 9)

W A function representing F, z , e or e, Bq.(74)
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x Direction along the surface
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z a/as, Eq. (24)
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P Parameters defined. in Eq. (24)

7 p~~6u5, defined in Eq. (76)
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Teö/T~~
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1. INTRODUCTION

1.1 General Considerations-

An understanding of boundary layer flows in partially ionized. gases
is helpful in designing successful. spacecraft for re-entry into the Earth’ a
atmosphere at hypersonic conditIons. It also provides insight - into the ph$’sical
phenomena of interactions between solid surfaces and plasma flows. The presence
of ions and electrons introd~ices new .transport mechanisms and chemical. reactions
in the boundary layer. The magnitude of the various transport properties of an
ionized gas can be markedly different from a perfect gas . Therefore , the boundary
layers in an ionizing gas are generally more ccmiplex than those in nonio~uzed-gasflows. Despite years of research , boundary-layer flows of partially-ionized gases
are not fully understood experimentally and theoretically.

The character of’ the ionizirg boundary layer problem was schematically
described by KnObs (Ref. i). The following characteristics are important in
considering partiall,y-ionized. boundary-layer flows:

(a) Transport properties
(b) Interactions between moving plasma and metal surface
(c) Atomic-collision processes

- (d.) Chemical. reactions
(e) Radiation-energy transfer
(f)  Electromagnetic fields

The full boundary layer problem is exceedingly complex, and only a
few cases have been treated by early investigators . Usually, some approximations
are made to suit- a given problem and to reduce the computation-time costs .

In general, a mixture of an ionizing gas is composed of molecules ,
atoms, molecular ions, atomic ions and. electrons. However, since the dissocia-
tion energy is much less than the ionization energy, Ionization can be considered
to become appreciable only after - dissociation is- practically completed. There-
fore, the mixture is assumed to be composed only of atoms, atomic ions and.
electrons. The presence of electrons in a gas introduces some features quite
different from those encountered in chemical. dissociations. For example, the
collisional energy-transfer processes between electrons and heavy particles
(atoms and ions) are relatively slow , giving rise to the possible situation
that the electrons may have a temperature much different from that of’ the heavy
particles. The extremely low mass of the electrons yields a species possessing
a thermal conductivity that can be much greater than that of’ the other species.
When such a gas is in contact with a cold surface, a space-charge sheath is formed
which may affect the energy transfer to the surface. The electrons may have a
higher temperature than the heavy particles near the cool surfaces. In such
cases, the electrons make a greater contribution to the electrical and thermal
conductivity than would. be expected solely on the basis of their number density.
Finally, the charged species are sensitive to electrr*nagnetic fields yielding
a possible method of controlling the energy transfer processes between electrons
and. ions . Therefore , the boundary-layer flows in ionizing gases are exceedingly
more complex than in nonionized. or dissociated gases.

The state of the mixture of’ atoms, ions and electrons is uniquely
described. by three independent state param~ters: pressure, temperature and

1
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degree of ionization. In general , the mixture of’ an ionizing gas is in a state
of nonequilibrium, that is , both thermal nonequilibrium and. chemical nonequili-
brium. In thermal equilibrium, which in general cannot be expected to occur in
a boundary-layer flow , the temperatures (Ta and Te) of both heavy particles and.
electrons are equal . In chemical. equilibrium, the degree of ionization a is
inmediately adjusted to its local equilibrium value, so that the degree of
ionization can be given as a function of pressure p and temperature T via the
Saha equation . In the frozen state, the electron number density production
rate ~ie Is equal. to zero . The following models have been considered by a
number of authors in solving ionizing boundary layer flows :

One-temperature equilibrium: Te = Ta~ 
a = f(p, Ta)

Two-temperature equilibrium: 
~ T5~ a = f(p , Te or Ta)

One-temperature frozen: Te Ta~ ~e =

Two-temperature frozen: Te ~ Ta~ ~e =

One-temperature nonequilibrium: Te = Ta~ ~e ~

Two-temperature nonequilibrium: Te ~ Ta~ ~~ ~ 0

The thermodynamic quantities and the descriptions of equilibrium,
frozen and nonequilibrium flows are given in Appendix B.

The following brief review may be helpful. Many investigators have
treated weakly ionized., collision-dominated boundary layers . Their main aim
was to study the effects produced on the electrical characteristics of Langmuir
probes. Examples are the inccs~~ressible flow of a weakly ionized gas treated
by Su and. Lamb (Ref . 2) and the Couette -flow problem studied by Chung (Ref . 3).
The kinetic theory of ionized-gas flows was used. in the analysis. Recently,
Chung, Talbot and Touryan (Ref . 4) have sinmiii~rized the theoretical results f i r
electric probes.

Based on thermal, equilibrium in temperature and chemical. reactions,
Fay and Kemp (Ref. 5) have studied. the heat transfer to a shock-tith e end-wall
from an ionized. monatomic gas and. Kn~~s (Ref . 1) generalized It to a simple
thermal Rayleigh boundary layer in an equilibrium flow . Back (Ref. 6) studied
the heat transfer through a one-temperature laminar boundary layer from a par-
tially-ionized gas to a highly-cooled wall for frozen and equilibrium-flow
models based on similar assumptions . A finite-difference method was applied
by Blottner (Ref. 7) to a one-t~~~erature nonequilibriuin laminar boundary layer
in ionizbg air. Park (Ref. 8) analyzed the frozen and equilibrium flow over a
flat plate and. at an axis~~ netric stagnation point based on similar and one-

• temperature modals. Finson and Kemp (Ref . 9) extended the theory of Fay and
Kemp to stagnation-point heat transfer . Using one-temperature and constant
transport properties, the equilibrium, frozen and nonequi~.ibrium solutions were
Obtained by Liu (Ref . 10) through an integral, method.

For the two-temperature boundary layer , Sherman and Reahotko (Ref. 11)
have obtained the electron temperature profiles for chemical-equilibrium flow
based on similar solutions. Nishida and Matsuoka (Ref. 12) solved. the similarity
equations for frozen flow with constant transport properties . Analyses of flat -
plate boundary layers in partially-ionized gases with thermal nonequilibrium and

2 
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reccsjbination were investigated by Tseng and Talbot (Ref. 13) based on similar
solutions and constant transport properties . Recently, Takano and AkA1n~tsu
(Ref . 14) used a finite-difference method to solve the shock-tube side-wall
boundary-layer flow with constant transport properties. The thermal Rayleigh
boundary layer flow for partially-ionized argon with varied transport proper-
ties were studieã numerically and experimentally by Mansfeld (Ref. 15) for
thermal. and chemical nonequilibrium cases. Honma and Komuro (Ref. 16) studied
an ionizing nonequilibrium boundary layer behind. a moving shock wave by using
a finite-difference scheme.

The ni~~rical. methods for solving the boundary layer equations can
be divided. into the following categories:

• (a) Local-similarity method
(b) Integral method

• (c) Difference-differential procedure
(d) Series-expansion method
(e) Perturbation method -

(f) F~.i4te-difference method

- With the exception of the finite-difference •scheme , all these tech-
niques involve, in. one-way or another, the reduction of the nonlinear partial—
differential equations to ordinary—differential. equations. In the local—
similarity method the history of the flow is ignored except insofar as it
appears in the calculation of’ the varichle x (or 

~
), where x is the coordinate

along the surface . This resu1t~ in a set of’ ord±nary—d.lfferential equations
with two-point - boundary conditions . In the integral method one or more assump-
tions are made - regarding the profiles of the flow quantities . The equations
used are obtained by taking suitable integrals of the boundary-layer equations
across the boundary layer . The boundary-layer equations reduce to a system of
ordinary—differential equations of the initial-value type . In the difference-
differential procedure , the derivatives in the direction along the surface
are replaced with finite-difference relations and the nonlinear partial- differ-
ential equations reduce to ordinary-differential equations with two-point
boundary conditions . In the series-expansion method, the coefficients of a
series in an x-dependent variable are obtained. from a solution of ordinary—
differential equations . The expansion vari able depends on the external-flow
conditions. The perturbation method. is based on the concept that a perturba-
tion of a known boundary-layer solution is considered and. an expansion is
carried out in terms of a parameter. A critical review of the early work up
to 1969 was given by Blottner (Ref . 17).

Two d.ifficulties exist in the analysis of ionizing boundary—layer
flows: (i) the evaluation of the reaction-rate coefficient s near the wall,
(2) the boundary conditions for the degree of ionization and the electron
t~~~erature at the wall . First , near the wail, where the temperature of’ the
heavy particles is in equilibrium with the wall temperature, the temperature
of’ the heavy particle s is very small compared with that at the edge of the
boundary layer . Near the wall the electron-number density is also very low.
In this low temperature and. low electron-number-density domain, thermal.
ionization hardly occurs . Consequently, thermal transport processes will
dominate. The reverse chemical-reaction-rate coefficients for atom-ion-
electron and electron-ion-electron collisions are extremely large and difficult
to evaluate in that d.omain . Second, the boundary conditions for the degree of’
ionization and the electron temperature at the wall are usually determined from
the collision-free sheath theory. However , some authors , for example Mansfeld
(Ref. 15), found that owing to the assumptions and incomplete description of the
electric sheath a comparison of’ theoretical and. experimental results w ould be

3
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of questionable value. Careful experiments for electron-number density near
the wall must be done in order to check the validity of the electric-sheath
theory .

The difficulty in using the finite-difference method for an ionizing
boundary layer lies in the stability of the scheme and in significant cci~~uta-
tion times. The stability criterion for the set of strongly—coupled nonlinear
partial—differential equations with their boundary conditions of a mixed
Neumann/Dirichlet type in the finite-difference scheme is difficult to evaluate .
In order to avoid. the difficulty of stability, Mansfeld. (Ref . 15) applied the
backward implicit method in the time-dependent one-dimensional. Rayleigh problem.
However , his program is near the maximum acceptable computation time. In the
present two-dim ensional boundary-layer flow , which is more complex than the
Rayleigh boundary—layer flow, the stability criterion and computation time should
be examined carefully.

Blottner (Ref . 17) mentioned that the iteration procedure for controlling
the nonlinear terms is not required. for a dissociated boundary-layer flow . However,
when the variations of the transport properties across the boundary layer are
taken into account in the ionizing boundary-layer equations, a successive iteration
procedure is necessary in the present problem. This iteration scheme increases
the computation time. Therefore , in the present calculation, the implicit six-
point finite-difference method and nonequidistant step sizes are applied in order
to decrease the C utation time.

1.2 Scope of Present Work

The present paper gives the details of an implicit six-point finite-
difference scheme for solving the nonlinear partial—differential equations of
thermal. and. chemical—nonequilibrium boundary-layer flow s in ionizing argon . The
transport properties evaluated. from known elastic-scattering cross-sections of
the plasma are varied across the boundary layer . The radiation-energy loss of
the plasma and the appropriate chemical reactions are both considered. The
flat-plat e and shock-tube sidewall boundary-layer flows are studied. The theore-
tical results are compared with interferometric measurements obtained in the
iffIAS Hypervelocity Shock Tube for argon boundary layers on a flat plate and
on the shock-tube sidewall behind a shock wave under close initial conditions.

In Chapter 2 , the basic equations for laminar boundary-layer flows
in partially-ionized. monatomic gases are discussed and. transformed. The basic
assumptions are evaluated. The transport properties and chemical-reaction rates
are considered using the known elastic and inelastic-scattering cross-sections
for an argon plasma ( see Chapter 3) - The initial and boundary conditions are
given in Chapter 4. The implicit six-point method of the finite-difference
scheme is presented and discussed in Chapter 5. The analytical and experimental.
results are compared in Chapters 6 end. 7 for flat-plate and. shock-tube sidewall
boundary-layer flows, respectively. Discussions and conclusions are given in
Chapter 8. The explanation of’ the computer program is presented in A~pei~dix A.The cc~~ uter program is listed in Appendix P.

1.3 Basic Assi~~ tions

In the present analysis , the following basic assumption s are used.

(1) For a mixture of’ atoms, ions and electrons, It will be assumed that each
species has a Maxwellian-velocity distribution with an appropriate temperature.

4
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The governing equations for the plasma motion can be obtained from
the Boltzmann - equation by employing approximations to the distribution functions.
One of the 

- 
cases for which the equations are solvable is when the parti cles have

a Maxwellian-velocity distribution. The assumption of a Maxwe].lian-ve].ocity
distribution can be justified when al.]. the gradients in the macroscopic properties
of the plasma are small and. no external. forces act on the plasma . In such a case
the plasma flow is an isentropic flow, and it can be proven that the velocity
distribution is Maxwellian. The condition that the velocity di8tribution for
the electrons and ions is near a Ma~cwellian distribution is that the Larmor
radius is much greater than the mean-free-path , or the elastic-collision frequency
is to be large during the time-evolution process. -

Under this assumption the evaluation of the binary-collision integrals
in the macroscopic equations can be greatly simplified. This assumption should
be valid for the region of the boundary layer except the sheath region adjacent
to the wall where the electron and. ion-number densities are very low.

(2) Only- a singly ionized species is considered. The electron-number density
can be assumed equal to the ion-number density. The plasma is quasi-neutral.
Therefore, the effects of’ elastic and magnetic fields on the boundary-layer
structure are neglected. The essential requirement for quasi-charge neutrality
is that the Debye length is much smaller than the characteristic length of the
problem (Ref. 18) . The ambipolar character of the diffusion process results
from this assumption providing that no electric currents cross the boundary .

The temperatures of’ heavy particles and electrons considered. here are
much ~mal1er than the ionization temperature. Therefore the assumption that
ions are singly Ionized is valid in general . However , in the region adjacent
to the wall, a space- charge sheath exists wherein the gas is no longer quasi-
neutral. The sheath is composed of excess ions , yielding an electric field to
repel electrons . Therefore special consideration of the sheath region is needed.

(3) The atom and, ion temperatures are equal . Therefore , atoms and. ions have
the same velocity. - This assumption can be justified. since the mass of’ the ions
is almost equal to that of atoms, and theref’ore only few collisions between atoms
and ions are necessary to reach a cc~~~n temperature . Jaffrin (Ref. 27) has
investigated. the structure of a steady plane shock in a partially ionizing gas
using the Navier-Stokes equations . He showed that ion temperature is almost
identical with atom t~~~erature in the whole region . However , the collisional
energy-transfer processes between electrons and heavy particles are relatively
slow, giving rise to a situation that electrons may have a temperature much

— different from that of heavy particles. It is shown from the analysis of shock
structure that electrons have a much lower temperature than the heavy particles
in the ionization-relaxation zone . However , in a boundary layer , electrons may
have a higher temperature than the heavy particles near the cool surfaces .

Additional assumption s made in the present analysis are described in
Chapters 2 and. 3.

1) 4 Regions of Flow Near the Wall

As suggested by Dix (Ref . 18), three distinct regions exist near the
wall: (1) Qontinuum-flow region; away from the wall , the gas is quasi-neutral,
the ion-diffusion velocity is small , and the continuum equations are valid. The
boundary-layer equations described. in this report should be applicable . (2) Tran-
sition region; near the wall. but not adj acent to it , the gas remains quasi-neutral,
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but the ion-diffusion velocity is of the same order as the ion sound velocity .
The continrn~ equations are not valid. (3) Sheath region; in the region
adjacent to the wall, quasi-charge neutrality collapses near a catalytic
boundary. In this so-called sheath region with thickness on the order of a
Debye length, strong electric-field strengths are created in order to prevent
the plasma fran being broken down in a very short time. The sheath is ccm~osedof excess ions, yielding an electric field to repel electrons . The Boltzmann
equation is required in the latter two regions.

For the flow conditions considered in the present analysis , the thick-
nesses of the transition and sheath regions are very small compared with the
boundary-layer thickness. Since a major difficulty exists in the solution of
the transition region, it is neglected and the solutions at the edge of the
sheath region are regarded as the wall conditions of the boundary-layer flow.

The physical. phen~~~na of the sheath region can be described as
follows. Whenever a charged particle strikes an absorbing surface , this
particle loses its charge by recombination on the surface. Thus, solid
surfaces act as sinks for charged particles. Electrons have much larger
thermal velocities than the ions. Consequently, per unit time more electrons
are likely to strike the surface than the slower ions. As the electrons
diff use in the general direction of the surface, the slow ions retard the
diffusion by setting up an electrostatic field. This process is called ambi-
polar diffusion, and the associated electric-potential field falls in the
direction of the charge motion. I~~~diately next to the wall, the electron-
number density becomes too low to carry the ions , and the potential of the
surface and the ion-diffusion motion take over . Therefore , a sheath of’ high
electric field exists. Two methods can be applied to the analysis of the

-; sheath region: (1) the continuum-sheath theory, and (2) the collisionless-
sheath theory. In the present analysis , the simpler method of collision].ess-
sheath theory is considered and described in Section 4.1.

2. BASIC E~U.AT IONS ASD TRANSFORMATION

2.1 Boundary Layer Equations for Ionizing Z~bnatomic Gases

A partially ionized manatonile gas or plasma is considered consisting
of a mixture of atoms, ions and. electrons. For each species the macroscopic
balance equations can be expressed. by using the plasma macroscopic properties,
as shown below (Ref. 19),

[n < 4 >) + I~~. [n~ <
~~ 

Vi>) = i(~~ ) (1)

where the quantity <~~> is the average of the property 
~~~~

, n5 is the number
density of species s, i(~~) is the source term of property ~~~~

, and V5 is the
total velocity of a particle of species s. The source term expresses the change
in <4~> as a result of both external influence (i .e. ,  electric , magnetic and
gravitational. fields) and. internal influence (i.e., chemical reactions, heat
transfer , radiation, diffusion and viscosity). The co~tinuity, momentum andenergy equations are obtained by putting 

~~ 
= m8, m5V8~ and 1/2 m5V5iV3i +

respectively, where in is the mass of particle and ~4nt is the internal energy
of particle .
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The thermodynamic quantities used in this work are presented inAppendix B.

The general formu lation of the gasdynamic conservation equationsfor individual species in a nonequi librium partially ionized gas mixture hasbeen discussed by Appleton and Bray (Ref. 2O~, Xaufinan (Ref . 21) , Grewal and.Tal.bot (Ref . 22), Spitzer (Ref. 23) and Igra (Ref . 19) .

Following the shave considerations the basic equations for a bounda ry-layer flow of a partially ionized gas are given by

Continuity equation for plasma:

Pu pv -

)~~nentum equation for plasma :

Energy equation for plasma:

(4)

Conservation equati on for electron species:

+ pv = - E~i”i
] + m ñ (5)

Energy equation for electro ns :

pu + = u + ‘~ - ~~~ (~~~~~~~ 
+ q~~ ) + V1 ~~~ + %l + 

~inej

(6)
with u, v as the velocities of the plasma in x , y directions, x coordinatealong the body surface and 7 nozmel. to it; p, plasma density; p, plasma pres sure;
~.i, plasma-vi scosity coefficient ; H , total enthalpy of the plasma; q0, plasmaheat-con duction flux; q4, plasma diffusive-energy flux ; ~~~~, plasma radi ation-energy loss; a, degree of ionization; Vj, iota diffusion velocity relative tov; ma, mass of a-tan (or ion) ; ñ~ , electro n-n~~~er density production rate ; he,electron specific enthalpy defined in Eq. (7) ; Q~~, rate of ther mal energy• given to free electrons by elasti c colli sions; Qinel , inela stic energy-transf errate; Pa ’ electron pre ssure ; subscript a denotes electron encounter. Thefollowing quantitie s are applied in Eqs . (2)-(6) :

p = maCna + n)
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p = 

~~a + %)kBTa +

H = Cp(Ta + cei~ ) + + u2
/2

a = n d ( n a + n e)

= pi~’i~~~i 
+ CpTe)

- r~ a ( l -a )  ~- - 

~~a 
~ 

•

~~~~~ ~~~ + a(Te/~a) ~~ (7)
h = crC Te p e -

ep ~ R

R = kB/rn

= CpTePiVi

Pe = X 1 e~~Te

where subscripts a, i and e denote atan, ion and electron , respectively; T ,
tei~~erature; T1, ionization temperature; n , number density; R , gas constant;
)~, thermal conductivity coefficient , Da, aithipolar-diffusion coêfti~i~nt-; - kB, • 

-

Boltzmann constant.

The rate of radiant energy loss ~~ of a plasma consists of the rates
of ener gy loss by continuum radiatio n and by line radiation . In order to
sin~lify the calculation , the rate of the line radiant-energy loss for the
argon plasma is assumed equa l. to its continu um radiati on-energy losa . This
assi~~ tion has been discussed in Refs . 24 arid 25. Based on the aasun~tion of
loeal-t en~ eratu re equilibrium , ~~ is given by

~3/2 6
= 

~~~~rn3f2 ~~~~ ._2_ (1w0 + kBTe)j Z~ff (8)

with a , electron charge; h , Planck constant; c , speed of light; v~, cut-off
frequency; g, Gaunt factor; Zeff, effective nuclear charge .

L 
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It has been shown that excitation to the first state is rate-
controlling for the overall ionization process • We assume that atoms in the
ground level are excited to the first-excitation level by collision with
other particles, then excited atoms are ionized by subsequent collisions .
The rates of reaction among levels higher than the first are assumed to be
in thermal equi)..ibrium with the electrons in the entire flow . The following
reactions are considered for the collisional-i onization proce sses:

kfa 
+A r + A r  ! Ar + A r + e

k

(9)
kf0

A r + e  ~+

kre

with kf and kr as forward and backward-rate coefficients.

- Based on the two-t am~ eratu re two-step model of Hoffert and Lien
(Ref . 26) , the electron-n t~~ er density pro duction rate ñe can be written as

= 

~~~~~ 
+ 

~~e~e (10)

where (he)a and (‘~e)e denote the net electron number density production rates
by atom-atom collision and electron- at om collision , respectively . The following
equations are used for the electron number density production rates :

~~e~a = kfafla
2 

- keaflane
2

( b a )
( ñ )  = k  n n  - kc c  f e a e  r c a

The elastic energy-tr ansfer rate Q~~ is the sum of the rates of
thermal. energy given to the free electron s by electron- at om and electron-ion
elastic collisions (Ref. 27) :

= 3ne (
~~~~) ~ ‘ea + v i)k~ (Ta - Te) (ui )

where ~ea and v~i are elastic-co llision frequencies due to electron-atom and• electron-ion encounter s , respe ctively .

The inelastic energy -transfer rate Qinel is the sum of the rates of
thermal energy given to the free-electrons by electron- atom and electron -ion-
electron inelastic collisions and by br emastra hlung . The latter is neglected
in the boundary-layer flow since it is small c~~~ared with the former . - For
the two- step model, ~inel is given by,

9

— —~~~- —



~ine1 = - (12)

where the term for the creation energy of electron due to atom-atom ionization
colli sions is very ~m~-1 1 and. can be neglected in invi scid. and viscous flaws.

In order to simplify the present analysis, two appr niri mAtions are
made for the boundary-layer flows: 

—

(i) 
~~~~~ ~~~~~

(13)

(2) V • V Pe~~~
O
~ 

Vi~~~
!
~~~

O

Appro~d.mation (1) has been widely accepted by many authors (for example,
Refa. 12 and 28 in the analysis of two-t~~~erature boundary-layer flows inionizing gases. Apprcnd.mation (2) has been used by Cluing and. Mullen (Ref.
28) and Takano and ~li~imt&tsu (Ref . i4) since these terms are very small
ccmpared with other s on the BBS of Eq. (6). However, in the analysis of
invisci d flow for ionizing gases (for example , the analysi s of shock-wave
structure given in Refs . 24 and 25, approximation (2) shoul d not be made .

Under these approximations, the total energy equation , Eq. (4) , for
the plasma becomes

pu~~~ + P V~~~; 

~~~~~~~~~~~~~
(14 )

where ~~~= ) ~~+ 7 ~j .

The conservation equation for electron species, Eq. (5) , becomes

(is)

Using Eq. (15), the electron-energy equation , Eq. (6) , can be re-
written as

c~a [p u ~~~~ + 
~~~~~~ 

] 
= 

~~~

, (
~~ 

~!) + p~~ ~~~~~~~~~~~~~ 
(CpTe)

-

• 

- (k~T1 + 
~~~ 

kBTe)(~.). - 

~ 
k~T~(â~)~ (i6)
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The total-enthalpy equation, Eq. (3.11), can be rewritten in terms of
Ta by using Eqs. (3) , (15) and (16):

C~ ~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- %l - kBT1(uie) - (17)

The basic equations for the boundary-layer flows are given by Eqs .(2) , (3), ( 15) , (16) and. (17) with five un~1owns: u, v, a, Ta and Te. Theboundary conditions of these equations are discussed in Chapter 4.
2.2 Transformation of Boundary-La yer Equations

The similarity tr ansformation coordinates are applied:

~(x)

° y ( 18)

i~(x ,y) = _L. I p dy

where the subscript 6 denotes the edge of the boundary layer.

From Eq. (18),
d
dx 6~’6 6

(‘9)

By employing the transformed continuity equation,

and the transformed, convective operator,

~ 
puo d

~~~ 1

the basic equations are transformed from the coordinates (x ,y) to the coor-
dinates (i ,t ~) .  Here ,

U
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~ =f f
The transformed equations for momentum, electron species, atom

tamperature and electron temperature are -

( Cftt ]’ + ff” + 
~~ 

- f’2 
] 

= 2~ F~~
’ 

~~~~~~~~ 
~~~ f” (20)

[
~~~~~~Z

t ]‘ +~~z ’ _
~~~zf’ + 2

2~~~
ñe = 2 t [

ft ,~~~_~~~~z , 
]

(21)

2 2

[‘~i: e ’ + fe ’ + CpTaö 
~~~2 

- 

~~a
9
~ 

- 

~~ CpT~,6 ~~ 
—

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
] 

(22)
p5~i5

U
6 

PCp a6

e’ ]‘ + ~~ a6z’9’ + cx6zf8’ -

+ L ~ei - 
(kzTi + 

~~ 
k~T ~~~~ ~e - ~~~ 

kBT (ñ)

p
6
1.L
6
U
6 ~~pTeo

= 2Ia6z [ f ’~~~~
_
~~~~ O’ ] 

(23)

where the prime denotes 
~~~~~~~~~~ 

and the following definitions are used:

f’ =~~— C —
U
8

a
Z S c =a6

T 
-e = —  P r = — 2

— Tao
T

0 Pr e~~ rl (24)
e8 Contd...
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du
A = A = ~j,, aör’f d~ ~T T d.kU

8 ~ a aO ~ Contd .

~ _ ? J .  ~ 
_~ .L~~ eb

z a6 d~ Te Teô d~

We note that solutions of Eqs . (20)-(23) are strongly dependent on
the thermal properties of the ionizing gas . The transport prap~ ~ies are
calculated from the elastic-scatteri ng cross-sections and the chamical-
reaction-rate coefficient s are calculated from the inelastic-scattering
cross-sections for the ionizing gas . In the following chapter , the thermal
properties of ionizing argon are discussed .

3. THERMAL PR0PE1~ ]~ S OF All ARGON PLASMA
- - 3.1 ~aastic-Scattering Cross-Sections

The elastic-scattering cross-sections ~re used in determining thetransport properties of ionizing gases . They will be evaluated here from
experimental results for argon. The average atom-atom elastic-collision
cross-section o~~ is obtained from the values of the viscosity coefficient
given by A~~ur and MAson (Ref . 29) . At high temperature ~L 31 X 107 Ta3
g/cm-sec, which corresponds to

= 1.7 x lO l4
/T~~25 2 (25)

Experimental data complied by Fay (Ref. 30) show that the average
atom-ion elastic cross-section a~j  is much bigger than the atom—atom elastic
cross-section because of the charge-exchange mechani sm. This cross-section
decreases very slowly with the atom (or ion) temperatur e and will be t*en - as

-l 0.09 2
= 2.454 x 10 /Ta cm (26)

The aver age momentum-t ransfer cross- section between electrons and.
atoms 0ea for argon was calculated by Devoto (Ref . 31) using the momentum-
transfer cross-section determined by Frost and Phelps (Ref. 32). An approxi-
mate value of 0ea for argon by curve fitting is

(0.713 - 4.~ x 10~
4Te + 1.5 x lO 7Te

2
) x 10

16 2

0’ea = ~ for Te < 3000 K (27)

L (-0.488 + 3.96 x l0 4T) x for Te � 3000 K

The average momentum-transfer cross- section between electron s and
electronQ 

~ee can be obtained by assuming the relative kinetic energy of
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electrons equal to 1.5 kBTe in the Coulomb scattering cross-section:

11
= ~je L n (  e ) (28)ee 9(kBTe) “ 1+~je ne 

/

Note that if the above asstmption does not apply, one may obtain the following
form by using the Maxwellian distribution in the a~zmenad Coulonb- scattering
cross-section :

4 /9k ,.3T 3 \
= ‘

~ ~~~ 
. D !  ) (29)ee 4(kBT) 

\4’~e ne ~

Similarly, the average elastic-scattering cross-section between
ions and ions, o’j j  is given by

~ii 
= 2 Ln 

(

9
~~~

Ta
3

) 
(30)

4(kBT ) 4iie r~e
Since Ta/me >> Ta/ma, the electron temperature is the relevant

temperature in the calculation of ion-electron collision cross-section ,
therefore,

0
~ei = 0

~ee (31)

3.2 Transport Properties of Ionizing Argon

The kinetic theory of gases provides a means of estimating the
transport coefficients of a partially-ionized gas . In this section,
transport properties of partially-ionized. argon are considered as based on
the mixture rule of Fay and Kemp (Ref . 5).

The viscosity of plasma can be calculated as

+ a 
0
~ai

i+-2-. 
l
~
a o aa 

- 

-

1-a °‘ai 
+ 

a
m U  o i-a c

~~~~~~~~~~ 
a 

l + _ ~ — _ ~~ 

5.8 (32)

1-a

where

u (
8kBT \

\
1/2

a \ ~~~m )

is the mean thermal speed of the atoms . The electron s make no contribution
to the viscosity because of their extremely low mass compared with atoms
and ions.
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‘The ambipolar diffusion coefficient Da is def ined in terms of - the 
-

atom-ion diffusion coefflcie~it Dai by . - 
- 

- 

-

- 

2Da~~~i +
_
~~Dai ( 33)

or approximately as - 
-

Da n 3 J ~~~~ /crai 
(cm2/sec} (34~

where the contribution of the electron temperature due to electron-ion -

collision is negligible owing to the snaIl electron mass.

The thermal conduction coeffi cients for atoms, ions and electrons -
- may be written as (Ref . 27) 

- 
- 

-

- 

7SkB (~~k~T ~l/2 r ‘1e~ai T’
~a 6ko ~ m ,~) •

~~~~ 

l +~~ ( 35)
aa a a aa  

-

= 

7SkB (
7IkBT s~1/2 r 1 + ~e~ii 1

1 
(36)\, ma j  ~~~~~ -~

= (ST e ~~/2 F 1 + ~~ 
nave (37)e 640ee(l + 

~~~~~ ) 

me / 1 (3. + s.~ )-n o~ J

3.3 Inelastic-scattering Cross-Sections and Reaction-Rate Coefficients

The forw ard- rat e coeffi cient kf, Eq.(lO) , can be obtained from
kinetic theory by computing the collision ra te between two parti cles . Thecalculation requires knowledge of the dependence of the inelastic-collisioncross-sections for the first and. higher excitation steps on incident energy .
For a two-step model considered here, a knowledge of the energy dependence of
the cross-section for the first excited state is required. Since only the
energy dependence of inelastic cross-sections near the threshold energy is
~.mportant in the calculati on of the rat e coeffi cients, some knowledge about
the energy dependence of inela stic cross-sectio ns near the thre shold is
required. The inelastic cross-sections thus obtained are often expressed in
terms of the following relation:

o*(€) = cr0 ( l _ f )

where a’0 is a constant and €* is the threshold energy.
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Nevertheless, by making use of Wigner’ s R-matrix theory, Eu and
Liu (Ref. 33) have obtained a general form for leading threshold behaviour
of inelastic cross-sections in the form

which fit s the experimental data fairly well within the experimental errors .

For the present analysis, a reasonably good approximation to this
cross-section is given by the linear relationship :

= S ,(c - cK’) for ~~~~~> &~~ (38)

where € is the kinetic energy (in centre -of-mass coordinates) of parti cle b
(b can be atom or electron) , €* is the first excitation energy of particle a,
and. S~, is the first-excitation collision cross-section slope .

The forward rate coefficient appearing in Eq. (10) can be written as,

kTh(Tb) = ~~~ [~ (~~~a~~~~ 
)]l/2 l/5 (~ + 1) exp(~T*/Tb)

where T* is the first excitation temperature of’ particle a, and this rate
coefficient must be divid.ed. by two for like-like particle collisions .

From a comparison of theoretical and experimental results for argon
shock-wave structure, we found (Ref . 24) that s~~ = 1.0 x 10-19 cnn2/eV. A
more recent electron-atom excitation cross-section constant S~ = X l0 18
cm2/eV for argon obtained by Zapesocbnyi and Feiston (Ref. 34~ is used here .
Therefore, k~ a end. kfe yield.:

kf ( T )  = 1.4 x 1o 20T~~5(~~~ + 2)  e a (cm3/sec) (4o)

-16 15 T* -T*/T
kfe ( T )  = 2.63 x 10 Te

• 
(ç + 2)  e C (cm3/sec) (4i)

Ho±’fert and Lien (Ref. 26) used a chemical equilibrium concept for
the present chemical-nonequilibrium case to determine kra and kre . However,
for low temperatures these results are not valid. and. the ionic-recombination
theory based on the classical electron-impact cross-section is needed. In
order to avoid the difficulty of determination of the reverse reaction-rate
coefficient s , a critical temperature Tc is defined. which separates the high
and low-temperature regions. This critical temperature can be obtained by
ensuring the continuity of the rate coefficients at Tc. For the electron-
catalyzed reactions , Hinnov and Hirschberg (Ref . 35) have obtained an ~~~irical
relation for the reverse reaction-rate coefficient at low t~ i~ eratur e (Te <
4000 K). The following reverse reaction-rate coefficient kre for electron-

• 16
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catalyzed. reaction s is used ,
(T1

_T*)/T 69.03 x ]~0~
33(T*/T + 2)e C

for T > T
k e( T )  = 

1.09 ~ ~o 6 
T;’~~’ om6

/s 

(42)

for Te ~

• where T0 3100 K.

For the atom-catalyzed reacti ons, a similar procedure can be applied.
However, there is no available empirical relation for kra at temperatures Ta
below 3000 K. At the ssme time, the chemical equilib ri um concept used to
determine kra by Hoffert and Lien (Ref . 26) is in serious error for the case
where the electron temperature is considerably different from the atom temper-
ature • In order to avoid a significantly large value of kra at low atom
temperature, the following forms are applied (Glass and Liu , Ref. 24)

7 (T1_T*)/T 64.83 x l0~~ (T*/T + 2)e a om /s

for T >1
~~
, a —  c

— 

37 (T1-T*) /T 6 “ 
~
‘

4 .83 x 10 (T*/T c + 2)e c cm /s

for T a < T 0 it has a constant value

The physical meaning of the cut-off of kra at low temperature is
that at low Ta the reverse atom-atom reaction rate is frozen at some particular
rate and the re-excitation from the first excited stat e is not rate-controlli ng
for atom-atom collisions. In general , the reaction rates due to atom- atom
collisions are very small compared wi th those due to electron-atom colli sions
for atom temper ature below about 15,000 K. Therefore, the atom-catalyzed
reactions can be neglected for Ta < 15,000 K , in a flat-plate boundary-layer
analysis where the flow has cooled. significantly. However , for the case of
a shock-tube sidewall boundary layer near the shock front where the atom

— temperature is large (.- 25,000 K), atom-catalyzed reactions are more important
than the electron-catalyzed reactio ns and kra must be retained. Byron et a].
(Ref . 36) have shown that for the low-temperatur e case , de-excitation fr om
other than the first-excited state can be rate controlli ng in the recoubination
process . For the present two-step model , the approximation made in Eq. (43) is

— necessary in order to avoid the unknown physical effects due to a very large
value of kra. It is also worth noting that a large value of kra destabilizes

• the finite-d ifference scheme .

Another method for evaluating the rate of atom-catalyzed. reacti ons
is to cut off kra and to limit the rate of recombination reaction of at om-at om
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collision at some particular value • The following equation can be applied:

~~e~a = k~~fl
2 

- k n ane
2 if 

~~e~á > ~
(44)

= 0 if ( ñ ) < 0

4. BOUNDARY AND INITIAL CONDIT IONS FOR BOUNDARY-LAYER FLOWS

4.1 Boundary Condi tions

• The boundary conditions for Eqs . (2)-(6) are

y = 0 :  u

v = 0

Ta = T
~ (or 

~~~~~ 
= 0 for zero heat transfer)

(4 5)
y-s~~: u = u ~

a = a 6

Te = T e~

where the wall values Uw and T~ are usually given . The other values u5, (Xe,
T~~ and Teô are determined from the inviscid-flow regi on ( see Secti on 4.3).

The boundary conditions , Eq. (45), for the tr ansformed equations,
Eqs . (20)-(23) , are

v~~= 0 :  f = 0

f’ =

e = T / T 5 (or e’ = 0 for zero heat transfer)
(46)

f’ = 1

z = 1

e = 3
0 =1
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The other required boundary condi tions are z and 0 at the wail;
these can be obtained fr om the following methods:

(1) Wall-Sheath Properties:

For the case in which the wall is at floating potential , the first
equation is obtained from Langmuir-pro be theory for a I4axwellian distribution
of electrons:

n < V >  ( et~~~
) 

- n e V ~ = o (47)

where <Vs> = (8kBTes/,~me)1/2, Vj = (k3Te /~~)1/2 , t4~ is the potenti al difference
between wall and plasma and subscript s ~enotes the value evaluated at the
sheath edge .

The second equatic n is the continuity of mass flow of ions at the
outer edge of the sheath :

4PsDas ~ 
=

The energy equation at the edge of the Sheath is

~ ~~~ 
- t~~~ a~e)s = (2kBT + e~~) %a~~~e> 

~~ 
(
~ 

e~~~
) (49)

where Va is the ambipolar-diffus ion velocity.

From Eqi. (47) and (48) we obtain

2 ( ~~~e ) [ 1 ~~~~+ et~~~
]
~~~~ (so)

and Eq. (49) becomes 
-

z~. = (Sc) w~~~~~~~~z e1~’2 (51)

where Vi6 = (k~Te~/ma)~J2 and e14/kBTe6 .Ln(møJ2~ ne)1/2ew .

This model , based on continuity at the sheath edge , was widely used
by mar~y author s , for example, Camac and Kemp (Ref. 37), Dix (Ref. 18), Nishida
and. Natsuoka (Ref . 12), Sherman et a.]. (Ref. ll) and. Mansfeld (Ref . 15) . However,Nansfeld (Ref . 15) mentioned that the artificial boundary condition used for
the two-temperature equilibrium model leads to value s of ~e near the wall which
seem to be in much ‘better agreement with the experimental result s than the
values obtained from an electric- sheath consideration • He concluded that the
validity of the boundary condition for z and 8 at the wail derived from a
present ly incomplete descr iption of the sheath is still unknown .
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(2) Cat alytic Wall lebdel

By analogy with the dissociated boundary-layer flow, the wail is
ass~~~d to be a catalytic wa].]. ‘when an equilibr ium ccq oaition is used at
the wall . For a one-temperatur e equilibrium model where Taw ~ 300 K , the
boundary condi tion for z at the wall is approximately given by

z~~~~O

For a two-temperature equilibri um catalytic wail model , z~ is given by

z~~=~~

where g is a constant value .

For a cooled-wail case with a wall sheath model, Takano and
J~kamAtsu (Ref . i.4) have shown that

o (lo_2
)/~~~

— 0 (lo~ & )

where Re is the Reynolds number .

We also note ’ that Nishida and Matsuoka (Ref. 12) have ~ iewn that
the slope of the electron temperature at the wa].]. is almost aqua). to ~*ro .
Nansfeld (Ref . 15) has obtained the following results even when X is very
small:

c~s O  (52a)

8~~~s O  (52.b)

In order to obtain better agreement between theory and. experiment,
Tseng and Ta.tbot (Ref. 13) have used a measured value of Zw as the wall
boundary condition:

z =0.02w

- 
- 

4.2 Compatibility Conditions

At the edge of the boundary layer , the following boundary condition s
must be sati sfied:
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f” = 0

z ’ = O

0’ = 0
(53)

0’ = o

By using the above boundary conditions , the ccmpatibility conditions at
-+ can be obtained from Eqs. (20) - (23) :

~~2 d t
~b 6

m n
= 

2~ a e
z 

~6~&~6
(54 )

~T = - 

~f C T  - 
2~ 2 

~~1 + B~1~’ e~a +

a p a ö  p~ i5u5 6 . p a ô

2 ~ei - (~~ T1 +~~~y 6 )~~~~~5~~ 
~~
kBTe6(2~e

)5

e PoCpTe~~6

These conditions must be satisfied in the calculation s in order
to avoid a discontinuity in the gra dients of the dependent variables at the
edge of the boundary layer.

The value dp6/d~ appearing in Eq. (54 ) naist be obtained either
from exper:iment or theory. The following considerations should be noted
in the calculation :

(i) If the external effect s (for example, an unsteady effect) or
interactions (for example, the interactions with a shock wave or an expansion
wave) occur in the inviscid-flow region , the value dp~,/d~ is obtained from
the solution of the inviscid flow with these effect s or interaction s taken
into account .

(2) If there is no external effect or inter action in the inviscid
flow , another equation is needed to form a complete set of equations with
five unknowns: dp6/dI , ~r, ~~~ ~Ta and ~Te~ Thi s equation is obtained from
the continuity equation of the plasma flow , Eq. (1) ,
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du6 dp5

where P~ is related to p5 by the equation of state ,

P 5 = P5R (T aö + aöTe6)

After some algebraic arrangement ,

R 
~ ~ - I - a T  ~A 2 L aS Ta 6 eS Te 6 e6 ~

where 
~Ta, ~Te and ~~ are calculated from Eq. (54 ) and

A* = .—
~~~~~ (1 + a6-r )T 

~ 
-

U
6

T~~

It was shown by Blottner (Ref . 17) that a swallowing of the
inviscid flow into the boundary layer is necessary in order to satisfy the
ccmpatibility conditions.

Since some approximations have been made in the boundary-layer
equations with respect to the inviscid-flow equations, the values dp5/dt ,

~~~~~ ~~~~~ and 
~Te obtained from the above equations should be slightly

different from that obtained from the inviscid- flow region . If there is no
approximation made in the boundary-layer equations , or the inviscid.-flow
equations are obtained directly by letting all ~/~y term s equal to zero in
the boundary- layer equations, then the above method provides the same
results that would be obtained from the inviscid-flow region.

A local-similarity method was applied by Brown and ~~tcbner (Ref .
38) in predi cting the electron-te mperatur e and electron-nu mber-density
profile s of a flat-plate boundary-layer plasma . They predicted that the
electron temperature at the edge of the boundary layer is smaller than the
atom temperature and explained it as due to the ra diation-energy loss .
However, it is clear that the compatibility conditions described above
were not applied in their calculations. The electron temperature at the
edge of the boundary layer must be calculated from the equations for the
inviscid. flow and not from the boundary-layer equations. In their calcula-
tion , in order to satisfy the boundary conditions at the edge of the boundary
layer , Eq. (53) , the values of the degree of ionization and the electron
temperature at the edge were adjusted..

• 
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4.3 Solutions for Inviscid-Flow Region

The solutions for uñ, Tao, Tee, a6 and p6 must be obtained from
the equations for the inviscid-flow region . The quasi-one-dimensional
equations for inviscid flow are obtained from Eqs. (l)-(5) by letting

~~ (pu) = 0 (55)

pu~~~~+~~~ = O  ( 56)

• pu~~~ = -Q~ (s7)

pu = m~~ (~8)

d dp
pU 

~~ 
(acpTe) 

- ~ = 

~ei 
+ 
~1nel 

(59)

Equations (55)-(59) have been solved by Glass and Liu (Ref. 24)
for the shock-wave structure of ionizing argon and by Glass et a). (Ref. 25)
for a krypton shock-wave structure . The inviscid flow generated by a
shock wave can be separated into two zones: (1) an ionization-relaxation
zone and (2) a radiative-cooling zone. In the relaxation zone the elastic
and inelastic-collision processes are important while in the radiative-
cooling zone the radiation-energy loss is significant . Equations (55)_(59)
provide a unified treatment applicable to both zones. However, from our
numerical experience in solving the shock-wave structure, a cc*~~lete solution
for the ra diative-coo ling regi on requires a small step-size to be stable • As
the plasma is nearly in equilibr ium, values for U6, Ta6, TeS, a5 and p6 in
the cooling region can also be obtained approximately by solving only Eqs.
(55)_(57) together with the Saha equation . Whitten (Ref . 39) has shown
that the error in using a radiant equilibrium model is within 2% of the
present none quilibriu m model . -

4 .4 Initial Conditions

The initial profiles are required for a finite-difference method .
At the start of the boundary layer , ~ = 0, and. the partial-differential
equations become ordinary- differential equations . At I = 0: ~f 

= ~Ta =

~Te = ~z = 0, the following ordinary-differential equations are obtained
from Eqs . ( 20)-(23):

+ ff”  = 0 (60)

[~~~~~~
z h 1 +f& =0 (61)

[

~~~~~~~~~~~~~

t 7 + r t  + (62)Pr Cp a o
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e’ ] ÷ 
~~
. a

6z ’ 8’ + cz5zf O’ = 0 (63)

Equations (60)-(63) with two-point boundary conditions can be
solved using the usual iteration techniques (for example , the Newton-Raphsczi
method) . A subroutine B~X?ZIN for solving Eqs . (60)-(63) is discussed and.
presented in Appendix F.

5. FINITE-DIFFERENCE !‘4~IH0D

5.1 Mathematical Considerations

Ntmerical methods have developed rapidly in the last decade and
solutions have now been found to many systems of simultaneous equations
which, prior to the development of the digital computer , could not be aelved.
because of the inmense amount of calculation required. One of the most
c~~~ n ntmerica). techniques for solving partial-differential equations is
the finite-difference method, where the differential equations are replaced
by a large number of difference equations, which are then solved by various
algebraic methods.

The means of solving simultaneous algebraic equations can be
divided into two general types called direct and indirect methods . Direct
methods, which include elimination and matrix inversion techniques, require
a finite n1m~ er of steps to obtain an exact solution. Indirect methods
theoretically require an infinite number of steps to obtain a solution but
often can provide a sufficiently accurate solution in a much smaller nunber
of steps than would be required with a direct method. The large ni~~ er of
difference equations resulting from partial-differential equations make
direct methods impractical for solving a problem. For indirect methods,
for example , the modified-Leibmann method, or over-relaxation method, are
free from round-off errors and have the additional advantage that they can
often be adapted to solve nonlinear equations. The direct methods are
usually applied in the parabolic or hyperbolic-type partial differential
equations having sides with an open boundary. The indirect methods are
applied to elliptic-type equations with a closed boundary .

The finite-difference method for linear partial-differential
equations has been well established.. Unfortunately, methods for solving
nonlinear algebrai c equations are lagging far behind. Recently, because
of the large number of physical and engineering problems which are described
by nonlinear equations and. the prospects which the ccexputer offers f or their
solutions, the techniques for solving nonlinear algebraic equations has
become an active field of mathematical research.

Two general methods have been developed for the solution of a set
of simultaneous nonlinear algebraic equations . The first is called by
Greenspan (Ref. 40) the nonlinear-Liebmann method, which involves linear-
izing the equations by putting known values into the nonlinear terms and
requires iteration . The resultant set of linear algebraic equations is then
solved by the extrapol ated-Liebmann method or some other method . The process
of iteration is continued until all the residuals are suitably small . The
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second method, known either as the generalized Newton’ s method. or nonlinear
over-relaxation, is an iterative procedure where the grid is scanned in
order . The generalized Newton ’ a method is the faster of the two nonlinear
methods according to Greenspan , but this is based only on examples and not -

a general mathematical theory . 
.

The above iteration techniques are general mathematical methods
developed to be applicable to a wide range of nonlinear differential equations.
When the generalized Newton ’s method was applied to same engineering problems,
it was found to work satisfactorily only for one-dimensional cases .

When a nonlinear differential equation is a description of same
physical situation , the nature of the nonlineari ty is known and often a
special numerical method can be devised to control the nonlinearity during
a relaxation-type iteration procedure . When the generalized Newton ’ a method
has serious drawbacks then the above becomes necessary . For example, the
projection method (Ref . 41) can be applied in order to control the nonlinear
terms .

For the nonlinear parabolic differential equations, the proj ection
method is usually applied in order to control the nonlinear term . For example,
we consider the following nonlinear equation :

a(F) .—~~ 
-

The finite difference analogs used in solving this simple type of equation
are centred around the time level t + 6t/2, and the coefficient a(F) must
be evaluated at this time level . The simplest method of solving this type
of equation is an iteration process where for all grid points i , the terms
a(Fj) are first evaluated using the values of Fi at time t. Substitution
of these terms into the difference equations results in a set of linear
equations which are easily solved for the function F at the time t ÷ St.
The coefficients a(Fi) are then re-evaluated, using for Fi the average of
its value at time t and the newly calculated value for time t + St. After
substitution of the newly calculated a(Fi) terms , the difference equations
are again solved for the functi on Fj at time t + St. This iteration is
repeated until the function Fi determined in two successive iterations agree
within a predetermined tolerance . The nonlinear terms have been proj ected
forward to the level t + 6t/2. I4ore sophisticated techniques use a Taylor
series in conjunction with the finite-difference analog of the original
equation to project the nonlinear terms to the half-time level . The above
projection method can be used in the usual boundary-layer equations . Further
discussion on the nonlinear partial-differential equations in engineering
applications can be found in Pef. 42.

Many methods can be applied f or the parabolic-type partial-
differential equations, for example, the explicit method, implicit method,
Crank-Nicolson method, DuFort-Frankel method, Saul ’ yev method, and the
explicit and implicit altern ating-direction methods . In the explicit method,
usually undesirable restrictions on the step-size increment occur in the
computation . The impli cit method can overcome this difficulty at the expense
of a somewhat more complicated calculation procedure. However, the discreti-
zation error s for both methods are still too large. The Crank-Nicolson
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method is of the implicit type and also can decrease the discretization
errors . It is always stable and the error is of second order .

The solution of equation s resulti ng fro3n the implicit or Cr ank-
Nicolson method can be obtained by any elimination technique. However,
since the resulting equations have the form of the tridiagonal-type the
ccmplete algorithm method, which has less of an iteration sch~~~ than the
Gaussian or Gauss-Seid.a]. elimination methods, can be applied. A general
form which can be applied by explicit , implicit or Crank-Nicolson method is
developed in the present work . An excellent review f or the finite differ-
ence method of solution of the boundary-layer equations has been given by
Blottner (Ref . 17) .

5.2 Finite Difference Equations

The nonlinear equations , Eqs . (20)- (23), with the boundary
conditions of a mixed Neumarin/Dirioblet type are solved numerically by
the finite-difference method. An impli cit six-point finite-difference
scheme is applied.

These equations are first linearized in a form suitable for an
iteration scheme . Blottner (Ref . 17) has stated that the order of the
equations is important . The momentum equation is solved first , and the
species must be solved before the atom ten~e rature . Therefore , these

— linearized equations can be wr itten in order as follows:

~~~P) + (C + f + 2~f ] ~(P ) 
- ~~~~~~~~~~~~

(i) 
= ~~~~~~~~~~~~~~ i)  

- 

~~ 

. (64)

[F ] z~~~ + [(F) + f + 2tf~ ] z~~~ - 

[~~~F - 

~ 
] ~

= 2~Fz~~~ (65)

[
~ 

] e~~+ [(~
)
~ 
+ f+2~f~ ] ~~~~ (~ Ta 

+ l~~~~~?r)

+ TUC
~
V

~~~ ] e(P) 
= 2~Pe~1’) 

- ¶fCF~ + ruQ
~/(PCpTa5)

+ a 

~ [- ~~ 
TUV~~j  + T

1 ] + ~f~fFz8 
~ 

(66)

(~ ) e~~ + [(~ ) 
+ (~ 

) c~ z~ + a~r + 2ftf t ) ] °?~
(67)

I e e 
~ 

ne J Contd...
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- 
T (n)

= ~~~~~~~ + a 

~ [- ~ ‘u’
~
’eai + T

1 ne~a
C ] (67)

where 2
=

u6Tu 2 ’  i_f C Tp6p.5u5 p aS

T -

eS 2
T 

~~~~~~~~~~~~~~~~ 
ri~~~~~T T u

7JIVBT 1/2 m
= 2 ( me 

e)  j~ [n~o~ + neo~i l

The superscript p denotes the order of the iteration process and
the quantities without the superscript denote those evaluated at the p-l
iteration order . F -

= ~f/~~ or

f =f Fd~ (68)

These linearized equations are of the second order and are solved
for the unknowns F , z , e and 8 in that order. The derivatives and the
integral in the ,~-direction are then expressed by three-point difference
formulae . The derivatives in the I-direction are approximated by a forward-
difference scheme. -

Let i and j  be the indices o.~ the t~, I-coordinates for the
difference net at the point considered i~ Fig. 1. Any function W (F , z , 8
or 8) is written in terms of the values of two adj acent points in the
I-direction as

W = ?%W(i, j+l ) + (1 - ?~)w(i , j)

where ? is a weighting factor which can be suitably adjusted for improving
the convergence of the iteration scheme:

10: ~ cplicit method

= 

~ 
~ : Crank-Nicolson method

L 1: Implicit method

In this formulation either equal intervals or nonequal intervals
in n-direction can be used . In the present case , the interval in i’-direction
is increased in a geometric progression as
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where k is a constant which is set ‘with a value slightly greater than unity.

The following derivatives are applied:

W = ______  
~~.L (w(i+i, j+i) + (k2-1)w(i, j+1) - k2W(i-1, il-i) )

~ (l*)k ~~l

+ 
1-? 

~~~~~~~ [W(i+l, j) + (k
2-l)w( i, j) - k2W(i-1, j ) )  (69)

(l~~)k ~~l

w = 
2A 

2i-l 2 [W( i+l, j+l) - (1÷k)w(i, j +i) + kW( i-l , j +l))
‘
~~ (l~k)k ‘~ l

+ 
2(1_)

~i l  2 [w(i+1, j )  - (l+k)w(i,j) + kW(i- 1, j) ( 70)
(1+k)k

= ~~ (w( i, j+i) - w(i,jfl (71)

where is the first interval in n-direction.

The quantity I is evaluated at a point between two adjacent
points as -

I = ?~

The values f and f 1 at a (i ,j+l) point are given by

f(i , j ÷l) 

~~~~~~~ 

~~i 
[(

2+3k
) 

F(2-l , j+l) + 
(

1+3k ) F(~ , j+ i)

- (k ~~~~~ )F ( ~ +l~ j+l ) ] (72)

j +l) ~~~~~~~~~~~ [(~~:~~~)F ~~~-l~ j+i ) + ( 1~3k ) F 1(~ , j+1)

- ( ka+k) )F 1(2÷l1 i+1)] (73)
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where

~~~~~~~~~ 

j+i) ~~ (F( t , j+1) - 1(1, j)]

The linearized equations , Eqs . (64) -(67) , m~ y be wri tten in the
following co~~~n form with

~~~~~~~ + 
(i) w(i) 

+ 4~
)w(

~
) 

= ~~~~~~ + (74)

where = p , w(2) 
= z , = e and = e. The expressions ~~~~ (1 = 1

to 4) for the w’nentum, species , at~~ t~~~erature and electron te3up~rat ure
equations are listed in Appendix C .

Substituting Eqs . (69)-(7l ) into Eq. (74), the following equation
is obtained :

j+ l) + B~~~
t)

W
(t ) (i , j+i ) + c~

t)w(t)(i+l, j +l) = D~t) 
(~~~~~~ )

w h e r e t = l t o 4 ; i = l t o N a n d j = ] . to M.

4t) = ai k 4t) - c1 k2 ,4t )

~(t)
Bit) = _a

i 
4t)( 14ic) + c~ 4t) (k2_1) + ~ 4~

) 
- ____

(t) ( t)  (t)
C~~~ = ai x1 + x2 C (75a)

(t )
D~
t) 

= -b~ 
t) i~ W - di 4t) 

~W - (1_~)4
t) w(i ,j ) - 

x4 W(i ,j) + x~
t)

- 2?~ 1a1 - 

(l+k)k21~~ ~~~

b 2( l-?t) 1
1 — 

(l+k)k21
~~ t~T~~~

- 7~. 1
— 

(1+k)k~ ~~l

______ 
1

- 

(l+k)k~ ~~l
— 

- = w(i+l, j) + (k2-1)W( i ,j) - k2W(i-l, j)
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= w(i+l, j) - ( ltk)w( i,j ) + kw(i-1, j)

The boundary conditi ons for the finite difference equation s are:

1 = 0 (t~ = 0): w(l) (o , j +l) = !

w(2) (o , j+l) = 0 for Zw = 0

= w(2) (1, j  +1) - 
~~~~~ 

for z~ =

j+l) = ~~~ —.

Tao

j +l) = w~
4
~(l , j +l) - for 8, = ~~

= w~
4
~(i, j+l) for 8, = 0

i = N (i~ -. ~~~) 
W( ~ (N , j  +1) = 1

F 
- w(2) (N , j+l) = 1

u -i) = 1

i-i-i) = 1

The maximum value of i (or N) which represents the freestream
condition can be determined as follows: After the value s k and t~~ are
chosen ( see next section) , the results for all grid point s at a fixed j
with an arbitrary value N are c~~~ared wi th that calculated from the N+1
value . If they do not have the same value, then N is increased until the
results of using N and N+1 have identical values. In order to guarantee
that the value N used represents the freestream condition for all j ,  N is given
by N = No + 20 , where N0 is the minimum value of N at x = 0. The maximum value
of i~ is obtained from the following equation,

N

The c~~~utationai scheme is an Iterative one. The 
- -

momentum equation is first solved with assumed distributions of species and
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atom and electron temperature s . The resulting velocity field is employed for
the species equation . The resulting species field is then applied to the
equation s for atom and electron temperatures, respectively. The new species
and atom and electron temperature distributions are then used to replace the
assumed one and the process is continued until the solutions converge to
satisfy a preset criterion .

The convergence criterion of the system of difference equations to
the differential equations has not been investigated . Howeve r , Douglas et a].
(Ref. 43) stated that an implicit or Crank-Nicolson difference scheme is
convergen t for an equation of the type given by Eq. (74).

In order to avoid third-order derivatives in the momentum equation ,
Blottner (Ref . 7) has introduced a transformed normal velocity and retained
the continuity equation . However , in the present method , the stream fun cti on
is introduced and the momentum equation is written as a second-order equation.
The partial differential equation for m~~~ntum involves f and. ~ ~~~

. The value
of f can be readily obtained from an integration once the value of the tangen-
tial velocity component across the boundary layer Is known . The same method
was applied by Fannelop (Ref . 44). Sells (Ref . 45) also used the same implicit
finite-difference method for a laminar compressible boundary layer and. Chan
(Ref . 46) for a turb ulent incompre ssible boundary layer .

5.3 Accuracy and Stability

The accuracy of the numerical solution has to be better than the
accuracy of the different physical models. The models used for the descrip-
tion of transport properties, chemical reactions and sheath theory are not
supposed to have a higher accuracy than 0(10-1) .  The accuracy of the experi-
mental results is at best 0(102). Therefore~ it seems sufficient to achieve
numerical results which are accurate to 0(l0~~).

The accuracy of the numerical method can be achieved to any small
order , say O(10 5), at the expense of computation time. Once the accuracy of
the problem is determined., the upper bounds for ~ t and. ~~ are posed.

The accuracy of any numerica]. method can be checked by: (1) varying
the I and i~ increments, (2) disturbing the boundary conditions slightly, (3)

• applying the difference-differential me thod or other numerical methods, (4)
applying a stability analysis to the linearized equations, and (5) applying
the method to a simple problem that can be solved analytically . In the
present analysis items (i) to (4) were applied to check the accuracy of the
Crank-Nicolson scheme. The step sizes used in the calculation are decreased
by half and the solutions follow this in a way corresponding to the orders
of the local truncation errors and remain stable. A small disturbance to the
input data gives a small change in the solution . The results obtained by
using ?~ = 0.5 (Crank-Nicolson method) and ?.. = 1 ( implicit method) were
compared and the accuracy was within 0(l0 2).

In the present analysis , nonequidistant step sizes were used. in
order to decrease the computation time . However , the nonequidistant discreti-
zation may lead to larger inaccuracy and can even spoil the solution completely.
Also the determination of error bounds for nonequidistant step sizes is more
complicated than an equidistant regular network . Fortunately, the nonequidistant
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d.iscretization can be checked in the present program by comparing the result s
with k = 1. and with k ~ 1. It was shown that the nonequidistant discretization
does not lead. to larger inaccuracy or spoil the solution in the present program.

As mentioned in Section 5.2 , the stability criteria for a system
of nonlinear partial-differential equations are difficult to determine . When
the Crank-Nicolson scheme is applied, bounded oscillations in I-direction
appear in the analysis. Crandall (Ref . 47) showed that at a relatively large
step size in I-direction, bounded. oscillations are possible even for linear
equations. According to Smolderen (Ref. 48) this may be even worse in the
case of nonlinear equations . Douglas (Ref . 49) ’also mentioned the possibility
of oscillations in the solution using a Crank-Nicolson scheme wi th boundary
conditions of the mixed type . These oscillations do not occur when a backward-
implicit method is used. However , a smaller step size, t~4, then the one used
in the Crank-Nicolson scheme is needed for the backward-implicit scheme for
the same accuracy . This results in more computation time. For the present
case , the oscillation can be controlled. by a suitable choice of the parameter
A. From our experience of the present analysis, the Crank-Nicolson scheme
provides a bound oscillation in I-direction . This oscillation does not damp
out even for a very small step-size L~I. Therefore, decreasing step size ~ I
is not the best way to get more accuracy. This oscillation can be checked
by using different values of A in the calculations starting from an optimum
value 0.5 to a maximum value of 1.0 , and the smallest value of A in this
range which just eliminates the oscillations is the one to use. In the
present analysis, the best value of A was found to be 0.75 where the oscilla-
tion damps out in the first few steps. With A = 0.75, the discretization
error is expected to be O(L~I

1.S) , which is smaller than o(~I) for a backward-
implicit scheme.

For example ( see Chapter 6, for the slat-plat e boundary layer)
= 3.53 x 105 cm/see, TaO = TeS = 1.059 x 1014 K , a5 = 0.031 and p~ = 1200

torr was used for all x. The step-size ~ I was increased with x. At firstthe value,,of the ,weight parameter A = 0.5 was used, and in all runs oscilla-tion in f~, and z~ started at the first step downstream. This oscillation
tended to be small at I = 45. In another run A = 0.75 was used, and thistime the oscillation damped out wi thin t~o steps downstream and did nat re-appear . Figure 2 shows how the values 

~~ and z~ oscillate as the step numberj  increases . Consequent ly, the Crarik~.Ni colson scheme (A = 0.5) was abandoned
F and A = 0.75 was used in the present analysis.

Attempts were made to relate this oscillation to errors due to thestep-size ~~ and ~~ with the aid of formulae like the Richardson-extrapolation
rule, but a satisfactory answer was not obtained. Therefore , the oscillationswere not induced only by a finite step- size as they were considerably larger
than the errors expected from such step sizes.

5.4 Transformation of Coordinates

The conditions at the edge of boundary layer, U5, a0, Tab, Teb and
P~, resulti ng from the solution s of the inviscid flow equations ( see Section4.3) are a function of x. A table of these edge properties as a func tion of
x was used and the interpolation was applied to obtain the edge conditionsfor any value of x. However , the finite difference procedure was applied for
the transformed (I,,i)-coordinates. Therefore, the final results must be
related back to the physical (x,y)-coordinates.
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The relation between the transfoz~~ d coordinate I and the distance
x along the surface can be determined from Eq. (18) . The relation between
~ and x can be determined by the following equation:

= + (76a)
with

L~I = ~~— E 7 x~ + 7 X j +~~ c ]

7(xj ) = t% IL
6 

U6] at x = X
j

X
j~~1

= X
j

+~~~X

The coordinate y relati ng to coordinate i~ is given by

Y~~~~~~~J~
’
~~~~d~q (‘r~)

where the three-point formula for nonequi dista nt step sizes applied in Eq.
(72) can be used for Eq. (76).

6. ~~AT-PLA~rE B0UI~fl)ARY-LA!ER FLOWS IN I0NIZfl~ ARGON

6.]. General Considerations

Experiments on shock-wave structure and the boundary-layer flows
induced by a strong shock wave were recently conducted at 1111.42 in the
Hypervelocity Shock Thbe . These exper~~~nts provided unique and reliable
interferometrj c data for both types of flows . Experiments on shock-wave
structure were conducted by Bristow (Ref. 50) , Brlmelow (Ref . 51) , Tang
(Ref . 52) and Whitten (Ref . 39), and on the flat-plate and the shock-tube
sidewall boundary layer s by Whitten (Ref. 39) and Brimelow (Ref. 51) ,respectively. Ccmparisons of numerical and wcperimental results on shock-
wave structures are given in Ref s. 24 and 25 for argon and krypton, respec-tively.

Measurements of ionizing flat-plate boundary-layer flows have beenreported by some authors (Tseng and Talbot , Ref. 13; Brown and I~~tchener,Ret . 38; Bred.feld.t et a]., Ref . 53) for low t~ x~ eratures and low electron-
nwiber densities . Under these conditions , the radiation-energy loss in the

• plaama is ~m~.ll and. can be neglected for bath the inviscid and. viscous flow
regions. Thus, the conditions at the edge of the boundary layer can generallybe calculated from a nonradiant model in which the freestream-f].ow quantities
are constant and independent of time .

Figure 3 shows schematically the experimental generation of a flat-plate boundary-layer flow over an airfoil model with a sharp expansion cornerin the 1711A2 10 cm x 18 cm Hypervelocity Shock Tube . Such a boundary layer
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can be regarded as developing in a steady flow if the shock wave is travelling
at a constant veloctty and the radiant energy loss is small. However, for the
case of a flow induced by a stronger shock wave (N6 > 13) , the radiation-
energy loss becomes significant and the boundary layer develops in a somewhat
unsteady (nonuni~~rm) flow.

A typical analysis of t~ie inviscid radiant flow behind a shock wave
travelling at constant velocity is shown in Fig . 4. In this case, the shock
wave is moving at a Mach ntuther N~ = 12.8 into quiescent argon at Po = 5.01

torr and To = 297 IC and has been shown at a location x8 = 4o cm past the
leading edge of the flat plate ~ The gradients result from the radiation-
energy lass . Clearly, as the nonstationary shock wave travels along the tube,
the inviscid-flow conditions above the plate change with time, introducing an
unsteady ( nonuniform) effect . Along the flat plat e, it is seen that u~ and Pbdecrease as x increases from the leading edge (or as one moves closer to the
shock front) while Ta~, Te~ and a~ all increase. However, the fact that the
irwiscid flow with respect to. the plate is unsteady ra ther than steady with
flow gradients, is emphasized by a. consideration of the overall momentum
equation for the plasma. In a steady, one-d1m~isjonal inviscid flow,

du5 dp5

That is, the velocity gradient and pressure gradient should have opposite
signs, which is not the case in this flow.

It can be seen , howeve;r , that the variations of u6, Tab, Te~ and p~are quite rnni~.fl, particularly as the distance , x5, from the leading edge to
the shock wave increases. Under these circumstances, it is reasonable to
regard the flat-plate boundary-layer flow as quasi-steady to a first-order
approximation, such that the steady-flow ana lysis described previously can be
applied. It should be mentioned that the relative changes in a~ are slightly
larger , however, and the full extent of this effect on the quasi-steady-flow
ass~m~tion is not known at the present time.

For comparisons of boundary-layer profiles measured at a position
x~ with analytical predictions, the inviscid flow condition s at ~ n were
asstm~ d to prevail over the entire freestre am region (all x) in order to
satisfy the steady-flow assumption in the analysis. The initial conditions
for the shock wave and the freestream quantities resulting from the radiant
iniriscid flow are listed in Tab le 1.

In the finite difference analysis , the best value of the weight
parameter was found to be A = 0.75 , where the oscillations damped out during
the fir st few steps. Case 2 of Table 1 was run with k = 1.05 , i~~~ = 0.05 and.
N = 46 by using a step-size & started with 0 .01 cm at x = 0 and. increased
to 0.2 cm at x = 14 cm. At first the value,,of the weight parameter A = 0.5
was used, and in all runs oscillations in f~1, and ~~ started at the fir st-step
downstream. The oscillation s were bounde d and tended to become small as
x increased . The other run with A = 0.75 was used., and this time the oscilla-
tions damped out within two downstream steps and did not reappear. Therefore
the Crank-Nicolson scheme (A = o.~ ) was abandoned and A = 0.75 was used in the
analysis.
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6.2 Comparison of Theoretical and Experimental Results
For the case of N5 = 3.6.6 and Po = 4 .8]. torr , the ini tial flow

prof iles (at x = 0) are shown in Fig. 5. The nondim1~nsional electron-
temperature profile 0 is unity for a].]. i~, resulti ng from the electric-sheath
condition -8’ = 0 at x = 0. The atom-temperature profile 0 increases from
0.029 at~~~= 0 t o 1at ~~~= l.95, and reachesamaximum value l.04 at~~~= 2.k
and then approaches unity at i~ = 4.25 . The normalized velocity profile f’
increases from zero at ~ = 0 to 1 at q = 4.5, while the normalized degree of
ionization profile z increases from 0 at ‘1 = 0 to 1 at i~ = ~~~~~~

The variations of the transport properties at x = 0 of Pr , Sc, C
and Pre with~~ are shown in Fig . 6. The Prandtl nunt er for the heavy
particles Pr is constant (Pr = 0.667) from its definition in this analysis.

• The ratio of density-viscosity product C decreases from 2.8 at ~ = 0 to 1
at ~ = 2.23. The Schmidt nurber Sc increases from 1.5 at i~ = 0 to 2.42 at

= i.4 , and then decreases to the freestrea m value 2.39 at t~ = 3.12.
Similarly, Pr e increases from 0.035 a.t ~ = 0 to 0.52 a.t q = 2.4 and then
decreases to the freest reain value 0.507 at ~ = 4.79. These transport-
property parameters are functions of na, ne, Ta, Te and p~ . The variations
of these parameters with ~ have some effect s on the boundary-layer structure .
The effect of Pre on the electron-te mperature profile is more significant
than that of C on the velocity pr of~~e and. of Pr on the atom-te mperature
profile . The tota3.-Prandtl nuther Pr of the plasma can be obtained from the
following equation:

~~ Pr Pr e

The variations of the flow profiles with distance x are shown in
Fig. 7. The velocity profile f’ is almost independent of x . The vari ation
of atom temperature ratio e with x is also mn~.1 1. Therrfore , the momentum
and atom-temperature equations can be obtained approximately from a similari ty
assumption . However , significant variations of the degree of ionization ratio
z and electron-temperature ratio 8 with x do occur , as shown, and errors will
result from a similarity assumption . The degree of ionization a and. the
electron temperature Te decrease as x increases at a constant i~. At i~ = 0,
8w decreases from 1 at x = 0 to 0.87 at x = 14 cm.

The variations of Pre with i~ for x = 0 and. x = 14 cm are shown in
Fig . 8. It is seen that for x > 0 , Pr e exceeds the freestrea m value (0.507) ,
up to 2.5.

In addition to the profiles of the various flow quantities across
the boundary layer, parameters that characterize the skin friction , heat
transfer due to conduction and diffusion processes and thickness of t~e boundary
layer are important . The variations of the skin friction parameter 

4 
and the

— heat transfer parameters 8~ and z~, for conduction and diffusion processes ,
respectively, with distance x are shown in Fig. 9. The values of 

4 
are

almost independent of x, while e~ increases at small x and approaches a nearly
constant value for large x. The quantity z~, decreases significantly for x < 2
cm and approaches a nearly constant value for large x. The boundary-layer-
displacement thickness 5* is plotted in Fig . 10 as a function of x. For x
greater than 4 cm,~ e~* inereases almost linearly. The physical-boundsry’-3.ayer
thicknesses with a flow-quantity ratio of 0.995 for velocity Sf, degree of
ionization 6~ , atom temperature ~Ta and electron temperature 

~~~ 
are plotted
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in Fig. .11. It can be seen that the boundary-layer (x > 3 cm) thickness for
velocity is greater than the other boundary-layer thicknesses for this case.
The thickness of the electron thermal layer, 5]

~e’ is thinner than the
velocity thickness which differs from the result found by Honma and Komuro
(Ref . 16) for a sidewall boundary-layer flow. They showed that the thickness
of the electron thermal layer is almost ten times that of the velocity or
atom-temperature thicknesses.

The large change in the chemical-reaction rates with temperature
has an important effect on the boundary-layer structure for the case of a
large degree of ionization. Figure 12 shows the effect s of chemical-reaction
rates on boundary-layer structure . The results for a frozen flow (~ e = 0)
are compared with those for a nonequilibrium flow at x = 114 cm and M5 = 16.6.
The profiles of velocity f ’ , and heavy particle temperature 0, hardly differ
for both cases . However, the profiles of electron temperature e, degree of
ionization z , and electron Prandtl nu~ber Pre, are significantly affected by
the chemical reactions . For a given ~~, the electron temperature 8 is lower
for a frozen flow than for a nonequilibrium flow, while the reverse is true
for the degree of ionization z.

C~~~arisons of analysi s with experimental results are shown in Figs .
13 and i4 for plasma density and electron-nurber density, respectively . Better
agreement is obtained for the measured plasma density profile with the frozen-
flow analysis. However , poor agreement with analysis is obtained for the -

electron number-density profile with either solution . The experimental data
show a significant ~~~~ in the ne profile which is not predicted by either the
nonequilibriuin or the frozen-flow analysis. A similar bump appears in the
ex~~~imental data for the degree of ionization profile shown in Fig . 15, while
t h ee  is no bump in the -analytical result . This disagreement has not been
resolved.

For the second case with H8 = 12.8, Po = 5.01 torr and T0 = 297 K,
the nonequilibrium and frozen-flow profiles at x = 14 cm are shown in Figs .
16 and 17, respectively, for ccmpari son . It is also shown that significant
differences exist for degree of ionization and. electron temperature profiles ,
as predicted for M5 = 16.6 case . The analytical and experimental results
for plasma density and electron nunber density profiles are compared in Figs .
18 and 19, respectively, while the corresponding degree of ionization profile
is shown in Fig . 20. Unlike case 1, the experimental plasma-density data
shows better agreement with the nonequilibrium or the calculated equilibrium
similarity-solution profiles, which are very close. The experimental results
for ~e lie between the analytical nonequilibrium and frozen-flow prof iles. The
two-temperature frozen-flow solution predicts a larger burg than that obtained
from the experiment, while no bump occurs in the nonequilibriuin or equilibrium
profiles . The experimental data for the degree of ionization lie closer to
the calculated frozen profile rather than the nonequilibrium profile .

The local-similarity solution based on thermal and chemical equili-
brium are also plotted in Figs. 18-20 for case 2. It is seen that equilibrium
would not occur in such boundary-layer flows. Of the three models used in
the analyses for n~ and a, the equilibrium profiles provide the worst agre~~~nt
with the experimental results. The ne profile is the most sensitive indicator
of the state of the boundary layer . The fact that the density data agree
with the three models used in the analyses shows that it is not a sensitive
parameter . Undoubtedly, measurements of electron and heavy-particle temperatures
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are desirable as they would be sensitive indicators of the state of the
boundary layer . -

The disagreement between theory and experiment for ne (or a) may
result from: (i) the boundary-layer Qow is assumed to be quasi-steady while
in the experiments it is actually nonstationary with time resulting from
radiation losses (which were only partially accounted for) , and the effects
of the sidewall boundary layer s (which were not taken into account at all
and have flow effects similar to radiation) . These effects will be more
pronounced at higher shock Mach nunbers where the radiation-energy loss is
significant . For example , the agreement between theory and experiment for
N8 = 16.6 is worse than that for H5 = 12.8 for the ne and a profiles . In
order to assume that the boundary-layer flow is quasi-steady, the variations
of the flow quantities at the edge of the boundary layer with distance were
neglected in the theory . This error might have a significant effect on the
boundary-layer structure. (ii) The ass~.mptions made in the basic equations
( such as piVi -PDa ~~/~y and ~ . ~~e 0) the uncertainty of the para-
meters used to describe the elastic and inelasti c-energy -transfer rates arid
the model used for the radiation-energy loss , may all affect the entire
boundary-layer structure . However , the comparison of analysis and experiment
for the M5 = 12 .8 case is quite good and lends support that the assumptions
made in the basic equations are reasonable. Furthermore, from the shock-wave-
structure analyses (Glass and Liu, Ref . 214; Glass et al , Ref. 25) the parameters
used for the elastic and inelastic-energy transfer and the radiation model are
considered as accurate wi thin the limitations of present-day collision theory.

As noted earlier some possible errors in the present analysis may
result by neglecting the re-absorption of the radiation-energy loss in the
freestream and the effects of the sidewall boundary layers on the freestreain
flow. An exact solution to the set of simultaneous ordinary differential
equations for the freestream flow including re-absorption would be difficult
since the re-absorption coeffi cient is a function of the complete structure
of the radiation cooling zone . The question would also arise whether the
shock tube has a finite or an infinite optical depth . The Rosseland mean-
free-path for argon at the freestream conditions of M8 = 16.6 , Po = 14.81
torr and T0 = 296 K ( case 1), is about 97 cm. Therefore , the freestream
plasma is optically thin and the re-absorption energy should be small . For
the present calculations it was necessary to consider the worst case when
there is no re-absorption . The shock-tube sidewall boundary layer will have
some effects on the freestream conditions . In general, it would be desirable
to study the present flat-plate boundary layer after the effects of the
shock-tube sidewall boundary layers on the freestream were determined . In
the present analysis the freestreani condi tions were obtained under the
assumption that the flow was one-dimensional ; the role of the sidewall
boundary-layer growth on the inviscid flow was not considered. Mirels (Ref.
5I~) has shown that the flow between the shock wave and contact surface in an
actual shock tube is non-uniform due to the wall boundary layer . Recently,
En~ noto (Ref. 55) has studied the effect s of the boundary-layer growth in

[ shock tubes of various cross-sections on the shock-wave ionization-relaxation
process in argon . He used Mirels’ boundary-layer theory for a perfect gas
to get some estimates . He showed that by considering the sidewall boundary-
layer effects the ionization relaxation time was shortened. The inclusion
of re-absorption of radiation energy and sidewall boundary-layer effects will
increase the degree of ionization in the freestream. Neglecting these two
effects in the analysis might alter the freestreain conditions. In order to
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study the effects of the freestrea m conditions on the boundary-layer structure
for the N8 = 16.6 case , where the theoretical and experimental boundary-layer
thicknesses for fle are 0.8 mm and 2 xrnn, respectively (x = 114 cm) , three
different freestream values (at t = 20 j.~s, 40 ~s and 60 ~~ after the passage
of the shock wave) were used for comparison . Even then, the theoret ~.cal
boundary-layer thicknesses for 

~e are between 0.8 mm and 1.2 mm and still
differed from the experimental results . It is shown that the boundary-layer
thickness for ne increases as the degree of ionization in the freestream
increases.

It is worth noting that the error due to neglecting the photo-
ionization in the analysis may not be small . Near the wail, where the
ionization due to electron-atom collisions is small compared with that in
the freestreazn, photons resulting from stimulated emission and radiation
proces ses may have an opportunity to ionize atoms. The populations of the
photon flux should be known before any calculation on the photo-ionization . 

-

rate can be done .

The effects of chemical reactions on boundary-layer structure and
the sidewall boundary layer on the shock structure are discussed in Appendices
D and B, respectively.

Finally, from a comparison of the theoretical results of Mansfeld
(Ref . 15) and the experimental results of Kuiper (Ref . 56) for a thermal
Rayleigh boundary layer , it was shown that the frozen models lead to values
obtained from a nonequilibrium model. No bump in ~e occurred in either theory
or experiment for a thermal Rayleigh boundary layer. Details of the results
described in this chapter are given in Ref . 57.

7. SHOCK-TUBE S]])EW.ALL BOUNDARY-LAYER FLOWS IN IONIZI~~ ARGON

7.1 General Considerations

A considerable amount of theoretical and experiment al work has
been done on the prediction at heat transfer and the variati ons of transport
and thermodynamic properties through the shock-tube sidewall (or Rayleigh)
boundary layers . Kuiper (Ref . 56) made an interferometric study of the
shock-tube endwall boundary-layer flow . Mansfeld (Ref . 15) compared his
numerical results with Kuiper ’ s experimental data. However , except for
Brimelow’ s results, there are no experimental data on shock-tube sidewall
boundary-layer flows for ionizing argon .

From the comparison of analyses and experiments for the flat-plate
and thermal Rayleigh boundary layer flow s, it has been shown that electrons
have a temperature which is very different from the heavy particles owing to
the slow collisional energy-transfer processes between electrons and heavy
particles. In the inner part of the boundary layer (i .e., near the wall) an

• equilibrium assumption is not valid. - 
-

F Shock-tube sidewall boundary layers for ionizing argon flows were
analyzed by KnO~s (Ref . 1) for flows with thermal and chemical equilibrium, Honma
and Komuro (Ref . 16) for frozen flows and by Takano and Ak~uns~-tsu (Ref. 114 ) for flows
with thermal and chemical nonequilibrium. Radiation energy losses in both free-
stream and boundary-layer flows were neglected in these analyses. I~i~~s has shown
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that the equilibrium solution for the degree of ionization is in good agreement
with experiment only near the edge of the bour~dary layer. Honma and Konniro
found that the thickness of the electron thermal layer for frozen flow is
about ten times the thickness of the viscous boundary layer , which is in
contrast to the results for flat-plate (described in Chapter 6) and. thermal
Rayleigh boundary-layer flows.

The present chapter deals with comparisons of measurements and
related analyses of the total-density and electron-number-density profiles in
shock-tube sidewall boundary layer flows . The shock-wave-structure model of
Glass and Liu (Ref . 214), which includes radiation-energy losses, was used. and
Brimelow’ s interfercinetric data were accurately re-evaluated for this purpose .
A comparison was also made between theoretical and experimental plasma tempera-
tures. Satisfactory agreement has been obtained for shock-tube sidewall boundary-
layer flows in ionizing argon .

7.2 Comparison of- Theoretical and. Experimental Results

The main differences between the flat-plate and shock-tube sidewall
boundary layers are: (1) the velocity profile for the flat-plate case increases
from zero at the wafl to the free stream value at the edge for the sidewall
boundary layer. (ii) Tonixing-nonequilibrium phenomena occur in the freestrea m
flow behind the shock front . • Consequently, variations of freestreani conditions
for the sidewall boundary layer are significari~ly larger than for a flat plate .
(iii ) The sidewall boundary layer induces significant changes in the freestream ,
especially in the ionizing -shock structure and beyond where the radiation losses
are large . 

_ 
•

Recently , Brimelow’ s data were re-evaluated and compared with the
radiant shock-structure model of Glass and Liu. The data show that (i) no
bump occur s in the electron-nu mber -density profile in the sidewall -boundary-
layer, unlike the flat-plate case , and (ii) significant two-dimensional and
wall effects on the freestream flow exist in the sidewall case at highex~ shock
Mach numbers.

Accurate interfercmetric determinations of the excitatibnal cross-
section constants for argon and krypton atom-atom. collisions in the relaxation
zone were made by Glass et a]. over ranges of the ~.nitia]. shock Mach number and
pressure of 13 < M s  <18 and 3.1 <P 0  < 5.2 torr , respectively . Thi s shock w ave
structure model was used to determine the range of freestream conditions .

Two cases were studied for H5 = 13.1 , Po = 5.6 torr and Ms = 15.9,
Po = 5.10 torr . The initial conditions and the freestreazn conditions at the
measuring station xm are given in Table 2. Figure 21 shows schematically the
shock-tube sidewall boundary layer behind a shock front .

Figure 22 shows a plot of the free stream conditions for M8 = 13.1
and Po = 5 .16 . The boundary layer profi les were measured at the cascade front
where the electron number density is a maximum and. the vari ations of the free-
stream conditions are significant. At the cascade fron t , the radiation energy
loss rate is maximum.

The dimensionless noneq uilibri um-flow profiles of velocity F ,
degree of ionization CX , atom temperature 9 and electron temperature e
are shown in Fig . 23. It is seen that the velocity profile F is signi-
ficantly different from that of the flat-p late boundary layer (Fig.
16) . The thickness of the electron thermal-layer is much thinner
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than that predicted by Honma and Komuro. They indicated a thickness almost
an order greater than the present result .

A comparison of analysis with experimental data is shown in Figs .
214 and 25 for plasma density and electron number density, respectively.
Much better agreement is obtained between the measured results and the
nonequilibriwn solutions for the sidewall than for the flat-plate boundary layer .
Better agreement was obtained between the measured plasma density and electron-
number-density profiles and the frozen-flow analysis for the f1at-p1a~.e~ boundary
layer . A bump appeared in the experimental data for the electron-number-density
profile in the flat-plate case . No bump appeared in the sidewall case . The
agreement with the frozen solution is rather poor for the sidewall case . The
corresponding profile for the degree of ionization is shown in Fig . 26. owing
to the shape of the velocity profile , ~* is now negative, as expected. The
boundary-layer displacement thickness , §*, is plotted in Fig 27. It is seen
that the displacement thickness increases almost linearly wi th x , when x is
greater than 2 cm. A comparison with Fig . 10 - shc~ 4~~ that — ‘

-~~ - - ‘ - --

the sidewall boundary ‘ayer is about an order thicker for an equivalent x.

• For the second case with Ms = 15 .9 and Po = 5.1 torr, the freestream
conditions for p~ , ~~~ and are shown in Fig . 28 together with experimental
results . Good agreement is found . The dimensionless nonequilibrium and
frozen-flow profiles at x = 18 cm are plotted in Fig . 29. Except for the
velocity profile F , these are significantly different between the nonequilibrium
and the frozen-flow solutions for degree of ionization , and the atom and electron-
temperature profiles . For the flat-plate case , profiles of veloci ty and. atom
temperature hardly differ for both cases . Chemical reactions have a significant
effect on the degree of ionization profile.

Comparisons of analysis with experimental results are shown in Figs.
30 and. 31 for plasma density and electron-number-density profiles , respectively.
Better agreement is obtained for the measured plasma-density profile with the
nonequilibrium analysis. However , only fair agreement with analysis is obtained
for the electron number density profile . The latter is overpredicted by analysis ,
which is in contrast with the results for case 1. It is also shown that the
electron-number density continued to increase with distance from the wall and
did not reach as~pmptotic values. Thi s phenomenon was also observed in the shock
wave structure experiments ( see Fig . 13, Glass and Liu , Ref . 214) . In the
relaxation region near the shock-tube wall , the electron cascade front moves in
towards the wall slowly at first and then very rapidly. The reasons for this
premature ionization close to the wall in the experimental shock wave structure
are far from clear . One possibility considered was that a gas-surface inter-
action occurred between the argon plasma and the chromium-plated steel shock-
tube wall . However , two experiments were carried out to try and eliminate
this possibili ty by changing the surface material. However , no changes were
observed. This phenomenon is much more in evidence for the stronger shocks.
For this reason , experimental results for electron-number density for N5 = 15.9
are lower than that predicted. For the previous case wi th N5 = 13.1, the flow
parameters reached their asymptotic values at the edge of the boundary layer .
The corresponding profile for the degree of ionization is shown in Fig . 32 and
the displacement thickness , §*, is plotted in Fig . 33 as a function of distance x.

140



-,

The determination of electron temperature of a shock-heated argon
plasma has received wide attention. fi~mong the coumonly used plasma diagnostics
for electron temperature determination in a flowing gas plasma are Lan~~uir
probing and microwave transmission . The difficulty in measuring two temperatures
of a plasma generated by stronger shock-induced boundary layers has been recog-
nized. In the present case , the experimental temperature of argon plasma is
determined from the measured p1asma-densi~y and electron-number-density profiles
by assuming thermal equilibrium in the boundary-layer flow . Even this assumed
experimental temperature cannot represent the actual atom or electron tempera-
ture . However , some interesting features can be found from a comparison of
the theoretical and experimental plasma-temperature profiles . The experimental
plasma-temperature profile together with the calculated two-temperature profiles
are plotted in Fig . 314 for M5 = 13.1 and Po = 5.16 torr . It is shown that the
experimental plasma temperature is close to the electron temper~ ture profile
near the wall . In the outer part of the boundary layer , agreement between the
theoretical and the indirect experimental results is excellent . A cci~~arison
of the temperature profiles for M~ = 15.7 and Po = 5.1 torr is shown in Fig .
35.

From the foregoing comparison of theory and experiment for bath
flat-plate and. sidewall boundary-layer flows, the following differences are
observed: (1) The experimental data and the nonequilibrium analysis show
that there is no bump in the ~e profile for the sidewall boundary layer .
However, such a bump is observed in the experimental flat-plate b oundary
layer profile . The frozen solution predicts a bump for both layers . (2)
Better agreement is obtained between experiment and the nonequilibrium analysis
in the sidewall case , while the frozen solutions - agree better with experiment
than the nonequilibrium solution for the flat-plate case . (3) More significant

- 
differences exist between the analytical nonequilibrium and frozen plasma-
density profiles for the sidewall boundary layer , while this difference is
,~ncii 1 for the flat-plate case. ( 14) Even though the predi~cted dis~1acement
thickness for the sidewall boundary layer is an order of magnitud.e greater, the
predicted and actual density, e1eci~ron-number density and degree of ionization
layers have correspotidingly- similar values. The de~isi-ty thickness is usually
abowt half the electron-number density thickness. It shows that the total
density is not a sensitive indicator of flow variations.

By and large all analytical profiles are consistent for both types
of boundary layers . The fact that the experimental data is in better agree-
ment for the sidewall boundary-layer flOw may result from:., - (1) The unsteady
effects on the sidewall boundary -layer close to the shock front r.re smaller
than those for the flat-plate cases where the shock wave is threefold the
distance ‘away. (2) There is signifi cant ionizing nonequilibrium in the free-
stream flow in the sidewall case but the flat plate is almost in a state of
radiant equilibrium. (3) The degree of ionization at the points measured

• for the sidewall case is two to threefold larger than that for the flat-plate
-
• 

cases and may favour the agreement with the nonequilibrium analytical profiles .

It is worth noting that the step size ~c, used for the sidewall
boundary layer , is much smaller than for the flat-plate case and result s in
increased ccmputation time .

The assumption pj V PDa( ~ r/~y) made in the analysis was removed
and replaced. by
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in the computer program. It is shown that the effects on the electron-number-
densitl and plasma-density profiles are very small. This was done to remove
instabilities at higher shock-Mach number for the sidewall boundary layer by
using 

* 

the abOve equation .

• Finally, from a coii~ arison of the theoretical results of Hutten-
Mana~feld (Ref . 15) and. the experimental result s of Kuiper (Ref. 56) for a
thermal Rayleigh boundary layer , it was shown that no b~m~ in ~e occurred in
both results. It should be noted. that in ICuiper ’ s experiment with Ms = 11.1
and Po = 5 torr , radiation cooling is not negligible . Nevertheless , similar
trenda of the flow profiles are observed in their end wall boundary layers
and. our flat-plate and. sidewall boundary layers .

8... DISCu SSIONS MiD CONCLUSIONS

The complete set of partial-differential equations for a laminar
boundary layer in ionizing argon have been solved with a six-point implicit
finite-difference scheme. The new features in the analysis are the inclusion
of the radiation-ener~~r loss and the appropriate chemical reactions . The
latter also include the atom-atom reactions . Account was taken of the varia-
tion across the bound.ary layer of the transport properties based on the known
elastic-scattering cross- sections for an argon plasma. The compatibility
conditions and the electric-sheath model were described and incorporated into
the analysis. The flat plate and. shock-tube sidewall bounctex~j-layer flows
were analyzed and compared with interferometric data obtained using the LPTIAS
10 cm x 18 cm Hypervelocity Shock Tube equipped with a 23-cm diam Mach-Zehnder
dual-wavelength interfercmieter at shock Mach nwnbers Ms 13 arid 16 at an ini-
tial argon pressure Po -

~~~~ 5 torr and T0 - 300 K.

The analysis is probably the most complete and detailed done to
date . It clearly shows that the measured electron-number-density and. degree—
of- ionization profiles in the boundary layer for equilibrium, frozen and
nonequilibrium flows are more sensitive than the measured complementary
total-number density profile for determining the actual state of the boundary
layer , as might have been expected. Agreement between theory and experiment
for the density profiles appears good to excellent as there is little difference
between the three analytical profiles for the flat-plate boundary-layer flow .
However , agreement of’ experiment with analysis for electron-nu~~er density is
only fair for the flat-plate case . The experimental data lie between the
analytical frozen and nonequilibrium profiles . The experimental data show a
bump in the lie profile at both i~i~ = 16.6 and H5 = 12.8 for the flat-plate
cases , while analysis only predicts a bump for the frozen case at Ms = 12.8.
The nonstationary character of the inviscid. fl ow may have an importan t effect
on the bound.axy-layer structure at high shock Mach numbers where the radiation
ener~~r loss is significant . However, a substant ive explanation for thi s
phenomenon has not been found.

For the shock-tube sidewall bound.ary-layer flow it was shown that
there is no bump in ne profile for both the nonequilibriu xn analysis and the
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actual experiments. Better agreement with experiment was found in this casewith the nonequilibrium analysis , rather than the frozen analysis . A ccmparisonof the indirect temperature measurements and theory for the pJ asma—temperature
profiles shows excellent agreement .

General conclusions obtained from the ccmparisons between theoreticaland experimental result s for the flat-plate and shock-tube sidewall boundary
layer flows are given as follows (Liu and Glass, Ref . 58) :
(a) Near the wall the flows are in nonequilibri um or near frozen . Equilibriumsolutions are only valid for the flow at the outer part of the boundary

layer. The same conclusion was drawn by I~~~ s for a sidewa ll boundary layer• and by Hut ten Man sfeld. for a thermal Ray leigh boundary layer .

(b) The variation of the flow profiles with distance x for the two types of• boundary layers are differ ent . For example, for the flat -plate boundary
layer the velocity prof ile is almost independent on x but not so for the
sidewall boundary layer . Consequent ly, similari ty assumptions are reason-able for the velocity and atom temperature pr ofiles for the flat-plate
case where the freestream variations are small; and even for the sidewall
velocity profiles. However, large errors will arise in electron-number-
density and temperature profiles from similarity assumptions in both cases.

(c) Unlike the total-nu mber density , the electron- n~~~er-de nsity profiles are
very sensitive indieator s for ccmpa r ing frozen , equilibrium and nonequili-brium analyses with exper iments.

(d) The thickness of the electron therm al layer is of the same order of inagni-
tude as the viscous boundary layer for both flat-plate and sidewa ll bounda rylayers. A similar conclusion was - made by Hutt en Mansfe ld from a comparison
between his analysis and Kuiper’s experimental data for a thermal Rayleighboundary layer .
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APPENDDC A

DESCRIPTION OF COMPUi~ER PROGRAM

The program BLEIG for solving BoundAry Layer Eq~uations for Ionizing
Gase8 is written on CI)C-6600. The other versions of BLEIG on IBM-370 and.
PDP-1O have been written. The CGS unit system is used. through all programs .
The flow chart of the program is given in Fig. 28. Free format of the input
data is used. The conputer program is given in Appendix F.

A.l Main Program
S Befor e describing the notations used in the main program, the main

features of the calculation procedure will be reviewed. A rectangular grid
system indicated in Fig. 1 has been adopted, the i-lines running in the i~
(or y) direction, i.e., normal to the plate, and the i-lines in the ~ (or x)
direction, i . e., parallel to the plate. Conditions along some initial i-line
are known and the conditions along the (j+l)-line have to be determined. The
main sbeps in the procedure are then ,

(1) If this is an original run , the solutions of the flow at leading edge
(x=O) are obtained by calling SUBROUTINES SNTUP and BEGIN. If thi s is
not the original run , then the solutions at some particul ar point of x
are read. in from a restart file in a magnetic tape .

(2) From the known solutions of F , z , 0 and e on the i-line, the solutions
at (~ +3.)-iine are assumed.

(3) Using assumed solutions at (j+l)-line, the new velocity profile F at
( j +l)-line is calculated.

(4) Using new value F and assumed z , 8 and. 8 values, the new value of z is
calculated.

(5) Using new values of F and z and assumed values of 9 and 8, new value of
8 is calculated.

(6) Using new values of F , z and e and. assumed 8 value , new 8 value is
calculated.

(7) Repeat from st ep (3) to step (6) until the solutions at (i+1)-line
converge to satisfy a preset criterion .

(8) Calculate the boundary-la~jer characters and determine a suit able step—
size Ax. -

(9) Use the sane procedure to advance from the (j+1)-line to the (j+2)-iine
and so on.

The notations used in the main program are listed and explained
below:

A-i
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EDU (w1’~AD) = U6 values at the edge of boundary layer .

E~TA (MREAD) = Ta6 values at the edge of boundary layer~.

~ )TB (MREAD) = Te5 values at the edge of boundary layer .

.~MLP (NREAD) = a6 values at the edge of boundary layer.

EDP (NREAD) = p6 value s at the edge of boundary layer .

XDIS (MREAD ) = Reading x value s for the freestrea m conditions .

DENNE (I) = ne at grid point (i , j+l).

WF (I) = F at grid point (i , j+l) .

WZ (I) = z at grid point (i , j+ l) .

WIA (I) = 9 at grid point (i , j+ l) .

W1~E (I) = 8 at grid point (i , j+i) .

SF (I) = f at grid point (i , 1+1).

SFX (I) = f
1 

at grid point (i , j+i).

WFP (I) = F at grid. point (i , j)

WZP (I) = z at grid point (i , j )

WrAP (I) = 8 at grid point (i , j)
WTEP (I) = 8 at grid point (i , I)
GU~~S (4)  = Initial guess values of t~~

’lw’ z’ ] , e’ ]
and 8~ .

WORK (I) = A function evaluated at (i , j+l) .

F(I) = Weighted F value at (i , j+ l) .

Z (I) = Weighted z value at (i , j +l) .

TKEZ~A (I) = Weighted. 8 value at (i , j+ i) .

THEE (I) = Weighted 8 value at (i , j +i) .
FE~AY (I) = ‘1 at (i , j +i) .

YR.EAL (I) = y at (1, j+l ).

OR (I) = C at (i , j +l) .

A-2
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ORPR (I) = C/Pr at (i,j+l)

~~~~~ (I) = C/Sc at (i , j+J.)

ORPHE (1) = C/Pr e at (i , j +i)

RHO (i) = p at (i, 1+1)

ORP (I) = Cat (i,j)

ORPEP (I) =. C/Pr at (i , j)

ORSOP (x) C/Sc at (i , j)

~~~~~~ (I) = - C/Pre at (i. , j) -

OLDWF (I) = Previous iterative value of F at (i, j +i)

OLDWZ (I) = Previous iterative value of z at (i , j +l)

OLDWi~A (i) = Previous iterative value of 9 at (i , j +l)

OLDWZE (i) = Previous iterative value of 8 at (i , j+ l)

LA)~ =

LA)’U~E =

MJ =

K = k

NA = na -

= ne
=

N~~0TA = 

~~e~a~~e -

NED~XI~E = (lie) e~~e
UP~ = U6

= p6
TAND = T~~
TE~~ = Te6
ALP~~ = a6
TW =

A-3 
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zW = zw
uw = uw
ROLNUE = p6p.5

ON = X

D~TA1 =

N = Maximum value of i

=

IDC = If IBC = 1, sheath-wa ll condition for Te is used

If IBC = 2 , sheath-wa il conditions for Te and a are used.

A( I) = Matrix element A1
B(I) = Matrix element :
c(i) = Matrix element C~
D(I) 

- 

= Matrix element

Dl(X) = i/((l+k) i~ 1k 3
D2( I) = 2/ [(l+k)k2

~~~~~1
2)

x(t) = x1
Ma = ;  ma -

R 
- 

= R

TION =

=

=

SAE =

TACRI = Ta,crj
TE~2RI = Te,cri
QAAC = Used in o~~ = QAAC/T~~

25

QAIC = U~ed in 0ai = QAIC/T~~°~

A-4
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CC]., CC2 , (X3, 
-

ac4, ~~~~~ DD]., -

1)1)2, 1)1)3 , 1) 1)4 = Used in the equat ion: -

0ea = (CC1 + 0C2•Te + cC3•T 
2 

+ CC4 •Te
3) x lO

_16

if Te ~ TEEA

0ea = (DD1 + DD2.T + DD3 •T 2 
+ DDI4~Te

3) x

ifT >TEEA

EE~L, EE2, 123 = - Used to calculate the statistical weight of ion, Z1,

see FUNCTION EQK: ZI = EEl + E~~/exp(EE3/T)

HVC =

ZEFF = Zeff

DX =

XNAX = Maximum value of x

= Tolerance criterion -

ITYPE - = ITYPE = 1 for flat-plate boundary layer

ITYPE = 2 for sidewall boundary layer

ICASE = ICASE = 1 for nonequilibrium flow
- 

ICASE = 2 for froz en flow

CONTL = Parameter used. in the control of step size L~x

YNM = y value in n~

TI~ CI~ = displacement thickness 8* in cm

~
3. = J

]Q~.EAL = x i n cm

XI =

ITER = Iteration nu~~er

IPRNI’X = Solution step print selector in x direction. Output

will be printed on the line printer e.rery IPRN~X step

A-S
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~~RN~Y = Soluti on step print selector in y direction . Output will

be printed on the line printer every X PRN2Y step

IF]IE = Restart file solution step selector . A restart record

will be written to the restart file every FILE step

FIN = Read in rest art file name

FOU1~ = Written out restart file name

NREAD = Number of points freestre am conditions

Ni = N-].

DWYDY = (
~
F/
~~)~

DWZDY =

DW~ADY =

DWIED~ = (
~e/~~)~

GAM1 = p8~8U5 at (N , j )

GAI~2 = p8j.&5U5 at (N , j+i)

TAUX = Te6/Ta5 = T

.ALTAU = T a 6
TAUU = 2~/p6

p.
6
U
8
2

B~~AF =

B~fl~AZ =

B~~ATA = 
~Ta

BEIATE = 

~Te
TIM = Tew
SCW = Sc~
SLOPE = z~ or

TA = T

TE = Te
=

A-6
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A.2 Subroutines

Subroutine INrERP:

The Aitken-Lagrange and Lagra~~e interpo lations have been applied
before . However , it was found that these interpolation s are not suitable for
the sidewall boundary layer where the variation of a6 with x is significant .
Therefore , a linear interpolation IWr~~P is applied in the present program.

Y = The resulting interpolated function value .

X = The argument value specified by input .

H = An input value which specifies the number of points in table (XF , IF) .

XF = The input vector of argument .

= The input vector of function values of the table .

Subroutine SIY2UP:

Equations (60) - (63) are the ordinary differential equations with
two-point boundary conditions . The Newton-Raphson method for the iteration
techniques (see Subroutine BEGIN) is applied. In the BEGIN si~broutine, four
guess values for ~Cf”)W , jl(C/Sc)z’]w, {(C/Pr)9t]w and ~~ (or [Cf”)~, Z~~[(C/Pr)8’ )v and 8~) are required. If the guess initial values are not reasonable,
then the c~~~utation time is more consumable and stable solutions cannot be
found in the Subroutine BEGIN . In order to avoid this difficulty, some knowledge
about how to guess the initial values are necessary .

From the integral method described in Ref. -10, the following ways to
guess the initial values are presented:

GUESS (1) = (Al)
where

V =

7 = U w/U 6

= 2a,1/(F~.~)

985 227- (1-  
~~) ~~~~~~~ ~~~~~~ ~

<] . - 7)

A- 7 
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GUESS (2) = (~ )w~~ 
(A2)

where
c

,
~
Io

c1-

Sc 2 C1

Co =~~~(1 _ Z w)(i _ 7) +~~~( l _ Z )

32

If = 0 is applied, then GUESS (2) = 1.0.

GUESS (3) = (
~

) ~~~~ (*3)
where

b1
W

~~~~~~~~~~2

b
1

Bo i ~~~(l~~ 8w~~1 7) +~~~y 1- ~~

_ 821 ,B1 
— 12012 ~~ - 7) + 7

B2 = 222 ( 1-  y) +
~~~~

b2 = -2Pr -
~~

--
~~~

—
~~ (1 - )2
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2 2 2
2 a4 a a6 a a 4 2G a 1 ~~~~~~~~~~~~~~ 2 + 5 a 1a5

+~~~a1a6 +~~~a4a5 —

-

-

~~~~~2(l - y)

a4 = - 5 ( 1 - y ) -

a5 
= 6(-i -

a6 = -2( 1 --

GUESS (4) = (Ak)

Using the boundari condition = 0 and Eq. (63) , we obt~~~ GUESS (4) = 1.0.

In the above equations, the transport properties, C, Sc, Pr are
evaluated at some particular distance i~* fran the wall. However, it is
diffi cul t to~ deter mine ,~4f from theory . From our experience, the guess
transport properties, are approximately equal to the average values of
that at the freestream and at - the wall .

Subroutine INrRG: -

This is a subroutine to perfo rm the following integration by three-

L 

point difference formulae . - 
-

or 

- 
z =f .y d i ~

~( 2 + 3 k 
) ( i  i ) + ( 1 ~~~~~~)~~(i)

- k(1 + k) y(i + 1)1

It is worth noting that I = 1 in the program corresponds to i 0
here .

A-9 
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Subroutines BEGIN and BLF:

These subroutines are used to solve Eqs. (6o) - (63 ) -by means of
the Newton-Rap hson iteration techniques (Ref. 10) . The following not ation s
are applied:

YINIT (1) = f ~

YINIT (2) =

YINIT (3) = tCf” )~
YINIT (1+ ) = z~

Y I I T ( 5 ) = [~~~z ’1~

YINIT ( 6 ) = e ~

YINIT (7) = [~~ 
e ’~

ynaT (8) =

YINIT (9)

F = f’

Z
= e

TH1~ E = 8

NOEl) = Number of ordinary differential equations

Y (2) = f ’

Y (3) = Cf”

y (4) =z 
. -

Y (5) = f z ’

y (6) = 8

Y (7) =~~~e’

A-b
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Y (8) = e

Y (9) =~~ .- e’

YPRII4 ( i ) = y ’ ( i )  i l t o 9

Subroutine R1~t~IL:

This subroutine uses the Runge-Kutta method with Gill’ a coefficients
for the solution of initial-va lue problems .

- —

Y = Input vector of initial values , y

YPRIM =y ’

NORD = Nt~~ er of equat ions -

A = Lower bound of the interval

B = Upper bound of - the interval

STEP = Step size

1)12 = An auxiliary storage array of y ’

Subroutine DENSIT:

This subroutine is used to calculate na, ne and p by given p, Ta,Te and a.

Subroutine TRANSP:

This subroutine is used to calculate the transport parameters . The
following notations are used:

QAA =~~~~~~

Q.AI

= 0ea

~ei
= °ee

QIX

A-ll 
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CA

CE 
[
~~kBT~~~~

NIT

LAND

LM~ E = ? ~
DAW = D ~~~

me *BT
~~~~

— 
VEAl = 2 (i— ) I m~

C 1 ~~a0ea + fl~~~~j )

Subroutine RAT~~:

This is a subroutine to calculat e the reaction rates .

NED~1J~A = e~a~~e

N~ X1.rE = e~e’~”~e

KFA = k~a

KR.A k

— K eq

I~’E = k f

1Q~E = k re

SAA = First excitational cross-section constant between
atom and. atom

S.AE = First excitation al cross-section constant between
atom and electron

A- l2
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Function ~~K:

This is a function to calculate the equilibrium rate constant for
a given te~~erature.

ZI = Statistical weight for an ion

EQ.K = K eq

Function QRAD:

This function is used to calculate the radiation energy loss.

HVC = Cut-off frequency of the plasma

ZPYF = Effective nuclear charge

QC = Continuum radiation energy loss

QRAD = Tots]. radiation energy loss

NE = Electron n~~~er density

TE = Electron te~~erat ure

Subroutines MENVRS and SUBNI~S:

These subroutines are used. to calculate the matrix inverse of matrix
A. The input matrix and resulti ng matrix inverse are specified by A.

Subroutines CRANK and TBDG:

Subroutines CRANK and TRDG are an algorithm to solve a tridiagonal
matrix most efficiently. The matrix equation is given by

AiWii + BiWi + CjWi+1 = Di
where i = 1 to N-i , and W0 and WN are given. The matrix form is

B~ C1 W1
A2 B2 C2 0 W2 D2

— A3 B3 C3 W3 D3

o ~N 2  BN_2 CN...2 WN..2
AN 1  BN1 WN..b

A-13
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If W0 is given, then

B~~~~B1 
-

D~~= D 1 - A 1W

If (~ w/~~) 0 is given , then -

B t = A ~~
+ B i -

For the present boundary layer case, WN (=1) is given, and
therefore, D~_ 1 = DN~l 

- C
~...i .

The arguments of CRANK are

IBC = Type of boundary condition at the wall; 1 for Dirichlet
type boundary condition and 2 for Neumann type boundary
conditions

SLOPE = (
~ 

)
~DEI~AJ.

WSTART = Resulting solutions

Subroutine COEFF:

This is the subroutine used to calculate the matrix element Aj ,
Bi, Ci and Di (given by Eqs . 75) used in Subroutine CRANK .

Subroutine ~ CCTL:

Thi s is the subroutine used to control the step size 
~~~~~~. The

argtm~nt s are

DX = Step size L~x

THICI~) = Displacement thi ckness of bamdary layer O)~
CONrL = Control parameter (input value)

A-14
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DIFF = Maximum value of IW( i, j +1) - W( i, j) I

~~~~~ER = Iteration number used for previous step size

The step size DX is given by
D X= C ONTL~ (~w (

Subroutine OtYrDSK: Subroutine to write out the results on Tape 3.

The subroutine OUTDSK is used for writing the necessary results on
the magnetic tape under the output restart file name . These result s are
needed for the calculation starting at x greater than zero .

A.3 Input and Output
- 

The input data for BLEIG is a description of boundary bayer charac-
ters , freestrewn conditions, physical parameters and par~~~ters of boundary
layer structure . Where possible , ‘free format ’ input has been used to si~~lifythe use of default value s.

The following cards are needed for input data (using a~s units):
(1) ITYPE, - IC,ASE, IBC, IPRNTX, IPRN1~~, fl~’ILE

(2) N, D~7rA1, XREAL , DX, XMAX, K, ~N, TW, BPS, CONTL, ZW

- 
(3)  NREAD —NU~~12 OF P0IN~ FBEESTREAN CONDITIONS READ

- 

(4) XDIS(NREAD), EDALP(MREAD), EDU(MREAD), EIYrE(NREAD), EDTA(NREAD),
EDP(MREAD)

(5) FIN, FO1YJ~ — READ fl~ AND READ - OU~ RESTART FILE NA~~S

(6) ~~~~ ~~IF IGAS EQUALS TO ZERO, THEN DEFAULT~ ) VALUES ABE USND. ]T IGAS
IS NOT EQUAL TO ZERO, TEEN READ THE FOLLOWII~ DATA

(7) MA., R, TION, TENC, SAA, SAE, TACRI, TECRI

(8) QAAC, QAIC, Ccl , CC2 , CC3, CC4 , DD1, DD2, DD3, DD4 , TERA

(9) EEl , 122, 123

(io) ivc, ZEFF

For exanple , the following six data cards are used for a nonequilibrrium
flat-plate boundary with J4~ = 16.6 , p0 = 4.81 torr and T0 = 296 K:

(1) 1, 1, 1, 5, 1, 200

(2) 70, 0.035, 0, 1.E-6 , 14 , 1.05, 0.75, 296, 1.oE-4, 0.1, l.E-5

(3) 1

(4) 114 , 0.021, 4.86E5, 1.049El4 , 1.049E4 , 0.27E7

(s) WSL.RST

(6) 0 A-15 
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The following outputs are given in the present program:

(3.) State of the boundary layer flow.

(2) Numerical parameters.

(3) Input freestre am conditions .

(4) Read in and write out restart file names.

(5) Physical parameters of gas particles .

(6) If NEEAL in input data is zero , then the initial GUESS value obtained
from S~ rUP and. Y( 1) to Y( 9) obtained from B~~IN are given.

(7) XREAL, XI, 3, 1TER, DX, URD, ThED, PEEP, ALPED and FED

(8) I, ~~A!, Y(nin) , WF, ~2, WTA, W1~E, CR, CRPR, CRSC, CEPEE, RHO and NE

A-16
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Flow Chart of Main Calculation Loop

READ JOB
STATISTICS

ALI E ALL PARAMETERS 
1 

P~ OUTPUT ALL INFORMAT ION j
RESTART j YES 

~J REA D SOLUTIONS FROM REST ART FILE

TO~.TFPUT SoLUT ION~1 ~ I CALL SETUP
AT x = 0 1CALL BEGIN

x = x + Dxl
J = J +

1~

[INTERPOLATE FREESTREAM CONDITIONS 1
4,

L~ E R = ~J

1’
CALCULATE NEW VELOCITY PROFILE

CALCULATE NEW DEGREE OF IONIZAT ION PROFILE ITER = ITE R + 11

CALCULATE NEW ATOM TEMPERATURE PROFILE
4

[ç~LCULATE NEW ELECT RON TEMPERATURE PROFILE NO
1~

[IS TOLERANCE SATISFIED? NO

YES 
______ _________

J I S I T E R > l 5 ?  I
YES ______ 

YES
CALCULATE BOUNDARY -LAYER CHARACTERS I’GIVE WARNIN G 

-

~ 
IS IT ACCEPTABLE ?

I
[SELECT OUTPUT ,RESTART FILE AND STEP-SIZE Dx J NO

NO I is ~ ~~ X~~~~~J 

YES

FIG . A.1 FLOW CHART OF THE PROGRAM BLEIG.

-— — —k — ~~~~~~~~~~~~ 
—



-~ ~•-~ ~~~ •••••~~~fl •_~*.-~~ 
____

~ -~~~~
_____ 

-  -

~~~

APPEND]JC B

TB R}K)DYNA~~C QUAR~IT]~ S 
- 

-

The definitions and the equa tions for thermodynamic quantities
of a two-temperature ionizing monatomic gas will be simimarized. The detailed
formulations of the thermodynamic equations can be found in the text books and
in the literature. -

In this study , we are dealing with a mixtur e of atoms . ( a), ions (i)
and electrons (e) . Atoms and ions have the same temperature Ta and electrons
have a temperature Te- For each species j  we have -

Pj = n j kB Tj  (Bi)

= 
f 

~~~ dT~ + h~ (B2)

where pj is the pressure of j species , n1 is the nuj it er density of j species ,
kB is the Boltzmann constant, hj is the ~ntha3.py per unit mass of j species,
C.1~ is the specifi c heat at const ant pressure per unit mass of species j and

is the chemical entha lpy per unit mass of species j .

The total pressure of the mixture is defined by Dalton ’ s law as

p =~~~p~ (B3)

and the density of the mixture p is given by

P =~~~Pj  (B4 )

where p~ = m1n1, m~ is the mass of the species i. Since the mass of an elec-
tron is negligibly small compared with the mass of an atom , p is written as

p = ma(na + ne) (B5)

where Ii
i 

= ne for singly ionized gas .

The mass fraction of ions , a , which is also called. the degree of
ionization, is given by

n
a = = ri~ 

(B6)

B-b
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The mass fraction of electrons is given by

p m
(B7)

and the mass fraction of atoms is

~~~

= l - a  (B8)

The total number density of the plasma is

= 
~a + 2”e (B9)

The relations between na , ne and a are given by

~
a = p(1 -a) /ma (B lo)

‘~e = pWm (Bu)

Therefore, n can be written as
I

n = p( 1 + a)/m (B12 )

p
The total pressure p of the plasma becomes

I
P a +n

e T
~~

+r
~e

1
~~
Te (B13)

= pR(T a + c ~ e)

where R is the gas constant referred to the atomic gas and. defined by R = kB/ma .

Let Nj be the number of i-particles in the voitme V and F1 be the
Helmholtz free energy function of one particle of the species j, than the
Helmholtz free energy F of the mixture is given by

F =~~~N1 
F
1 

(B114)
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where N~ U~V nd F
1 is given by

F
1 

= _k
BT

I [log g~ - log N
1 

+ log 4 + 11 (B15)

4 and 4 are the partition functior~ aasoci ate~i with the translational, and
internal degree of treed~~i, respectively.

The entropy S is defined by

S =~~~N~S~ (B16)

where S~ =

The internal energy E is defined by

E = F + TS = (B17)

where

B1 = -T1
2
~~~— 

~~
The enthalpy ft is defined by

ft =~~~N1 ft1 (B18)

where

ft 4 = E  + p
~J I

Finally, the Gibb ’s free energy of the plasma G is given by

G =~~~N
1 

G1 (B19)

where

G
1 

= - TB
1

According to the above relationships, the specific properties, i.e.,the properties per unit mass of an I des]. ionizing monat~~~c gas can be derived
frcc the partition fun ctions of each species involved, The partition function

B-3 
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associated with the tr anslational. mode is given by

,~, ~~~~3 2• t ‘ 
,~n
i_.J.i/ €01 I

3 V g01 e ( B20)

where ~~ is the excess energy of the ground states of the j -species above the
referenc~ (ground) energy level , aoj is the probability or the stati stical
weight of the grc*lnd energy level €

~~ 
and h is the Planck core tent .

The internal mode of electronic excitati on is alwa~ra ass~m~ed to be
at its ground state . The internal partition function for elect roni c excitat ion
is given by

g
1 

=~~~g~ e (B21)

where €~ is the energy of the n-th state of the particu lar species above its
ground state and gn is the statistical weight of state n.

Using Bqs . (B20) and ( B21) , the specific internal ener gy e (e = E/pV)
and the specific enthalpy h (h = ft/pV) of the mixture can be derive d as follows:

e = ~ R(T +~~~~) + (B22)

Ii e + = 
~ 

R(T a + 
~~~~ 

+ aRT1 (B23)

The cc~~ onent specific heat s C , and the frozen specific heat of the
mixture at constant pressure are def~~ed by -

cpj 
= (

~~
)

(B24)
~
__1 

~~1
C = “ —~ Cpf 

~~~ P1
I

The specifi c heats are all 5k~/2 per particle . Therefore , C~)f is
given by

= ~ R(l + a) (B25)

Similarly, the specific heats C~~ and the frozen specific heat of
the mixture C~~ at constant volume are - defined by

c~, (B26)
v Cont d. ..
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C,~f ~~ ~~ R(3. + a) (B26)

When the mixture is in chemical equilibrium, Gibb’s free energy hasits 1flfn1m~~~ for all possible changes in canpoaitj on of a system at a givenpressure and a given te~~eratuze. The equilibrium equation for the degree ofionization a can be obtained by using this condition . A detailed derivationof = aeq~~, T) based on this concept was given by Glass and Takano . Anotherderivation of the Balm equation, or equilibrium equation, is described asfollows: Let the overaj i. reaction paths be represented by
k~ 

+A. + A  ~~~~~A + e + A
kra
k (B27)

• fe
A + e  ~~~~~ A + e + e

k~~

where A denotes atcms. -

Prod~z~tion rate s of electron nu~~er density associat ed wi th Eq.
(B27) can be expr essed as follows:

2 2= kf na - k ri5 (B28)

~~e~e = k~ n ne - k 
~‘e

3 (B29)

where k~ and. kr are forward and reverse rate coefficients , respectively.

In an equilibrium state, the forward and reverse reactions are balanced
in the pro cess. Therefore ,

k ( T ) 2 ( T )a a 
- / e,eq a

k (T ) - Keq~Ta) - n (T )ra a a,eq a

k~~(T) n 2 ( T )e - K (T ) — e,eq 0 
(B31)kre(T) - 

eq e - 

~a,eq(Te)

where Keq(T) is the equilibrium constant , which is given by

2g 2 m k ~~ 3/2
X0q(T) = 12i ( 

~ 
) ezp (-T1~~) (B32)
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and ga, g1 are the electronic excitation partition functioz~ of atom A
and ion A~ particles.

Using Eqs . (310) and (EU) , the equilibri um value of degree of
ionization, aeq~ is obtained from Eqs . (L30) and (B31) as follows:

a2
eq 

= 
~~ K~q(T) (B33)

eq eq.

where T stands for Ta and Te •

If the system is in thermal equilibrium (Te = Ta = T), then the
equilibri um value of density p~q. is given by

- P
~eq RT(l + a0 ) B3

Introducing a characteristic density for ionization , P1’ the
equilibrium equation for a bec~~~s

_____ 

T1 5/2 T1/T 1/2
T) = [ 

~~~~ (i— ) e + iT (B35)

where

= 2 (E le ~3/2 g~ (2~~~T1)3 2 
~~/2 (B36)p1 

~a a

For argon , p
~ 

= 150.27 g/cm3.

Equation (B35) is known as Saha ’s equation. Given pressure p and
t~~çerature T , the degree of ionization a is calculated from Eq. (B35) if the
flow is in chemical equilibrium.

Production rates of electron nunber density, (ñe)a and (ñe)e, ~~~~~~by Eqs. (B28 ) and (B29) become

~~e~a = kra (T a) na(Keq(T a)na - ne
2
] ( B37)

~~e~e = kre (T e) neEKeq(T e)na - ne
2l (B38)

The equilibrium degree of ionization ac is obtained by Betting the
square brackets in Eqs . (337) and (B38 ) equal to zero and solving for a. Thus
the equilibrium degree of ionization Is a function of the local temperature
and pressure . This does not - imply that (ñe) a = 0 and lse e  = 0 or even that
ñe approaches zero at equilibrium, since to achieve equilibrium the reverse
reactio n rate coefficient kra and kre must become infinite . As kra and

B-6 
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approach infinity, equilibrium is attained. The case = 0 and k,~ - 0corresponds to frozen flow . The actual valu e of (z~~)~~ as a twicti on of theboundary layer coordinate i~ cannot be calcul ated fr~~ fhe ~themical kineti csbut must be determined by solving the bound ary layer equations .

In the inviscid flow region if the flow i,a frozen then a is co~ia tantsince the ~~~ipolar diffusion velocity of ions and electrons is assumed veryRm~1 1 and can be neglected. However, if the flow is frozen then a is nd~constant in the boundary layer flow due, to the diffuaion proces s of ions andelectrons.

The following mathematical expressions for the flow condi tions are —

given:

Equilibrium

(n,) 0q = k _•~~~
• (

~~e~a + (ñ0)~
kr

e _prc
a ..+aeq

Proz~ i:
(ii ) = 0e frozen

Nonequilibrium:

• h1e~~~0

—rn — 
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F With i l1 W~~~~=F :

x1= C

x2 = C + f + 2 I f
t

F

x~~=2 t F

With I = 2, w(2) = z:

~ = 4..
1 Sc

X3~~~~~z 1~~~ Ta~~~

x~~= 2 ~. F

x5 0

With I = 3, W~~ =

= -F (
~ 

+ - a

C-i
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•1

x14 = 2~ F

X
5 

= C F + Tu ~ /( 
~~~ 

T~~) + a 

~ 
- 4 T~ ~~~ + 

~~

+ ~~f
T
f 

F a 
~~~ 

a0
y

With i = 13, =

x ~~~~~~~~1 Pr

...(c~~ ( c \X
2 - ) + ~~~~~~) c x~~z +a(f + 2t f

1
)

• x3 = 
[~~T~~ 

+ ~r + 1

P = a 
~u V ai + ~~ I

C-2
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APPENDD( D

EFFECTS OF CI~~~ CAL REACTIONS ON BOUNDARY LAYER

The large change of the chemical reaction rates with t~~~era tu res
has an important effect on the boundary layer structure for the case of large
degree of ionizati on . Two important effects, mathematical and physical effect s ,
of chemical reactions on the boundary layer structure are described as follows:

1. The equation for conservati on of electrons is given by Eq. (21) .
This nonlinear equati on is co~~1ed to the equations of conservation of plasma
and electron energies , momentum and mass of the ren~in4ng species thr c*igh the
functions C , Sc , f , V and. i~~. Wi thout any loss in the general character of
the equation for electron species, we assume a local similar ity equation with
C / S c = l , f = l a n d f’ = 0 :

z” + ~~‘ + x’ 
~e 

= ( Dl)

where

K’ =— ~~ —-— —a’--

In order to illustrate the nature of the problem involved , the following
linearized and simplified. ver sion of Eq. (Dl) is considered:

z” + z’ - K z = o (Dv )

where K is a constant whi ch includes the chemical reaction term.

This simplified and lineari zed equation , Eq. (D2) , cont ains all the
• difficulties associated with the integration scheme used in numerica l solution

of the boundary layer equations. The general solution of Eq. (D2 ) is

_ _ _ _ _ _ _  
1 1 + 4 K - i

2 2

• z = C 1 e + C2 e (
~3)

• where K >  0. The constants C1 and C2 can be determined from the two-point
boundary value s of z = Zw at ~ = 0 and a 1 at i~ -,co or a ’ ~~ at i~ = 0 and

• z = l a t i~ —, co.

It is seen from Eq. (D3) that if the initial guess for ~~ is not
correct , then the second term in Eq. (D3 ) will dominate at large values of I~so that a ~~~~ at ~ -,~~~~~. Only if K = 0, a at i~ 

.-, .o wifl achieve a finite value
that can be used to refine the guess for 4.

D-1 
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Blottner (Ref . 17) has used a finite-difference method to solve
Eq. (21). However, he did not linearize the source term ri~ as we have done in -

Chapter 5. The solutions given by Blottner (Ref. 17) appear to be cases for
which K << 1. The method used for linearization in Chapter 5 is similar to the
method of quasi].inearization used by Pay and Kaye (Ref . 5) in the solution of
similar nonequilibrium boundary layers . -

For the frozen flow (zi~ = 0), Eq. Cl becomes:

• a ” + z’ = 0 (1) 13)

Solution of Eq. D13 is given by

z = C 1e~~~+ C 2

Therefore, no mathematical difficul ty associates with the frozen flow .

2. The dependence of the reac tion rate coefficient s on the temperaturesare described in Section 3.3 .  For low temperature (below 1000 K), kfa(Ta)and kfe(Te) are very ~ms~11 compared. with kra (Ta) s~~ kre(T e), respective ly,
and the forward reaction rates can be neglected . With temperatures above
10,000 K , forward reacti on rates become significant . However , these forward
reaction rates are still very small compared with the reverse recombination
rates . The following relations are sati sfied at temperat ure about 10,000 K:

k n0
3 >> k~~ ~

kra na ne
2 

>> k~ ~a

k n 3 >.k n n 2
re e ra a e

Therefore the reverse recombination rate due to electron-ion-e lectron collisions
is the important proce ss in the bound ary layer structure .

However , in the region where atom temper ature is about 25,000 K ( for
example, in the region near the shock front where atom temperature is much
greater than electron temperature), the following relations hold :

k~ ~a >> kra na n 2

k~ ~~ 
n >> k

k~ 1~a
2 

> kf ~a %

D-2
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The forward reaction rates become the dominant process in the flow .

For cases analyzed. in Chapters 6 and 7 the degree of ionization forfrozen flow is larger than that for nonequilibrium flow at fixed. x and ~~valuea.As x increa ses , degree of ionization incre ases for frozen flow and decrea sesfor nonequilibrium flow at fixed ~~ value.

D-3
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APPEIWiX E

EFFECTS OF BOUNDARY LAYER ON SHOCK WAVE STRIXTURE

The analyses in Ref s. 214 and 25 on shock-wave structure were made
wi th the assumption that flow was one-dimension al . The role of the bounda ry-
layer growth on shock.-v:.ve structure was not considered. Mire1s~(Ref. 54) has
shown that the flow between the shock and contact surface in an actuAl shock
tube is nonuniform due to the side-wall boundary layer. Recently , Enomoto
(Ref . 55) has studied the effects of the bounda ry-layer growth on the ioniza-

• tion relaxatio n in argon , based on Nirel ’ s boundary-layer theory . Enomoto
(Ref. 55) showed that the temperature , density and pressure Increase in value
with distance from the shock front due to boundary layer growth , and. the
ionizatio n relaxation time is significantly shortened by introducing side-wall
bound ary-layer effects.

The present section only discusses the governing equations which are
applicable to quasi-one-dimen sional noneq uilibrium flow behind a shock wave .
Details of the effects of the side-wall bounda ry layer on the shock-wave
structure is under study and will be presented in a forthcoming UTIAS Report.

The specification of a problem in the field of gasdynamics requires
the flow equatio ns (mass , momentt~ and. energy) with s~~plementa ry information
on the equation of state of the gas . The governing equations for flow behind.
the shock wave are written in shock-fixed coordinates as

(El)

!.~_.. IA u2\ = ~~~~2 (E2)A d x ’~ ~ ‘ dx

- 

~~~~~~ A p u H > = _Q
R (E3) -

(E14)

~j  ~A p u he> =<u 
~~~>~~~el + 

~inel~ 
( E5)

where A is the effective cross-sectional tube area, and ~~> = f t CIA/A .
By using the equat ion of state , p pR (Ta + aTe), the governing

equation s can be approximated as (Enomoto , Ref. 55)

a e (~~ )

dx = 

3p:~~~ 
+ 

E 1  ~~ 

+ (
~~)
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~~e 2 %~ 
+ 

~inei 2Te du
~~~~~~~ n~~u i ~ ~~~~~~~ 

(

(E9)

~~ -pu ~~~ (no)

The above five equations, Eqs . (E6 - no) , are required for the five
dependent variable s: Cr , u, Ta, Te and ~~. The initial conditions at x = 0,
im~~diate1y behind the frozen shock, are

a~~~~0
u r_ o I  + 3

5
- r 5 (  2 3 ~ 7Ta~~~T

[i ~ ~~M5 5M~~~
)

~~~~
Te Ta or

p u
p = ° ° R T

U a

where the subscript o denotes quantities evaluated In the unionized (a = 0)
upstream gas . The length required to rea ch quasi-eq uilibrium is nearly
identical for both initial values of Te.

The values A and. CIA/ dx can be obtained from the solutions of side-wall
boundary layer (Chapter 7).

It has been shown by Glas s and Liu (Ref . 214) that the radiation -energy
loss has no effect on the relaxation length . The condition that the side-wall
boundary layer effect s on shock structure can be neglected is only good when

2p R T  A
5p

It can be shown that the side-wall boundary-layer effects in the
UTIAS 10 cm x 18 cm H~perve1ocity Shock Tube at shock ~~ch nuthers of M8 ~ 13 16 is
not small since Eq. (Eu) is not. satisfied.

A detailed study on the mutual interactions between shock structure and
shock-tube sidewall boundary layer flows based on the correct set of effective
quasi-one-dimensional flow equations will be reported by K. Takayema and W. S. Liu.
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