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1. IntroductIon 
—

Considerable effort has been, and is .;-tinulng to be spent developing

U, numerical data fitting methods. In view of our increasing ability to

~~~ 
collect tninense and diverse sets of data, the fact that data obtained

C~ 
from an experiment or process is usually not in a convenient form for
ininediate interpretation and that frequently the data is noisy due to
lAstrumental or human error, continued research on this topic is esset~-
tial. This continued research should lead to both a deeper understanding

~~~ of the problems associated with numerical data fitting and to the develop-
ment of numerical data fitting software packages . The complexi ty of this

~~~ area of research Is directly related to the complexity and variety of
data sets that can be encountered.

Thus, there Is a need for numerical data fitting software packages which
allow for effective data reduction of massive data sets for computational
manipulation, for interpolation, for the inclusion of specifi c constraints
(e.g. inonotoneness) that the mathematical representation must satisfy,
etc. To date there exists nosinglesoftwarepackage capableof processing
any given data set in even the one-dimensional setting. In fact, the

!
) development of such an all-purpose black box is probably not feasible

~~ today nor in the near future. In this regard we agree with the cornent
C..) made by J. R. Rice [18] that it is irrational to expect one algorithm to
LU excel in all respects as a general purpose curve fitting routine. At

present, it should probably be required that all existing packages be
prefaced with a caution that the particular package may fail to return an
acceptable fit to certain data sets. For example, in the case of one—

~~~~ dimensional sparse data, a given package may fit the data to within any
tolerance desired by the user but exhibit gross oscillatory behavior
between the data points. One approach that mi ght avoid many of these

- difficulties is to use an interactive data fitting package with graphics
capabilities. Wi th such capabiliti es, the preformance of the package on a

r 
given data set could be monitored during use or at least upon completion
(possibly only when failure is suspected or observed). Better yet, such a
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: 2 1. IntroductIon

package could allow for Intelligent guidance during or prior to the
numerical processing of the data.

In this paper, we wish to primarily discuss our efforts to develop adap-
tive numerical software for data fitting. Thus our aim here is not to
attempt a survey of current numerical software for data fitting.

We Shall divide our discussion into two sections . In the first section we
shall discuss one—dimensional data fitting and in the second section we
shall discuss multi—dimensional data fitting. For the one—dimensional
setting, we have developed four adapti ve numerical software packages [1,
10, 11]. We are now beginning a study focusing on numerical testing and
comparing these packages and other packages currently available for
fitting one—dimensional data. Here we would like to be able to classify
or characterize properties of a given data set which makes a particular
package superior or inferior. Features that lead to successful packages
should possibly be incorporated into the more effective packages where
feasible and development of interactive packages should be pursued for
those packages that appear to be most effective. In addition , a survey of

4 current numerical software curve fitting packages together with reporting
actual experience in using the packages could be very useful.

For the multi—dimensional setting, efforts are currently underway to
deveiop an adaptive numerical software package for fitting multi-
dimensionai data sets. This package is of a slightly different philosophy
than the one-dimensional codes mentioned above and is based upon the
least squares approximation operator. It is anticipated that this package
will be available in the late spring of this year.

• . 2. One-Dimensional Data Fitting

In the last few years, considerable interest has been directed towards
developing one—dimensional data fitting techniques [1,3,4,5,6,7,10,11,12,
13,14,15,17,18,19]. This activity has resulted In the development of
algorithms Intended for Interactive use [3,6,13) and, more recently,
adaptive curve fitting packages that produce piecewise polynomial fits
have appeared [1,10,11,12,17]. These latter software packages are adaptive
In the sense that the knots or joining points of the Individual polynomial
pieces are automatically inserted by the code as needed.
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• • 2. One-DimensIonal Data Fitting 3.

The four adaptive numerical software curve fitting packages described In
(1,10,11] all utilize the same adaptive strategy. These packages differ
In the mode of approximation that Is used to determine each piece of the •

piecewise polynomial fit to the data. The four modes of approximation are:
(1) uniform approxImation [10], (Ii) least squares approximation [1,10],
(Ill) uniform restricted range approximation [11] and (iv) £1 approxima-
tIon (1]. For each of these packages , the user provides the data, the
degree of the polynomial pieces desired, the overall smoothness the final
piecewise polynomial must exhibit on some Interval containing the indepen-
dent domain of the data and a tolerance which is used to determine when
.the - desired accuracy of fit is achieved. In addition, for the uniform
restricted range approximation code the user may speci fy a range of values
(In the ordinate direction) about each data point through which the fit
.ust pass. (I.e. At each point (x1,y1) the user may specify values

-5
~ 

y1 c u1, L.~ c U1, for which the computed piecewise polynomial fit,
p(x), will satisfy &.~ ~~ p(x~) < ui.) If the user does not specify these
values then they will be set automatically by the code using a strategy
that roughly allows these values to differ in a manner proportional to
the variation of the data.

In what follows let us assume that we wish to approximate the data
((x1, y1)}~,1. Set X {xi}~.l, 

f(x1) y1, I — 1, ..., M, a=min{x:x E X}
and b max(x: x € X}. Further, assume that one wishes to approximate
this data with an error tolerance of at most e by piecewise polynomials
of degree n — 1 and overall smoothness on [a, b] of s, s < n - 1. In this’

• setting, each of these codes will calculate an approximation, p, to the
data and a set of knots {t1}~~1 CX with a t0 < t1 < ... c tk b such
that p restricted to [t~_ 1~ t1] is a polynomial p1 E = (q: q is a

• real algebraic polynomial of degree < n  - 1}, p has s continuous deriva-
tives on (a, b] and max{jf(x) - p(x)I: x € X} ~ ~ . (For the restricted
range code we will also have that < p(x~) c u1 for 1 1, ... ,  M.)

Each code begins by calculating t1. The calculation of the knots, t1, is
the adaptive feature of these codes and this is done in a left-to-right.

• - manner using a bisection strategy. Basically, the code first calculates
to be essentially the largest point in X such that the best approxima-

tion (In the mode of the particular code being used), p1, to f on
a (a, t1]flx satisfies max{1.f(x) - p1(x)I: x € S1} < e. This Is done

by first setting ~ — a and c — b — b and finding the best approximation,
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4 2. One—DimensIonal Data Fitting

• - 
• p1, to f on [a, ~

] rU. If max(If(x) - p1 (x)~: x~~ [a, ~
] (‘~X} < c t h e n

p1 Is the desired approximation and it is returned and the algorithm
terminates. If this is not the case, then a new ~E X is chosen where ~
Is a closest point In X to ~

-(
~ 

+ 
~), taken to be the larger point when

there are two closest points in X to this value. Next, the best approxi-
mation to f on (a, 

~
] (1 X is calculated and the maximum absolute polntwlse

error on (a, 
~
] fl X is found. If this error is < e then ~ is now set to

be ~~, whereas In the contrary case ~ is then set to be ~~. In this manner
the set [a, ~

] fl X is always the largest current set on which we can
approximate the data with a pointwise error c c and [a, ~

] (‘I X is the
smallest current set on which we cannot approximate the data with a point—
wise error ~ c. This procedure is continued by again setting ~~ 

=
~~

-(
~ 

+

and continues until either a and b are adjacent points of X on (b-a).c ri,
where n is a preset constant In the code. Finally, the algorithm set

• 
a 
~ when the above phase terminates. If s =0 so that only continuity

is required on [a, b], then t1 is taken to be t1. If s 0, the algorithm
then may “back off” from t1 in an attempt to avoid the introduction of
unwanted steep oscillations in the approximation. This “backing—off”
procedure is probably very simi lar to that briefly mentioned by Rice [19]
f-or his 1—pass algorithm. This procedure consists of examining, the error
function at the m = n - s - 1 largest extreme points, 

~~~
, . . .,  

~ 
of

(a, 
~~ 

flX where ç, being an extreme point means that
>sign(f(

~~
) - p1(ç~)).(f(x) — p1(x)) for x = max (t~~ X: t <ç ,~ and

• x —  mln(t€ X: t >ç ,}. Then,t1 Is chosen to be the largest ~ 
such that

• 

• 

lf’(
~ ) 

— Pj(F~ )I is less than a (user definable) prescribed tolerance,
where ?‘ is the derivative of the quadratic interpolation of f centered
at ~ . If there does not ex ist such a ~ , then t1 is chosen to be theV V
largest ~ at which ~~~~ 

- Pj(~,)1 is a minimum. Our numerical exper-
• lence indicates that this procedure contributes significantly towards the

stability of the algorithm. The original motivation for this procedure
was that in the theoretical case of approximating a continuously differen-
tiable f on an interval we are guaranteed that f’ and Pj agree at interior
extreme points. Thus, when we smoothly join the next polynomial piece,

0? our piecewise polynomial p to p1 at t1, this next piece will
• closely follow the direction of f at least near t1.

Once, the first knot t1 has been chosen, the algorithm then repeats the
above steps on the set [t1. b] 11 X provided t1 < b with the additional

• 

- requirement that each best approximation, p2, must now also satisfy the

L ~~~ ~:~~t±L JTI 11~ ~
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______ - 2. One—Dimensional Data Fitting 5

• Int.rpolato~y constraints 43~(t1) p~~(t1), ~
j 0, 1, ..., s. The

Inclusion of these interpolatory constraints into the approximation
bperator is straightforward since they are imposed at the left-hand end-

• point of the Interval of approximation. Finally, special care is also

• I taken In selecting the last knot tk_l so that the set (tk_l~ 
b] (‘1 X has

sufficient points toallow for a reasonable approximation to be calculated
on it.

One other coninon feature of these codes is the Inclusion of a subroutine
that will add artificial data points to a sparse data set. As mentioned
marlIer, approximation on a small (sparse) data set can lead to unaccep-
table approximations. Basically, what happens is that the approximant

• fits the sparse data very well but oscillates badly between the data
points. In these cases we have found that the addition of artificial
data points will sometimes remove this undesirable behavior. This
optional subroutine will insert a continuous piecewise linear function
through the data and then discretize this function to increase the size
of the data set. Note that It is the user’s responsibility to decide if
piecewise linearization Is really the best way to add artificial data
points in his particular situation.

Based upon our general intuition of these various approximation operators,
we suspect that the uniform adaptive curve fitting package should be used
only on either precise data (e.g. from mathematical formulas) or on
essentially noise—free data. The least squares adaptive curve fitting
package should be effective for fitting data sets containing essentially
normally distributed random noise. The uniform restricted range adaptive
curve fitting package should allow the user the greatest control over
the shape of the resulting fit (at a cost of having to understand the
code to a greater depth). Here, the user can actually create restraining
bands within which the resulting approximation will lie. Finally, the £

~
adaptive curve fitting package should be effective for fitting large data
sets thit contain points which are very inaccurate with respect to the

- overall accuracy of the data. Finally, for sets suspected of having an
occasion highly inaccurate data point, we have used a slightly different
rror tolerance check. This second error tolerance check says that the
rror tolerance criterion Is not met when the pointwise absol ute error -Is
greater than c at two consecutive points of X.

• a— — . — ~~~ 
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6 2. One—Dimensional Data Fitting

In the way of examples we have incl uded seven figures illustrating the
results of running algorithms (ii)-(iv). Figures 1 through 5 represent
the results of running these algor ithms on some oi l shale data. Since
relatively few data points (denoted by “x” in figures) were available, we
filled In the gaps using our linear interpolation routine with 200—300
points. Figures 2 and 3 are the same approximation, the first one also
plotting the, restraining curves. Figures 6 and 7 are examples of approxi-
mating the exponential function with noise on 101 equally spaced points
In (0, 2] where the second error tolerance check is used. All of these

: 1 runs were done on Colorado State University ’s CDC CYBER 172. The run time
was roughly the same for the £2 approximation code and the restricted
range approximation code (taking roughly one—half second per subinterval
needed) and the run time of the £1 approximation code was roughly two to
three times greater.

We also approximated 1~ on 201 equally spaced points in [0, 2] with
algorithm (I) using n = 6, s = 2 and c = .01. A piecewise polynomial fit
was computed in 1.97 seconds, having an absolute error of .0093 at these
points, with a total of 5 polynomial pieces. The knot locations were 0,
.08, .230, .350, .810, 2.0. We chose this example to check the ability of
the code to recover from a point where f(x) is difficult to approximate
(here at ~ç = 0). In way of comparison wi th straight least squares cubic
spline (fixed knots ) curve fitting we also approximated 1~~on 201 equally

• spaced points using as our approximating family the set of all cubic
• splines with knots at 

~~~~~ 
and the routine ICSFKU in the IMSL library.

The maximum error of thi s fit over the 201 points in [0, 2] used was .032
(at x — 0, the error improved towards 2) and the run time was 4.29
seconds. Using this same routine with only eleven equally, spaced knots
gave a maximum error of .0597 in a run time of 1.68 seconds. Finally, we
also attempted to use the variable knot cubic spline fi tting routine

• :1 ICSVKIJ of the IMSL library wi th eleven knots on this problem. However , it
failed to return satisfactory results (max imum error 14.79 in a run time

• of 13.2 seconds). In defense of this routine ‘It should be noted that its
documentation specifies that it is not intended for use in approximating

• 
- precise mathemati cal functions and we initialized it wi th equally spaced

knotS.

In closing this section we wish to briefly mention three other adaptive
curve fitting studies. The first is due to J. A. Payne (15]. In this

_ _ _ _ _ _ _ _ _
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2. One—DImensional Data Fitting

paper an automatic curve fitting package is described. Basically the
knots and the degrees of the polynomial pieces of the piecewise polynomial
fit are selected in a left-to—right manner via a statistical cri terion.
Then the final fit is found by doing a simultaneously least squares fit
of all the individual pieces on the whole data set.

In (17], J. R. Rice has developed an adaptive numerical software package
based upon local Hermite interpolation rather than approximation on each
subinterval to obtain each polynomial piece. This algorithm is primarily
Intended for approximating mathematical functions where one has access to
a certain number of derivatives at each point. The adaptive strategy is
similar to ours but without any backing-off procedure. In addition one
can measure the error of approximation in any preselected norm (p>1).
This code will return a smooth (user specified) piecewise polynomial and
it will have fast run times.

In (12], an adaptive numerical software curve fitting routine that com-
putes C1 piecewise cubic polynomials Is given. This routine is similar to

• our least squares routine with the major difference being in the “backing—
off” procedure for selecting knots. They use a simpler procedure based
upon ideas of Powell. Also, it should be noted that their algori thm is
also applicable to on—line systems since a tolerance need not be pre-
scribed in advance. • 

•

3. MultI-Dimensional Data Fitting •

Considerable effort has been (and is being) expended developing methods
- of approximation of multi-dimensional data. A recent excellent survey by

L. L. Schumaker [21] should be consulted for an overall view of the

• current state of the art in this topic. At present, according to J. R.
Rice (20] in a talk given at the October 1978 SIAN meetings, there are
no adaptive numerical software packages available for approximating

~i1t1—dimensiona1 data sets. In this section, we will briefly discuss an
adaptlve .multi-dimenslonal data fitting code currently being developed
-by C. R. Vogel and myself (22]. We hope to make this code available in
the late spring. Our philosophy has been to develop a reasonably general

• • code sOmetimes at the cost of efficiency. Thus, for example, the user
will have a reasonable choice of possible basis functions and to increase
this selection the user would have to modify the code Itself. (We will

• 

- 
probably Include some directions for doing this). Also, the code will

• - 
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3. Multi-Dimensional Data Fitting

probably be set up for two-dimensional data with instructions on how to
modify it to treat larger dimensional data sets. In addition , it will be

• based upon the least squares approximation operator only. For simplicity,,
we shall discuss the two-dimensional case in what follows.

Thus, given a two—dimensional scattered data set contained in a rectangle
R, the code will attempt to calculate a piecewise polynomial of user

o prescribed degree and smoothness that fits the data wi th a least squares
error less than or- equal to a user prescri bed tolerance. The respective
polynomial pieces wi ll be defined over subrectangles with sides parallel
to the sides of R with each piece being of the form ai x9. To1—0 j=0
describe our adaptive strategy, assume that the algorithm has subdivided R

I,. k
Into k subrectangles, CR1}~_1, such that U R1 = R and R1 (‘% R4 is at most

an edge for I $ ,j. ihen on this subdivision one solves a least squares
approximation problem wi th equality constrai~its to find simul taneously

- ~~ 
~~~~~ 

Pk with p,~ defined on R1, that gives the best least squares
approximation (of mi nimal least squares coefficient sum in the event of
nonuniqueness) to the given data where the equality constraints corres-
pond to the smoothness required. Setting p equal to the resulting piece-
wise polynomial approximation, the least squares norm of the difference
of the data minus the value of p at the data point is calculatea ~ver
each subrectangle. Each of these values is then compared to the user

• prescribed tolerance divided by £ If for a particular subrectangle this
value is greater than the prescribed tolerance divided by 1k, then this
rectangle must be subdivided on the next pass of the algorithm (provided

• the total number of subrectangles does not become too large). This rec-
• tangle is then divided into two subrectangles such that the (modulo a
scaling factor) two subrectangles are as close to squares as possible.
This, then forms a new collection of subrectangles on which a new least
squares fit is computed as above. In the computation of these least
squares. fits we are using a weighted least squares approach based on
Given’s rotations as described in [8] rather than the Lagrange multiplier
approach of [3]. At present we have a running FORTRAN code that corres-
ponds to the above brief description. Currently, we are running numerica l
tests on this code and as mentioned earl ier, we hope to make this code
available for general use in the near future.
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