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DATA FITTING: SOME ADAPTIVE METHOOS

AFOSR-TR- 3,8, <088 8<u sonerive werHoos.
6. D. Taylor

1. Introduction @\Q

Considerable effort has been, and is ::ntinuing to be spent developing ' ’ ﬂ( =
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numerical data fitting methods. In view of our increasing ability to
collect immense and diverse sets of data, the fact that data obtained
from an experiment or process is usually not in a convenient form for
immediate interpretation and that frequently the data is noisy due to
instrumental or human error, continued research on this topic is essen-
tial. This continued research should lead to both a deeper understanding
of the problems associated with numerical data fitting and to the develop-
ment of numerical data fitting software packages. The complexity of this
area of research is directly related to the complexity and variety of
‘data sets that can be encountered.

I

WA071945

Thus, there is a need for numerical data fitting software packages which
allow for effective data reduction of massive data sets for computational
manfpulation, for interpolation, for the inclusionof specific constraints
(e.g. monotoneness) that the mathematical representation must satisfy,
etc. To date there exists nosingle software package capable of processing
any given data set in even the one-dimensional setting. In fact, the
development of such an all-purpose black box is probably not feasible
today nor in the near future. In this regard we agree with the comment
made by J. R. Rice [18] that it is irrational to expect one algorithm to
excel in all respects as a general purpose curve fitting routine. At
present, it should probably be required that all existing packages be
prefaced with a caution that the particular package may fail to return an
acceptable fit to certain data sets. For example, in the case of one-
dimensional sparse data, a given package may fit the data to within any
tolerance desired by the user but exhibit gross oscillatory behavior
between the data points. One approach that might avoid many of these
» difficulties is to use an interactive data fitting package with graphics
' capabilifies. With such capabilities, the preformance of the package on a
given data set could be monitored during use or-at least upon completion
(possibly only when failure is suspected or observed). Better yet, such a
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package could allow for intelligent guidance during or prior to the
numerical processing of the data.

In this paper, we wish to primarily discuss our efforts to develop adap-
tive numerical software for data fitting. Thus our aim here is not to
attempt a survey of current numerical software for data fitting.

We shall divide our discussion into two sections. In the first section we
shall discuss one-dimensional data fitting and in the second section we
shall discuss multi-dimensional data fitting. For the one-dimensional
setting, we have developed four adaptive numerical software packages [1,
10, 11]. We are now beginning a study focusing on numerical testing and
comparing these packages and other packages currently available for
fitting one-dimensional data. Here we would like to be able to classify
or chpracté}ize properties of a given data set which makes a particular
package superior or inferior. Features that lead to successful packages
should possibly be incorporated into the more effective packages where
feasible and development of interactive packages should be pursued for
those packages that appear to be most effective. In addition, a survey of
current numerical software curve fitting packages together with reporting
actual experience in using the packages could be very useful.

For the multi-dimensional setting, efforts are currently underway to
develop an adaptive numerical software package for fitting multi-
dimensional data sets. This package is of a slightly different philosophy
than the one-dimensional codes mentioned above and is based upon the
least squares approximation operator. It is anticipated that this package
will be availabie in the late spring of this year.

2. One-Dimensional Data Fitting

In the last few years, considerable interest has been directed towards
developing one-dimensional data fitting techniques [1,3,4,5,6,7,10,11,12,
13,14,15,17,18,19]. This activity has resulted in the development of
algorithms intended for interactive use [3,6,13] and, more recently,
adaptive curve fitting packages that produce piecewise polynomial fits
have appeared [1,10,11,12,17]. These latter software packages are adaptive
in the sense that the knots or joining points of the individual polynomial
pieces are automatically inserted by the code as needed.
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2. One-Dimensional Data Fitting 3.
The four adaptive numerical software curve fitting packages described in
[1,10,11] all utilize the same adaptive strategy. These packages differ
in the mode of approximation that is used to determine each piece of the .
plecewise polynomial fit to the data. The four modes of approximation are:
(1) uniform approximation [10], (i) least squares approximation [1,10],
(111) uniform restricted range approximation [11] and (iv) %, approxima-
tion [1]. For each of these packages, the user provides the data, the
degree of the polynomial pieces desired, the overall smoothness the final
piecewise polynomial must exhibit on some interval containing the indepen-
dent domain of the data and a tolerance which is used to determine when

.the desired accuracy of fit is achieved. In addition, for the uniform

restricted range approximation code the user may specify a range of values
(in the ordinate direction) about each data point through which the fit
must pass. (i.e. At each point (xi,yi) the user may specify values

g S Y§ U 5 < Uy for which the computed piecewise polynomial fit,

p(x), will satisfy ¢, < P(x3) < uy.) If the user does not specify these
values then they will be set automatically by the code using a strategy
that roughly allows these values to differ in a manner proportional to
the variation of the data.

In what follows let us assume that we wish to approximate the data
{(xi. ,Y.')}?.al- Set X = {xi}?"l’ f(xi) = y.'. is= j csey M, a=min{x:x € X}
and b = max{x: x € X}. Further, assume that one wishes to approximate

.this data with an error tolerance of at most ¢ by piecewise polynomials
~of degree n - 1 and overall smoothness on [a, b] of s, s < n - 1. In this
~ setting, each of these codes will calculate an approximation, p, to the

data and a set of knots {t1}§,1 CXwitha=tg<ty<...<t =bsuch
that p restricted to [ti-l’ t1] is a polynomial p; € M.y = {9: q is a
real algebraic polynomial of degree < n - 1}, p has s continuous deriva-
tives on [a, b] and max{|f(x) - p(x)|: x € X} < e. (For the restricted
range code we will also have that 24 g_p(xi) 2y fori=1, ..., M\.)

Each code begins by calculating t1. The calculation of the knots, ti’ is
the adaptive feature of these codes and this is done in a left-to-right.
llnner using a bisection strategy. Basically, the code first calculates
t1 to be essentially the largest point in X such that the best approxima-
tion (in the mode of the particular code being used), p Pys to f on

S’l = [a, ;1N X satisfies max{lf(x) = Py{x)|: x € $1} < e. This is done
by first setting d=aandc=b=b and finding the best approximation,
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Pys to f on [a, €] NX. If max{|f(x) - p](x)l XE [a. c]ﬂX} <€ then
() is the desired approximation and it is returned and the algorithm
terminates. If this is not the case, then a new ¢ € X is chosen where ¢
is a closest point in X to %(3 + B), taken to be the larger point when
there are two closest points in X to this value. Next, the best approxi-
mation to f on [a, ¢] N X is calculated and the maximum absolute pointwise
error on [a, €] N X is found. If this error is < ¢ then & is now set to
be 3. whereas in the contrary case b is then set to be ¢. In this manner
the set [a, 3] N X is always the largest current set on which we can
approximate the data with a pointwise error < ¢ and [a, Bl N X is the
smallest current set on which we cannot approximate the data with a point-
wise error < €. This procedure is continued by again setting ¢ —{a + b)
and continues until either a and b are adjacent points of X on (b a)<n,
uhere n is a preset constant in the code. Finally, the algorithm set
tl = 3 when the above phase terminates. If s = 0 so that only continuity
is required on [a, b], then t, is taken to be t] If s > 0, the algorithm
then may "back off" from 4 in an attempt to avo1d the introduction of
unwanted steep oscillations in the approximation. This "backing-off"
procedure is probably very similar to that briefly mentioned by Rice [19]
for his 1-pass algorithm. This procedure consists of examining. the error

. function at the m = n - s - 1 largest extreme points, Eys oo &y OF
(a, % ] N X where g, being an extreme point means that lf(s )- p](E )
> sign(f(sv) p](Ev)) (f(x) - py(x)) for x = max{t &€ X: t<5v}. and
x= min{te X: t> gv}. Then, t is chosen to be the largest £, such that
If'(av) - pi(av)l is less than a (user definable) prescribed tolerance,
where f' is the derivative of the quadratic interpolation of f centered
at &, If there does not exist such a £, then 4 is chosen to be the
largest g, at which lf (5 ) - p](zv)| 1s a minimum. Our numerical exper-
fence 1ndicates that this procedure contributes significantly towards the
stability of the algorithm. The original motivation for this procedure
was that in the theoretical case of approximating a continuously differen-
tiable f on an interval we are guaranteed that f' and pi agree at interior
extreme points. Thus, when we smoothly join the next polynomial piece,
P2s of our piecewise polynomial p to Py at ty, this next piece will
closely follow the direction of f at least near t;.

- — . -

‘Once the first knot t has been chosen, the algorithm then repeats the
above steps on the set [ty, b] N X provided t; < b with the additional
requirement that each best approximation, pz. must now also satisfy the |
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2. One-Dimensional Data Fitting 5
interpolatec:'y constraints pgj)(t]) = pgj)(t]). j=0,1, ..., 5. The
inclusion of these interpolatory constraints into the approximation
dperator 13 straightforward since they are imposed at the left-hand end-
point of the interval of approximation. Finally, special care is also
taken in selecting the last knot te.q SO that the set [tk-l’ b] N X has
sufficient points toallow for a reasonable approximation to be calculated
on it. ;

One other common feature of these codes is the inclusion of a subroutine
that will add artificial data points to a sparse data set. As mentioned
earlier, approximaticn on a small (sparse) data set can lead to unaccep-
table approximations. Basically, what happens is that the approximant

- fits the sparse data very well but oscillates badly between the data
points. In these cases we have found that the addition of artificial
data points will sometimes remove this undesirable behavior. This
optional subroutine will insert a continuous piecewise linear function
through the data and then discretize this function to increase the size
of the data set. Note that it is the user's responsibility to decide if
piecewise linearization is really the best way to add artificial data
points in his particular situation.

Based upon our general intuition of these various approximation operators,
we suspect that the uniform adaptive curve fitting package should be used
only on either precise data (e.g. from mathematical formulas) or on
essentially noise-free data. The least squares adaptive curve fitting
package should be effective for fitting data sets containing essentially
normally distributed random noise. The uniform restricted range adaptive
curve fitting package should allow the user the greatest control over

the shape of the resulting fit (at a cost of having to understand the
code to a greater depth). Here, the user can actually create restraining
bands within which the resulting approximation will lie. Finally, the 2
adaptive curve fitting package should be effective for fitting large data
sets that contain points which are very inaccurate with respect to the
overall accuracy of the data. Finally, for sets suspected of having an
occasion highly inaccurate data point, we have used a slightly different
error tolerance check. This second error tolerance check says that the
error tolerance criterion is not met when the pointwise absolute error is
greater than ¢ at two consecutive points of X.
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‘? . T8 - 2. One-Dimensional Data Fitting °
In the way of examples we have included seven figures illustrating the
results of running algorithms (ii)-(iv). Figures 1 through 5 represent
the results of running these algorithms on some oil shale data. Since
relatively few data points (denoted by "x" in figures) were available, we
filled in the gaps using our linear interpolation routine with 200-300
points. Figures 2 and 3 are the same approximation, the first one also
plotting the. restraining curves. Figures 6 and 7 are examples of approxi-
' mating the exponential function with noise on 101 equally spaced points
in [0, 2] where the second error tolerance check is used. A11 of these
runs were done on Colorado State University's CDC CYBER 172. The run time
was roughly the same for the Lo approximation code and the restricted
range approximation code (taking roughly one-half second per subinterval
needed) and the run time of the 2 approximation code was roughly two to
three times greater.

We also approximated vx on 201 equally spaced points in [0, 2] with

% algorithm (i) using n = 6, s = 2 and € = .01. A piecewise polynomial fit
was computed in 1.97 seconds, having an absolute error of .0093 at these
points, with a total of 5 polynomial pieces. The knot locations were 0,

! .08, .230, .350, .810, 2.0. We chose this example to check the ability of
| the code to recover from a point where f(x) is difficult to approximate

| (here at x = 0). In way of comparison with straight least squares cubic
"spline (fixed knots) curve fitting we also approximated vx on 201 equally
spaced points using as our approximating family the set of all cubic

splines with knots at (75320, and the routine ICSFKU in the IMSL library.

The maximum error of this fit over the 201 points in [0, 2] used was .032
(at x = 0, the error improved towards 2) and the run time was 4.29
seconds. Using this same routine with only eleven equally. spaced knots
gave a maximum error of .0597 in a run time of 1.68 seconds. Finally, we
also attempted to use the variable knot cubic spline fitting routine
ICSVKU of the IMSL library with eleven knots on this problem. However, it
failed to return satisfactory results (maximum error 14.79 in a run time
of 13.2 seconds). In defense of this routine it should be noted that its
documentation specifies that it is not intended for use in approximating
precise mathematical functions and we initialized it with equally spaced
knots.

In closing this section we wish to briefly mention three other adaptive
curve fitting studies. The first is due to J. A, Payne [15]. In this
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2. One-Dimensional Data Fitting 7
paper an automatic curve fitting package is described. Basically the
knots and the degrees of the polynomial pieces of the piecewise polynomial
fit are selected in a left-to-right manner via a statistical criterion.
Then the final fit is found by doing a simultaneously least squares fit
of all the individual pieces on the whole data set.

In [17], J. R. Rice has developed an adaptive numerical software package
based upon local Hermite interpolation rather than approximation on each
subinterval to obtain each polynomial piece. This algorithm is primarily
intended for approximating mathematical functions where one has access to
2 certain number of derivatives at each point. The adaptive strategy is
similar to ours but without any backing-off procedure. In addition one
can measure the error of approximation in any preselected Lp norm (p>1).
This code will return a smooth (user specified) piecewise polynomial and
it will have fast run times.

In [12], an adaptive numerical software curve fitting routine that com-
putes c’ piecewise cubic polynomials is given. This routine is similar to
our least squares routine with the major difference being in the “backing-
of f* procedure for selecting knots. They use a simpler procedure based
dpon ideas of Powell. Also, it should be noted that their algo}ithm is
also applicable to on-line systems since a tolerance need not be pre-
scribed in advance. . : : §

3. Multi-Dimensional Data Fitting

Considerable effort has been (and is being) expended developing methods
of approximation of multi-dimensional data. A recent excellent survey by
L. L. Schumaker [21] should be consulted for an overall view of the
current state of the art in this topic. At present, according to J. R.
Rice [20] in a talk given at the October 1978 SIAM meetings, there are
no adaptive numerical software packages available for approximating
multi-dimensional data sets. In this section, we will briefly discuss an
adaptive multi-dimensional data fitting code curkently being developed
‘by C. R. Vogel and myself [22]._we hope to make this code available in
the late spring. Our philosophy has been to develop a reasonably general
code sometimes at the cost of efficiency. Thus, for example, the user
will have a reasonable choice of possible basis functions and to increase
this selection the user would have to modify the code itself. (We will
probably include some directions for doing this). Also, the code will

e




: Pys ooos Py with P; defined on Ri' that gives the best least squares

. tangle is then divided into two subrectangles such that the (modulo a

8 : 3. Multi-Dimensional Data Fitting .
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~_probably be set up for two-dimensional data with 1nstructions on how to

modify it to treat larger dimensional data sets. In addition, it will be
based upon the least squares approximation operator only. For simplicity..
we shall discuss the two-dimensional case in what follows.

Thus, given a two-dimensional scattered data set contained in a rectangle
R, the code will attempt to calculate a piecewise polynomial of user
prescribed degree and smoothness that fits the data with a least squares
error less than or equal to a user prescribed tolerance. The respective
polynomial pieces will be defined over subrectangles with sides parallel
to the sides of R with each piece being of the form Z ko aijx yJ To

describe our adaptive strategy, assume that the algor1thm has subdivided R

into k subrectangles, {R. }i_].such that ;J]R =R and R; N Rj is at most

an edge for i # j. Then on this subdivision one solves a ieast squares
approximation problem with equality constraiits to find simultaneocusly

approximation (of minimal least squares coefficient sum in the event of
nonuniqueness) to the given data where the equality constraints corres-
pond to the smoothness required. Setting p equal to the resulting piece-
wise polynomial approximation, the least sqdares norm of the difference
of the data minus the value of p at the data point is calculatea over
each subrectangle. Each of these values is then compared to the user
prescribed tolerance divided by vk. If for a particular subrectangle this
value is greater than the prescribed tolerance divided by vk, then this
rectangle must be subdivided on the next pass of the algorithm (provided
the total number of subrectangles does not become too large). This rec-

scaling factor) two subrectangles are as close to squares as possible.
This, then forms a new collection of subrectangles on which a new least
squares fit is computed as above. In the computation of these least
squares. fits we are using a weighted least squares approach based on

.. Given's rotations as described in [8] rather than the Lagrange multiplier

approach of [3]. At present we have a running FORTRAN code that corres-
ponds to the above brief description. Currently, we are ruhning‘numerical
tests on this code and as mentioned earlier, we hope to make this code
available for general use in the near future.
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