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EVALUATION

A majority of NT designs are developed through an iteration of
design and test techniques. This results in a significant time delay
from concept to the practice and larger development costs due to the
“cut and try’ techniques used. In an effort to alleviate this probl em,
relatively sophisticated (and Company Proprietary) computer codes were
generated to reduce turn around time and design costs. Since most of
these codes were based on Lagrangian and Eulerian formulations , simula-
tions were quite l engthy and costly. This report describes a more cost
effective technique which gives good agreement with experimental TWT
data. Significant computation time savings have resulted from the use
of the polarization model described herein, allowing the designer to
practically interact with the resultant simulation . Further, by the
availability of this code to Government agencies, it is hoped that this
code will enabl e more quantitative evaluation of future NT designs.
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Proj ect Engineer
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1.0 INTRODUCTION

This report presents the basis of a large—signal theory for traveling

wave tubes assuming a non—relativistic one—dimensional beam. The

theory is expressed in terms of polarization variables which have not

been used in large—signal analyses of TWT’s bef ore, but can be shown to

introduce simplifications in describing certain non—linear effects in

the beam dynamics [1,2].

The basic idea of the present for!nulation can perhaps best be explained

by comparison with Lagrangian and Eulerian type formulations which are
well known in large—Signal NT calculations. These latter formulations

are characterized by non—linear beam dynamics but linear coupling

between the beam and the circuit field.

On the other hand the polarization description is characterized by the

unique feature that the dynamic equations are linear even in the large—

signal domain, whereas the coupling to the circuit field is non—linear .

Hence, in the polarization model the non—linear problems are absent in

the beam dynamics, but they reappear in the coupling to the circuit
field, and to a lesser extent, in the space charge field.

The basic dynamic rf variables are the displacement, or polarization,

and the velocity at the displaced position. It can be shown that the

harmonics of these variables, for a specified modulation in the beam

decay faster than the harmonics of the rf current and rf space charge

used in the conmion large signal descriptions [3]. This feature, which

is unique for the polarization model, has the important practical

implication that a smaller number of beam harmonics is sufficient to

describe the large signal beam dynamics. In the present work the

highest harmonic number included is four, although the basic formula-

tion is for an infinite number of harmonics.

1 
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2.0 LARGE SIGNAL THEORY WITH POLARIZATION VARIABLES

In this chapter the basic forms of the circuit equations and electronic
equations , expressed in polarization variables , are presented . Let us
first consider the circuit equations.

2.1 CIRCUIT EQUATIONS

The equivalent circuit used in the analysis is shown in Figure 2—1.
The inductance L, capacitance C, and resistance R, all measured per unit
length, are specified as a function of frequency, so that each harmonic
frequency component has its own equivalent circuit. The circuit param-
eters are related to the actual circuit parameters by the relations:

L(w)C( w ) = 1 
(2—1)

Vc (W)
2

= Z~ (w)~ , (2—2)

where vc(w) is the phase velocity and Zc(u) the impedance of the circuit,
both referred to a particular frequency w. Note that the impedance
Zc(w) is specified as the impedance at the circuit radius and not at the
location of the beam.

With these definitions the circuit equations take the form:

(2—3)
~z v Z  at az

Z
RI 0 , (2—4)az v

~~
at

2
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Figure 2—1 Equivalent circuit diagram of the

circuit interacting with the beam .
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where I and V are the circuit current and circuit ~o1tage , respectively.
The induced current into the circuit from the beam is Iin

Two important points should be emphasized in connection with the
circuit equations (2— 3) and (2—4). The f i rs t  point has to do with the
choice of rf variables of the circuit , which are the circuit current I

and the circuit voltage V . The choice of voltage V rather than elec-
tric f ield E (which is often used in NT analyses) is dictated from
the requirement that the rf variables should be continuous across

intersections between two adjacent circuits characterized by different

circuit parameters. Such configurations exist in the usual TWT con-

sisting of the input section, the attenuator section, and the output

section. It is easy to demonstrate that the electric field E is discon-

tinuous across such intersections, and therefore is unacceptable as rf

variable. Since E —aV/az, and I is continuous, it follows directly

from (2—4) that E is discontinuous across an intersection characterized

by unequal circuit parameters Z~ , VC and R on the two sides of the
intersection. Since continuity of variables is essential in the match-

ing procedure, it follows that the correct choice of rf circuit varia-

bles is I and V, rather than I and E.

The second point to be noticed in connection with (2—3) is that the

induced current ‘in in the circuit from the beam is evaluated somewhat

differently from the usual way.

2.1.1 The Driving Current in the Circuit Equation

In the usual theory of NT’ s the driving current is taken to be the
beam current itself , whereas the circuit impedance is reduced by an
appropriate factor , thereby essentially placing the circuit at the
position of the electron beam. In the present theory a different and

more consistent procedure is followed , in which the finite spacing

4



between circuit and beam is accounted for by a coupling coefficient ,

much in the same way as usually done in klystrons.

The induced current flowing in the circuit is obtained from the

integral:

I (z
0, t)in 

— — ff(.x — z0) I
b

(x, t)dx (2—5)

In this equation, Ib
(x, t) is the beam current density, f ( x  — z0) is a

characteristic response function of the circuit defined in the follow-

ing way. With reference to. Figure 2—2 we visualize a hypothetical gap

cut in the circuit at the position z0, and a voltage of one volt
applied across the gap. The function f(x — z0) is then the longitu-

dinal component of the electric field at the beam position, arising

from this voltage. In the one—dimensional theory an averaged value of

f(x — z) across the beam is used.

According to (2—5) the induced current at z0 is not equal to the beam

current at z0 (possibly modif ied by a constant factor) ,  but rather
obtained by adding weighed contributions from the beam current around
the position z

0. Therefore, the induced current is a smoothed , or

filtered version of the beam current.

The Ramo Equation (2—5) has to be reformulated to fit the polarization

model. The following equation applies:

aI(z , t ) I as(x0, t0)
— f’[x + s(x

0, 
t
0

) — z ]  
at0 

dx
0
, 

(2—6)5
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Figure 2—2 Schematic representation of the IWT circuitand beam, and the definition of coupling
function f(x — z
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where x is the undisplaced coordinate and s(x , t0) is the displacement,

defined by

s(x0, t0) = X - X
0 

(2—7)
L

Equation (2—6) is valid with overtaking included. The set of indepen—

dent variables x0 and to represent the undisplaced coordinates, i.e.,
the reference position and time for an unmodulated electron. Note that

in (2—6) the response function has to be taken at the displaced posi-

tion x0 + s(x0 , t0). Hence , the equation is non—linear, representing
exactly the non—linear beam—to—circuit coupling discussed earlier.

The integration over x0 takes place over a sufficiently large interval

around z to include all non—zero values of the response function.
0

2.2 ELECTRONIC EQUATIONS

In the polarization model the large signal electronic equations have
the form

au(z0, t0) au(z , t )
at0 

+ V ° —fl E[ z~ + s(z0, t0) , t0] (2— 8 )

as(z , t0) as(z 0, t )
+ V

0 az0 
° — u(z0, t0) — 0 (2—9)

The electric field E in the driving term in (2—8) is taken at the dis-

placed beam position rendering this term non—linear. The field consists

of the circuit field Ec at the beam position and the space charge
field E

S
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E[z0 + s(z0 ,t0), t0 ] = Ec[z0 + s(z 0,t0),t I + E~~[z~ + s(z 0 , t0 ) , t ]

(2—1 0)

These are given by the following expressions, respectively :

Ec[z + s(z0,t0), t0] — —f f ’ [ z0 + s(z0,t0) — x01 V(x0,t0)dx

xo

(2—1 1)

2 1 ~
‘ R(k) 2 —jk[ z  + s(z0 , t ) ]

nE 5 [z 0 + s(z ,t ) , t ]  — 

~~ J k e ° 0

( jk [x + s(x 0,t0)]
I e dx dk

x
J

——o’, 
0

(2—12)

In (2—11), the function f [  + s(z
0,t )  — x 0 ] is the same response func-

tion as in (2—6) , expressing the simple fact that reciprocity applies
with regard to coupling between beam and circuit.

In (2—12) the left side is the longitudinal space charge field averaged

over the beam cross section , with the plasma reduction factor
specified by:

2 2 2I1(kb) G10(kb , ka)
R(k) — R(kb , ka) — 1 — I (ka ) 

(2— 13)8
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where

G10(kb , ka) = 1
1(kb ) K0(ka ) + K1(kb ) I0 (ka) (2—14)

This is the plasma reduction factor for a beam constrained to motion in
the longitudinal direction only (conf ined flow) assuming constant
current density across the beam. -

In the subsequent analysis it is convenient to operate with the Fourier 
-

transform f(k) of the response function f(z0). By definition

7 --jkz
f ( z ) — 

~~ J f (k)e ° dk (2— 15)

so that

j  - jk[x +s(x , t )—z
f ’(x 0 + s(x0, t0) — z0) — — 

~~ f kf (k)e 0 0 ~ ° dk

(2— 16)

The Fourier transform f(k) appearing in these equations is obtained by

solving the appropriate field problem for the configuration shown in

Figure 1—2. The response function averaged over the beam cross section

has the Fourier transform:

21 (kb )
f (k)  — f (kb ka) — kb 1

0
(ka) (2—17)

The preceding discussion shows that the overall set of circuit and beam

equations are expressed in terms of two characteristic functions of the

9



I 

- _ _ _ _

wave number k , namely the plasma reduction factor  R(k)  defined in (2— 13),

and the coupling coefficient f ( k )  defined by (2—17) .  In contrast to

usual TWI’ analyses the present theory accounts for the fac t  that the

wave number k is complex, which implies that R(k) as well as fO’) are
also complex. Hence , there are small but noticeable differences

between the basic models used in the present theory and usual TWT

theory. These differences show up even in the small signal results ,

with small modifications in the gain as well as synchronization
conditions.

2.3 INTRODUCTION OF NORMALIZED VARIABLES AND EXPANSION IN HARMONICS

The following normalized variables are used in the theory . Independent

normalized variables:

z = 8  z (2— 18)o e o

T = wt (2—19)o 0

K = -j- ~ (2—20 )

where w is the fundamental frequency and where

= ...~~.. (2—21)
e

The normalized rf variables of the circuit are:

V(z , t )
v(z0, T0) 

° (2—22)

10
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i (Z , T )  
I(z , t0) (2—23)

and those of the beam :

u(z , t )
U (Z0, T0) — ° (2—24)

S(z 0, T0) 8e s(z
0, t0
) (2—25)

In addition to the normalized displacement S(Z , T )  the following
variable is introduced :

1 1 —JKS (Z , T )  1
((K, Z0, T )  — ~ i Le ° ° — lJ (2—26)

The inverse relation is:

—jKS(Z , T )
e ~ ° — 1 — jK4 (K, 

~~ 
Ti,) (2—27)

Apparently, for small signals:

lim $(K,Z0, T )—S(Z , T) (2—28)
S-’o 

0 0 0

The function $(K , Z0 , T0) is seen to represent the non—linear effects in

the circuit equation as well as the electronic equation.

Since the rf variables are periodic in time, they can be expanded in

harmonics as follows :

11



j aT
v(Z , T0) — ~~~~ v~~(Z 0)e ° (2 29)

j eT
i(Z0, T0) — i ( Z )e ° (2—30)

jnT
U(Z 0, T0) — U~ (Z0)e ° (2—31)

j eT
S(Z 0 , T0) = S~ (Z0)e ° (2—32)

jnT
•(K, Z0, T) 

— t~~(K, Z)e ° (2—33)

In these equations ~0(Z
0) ,  i~ (Z0), etc are the complex amplitudes of

the nth harmonics.

Substitution of these variables into the circuit equations (2—3) and

(2—4) and the electronic equations (2—8) and (2—9), followed by separa~
tion of these into harmonic components, results in the overall basic

large signal equations specified in the next section.

2.4 HARMONIC SET OF LARGE SIGNAL EQUATIONS

Following the procedure outlined in the preceding discussion, we obtain

the following set of large signal equations. The circuit equations for

the eth harmonic component are given by:

12
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dv /v ’
Linear -

~~~~~~~
+ G z

~~~
(.
~
2_) J C K  

~n — 0 (2—34)
o \ Cn,

di iv ~. 
( —j KZ

G ~ ~~-2) j TIV — n f- J Kf(K)e °

o o C n  Cu
Linear
Part

( JKX

J S~ (X )e ° dX
x

0

I 
1 2 ~jKZ 

I

= j  ~~~~q 
~~

- f K f(K 8 )e °

Non— q =—~~ K——~ I
linear (2—35)
coupling
term I

J § (X )~ (—K , X )e dX
q o n— q 0 0

I x -—~ I
0

L 

The linear part of the coupling term is retained on the left-hand side

of (2—35), whereas the non—linear right—hand coupling turn is identi-

fied by the dotted outline. The parameters G0 and K appearing in the
circuit equations are defined by:

I
c0 =~~

2 (2—36)

R
K — l — j  

~ 
(2—37)

Cn Cn

13



= !!~L. (2—38 )C~ v~

Hence, K~ represents the loss parameter of the circuit for the nt~i

harmonic frequency .

Similarly, the electronic equations are specified by:

dU 1 2 —jKZ f JKX
jni~ + ~~~ 

•

~~k1—~ R(K) e ~ J S~ (X )e ° dx dK

Linear
part

-jKZ jKX+-4- f-. f Kf (K)e 0 f v ( X )e ° dX’, dK
x
° (2—39)

~~~~~ ~~ 
K1~ 

Kf (K) e~~~~~0 J  

q~~; 
n_ q dX0 dI(

coupling 1
term

— 

~ 3- x [,~ q~~~ 
{~n~.q 0(

~ 
Z
~
) — ~~ _ q (~ K~ X ) ]  ~~~~~~~ ~~~~~ dx dR I

Non—
linear -

S ~~ 

~±T2

I~~~~~~~ 
~~:~~1JT0TTT~ 

~~~ — 

J

~~~~~~~~~~~~~~~~ ~~~~ — 0  (2—40)dZ n n
0

14
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Again, the non—linear part of (2—39) is identified by the dotted out-

line. The first non—linear term arises from the non—linearities in the

beam to circuit coupling. The second and third terms are associated

with non—linearities in the space charge field.

In these equations the parameter ~2 is the normalized plasma frequency

of the beam

~ ._E (2—41)p u

The non—linear parts of the circuit equation (2—35) and the electronic

equation (2—39) are expressed as superpositions of cross—coupling

terms between the various harmonics of the rf variables V
q

(Z
0

)~ s
q

(Z
0:I~

and +q
(K~ z). The dominant cross—coupling terms are those centered

around the fundamental components q = +1 and q = —1. As q deviates more

and more from these values, the cross—coupling terms become smaller and
smaller and are finally negligible. Expressed differently, it suffices

to include only a certain number of harmonics. The exact number can

be determined either from the computational procedure, or by making a
reasonable choice based on previous experience from corresponding

klystron programs (1,2]. In the present work we shall take 
~~~~~~ 

(or
n ) equal to four. The fact that the circuit impedance Z ismax Cn
vanishingly small when the harmonic number n exceeds say two or three,
depending on the helix design, implies that the corresponding circuit
_ c ..~~_.s ~ t .1 • d~ 7 t .... .1 .1 g 1  . . . . . ..~...1 4 ..41 1 (~~ i-I, 1..... . ~~~~ .-1. -.i a  Va.. sausco V ~~ ‘n ‘~~~~

‘ ~~ ..c5a s5suS c .  5.#t4 S ~.l I..ttc& .nat,~. ..tnC

corresponding dynamic variables iI~ (Z 0),  ~~ (Z0),  and ~ (K , Z0) are not

necessarily negligible, a fact which is easily observed from (2-39) and
(2—40). The higher harmonics in the beam are excited predominantly by

the fundamental circui t f ield, and to a lesser extent, by the non-
linear space charge field.

It is noted that the basic large signal equations are differential—

integro equations, for the small signal as well as the large signal

15



equations. This formulation is not a consequence of the polarization

model as such , but is father due to the adopted model of beam—to—

circuit coupling mechanisms discussed in Chapter 2.1. The d i f fe ren t ia l—

integro form gives rise to additional beam loading terms and circuit

loading terms that do not appear in conventional TWT theory. Mathemat-

ically, the difference manifests itself in the appearance of the plasma

reduction factor R(K ) 2 and the coupling coefficient f (K) , which in the

present formulation are complex rather than real . It should be
pointed out , however , that the imaginary parts of these parameters are

quite small compared to the real parts , so that the corresponding

corrections are quite small. However , they are noticeable , particu-
larly as far as optimum synchronization conditions are concerned .

The set of large signal Equations (2—34) — (2—40) are equally valid

for small signals , which is obtained as a special case by putting

the non—linear terms contained within the dotted outlines equal to

zero. The major steps in the small signal case will f i rst  be treated

separately, as it forms a necessary part of the subsequent large signal

study.

2.5 SMALL SIGNAL EQUATIONS

According to the foregoing discussion the small signal differential—

integro equations are specified as follows:

~ ~ /~!!.... \jnK ~ = 0 (2—42)
dz o Cn i v  i n n

0 ~~Cnj
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di Iv
C 1 1 0  •~~~~~I— jn vd Z G Z  ~v no o C n’ Cn

-,jKZ jKX
n f f Kf (K) e ° S ( X )e ° dX dK — 0

(2—43 )

dU . jKX
+ jnU + 

~~ KL. R(K) 2e~~~~o ~~(X )e ° dX dK

1 1  —jKZ i
+~j~~— J Kf (K) e ° J v(X )e ° dXi, dI( = 0

K=_co X = —~0

(2—44 )

dS
+ j e Sn - U~ = 1 (2-45)

As noted earlier the appearance of double integrals in the small signal

equations is a consequence of the adapted NT model . However , due to

the linearity of the equations they can be solved using standard

procedures.

2.5.1 Small Signal Solutions for n ~ 0.

The small signal solution consists of a superposition of four consti-

tuent solutions. Let these be numbered by the superscript i, where

17
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I = 1, 2, 3, 4. A particular rf variable , ~y S ( z ) is then given by
the following expression:

= ~~~~ , n ~ 0 (2—46)

where ~~~ is the normalized propagation factor of the ith solution.
It is related to the actual propagation factor 8~~j ) by:

8 (i)

B~
1
~ = 

~e 
(2—47)

The amplitude S~~~ is independent of Z .  If we consider one of the
independent four modes specified by its i—value and evaluate the cor-
responding double integrals in (2—43) and (2—44) we obtain:

-jKZ jKXf — f Kf (K)e ° f S
n o

) e ° dX dK =

X —
0

B~
1
~ f (B~ i )  S ( Z )~~~

(2— 48)

~ I R(K~~ ~~~~ f s~(x0)
W e~~’°~0 dX0 dK

K=—co x ~~~
0

R (B~ i )  
2 

(j )

(2—49)
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-jKZ JKX4 f Kf(K)e ~ f ;~(X)~~~ e ° dX dK —

I0m~oo x ——~~0

f (
~

) ~~( Z ) W

(2—50)

By this procedure we find that the ith mode of the small—signal set

(2—42) — (2—45) is specified by the matrix differential equation:

~~~~~~~~~~~~ 
~~~~~~j ) a (Z )~

1
~ = 0 , n o (2—51)

i = 1,2,3,4

where the column vector ~~~~~~~~ represents the rf variables.

I (Z

~~ ( Z )  (j ) — (2—52)

U (Z )n o

~ (Z )n o

The 4 x 4 system matrIx ~(I.) is given by

____
_ _ _ _



/v \ I
0 , G Z  (_.2_~~~~j f lK I 0 , 0

o C n  v n

G Z c 
0 , -nB~

’
~f (Ba)) (2-53) 

~ R~~~f (~)) in , R (B~’))
2

0 , 0 in

n #0

I = 1, 2, 3, 4

The solution of the small signal equation (2—51) is straight forward

and given by:

~~ ( Z )  (1) 
= e~~~~ ° q ~~ , n ~ 0 (2 -54)

I — 1, 2, 3, 4

where ~~~I.) is the normal mode amplitude of the ith mode , and where q (i)

is the corresponding state vector. The overall small signal solution

is a superposition of the form solutions (2—54).

4

~~ ( Z )  = 
~~~~~ ~~~~( z ) ~~~

1
~ = ~~n

e
f b  A~ n ~ o (2—55)

where the state matrix Q consists of the four state vectors.
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= 

[

~~~(i) q (2) 1 c3) q (~J n # 0 (2— 56 )

Furthermore , D is a diagonal matrix containing the propagation factors.-S n

r 

~~l) 0 0

0 B~~~ 0 0

D = (2—57)-n 
0 0 B~

3
~ 0

O 0 0 B~
4
~

The vector A. consists of the four mutually independent mode amplitudes

A~
1I
, which are independent of z

0
.

n

~ (2)

A = (2 — 58)

Equation (2—55) Is the complete and general small signal solution ,

expressed as a superposition of four independent normal modes. The

21
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elements of D and Q are obtained from the appropriate eigenvalue
relation, which follows from (2—51). For the ith mode :

— jB~
’
~ j ]  

q (i) 
= n ~ 0 (2—59)

I = 1, 2, 3, 4

The propagation factors B~
1
~ are obtained by putting the determinant

equal to zero.

- j
I) 

~~ j = ~~, n # o (2-60)

i = 1 , 2, 3, 4

In expanded form the the determinant equation is given by:

~~~~~ — 2nB~~~ + B~ ’~ [n
2 

— (B w)2 — f l K

— ! f(BU)) GZ
~~)] + B

(1) 2 ( v )

2 
n~~

— 
2 ( \

2 

(~2 
- ~

2R(B(i)\
2 )

n \ V Cn/ ~~ hl I

n #0

I = 1, 2 , 3 , 4

(2—6 1 )

The four solutions of this equation specif y the four propagation factors

~~~~ of the nth harmonic component. The corresponding state vectors
are given by:
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B~~~f(BW) 

- B~~~) 
- ~

2R (B~~~
)
2 ]  

-

q(i) 
= 

~~~~~~ (1) 
[(n — B~~)) —fl 

2
R (B~0)

2 ]
G Z  (— I  f l K f  Bo C n\ V

C~/ ~~~~~

j  (n —

1

n #  0

i = 1, 2 , 3, 4

(2—62)

2.5.2 Small Signal Solutions for n — 0

The previous equations are valid when a # 0. For a = 0 the system is

degenerate , and this case must therefore be treated separately . Equa-

tions (2—42) — (2—45) are valid for a = 0 but the double integrals

(2—45 ) — (2—50) take different forms . The overall solution for n = 0 ,

corresponding to (2—55) for a # 0 , is given by:

= ~0 (z
0

) L (2—63)

where the state matrix Q0(Z) is a function of distance Z0 
along the

circuit.
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R I
, 1 I 0 0

o~~ 0e

1 , 0 ~~~0 0

Q0(z0) 
- — 1/2 G .~ 2 

~ , 1/2 1 1 (2-64)

R Z I
— l / 4 G  , 1

o~~ o 2 I
e

The normal mode vector A0 speci fies the four mutually independent t ime—

average or “dc” modes corr esponding to n 0

~ (l)

A~
2
~

A — (2— 65 )
-0 

“(3)

A S9
0

“( 1) “(4)where four constants A to A represents the independent normal

mode amplitudes of the n = 0 solution.

In normal small signal operation the n = 0 mode as well as the harmonic

modes corresponding to n #±l are not excited. However, they are

excited at large signal levels through non—linear effects. Moreover,

they can also be excited at small signals as well as large signals

24
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through harmonic injection at the input end of the helix. In the

present treatment we shall include harmonic injection for a = 0, i.e.,

a “dc injection scheme”. The motivation for this is that we like to

maintain generality and not exclude the possibility of improving the

TWT performance by “dc Injection”, which would supplement the usual

second harmonic or higher harmonic injection schemes.

For this purpose it is appropriate to point out the physical signif-

icance of the four a = 0 modes, each of which is specified by the cor-

responding column in the state matrix 90(Z0) in (2—64).

The first mode, with arbitrary normal mode amplitude A~
’
~ determined

by the excitation conditions, is characterized by the first column in

(2—64). Apparently, this mode corresponds to a physical situation in

which the circuit carries a small dc current — (the second ele—

mant in the column). This current gives rise to a dc circuit voltage

proportional to the circuit resistance K0 
and to distance Z0 along the

circuit. The constant voltage gradient arising from the linear variation

of voltage along the circuit serves as a driving term in the dynamic

equations, causing a linearly varying dc velocity component expressed

by the third element in the column. The linearly varying velocity com-

ponent finally gives rise to a displacement which is proportional to

the square of distance along the circuit, as shown by the fourth elemsnt

in the column.

In sununary, this f i r s t  dc mode has a clear physical significance, but

is hardly of much practical significance. Its effect on the large

signal dynamics would come from the constant accelerating (or decelerat-

ing) dc field arising from the comb ination of injected dc circuit current

and the circuit dc resistance R . Aside from the difficulties in inject—
0

ing dc current, thermal dissipation, etc, the resistance would have to
be fairly high in order for this effect  to be noticeable. The high dc

resistance would probably be detrimental for the rf operation. Hence,
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it is unlikely that a de injection scheme based on the first mode is

of any practical value. Moreover , the excitation of this mode direct ly

f rom the beam due to non—linear ef fects  under large signal conditions

is also prohibited , provided special arrangements are not made to

allow a dc curr ent to f low in the circuit. This is usually not the case.

Therefore, in the large—signal calculations we shall disregard this
“(1)mode altogether, putting A 0.

The second dc mode, corresponding to the second column of the state

matrix Q0( z ) , has no dc current in the circuit but a constant dc voltage
A (2)v =A 0~

2/ . The voltage corresponds to a dc velocity change of A /2

and a linearly changing displacement A~
2
~Z0/2, as seen from the two

last elements in the column. This mode could conceivably be used in a

“dc injection scheme”. For instance, it would characterize a physical

situation In which the two circuit sections of a normal TWT are not at

the same dc voltage. The difference in voltage corresponds to the

normal mode amplitude A~~
2
~ of the second dc mode. As shown in

Section 2.7.2 the second dc mode is not excited by non—linear effects

in the beam—to—circuit coupling, but only from “dc injection” directly

on the circuit.

The third and fourth dc modes are characterized by zero circuit voltage

and current, as seen directly from (2—64). The third dc mode specifies

a constant change in relative dc velocity given by V0 ~~~~ asso-

ciated with a linearly increasing or decreasing displacement. Phys-

ically, this mode can be visualized as arising from a small change in

dc velocity v .  It follows from the subsequent large signal theory

that the mode basically describes the process of slowing down of the

electrons under large signal operation.

The fourth do mode represents a constant displacement with no change in

velocity. The physical significance of this mode is less obvious. It

can conceivably be excited through some kind of time delays arising

26

- 
, - - ---- - - -



from non—linear effects under large—signal operation. Regardless of

physical interpretations, the third and fourth dc modes corresponding

to a = 0 are certainly excited under large—signal conditions, as shown

in Section 2.7.2, and must be included as part of the overall mode

configuration in the large—signal analysis.

2.6 COMPARISON WITH CONVENTIONAL TWT THEORY

In the conventional TWT model the circuit is essentially visualized as

being at the same position as the electron beam, with an appropriate

reduction in circuit impedance depending on the frequency. The fact

that the reduction depends on frequency rather than wave number gives

rise to certain deficiencies and shortcomings in the conventional NT

model. We shall briefly discuss these and point out how these short-

comings are eliminated in the present model.

The differences between the two models, at least at small signal level,

have nothing to do with the use of polarization variables, but arise

from a different description of the coupling between beam and circuit.

In the present model the coupling is essentially specified by the

coupling factor f ~~~ which appears in the off—diagonal coupling

terms in the overall system matrix H in (2—53). The essential point

is that the argument in the f(B~~)) — function is the actual propaga-

tion factor of the ith mode. In conventional theory the argument is

taken to be equal to = w/vc, or for the nth harmonic , 8Cn~ 
Hence

the coupling factor is taken to be the same for all four modes, and

is frequency dependent, rather than wavelength dependent as in the

present model. At first glance this difference may seem fairly insig-

nificant, because the four propagation factors do not deviate much from

the cold circuit propagation factor This is true under normal

operation where the present model yields only slightly different gain

response, although the optimum synchronization condition is signif i—

cantly different. However, the differences first come to proper light

27



when circuits with heavy loss, i.e., attenuators, are considered . In

such cases there exists an essential disagreement between conventional

TWI theory and the present theory.

As the circuit loss is increased , the loss parameter K defined in

(2—37) becomes larger and larger. From consideration of the wave

equations (2—59) — (2—62) it is easy to show that in the limit of very

large K , the circuit—to—beam coupling disappears for the two circuit

modes. These are specified by the propagation factors

lim ~~~ = ~ 2 
(.~

2._
) 

K + j~ (2— 66)
Ca

The coupling factor f (B1~~) 
becomes negligible due to the large argu-

ment (see (2—17)).

lim f = 0 (2—67)
(i) ~~~ /

B -
~~~~n

Hence, it follows from (2—53) that the off—diagonal coupling terms

disappear , r ender ing the system completely decoupled f r om the beam as

far as the heavily damped circuit modes are concerned. This is not

predicted by the conventional TWT model in which the coupling factors

are taken to be independent of the propagation factors.

The remaining two modes in a lossy circuit section are essentially the

two space charge waves in the beam, which have a finite non—zero coup-

ling to the lossy circuit because the propagation factors are finite,

and therefore f (EU)) different from zero.

In conclusion , the present model distinguishes itself by its ab il it y to

account properly for arbitrarily large loss in the circuit structure
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This is a great convenience in numerical calculations of multi—section

TWT ’s, where the same basic equations can be used regardless of their

— loss.

In addition to this discussion we shall be a little more specific about

the fundamental difference between the conventional Pierce model and

the present model. It is convenient to use the dispersion relation

(2—61) as a basis, since it is easily converted to the Pierce form

by changing the coupling factor f (B(1)) and the plasma reduction

factor R(B(i)) to the approximations used in the Pierce model. In the

Pierce model the small signal TWT performance is completely described

by specifying four independent parameters: the gain parameter C, the

loss parameter d, the velocity parameter b, and the space change param-

eter QC. Once these are specified , the gain characteristics are com-

pletely determined regardless of other details of circuit and beam param-

eter~ .

The four basic Pierce parameters are related to the parameters used in

the present theory by the following equations:

v 2 1/3

- 
kG O zCf (.~~~) 

]
~

(2—68)

b = *  
[
~~~= l ]

C - —  
p

4C2 
[1 + ~~ 1~(i)~ 

2
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where we consider only the fundamental frequency. In (2—68) a is the

loss factor of the helix (imaginary part of the complex cold circuit

propagation factor). It is related to the loss factor K defined in

(2—37) by the equation:

2 1/2

K = 1 — 2j f. [1 + (1—) ] (2—69)

The argument v/va in the coupling coefficient f(vO/v C) indicates that
in the Pierce theory the noemallzed propagation factor B = B/Be is put

equal to 
~C~

’8e 
= v/v

a
. This means that the propagation factor is put

equal to the cold circuit propagation factor thus ensuring that the

gain parameter C in (2—68) is evaluated on the basis of the cold inter-

action impedance Zc
f (v /vc)

2 at the beam position .

The argument of unity in the plasma reduction factor R(l), appearing in

(2—68), indicates that in the Pierce theory R is evaluated by putting

B = 

~~~ 
= 1, i.e., ~ =

Inversion of the equations specified by (2—68) yields the following

relations:

G Z
c
f 
(

~~~~~~ ) 

2 
= 4C3

Cd I Cd 21 1/2
K l _ 2 j

1 + c b  L l+ (1+c b ) J x1
(Cd ,Cb)

(2-70)

2. = ~ + Cb = X 2(Cb)

~
2R (l ) 2 4QC3 

2 
— x3(C ,QC)

p 
[1_2/~~~]
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Let us now express the dispersion relation (2—61) in terms of the four

Pierce parameters by substituting from (2—69) and (2—70) into (2—61),

putting a = 1 and for simplicity omitting the superscript i. The

result is

B4 — 2B3 + B2[l — x3(C
,QC)

R( l )

- X1
(Cd,Cb)X 2

(Cb) 
(X 2(Cb) 

- 2C3 

f(X (Cb))2 
(2 71)

+ 2B x2
(Cb) 2x1(Cd,Cb)

— x (Cb)2x (Cd ,Cb)11 — x3
(C ,QC) R(B? 

]= ~2 1 L R(l )

This is the small signal dispersion relation valid for the present

model, but expressed in terms of the four Pierce parameters defined in

(2—68). It is noticed , however , that in addition to these parameters,

two more parameters are needed, namely:

a) Modified coupling parameter:

= 
f(B)2 

(2 —72 )1 
f(X2(Cb))2

b) Modified space charge parameter :

~2 
= 

R (B ) 2 
(2-73)

R( l )
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The essential difference between the present model and Pierce ’s model

can be appreciated from this exposition. In the Pierce model the

factors 
~l 

and C2 are both approximated by putting them equal to unity .

Inspection of the dispersion relation (2—71) in this approximation

— reveals that the four propagation factors are specified fully by the

four Pierce parameters C, d, b, and QC. As an example, this model

predicts identical gain response for two TWT designs with different

circuit radii (and possibly different beam radii as well) provided one

four basic Pierce parameters are the same in both cases. And this may

very well be possi~1e, since a larger circuit diameter can be off3et by

a basically larger interaction impedance measured at the circuit, so that

the interaction impedance is the same at the position of the beam , i.e.,

the gain parameter C is the same.

In the present model the four basic Pierce parameters must be supple-

mented by the parameters and defined in (2—72) and (2—73L These

are, by themselves, functions of B, or more specifically, functions of

~b and 8a, which can be expressed as B(B b) and B(B a), respectively.

Hence, as far as dependence on TWT parameters are concerned , 
~l 

and

are functions of the normalized beam and circuit radii 8eb and sea.

Hence, we reach the conclusion that our NT model requires six basic

parameters rather than the four required in the Pierce model. The

additional parameters are the normalized beam and circuit radii 
~e

b and

B a. These are not requ~~-”4 in Pierce’s model .e

As an example consider two TI4T designs both having the same Pierce

parameters C, d, b, and QC, but different normalized beam and circuit

radii. The Pierce model gives identical gain characteristics for these

two designs, whereas the present model predicts a difference in gain

depending on the normalized beam and circuit radii in the two designs.
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The ci rcumstance that the two factors  C1 and C 2 for a particular mode

depend on the actual propagation factor B as well, leads us to the con-

clusion that the differences in gain characteristics obtained from the

two models will be larger, the more the complex propagation factor B

deviates from Be 
and B

C
. Therefore, in high—gain tubes and in attenu-

ating sections we expect fairly large differences between the two

models.

2.7 LARGE SIGNAL SOLUTION

The large signal equations are given by (2—34) — (2—39) which also

contained the small signal equations discussed as a special case in the

preceding sections. - The motivation for solving the small signal case

in detail is not dictated merely from interest in small signal response,

but more from the fact that certain small signal parameters are needed

in the subsequent large signal solutions.

In view of the fact that the left hand sides of the general large signal

equations are identical with the small signal equations (2—42) — (2—45),

we can take the general large signal solution to be essentially of the

same form as the small signal solution (2—55) and (2—63), namely:

—jDz
a(Z ) = - 9e ° A ( Z ) n ,~ 0 (2—74)

a(Z ) = Q(Z ) A(Z ) a 0 (2—75)

The state mat r ices and Q0(Z
0
) and the propagation factors are

identical in the small and large signal case. The large—signal expres-

sions (2—74) and (2—75) differ from the small signal expressions only

in the fact that the normal mode amplitude vectors A~ (Z0) and A0(Z
0)

are taken to be functions of distance Z0
. In the small signal case

these vectors are constant. The variations of the normal mode
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ampli tudes are caused by the non—linear in teract ions  between modes.
These manifest  themselves as saturation effects in the fundamental

component ( the corresponding vector A1( Z )  become s smalle r as the
signal amplitude grows along the circuit) ,  and in non—linear excita t ion
of hig her harmonics and iritermodulation components (the corresponding
vectors  A ( Z0) grow along the tube) .

The essence of the large signal calculations is therefore  to determine
the va riations of the normal mode vectors A (Z ) and A (Z ) along the— n o —0 0
length of the tube for  the fun damental component and all harmonics of
interest .  Once this has been achieved the general large signal solution
for these nth ha rmonic is given by ( 2 — 7 4 ) ,  and for the time average
component by (2—75 ) .  The overall large signal solution is obtained by
superposing the ha rmonics :

jnT jnT

~ (Z
0,T ) = ~~ (Z )e ° = ~0

(z~~) ÷ 
~~ ~~~~~~
n~~O

(2—7 6)

—j D Z j nT
= Q ( Z )A (Z ) + Q~ e -n ° A ( Z )e °

a

It should be emphasized that the assumed form of the large signal

solutions (2—74) and (2—75) are not approximations , but perfectly

valid at all signal levels. The normal mode amplitudes A~ (Z
0) and

~~(Z) contain the necessary large signal information of amplitude as

well as phase variations of all four modes and all harmonics.

_________ 
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h
2.7.1 Differential Equations for the Large Signal Normal Mode

Amplitudes

Mathematical processing of the large signal equations (2—34) — (2—3 9 )

H results’ in the following differential equations for the normal mode

amplitudes defined in (2—74) and (2—75):

dA ( Z ) jD Z- 
~ = e -n ° ~ (Z ) a- # 0 (2—77)
dZ n n °

d (Z )
z = Q ( Z )~~ F(z ) a = 0 (2—78)

The vectors F (z ) and F (z ) are non—linear driving terms which are
-a o -o 0

zero in the small signal case. In general:

0

H2~(Z)

F(z ) = a ,~ 0 (2—79)

H3
(Z
0)

0

:
F (Z ) a —  0 (2—80)
-o o 

H30 ( Z )

0
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The elements H H and H appearing in these vectors will be2ni 3n 3o
discussed later.

The differential equations (2—77) and (2—78) can be integrated directly,

yielding:

z
JD x

~~~~~ 
e ~~ ~ Q=1 

~a
(
~
Co~ 

dx + A (o) (2—81 )

~~ 0

z

~0 (z0) g0(x0Y~ ~~
(x

~
) dx0 + (2-82)

In these equations A (o) and A (o) are the initial values of the normal-n -o
mode vectors at Z = 0, i.e., of the input end of the circuit. Because

of the low signal level at the input , these are identical to the small
signal values. Without harmonic injection A~ (o) = 0 for a ,~ ±1. With

harmonic injection the corresponding vectors A~(o) are non—zero.

2.7.2 Excitation of the Time Average Modes (a = 0)

The a = 0 mode amplitudes are given by (2—82). 
- 

Evaluation of

and use of (2—80) yield the following expressions for the excitations

of the “dc modes”:

AU)( Z )  — Aw (O) — constant (2—83)

A~
2
~(z0) = A~

2
~~( )  ~~

(2) 
— constant (2—84)
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z

A~~
3

~~( z )  = H
3
(x) dx (2-85)

z

A~
4
~(z )  f x H

3
(x)dx (2-86)

According to these equations the two first modes do not depend on z0.

They are not excited by the non—linearities in the beam, but arise from

a possible external application of dc current or dc voltage in the

circuit, as was discussed extensively in 2.5.2. On the other hand, the

two last dc modes are excited by the non—linear interactions in the

beam. As described in 2.5.2 they describe the general slowing down

process taking place as the signal amplitude (and therefore H
30

(Z0) )

increases.

As discussed in 2.5.2 the first mode is zero unless the circuit is excited

with a dc current, which normally is not practical. Hence, mode 2 is

the only one available for a possible “dc injection” scheme, in which

an additional dc voltage equal to ~
(2)
(~) is applied to the circuit.

Using (2—64) and (2—75) in conjunction with (2—83) — (2—86) the actual

time—average , or dc, variables are obtained as follows:

In the circuit (“dc injection”):

— (o) — A~~
2

~ = constant (2—87)

— 0 (2—88)
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In the beam:

zo

U(Z ) = 1/2 A(2)  — f H
3

( x )  dx (2—89)

= — f H3 (x~~ dx
o] 

Z 0 + / x H
3

(x~~ dx (2-90)

The relative reduction of time—average velocity is specified by U
0

( z )
in (2—89) , where the first term is due to the extra dc voltage of

applied on the circuit (“dc injection”), and the second term ~dpre—
sents the slowing down process caused by non—linear effects during

the signal growth along the beam.

2.7.3 The Non—Linear Driving Terms in the Large Signal Equations.

The non—linear driving terms F(z
0

) and ~0(z
0) in the large signal

equations (2—77) — (2—82) contain the elements H2 (z ) ,  H3 (z ) ,  and
which are obtained from the basic large signal equations

(2—35) and (2—39). The summation over q is eliminated by using the
following relations:

iK
q
~~~~ q~~q(x0)~~~~q (=K~ x0) — n[3~~

_ Kx
0 — ~~(x

0)] (2—91)

dS (x ) 
djK ~~~ ~ x

0 
•5_q(_K~X0) 

_ .
~~_ [4~~(_IC~x0

) — S~ (x )] (2—92)
q

Hereby, the expression for H2~~(Z0) simplifies to

38

~

-— - ——  - -  ~~~ - - - - — -~~~~———-



.-jKZ
112

( z )  = a 
~

— J Kf (K) e °

K=-

(2—93)

jKxI [~~
(_K ,x0) 

— S(x )] e dx0

which is valid for all n, including zero. Hence, for a — 0

H2
( Z )  — 0 (2—94 )

which we have already made use of in (2—80).

Proceeding to H
3
(z) we find, after integration by parts:

-jKZ jKx
H
3~

(Z0) = -

~

-

~~~ 

.

~~~

. K (K) 6a_p (K
~Zo)e ° / ;~~(X)~~ 

° dxc, dK

— &~ R(K) 2e 0 

x~~_w
[
~~~
0
~
xo 

— 

~a~~o~] 
e

iEx
o dx dK

2~ 
—jK Z ,. jKx

— j~~ 

~~~~~~~~~ 
/ KR(K) $a ...p (K

~
Zo)e ° J 4~~

(_K 1x0)e 
° dx0 dK

(2—95)

2.7.4 Transformation of the Double Integrals

The non—linear coupling terms H2~ and H3~ are expressed as double
integrals over K and x

0
. These are not easily amendable to numerical
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computer calculations. Therefore, we have transformed the double

integrals to a d i f ferent  form , which is derived as follows :

Let us consider a general double integral of the form:

1 1 -jKZ~~ ( jKx
T( z ) = 

~~ J a(K) e °b(K , z ) J C(K ,x0)e ° dx0 dK

K——” x =—“
0

(2—96)

All th~ double integrals in (2—93) and (2—95) are represented by this

general expression provided we make the appropriate identifications of

the functions a(K), b(K ,Z0) and ~ (K ,x0). For instance, the function

a(K) represents Kf(K) in (2—93), Kf (K) , R(K) 2, or KR(K) 2 in (~2—95). The

function ~ (K,Z0) is unity in (2—93), it is unity or ~~~~(K~Z) in (2—95).
The function C(K,x0) represents several different variables, such as[;~~(_K ~ X0

) — 
~~(x )]. ~v (x ), and

Regardless of which variables are involved, the function a(K) is a
slowly varying function of K. The functions b(K,Z) and C(K,x )  are
“wavelike” functions, almost periodic in and x

0.

Let us make the following expansion of

—j~~(x0C(K ,x0) = ~~~ Ct
(Kt ,x ) e (2—97)

where the phase angle 
~~~~~ 

is chosen so that the preceding factors

C~ (K2 ,x0) are slowiy varying functions of x0. With the rf variables

represented by the e(K,~~ ) func tion, this is always possible. Expanding

the slowly varying functions C
~

(K
~
,x0) and •t (x0) in Taylor series, we

can convert the double integral (2—96) to the following form :
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1 (r) r j L (Zo) dr -.

T(z 0) — r~ ~~~~C2 (K~,Z) j  e — [a(K)b(K ,Z ) ]
r=0 9..

(2—98)

This is an exact transformation of the double integral. However, since

we have taken care to expand the “wavelike” function C(K,x) in the

sum (2—97) so that C
~

(K,x0) are almost independent of Z , the deriva-

tives of this function are negligible and can be disregarded compared

to the first term in the expansion (2—98). This means that the only

term to be retained is the r = 0 term. Hence

—j$~ (Z0)
T(Z0) = 

~~~ 
ê9 (K

~ ,Z ) e  a(K~ )b(K~~Z) (2—99)

where

d
= K

~
(Z0) — ~~~~~

— (2—100)

The approximation (2—99) of the exact expression (2—98) corresponds to

disregarding the growth or decay of the amplitude of the function

~ (K ,x0) over some typical “interaction length” . The interaction length

corresponds to the nominal width of the coupling function f(z0) between

circuit and beam (see Figure 2—2), if a(K) represents f(K). In the case

that a(K) stands for R(K)2, the interaction length is typically equal

to the width of the Green function for the space charge field.
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Regardless of details, (2—100) is a sufficiently good approximation

for evaluation of the non—linear coupling integrals (2—93) and (2—95).

The practical problem is then reduced to determination of the functions

and the phase angles •~
(x0) in the expansion (2—97). This

information is extracted from the appropriate rf variable representing

the e(K,x0) function, as discussed earlier. In most cases the 4~~(K,x0)

functions are involved in this procedure , and a major part of the

r emaining details is concerned with the expansions of the various

harmonics of the q (k,x0) 
— functIon defined by (2—26). These expansions

are necessary details for the numerical procedure, but do not provide

more insight into the architectural structure of the large signal theory

and program. They are therefore not included in the present report.

Nor are details concerning multi—section TWT’s, which are easily

handled by the present theory, and considerations of launching condi-

tions and extraction of the rf signal at the output.
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