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ACCURACY OF AN INFORMATION—THEORETIC, LIGHT—LOAD
APPROXIMATION FOR THE M/M/1 BUSY PERIOD
PROBABILITY DENSITY

I. INTRODUCTION AND SUMMARY

In M/M/1 queuing systems, customers arrive with independent, exponentially
distributed interarrival times at an average rate A from an infinite customer
pool; they wait in an infinite capacity queue; they are served independently
by a single server with exponentially distributed service times at an average
tate’p ; and they return to the customer pool. If the system is empty and a
customer arrives at time s and if t2 is the next time at which the
system is empty, then the period between t, and t, is called a busy
period. The probability density function for the M/M/1 busy period is known
exactly, namely [1, p. 215]

() = —= ém/MI,(th’F) | (1

VA
where I, is the modified Bessel function of the first kind (order ome).

This paper concerns a new approximation to (1),
qa(t) = (/t-k)exp[—(/‘-k)t] ’ (2)

which is quite accurate for light load conditions. Specifically, the average

absolute percentage error of (2) satisfies

Ags ¥ T3p (3)

for 0< P£.2, where p= Aju and the average is computed over the range of t in
which the cumulative probability distribution of qe(t) goes from zero to
.95. Hence, the approximation (1) is accurate to within about 102 for pé.l.
The new approximation is of interest, not only because it is considerably

simpler than (1), but also because it was discovered by information-theoretic
Note: Manuscript submitted June 1, 1979,
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methods [2] without using the known solution (1). Indeed, I have not yet

found a way to derive (2) from (1).

II. BACKGROUND AND DERIVATION

A. The Maximum Entropy Principle and the Minimum Cross-entropy Principle

Suppose you know that a system has a set of possible states x; with
unknown probabilities qf(xi), and you then learn constraints on the
distribution qf: either values of certain expectations zgid'(xi)fk(xi)
or bounds on these values. Suppose you need to choose a distribution q that is
in some sense the best estimate of J given what you know. Usually, there
remains an infinite set of distributions that are not ruled out by the
constraints. Which one should you choose?

The principle of maximum entropy states that, of all the distributions q
that satisfy the constraints, you should choose the one with the largest
entropy - :S; q(xi)log(q(xi)). Entropy maximization was first proposed
as a general inference procedure by Jaynes [3]. Since then, it has been
applied successfully in a remarkable variety of fields, including traffic
networks [4], and queuing theory [2],[5]. For a lengthy list of applications
and references, see [6].

The principle of minimum cross-entropy is a generalization that applies in
cases when a prior distribution p that estimates J is known in addition to
the constraints. The principle states that, of the distributions q that
satisfy the constraints, you should choose the one with the least cross-

entropy 521 q(xi)log(q(xi)/p(xi)). Unlike entropy maximization,

cross-entropy minimization generalizes correctly for continuous probability
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densities. One then minimizes the functional .J;x q(x)log(q(x)/p(x)). The
name cross-entropy is due to Good [7]. Other names include expected weight of
evidence [8, p. 72], directed divergence [9, p. 7], and discrimination
information [9, p. 37]. The principle of minimum cross-entropy was first
proposed by Kullback [9, p. 37]. Like entropy maximization, cross-entropy
minimization has been applied in many fields (see [6]). When the prior
density is uniform, the principle of minimum cross-entropy reduces to the
principle of maximum entropy. In this case, one selects the posterior

by maximizing the posterior entropy
Jﬁx q(x)log(q(x) /p(x)) , (4)
subject to the constraints provided by the known expected values.

B. Justifying the Principles as General Methods of Inference

Until recently, entropy maximization was justified best on the basis of
entropy's unique properties as an uncertainty measure. That entropy has such
properties is undisputed: one can prove, up to a constant factor, that entropy
is the only function satisfying axioms that are accepted as requirements for
an uncertainty measure [10]. Intuitively, the maximum entropy principle
follows quite naturally from such axiomatic characterizations. For example,

"is uniquely determined as

Jaynes states that the maximum entropy distribution
the one which is maximally noncommittal with regard to missing information"
[3, p. 623], and that it "agrees with what is known, but expresses 'maximum
uncertainty' with respect to all other matters, and thus leaves a maximum

possible freedom for our final decisions to be influenced by the subsequent

sample data" (11, p. 231].
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Similar justifications can be advanced for cross—-entropy minimizationm.
Like entropy, cross-entropy has various properties that are desirable for an
information measure [12],[13], and one can argue [14] that cross-entropy
measures the amount of information necessary to change a prior p into a
posterior q. The principle of minimum cross-entropy then follows intuitively
much like entropy maximization.

To some, entropy's unique properties make it obvious that entropy
maximization is the correct way to account for constraint information. To
others, such an informal and intuitive justification yields plausibility but
not proof --- why maximize entropy; why not some other function? As a result,
entropy maximization has remained controversial despite its success.

Recently, R. Johnson and I have obtained a new, formal justification for
entropy maximization using a different approach [6]. This approach is based
on the observation that previous justifications are weak, not only because
they rely on informal, intuitive arguments, but also because they are indirect
--- they are based on a formal description of what is required of an
information measure rather than on a formal description of what is required of
a method for taking new information into account.

Our approach in [6] was to formalize the requirements of inductive
inference directly in terms of four consistency axioms that make no reference
to information measures or properties of information measures. The four
axioms are based on a single fundamental principle: If a problem can be solved
in more than one way --- for example, in different coordinate systems --- the
results should be consistent. We were then able to prove that the principle
of maximum entropy is correct in the following sense: Given information in

the form of constraints on expected values, there is only one distribution
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satisfying these constraints that can be chosen in a manner that satisfies the
axioms; this unique distribution can be obtained by maximizing entropy. This
result for entropy maximization was obtained both directly and as a special
case (uniform priors) of an analogous, more general result for the principle

of minimum cross-entropy.

C. Application to Busy Period Approximations

The approximation (2) is actually a general result for M/G/1 systems
(general service time distributions rather than just exponential) that happens
to be accurate in the M/M/1 case. Let s(t) be an arbitrary service time
probability density with moments s+ Then it is well known that the mth
moment bm of the exact busy period probability density qe(t) can be

expressed exactly in terms of the first m moments {81"°"s;3 of s(t), for

example
B o sl : (5)
I = lsl
B s ; (6)
3

etc. [1, pp. 214-215]. The moments bm provide information about the busy
period probability density in a form suitable for applying the principle of
minimum cross-entropy. For example, using (5) and assuming a uniform prior
density (reasonable provided one believes that the maximum busy period is
finite), one chooses an estimate q‘(t) of qe(t) by maximizing the entropy
(4) subject to a constrained first moment b,. This is a well-known problem,

with the solution [15] q.(t) = (l/bl)exp(-t/bl), or

0 (&) = (8,7 ~Nexpl=(s;”" - 0)e] . )
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In the M/M/1 case, (7) becomes (2) since s; = léu. More information can be
used to choose better estimates --- for example, one can compute the first two
moments of q from s; and s, using (5)-(6) and obtain a two-moment
estimate of 9, by maximizing entropy subject to the constrained moments b

1
and b, [2].

2
How accurate are such "information-theoretic approximations"? About all
that can be said in general is that the approximations are the least-biased
choices given the information available. To use the language of statistics
[7,9], the approximations are the hypotheses that are best supported by the
information available. Of course, more can be said in specific cases, e.g.

M/M/1, when q, itself is known. In the next section, I compare the exact

M/M/1 density (1) with the one-moment approximation (2).

III. ACCURACY OF THE M/M/1 APPROXIMATION

The exact density (1) and the approximation (2) are plotted in Fig. 1 for
the case A =1, /4= 10. Qualitatively, the two results appear to be close ---
indeed, this plot stimulated the conjecture that (2) might be a good light load
approximation in general [16]. Furthermore, the conjecture was supported by
the following argument, which is due to A. E. Ephremides {17]: Equation (2) is
identical to the exact M/M/1 residence time probability demsity [1, p. 202].
Since most busy periods will consist of single customer residences under light
load conditions, it makes sense that the busy period should tend to (2).

In order to evaluate the conjecture quantitatively, I chose two figures of

merit, both based on the absolute percentage error

P(t) = 100/q (t) - q,(t)f /q () . (8)

b,




Let Tc be the point at which the cumulative distribution of G, reaches the

value ¢, i.e.,

T
c
.[ dt qe(t) =, (9)

(]

Then, let Mc and AC be the maximum and average percentage error in the

mgbnOétST& i.e.,

M- MAX[P(t)] , te(0,T)) (10)
T
[+
A = Xlaaw : (11)
8 o
(o]

Now, although neither q, mor q_ can be expressed as functions of only t
and P = A&M, it turns out that both Mc and Ac depend only onf). To see
this, note that both A and q, satisfy th2 scaling equation

q(lvu,t) = f—lq(kfbpf,t/f), where f is an arbitrary scalar factor. It

follows from (8) and (9) that P and T, satisfy

P(a,/‘, i) Lo P(ﬂf,/‘f,t/f) (12)
and

Tc(’l,/u) = ch(’Af,/.f) (13)

By combining (12)-(13) with the definitions (10)-(11), it is easy to see that
Hc(ﬁyp) = Mc(ﬁfvnf) and Ac(%aﬂ) = Ac(ﬂfyﬂf) both hold, which shows
that M and Ac both depend only on the ratio p = Aéﬂ.

Based on data computed for twelve values ofy, Fig. 2 shows Mc and Ac
as functions of ? for ¢ = .95. That is, Fig. 2 shows the maximum and average
percentage error of qa(t) in the range where the cumulative distribution of

qe(t) is less than .95. The approximation (2) is accurate to within 10X for




faé.l. In general, the average percentage error Ac is about two thirds of

the maximum. Since the data for Ac was surprisingly linear, it seemed

useful to compute the best (least mean-squares) linear fit that was
constrained to pass through the origin. The result is (3). In fact [18], one

can show directly from (1) and (2) that

lim d A (f) = 68.4

IV. DISCUSSION

The derivation of (2) is noteworthy because of the information-theoretic
method used --- (2) was generated as a hypothesis by cross-entropy
minimization. The value of (2) as an approximation to (1) was subsequently
supported both quantitatively and qualitatively (the Ephremides explanation).
The results illustrate how information-theoretic techniques can be used in
system modeling. In general, one models real systems by abstraction,
representing the real system by some but not all information about the real
system. If the restricted (abstracted) information is in the form of expected
values, then cross-entropy minimization is the only self-consistent method of
choosing a probability density to model the real system. That the method can
be useful is illustrated by the present results.

Since (2) is much easier to compute than (1), the new approximation may be
useful in situations where quantitative results are needed. Accuracy within
10% is often sufficient since queuing models themselves are often only
approximate abstractions of real systems. Eq. (2) should also be useful in

analytical work, given the celebrated convenience of the exponential form.
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APPROXIMATION

k. 1 | |
0.2 0.3 04 0.5
t -
Fig. 1 — Exact and approximate M/M/1 busy period probability
densities (y = 1, u = 10) (
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