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I

ACCURACY OF AN INFORMATION—THEORETIC , LIGHT—LOAD
APPROXIMATION FOR THE M/M/l BUSY PERIOD

PROBABILITY DENSITY

I. INTRODUCTION AND SUMMARY

In M/M/l queuing systems, customers arrive with independent, exponentially

distributed interarrival times at an average rate ~i from an infinite customer

pool; they wait in an infinite capacity queue ; they are served independently

by a single server with exponentially distributed service times at an average

rate p ; and they return to the customer pool. If the system is empty and a

customer arrives at time t1, and if t2 is the next time at which the

system is empty, then the period between t1 and t2 is called a busy

period. The probability density function for the N/N/i busy period is known

exactly , namely [1, p. 215]

____ 

~~~~~~~~~~~~~~~ 

( 1)

where I~ is the modified Bessel function of the first kind (order one).

This paper concerns a new approximation to (1),

(2 )

which is quite accurate for light load conditions. Specifically, the average

absolute percentage error of (2 ) satisfies

A 95 ~ (3)

• for 0Ic f4.2, where r and the average is computed over the range of t in

which the cumulative probability distribution of q~ ( t ) goes from zero to

.95. Hence , the approximation (1) is accurate to vit.hin about 10% for 
p~~~~~~ . l .

The new approxima t ion is of intere st , not only because it is considerably

simp ler than (1), but also because it was discovered by information-theoretic
Note : ManuscrIpt submitted June 1, 1979.
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methods [2] without using the known solution (1). Indeed , I have not yet

found a way to derive (2) from (1).

II. BACKGROUND AND DERIVATION

A. The Maximum Entropy Principle and the Minimum Cross—entropy Principle

Suppose you know that a system has a set of possible states x1 with

unknown probabilities qt (x~), and you then learn constraints on th~
distribution q~~: either values of certain expectations ~~1q

t (x
1

) f~(x.)

or bounds on these values. Suppose you need to choose a distr ibution q that is

in some sense the best estimate of cit given what you know. Usually, there

remains an infinite set of distributions that are not ruled out by the

constraints. Which one should you choose?

The principle of maximum entropy states that, of all the d istribut ions q

that satisfy the constraints , you should choose the one with the largest

entropy — 

~~~~~i 
q(x.)log(q(x.)). Entropy maximization was first proposed

as a general inference procedure by Jaynes [3]. Since then, it has been

applied successfully in a remarkable variety of fields, including tr a f f ic

ne tworks [4 1, and queuing theory [2],[5]. For a lengthy list of applications

and references, see [6].

The principle of minimum cross—entropy is a generalization that applies in

cases when a prior distribution p that estimates is known in addition to

the constraints. The principle states that, of the distributions q that

satisfy the con straints, you should choose the one with the least cross—

entropy 
~~~~ 

q(x
1

) log(q(x
1
)/p(x.)). Unlike entropy maximization,

I.

cross—entropy minimization generalizes correctly for continuous probability

2



densities. One then minimizes the functional Jdx q(x)log(q(x)/p(x)). The

name cross—entropy is due to Good [7]. Other names include expected weight of

evidence [8, p. 72 1, direc ted d ivergence [9 , p. 7], and discrimination

information [9 , p. 37]. The princ iple of minimum cross—entropy was first

proposed by Kullb ack [9 , p. 371 . Like entropy maximization, cross—entropy

minimization has been app lied in many fields (see [61). When the prior

density is uniform , the principle of minimum cross—entropy reduces to the

principle of maximum entropy. In this case, one selects the posterior

by maximizing the posterior entropy

Jdx q(x) log(q(x) /p (x) ) , (4)

subject to the constraints provided by the known expected values.

B. Justifying the Principles as General Mc thods of Inference

Until recently, entropy maximization was justified best on the basis of

entropy ’s unique properties as an uncertainty measure . That entropy has such

properties is undisputed : one can prove , up to a constant factor , that entropy

is the only function satisfying axioms that are accepted as requirements for

an uncertainty measure [101. Intuitively, the maximum entropy principle

follows quite naturally from such axiomatic characterizations. For example,

Jaynes states that the maximum entropy distribution “is uniquely determined as

the one which is maximally nonconinittal with regard to missing information”

[3, p. 6231, and that it “agrees with what is known, but expresses ‘maximum

uncertainty ’ with respect to all other matters, and thus leaves a maximum

possible f reedom for our final decisions to be influenced by the subsequent

sample data” [11 , p. 231].

-~~ - - --~~~ - ~~-  
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Similar just if icat ions can be advanced for cross—entropy minimization.

Like entropy , cross—entropy has various properties that are desi rable for an

information measure 112], [13 1 , and one can argue (14 1 that cross—entropy

measures the amount of information necessary to change a prior p into a

posterior q. The princ ip le of minimum cross—entropy then follows intuitively

much l ike entropy maximization.

To some, entropy ’s unique properties make it obvious that entropy

maximization is the correct way to account for constraint  information. To

other s , such an informa l and intuit ive j us t i f i ca t ion  yields p lausibi l i ty but

not proof — — — why maximize entropy ; why not some other function? As a result,

entropy maximization has remained controversial desp ite its success.

Recently, R. Johnson and I have obtained a new, formal justification for

entropy maximization using a different approach 161 . This approach is based

on the observation that previous jus t i f ica t ions  are weak , not only becaus e

they rely on informal , in tui t ive  arguments , bu t a l so because they are indirect

they are based on a formal description of what is required of an

information measure rather than on a forma l description of what is required of

a method for taking new information into account.

Our approach in [61 was to formalize the requirements of inductive

inference directly in terms of four consistency axioms that make no re ference

to information mea sures or properties of information measures. The four

axioms are based on a s ingle fundamental princ iple: If a problem can be solved

in more than one way ——— for example, in different coordinate systems — —— the

results should be consistent. We were then able to prove that the princ iple

of maximum entropy is correc t in the foll owing sense: Given information in

the form of constraints on expected values, there is only one distribution4



satisfying these constraints that can be chosen in a manner that satisfies the

axioms ; this unique distribution can be obtained by maximizing entropy. This

result for entropy maximization was obtained both directly and as a special

case (uniform priors) of an analogous , more general result for the princ ip le

of minimum cross—entropy .

C. Application to ~~~~ Period Approximations

The approximation (2) is actually a general result for N/G/l systems

( general service t ime distributions rather than just exponential) that happens

to be accurate in the N/N/ i case. Let s(t )  be an arbitrary service time

probability density with moments 8m~ 
Then it is well known that the mth

moment b
m 

of the exac t busy per iod probability density q~ (t) can be

expressed exactly in terms of the first m moments fs1,...,s~~ of s(t), for

example

b1 — , (5)
1 —

b2 
— ~2 (6)

(1 —

etc. [1, pp. 214—215F. The moments b provide information about the busy

period probabili ty densi ty in a form suitable for applying the princ iple of

minimum cross—entropy. For example, using (5) and assuming a uniform prior

densi ty (reasonable prov ided one believes that the maximum busy period is

f ini te) , one chooses an est imate q~ (t) of q~ ( t) by maximizing the entropy

(4) sub j ec t to a constra ined firs t moment b1. This is a well—known problem,

with the solut ion r is i q5(t )  — (11b 1)exp(—t/b 1), or

q5
(t) (5

1
_i 

—~k ) e xp (— ( s 1~~ — ~i ) t 1  . (7)



In the M/M/ 1 case , (7)  becomes (2 )  since s
~ 

= i/,t t .  More information can be

used to choose bet ter  estimates ——— for example , one can compute the f i r s t  two

momen ts of f r om s~ and 
~2 using ( 5) — ( 6)  and obtain a two—moment

est imate of ~~ by maximizing entropy subjec t to the constrained moments b 1
and b2 [2 1.

How accurate are such “information—theoret ic  approximations”? About all

that can be sa id in general is that the approximations are the least—biased

cho ices given the information available. To use the language of s t at i s t i cs

[7 , 91, the approx ima t ions are the hypo theses that are best supported by the

information available. Of course , more can be said in specific cases , e.g.

M/M/ 1, when q itself is known. In the next sect ion , I compare the exac t

M/M/ 1 density (1) with the one—moment approximation (2 ) .

III. ACCURACY OF THE N/N/ i APPROXIMATION

The exac t density (1) and the approximation (2)  are plotted in Fig. 1 for

the case = 1, /4 10. Quali tat ively,  the two re sults appear to be close

indeed , this plot stimulated the conjecture that (2) might be a good l ight load

approximation in general [161. Furthermore , the con j ecture was suppor ted by

the following argument , which is due to A. E. Ephremides [17] : Equation (2)  is

identical to the exact N/N/i residence time probability density [1, p. 202].

Since most busy periods wi l l  consist of single customer residences under light

load conditions, it makes sense that the busy period should tend to (2 ) .

In order to evaluate the conjecture quant i ta t ively, I chose two figures of

mer it , both based on the absolute percentage error

P(t) 100 Jq~
( t) — q (t ) J /q (t )  . 

(8)6



Let T be the point at which the cumulative distr ibution of 
~e 

reaches the

value c , i .e . ,

( C

J d t q ~ (t) = C . (9)
0

Then , let M
~ and A be the maximum and average percentage error in the

reg ion 0 �t~~ T , i .e. ,

N = 1Ax[P t~j , t6( 0 ,T )  (10)

T

A = -a-- P( t )  . ( i i)

0
Now, although neither q nor q can be expressed as functions of only t

and = ~~t4 , it turn s out that both M
~ 

and A
~ 

depend only oup . To see

this , note that both q and ~~ satis fy th~
_ scaling equation

= f ’q(~~f ,/tf , t / f) , where f is an arbitrary scalar factor.  It

follows from (8) and (9) that P and T satisfy

= P(2if,/4f,t/ f )  (12)

and

T (
~~,~‘) 

= fT (
~~f ,~~f)  ( 13)c / c /

By combining (i2)—(13) with the definitions (10)—(i1), it is easy to see that

M~~~p ) — N ( ~ f,,~f) and A ( ~ ,ji) = A
c
(
~
If
~
JIf) both hold , which shows

that Mc and Ac both depend only on the ratio f —

Based on data computed for twelve values off, Fig. 2 shows M
c and A

c

as functions off for c — .95. That is, Fig. 2 shows the maximum and average

percentage error of q~(t) in the range where the cumulative distribution of

q (t) is less than .95. The approximation (2) is accurate to within 10% for

7



p.~
.i. In genera l , the average percentage error Ac is about two third- of

the maximum. Since the data for A was surprisingly linear , it seemed

useful to compute the best (least mean—squares ) linear fit that was

constrained to pass through the orig in. The result is (3). In fac t [181 , one

can show directly from (1) and (2) that

lim d A (~ ) = 68.4.95

IV. DISCUSSION

The derivation of (2 )  is noteworthy because of the information—theoretic

method used ——— (2) was generated as a hypothesis by cross—entropy

minimization. The value of (2) as an approximation to (1) was subsequently

supported both quantitatively and qualitatively (the Ephremides explanation).

The results illustrate how information—theoretic techniques can be used in

system modeling. In general , one models real systems by abstraction ,

representing the real system by some but not all information about the real

system. If the restricted (abstracted) information is in the form of expected

values, then cross—entropy minimization is the only self—consistent method of

choosing a probability density to model the real system. That the method can

be useful 18 illustrated by the present results.

Since (2) is much easier to compute than (1), the new approximation may be

useful in situations where quantitative results are needed. Accuracy within

10% is often sufficient since queuing models themselves are often only

approximate abstractions of real systems. Eq. (2) should also be useful in

analytical work, given the celebrated convenience of the exponential 

form.8
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Fig. 1— Exact and approximate M/M/l busy period probability

densities(y 1 ,p 10)
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