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| ABSTRACT
! ¥
Suspended particulate in the environment of underwater vehicles has been
HE suspected to be responsible for the generation of turbulent patches in
' the laminar boundary layer of the vehicle. This speculation, which is
’ supported by much indirect evidence, is examined in this report through

an attempt at calculating the turbulent patch generation rate. The method
presented herein is based on the premise that patches are generated by
those particles entering the boundary layer that are sufficiently large

’ to "trigger" a turbulent event. Since the triggering mechanism is not
known, the choice of a critical particle size will involve some empiricism.
An important element of the method is the calculation of the number of
particles of a given size and specific gravity that enter the laminar
Fv ’ boundary layer, through computation of the particle trajectories in the
inviscid flow field about the vehicle.
3
For a particle size distribution, n(d) ~ d'p, the generation rate of tur-
! bulent patches is predicted to vary as Ump/2.
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SYMBOL DESCRIPTION
¥
a radius of the sphere
AC capture area
A1’A2’A3 coefficients in the definition of CD; numerical values
» are given in Appendix A
CD drag coefficients of the particle
= ~1 -2
CD = A1 * A2Rr + A3Rr
' d particle diameter
g acceleration of gravity
§ (0,0,-9)
’ h time increment in numerical computation
N total number of particles per unit volume
P static pressure of the fluid
’ p exponent of particle size distributjon
Rr Relative Reynolds number, Rr = |u|d/v
S density ratio, s = pp/pf
’ t time
u relative velocity, u = V}-—Vb
#
H v velocity
¢ . XVl Cartesian coordinates
£
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DESCRIPTION

ratio of characteristic time scales

boundary layer thickness

percentage of error

kinematic viscosity

density

dummy variable in integration, time

angular position with respect to stream axis

ratio of fluid inertia forces to particle drag forces

distance between a streamline and the sphere when ¢ = 90°
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initial condition

pertaining to the particle
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1, INTRODUCTION

In the testing of underwater vehicle models designed to sustain extended
regions of laminar flow, there have been numerous instances where drag
perturbations have been seen as well as other manifestations of turbulent
patches passing over the models., The origin of these turbulent patches

is not known, but there is considerable speculation that they may be at-
tributable to suspended particulate in the underwater vehicla's environ-
ment. It is important to pursue this matter since all vehicle environ-
ments, including the ocean, contain particulate that can therefore be of
consequence to drag, heat transfer and other aspects of laminar flow tech-
nology.

The method presented herein is based on the premise that patches are
generated by those particles entering the laminar boundary layer of the
vehicle that are sufficiently large to trigger a turbuient event. Since
the triggering mechanism is not known, the choice of a critical particle
size will involve some empiricism.

Implementation of this procedure requires that, first, an estimate be
made of the rates at which particles of different sizes and densities
enter the boundary layer. This, in turn, requires a calculation of their
trajectories, as a function of their size and density, in the inviscid

flowfield of the vehicle. For each combination of size and density, a
"Timiting" trajectory that just grazes the edge of the boundary layer is
jdentified and all particles within that limiting trajectory are assumed
to enter the vehicle boundary layer, The ingestion rate of particles
into the vehicle boundary layer can then be obtained by integrating over
the size and density distributions of the particulate. If one assigns

an efficiency factor for generating a turbulent event-to each combination

of particle size and density, then the turbulent patch generation rate
can be estimated.

e - e
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The trajectory calculation procedures presented herein, of course, are

3
applicable to any situation that depends on the ingestion rate of par-
ticulate into a boundary layer; for example, the clogging of suction
slots or porous surfaces, or surface erosion.
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2. EQUATIONS OF PARTICLE MOTION

When a suspended particle is moving relative to a surrounding fluid,
there are several different hydrodynamic forces which act on it. In
this study, all particles are assumed to be spherical in order to sim-
plify the determination of these forces. Also, since our interest is
in the 1imiting trajectories that just graze the boundary layer, the
particles are assumed to be at a sufficiently large distance from the
vehicle so that boundary layer and wall corrections to the particle
motion are negligible.

Particle trajectories have been calculated for heavy particles moving

in a gaseous flow field (Morsi & Alexander (1972) and Michael (1968)).

In their derivations of the equations of particle motion, unsteady forces
were neglected because of the extremely high value of the particle-to-
fluid density ratio. For nearly neutrally buoyant particles. all of the
hydrodynamic forces which act on the particle should be considered in
determining its motion. In the limited amount of available literature,
the equation of motion of the particle is not always correctly presented.
We, therefore, will develop the complete particle motion equation in a
moving fluid in this report. However, it is instructive in the develop-
ment to consider first the case of particles moving in a quiescent ambient
fluid.

2.1 Motion of a Spherical Particle in a Still Fluid

A good account of this classical work is given by Yih (1969). The equa-
tion of motion for a particle starting from rast is

B e e g
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In the present situation, each particle moves in a straight line in the dir-
ection of the gravitational force. The terms on the right hand side are,
in order: the force caused by the particle's "virtual mass" (i.e., the
' inertia of the fluid surrounding the particle); viscous drag according to

Stokes' law; the so-called "Basset" force, which relates to the time his-

tory of the past acceleration of the particle; and tho buoyancy force. Note
that the virtual mass is f% dzpf, exactly the same as for irrotational mo-
tion. The analytical solution of equation (1) is also presented in Yih's

T book.

2.2 Motion of a Spherical Particle in a Moving Fluid

The extension of equation (1) to particle motion in a non-uniform flow
is not straightforward. The principal difficulty lies in the accelera-
' tion terms. It has been established analytically by Symington (1978)
1 that for an inviscid non-uniform flowfield, the forces acting on a moving
" sphere are

* This equation is valid only for a Tow Reynolds number flow. Odar and
Hamilton (1964) found that for a sphere undergoing rectilinear, simple
harmonic motion up to R,.=62, an equation similar to equation (1) de-
scr1bes the sphere motion well if the drag force is taken to be

d2C Vv 2, where CD"CD(Rr)' Furthermore, when V i// d<< 0.1, ‘the

{ 8fD
coefficients for the virtual mass inertial force (é dvp/dt) and Basset

force (the integral term) are the same as those in equation (1). This

extension a §?11ed to free-fall sphere motion was experimentally verified
by Odar (

Eoroee . . )
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oV, DV, dV
Faigd _F. w3 'p
d 6dprt+12dpf[_t'F]
DV, dV
N T SRS R N e F
6d'p+12d"f[t"“t“] ;
where 2 = 2+ (V.-v) and 4.3 5 (V_+V) are the time rates of change
B 3 f dt 3t p e

along a streamline and a particle trajectory, respectively. The first
term on the right hand side is due to the pressure gradient in the fluid
surrounding the particle. The second term is the force required to accel-
erate the virtual mass of the particle relative to the ambient fluid. Com-
parison of this term with that in equation (1) suggests the replacement of

dv DV dv
o by o B in a non-uniform flow field. This replacement

dt Dt dt av av

f

has often been taken to be (TET = gt

The latter replacement suggests the hydrodynamic force arising from the

), for instance, see Hinze (1959).

relative acceleration is in the direction of particle trajectory, which
we regard as erroneous.

Another generalization is to extend the treatment of the viscous drag
force beyond the Stokes' flow regime, since we expect that, for a large
and dense particle, the Reynolds number based on the relative motion could
be of order unity or larger. Thus, the generalization is,

: v V)

Viscous force acting on the particle = % d CDpf!V% - Vpl(V% - Vp

The drag coefficient, CD’ as a function of Reynolds number as presented by
Morsi and Alexander (1972), is given in Appendix A.

The equation of motion of a spherical particle in a non-uniform flow field
as generalized from equation (1) is therefore ‘
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3 o 3 f . 3%1 f e e
= d i = Ol T Slle = 0
6° % at ~ 6P BTt 7P {3(Dt )t 2g VeVl (- T)
y rtoov, 47
T 1 - .
17 Dt dt (t-T)2 3 Cf ‘

Terms inside the braces in equation (2) correspond to those in equation (1).

A major assumption made in the derivation of equation (2) to describe the
motion of a spherical particle is that the particle size is much smaller
than the length scale of the flow field. This assumption excludes apply-
ing equation (2) when the particle enters the laminar boundary layer of

a vehicle. However, since only the capture rate of particles is of in-
terest in this study, the detailed trajectory after a particle penetrates
the boundary layer edge is not necessary.

Equation (2) is to be solved numerically to obtain a particle's trajectory
and velocity. For a given body, the surrounding potential flowfield and
the boundary layer thickness are presumed to be known either analytically
or numerically. Since Vp is expected to be quite close to V%, the numeri-
cal error in solving equation (2) could be quite large if it were to be
solved directly for Vh. The accuracy would be higher if the relative
velocity between the particle and the fluid were solved for instead. De-
fining the relative velocity to be

u s Vf- Vp , and noting that

* See footnote, page 3.
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equation (2) becomes, af'er rearrangement,

dw, 3% —-. 18Vu/m e S
-(R+ lu|u+—-—-— a-:+( )Vf T
2(2s+1)d (2s+1)d g (t-1)7
+(— _ 2(s-1) Vf) . V% 4 2(s-1) é B . (3)
2s+1 2s+1

where s = op/pf is the ratio of the particlie's density to the fluid den-
sity. The meaning of the individual terms in equation (3) should be self-
explanatory by now. This is a nonlinear integro-differential equation.
With s = 1, the trivial solution u=0 exists; this implies that a neutrally
buoyant particle, even though it is not deformable as is a fluid particle,
always follows a streamline. This trivial solution has served as a check
for the numerical code developed to solve equation (3) and as a baseline
for choosing the proper time increment. The integrand of the "Basset"

term is singular at t=t, which poses some numerical difficulty. However,
the integral is bounded because the denominator of the intearand approaches
zero as t™ 2.

As seen from equation (3), when s>>1, the effects of the virtual mass,
viscous drag and "Basset" force are negligible, and the rate of change
of the relative velocity is balanced by the inertial force of the fluid
and the gravitational acceleration. When s is of order 1, all terms are
important in the trajectory calculatio=. The scaling parameters of the
particle motion are discussed in Appendix B. In order to compute the
particle position, the relation
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must also be integrated.

For reasons explained in Appendix C, equations (3) and (4) were solved
separately rather than simultaneously. Equation (3) was solved by an
improved Euler method. Various methods of solving equation (4) have
been tested for their efficiency and accuracy: these include explicit
and improved Euler methods, and 4th and 6th order Hamming predictor-cor-
rector methods. For reasons to be explained in Appendix C, the 4th order
Hamming predictor-corrector method was chosen. The numerical solution
was obtained using a Cartesian coordinate system and the details are re-
ported in Appendix C for any interested readers.

e 4 = — -
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3. PARTICLE ENTRY INTO THE BOUNDARY LAYER OF A SPHERE

To demonstrate our method of estimating the generation rate of turbulent
patches within a boundary layer, we chose a sphere as the submersible be-
cause its flowfield is known analytically. Although the results for a
sphere are not necessarily applicable to other vehicles, the methodology
developed here, is.

3.1 Flow Field Description

To determine the entry rate of particles into the sphere's boundary layer,
it is only necessary to determine the cross-sectioral area enclosed in the
free stream by those particle trajectorieswhich just graze the edge of the
boundary layer. A1l particles that pass through that cross section will
eventually enter the boundary layer of the sphere. This cross-sectional
area is termed the "capture area", A_, and its boundary, "the capture

C
height", Yc’ which is the radial distance from the stream axis.

Figure 1 describes the features of the computation of capture height, Yc.
For near-neutrally bouyant particles (s=1.01) the 1imiting trajectory
tends to be tangent to the boundary layer edge at ¢ = 90°. For s= 2.5;

the 1imiting trajectory offen grazes the boundary layer edge at some angle
4 less than 90°. The larger the particle density the more the turning of
the particle trajectory lags the turning of the streamlines. The origin
of the coordinate system is fixed at the center of the sphere: X is along
the direction of the horizontal free stream velocity, U_; Y is opposite to
gravity; and Z is perpendicular to X and Y. To simplify the computation
only the fluid and particle motion in the meridional plane containing

both X and Y axes is considered '

The radius of the sphere is 15.24 cm (0.5 ft). The particle trajectory
calculations were always started at X =-1.52 m (-5.0 ft), and each
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trajectory was calculated to impact or to X =0, whichever came first.
It is obvious that there are two values of Y - one for particles which
go up over the sphere and the other for which they go below the sphere,
These are denoted as YC1 and Yc2’ respectively. The capture area, A
is taken to be

C’

_ W 2
Ac 7 (Y )

-Y (5)

el 2

The Taminar boundary layer thickness on the sphere is determined by the
relation

5(¢) = f T (1.5+.000119 - ¢%),  0° < ¢ (deg) < 90°

which is an empirical fit of the results of the series solution presented
by Schlichting (1968).

The effect of the Basset force and the apparent mass on the particle trajec-
tories is assessed and reported in Appendix D. It is found that the exclu-
sion of those terms in the computation can introduce large errors in the
trajectories of large near-neutrally bouyant particles.

3.2 Capture Area for s = 1.01

The capture area was calculated for particles of s = 1.01, with eight
particle sizes and five freestream velocities. They are:

a
I

= 10, 30, 50, 75, 100, 175, 225, and 300 um,

3.05, 6.10, 9.14, 12.19, 15.24 m/sec
(10, 20, 30, 40, 50 ft/sec)

o
]

vj;'. X
ad x>
Py 2 A1
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The results are shown in Figure 2, At a constant velocity, AC is rela-
tively constant for small particle sizes, then increases monotonically
with larger particle size. This is expected because small particles,
more or less, follow a streamline, whereas for larger particles, it is
more difficult for the flow to change their courses, so a larger capture
area results.

For small particle sizes, the value of Ac is larger for lower velocity
which is a manifestation of the fact that the laminar boundary thickness
is inversely proportional to the square root of the free stream velocity.

Figure 3 shows the capture height on either side of the center streamline
versus the particle diameter. Values ot YC are normalized by \/3?7, while
d is normalized by & where & is the boundary layer thickness at ¢ = 90°.
Within the accuracy of computation Yc//'\fgz'versus d/& can be fitted by
two straight segments on a log~log plot. The relation between YC//‘[E?T
and d/& is:

Yc
—— =1.82 for d/8§< 0.4 -

‘/;‘- (6)

Y
€ = 3.3 (d/s)0-8° for d/6>0.4 .

Ny

The corresponding relation between the normalized capture area, AC//waé

and

and the normalized particle diameter d/& is:

A
€ =3,31 for d/&§<0.4
maéd
and i (7)
€ <109 (4/8)13  for d/s>0.4 .
mad
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which is plotted in Figure 4, For a particle that exactly follows a
streamline, the theoretical value of Ac/naé 1S 3.

The use of the fit of the numerical data for Yc’ rather than the data
themselves, is to minimize the effect of computation errors, since YC1
and YC2 were computed separately. The justification for scaling d with
3 is developed in Appendix B.

It should be noted that the deviation of Ac \/nad for d/&§< 0.4 from the

theoretical value, 3, is primarily the consequence of the discrete nature
of the numerical procedure as described more fully in Appendix C.

3.3 Capture Area for s>1.01

In order to simulate testing in the particulate environment of a tow basin,
capture areas for particles with s=1.5, 2, and 2.5 were calculated at
U_=15.24 m/sec (50 ft/sec). Results are shown in Figure 5. In contrast
with the results for s=1,01, the capture area decreases with particle
size for d/§<0.2, and the difference in magnitude is substantial between
Ac's for different density ratios, especially s+ 1.01 and the rest. For
d/§5> 0.2, AC increases with d and seems to fall on one straight line for

all density ratios s on the log-log plot.

The validity of the definition of capture area (equation (5)) for higher
density ratios is verified by computing the width of the actual capture
area. The deviation of the ratio of height to width from 1 (circular shape)
may conceivably arise from the gravitational force acting on the particles.
To compute the width of the capture area, we simply eliminate gravity in
computing Y 4 (YC2= Yop» of course). The ratio of height to width

LTS Y Y. sl
o R - : -
J fw1th grav1ty///P ¢l cz‘without gravity

e oy e
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was computed for s=2.5, U_=3,05 m/sec (10 ft/sec) and 15.24 m/sec

(50 ft/sec), d=30, 175, and 300 ym. It is practically unity indicating
that the gravitational force is not important in determining Ac and,
hence, the use of AC for all density ratios studied here is justified.

For s=2.5, Ac was calculated for other free stream velocities; the re-

sults are shown in Figure 6. Similar to Fiqure 5, Ac/naé decreases with
d/& first before it increases and then collapses onto a straight line on
the log-log plot. As with Figure 5, Ac/waé for s>1.5 is found to have

a power-law dependence on d/§ when d/8>0.2; the exponent is 1.7 in con-
trast with 1.3 for s=1.01.

3.4 Maximum Relative Reynolds Number

In a potential flow, the inertial force of a fluid element moving along

a curvilinear streamline is balanced by the pressure gradient acting on
the element. For any particle whose density is different from that of

the fluid, relative motion between the particle and the surrounding fluid
results from the force imbalance; and the particle deviates from the
streamline. A Reynolds number, R, defined by ghe magnitude of the rela-
tive velocity and the particle diameter helps to determine the nature of
the flow about that particle. This Reynolds number was calculated at
each point on the particle trajectory; however, only the maximum R, is
shown here. Figure 7 shows (Rr.)max along the trajectories of those par-
ticles past Y1 for s=1.01. Except for U_=3.05 m/sec (10 ft/sec), where
the data become questionable because of the large tolerance” in the compu-
tation, (R,.)max varies as (d/é)3. When (d/8)>0.34, (R")max is always
greater than one indicating that the generalization of drag force beyond

the Stokes' regime is necessary.

* See the last paragraph of Appendix C.
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For particles within the capture area, (Ry) is expected to be larger

than shown in Figure 7, because the particlzzxnow go closer to the stag-
nation point and can experience larger relative velocity. Thus, the re-
sults presented in Figure 7 represent a maximum relative Reynolds number
that a particle would experience along its trajectory if it just grazes
the boundary layer. It was estimated from our computations that (R,.)maX
for particles of a similar size but going into the boundary layer is

about 2-3 times as large as shown in Figure 7.

Figure 8 shows (Rr)max for all particle densities at U_=50 ft/sec. In
contrast with the results for s=1.01, (Rp) ..
No proper scaling has yet been found to further collapse the computed val-

for s>1,5 varies as (d/5)2.

ues shown in this figure.
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4. GENERATION RATE OF TURBULENT PATCHES

The method presented here for estimating the generation rate of tur-
bulent patches is based on the premise that patches are generated by
those particles entering the boundary layer that are sufficiently
large to trigger a turbulent event.

! ' Assuming that the distribution of particles in the vehicle environment
k is homogeneous, the particle size distribution can be characterized by a
single function n(d), wheie n(d)ad is the total number of particies per
unit volume within the diameter interval (d, d+Ad). For a typical
environment, the function n(d) is taken to be

n(d) = BdP
l where the exponent p is evaluated from a best fit to tow tank or

oceanic data. The unknown constant, B, is related to the total number of
particles per unit volume, N, whose diameter is larger than dm‘

!

: . 8 o 1sp
“ N f n(d)Ad’ = b1 dm
d

m

. B = N(p- p-1
S+ B = N(p-1) d_

+ Because of notational difficulties, the differential of d appearing in
the integrand is denoted Ad.
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Given the capture area, Ac(d), for one density ratio, the total flux
rate of particles of diameter greater than dm entering the boundary layer
is 2
U, J Ac(d)n(d)Ad
d

m

Among those particles which enter the boundary layer, only a fractjon of
them will generate turbulent patches. This fraction, n(d), which will be
referred to as an "efficiency function" hereafter in this report, varies
between 0 and 1. Then the total generation rate of turbulent patches is

F = Uwf A (d)n(d)n(d)ad (8)
dm
With n(d) = Bd™P
F= N(p-l)dmp—l uwj AC(d)n(d)d'pAd. (8a)
d
m

Equation (8a) can be evaluated only if n(d) is known. However, Since

the detailed mechanisms of the generation of turbulent patches by particles
are not known, the evaluation of n(d) will be approached in a simple

way.

Considering a particle to be a moving roughness element suggests that

the efficiency function should depend on the normalized particle diameter,
d/s. If one further assumes that turbulent patches occur only for large
particles where (d/8) > (d/8), , then the generation rate can be estimated.
The capture area defined in equation (7) for large particles is generalized
to be )

™
» g =
Al %tl .
W o Ty 18




where (%) = 0.4 and m = 1.3 for s=1,01. For simplicity, let the
r

efficiency function be unity for (d/s) > (d/¢) and zero for

crit

d/s < (d/é)crit' Then, for (g) .t:>(9)
cri r

7.
(p-1)Nd P-1 ( i )u mag””P 1
m mad r d m p-m-]
d
(5) (p-n-1)(¢)
r “lerit
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It is seen that the generation rate depends on ”Qp/2 where p is the
exponent in the particle size distribution function.

For p=5, the patch generation rate varies as Um2.5.

Further, if N=30
partic]es/cm3 with qn= 16 ym and s=1,01, the patch generation rate at
U_=50 fps is 117 patches/sec for (d/as)cm.t = 0.4 and 10 patches/sec for
(d/é)cﬁ.t = 1. Accepting the concept of a particle as a moving roughness
element, a critical particle diameter of the order of half the boundary

layer thickness is considered to be quite plausible.

In any environment, the particle size distribution function may depend
on time, depth and location. It should be apparent that a good deter-
mination of this function is needed in order to utilize the method pre-
sented in this section.

Angther approach to estimating the generation rate of turbulent patches
is to postulate some generation mechanisms and apply them in the calcu-
lation of the capture area. The present approach was taken to preserve
the predictability of Ac’ while putting all the assumptions into the
efficiency function.
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5. SUMMARY AND CONCLUDING REMARKS

In this report, particle trajectories around a submerged body, but out-
side its boundary layer, were calculated numerically. To the best of
our knowledge, this is the first time that the Basset force and the vir-
tual mass inertial force have been included in the computation of the
particle motion in a non-uniform potential flowfield. For a submerged
sphere, the capture area defined as the upstream cross-section area
within which particles will enter the boundary layer, was determined
from the particle trajectories. For particles that are nearly neutrally
buoyant, the capture area, Ac/naé is independent of (d/8) for small par-
ticle sizes. When s = pp/cf is large, the normalized capture area de-
creases with (d/&) when (d/8) is small. However, it seems that at large
(d/8), the computed normalized capture areas Ac/ﬂaé collapse together
for all s and vary as (d/S)m.

Based on the calculation of AC, an heuristic estimation method to predict
the generation rate of turbulent patches was developed. To bypass the
unknown generation mechanisms, an empirical efficiency function, defined
as the fraction of particles at certain diameter that generate turbulent
patches, 1is proposed. To simplify the analysis, the efficiency function
is assumed to be a unit step function equal to 1 for d/&> (d/s)crit‘
For a particle size distribution, n(d)ﬂ:d'p, the generation rate, F,
is shown to vary as Ump/Z‘

In order to apply the presented method to the estimation of the generation
rates of turbulent patches in an arbitrary situation, the following three
quantities must be either measured, calculated or assumed:

% particle size distribution function

d)
d
AC T " capture area

n(%) > efficiency function

e ————— -~ —an
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The distribution function n(d) can, in fact, be measured on-site prior

to a field test. Calculation of the capture area for arbitrary bodies

can be troublesome, however, since the calculated flowfield must be known
sufficiently well to enable reliable calculations of particle trajector-
ies. This problem was averted in the case of the sphere because the flow-
field around the sphere is known analytically. Finally, the efficiency
factor which is tied intrinsically to the unknown generation mechanisms

of turbulent patches would be most difficult to determine unambiguously.

It is, therefore, suggested that the presented method be viewed as an
heuristic framework for evaluating drag perturbation and patch generation
data. If the frequency of observed events, in fact, varies as Ump/z,
then the capture area variations for a sphere can be used to provide es-
timates of critical particle size. Clearly, some experimental corrobora-

tion of the predicted trends is needed in order to justify further devel-

opment of the method.
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Figure 7. Maximum Relative Reynolds Number as a Function of Particle Diameter. s=1.01
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APPENDIX B

SCALING PARAMETERS FOR PARTICLE TRAJECTORY CALCULATIONS

Michael (1968), in a study of the flow of a dusty gas past a sphere, found
that the slip velocity between a dust particle and the flow, when normal-
ized by the free stream velocity, scales with Stokes number, which was de-

() (=)

fined as

Z

In his study, the particle drag was described by the Stokes relation. He

also considered the density ratio, s, to be much larger than unity so that
Basset force and virtual mass terms were negligible. For s~ 1, the Stokes
number, which is essentially the ratio of the time scale over which the
velocity of the dust particle adjusts to changes in the surrounding gas
velocity to the flow time of the gas motion past the sphere, should have
a different form. The Stokes number appropriate to our case can be ob-
tained through careful examination of equation (3).

!
With the particle drag approximated by the Stokes relation, equation (3) is
rewritten as

t
0. My e SONNT [dr n ] dt e

-+ u+ =+ (uV)V + (UV)V
dt  (26+1)d? (2s+1)d dt ] (t-1)% f
2s+1 2s+1

Terms on the left hand side (LHS) are all related to u and the terms on the
right hand side (RHS) are independent of u. In other words, equation (B1)

Y A b A
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is a system of nonhomogeneous, first-order, integro-differential equa-
tions for u, with the terms on the RHS as forcing functions. In order
to estimate the relative magnitude of UYUm, a normalization scheme is

required.

For the time being, we will leave out the integral term in the estima-
tion of W/U,. Let =Y Uu',V,=UTV,, X=ak', and t =1 t', where u'
Vf‘, X' and t' are dimensionless quantities of order unity. Y character- |
izes the relative magnitude of the slip velocity to the free-stream speed. 1
The above normalization implies 7’=%-Y'. A1l terms in equation (B1),

except the integral term are now normalized according to the scheme and
after all coefficierts are divided by the coefficient of the first term
on RHS and primes are dropped for convenience, equation (Bl) becomes

C1 -5t C2 u + Ca( u-V)Vf = (Vf-T)Vf + C5k . (B2)
where
c. = {2stl)ay
1| x ?
2(5-1) Uml
_ 18vav
C2 = ’————é_ . i
(s-1)u_d
£, = (2s+1)Y
4 |
2(s-1)
= 9a_
C5 : >

=]

The coefficient, Cs> which is an inverse Froude number, is much smaller
than unity even at the Towest vehicle speed considered which indicates
that the gravitational effects on particle slip are negligible when com-
pared to the effects of fluid inertia in the non-uniform flowfield.
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There are two time scales involved in equation (B2) that can be estimated,
without losing generality, by equating C1 to C2 and to C4, respectively.

They are
7, = igiillﬁi and
1 36 v
12* = 2

*
It is clear that 3] is the time scale on which the particle adjusts to
the external flow by viscous force and T;' is the characteristic time
associated with the flow past the sphere. Their ratio, Z,

: - L};.= S4  [2s#l) (Efi) (9)2 (83)

N a

is much smaller than unity. The numerical difficulty associated with
this property is discussed in Appendix C. Since e is small, the third
term (of equation (B2)) on LHS is not important in assessing y. Without
losing generality, we can equate C2= 1 (which implies the balance of the
first forcing term on RHS and the viscous term on LHS (in equation (B2))
to define v: ¥

el

This definition of y is very similar to the Stokes number of Michael,
except for the factor involving s. They are, of course, approximately
the same for ss>>1. Figure Bl shows all the normalized capture areas
plotted against Y%. t is seen that all data with fixed s collapse
rather well, but segretate according to the density ratio at large v,
indicating some other physical processes other than the viscous force

is dominant. For Y% less than about 10'2, the particles follow stream-

lines.




-

Now that we have a measure of the slip velocity without the Basset force.
Based on this information we can now estimate the magnitude of the Basset
force.

Applying the same normalization procedure as used to obtain equation (B2)
to the Basset force term yields

t *U
du B e "
o .f - * (u -T)Vf a1 - (B5)

where

C3 g 4 " Ya (B6)
s-1 T de

In equations (B5) and (B6) we still have the liberty of choosing either of

rf or :; to be =*. For either one of these two time scales, the sum of

the bracketed terms in equation (B5) remains of order unity; however, C

3
has different values for the different values of r* chosen. These C3's are

_ 3 o S
C3 T —— for T = 3 , and

(2s+1)7 ‘

1
1 UaZ
i 9w]2_1(uc)(d) * o«
Cy = | ==L ==} &) for © =1).
3 [2(5-1) z v v 2

The first C3 is of order unity for the density ratios that we are consider-
ing, implying that the Basset force is as important as the inertial force
of the fluid in determining u in the short time scale, For the longer time
scale, the second C3 may also be of order unity when U_ and d are suffi-
ciently large. This implies that the second C3 is another important scal-
ing parameter for the trajectory calculation.
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In the text, the particle diameter is always normalized by & at ¢ = 90°.
This collapses the numerical results fairly well. This fact is, however,
somewhat mystifying since & does not appear in the scaling of terms in
equation (3). However, d/8 can be written as

1
%
fa\) 2.46 Vv
2.46 .

which is functionally similar and numerically close to the second C3 in

)

o

equation (B7). Thus, the scaling of normalized capture area with d/& is
equivalent to scaling with Y% for a fixed s. For very small Y, we expect
the viscous force is dominant so that 7Y(or YB) is the appropriate scaling
parameter; for large d/&, we expect the Basset force to be dominant, so that
d/8 is the correct scaling parameter . The former statement is supported by
Figure Bl, and the latter statement is supported by Figure 5, where results
of different density ratios are plotted together. For intermediate par-
ticle size, both viscous force and Basset force are important so that nor-
malized capture areas do not scale with either Y or d/§.

3
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APPENDIX C

NUMERICAL SOLUTION METHODS OF PARTICLE MOTION

€.1 Considerations for Numerical Formulation

The motion of a particle is described by its instantaneous velocity,
Vﬁ, and location, Yb. Instead of directly solving for Vb, the rela-
tive velocity between the fluid and the particle, u, is computed in
order to improve numerical accuracy. The set of equations describing

the particle motion is then,

— rt
s r _
dyr . 3 e A ~D lu * 18 Vv/7 cu | (i VT c-
iy = ! — et \ -
dt. " 2 7zs*D) @ (zs-1)e | |¢c= 3 Ermar
(=7
6]
(3)
— Zlis=1 = - Sl o) =
T 'J-L,(ls "\_)."‘\‘.L‘}_S A o
CS°EL T T Zs+l  °
for the reletive veiocity, and
X
: U (4)

for the particle location.

Equations (3) and (4) are too complicated to be solved analytically and,
thus, should be solved numerically. Before any numerical methods are
chosen, the properties of equations (3) and (4) should be examined.
Equation (3) has two kinds of numerical difficulty:

(1) There are two time scales involved - one for local particle
dynamics and the other for flows over the submerged body, and

(2) the integrand of the Basset force term is singular at t=t.
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Equation (B3) gives the ratio between the time scales in (1). For
instance, given s = 1.01, U, = 10 m/sec, a = 0.15m, d = 100 um and

vV =1x 10'6 m2/sec

* 2

T U a
2 = 1 — (25+1) = ) g =
Bl ( =) (S} = 0.6,

where Tl* characterizes the particle dynamics and 72* characterizes the
flow over the submerged body. This example shows that there is a large
disparity between the magnitude of Tl* and 72*.

f a small enough time increment jis chosen to resolve particle dynamics,

it would take a great many steps to compute a particle's trajectory about
the body. This operation is relatively expensive. On the other hand,

p when a large time increment is chosen, the numerical computation is

very likely to be unstable. In numerical jargon, equation (3) is said

to be "stiff." Stiff equations should be solved implicitly™ to improve
numerical stability for relatively larger time steps.

The singularity in the integrand of the Basset force term at t=1t can be
resolved by approximating its bracketed part with a straight line in
1 each time interval, and then integrate analytically within each interval.

-

’ The essence of this method is shown in the relation,

& 1
f " f(r)dr _ i flo)dr 4 % [g £ .+ %— f ] » {LC1)
: tn'T rz;:;— 3 'n-1 n

> o

{ € where h is the time increment and fn is the value of f evaluation at tn. The
{ : same process can be continued for as many time steps as needed to remove

[ the steep gradient associated with the singularity. The remaining integral

s can be evaluated by any standard method.

M

* Implicit numerical methods usually mean that the difference equation of
the corresponding differential equation is nonlinear and should be solved
‘ iteratively.

™ " .
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With the implementation of the above method to remove the singularity of
the integrand, the improved Euler method coupled with the Newton-Ralphson
method to solve nonlinear algebraic equations (Carnahan ez 47,1969), is
utilized to solve equation (3).

An explicit Euler method, an improved iterative Euler method, and 4th order
and 6th order predictor-corrector methods have been tested to solve eguation
Based on the accuracy of each method, the 4th order predictor-corrector
method was chosen. More of the comparison between numerical methods is
discussed Tater in this Appendix.

There are two reasons why equations (3) and (4) were solved separately,
i.e., by different numerical methods. First, the computer cost was re-
duced in so doing. The improved Euler method used to solve equation
(3) has low accuracy and, thus, should be iterated. Since computation
cost increases with number of iterations and the number of operations
in each iteration, it is more economical to utilize the 4th order pre-
dictor-corrector method to solve equation (4) with only one iteration.
Secondly, the Newton-Ralphson method which is coupled to the improved
Euler method to solve equation (3) would require the existence of the
second order spatial derivatives of the velocity field. For an arbi-
trary body, the flowfield is given numerical]yf The spatial differen-
tiation of the flowfield would introduce numerical difficulty in gener-
ating the flowfield. Since we would Tike to extend our calculation to
arbitrary bodies in the future, the present approach of solving equaticns
(3) and (4) by different methods was adopted.

The detailed numerical formulation is straightforward once the numeri-
cal methods are chosen. Interested readers are referred to Carnahan
et al. (1969).
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C2. Error Estimate and Time Increment of Numerical Computation

A numerical code was developed to integrate equaticns (3) and (4).
The first check case was to calculate the trajectory for a particle
released from rest in a still fluid. The parameters were carefully
chosen so that the particle motion stayed in the Stokes' flow regime.
The result was compared with the theoretical solution in Yih (1969).
The agreement was excellent.

Since there is no analytic solution for the general case of particles
moving in response to the flow around a body, we resorted to the tri-
vial case of neutrally buoyant particles (s=1) released with no rela-
tive velocity and whose trajectories should be identical to streamlines.
For the case of wuniform flow over a sphere, the equation of the
streamline is in the form

y _
(IF- - %) sin2¢ = sz A (C2)

where r is the radial distance from the origin and Y_ is the distance
between the streamline and the centerline far upstream of the sphere.

At the top of the sphere (¢ = 900), and when r is infinitesimally greater
than a, i.e., r=a+¢g , equation (C2) reduces to

2

v.2 = 3az + 0(c7)

(C3)
If the streamline is integrated by numerical methods, the fluid particle
would reach ¢' (and ¢' # ) at the top of the sphere because of all the

errors accumulated along the path. The error of the numerical computa-
tion is then defined as

e (%) = 5—‘—(;§lx 100 . (ca)

I "A;';" e
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(Inthe context of computing the capture height, Y_ and C are set to be
Yc and 3, respectively.) Then ¢ is used as the criterion to compare
the error of various numerical methods and to determine the time incre-

ment.

Figure Cl shows ¢ versus time increment for various numerical methods
used to solve equation (4). The &§ at U_ = 15.24 m/sec was chosen for
the computation of e, and the corresponding Yc was 10.73 mm. The ex-
plicit Euler method resulted in the worst accuracy. The improved Euler
method already improved the accuracy considerably. The fourth and sixth
order predictor-corrector methods, which are the best of all methods,
had the same accuracy. Since the sixth order predictor-corrector method
used more computer time, we decided to use the fourth order method.

The time increment chosen was 4 x 10'4 sec which had an error of 16 per-
cent. This error is only 0.027 percent in conventional definition when
the denominator in equation (C4) is replaced by (a+¢z).

At this time increment, there were about 350 computational steps for
each particle's trajectory in an external flow of 15.24 m/sec. When
the external flow was slower, we increased the time increment so as to
keep the number of computational steps to be around 350 in order to cut
down computational cost while maintaining simiiar accuracy.

We also observed that = is an oscillatory function of Y_ , as shown in

Figure C2. ¢ oscillates between 36% at Y_ = 0.91 cm to 5% at Y_ = 1.55 cm.

Since the smallest Y _we are interested in is 1.07 cm (corresponding to
§ = 0.267 mm and U_ = 15.24 m/sec), we could set an upper bound for e of
25 percent.

For neutrally buoyant particles, Y.; =Y. = Y. Thus, the capture area
Ac is linearly proportional to ¢:

(v 2 v 2} =2 = 3nas .

A = cl™ 'e2 ¢
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Consequently, the computational error of AC is also described by ¢,
having an upper bound of 25 percent.

Since € is always positive, indicating ¢>¢', i.e., the computed trajec-
tory lies between the corresponding streamline and the sphere, this
systematic error prompted us to apply an heuristic correction. We used
an iterative scheme to search for YC. The criterion for stopping the
search was when the distance between the particle center and the bound-
ary layer edge was less than 10 percent of the boundary layer thick-
ness. By requiring that the particle should always approach the bound-
ary layer edge from outside, a certain amount of systematic error was
offset by this correction. It is observed that the numerical error in
computing AC is about 10 percent, much less than the upper bound of

25 percent.
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Figure Cl. Percentage of Error for Different Numerical Methods
A, Explicit Euler Method; [OJ, Improved Euler Method
O, Fourth Order Predictor-Corrector Method;
> 5 Sixth Order Predictor-Corrector Method
U_=15.24m/sec (50 ft/sec), d=30 m, s = 1.01
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APPENDIX D

EFFECTS OF BASSET FORCE AND VIRTUAL MASS

In the numerical code of calculating the particle's trajectory, there
is a provision to incapacitate the contribution due to Basset force and
virtual mass in order to study their individual or combined effects.
The error associated with the exclusion of these terms is defined as

8- &
x 100%

B = g =

Note that (a+&) and (a+3') are the intercepts of the particle trajectory
with the Y axis for the same initial location upstream with or without
Basset force and/or virtual mass.

Figure D-1 shows the percentage of error as a function of particle diam-
eter for the case of s=1.01, U_=15.24m/sec (50 ft/sec) and h = 4 x 10*4
sec. For d<100um, the error is less than 10%, which is comparable to
the computation error. The error increases sharply to more than 2000%
at 225um, then it comes down to 70% at 300um. It is observed that the
effect of virtual mass is not as strong as that of Basset force. Since
large particles are expected to disturb laminar boundary layer, the gener-
ation rate of turbulent patches would have a large error if Basset force

and virtual mass are excluded from the particle trajectory computation.
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