
AD4071 795 GEORGIA INST Cc TECH ATLANTA SCHOOL Cc IPEORNATION A—ETC Ffl 9/2
ICS FOR DETERMINING EGO! OF PROGRAM SJTATIONS.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

I
END I

8 -79
DOC I

4

I

N -~



L 1111

I., L~

25 111)1 1 .1 11111 ;

. :~ ; :‘



—

~~O / 59i O.3-A~~~

LEVEL’

:-

i

~~~~~
J
~~7

C . -)
_ _ _ _ _ _ _

~1HV VIEW OPINIONS, APJDJOR FINDINC~ ~~~~~~~~~~ IN THIS REPORT

AR E Th3&~ ~ F

AN OFFtCIAL~~~~
,
~~~~. ’ l -

GISION, UNLES3 &O ~~~~

YALE UNIVE RSITY
DEPARTMENT OF COMPUTER SCIENCE

—~~~ ~~~~~~~~~ 0 7-  ~ 4 A~ 5 I~.



---—
~~~~~

-
~~~~

-
~—~~: ~ ‘~~~~~~~ ‘ -  

Heuristics for Determining Equivalence
of Program Mutations

Douglas Baldwin and Frederick Sayward

Research Report #161

April 1979

This research was supported in part by the Army Research Office under
Grant DAAG 29—78—G—012l to the Georgia Institute of Technology School
of Information and Computer Science, subcontracted to Yale University.

• 1 O~J~



S E C U W I 9 Y  C L A S S I I I C A T I O N  ~~r T Il l S WA G E  (*~ on D.i. Enl.r.d)

, D
~~

D
~~~

T I~&EI.ITAYI(hl DA (~~ READ INSTRU CTIONS
,~ i ~~~~~~ ~~~~~~~~~~~ i~ I ~~ I ‘~~~i 1

~~~ BEFORE COMPLETING FORM
9 NEPOW~ Pd~~Mea~~/ 2. GOVT ACCESS I ~— T ~~tWT~s CATALOG MUWuc w — —

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
t ., Jt~Jt~~~~

.
* ~~~~~~~~~~~~~~~~~~~~ - ——----..

~

—

~

...- . .————--—.—.1 ~~~_ ~~~
_-

~~~-—~~ ~~~ n us*r J. -~~ .‘ CO vEI~IV~

~~~~~~~~~~ Heuristics for Determining Equivalence I
j  technical

of Program Mutations v 1
- -I 

6 PERFORMING ORG. REPORT NUMBER

7. A R i  4. C O N T R A C T  OR GRANT NUMB(R(.)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~ AACJ9-78-G-~~~ I7

S PERFORMING O RGA N I ZA T I O P . hA M E AND ADDRESS 90 . PROGRAM ELEMENT. PROJ ECT . TA SK
A R E A A WcRK UNIT NL~ - ‘ D EW S

Yale University
Department of Computer Science
POBON 2~15R , N.~w I4avpn , C~nn np e r 1 r n t I flF~S7fl ___________________________

II CONTI4I.LLING OFFICE NAME AND ADDRESS .

Army Research Off ice
~~~~~~~~ 

Apr$. $79/
I) NUM BER ~~ W AG ES

I I U  ~~~~~~~~~~~~~~ NAME A ADD RESS I J ( dl t I . I .n t  I,om Controllln4 Oflic.) ¶ 5 .  SECURITY CLASS.  (ol IAI• ~•~ o?f ~

/1

~~~~~~~~~ 

unclassified
95.. DECLASS IFICATION DOWWGRAD w~~SCh EDULE

¶6 D; STRIE ~~T IO p. ST A T E M E N T (of thi, R.por) -

Distribution of this report is unlimited .

(~TZ~ 7-f~~--4-/t/
‘7 . O ISTRIBU T I O N S T A T E M ENT (of Sb. .~.a~racl .nt.r.d In Block 20 , ii diII.rwt Iron, 5,

8 S U P P L E M E N T A R y N OTES

99 . KEY WOR DS (Conilnu. on riv•r.. aId. II n.c.S.arv ond ld.flIIIy Ar block numb.,j

program mutation

20 A S S T R A C T (Contlnu. on ,.v.r,. aId. If n.c...ar) ’ aid ld.ntify by block nuab.r)

A mutant M of a program P is a program derived from P by making some well def ined
simple change in P. Some initial investigations on automatically detecting
equivalent mutants of a program are presented. The idea is based on the observa-
tion that compiler optimization can be considered a process of altering a program
to an equivalen~t but more efficient mutant of the program. Thus the inverse of
compiler optimization techniques can be seen as, in essence , equivalent mutant 7,1
detection.

DD ~~~~~~~~ ~473 EDITION OF I NOV 6 9 9 ~~ ~“
r u.L

~ -.-,

I
HEURISTICS FOR DETE RMINING EQUIVALENCE OF PROGR AM MUTATIONS

Douglas Baldwin —..-------------- -.-----

and

Frederick Sayvard —J.’~ j ’--~. -
~~~~~

Department of Computer Science D is t  /~~~~~~~~~~
5 !

Yale Un iversity / ~ - a 1
New Haven , Connecticut 06520

ABSTRACT

A mutant of a program P is a program M which is derived from P by making
some well—defined simple change in P. Some initial investigations in the
area of automatically detecting equivalent mutants of a program are
presented . The idea is based on the observation that compiler
optimization can be considered a process of altering a program to an
equivalent but more efficient mutant of the program . Thus, the inverse
of compiler optimization techniques can be seen as, in essence,
equivalent mutatuion detectors.

1.0 INTRODUCTION

A mutant of a program P is defined as a program P’ derived f r om P by

making one of a set of carefully defined syntactic changes in P. Typical

changes include replacing one arithmetic operator by another , one

statement by another, and so forth. Program mutation has been used by

DeMillo, Lipton and Sayward as the bas is for an interac tive program

testing system [2]. The theory behind this system is that a set of test

data T adequately tests a program P if all mutants of P are distinguished

from P by either failing to produce any result or producing a different

result for some element of T. On the other hand , if a mutant performs

identically to P then either T does not fully test the program and

further cases must be developed, or the mutant is equivalent to P.

Obviously it is impossible to develop test data that distinguish between

~ 

_____________ 
- 

- _ _ _ _ _  _ _ _



Page 2

equivalent forms of the same program , and thus it is desirable tha t

equivalent mutants be excluded from the testing process. Unfortunatel y,

user recognition of equivalent mutants has proven to be a difficult and

tedious task. Thus it is important that the system aid the user by

eithe r automatically detecting equivalent mutants or by posing questions

which provide insights on how to do so.

Our goal is to develop heuristics by which equivalent mutants can be

recognized. The heuristics are primarily derived from technique s used to

opt imize compiler code, since the process of optimizing compiler code can

be thought of as produc ing a series of mutants which are equivalent to

the original program. It is thus expected that some of the tests

devel oped to determine when an optimization is equivalence preserving can

be applied to determine when a muta t ion  is equivalence preserving .

Once a bod y of heuristics has been developed to detect equivalence

of mutants it will be possible to develop a program to actually recognize

them in a program testing system. This system will  probably be very

similar to the optimization phase of a compiler. It will generate some

representation of each mutant which can be easily manipulated and apply

the heuristics described below to determine if it is equivalent to the

original. If so then the mutant will be flagged as equivalent and will

be excluded from future testing runs.

2.0 PR OGRAM MUTATION

ass defined above a mutant of a program is a second program derived

from the f i r s t  through carefully defined syntactic transformations.

rrogram mutation is the process of forming mutants from an input program.



——_,___. 
~~~~~ W-_-~~.- ~~~~~~~~~ ~. 

~~~~~~ -,

Page 3

The work described here is intended to find ways of determining

equivalence of mutants derived as part of a process for testing FORTRAN

programs on the EXPER (41 testing system. The mutations made by E~PER

ar e chose n so as to duplica te as closely as possible the mistakes which a

good programmer might make in coding a FORTRAN program . Thus many of the

mutants involved, such as DO—loop end replacement , are specific to

FORTRAN. The mutations of interest are described below :

1. Constant Replacement: Replacement of a constant , C, with C+1 or C—i.

~.x: A—i becomes A—0.

2. Scalar Replacement: Replacement of one scalar by another.
Ex: A—B becomes A—C .

3. Scalar for Constant Replacement: Replacement of a constant with some
scalar var iable
Ex: A—2 becomes A—B .

4. Constant for Scalar Replacement: Replacemen t of some scalar variable
with a constant.
Ex: A—B becomes A—2.

5. Source Constant Replacement: Replacement of one constant in the
program with some other constant found in the program .
Ex: A 3  becomes A—I where the constant I appears in some other
statement.

6. Array Reference for Constant Replacement: Replacement of a constant
with an array reference.
Ex: A—i becomes A—B(1).

7. Array Reference for Scalar Replacement: Replacement of a scalar
reference with an array reference.
Ex: A—B becomes A.C(i).

8. Comparable Array Name Replacement: Replacement of a reference to one
array with a reference to the same element of another array of the
same size and shape.
Ex: A—B(l,3) becomes A—X(l ,3).

9. Constant for Array Reference Replacement : Replacement of an array
reference with a constant.
Ex: 4—8(1) becomes A—3.

10. Scalar for Array Reference Replacement: Replacement of an array
refe r ence with a refereance to a scalar.
Ex: A 1(1) becomes A—C.

—- -- -— -
~~~~~~ ~~~~~~ ~~~~~~~~~~~~~~~~~~ — —-~~~~~~~~~~~ ~~~ 

- — .jj

~~

-

Page 4

11. Array Reference for Array Reference Replacement: Replacement of one
array reference by another.
Ex : A”B(i) becomes A’C(2).

12. Unary Operator Insertion : Insertion of one of the unary operators
(absol ute value) , — (negation), ++ (increment by 1) or

—— (decrement by I) in front of any data reference.
Es: A—S becomes A——B .

13. Arithmetic Operator Replacement: Replacement of one arithmetic
operator (+,_ ,* ,/ ,**) with another.
Es: A—54C becomes A—B—C.

14. Relationa l Operator Replacement: Replacement of one relational
operator (.EQ.,.LE.,.CE.,.LT.,.CT.,.NE.) with another.
Es: IF(A.EQ.B) GOTO 1 becomes IP(A.NE.B) COTO 1.

15. Logical Connector Replacement: Replacement of one logical connector
(.AND.,.OR.) with the other.
Es: A.AND.E becomes A.OR.B.

16. Unary Operator Rem oval: Deletion of any unary operator.
Es: A— ’B becomes A-B.

17. Statement Analysis: Replacement of any statment with a trap
Statement whose execution causes immediate failure of the program .
Ex: COTO 2 becomes CALL TRAP.

18. Statement Deletion : Removal of any statement.
Ex: COTO 2 is removed, i.e. becomes CONTINUE.

19. Return Statement Replacement: Replacement of any statement by a
RETURN statement.
Ex: A—O becomes RETURN.

~0. Goto Statemen t Replacement: Replacement of any COTO statement with a
GOTO to a different label.
Ex: COTO I becomes GOTO 3.

21. DO Statement End Replacement: Replacement of the end label in a DO
statement with some othe r label.
Ex: DO 2 1—1 ,10 becomes DO 1 1—1 ,10.

22. Data Statement Alteration: Changing the values assigned by a DATA
statement.
Ex: DATA A /2/ becomes DATA A /1/.

23. Unary Operator Replacement: Replacement of one unary operator by
another.
Ex: .A !B becomes A 4-1B.

-

-~~~ - -~~ ~~~
. —_I~~~~~

- -- -. -

L : — - ~~- -
~—-- --

~~~~~

Page 5

Obviously some of the mutations described above can produce mutants

which are equivalent to the original program. For instance , replac ing

A O  with A—SO does not change a program. It might be hoped that r
de tection of eq uivalen t mutant s would be easy, since the mutations

involved are so simple and well defined . Unfortunately this is not the

case. It is easily shown that the general problem of determining the

equivalence of two primitive recursive functions is undecidable (1]. If

we let P1 and P2 be FORTRAN routines corresponding to two arbitrary

primitive recursive functions we can show that the equivalence of mutants

is undecidable. Consider the following program to which the mutation

“GOTO Sta temen t Re placement” has been applied :

GOTO 1
1 P1

STOP
2 P2

STOP

The res ul ting mutan t looks like :

GOTO 2
1 P1

STOP
2 P2

STO P

Plainly these programs are equivalent if and only if P1 and P2 are

equivalent. Since the equivalence of P1 and P2 is undecidable , the

equivalence of the mutant and original programs must also be undecidable.

The easiest way to show that two programs are not equivalent is to

find some input on which they produce different outputs. This is the

basic func tion of EXPER as a program testing tool , and thus many mutan ts

do not need to be tested for equivalence. At any given stage those

utants which produce the same output as the original program on all test

- I -j



— — - - .—- .
~
-—-

~~
-, — ---—.

~~~~
-—

~~~~
—----

~
-—-.-

Page 6

data ar e called live mutants. Obviously it is only the live mutants to

which sophist icated equivalence tests  must be applied at  a l l .  Since the

equivalence problem for program mutants is undec idable , any equivalence

testing process will not always be able to detec t all equivalent mutants.

Thus the f ina l  decision about whethe r a mutant is equivalent to the

original program might have to be left to the user. The goal of the

testing process should be to make one of three decisions about any

mutan t : -

I. It is definitely equivalent to the original program.

2. It might be equivalent to the original program , but the information
needed to make this determination is not completely available. The
system should identify the needed information and ask the user to
supply it.

3. None of the known tests are able to determine whether the mutant and
the original are equivalent. The system is unable to help the user
at all.

3.0 oPTIMIZATION TECHNIQUE S

Almost all of the techniques used in optimizing compiler code can be

applied in some way to decide whether a mutant is equivalent to the

original program. Some are useful only in very limited sets of

situations , whereas others can be applied to many types of mu ta t ion .  All

the techniques discussed below can be applied widely enough that it would

be worthwhile to implement them in an actual equivalence tester.

The eas iest way to implemen t these techniq ues is in con junc tion with

a flow graph of the program being mutated. A flow graph is a directed

graph in which each node represents a statement or group of statements

through which program control flows linearly (basic blocks). Thus any

_____

________ -~ 
~~~~~~~~~~~~~~~~~~~~~~~~~ —i—--



~~~~~~~
—

~~~~~
--

~~
.--——

~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ 
—-.

~
,-— 

~1~

Page ~

node in the flow graph represents a fragment of code which is entered

on ly  at the first statement of the block and exited onl y from the last .

Furthe rmore there are no loops or branches within the node. The edges of

the f low graph represent branche s within the program from one bas i ,~ bl ock

to another. Efficient algorithms exist for generating flow graphs fr om

progra ms , for instance the process outlined by Schaefer ( I S J ,  pages

12—2 0). Thus it is reasonable to expec t such a representation to be

available to the equivalence tester. Furthe rmore , since mutants are so

similar to the program from which they are derived , it will be easy tt~

der ive the flow graph of the mutant directly from the flow graph of tht’

original in most cases. In the discussion below it is assumed that the

equivalence tester can examine programs at the statement and token level;

whethe r these entities are individual nodes in the flow graph or packed

many per node is irrelevant.

The various optimization techniques which seem applicable to testing

mutan t  equivalence are listed below .

3.1 Constant Propagation

Constan t propagation involves replacing expressions involving

constants with othe r constants to el iminate run—time evaluation.

Generally the comp iler keeps track as far as possible of the val ue of

each varia ble throughout the program . At any point where an expression

involves only variables whose val ues are known the result of the

expression can be computed at compile time and placed in the program as a

new constant. Thus this opt imization applied to the cod e fragment

A-i
3—2
C’.A+B 

—~ 
-— -- - - .- . - ‘~~~~~~~~~

-
~~~

-- ~~~~~~~~~~~~~~
_L

-

~~~~~~
‘ 

~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ c~~~- .-:~~

Page 8

would produce the equivalent code

A 1
3 2
C—3

An elegant scheme for globa l prog ram analys is is given by Kildall

[3J. This scheme associates with each statement of the program a pool of

data which are being propagated through the program. Such data pools can

be used for constant propagation by letting the elements of the pool be

ordered pairs whose first element represents a variable and whose second

element represents a value. Other applications of this approach to

program analysis are discussed below. This scheme is ideally suited to

the needs of an equivalence tester.

3.2 Invariant Propagation

Invariant propagation is similar to constant propagation in tha t it

involves associating with each statement of the program a set of

invariant relationships between data elements. For instance , invariant

propagation will note such things about a program as “X<O” or “B’~l”. As

ind icated by the last example constant propaga tion is a special case of

invariant propagation. This technique is of limited use in compilers,

but is very powerful for detecting equivalent mutants.

Invariant propagation can be implemented using Kildall’s scheme for

constant propagation by replacing the variable and value pairs with

triples of the form <object>, <relation>, <object>. Each <object>

represents either a variable or cons tan t, and <relation> is one of the

algebraic relations <, >, — , <, >, or <>. The only difficulty is that an

invariant propagation algorithm should be able to replace a strong

- - _ _ _ _
~

—-

~

-

~

-~~~~ —~ —U- - - - - ______ - - -- - — —- ~-

~ -~~~-—
-
~~~~

- 
- -

~~

--

~~

- - -

~~~~~~~~

-

~~~~~~~

- - - - - -

Page 9

r e l a t i o n s h i p  w i t h  a weaker one (i.e. replace “A—i ’ with “A>l”). The

propagat ion a l g o r i t h m  should also be able to apply transitivity to deduce

relationships such as “A<O” from the relationshi ps “MB” and “5<0”.

3.3 Common Subexpression Elimination

One of the optimizations frequently performed by compilers is to

recognize subexpressions which occur many times but only need to be

evaluated once. For instance , in the cod’ fragment

A-X+Y
B—X+i+Z

The expression “X+Y ” is evaluated two t imes.  The common subexpression

can be el iminated by evaluating i t  onc e and assigning the resul t  to a

temporary varIable  T , yie lding :

T X+Y
A T
B T+Z

Kildall [3] demonstrates how his scheme for global analysis can be

applied to common subexpression elimination. In this  appl ica t ion the

data pools are sets of expressions which are part i t ioned into equivalence

classes such that all expressions in equivalence class E have the same

value. Thus the example above might have sets as shown below, where “ i ”

divides equivalence classes: (Note the addition of a CONTINUE statement

to show the set after the assignment to B.)

A X+Y {)
B—X+Y+Z {A,X+Y}
CONTINUE {A ,X+Y I B ,X+Y+Z,A+Z}

Note that the algorithm described by Kildall generates equivalent

— - — —-. .-— -- -----~ —--- - -----.-.



— — - ~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ ~_,~~
U__ - ~—~Ufl~ - -. — ~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- - — -
~~~

Page 10

expressions which are not used in the program , such as A+Z in the same

partition as X+Y+Z above. This feature allows the widest possible range

of equivalent expressions to be recognized.

3.4 Recognit ion of Loop Invariants

A common optimizing technique removes code from inside loops if the

execution of that code does not depend on the iteration of the loop.

Thus a loop of the form

DO 1 1—1 , 10

1 8—0

would be replaced by

DO 1 I—i , 10
1 A(I)”O

B— 0

Since many of EXPER ’s mutations change the boundar ies of loops ,

techniques for recognizing when code can be removed from a loop can be

useful in detecting equivalences. Conditions for detecting operations

which can be removed from loops are given by Schaefer ([5], pages

122—134) .

3.5 Hoisting and Sinking

Hoisting and sinking are related to removal of code from loops in

that they involve moving code which would be repeated several times to a

place where it will only be executed once. Thus the code fragment

IF(A.EQ.O) COTO 1
c—0
8—2
GOTO 2

1 C—i
3 2

2 etc.

- ~~~~~~~~~~~~~~~~~~~~~~~~~~ -

-

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~:~~~~~~~~

_

~~~~~
__.  

~~~~~~~~~~~~


_ _ _ _ _ -~~~ - - --U~~~~-- —~~~— —-- - -~~~~~~~~~~-—

~1
Page 11

c ould be rep l ac ed by

5—2
IF(A.EQ.0) GOTO 1
C— 0
GOTO 2

1 c—i
2 etc.

Here the assignment 82 has been hoisted to a position before the

conditionally executed part of the program. Similarly sinking involves

moving code to a position after some set of blocks. Mathematical rules

for detecting the feasibility of hoisting or sinking are given on pages

115— 119 of Schaefer 15] .

3.6 Dead Code Detec t ion

Dead code detection involve s the identification of sections of a

program which will eithe r never be executed or whose execution is

i r r e l e v a n t . An exampl e of typical dead code is the fragment below , in

which the second assignment to A k i l l s the f i r s t :

A B+C
A-0

Schaefer [5) discusses rules for detecting dead code of this form on

pages 156—16 1.

Another example of dead code is the case in which one or more basic

blocks of a program are not connected to the rest of the flow graph.

Then , as long as there is only one entranc e to the program some section

is neve r exec uted and can be removed entirely. This case is not expected

to ar ise very of ten in programs wr itten by humans, but mutations may

easily make a large part of a program inaccessible from the entry node.

For example , consider the follo-iiing mutant of a program:

4

.~~~~~ -~~~.—-~~~~~~-rn —-U- — - —U-— ~~~~~~~~~~~~ -- - U - -

—~~~~—— - -

Page 12

A-i
RE TU R N
8-A+2

etc

Here the insertion of the RETURN statement has made everything between it

and the next label which is referenced in a GOTO inaccesib le . This tYpe

of dead code it ’ easily detected by examining the flow grap h of the

program in question.

4.0 APPLICATIONS

Each of the above optimization techniques can he applied to detect

equivalent mutant s arising from one or more of the mutations app l ied by

EXPER. Each it ’ discussed below .

4.1 Constant Propagati on

Constant propagation is most useful for detecting cases i n which a

m u t a n t is not equivalent to the original program. Any mutant which could

a f f e c t the known value of a variabl e can be de tec ted in t h i s f a s h i o n .

The mut’Snts most easily checked using this scheme are those involving

replacement of one data reference with another (Constant Replacement ,

Scalar Replacemen t , Scalar for Constant Replacemen t , Const an t for Scala r

Replacemen t , Source Constant Replacemen t , Array Reference for Cons tant

Replacemen t , Array Refere nce for Scalar Replace ment , Ar ray Name

Replacement , Constant for Array Re ference Replacement , Scalar for Array

Reference Replacement , Array Reference for Array Reference Re -lacem ent ,

and Data Statement Alteration). Equivalences which may be detected , hut

with lower probabili ty, are those involving changes to expressions

(Arit)~~etic Operator Replacement , Unary Operator Removal , Unary Operator

—---U— ~~~~~~~~~~~~~~~~~~~~~~ U-—j -— ~~~~ - - ._______ —U- -U — — -
- —

— __~U_ ____i,._
—- —

- -—U--U
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - 

~~~~~~~~~~~~~~~~

Page 13

Insert ion , and Unary Operator Replacement). It is possible tha t

equivalences involving actual changes to the program flow could be

detected , but it shoul d be much easier to detect these by com paring the

f low graphs.

The mechanism for testing equivalence of mutants using constant

propagation is as follows : At all points subsequent to the mutation

compa re the constant pools of the original program and the mutant. If

they diffe r it is likely (though not certain) that the mutant is not

equivalent to the original program. The following example demonstrates

this form of detection:

Original Program Mutant Program
Code Constants Code Constants
A i A—2
B—A+2 (A ,i) B—A+2 (A,2)

etc (A,1),(B,3) etc (A ,2),(B,4)

Here a mutation has replaced the assignment of 1 to A wi th an assignment

of 2. The change in the program is ref lec ted in the changed constant

pools following the mutation. Unless the assignments to A and B are dead

it is reasonable to assume that the mut at ion is not equiva len t to the

original , and to try to develop test data which substantiate this

assumption.

A firm test of non—equivalence can be made if one of the output

variables appears in the constant pool for a RETURN statement. Then if

the known value of this variable differs between the mutant and original

programs we know that they are not equivalent , since the y retur n

differen t value s on identical inputs. Obviousl y this test is valid only

if some p.th exists fr~~ the entry nod e of th. program being tested to

the exit in question. This question can be resolved through dead cod e

-
~~~~~~ — -~~__________________________________________ 

U—- — - 
-

~~~ 
-

~~~
-- -U- -- --U- --U



--U—-U--U-—
~~~~~~~~~~~ 

---U- -—-

Page 14

detec t ion.

4 .2 Invar ian t Propagation

As shown above invariant propagation is really a super—set of

constant propagation , and thus it can be used to test all the sorts of

mutan t s discussed under constant propagation. However since a great deal

more i n form a t ion is carried by invar ian t re la t ionships than by equal i ty

to a cons tant , this technique is fa r more powerful than constant

propagation. It is particularly useful for testing the equivalence of

mutants involving unary operators (i.e. Unary Operator Removal , Unary

Operator Insertion , and Unary Operator Replacement). In many cases these

operators only affect an expression if it has a certain relationship to

0. For example , taking the absolute value of an expression onl y changes

the program if that expression evaluates to a value less than zero;

negating an expression does not change anything if tha t expression always

evaluates to 0, and so forth. These facts can be used as shown In the

following example:

Original Program Mutant Program
Code Invariants Code Invariants
1F(A.LT.O) GOTO 1 IF(A.LT.O) GOTO I
B-A A>O B-!A A>O

In this case the conditional allows us to determine an invariant (A>O),

which in turn allows us to determine tha t the mutant program is

equivalent to the original , since taking the absolute value of a positive

quanti ty is a no—op.

The power of invariant propagation is vastly increased if the

propagation and testing algorithms can take advantage of transitivity and

replacement of one condition by a weaker one. Both of these features are

- -U

Page 15

demonstrated below :

Original Program
Code Invariants
A-O
CONT I NUE A—0

1 B—A A>O ,A<5
C—!B A>O ,A<5 ,8A
A—A+l A>0,A<5,B—A
IP(A.LT.5) A>0,A<5 ,8•A

COTO 1 A>O ,A<5 ,8A

Mutant Program
Code Invariants
A-O
CONTINUE A-0

1 B—A A>0,A<5
C—B A>O ,A<5 ,8A ,C B
A—A+l A>0,A<5 ,8A ,C—B
IF(A.LT.5) A>O ,A<5 ,8A ,C—B

GOTO 1 A>0 ,A<5 ,B A ,C—B

Note that the algorithm for generating invariant pools recognizes the

loop in this program and is thus able to determine an upper bound on A.

Obviously the invariants shown assume that no other branches to label 1

exist. The relation A 0 is replaced with the weaker A>0 when the

statement A—A+l is detected at the end of the ioop. Applying

transitivity to the mutated pair C—lB and C—B allows us to dec ide that

the mutant is equivalent to the original since B—A and A)0.

There is one important feature of EXPER which is useful in

generating invariant pools: EXPER can perform rum—time checks of array

bounds. Thus the following statements generate the invariant pool. shown:

Code Invariants
DIMENSION A(5)

• A(J)—O J>l ,J<5

Because EXPER checks array bounds any program abor ts if J is less than 1

or greater than 5 in the assignment to A(J). Thus any program or mutant

for which the given invariants did not hold prior to executing the

L .— ---~ ~~——- ——— ——

- - - - — - - - - -- ——--- ---•---- - - - - - - - ~~ — ‘— U-—- U-—- -- —---- -— - - - - ,- -

_ _ _
----U— U-—

~~~~~~ 
-

~~~~~~~~~~~~~~~~
-- -

~~~~~~

Page 16

assignment would have failed , and thus would obviously not be a correct

program .

4.3 Common Subexpression Elimination

Kildall’s equivalence partitions[31 provide an excellent way to

handle mutations in assignment statements. Changing an arithmetic

operator changes the expression placed in the equivalence class of the

variable to which the assignment was made. Similarly , mutations which

change an operand or destination in an assignment will produc e changes in

the equivalence classes following the assignment. Thus cnmparing

equivalence classes can show that  the mutant  and original d i f f e r .  As an

example, consider the program and mutant shown below :

Original Program
Code Equivalence Classes
A-B+C

etc. (A ,B+C }

Mutant Program
Code Equivalence Classes
A—B—C

etc. {A,B—C)

Comparing the two sets of equivalence classes shows tha t A has a

different value in the two programs. As with constant propagation , we

can assume that the mutant is not equivalent to the original program , and

that test data should be developed to verify this assumption.

Common subexpression detection can also be used to show that a

mutant is equivalent to the original program. If the mutation has

changed part of an expression E to E’, but E and E’ are in the same

equivalence class, then the mutant is equivalent to the original program.

The example below demonstrates this situation:

I
_ _ _ _ _ _ _ _ _ _  _ _ _ _ _ _



-U----- — U - 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -  

_ - - r

Page 17

Original Program
Code Equivalenc e Classes
A-B4C
D B+C IA ,B+C)
X (A+E)—Q {A B4C,O)

Mutant Program
Code Equivalenc e Classes
A-B-IC
D—B4C (A ,B+C }
X(D4E)—O IA ,B+C ,D)

Since A and D are in the same equivalence class we can conc lude that the

mutation (replacing A with D in the subscript) did not change the

program. Note that since the equalit y of A and D is determined through

assignment of a common expression this equivalence would be hard to

d etect using a simpler heuristic such as invariant propagation.

4.4 Recogni tion of
~~~~ 

Invarian ts

Many mutations change the size of ioops. The most obv ious  of these

is the DO—loop End Replacemen t ope ra tor , al though the GOTO Re p lacemen t

ope ra tor can also alter loops. In cases where a m o p  has been changed to

incl ude mo r e or less code than in the ori g inal , recogn i t io n of loo p

invarian ts can be used to dec ide whethe r or not the change is

significa nt. Examination of the flow graph s should make cases in which

loops have changed fairly easy to detect; thus it is easy to decide when

to apply these tests. The bas ic app lica tion simply involves dec id ing

whe ther or not the excess code ( tha t is, the code which does not appear

in both loops) is loop invariant. If it is the n the expansion (or

contrac tion) of the loop has not changed the output s of the program . As

an example , consider the following code: 

~~~~~~~~~~~~~~~~~~~~~~~~~~~ U-_~~_A_~_~~~~ U- - U U --

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - --- - —- ----—— —---- -•- - --- - - - - -—---  — : :  --— —U-- - - - —U ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — U.-

Page 18

Original Program Mutan t  Program
DO 1 1—1 , 10 DO 2 1— 1 , 10
A(I)—0 A(I)—0

1 CONTINUE 1 CONTINUE j
2 8—0 2 B—O

The mutation above expanded the DO—loop to include the assignment of 0 to

B. Since this assignment is loop—invariant it does not matter whether i t

is done 10 t imes inside the loop or 1 t ime outside it. Thus the origina l

and mutant programs are equivalent.

4.5 Hoisting and Sinking

These tests are used in situations similar to those in which testing

of loop—invariants is used , except tha t they appi y to cases in which the

code skipped or included by a branch is changed . Candidates for this

sort of change include COTO Replacement and Statement Deletion. In these

cases the mutant and original programs are equivalent if the code added

to or removed from a basic block can be hoisted or sunk out of tha t

block. Consider the following example:

Original Program Mutant Program
IF(A.EQ.O) COTO 1 IF(A.EQ.O) COTO 2
A-A+1 A A+1

2 8—0 2 B—O
COTO 3 GOTO 3

I B—0 1 8—0
3 etc 3 etc

In this case B is set to zero regardless of whether we do it at line 2 or

line 1. A more compact form is produced by hoisting the assignment to B,

namely

80
IF(A.EQ.O) COTO 3
A-A+1

3 etc

Because this hoisting is possible the mutant is equivalent to the

_ _ _  U - 
~~~~~~~~~~~~~~~~~~~ 

_ _


~~~~ -—~~~~--~~~~~~~ —.- ~~ -- . ~~~~~~~~~~~ U

Page 19

o r i g i n a l  program .

because the code skippe d by the statement “GOTO 3” can he hoisted

the branch is unnecessar y . Thus the hoisting test wi ll also show that

the m u t a n t  der ived by de le t ing  this branch is equivalent to the original

program .

4.6 Dead Code De t ec t i on

As mentioned above this test is very important in guaranteeing the

reliability of tests based on invariant propagation (including constant

propagation). It can also be used to test the equivalence of sont-

mutants in its own right . The equivalences which are most likely to be

detected by this technique are those arising from mutations that alter

the f l ow graph in some way. Such mutants include Statement Analysis

(since this mutant replaces any statement with an abnormal exit),

Statement Deletion (if GOTO or RETUR N statements are deleted), Return

Statement Replacement , and GOTO Replacement .

The best way to use dead code detection to test mutants of this form

is to examine the flow graphs of the two programs. If any node appears

in the mutant which is not connected to the rest of the graph it is

reasonable to expect that the mutant is not equivalent to the original.

(The only exception being the case in which the disconnected node

consist s only of dead assignments. This situation is discussed in

general below). An example involving Return Statement Replacement is

shown below:

U ~~~~~~~~~~~~~

- - U~~~~~~~~~~~ A -U.- - ~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ L11U~~~~~ 
-

— -- - _ -- ---_ -_— -_—-•  -U--—-— — ______p  --~~~



—U---- U__ U - - ______________________

Page 20

Original Program Mutant Program
Code Fl ow Gr aph Code Fl ow Gra ph

Mi I I A— i I I
I I

8-2 I I RETUR N

C—3 I I C—3 I I

The RETURN statement has broken the original single node into 2 nodes

with no connection between them. Thus one can conclude that since code

which is executed In the original program (assuming the node is

accessible in the first place) is not executed in the mutant , the two are

different .

A slightly different application of dead code detection involves

making sure that mutated code is not inaccessible or dead in the f i r s t

place. If it is then the mutant must be equivalent to the original

program. This application is identical to the application in compiler

optimization where code is identified as dead and excluded from the final

output. It applies to all mutant operators. An example of this sort of

analysis in testing equivalenc e is shown below:

Original Program Mutant Program
Ml A—2
MB+C A-B+C

Here the first assignment to A is killed by the second assignment , and

thus any change to its right—hand aide is insignificant. A more drastic

example shows inaccessible code. Again , the mutant to code which can

never be executed is unimportant.

Original Program Mutant Progrem
COTO 1 COTO 1

A — 2
1 etc 1 e tc

—----— -~ ~~~~~~~~~~ _~~~
_
~~th—~ ’------ ~~~~~ -—



- U ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ U

Page 21

Some cases in which a mutation has killed a block of code can be

detected by using invariant propagation. The program fragment shown —

below shows how this can happen:

Original Program
Code In v a r i a n t s

IF(A.CT.B) GOTO 1
FLAG1- .TRt’E. A<B
IF(A.LT.B) GOTO 2 MB
FLkG2-.TRUE . A-b

2 etc A<B

Mutant Program
Code Invariants

IF (A . C T . B )  GOTO 1
FLAGI— .TRITE. A<B
I F ( A . LE .B )  GOTO 2 A<B
FLAG2 . TRUE.

2 etc A<8

Here the mutation has replaced the test A<B with the test A<B. However ,

the invariant pool tells us tha t A is always less than or equa l to B, and

thus the branch will aiways be taken , and the ass ignment  to  FLAG2 is

dead, Note that without knowing the relationship between A and B i t  is

impossible  to determine tha t this assignment is dead .

5.0 AN EQUIVALE NC E TESTING POST—PROCESSOR FOR EXPER

The above ideas for de termining equivalence can be applied in a

post—processor to EXPER in order to reduce the time spent by the user

dealing wi th equivalent mutants. This processor should be run after the

mutants have been executed on the test data , since experience shows tha t

as many as 90 per cent of the mutants can be el iminated on the f irs t

testing run. Of the remaining mutants , those which are found by the

post—processor to be equivalent are flagged as such and the user need not

consider them further. Only those which are not found to be equivalent

-U --U-— -- -U—
- 

_ _ _ . _



_ _ _ _ _ _ _ _ _ _  ~~~U-U~~-U

Page 22

are analyzed by the user to improve his test data. At any point the user

can manually over—ride the post—processor by declaring a live mutant to

be equivalent to the original program or by declaring one tha t was

thought to be equivalent to be live again.

The analysis proceeds much as it would in a compiler , with a few

exceptions which arise due to the fact that we do not necessarliy want to

produc e efficiently optimized code. For instance , it is not important

that we worry about compiler—generated constants, since they can never be

mutated .

The f i r s t  step is to express the original program as a flow graph,

as discussed above. This step may be done as part of EXPER ’s parsing or

other processing of the program. As each live mutant is tested for

equivalence to the original program a flow graph is generated for it. In

many cases this flow graph will be isomorphic to the original so that

only the contents of one node need to be modified . In more complex

cases, where the shape of the f l ow graph is changed , the mutant’s flow

graph can still be derived from the original. EXPER represents mutants

as a descriptor record describing the change made to the original

program. These records fully describe the mutant, and thus allow the

mutant ’s flow graph to be derived without re—generating it from a source

program.

Just as it is expected that mutant flow graphs can be efficiently

derived from the original flow graph, it is also expec ted that the

invariant’ and common expression pools described above will not have to be

computed for each mutant. Instead, the pools for the original can be

computed at parse time and the mutant’s pools derived from them. As

1 1
U 

_ _ _ _ _ _ _ _ _ _  

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

- - -U ~~
— A~~~~~



- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Page 23

suggested above , many mutations cause a relation to change, move an

expression from one equivalenc e class to another , or make similarly

limited changes in the pools. These changes can be easily detected ~ing

the descriptor record of the mutant , and can be made as local

modif ica t ions to the pools. Obviousl y, care will have to be taken tha t

any side effects of these local changes are detected , but doing so should

be significantly less expensive than regenerating the entire pool.

The invariant and common expression pools described above can be

combined into a single pool by replacing the individual variables or

cons tan t s involved in invariant relationships with the equivalence class

sets used to recognize common expressions. Note that using this scheme

the relat ionships “equal to” and “not equa l to ” do not need to be

expl i c i t l y represented , since if two objects are in the same set they

must be equal, whereas if they are not in the same set they must be

unequal. If the entire structure of sets and relationships is

represented as a directed graph whose nodes correspond to sets and whose

edges to relationships (obviously the edges must be labelled as to what

relationship) then the problem of applying transitivity becomes one of

simply following either edges labelled ‘> ‘ and ‘> ‘ or edges labelled ‘< ‘

and ‘<‘ until either the desired relationship is derived or no edges with

the appropriate labels remain. Note that no cycles can occur which

involve such paths. Assume such a cycle did exist , for instanc e a path

using only edges marked ‘< ‘ or ‘(‘ from node A to node B and back to node

A. Since a path from A to B exists , transitivity implies that for any X

in A and Y in 8, X<Y. However, because a path from B to A exists we also

have the statement Y~ C. Because X and Y are in different sets we know

that X is not equal to Y, and thus the derived relationships are -

~~~



- —  - ~~~~ 
~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~ UU~~U - U~ U ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Page 24

cont rad ic to ry .

Representing the pools in this manner allows a great deal of

f l ex ib i l i ty in testing equivalences. The following example shows how

this can happen:

Original Program
Code Invariant & Expression Pool

MB+C
D—E+F (A ,B-+C }
IF(B4C.LE.D) GOTO 1 (A ,B+C},(D ,E#F}
x(A+G)—O I

~~,B+C}>{D,E+F}
etc .

Mutant Program
Code Invariant & Expression Pool

MB+C
D—E+F {A ,B+C }
IF (B+ C.LE.D) GOTO 1 {A ,B+ C},{D,E+F }
X(D4G)—O {A,B+C}<{D,E+F}

etc .

In this example the conditional branch allows a relationship between B+C

and D to be deduced . Because the relationship is then applied to all

elements equal to either B+C or D we can conclude that replacing A with D

in the subscript yields a mutant subscript which is always greater than

the original subscript. This fact suggests that the mutant is not

equivalent to the original.

Once the modified invariant pool described above is formed it is

used to aid the detection and removal of dead code. Once dead code has

been removed the mutant and original are compared to see if they are

obviously equivalent. If so, the mutant is placed in the equivalent

mutants pool and not procesed further.

c_U_U _—U- . - - ________ U U ~~~~~UU I~~~~~~~~~~~~~ Sk4 U~U ~~~ S -.

— UU__ __ _U_,~___ _ ___
~~_ _U_ _ _ _ __ _——• __ —_ •— _ __ — _U_ _ U.___ ___~____ — ___ _ _ _ —U_ U U~ __~—_ U- _.U —

Page 25

Since dead code is irrelevant to the state of the prog ram , removing

it will not make the invariant pools incorrect. However , it may be

possible that removing dead code enables invariant conditions to be

strengthened . The following example shows how this can happen:

Original Program Mutant Program
A-O MO
IF (C.GT.D) GOTO 2 IF(C.CT.D) COTO 2
IF(C.LT.D) COTO 1 IF (C.LE.D) GOTO 1
A-A+1 A-A+1

etc 1 etc.

The mutation above is a case in which changing a conditional (C.LT.D

became C.LE.D) kills a block of code. The section of code killed is the

increment of A. Because of this increment the strongest statement that

can be made about A at label I is A>O. Because the increment of A is

dead in the mutant this invariant can be tightened to A—0 , assuming no

other branches to label I exist.

Those mutants which have not been eliminated by manipulation of the

flow graphs are then tested for equivalence based on loop invariants or

the possibility of hoisting. Any equivalences thus found are placed in

the equivalent mutants pool. Again , it is often possible to apply these

tests to the original program at parse time and deduce their results on a

mutant from the mutant’s descriptor record . Only rarely will it be

necessary to ac tually test the mutant.

The final phase of the post—processor applies the invariant pools

generated in the first phase to actual detection of equivalent mutants.

In this phase many mutants may be automatically eliminated , especially

those involving unary operators. This is also a convenient place to

provide user interaction in the equivalence determining process. The

—_ U- -_ - - U - . - - U- -- - __

.-~~~ --~~~~ U--~~~U_,U - -~~~~~
- -U -. .

. U - - - U- .

Page 26

processor would be driven by a se t of rules desc ribing suf f ic ient

conditions for equivalenc e of a mutant to the original . For instance ,

there might be a rule concerning absolute values which can be

conceptualized as “Insertion of absolute value preserves equivalence if

its argumen t is greater than or equal to 0”. When the processor is

unable to decide whether a rule is applicable by itself , it turns to the

user for help. This help is requested by forming a question from the

rule and posing this question to the user. For example , if an absolute

value operation has been inserted in front of a variable which does not

appear in the invariant pool for that statement the processor could

prompt “13 X always greater than or equal to 0?”. If the user replies in

the affirmative the mutant is flagged as equivalent.

6.0 REMARKS

It has been shown above how many techniques from compiler

optimization can be applied to detec t equivalent mutants of a program.

Several areas remain to be explored however.

In the E~~ ER system only f i r s t order muta t ions are considered

(i.e. mutants coming from one program change), but conceivably some

higher order mutants may be worthy of consideration. In many cases the

heuristics described here can be extended very easily to detect

equivalent mutants of higher order. It is also true tha t in many cases

equivalenc, can be tested transitively , i.e. if program P is equivalent

to P’ and P’ is equivalent to P’’ then P is equivalent to P ’’. However ,

it is often true that a hig h—order mutant can be equivalent to some

program without having intermediate mutants equivalent to either. For

— --U
_ _ _ _

~~~~~~~~~~TJ
-U---— 

~~~~~ U-U_U •U ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ 
- ,--_

U- ~~
U _U-U~~~ -U_UUUU UU~~~~ ~~~~~~~~~~~~~~~~~~ ~~~

Page 27

instance the following program fragments are equivalent:

IF(I.EQ.1) GOTO I

and

IF (—— l .EQ .O) GOTO 1

However, neither is necessarily equivalent to either of the intermediate

mutants

IF(I .EQ.O) GOTO 1

or

IF (—— I.EQ.1) COTO 1

Fortunately the problem of equivalenc e of high order mutants is not a

serious problem because of the Coupling Effect: Test data that screens

out all first order mutants will sc reen out all higher order mutants [2).

Thus only first order mutants need to be considered in evaluating test

data

A more interesting problem involves the detection of equivalences

which are very dependent on the form in which the programmer has chosen

to express his algorithm. As an example consider the fragment below

which tests whether or not a numbe r N is prime .

IF(N.t.E.2) GOTO 3
L N—l
DO 1 I.2,L
IF(N.EQ.(N/I)*I) GOTO 2

1 CONTINUE
3 PRIME-.TRUE.

RETUR N
2 PRIME~ .FALSE.

RETUR N

• It is really only necessary to let the DO loop run from 2 to

1NT(Sc~ T(N)). The test N.LE.2 means that only N greater than or equal to

3 will be used as uppe r limits for the loop. Since INT(SQRT(3)).1,

INT(SQRT(N)XN—2. Thus the mutation which replaces L with ——1.. in this

U . U- ~~~~~~~U :. . ~~~~~_. Ti~~~ ~~~~~~~~~~~~~~ -
—

~~~~ 

— -
~~~

--
~~

-~~~~~~~~~~ - U -

Page 28

loop is equivalent to the original. Because the equivalence of thi s

mutant is so closely related to the conceptua l nature of the program it

seems very difficul t to automaticall y prove it. This problem might be r
solved through the interactive part of the post—processor . S p e c i f i c a l l y ,

it is easy to find out where the mutant occurred , and the processor could

simply ask “Is it acceptable for this ioop be executed from 2 to L—1?”.

Several technique s for detecting equivalent mutants have been

described . These techniques should be capable of finding a significant

number of cases in which a mutan t is equivalent to the original progr am ,

since experience indicates that most equivalences are very simple ones.

Often they involve the insertion of the absolute value operator , a case

tha t is p ar t i cu l a r ly easy to detect using invariant propagation. More

complex equivalences can be tested interactively with the user. The

questions thus posed should help the user decide whether or not to

manually declare a mutant equivalent to the original program.

Several questions concerning equivalence detection remain open. At

several points in the above discussion it is asserted that the data

needed to determine equivalence (e.g. flow graphs , invariant pools , etc.)

can be derived efficiently from the corresponding data for the original

program and the mutant ’s descriptor record . While these assertions are

undoubtedly true in many cases , exactly how often remains unknown .

Furthe r experimentation is required in th i s area , pa r t i cu l a r ly wi th

regard for the following questions:

1. In what fraction of the cases is it necessary to generate a flow
graph’ for a mutant from scratch?

2. In what frac tion of the cases is it necessary to regenerate the
invariant pools for a mutant?

Iillil•tl. ~ _~i’ U
-- - -- -U

r

Page 29

3. It is unlike ly that a change to an invariant pool will affect only
that pool. On the average , how many pools will be affected ? How
does the cost of determining all affects compare to the cost of
re—computing the invariant pools?

REFERENCES

1. Davis , Martin Comput ab i l i ty and Unsolvability (McGraw—Hill Co., New
York , New York : 1958).

2. DeMil lo , Richard A.~ Lipton , Richard J.; and Sayward , Frederick
C. “Hints on Test Data Selection: Help for the Practicing
Programmer” reprinted from Computer 11 , 4 (fr~pril 1978). pp. 34—43.

3. Kildall , Gary A. “A Unified Approach to Global Program Optim ization ”
in Conferenc e Record of ACM Symposium on Programming Lang uage s,
pp. 194—205 , 1973.

4. Lipton, Richard J. and Sayward , Frederick C. “The Status of Research
on Program M u t a t i o n ” , reprinted from Digest for the Workshop on
Software Testing and Test Documentation, Dec. 1978, pp. 355—373.

5. Schaefer , Marv in. A Mathematical Theoj~ of Global Program
Optimization (Prentice Hall , Englewood Cl i f f s , N.J., 1973)

LL~. .

j-— - — U -- - -
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ______ - --‘-U— . ~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~


