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HEURISTICS FOR DETERMINING EQUIVALENCE OF PROGRAM MUTATIONS

Douglas Baldwin
and

Frederick Sayward

Department of Computer Science
Yale University
New Haven, Connecticut 06520

ABSTRACT

A mutant of a program P is a program M which is derived from P by making
some well-defined simple change in P. Some initial investigations in the
area of automatically detecting equivalent mutants of a program are
presented. The idea is based on the observation that compiler
optimization can be considered a process of altering a program to an
equivalent but more efficient mutant of the program. Thus, the inverse
of compiler optimization techniques can be seen as, in essence,
equivalent mutatuion detectors.

1.0 INTRODUCTION

A mutant of a program P is defined as a program P’ derived from P by
making one of a set of carefully defined syntactic changes in P. Typical
changes include replacing one arithmetic operator by another, one
statement by another, and so forth. Program mutation has been used by
DeMillo, Lipton and Sayward as the basis for an interactive program
testing system [2]. The theory behind this system is that a set of test
data T adequately tests a program P if all mutants of P are distinguished
from P by either failing to produce any result or producing a different
result for some element of T. On the other hand, if a mutant performs
identically to P then either T does not fully test the program and
further cases must be developed, or the mutant is equivalent to P.

Obviously it is impossible to develop test data that distinguish between
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equivalent forms of the same program, and thus it is desirable that
equivalent mutants be excluded from the testing process. Unfortunately,
user recognition of equivalent mutants has proven to be a difficult and
tedious task. Thus it is important that the system aid the user by

either automatically detecting equivalent mutants or by posing questions

which provide insights on how to do so.

i Our goal is to develop heuristics by which equivalent mutants can be
| recognized. The heuristics are primarily derived from techniques used to
optimize compiler code, since the process of optimizing compiler code can
be thought of as producing a series of mutants which are equivalent to

the original program. It is thus expected that some of the tests

developed to determine when an optimization is equivalence preserving can

be applied to determine when a mutation is equivalence preserving.

Once a body of heuristics has been developed to detect equivalence
of mutants it will be possible to develop a program to actually recognize

them in a program testing system. This system will probably be very

similar to the optimization phase of a compiler. It will generate some
representation of each mutant which can be easily manipulated and apply
the heuristics described below to determine if it is equivalent to the
original; If so then the mutant will be flagged as equivalent and will

be excluded from future testing runs.

2.0 PROGRAM MUTATION

as defined above a mutant of a program is a second program derived
from the first through carefully defined syntactic transformations.

rrogram mutation is the process of forming mutants from an input program.

|
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The work described here is intended to find ways of determining
equivalence of mutants derived as part of a process for testing FORTRAN
programs on the EXPER [4] testing system. The mutations made by EXPER
are chosen so as to duplicate as closely as possible the mistakes which a

good programmer might make in coding a FORTRAN program. Thus many of the

mutants involved, such as DO-loop end replacement, are specific to

FORTRAN. The mutations of interest are described below:

l. Constant Replacement: Replacement of a constant, C, with C+l or C-l.
kx: A=] becomes A=0.

2. Scalar Replacement: Replacement of one scalar by another.
Ex: A=B becomes A=C.

3. Scalar for Constant Replacement: Replacement of a constant with some
scalar variable
Ex: A=2 becomes A=B.

4, Constant for Scalar Replacement: Replacement of some scalar variable
with a constant.
Ex: A=B becomes A=2.

5. Source Constant Replacement: Replacement of one constant in the
program with some other constant found in the program.
Ex: A=3 becomes A=]1 where the constant 1 appears in some other
statement.

6. Array Reference for Constant Replacement: Replacement of a constant
with an array reference.
Ex: A=l becomes A=B(1).

7. Array Reference for Scalar Replacement: Replacement of a scalar
reference with an array reference.
Ex: A=B becomes A=C(1).

8. Comparable Array Name Replacement: Replacement of a reference to one
array with a reference to the same element of another array of the
same size and shape.

Ex: A=B(1,3) becomes A=X(1l,3).

9. Constant for Array Reference Replacement: Replacement of an array
reference with a constant.
Ex: ,A=B(1) becomes A=3.

10. Scalar for Array Reference Replacement: Replacement of an array
reference with a refereance to a scalar.
Ex: A=B(1) becomes A=C.
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11. Array Reference for Array Reference Replacement: Replacement of one
array reference by another.
Ex: A=B(1) becomes A=C(2).

12. Unary Operator Insertion: Insertion of one of the unary operators
! (absolute value), - (negation), ++ (increment by 1) or
-- (decrement by 1) in front of any data reference.
Ex: A=B becomes A=-B,

13. Arithmetic Operator Replacement: Replacement of one arithmetic
operator (+,-,*,/,**) with another,
Ex: A=B+C becomes A=B-C.

14, Relational Operator Replacement: Replacement of one relational
operator (.EQ.,.LE.,.GE.,.LT.,.GT.,.NE.) with another.
Ex: IF(A.EQ.B) GOTO 1 becomes IF(A.NE.B) GOTO 1.

15. Logical Connector Replacement: Replacement of one logical connector
( .AND.,.OR.) with the other.
Ex: A.AND.B becomes A.OR.B.

16, Unary Operator Removal: Deletion of any unary operator.
Ex: A=!B becomes A=B,

17. Statement Analysis: Replacement of any statment with a trap
statement whose execution causes immediate failure of the program.
Ex: GOTO 2 becomes CALL TRAP.

18. Statement Deletion: Removal of any statement.
Ex: GOTO 2 is removed, i.e. becomes CONTINUE.

19. Return Statement Replacement: Replacement of any statement by a
RETURN statement.
Ex: A=Q becomes RETURN.

«0. Goto Statement Replacement: Replacement of any GOTO statement with a
GOTO to a different label.
Ex: GOTO 1 becomes GOTO 3.

21. DO Statement End Replacement: Replacement of the end label in a DO
statement with some other label.
Ex: DO 2 I=1,10 becomes DO 1 I=],10.

22, Data Statement Alteration: Changing the values assigned by a DATA
statement.
Ex: DATA A /2/ becomes DATA A /1/.

23. Unary Operator Replacement: Replacement of one unary operator by
another.
Ex: -A=!B becomes A=++B.

il R



Page 5

Obviously some of the mutations described above can produce mutants
which are equivalent to the original program. For instance, replacing ¥
A=0 with A=!0 does not change a program. It might be hoped that ﬁ
detection of equivalent mutants would be easy, since the mutations

involved are so simple and well defined. Unfortunately this is not the £

case. It is easily shown that the general problem of determining the
equivalence of two primitive recursive functions is undecidable [1]. If
we let Pl and P2 be FORTRAN routines corresponding to two arbitrary
primitive recursive functions we can show that the equivalence of mutants
is undecidable. Consider the following program to which the mutation

"GOTO Statement Replacement" has been applied:

GOTO 1
1 Pl
STOP
2 P
STOP

The resulting mutant looks like:

GOTO 2
1 Pl
STOP
2 P2
STOP

Plainly these programs are equivalent if and only if Pl and P2 are
equivalent. Since the equivalence of Pl and P2 is undecidable, the

equivalence of the mutant and original programs must also be undecidable.

The easiest way to show that two programs are not equivalent is to
find some input on which they produce different outputs. This is the
basic function of EXPER as a program testing tool, and thus many mutants
do not n‘ed to be tested for equivalence. At any given stage those

mutants which produce the same output as the original program on all test
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data are called live mutants. Obviously it is only the live mutants to
which sophisticated equivalence tests must be applied at all. Since the
equivalence problem for program mutants is undecidable, any equivalence
testing process will not always be able to detect all equivalent mutants.
Thus the final decision about whether a mutant is equivalent to the
original program might have to be left to the user. The goal of the
testing process should be to make one of three decisions about any

mutant:

1. It is definitely equivalent to the original program.

2. It might be equivalent to the original program, but the information
needed to make this determination is not completely available. The
system should identify the needed information and ask the user to
supply it.

3. None of the known tests are able to determine whether the mutant and

the original are equivalent. The system is unable to help the user
at all.

3.0 OPTIMIZATION TECHNIQUES

Almost all of the techniques used in optimizing compiler code can be
applied in some way to decide whether a mutant is equivalent tc the
original program. Some are useful only in very limited sets of
situations, whereas others can be applied to many types of mutation. All
the techniques discussed below can be applied widely enough that it would

be worthwhile to implement them in an actual equivalence tester.

The easiest way to implement these techniques is in conjunction with
a flow graph of the program being mutated. A flow graph is a directed
graph in which each node represents a statement or group of statements

through which program control flows linearly (basic blocks). Thus any
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node in the flow graph represents a fragment of code which is entered
only at the first statement of the block and exited only from the last.
Furthermore there are no loops or branches within the node. The edges of
the flow graph represent branches within the program from one basic block
to another, Efficient algorithms exist for generating flow graphs from
programs, for instance the process outlined by Schaefer ((5), pages
12-20). Thus it is reasonable to expect such a representation to be
available to the equivalence tester. Furthermore, since mutants are so
similar to the program from which they are derived, it will be easy to
derive the flow graph of the mutant directly from the flow graph of the
original in most cases. In the discussion below it is assumed that the
equivalence tester can examine programs at the statement and token level;
whether these entities are individual nodes in the flow graph or packed

many per node is irrelevant.

The various optimization techniques which seem applicable to testing

nutant equivalence are listed below.

3.1 Constant Propagation

Constant propagation involves replacing expressions involving
constants with other constants to eliminate run-time evaluation.
Generally the compiler keeps track as far as possible of the value of
each variabhle throughout the program. At any point where an expression
involves only variables whose values are known the result of the
expression can be computed at compile time and placed in the program as a
new constant. Thus this optimization applied to the code fragment
A=]

B=2
C=A+B
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would produce the equivalent code

A=1

B=2

C=3

An elegant scheme for global program analysis is given by Kildall

[3]. This scheme associates with each statement of the program a pool of
data which are being propagated through the program. Such data pools can
be used for constant propagation by letting the elements of the pool be
ordered pairs whose first element represents a variable and whose second
element represents a value. Other applications of this approach to
program analysis are discussed below. This scheme is ideally suited to

the needs of an equivalence tester.

3.2 Invariant Propagation

Invariant propagation is similar to constant propagation in that it
involves associating with each statement of the program a set of
invariant relationships between data elements. For instance, invariant
propagation will note such things about a program as "X<0" or "B=1". As
indicated by the last example constant propagation is a special case of
invariant propagation. This technique is of limited use in compilers,

but is very powerful for detecting equivalent mutants.

Invariant propagation can be implemented using Kildall’s scheme for
constant propagation by replacing the variable and value pairs with
triples of the form <object>, <relation>, <object>. Each <object>
represents either a variable or constant, and <{relation> is one of the

algebraic relations <, >, =, {, >, or <>. The only difficulty is that an

invariant propagation algorithm should be able to replace a strong




N ARl e

Page 9

relationship with a weaker one (i.e. replace "A=1" with “A>1"). The
propagation algorithm should also be able to apply transitivity to deduce

relationships such as "A<O" from the relationships "A<B" and "B<O".

3.3 Common Subexpression Elimination

One of the optimizations frequently performed by compilers is to
recognize subexpressions which occur many times but only need to be
evaluated once. For instance, in the code fragment

A=X+Y

B=X+Y+2
The expression "X+Y" is evaluated two times. The common subexpression
can be eliminated by evaluating it once and assigning the result to a
temporary variable T, yielding:

T=X+Y

A=T

B=T+2

Kildall (3] demonstrates how his scheme for global analysis can be
applied to common subexpression elimination. In this application the
data pools are sets of expressions which are partitioned into equivalence
classes such that all expressions in equivalence class E have the same
value. Thus the example above might have sets as shown below, where "|"
divides equivalence classes: (Note the addition of a CONTINUE statement
to show the set after the assigrment to B.)

A=X+Y {}
BeX+Y+2 {A,X+Y}
CONTINUE {A,X4Y | B,X+Y+Z,A+Z}

Note that the algorithm described by Kildall generates equivalent
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expressions which are not used in the program, such as A+Z in the same
partition as X+Y+Z above. This feature allows the widest possible range

of equivalent expressions to be recognized.

3.4 Recognition of Loop Invariants

A common optimizing technique removes code from inside loops if the

execution of that code does not depend on the iteration of the loop.

Thus a loop of the form
DO 1 I=1, 10
A(I)=0
1 B=0
would be replaced by
DO 1 I=1, 10
1 A(I)=0
B=0
Since many of EXPER’s mutations change the boundaries of loops,
techniques for recognizing when code can be removed from a loop can be
useful in detecting equivalences. Conditions for detecting operations

which can be removed from loops are given by Schaefer ([5], pages

122-134).

3.5 Hoisting and Sinking

Hoisting and sinking are related to removal of code from loops in
that they involve moving code which would be repeated several times to a
place where it will only be executed once. Thus the code fragment

IF(A.EQ.0) GOTO 1
C=0
: B=2
GOTO 2
1 C=1
B=2
2 etc.
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could be replaced by
B=2
IF(A.EQ.0) GOTO 1
C=0
GOTO 2
1 C=1
2 etc.
Here the assignment B=2 has been hoisted to a position before the
conditionally executed part of the program. Similarly sinking involves
moving code to a position after some set of blocks. Mathematical rules

for detecting the feasibility of hoisting or sinking are given on pages

115-119 of Schaefer [5].

3.6 Dead Code Detection

Dead code detection involves the identification of sections of a
program which will either never be executed or whose execution is
irrelevant. An example of typical dead code is the fragment below, in
which the second assignment to A kills the first:

A=B+C
A=0

Schaefer [5] discusses rules for detecting dead code of this form on

pages 156-161.

Another example of dead code is the case in which one or more basic
blocks of a program are not connected to the rest of the flow graph.
Then, as long as there is only one entrance to the program some section
is never executed and can be removed entirely. This case is not expected
to arise very often in programs written by humans, but mutations may
easily make a large part of a program inaccessible from the entry node.

For example, consider the following mutant of a program:
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A=]
RETURN
B=A+2
etc
Here the insertion of the RETURN statement has made everything between {t
and the next label which is referenced in a GOTO inaccesible. This type
of dead code is easily detected by examining the flow graph of the

program in question,

4.0 APPLICATIONS

Each of the above optimization techniques can be applied to detect
equivalent mutants arising from one or more of the mutations applied by

EXPER. Each is discussed below.

4.1 Constant Propagation

Constant propagation is most useful for detecting cases in which a
mutant is not equivalent to the original program. Any mutant which could
affect the known value of a variable can be detected in this fashion.
The mutants most easily checked using this scheme are those involving
replacement of one data reference with another (Constant Replacement,
Scalar Replacement, Scalar for Constant Replacement, Constant for Scalar
Replacement, Source Constant Replacement, Array Reference for Constant
Replacement, Array Reference for Scalar Replacement, Array Name
Replacement, Constant for Array Raeference Replacement, Scalar for Array
Reference Replacement, Array Reference for Array Reference Rerlacement,
and Data Statement Alteration). Equivalences which may be detected, but
with lower probabiljty, are those involving changes to expressions

(Arithmetic Operator Replacement, Unary Operator Removal, Unary Operator

A M PR S RSN e AU,
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Insertion, and Unary Operator Replacement). It is possible that

equivalences involving actual changes to the program flow could be
detected, but it should be much easier to detect these by comparing the

flow graphs.

The mechanism for testing equivalence of mutants using constant |
propagation is as follows: At all points subsequent to the mutation

compare the constant pools of the original program and the mutant., If 1

they differ it is likely (though not certain) that the mutant is not
equivalent to the original program. The following example demonstrates

this form of detection:

Original Program Mutant Program
Code Constants Code Constants
A=1 A=2
B=A+2 (A,1) B=A+2 (A,2)
etc (A,1),(B,3) etc (A,2),(B,4)

Here a mutation has replaced the assignment of 1 to A with an assignment
of 2. The change in the program is reflected in the changed constant
pools following the mutation. Unless the assignments to A and B are dead
it is reasonable to assume that the mutation is not equivalent to the
original, and to try to develop test data which substantiate this

assumption.

A firm test of non-equivalence can be made if one of the output

variables appears in the constant pool for a RETURN statement. Then if

the known value of this variable differs between the mutant and original

programs we know that they are not equivalent, since they return
different values on identical inputs. Obviously this test is valid only
if some path exists from the entry node of the program being tested to

the exit in question. This question can be resolved through dead code
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detection.

4.2 Invariant Propagation

As shown above invariant propagation is really a super-set of
constant propagation, and thus it can be used to test all the sorts of
k mutants discussed under constant propagation. However since a great deal
more information is carried by invariant relationships than by equality
to a constant, this technique is far more powerful than constant

propagation. It is particularly useful for testing the equivalence of

mutants involving unary operators (i.e. Unary Operator Removal, Unary
Operator Insertion, and Unary Operator Replacement). In many cases these
operators only affect an expression if it has a certain relationship to
0. For example, taking the absolute value of an expression only changes
the program if that expression evaluates to a value less than zero;
negating an expression does not change anything if that expression always
evaluates to O, and so forth. These facts can be used as shown in the

following example:

Original Program Mutant Program
Code Invariants Code Invariants
IF(A.LT.0) GOTO 1 IF(A.LT.0) GOTO 1
B=A A>0 B=!A A>0

In this case the conditional allows us to determine an invariant (A>0),

which in turn allows us to determine that the mutant program is

equivalent to the original, since taking the absolute value of a positive

quantity is a no-op.

The .power of invariant propagation is vastly increased if the

propagation and testing algorithms can take advantage of transitivity and

replacement of one condition by a weaker one. Both of these features are

Nt i e i i i
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demonstrated below:

Original Program

Code Invariants
A=0
CONTINUE A=0

1 B=A A>0,A<5
C=!B A>0,A<5,B=A
A=A+] A>0,A<5,B=A
IF(A.LT.5) A>0,A<5,B=A

GOTO 1 A>0,A<5,B=A
Mutant Program

Code Invariants
A=0
CONTINUE A=0

1 B=A A>0,A<S
C=B A>0,A<5,B=A,C=B
A=A+] A>0,A<5,B=A,C=B
IF(A.LT.5) A>0,A<5,B=A,C=B

GOTO 1 A>0,A<5,B=A,C=B
Note that the algorithm for generating invariant pools recognizes the
loop in this program and is thus able to determine an upper bound on A.
Obviously the invariants shown assume that no other branches to label 1
exist. The relation A=0 is replaced with the weaker A>0 when the
statement A=A+l is detected at the end of the loop. Applying
transitivity to the mutated pair C=!B and C=B allows us to decide that

the mutant is equivalent to the original since B=A and AX0.

There is one important feature of EXPER which is useful in
! generating invariant pools: EXPER can perform run-time checks of array

bounds. Thus the following statements generate the invariant pool shown:

Code Invariants
DIMENSION A(S)
A(J)=0 J>1,3<5

Because EXPER checks array bounds any program aborts if J is less than 1

or greater than 5 in the assignment to A(J). Thus any program or mutant

for which the given invariants did not hold prior to executing the
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assignment would have failed, and thus would obviously not be a correct

program.

4.3 Common Subexpression Elimination

Kildall’s equivalence partitions[3] provide an excellent way to
handle mutations in assignment statements. Changing an arithmetic
operator changes the expression placed in the equivalence class of the
variable to which the assignment was made. Similarly, mutations which
change an operand or destination in an assignment will produce changes in
the equivalence classes following the assignment. Thus comparing
equivalence classes can show that the mutant and original differ. As an

example, consider the program and mutant shown below:

Original Program

Code Equivalence Classes
A=B+C
etc. {A,B+C}
Mutant Program
Code Equivalence Classes
A=B-C
etc. {A,B-C}

Comparing the two sets of equivalence classes shows that A has a
different value in the two programs. As with constant propagation, we
can assume that the mutant is not equivalent to the original program, and

that test data should be developed to verify this assumption.

Common subexpression detection can also be used to show that a
mutant is equivalent to the original program. If the mutation has
changed part of an expression E to E’, but E and E’ are in the same
equivalence class, then the mutant is equivalent to the original program.

The example below demonstrates this situation:

i DAuvalbe SR
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Code Equivalence Classes
A=B+C
D=B+C {A,B+C)
X(A+E)=0 {A,B+C,D}
Mutant Program
Code Equivalence Classes
A=B+C
: D=B+C {A,B+C)
X(D+E)=0 {A,8+C,D}

detect using a simpler heuristic such as

4.4 Recognition of Loop Invariants

Since A and D are in the same equivalence class we can conclude that the
mutation (replacing A with D in the subscript) did not change the
1 program. Note that since the equality of A and D i{s determined through

assignment of a common expression this equivalence would be hard to

invariant propagation.

Many mutations change the size of loops. The most obvious of these

is the DO-loop End Replacement operator,

operator can also alter loops. In cases

although the GOTO Replacement

where a loop has been changed to

include more or less code than in the original, recognition of loop

invariants can be used to decide whether

or not the change is

significant. Examination of the flow graphs should make cases in which

loops have changed fairly easy to detect;

thus it is easy to decide when

to apply these tests. The basic application simply involves deciding

whether or not the excess code (that is,
in both loops) is loop invariant. If it
contraction) of the loop has not changed

an example, consider the following code:

the code which does not appear
is then the expansion (or

the outputs of the program. As
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Original Program Mutant Program
DO 1 I=1,10 DO 2 I=1,10
A(1)=0 A(1)=0

1 CONTINUE 1 CONTINUE

2 B=0 2 B=0

The mutation above expanded the DO-loop to include the assignment of 0 to
B. Since this assignment is loop-invariant it does not matter whether it
is done 10 times inside the loop or 1 time outside it. Thus the original

and mutant programs are equivalent.

4.5 Hoisting and Sinking

These tests are used in situations similar to those in which testing
of loop-invariants is used, except that they apply to cases in which the
code skipped or included by a branch is changed. Candidates for this
sort of change include GOTO Replacement and Statement Deletion. In these
cases the mutant and original programs are equivalent if the code added
to or removed from a basic block can be hoisted or sunk out of that

block. Consider the following example:

Original Program Mutant Program
IF(A.EQ.0) GOTO 1 IF(A.EQ.0) GOTO 2
A=A+1 A=A+]

2 B=0 2 B=0
GOTO 3 GOTO 3

1 B=0 1 B=0

3 etc 3 etc

In this case B is set to zero regardless of whether we do it at line 2 or
line 1. A more compact form is produced by hoisting the assignment to B,
namely
B=0
IF(A.EQ.0) GOTO 3
A=A+l
3 etc

Because this hoisting is possible the mutant is equivalent to the
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original program,

Because the code skipped by the statement "GOTO 3" can be hoisted
the branch is unnecessary. Thus the hoisting test will also show that
the mutant derived by deleting this branch is equivalent to the original

program,

4.6 Dead Code Detection

As mentioned above this test is very important in guaranteeing the
reliability of tests based on invariant propagation (including constant
propagation). It can also be used to test the equivalence of some
mutants in its own right. The equivalences which are most likely to be
detected by this technique are those arising from mutations that alter
the flow graph in some way. Such mutants include Statement Analysis
(since this mutant replaces any statement with an abnormal exit),
Statement Deletion (if GOTO or RETURN statements are deleted), Return

Statement Replacement, and GOTO Replacement.

The best way to use dead code detection to test mutants of this form
is to examine the flow graphs of the two programs. If any node appears
in the mutant which is not connected to the rest of the graph it {is
reasonable to expect that the mutant is not equivalent to the original.
(The only exception being the case in which the disconnected node
consists only of dead assignments. This situation is discussed in
general below). An example involving Return Statement Replacement is

shown below:
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Original Program

Mutant Program

Code Flow Graph Code Flow Graph
A=1 | | A=] | |

| et Jo e g L SR
B=2 | | RETURN

| R S I R e
C=3 | | C=3 | |

- ——————— - ——

The RETURN statement has broken the original single node into 2 nodes
with no connection between them. Thus one can conclude that since code
which is executed in the original program (assuming the node is
accessible in the first place) is not executed in the mutant, the two are

different.

A slightly different application of dead code detection involves
making sure that mutated code is not inaccessible or dead in the first
place. If it is then the mutant must be equivalent to the original
program. This application is identical to the application in compiler
optimization where code is identified as dead and excluded from the final
output. It applies to all mutant operators. An example of this sort of
analysis in testing equivalence is shown below:

Original Program Mutant Program
A=1 A=2
A=B+C A=B+C
Here the first assigmment to A is killed by the second assignment, and
thus any change to its right-hand side is insignificant. A more drastic
example shows inaccessible code. Again, the mutant to code which can

never be executed is unimportant.

Original Program
GOTO 1
. A=2
1 etc

Mutant Program
GOTO 1
A==2
1 etc
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Some cases in which a mutation has killed a block of code can be
detected by using invariant propagation. The program fragment shown

below shows how this can happen:

Original Program

Code Invariants
IF(A.GT.B) GOTO 1
FLAG1=. TRUE. A<B ;
IF(A.LT.B) GOTO 2 A<B §
FLAG2=.TRUE. A=B &
2 etc A<B ;
Mutant Program LY
Code Invariants §
IF(A.GT.B) GOTO 1 ‘
FLAGl=.TRUE. A<B
IF(A.LE.B) GOTO 2 A<B ;
FLAG2=.TRUE. :
2 etc A<B

Here the mutation has replaced the test A<B with the test A<B. However,
the invariant pool tells us that A is alwayvs less than or equal to B, and
thus the branch will always be taken, and the assignment to FLAG2 is
dead. Note that without knowing the relationship between A and B it is

impossible to determine that this assignment is dead.

5.0 AN EQUIVALENCE TESTING POST-PROCESSOR FOR EXPER

The above ideas for determining equivalence can be applied in a
post-processor to EXPER in order to reduce the time spent by the user
dealing with equivalent mutants. This processor should be run after the
mutants have been executed on the test data, since experience shows that
as many as 90 per cent of the mutants can be eliminated on the first
testing run. Of the remaining mutants, those which are found by the

post-processor to be equivalent are flagged as such and the user need not

consider them further. Only those which are not found to be equivalent

=
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are analyzed by the user to improve his test data. At any point the user
can manually over~ride the post-processor by declaring a live mutant to
be equivalent to the original program or by declaring one that was

thought to be equivalent to be live again.

The analysis proceeds much as it would in a compiler, with a few
exceptions which arise due to the fact that we do not necessarliy want to
produce efficiently optimized code. For instance, it is not important
that we worry about compiler-generated constants, since they can never be

mutated.

The first step is to express the original program as a flow graph,
as discussed above. This step may be done as part of EXPER’s parsing or
other processing of the program. As each live mutant is tested for
equivalence to the original program a flow graph is generated for it. In
many cases this flow graph will be isomorphic to the original so that
only the contents of one node need to be modified. In more complex
cases, where the shape of the flow graph is changed, the mutant’s flow
graph can still be derived from the original. EXPER represents mutants
as a descriptor record describing the change made to the original
program. These records fully describe the mutant, and thus allow the
mutant’s flow graph to be derived without re-generating it from a source

program.

Just as it is expected that mutant flow graphs can be efficiently
derived from the original flow graph, it is also expected that the
invariant’ and common expression pools described above will not have to be
computed for each mutant. Instead, the pools for the original can be

computed at parse time and the mutant’s pools derived from them. As

:
i
g
{
;
;
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suggested above, many mutations cause a relation to change, move an
expression from one equivalence class to another, or make similarly
limited changes in the pools. These changes can be easily detected ing
the descriptor record of the mutant, and can be made as local
modifications to the pools. Obviously, care will have to be taken that
any side effects of these local changes are detected, but doing so should

be significantly less expensive than regenerating the entire pool.

The invariant and common expression pools described above can be
combined into a single pool by replacing the individual variables or
constants involved in invariant relationships with the equivalence class
sets used to recognize common expressions. Note that using this scheme
the relationships "equal to" and "not equal to" do not need to be
explicitly represented, since if two objects are in the same set they
must be equal, whereas if they are not in the same set they must be
unequal. If the entire structure of sets and relationships is
represented as a directed graph whose nodes correspond to sets and whose
edges to relationships (obviously the edges must be labelled as to what
relationship) then the problem of applying transitivity becomes one of
simply following either edges labelled ">’ and ‘>’ or edges labelled ‘<’
and ‘<’ until either the desired relationship is derived or no edges with
the appropriate labels remain. Note that no cycles can occur which
involve such paths. Assume such a cycle did exist, for instance a path
using only edges marked ‘<’ or ‘" from node A to node B and back to node
A. Since a path from A to B exists, transitivity implies that for any X
in A and Y in B, X<Y. However, because a path from B to A exists we also

have the statement YX. Because X and Y are in different sets we know

that X is not equal to Y, and thus the derived relationships are

IRUR—
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contradictory.

Representing the pools in this manner allows a great deal of
flexibility in testing equivalences. The following example shows how

this can happen:

Original Program

Code Invariant & Expression Pool
A=B+C
D=E+F {A,B+C}
IF(B+C.LE.D) GOTO 1  {A,B+C},{D,E+F}
X(A+G)=0 {A,B+C}>{D,E+F}
etc.

Mutant Program

Code Invariant & Expression Pool
A=B4+C
D=E+F {A,B+C}
IF(B+C.LE.D) GOTO 1  {A,B+C},{D,E+F}
X(D+G)=0 {A,B+C}<{D,E+F}
etc.

In this example the conditional branch allows a relationship between B+C
and D to be deduced. Because the relationship is then applied to all
elements equal to either B+C or D we can conclude that replacing A with D
in the subscript yields a mutant subscript which is always greater than
the original subscript. This fact suggests that the mutant is not

equivalent to the original.

Once the modified invariant pool described above is formed it is
used to aid the detection and removal of dead code. Once dead code has
been removed the mutant and original are compared to see if they are
obviously equivalent. If so, the mutant is placed in the equivalent

mutants pool and not procesed further.
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Since dead code is irrelevant to the state of the program, removing
it will not make the invariant pools incorrect. However, it may be
possible that removing dead code enables invariant conditions to be

strengthened. The following example shows how this can happen:

Original Program Mutant Program
A=0 A=0
IF(C.GT.D) GOTO 2 IF(C.GT.D) GOTO 2
IF(C.LT.D) GOTO 1 IF(C.LE.D) GOTO 1
A=A+] A=A+]
1 etc 1 etc.

The mutation above is a case in which changing a conditional (C.LT.D
became C.LE.D) kills a block of code. The section of code killed is the
increment of A. Because of this increment the strongest statement that
can be made about A at label 1 is A>0. Because the increment of A is
dead in the mutant this invariant can be tightened to A=0, assuming no

other branches to label 1 exist.

Those mutants which have not been eliminated by manipulation of the
flow graphs are then tested for equivalence based on loop invariants or
the possibility of hoisting. Any equivalences thus found are placed in
the equivalent mutants pool. Again, it is often possible to apply these
tests to the original program at parse time and deduce their results on a
mutant from the mutant’s descriptor record. Only rarely will it be

necessary to actually test the mutant,

The final phase of the post-processor applies the invariant pools
generated in the first phase to actual detection of equivalent mutants.
In this phase many mutants may be automatically eliminated, especially
those invélving unary operators. This is also a convenient place to

provide user interaction in the equivalence determining process. The
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processor would be driven by a set of rules describing sufficient
conditions for equivalence of a mutant to the original. For instance,
there might be a rule concerning absolute values which can be
conceptualized as "Insertion of absolute value preserves equivalence if
its argument is greater than or equal to 0". When the processor is
unable to decide whether a rule is applicable by itself, it turns to the
user for help. This help is requested by forming a question from the
rule and posing this question to the user. For example, if an absolute
value operation has been inserted in front of a variable which does not
appear in the invariant pool for that statement the processor could ]
prompt "I3 X always greater than or equal to 0?". If the user replies in

the affirmative the mutant is flagged as equivalent.

6.0 REMARKS

It has been shown above how many techniques from compiler
optimization can be applied to detect equivalent mutants of a program.

Several areas remain to be explored however.

In the EXPER system only first order mutations are considered

(i.e. mutants coming from one program change), but conceivably some
higher order mutants may be worthy of consideration. In many cases the
heuristics described here can be extended very easily to detect
equivalent mutants of higher order. It is also true that in many cases
equivalence can be tested transitively, f.e. if program P is equivalent
to P’ and P’ is equivalent to P’’ then P is equivalent to P’'’. However,
it is often true that a high-order mutant can be equivalent to some

program without having intermediate mutants equivalent to either. For
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instance the following program fragments are equivalent:

IF(I.EQ.1) GOTO 1 |
and

IF(--1.EQ.0) GOTO 1
However, neither is necessarily equivalent to either of the intermediate
mutants

IF(1.EQ.0) GOTO 1
or {

IF(--I.EQ.1) GOTO 1
Fortunately the problem of equivalence of high order mutants is not a ‘
serious problem because of the Coupling Effect: Test data that screens
out all first order mutants will screen out all higher order mutants [2].

Thus only first order mutants need to be considered in evaluating test

data

A more interesting problem involves the detection of equivalences
which are very dependent on the form in which the programmer has chosen
to express his algorithm. As an example consider the fragment below
which tests whether or not a number N is prime.

IF(N.LE.2) GOTO 3
L=N-1
DO 1 I=2,L
IF(N.EQ.(N/I)*I) GOTO 2
1 CONTINUE
3 PRIME=,TRUE.
RETURN

2 PRIME=,FALSE,
RETURN

It is really only necessary to let the DO loop run from 2 to
INT(SQRT(N)). The test N.LE.2 means that only N greater than or equal to
3 will be used as upper limits for the loop. Since INT(SQRT(3))=1,

INT(SQRT(N))<N-2. Thus the mutation which replaces L with ==L in this
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loop is equivalent to the original. Because the equivalence of this
mutant is so closely related to the conceptual nature of the program it
seems very difficult to automatically prove it. This problem might be
solved through the interactive part of the post-processor. Specifically,
it is easy to find out where the mutant occurred, and the processor could

simply ask "Is it acceptable for this loop be executed from 2 to L-1?".

Several techniques for detecting equivalent mutants have been
described. These techniques should be capable of finding a significant
number of cases in which a mutant is equivalent to the original program,
since experience indicates that most equivalences are very simple ones.
Often they involve the insertion of the absolute value operator, a case
that is particularly easy to detect using invariant propagation. More
complex equivalences can be tested interactively with the user. The
questions thus posed should help the user decide whether or not to

manually declare a mutant equivalent to the original program.

Several questions concerning equivalence detection remain open. At
several points in the above discussion it is asserted that the data
needed to determine equivalence (e.g. flow graphs, invariant pools, etc.)
can be derived efficiently from the corresponding data for the original
program and the mutant’s descriptor record. While these assertions are
undoubtedly true in many cases, exactly how often remains unknown.
Further experimentation is required in this area, particularly with
regard for the following questions:

l. In what fraction of the cases is it necessary to generate a flow
graph’ for a mutant from scratch?

In what fraction of the cases is it necessary to regenerate the
invariant pools for a mutant?
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It is unlikely that a change to an invariant pool will affect only
that pool. On the average, how many pools will be affected? How
does the cost of determining all affects compare to the cost of
re-computing the invariant pools?
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